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Abstract  
 

Objective To determine whether whole genome sequencing (WGS) can be used to define the 

molecular basis of suspected mitochondrial disease. 

Design Patients with suspected mitochondrial disorders were recruited to the 100,000 

Genomes Project in England between 2015 and 2018.   

Setting A multicentre study in the National Health Service in England including secondary 

and tertiary care.   

Participants 319 families with suspected mitochondrial disease were referred for WGS after 

excluding common genetic causes. 345 affected individuals were recruited (186 female, 159 

male), with median age 25 years (range 0 to 92). Trio or quad analysis with both parents was 

performed in 148 families (46%). Clinical information was collected systematically using 

Human Phenotype Ontology (HPO) terms with a median of 7 HPO terms per participant.  

Commonest HPO terms were delayed gross motor development, intellectual disability, 

myopathy, seizures and ptosis.  

Intervention:  Short-read whole genome sequencing was performed.  Nuclear variants were 

prioritised based on gene panels chosen according to phenotypes, ClinVar pathogenic/likely 

pathogenic variants, and the top ten prioritised variants from Exomiser. mtDNA variants 

were called using an in-house pipeline and compared to a list of pathogenic variants.  Copy 

number variants and short tandem repeats for thirteen neurological disorders were also 

analysed.  ACMG guidelines were followed for the classification of variants. 

Main Outcome Measures:  Finding a definite or probable genetic diagnosis.   

Results: A definite or probable genetic diagnosis was identified in 98 families (31%), with an 

additional 6 possible diagnoses (2%).   Fourteen of the diagnoses (4% of the 98 families) 

explained only part of the clinical features.  A total of 95 different genes were implicated.  

37.5% of diagnosed families had a mitochondrial diagnosis and 62.5% had a non-

mitochondrial diagnosis. 
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Conclusion WGS is a useful diagnostic test in patients with suspected mitochondrial 

disorders yielding a diagnosis in a further 31% after excluding common causes.  The majority 

of diagnoses were non-mitochondrial disorders and included developmental disorders with 

intellectual disability, epileptic encephalopathies, other metabolic disorders, 

cardiomyopathies and leukodystrophies. These would have been missed if a targeted 

approach was taken, with some having specific treatments. 

 

 

Summary Box 

What is already know on this topic 

• Mitochondrial disorders are amongst the most common inherited diseases, but a 

genetic diagnosis is not possible in ~40% of patients, limiting genetic counselling and 

prevention. 

• Whole genome sequencing (WGS) has the potential to shorten the “diagnostic 

odyssey” for patients with suspected mitochondrial disorders, but its use in a national 

healthcare system has not been previously investigated. 

What this study adds 

• After excluding common genetic causes, WGS identified a definite or probable 

genetic diagnosis in an additional 31% of patients (including 4% with partial 

diagnoses), and an additional 2% had possible diagnoses. 

• 62.5% of the newly diagnosed families had a non-mitochondrial diagnosis showing 

that a wide genomic approach is more useful than a targeted panel testing approach. 

The new diagnoses included treatable disorders. 
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Introduction 

Mitochondrial disorders have emerged as a common cause of inherited metabolic disease 

affecting ~1 in 5000 people1 and  are caused by mutations in genes which primarily affect 

oxidative phosphorylation and ATP synthesis2.  Mitochondria are intra-cellular organelles 

which play a pivotal role in cellular energy metabolism. This is achieved by  a series of 

complex enzymes located in the inner mitochondrial membrane which perform oxidative 

phosphorylation and synthesise adenosine triphosphate (ATP). ATP is a chemical source of 

energy required for all active cellular processes. The impairment of mitochondrial function 

tends to affect tissues with high energy demand such as the brain, the peripheral nerves, the 

eye, the heart and the peripheral muscles.  The clinical diagnosis of mitochondrial disorders 

is challenging because they can affect a single organ such as the eye in Leber Hereditary 

Optic Neuropathy3, or many different systems, and they can present at any age.  Although 

some patients present with a classical mitochondrial syndrome, such as mitochondrial 

encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), many present 

with only one or a few of the clinical features (oligosymptomatic cases)4 or with an ill-

defined multi-system disorder.  Mitochondria contain their own DNA in the form of a small 

16.5kb circle of double stranded DNA (mtDNA), which encodes for 13 peptides, two 

ribosomal RNAs and 22 transfer RNAs which are essential for synthesising proteins within 

the organelle.  However, the vast majority of proteins making up the mitochondria are 

encoded by genes in the nucleus and are synthesised in the cytosol before being imported 

through a bespoke import machinery.  Mitochondrial disorders can be caused by pathogenic 

variants in either the mtDNA or the nuclear genome, can follow any inheritance pattern 

(autosomal dominant, autosomal recessive, X-linked, de novo or maternal) and are highly 

genetically heterogeneous5. For example, Leigh syndrome, the commonest childhood 

presentation of mitochondrial disease which usually presents in the first year of life with 

stepwise loss of skills, is caused by mutations in ~100 nuclear and mtDNA genes6.  These 

challenges often result in a prolonged patient journey from symptom onset to reaching a 

diagnosis, referred to as a “diagnostic odyssey”7,8.  In patients with rare diseases, this 

typically involves multiple appointments - first in primary care, then with different specialist 

services - and many investigations, sometimes over many years.  One survey8 found that 

patients saw an average of 8 physicians before being diagnosed with a mitochondrial disease, 

and 70% had a muscle biopsy.  
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The diagnosis of mitochondrial disease has traditionally relied on an invasive tissue biopsy 

for biochemical and histochemical analysis9, which can be normal even in patients with a 

defined genetic diagnosis. Sequencing a pre-defined list of genes known to cause a specific 

disorder (multi-gene panels), and sequencing of the protein-coding regions (exons) of all 

genes (exome sequencing), have been effective for diagnosing mitochondrial disorders10–16 

and in discovering new mitochondrial disease genes. However, it is still not possible to make 

a genetic diagnosis in ~40%10 even in highly selected cohorts, hence the need for new 

approaches.   

A definitive genetic diagnosis benefits patients and families17, allowing tailored information 

about prognosis and treatment, genetic counselling and access to reproductive options such as 

prenatal diagnosis (genetic testing during pregnancy – usually by chorionic villus sampling or 

amniocentesis), pre-implantation genetic diagnosis (the use of assisted reproductive 

technology and genetic testing of embryos), and mitochondrial transfer (replacing the 

mother’s mitochondria in an ovum or early embryo with healthy mitochondria from another 

woman’s donor egg or embryo, used for disorders caused by mtDNA mutations)18.  Whole 

genome sequencing (WGS) is a next-generation sequencing technology that is used to 

sequence the entire genome of an individual. WGS has the added benefit of being able to 

diagnose pathogenic mutations affecting the mtDNA and the nuclear genome19, and thus has 

the potential to make a diagnosis in more families and shorten the time to diagnosis20. The 

objective of this study was to see if whole genome sequencing could be used to define the 

molecular basis of suspected mitochondrial disorders in a national health care system in 

patients assessed in mainstream secondary care as well as tertiary centres. The 100,000 

Genomes Project was set up to introduce and embed genomic testing into the mainstream 

National Health Service (NHS), discover new disease genes and make genetic diagnosis 

available for more patients21.  Following an initial pilot phase22, patients in the 100,000 

Genomes Project were recruited from NHS Genomic Medicine Centres (GMCs) across 

England. Here, we report the results for 345 patients with a suspected mitochondrial disorder 

recruited into the main programme between 2015 and 2018. 

Materials and Methods 

Participants 
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Participants with suspected mitochondrial disorders were recruited to the 100,000 Genomes 

Project (main programme) between 2015 and 2018 with an unexplained multi-system 

progressive disorder usually involving the central nervous system and/or neuromuscular 

system.  All participants provided written informed consent and the study was approved by 

the HRA Committee East of England Cambridge South (REC Ref 14/EE/1112). Eligibility 

criteria stated that mtDNA and common nuclear genetic causes (e.g. POLG mutations) 

should have been excluded (full inclusion criteria in Supplementary Methods). All 

participants recruited under the category ‘Suspected Mitochondrial Disorder’ who had 

Tiering data available in data release v8_2019-11-28 were included in the study.   In 2015-

2018, genetic testing in the UK was arranged through 20 regional genetics laboratories, and 

there were three NHS highly specialised services for rare mitochondrial disorders.  Testing of 

POLG and common mtDNA mutations (m.3243A>G associated with MELAS and 

maternally inherited diabetes and deafness [MIDD], m.8344A>G associated with myoclonic 

epilepsy with ragged red fibres [MERRF], and m.8993T>G/C associated with Leigh 

syndrome and neurogenic muscle weakness ataxia and retinitis pigmentosa [NARP]) in DNA 

extracted from blood was available through the highly specialised service laboratories.  

Further testing (such as gene panel testing) was available after discussion with the highly 

specialised services depending on the patient’s clinical features (Supplementary Table 1).  

 

Clinical Information 

The referring clinician provided clinical information against a standardised list of clinical 

features as yes/no answers (Supplementary Table 2), or using a standardised vocabulary for 

describing clinical features encountered in human disease (the Human Phenotype Ontology, 

HPO23).   HPO classifies clinical features by organ system using a branching tree 

incorporating increasing levels of detail.  We used modified HPO terms to score participants 

using the Nijmegen Mitochondrial Disease Criteria (NMDC)24,25(Supplementary Table 3), 

which uses clinical features (muscular, central nervous system and multi-system), MRI and 

biochemical features, and muscle biopsy results to give a score out of 12.  Patients with a 

total of 0-1 were classified as being unlikely to have a mitochondrial disorder; score 2-4 a 

possible mitochondrial disorder; score 5-7 a probable mitochondrial disorder; and score 8 or 

more as definite mitochondrial disorder.  One investigator scored all the participants.  100 

participants were also scored independently by a second investigator to develop the 

modifications for using the NMDC with HPO terms.  For each HPO term, the HPO system 
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was determined by following the branching tree back to the subtype of ‘Phenotypic 

abnormality’. 

 

Whole Genome Sequencing 

DNA extraction from peripheral blood, quantification, and sequencing was performed 

according to a national specification (Illumina TruSeq, HiSeq 2500 and HiSeq X)26,27 with 

reads aligned to the Genome Reference Consortium human genome build 37 (GRCh37) for 

the earlier participants recruited, and GRCh38 for later participants using Isaac Genome 

alignment software.  Family based variant calling of single nucleotide variants and insertion 

deletions for chromosomes 1-22, X and the mtDNA was performed using the Platypus 

variant caller28 allowing joint variant calling for all family members and considering the 

sequence alignments from all family members together. 

 

The analysis workflow is shown in Figure 1. 

 

Nuclear variant analysis – single nucleotide variants and small insertion-deletion variants 

(indels) 

Genomes were analysed in families and variants were classified into four ‘Tier’ groups 

according to the probability of the variant being causative21. Tier 1 included loss of function 

variants (nonsense variants, essential splice donor and essential splice acceptor variants) and 

de novo missense or splice region variants in genes on the panels applied; Tier 2 included 

missense and splice region variants in genes on the panels applied; Tier 3 included other rare 

variants; and a final group of unclassified variants had higher population frequency or the 

segregation pattern in the family was not consistent with the family history. Virtual gene 

panels were chosen according to each participant’s phenotypes, using curated ‘PanelApp’ 

gene lists, which include causative genes for each disorder generated through 

crowdsourcing29. This allowed the prioritisation of variants likely to be causative and  

minimised the reporting of abnormal genetic results which are unrelated to the reason for 

testing, for example cancer predisposition genes (referred to as incidental findings). All 

participants had the mitochondrial panel applied, and further panels depended on the 

phenotypes. Tier 1-3 variants were accessed from the Main Programme v8_2019-11-28. All 

Tiered variants had passed in-house Genomics England quality control30. Variants were also 

prioritised by Exomiser31, an application which prioritises variants in exome or genome data 

using protein interaction networks, clinical relevance and cross-species phenotype 
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comparisons as well as computational filters for variant frequency, predicted pathogenicity 

and pedigree information.  Variants classified as Pathogenic, Likely Pathogenic or 

Pathogenic/Likely Pathogenic were extracted from Clinvar32 (3.3.2020) for GRCh38 and 

GRCh37 and compared against Tier 1-3 variants using bedtools intersect 

(https://bedtools.readthedocs.io) in order to identify previously reported pathogenic and likely 

pathogenic variants.  

Gene panels applied 

The Mitochondrial Disorders panel was applied in all participants.  Other panels applied 

included Undiagnosed Metabolic Disorders (148 participants), Intellectual Disability (139), 

Congenital Myopathy (77), Hereditary Ataxia (60)(see Supplementary Table 4).  The mean 

number of panels applied per participant was 4.7 (range 1 to 18). A total of 93 different 

panels were applied to between 1 and 345 participants.  

 

Nuclear variant analysis – copy number variants 

Copy number variant (CNV) calls were detected using Canvas software33 based on sequence 

coverage and both nucleotide and Indel variant calling.  We only included CNV calls with 

PASS filter status assigned by Canvas and overlapped any gene in PanelApp.  CNV calls 

were annotated using gencode v29. CNVs which interrupted exons of a PanelApp gene were 

evaluated.  All the CNVs reported as a diagnosis were manually confirmed on Integrative 

Genomics Viewer (IGV).   

 

Nuclear variant analysis – short tandem repeat expansions 

Short tandem repeat expansion genotyping was performed using the 

ExpansionHunter version 3.2.2 software package34.  Thirteen loci were assessed (HTT, AR, 

ATN1, ATXN1, ATXN2, ATXN3, ATXN7, CACNA1A, TBP, C9orf72, 

FXN, FMR1 and DMPK) using the coordinates listed in Supplementary Table 5.  Potentially 

causative repeat expansions above an established threshold for each locus (Supplementary 

Table 6) were visually inspected using pileup plots and re-classified based on the quality of 

the reads34. 

 

mtDNA variant analysis 

An in-house pipeline was used to call mtDNA single nucleotide variants above an established 

detection threshold of >1% variant allele frequency (VAF, or percentage heteroplasmy 
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level)35 after excluding likely errors27.  These were compared to a manually curated list of 

pathogenic mutations with functional evidence supporting pathogenicity36.  Our pipeline does 

not detect large scale mtDNA rearrangements which usually require targeted mtDNA 

analysis in DNA extracted from skeletal muscle. 

 

Clinical Review – Single nucleotide variants and small insertion-deletion variants (indels) 

Tier 1 and Tier 2 variants, the top ten prioritised variants by Exomiser, ClinVar 

pathogenic/likely pathogenic variants and the mtDNA variants (tier 1-3 and from the in-

house pipeline) were reviewed by a Clinical Geneticist and classified using internationally 

accepted criteria for pathogenic variants, likely pathogenic variants, variants of uncertain 

clinical significance, and likely benign or benign variants (American College of Medical 

Genetics [ACMG] criteria37), incorporating information from gnomAD38, ensembl39, 

VarSome40, OMIM and a review of the literature (a description of the online resources used 

is in the Supplementary Methods). Variant quality and variant allele frequency were checked 

using IGV41.  

 

Clinical Review – Copy Number Variants 

CNVs which overlapped at least one exon in a PanelApp gene were reviewed in DECIPHER.  

Information about the type of variant (copy number loss, copy number gain or loss of 

heterozygosity), the size of the variant and the gene content (in particular, haploinsufficient 

genes and OMIM morbid genes) was reviewed.  A comparison was also made with 

previously observed CNVs in the general population or in affected individuals.   

 

Clinical Review – Short tandem repeat expansions 

Participants with repeat expansions were reviewed to see whether they were causative, 

considering the size of the expansion (whether it was a ‘pre-mutation’ or ‘full mutation’) and 

the participant’s age and phenotypic features. 

 

Feedback from Genomic Medicine Centre laboratories and clinical teams 

The Genomic Medicine Centre laboratories were commissioned to analyse the Tier 1 and 

Tier 2 variants.  They filled out an ‘exit questionnaire’ for each family through an online 

questionnaire.  For each family, they fed back whether genetic cause had been identified with 

options of ‘solved’, ‘partial’, ‘uncertain’ or ‘no’ and whether the result was already known 

through clinical testing.   For variants which the clinical scientists had identified as 
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potentially causative, they fed back their variant classification according the ACMG criteria 

and whether or not the variant had been confirmed by Sanger sequencing and fed back to the 

clinician.  Feedback from the GMC laboratories was available in 277/319 (87%) families 

(data release v12_21_05_06).  We successfully contacted clinicians for further information in 

55 (17%) families. 

 

Overall clinical assessment  

The molecular diagnosis was described as ‘definite’, ‘probable’, or ‘possible’ based on our 

overall clinical assessment of whether the variant(s) explained the clinical features, taking 

into account the ACMG classification of the variant(s), the inheritance pattern and the 

clinical fit between the patient’s HPO terms and the reported clinical phenotypes for the gene 

or variant. For example, we used ‘probable’ for compound heterozygotes where the 

phenotype fitted with the disorder but only one variant was classified as pathogenic/likely 

pathogenic and the other was a variant of uncertain clinical significance.  The contribution 

was described as ‘full’ or ‘partial’ depending on whether the whole phenotype or only one 

aspect could be explained by the variant(s). Nuclear genes were classified as ‘mitochondrial’ 

based on the curated PanelApp list29, plus recently discovered genes known to have a direct 

effect on oxidative phosphorylation.    

 

Statistical Methods 

Statistical analyses were performed in R.  Fisher’s exact test was used to compare the number 

of participants with a genetic diagnosis in children and adults, and in singletons compared to 

trios/quads.  The mean number of HPO terms in diagnosed and undiagnosed individuals was 

compared using students t-test, and similarly for the number of HPO systems affected.  

Fisher’s exact test was used to compare the proportion of families with each inheritance 

pattern between nuclear-mitochondrial diagnoses and non-mitochondrial disorders.  The 

proportion of participants with each HPO system affected was compared between participants 

with definite mitochondrial diagnoses and definite non-mitochondrial diagnoses, using 

Fisher’s exact test.  The mean Mitochondrial Diagnostic Criteria score was compared 

between participants with mitochondrial diagnoses, non-mitochondrial diagnoses and 

undiagnosed participants using a One-way ANOVA and post-hoc Tukey testing.    

Patient and Public Involvement 
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The 100, 000 Genomes Project has a Participant Panel made up of participants and parents or 

carers of people involved in the project which was established in 2016.  The Panel meets with 

senior staff from Genomics England and NHS England four times a year.  They are asked 

about project design and help ensure that participants’ health data is looked after with respect 

and used in the best interests of the participants. Panel members sit on other committees 

including the Access Review Committee and the Ethics Advisory Committee. Patients and 

carers were involved in developing the consent literature and the infographics and 

information for the public. 

 

Results 

Demographics 

345 affected individuals (186 females, 159 males) were referred with a suspected 

mitochondrial disorder after excluding common causes. These were from 319 families of 

different reported ethnicities across England (Figure 2). Genomic data were available for 

more than one affected member in 25 families (15 sibling pairs, eight mother and child pairs, 

one father and child pair, and one mother with two affected children). The median age at 

enrolment for probands was 25 years (IQR 10-54, range 0 to 92 years). 143 (41%) were aged 

<=18 at enrolment.  No participants withdrew or were lost to follow up. 

 

Phenotype data  

Phenotypic data was available for 341 participants (missing in 4 participants).  3095 HPO 

terms were recorded, with a median of 7 HPO terms per participant (range 1 to 39).  806 

different HPO terms were used.   The commonest clinical terms, investigation result terms 

and HPO systems affected are shown in Figure 2d-f. A median of 4 HPO systems were 

affected per participant (range 1 to 13). Application of the HPO-modified Nijmegen score 

gave a mean total score of 4.30 (range 0-10), with 24 participants (7%) classified as being 

unlikely to have mitochondrial disease (score 0 or 1), 193 (56%) ‘Nijmegen possible’ (score 

2-4), 95 (27.5%) ‘Nijmegen probable’ (score 5-7) and 33 (9.5%) ‘Nijmegen definite’ with a 

score of >=8. 

 

Diagnostic Yield 
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The definite or probable genetic diagnosis was identified in 31% of families with a possible 

diagnosis in an additional 2% (Table 1, Figure 1, Figure 3a). A definite genetic diagnosis was 

reached in 28% (89/319) including 14 genetic diagnosis (4%) which provided only a partial 

explanation for their clinical features.  Nine participants (3%) had a probable diagnosis and 

six (2%) had a possible diagnosis.  One participant was diagnosed with two disorders which 

together fully explained their combination of phenotypes.  The majority of diagnoses 69/104 

(66%) came from single nucleotide variants (SNVs) or INDELs on the panels applied (Tier 1 

or Tier 2 variants).  An additional 19/104 (18%) diagnoses were made through other analyses 

of the SNVs and INDELS (from the GMC laboratory reports, comparison to ClinVar and 

Exomiser).  The copy number variant analysis added 8 diagnoses (8%) and the short tandem 

repeat analysis added three diagnoses (3%).  Five diagnoses were made through the mtDNA 

analysis (5%).  Further details of the variant analysis are show in Supplementary Table 7. 

Factors affecting diagnostic yield 

The overall diagnostic rate was 59/186 (32%) in females and 51/159 (32%) in males. 64/143 

(45%) participants recruited aged 18 or under received a diagnosis (any type), compared to 

46/202 (23%) participants over the age of 18 (p<0.001).  Considering definite diagnoses only, 

50/143 (35%) participants under 18 received a definite molecular diagnosis compared to 

30/202 (15%) adults over the age of 18 (p<0.001). Figure 3b shows the age profile for 

diagnosis. Although diagnoses were more frequent in younger people, diagnoses were still 

being made in participants who were in their 70s or 80s at enrolment. 

The diagnostic yield per family (all diagnoses) was 23% for singletons (23/102), 29% (12/42) 

for duos with a parent, 42% (62/148) for trios/quads and 26% (7/27) for other family 

structures. The diagnostic rate in trios/quads was higher than in singletons (p=0.005). The 

mean age of singletons was 56 years, compared to a mean age of 12 years for probands in 

trios/quads. 

The mean number of HPOs in participants with any diagnosis (10.0) was slightly higher than 

in undiagnosed patients (8.48) (p=0.030).  The mean number of HPO systems affected in 

diagnosed patients (4.67) was not significantly different from the mean number of HPO 

systems affected in undiagnosed patients (4.61) (p=0.82). 

Types of Diagnosis 
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Of the families with a definite diagnosis which fully explains the phenotype, 28 were in 

genes known to cause primary mitochondrial disease (37%) including four mtDNA variants 

and 24 diagnoses in nuclear-mitochondrial genes, whereas 47 were in non-mitochondrial 

genes (63%). For families with any genetic diagnosis (including probable or possible 

diagnoses and partial explanations), 39 were in genes known to cause primary mitochondrial 

disease (37.5%) including six mtDNA variants and 30 nuclear-mitochondrial diagnoses, and 

65 were in non-mitochondrial genes (62.5%). These non-mitochondrial disorders included a 

wide variety of disorders, including developmental disorders with intellectual disability, 

metabolic disorders, epileptic encephalopathies, Bardet-Biedl syndrome, cardiomyopathies, 

MYH2-related myopathy and amyloidosis.   

Potentially Treatable Disorders 

There were potentially treatable disorders identified in six participants with a mitochondrial 

disorder and nine participants with a non-mitochondrial disorder (shown in Supplementary 

Table 8).  However, it should be noted that the evidence base is weak for several of these rare 

disorders42. 

Mitochondrial Diagnoses compared to Non-Mitochondrial Diagnoses 

Inheritance Patterns: 70% (23/33) of families with a nuclear-mitochondrial diagnosis 

showed an autosomal recessive inheritance pattern, compared to 35% (23/65) of families with 

non-mitochondrial disorders. Five families (15%) had de novo diagnostic variants in nuclear-

mitochondrial genes (AIFM1, LONP1 and PDHA1 and two with de novo duplications in the 

ATAD3 gene cluster) compared to 29% (19/65) of families with non-mitochondrial disorders 

having a de novo diagnosis (Figure 3c), particularly those with intellectual disability or 

epileptic encephalopathy.  The HK1 variant was de novo in two siblings with presumed 

germline mosaicism (somatic mosaicism was not detected in either parent).  The proportions 

with each inheritance pattern were significantly different between nuclear-mitochondrial 

diagnoses and non-mitochondrial disorders (p=0.007). 

HPO Systems affected:  In our cohort, participants with a mitochondrial diagnosis were more 

likely to have HPO-terms in the Metabolism/Homeostasis system (p<0.001) such as 

increased lactate or decreased mitochondrial complex activities, compared to those with non-

mitochondrial diagnoses (Figure 4).  
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Modified Nijmegen Mitochondrial Disease Criteria scores: The majority (22/30, 73%) of 

participants with genetically confirmed mitochondrial diagnoses (nuclear-mitochondrial and 

mtDNA) had scores in the Nijmegen probable (5-7) and Nijmegen definite (8-12) modified 

Nijmegen MDC category (Figure 3d), whereas 60% (30/50) of participants with confirmed 

non-mitochondrial disorders had scores in the Nijmegen possible range (2-4). The mean 

MDC score differed between diagnostic groups (p<0.001), including between the 

mitochondrial diagnoses and the non-mitochondrial diagnoses (p<0.001), and between the 

mitochondrial diagnoses and patients with no diagnosis (p<0.001), but not for the non-

mitochondrial diagnoses and undiagnosed patients (p=0.36).  However, 16 of the 50 (32%) 

participants with confirmed non-mitochondrial disorders had scores in the ‘Nijmegen 

probable’ range, and 3 (6%) in the ‘Nijmegen definite’ range. The sensitivity and specificity 

of the MDC score in our cohort is shown in Supplementary Table 9.  Using ‘Nijmegen 

definite’, the MDC score was highly specific but sensitivity was only 40%, whereas using a 

‘Nijmegen probable and definite’ scores, the score was moderately sensitive and moderately 

specific.   

Muscle biopsy findings and mitochondrial complex activities 

117 participants (34%) had HPO terms relating to muscle biopsy abnormalities, and 73 (21%) 

had abnormal mitochondrial complex activities.  In patients with definite mitochondrial 

diagnoses, 15/28 (54%) had muscle biopsy abnormalities, 11/28 (39%) had abnormal 

respiratory chain complex activities and two had abnormal PDH complex activity.  In 

patients with definite non-mitochondrial diagnoses, 14/47 (30%) had muscle biopsy 

abnormalities and 12/47 (26%) had abnormal respiratory chain complex activities.   The 

patients with non-mitochondrial diagnoses and abnormal respiratory chain complex activities 

had pathogenic variants in ASXL3, CACNA1E, CTBP1, EXOSC3, HK1, KCNT1, NPHP1, 

P4HTM, PPP2R5D and SCN2A, SOS1 and TANGO2.    

Discussion 

In patients referred for WGS with a suspected mitochondrial disorder, a definite or probable 

diagnosis was identified in 31% (including partial diagnosis in 4%) and a further 2% had a 

possible diagnosis.  The mitochondrial diagnoses were nearly all unique to one family, 

reflecting the high level of genetic heterogeneity in mitochondrial disorders.  Non-

mitochondrial disorders were more common than mitochondrial disorders and had features 
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resembling mitochondrial diseases (often referred to as ‘phenocopies’).  These could be 

broadly classified as developmental disorders with intellectual disability, metabolic disorders, 

myopathies, cardiomyopathies, epileptic encephalopathies, leukodystrophies, ciliopathies, 

amyloidosis, and other neurogenetic disorders, including basal ganglia calcification and 

neurodegeneration with iron accumulation.  29% of the non-mitochondrial disorders were 

caused by de novo pathogenic variants.    

 

The diagnostic yield was significantly greater in children than adults.  There are several 

possible explanations for this.   First, children were more likely to be recruited as trios with 

both parents. This makes analysis more straightforward43 because de novo variants can be 

identified, rare familial variants can be filtered out if the parents are clinically unaffected for 

recessive disorders, and it can be checked that the variants were inherited from both parents.  

Second, the most severe phenotypes are seen in children because affected individuals do not 

survive until adulthood44.  Severe phenotypes are the most likely to be caused by single gene 

disorders. Milder phenotypes overlap with acquired disorders, are less likely to be caused by 

a single gene defect, and are more common in adults.  Third, most adults with genetically 

proven mitochondrial disorders have a mutation in the mtDNA which were excluded by the 

clinical laboratories before inclusion in this study.  Studies of whole exome sequencing in 

rare disease have also noted a decrease in diagnostic yield with an increasing age of the 

probands45.  Despite this, in our study, new genetic diagnoses were made across the whole 

age spectrum.  The oldest patient to receive a genetic diagnosis was recruited at age 86.    

 

There was also variability in the number of people recruited in different age groups.  The 

highest numbers were recruited in the paediatric age group, with a second peak of patients 

aged over 60 years.  This could be because  some adult-onset mitochondrial disorders, such 

as progressive external ophthalmoplegia (CPEO), take time to develop and only become 

obvious in later life (CPEO was present in 17/71(24%) in over 60s compared to 16/274 (6%) 

in under 60s). Alternatively, this could reflect the fact that genetic testing had not have been 

offered previously to the older individuals due to the financial cost and perceived lack of 

immediate management implications.  The 30-39 years age group were the least likely to be 

recruited and had a low diagnostic rate.  A common reason for seeking a clinical genetics 

referral is for reproductive advice, so we speculate that this age group are more likely to have 

been reviewed by a clinical geneticist and offered up to date genetic testing (such as panel 
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testing) in a clinical setting, meaning that there were fewer undiagnosed patients and that the 

remaining ones were more difficult to diagnose. 

 

It is possible that the relatively high frequency of partial diagnoses in this study (4%) reflects 

our current knowledge of the phenotypic spectrum of ultra-rare genetic diseases, and that 

some of the features we have not ascribed to the causal variants are actually due to the 

underlying mutations. This is likely to be a particular problem for mitochondrial disorders 

because of their diverse phenotypes, some of which are only just being recognised36, but will 

become easier as our knowledge base increases.   

 

Strengths and weaknesses of the study in relation to other studies 

Our study had several strengths, including the large sample size, and the fact that patients 

were recruited nationally from both secondary and tertiary care, meaning that the findings 

have a wider relevance than studies focussed on highly selected groups identified by 

specialist centres. In addition, the use of HPO terms allowed phenotype data to be analysed in 

a systematic way, and we contacted clinicians for detailed phenotypic information in selected 

participants.  Our analysis of the nuclear genes included copy number variants and short 

tandem repeat expansions in addition to single nucleotide variants and small indels; and we 

also studied mtDNA variants with a heteroplasmy level >1%.  The advantage of using WGS 

rather than WES was that it is easier to pick up CNVs, repeat expansions and lower level 

heteroplasmies.  Weaknesses are that we have not explored novel disease genes or variants in 

the non-coding regions, other than  previously published variants, and it was not possible to 

trace all family members. 

 

The previously published study using whole genome sequencing in patients with suspected 

mitochondrial disease19 looked at a cohort of 40 children recruited from four paediatric 

genetic metabolic centres in Australia.  34/40 had a ‘probable’ or ‘definite’ mitochondrial 

disorder using the modified Nijmegen mitochondrial disease criteria score (between 5 and 

12) and 28 had abnormal respiratory chain enzyme activities. Analysing nuclear and mtDNA 

enabled a definitive genetic diagnosis for 55% of patients, and a likely molecular diagnosis in 

67%, with 17.5% having a non-mitochondrial disorder.  The higher diagnostic yield in this 

study19 likely reflects the section criteria which focussed on children within trios identified by 

national specialist clinics, compared to our more inclusive recruitment criteria where ~2/3 of 

our probands were adults, and only 46% of families were recruited as trios. 
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A number of studies using whole exome sequencing in patients with suspected mitochondrial 

disorders have been reviewed recently46. Most studies of these studies were conducted in 

highly selected patients seen in specialist centres10,12,16, focussing on childhood-onset 

disorders (apart from Ref 14 which included patients up to 27 years of age). Their stringent 

recruitment criteria led to higher diagnostic yields (57-68%) and lower number of non-

mitochondrial diagnoses in comparison with our study. Previous exome studies of larger 

cohorts14,15 have also tended to have a lower diagnostic yield (34.5- 39%) which is thought to 

be more reflective of everyday clinical practice46.  Non-mitochondrial disorders have been 

found in some of the previous studies, but in much smaller numbers compared to this study.  

The recruitment criteria in our study were broad, which is reflective of mainstreaming of 

genomic medicine and we studied both adults and children.  Most participants (64%) did not 

have muscle biopsy results available at the time of referral, whereas most participants in 

previous studies had evidence of mitochondrial dysfunction.  The more inclusive eligibility 

criteria have led to finding a wide range of different genetic diagnoses.  The finding that a 

large number of patients had non-mitochondrial disorders is important because these 

diagnoses would have been missed if the participants had been investigated only for 

mitochondrial disorders through muscle biopsy and/or a specific mitochondrial gene panel.  

This would have led to missed opportunities for treatment, surveillance and reproductive 

management.  Our findings highlight the difficulty of diagnosing these rare multisystem 

disorders clinically and the need to keep an open mind about the differential diagnosis. 

 

Considering other studies of integration of whole genome sequencing into healthcare, 

Stranneheim et al47 describe the results for 3219 rare disease patients recruited in Stockholm, 

Sweden between 2015 and 2019.  Their study involved much more direct collaboration 

between academia, healthcare and their SciLifeLab (which provides WGS), which were all 

located in the same city.  This meant that potential diagnoses were discussed and specialist 

advice was fed back quickly into clinical practice.  Specialist clinicians could also access and 

analyse the data together with clinical scientists.   The 100,000 genomes project used a 

different model with the bioinformatics managed centrally and the clinical interpretation of 

variants done by Genomic Medicine Centre laboratories.  Researchers were able to access 

pseudonymised data.  The limited ability researchers and clinicians to discuss potential 

diagnoses together and the long turn-around time were disadvantages compared to the 

Swedish model. 
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Unanswered questions and future research   

The participants in this study had standard of care NHS genetic testing prior to enrolment.   

The use of WGS as a first genetic test for suspected mitochondrial disorders has not been 

directly explored.  The only mitochondrial diseases which cannot be diagnosed by WGS of 

DNA extracted from blood are extremely rare muscle specific mtDNA mutations and large 

mtDNA deletions which usually have usually a very specific clinical phenotype.  Based on 

known epidemiology1,50, these muscle specific mtDNA mutations and deletions account for 

~11.5% of genetically confirmed mitochondrial disorder patients.  Therefore nearly 90% of 

mitochondrial disorder patients can be diagnosed by WGS of DNA extracted from blood51.  

Additionally, WGS can diagnose other monogenic disorders which have similar clinical 

features, so we would expect a very high diagnostic yield.  Finally, by carrying out this study 

we have identified a cohort of patients with suspected mitochondrial disease where the likely 

diagnosis is contained within the WGS sequence data, but cannot be distinguished from 

background sequence variation. This will form a useful resource for the discovery of future 

mitochondrial disease genes that are not in the coding space, and thus are not detectable by 

WES.  Large scale mtDNA rearrangements are not currently reliably detected in DNA 

extracted from blood in adults, meaning that patients with suspected CPEO and Kearns-Sayre 

syndrome are investigated by muscle biopsy20.  Future research will determine whether deep 

mtDNA sequencing will detect these large scale mtDNA rearrangements in DNA extracted 

from blood or another accessible tissue such as urinary epithelium. 

 

Policy implications 

Our findings indicate that whole genome sequencing is a useful diagnostic test in patients 

with suspected mitochondrial disorders recruited from secondary and tertiary care settings.  

We recommend that whole genome sequencing should be offered early in the diagnostic 

pathway in a patient’s local secondary or tertiary care centre, and before invasive tests such 

as a muscle biopsy.  Exceptions to this would be patients whose clinical features are highly 

suggestive of a specific cause which can be confirmed by a single gene test or common 

mtDNA mutation testing, and also patients with progressive external ophthalmoplegia which 

is currently diagnosed in most patients by testing mtDNA from a muscle biopsy sample for a 

large-scale rearrangements. Referral to a specialised mitochondrial clinic should be arranged 

if a mitochondrial diagnosis is confirmed, or for further investigations if WGS sequencing is 

uninformative. Further investigations likely to increase the diagnostic yield beyond WGS 
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include laboratory studies of mitochondrial function and other ‘omics’ approaches including 

transcriptomics, which provided an additional diagnosis in 10% of suspected mitochondrial 

disease patients in one study48, proteomics, and metabolomics.  

 

There are also wider policy implications for the integration of whole genome sequencing into 

healthcare.  The relatively high number of patients with probable or possible diagnoses partly 

reflects the current lack of capacity for the functional evaluation of variants of uncertain 

clinical significance, for example through splicing assays or Western blotting.  Resources 

should also be made available for the regular re-analysis of WGS data, either at specified 

time intervals in undiagnosed patients or on clinician request. The re-analysis of exome data 

has been shown to significantly increase diagnostic yield, mainly due to newly discovered 

disease genes49. Finally, rapid trio whole genome sequencing17 should be offered in acutely 

unwell individuals with suspected mitochondrial disorders, so that the results can help guide 

clinical management.  In the UK, rapid trio exome sequencing is currently available for 

acutely unwell children only. 
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Tables & Figures  
 

Table 1. Variants identified in patients with definite, probable and possible diagnoses.  

Genetic diagnoses made in 104 families, including age and sex of participants, contribution to 

the phenotype from this gene (full or partial), gene, variants, ACMG variant classification 

(P=Pathogenic, LP=Likely Pathogenic, VUS= Variant of Uncertain Clinical Significance) 

and inheritance pattern.  (A) Variants in mitochondrial genes are shown in the upper panel 

and (B) those in non-mitochondrial genes are shown in the lower panel table. Novel variants 

are indicated with # and five previously published families are also indicated with $.  For 
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family 84, the full phenotype is explained by the two genetic diagnoses.  In family 77, the 

NPHP1 homozygous deletion explains the phenotype in the sibling with a severe phenotype 

(with childhood onset end stage renal disease) and is heterozygous in the other sibling. 

 
Table 1A Mitochondrial Diagnoses 
 

 Age 
(y) 

Sex Contri
bution 

Gene Variants ACMG 
 

Inheritance 

Definite 
1 10 F Full AARS2 NM_020745.4:c.302G>A p.(Arg101His) 

Homozygous 
LP Biallelic 

2 1 M Full AIFM1 NM_004208.4: c.603_605del p.(Arg201del) P XLR 
de novo 

3 0 F Full ATAD3 Duplication in ATAD3 gene cluster P Monoallelic 
de novo 

4 0 M Full ATAD3 Duplication in ATAD3 gene cluster P Monoallelic 
de novo 

5 13 M Full C12orf65 NM_152269.5:c.210del p.(Gly72fs) 
NM_152269.5:c.258_270dupCATCCCCTCAG
GC p.(Ile91fs)# 

P 
P 

Biallelic 

6 6 M Full EARS2 
 

NM_001083614.2:c.184A>T p.(Ile62Phe) # 
Homozygous 

LP Biallelic 
 

7 2 F Full FBXL4 NM_001278716.2:c.1641_1642delTG 
p.(Cys547Ter) 
NM_001278716.2:c.141delC p.(Asn48fs) # 

P 
 
P 

Biallelic 

8 18 F Full HIBCH NM_014362.4:c.1126T>G p.(Phe376Val) # 
Homozygous 

LP Biallelic 

9 22 F Full KARS1 NM_001130089.1:c.683C>T p.(Pro228Leu) 
NM_001130089.1:c.774A>T p.(Arg258Ser)  

P 
LP 

Biallelic 

10 1 F Full MRPL44 NM_022915.4:c.467T>G p.(Leu156Arg) 
Homozygous 

P Biallelic 

11 23 M Full MRPS25 $ NM_022497.5:c.215C>T p.(Pro72Leu) 
Homozygous 

LP 
 

Biallelic 

12 42 F Full MT-ATP6 m.8618dupT 
14% heteroplasmy 

P mtDNA 
very low level 
in mother 

13 24 M Full MT-ATP6 m.8969G>A 
84% Heteroplasmy 

P mtDNA 
de novo 

14 26 F Full MT-ND3 m.10158T>C 
23% Heteroplasmy 

P mtDNA 
de novo 

15 67 M Partial MT-ND6 m.14484T>C 
Homoplasmic 

P mtDNA 
unknown 

16 18 M Full MT-TE m.14674T>C 
Homoplasmic 

P mtDNA 
maternally 
inherited 

17 18 F Partial MT-RNR1 m.1555A>G 
Homoplasmic 

P mtDNA 
maternally 
inherited 

18 10 F Full MTO1 NM_012123.4:c.1232C>T p.(Thr411Ile) 
Homozygous 

P Biallelic 

19 13 F Full NDUFAF5 NM_024120.5:c.480-3T>G# 
NM_024120.5:c.827G>A p.(Arg276Gln) # 
 

LP 
LP 

Biallelic 
 

20 1 M Full NDUFAF8
$ 

NM_001086521.2:c.45_52dup p.(Phe18fs) 
NM_001086521.2:c.195+271C>T 

P 
LP 

Biallelic 
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21 7 M Full OPA1 NM_015560.2:c.2708_2711delTTAG (splice 
acceptor variant) 
NM_015560.2:c.1146A>G p.(Ile382Met) 

P 
 
P 

Biallelic 

22 11 F Full PDHA1 NM_000284.4:c.434G>A p.(Cys145Tyr) # LP XLD  
de novo 

23 17 
13 

F 
F 

Full PDP1 NM_018444.4:c.571C>T p.(Gln191Ter) # 
Homozygous 

LP Biallelic 

24 56 M Full POLG NM_002693.3:c.1399G>A p.(Ala467Thr) 
Homozygous 

P Biallelic 

25 48 
71 

F 
F 

Full RRM2B NM_001172477.1:c.242G>A p.(Asp142Asn) P Monoallelic 
(AD) 

26 0 M Full SCO2 NM_001169109.1:c.418G>A p.(Glu140Lys) 
NM_001169109.1:c.625_627delTAC 
p.(Tyr209del) # 

P 
LP 

Biallelic 

27 0 F Full SCO2 NM_001169109.1:c.323A>G p.(Asp108Gly) # 
NM_001169109.1:c.281T>C p.(Leu94Pro) # 

LP 
LP 

Biallelic 

28 74 F Full SLC25A4 NM_002252.4:c.311A>G p.(Asp104Gly) P Monoallelic 
(unknown) 

29 20 F Full TTC19 NM_017775.4:c.184+1G>A# 
NM_017775.4:c.275_278delCCGA p.(Ala92fs) 
# 

P 
 
LP 

Biallelic 

30 66 M Full TWNK NM_021830.5:c.1374G>T p.(Gln458His) P Monoallelic 
(unknown) 

Probable 
31 61 M Full DNM1L NM_012062.5:c.239_241delGAG p.(Gly80del) 

# 
LP Monoallelic 

Unknown 
32 4 F Full ELAC2 NM_018127.7:c.2009delG p.(Cys670fs) 

NM_018127.7:c.2245C>T p.(His749Tyr) # 
P 
VUS 

Biallelic 

33 7 F Full GFER 
 

NM_005262.3:c.199delC p.(Arg67fs) 
NM_005262.3:c.259-28C>G# 

P 
VUS 

Biallelic 

34 19 M Full MTFMT NM_139242.4:c.626C>T p.(Ser209Leu) 
NM_139242.4:c721+5G>A# 

P 
VUS  

Biallelic 

35 4 F Full RRM2B NM_001172477.1:c.578G>A p.(Arg193His) 
NM_001172477.1:c1253C>A p.(Thr418Asn)# 

LP 
VUS 

Biallelic 

36 3 M Full SDHA NM_004168.4:c.290G>C p.(Arg97Thr) # 
NM_004168.4:c.424A>G p.(Met142Val) # 

VUS 
VUS 

Biallelic 

Possible 
37 18 M Full LONP1 NM_004793.4: c.1694A>G p.(Tyr565Cys) VUS De novo 
38 0 M Full PDHA1 NM_000284.4: c.759+5G>T 

 
VUS XL (from 

unaffected 
mother) 

39 56 
54 

M 
F 

Full TOP3A NM_004618.5:c.284C>T p.(Ala95Val) # 
NM_004618.5:c.109C>G p.(Leu37Val) # 

VUS 
VUS 

Presumed 
Biallelic 
(parents not 
tested) 
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Table 1B Non-Mitochondrial Diagnoses 
 

 Age 
(y) 

Sex Contri
bution 

Gene Variants ACMG 
 

Inheritance 

Definite 
40 0 F Full ACTA2 NM_001614.4:c.536G>A p.(Arg179His) P Monoallelic 

de novo 
41 42 F Full AMACR NM_014324.6:c.857delT p.(Ile286fs) # 

NM_014324.6:c.437C>T p.(Pro146Leu) # 
P 
LP 

Biallelic 

42 57 M Full AMACR NM_014324.6:c.154T>C p.(Ser52Pro) 
Homozygous 

P Biallelic 

43 71 F Full AMACR NM_014324.6:c.154T>C p.(Ser52Pro) 
Homozygous 

P Biallelic 

44 9 F Full AMPD2 NM_001368809.2: c.2228T>C 
p.(Leu743Pro)# 
Homozygous 

LP Biallelic 

45 29 
58 

M 
F 

Full APP NM_000484.4:c.2075C>G p.(Ala692Gly) P Monoallelic 
AD 

46 18 M Partial ASL NM_000048.4:c.1153C>T p.(Arg385Cys) 
Homozygous 

P Biallelic 

47 15 M Full ASXL3 NM_030632.3:c.3464c>A p.(Ser1155Ter) P Monoallelic 
de novo 

48 15 M Full ATP1A3 NM_152296.5:c.2452G>A p.(Glu818Lys) P Monoallelic 
de novo 

49 86 F Full ATP1A3 NM_152296.5:c.2452G>A p.(Glu818Lys) P Monoallelic 
Unknown 

50 5 M Full ATP6V1A NM_001690.4:c.845A>T p.(Asn282Ile) # LP Monoallelic 
de novo 

51 1 F Full ATXN7 $ Very large CAG repeat expansion P Monoallelic 
52 44 F Full BBS1 NM_024649.5:c.1169T>G p.(Met390Arg) 

Homozygous 
P Biallelic 

53 2 M Full BCAP31 NM_001256447.2:c.565C>T p.(Gly189Ter) # P XLR 
de novo 

54 26 F Full C19orf12 NM_001256047.1:c.245dupC p.(Ala83fs) # LP Monoallelic 
unknown 

55 12 F Full CACNA1A NM_001127221.1:c.4177G>A 
p.(Val1393Met) 

LP Monoallelic 
de novo 

56 2 M Full CACNA1E NM_001205293.3:c.683T>C p.(Leu228Pro) LP Monoallelic 
de novo 

57 12 M Full CTBP1 NM_001328.3:c.1024C>T p.(Arg342Trp) 
 

P Monoallelic 
de novo 

58 11 
10 

M 
F 

Full DOCK6  NM_020812.4:c.4106+5G>T 
NM_020812.4:c.1902_1905delGTTC 
p.(Phe635fs)  

LP 
P 

Biallelic 

59 12 F Full DSP NM_004415.4:c.1799T>C p.(Phe600Ser) # LP Monoallelic 
de novo 

60 8 F Full EXOSC3 NM_016042.4:c.395A>C p.(Asp132Ala) 
Homozygous 

P Biallelic 

61 61 M Partial EYA4 NM_004100.5:c.1741A>T p.(Lys581Ter) # LP Monoallelic 
Unknown 

62 2 M Full FIG4 NM_014845.6:c.447-2A>G# 
NM_014845.6:c.827C>T p.(Ser276Phe) # 

P 
LP 

Biallelic 

63 6 F Full GCDH NM_000159.4:c.1204C>T p.(Arg402Trp) 
NM_000159.4:c.1304C>T p.(Thr435Met) # 

P 
LP 

Biallelic 

64 3 F Full HADHA NM_000182.5:c.1528G>C p.(Glu510Gln) 
NM_000182.5:c.1664T>G p.(Met555Arg) # 

P 
LP 

Biallelic 

65 10 F Full HK1 NM_000188.3:c.1334C>T p.(Ser445Leu) P Monoallelic 
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8 F de novo 
66 9 M Full HSD17B4 NM_000414.4:c.590_597dupGATCACGG 

p.(Met200fs)* 
NM_000414.4:c.743G>A p.(Arg248His) # 

P 
 
LP 

Biallelic 

67 71 M Partial HTT $ ~40 CAG repeats P Monoallelic 
68 7 F Full HTT $ Very large CAG repeat expansion P Monoallelic 
69 41 M Partial KCNQ4 NM_004700.4:c.961G>A p.(Gly321Ser) P Monoallelic 

unknown 
70 6 F Full KCNT1 NM_020822.3:c.1885A>c p.(Lys629Gln) LP Monoallelic 

de novo 
71 46 F Full KIF11 NM_004523.4:c.78-2A>G# P Monoallelic 

AD 
72 29 M Partial KMT2C NM_170606.3:c.11669delA p.(Gln3890fs) # 

 
P Monoallelic 

de novo 
73 0 F Full MBD5 NM_001378120.1 deletion of exon 2 LP Monoallelic 

unknown 
74 72 M Full MYH2 NM_017534.6:c.2116G>A p.(Glu706Lys) P Monallelic 

unknown 
75 57 M Partial MYH7 NM_000257.4:c.1357C>T p.(Arg453Cys) P Monoallelic 

unknown 
76 13 M Full NARS1 NM_004539.4:c.1600C>T p.(Arg534Ter) P Monoallelic 

de novo 
77 19, 

17 
F, F Full NPHP1 Gene deletion  

Homozygous 
P Biallelic 

78 3 M Full NPHP1 Gene deletion 
Homozygous 

P Biallelic 

79 31 F Partial OPTN Gene deletion P Monoallelic 
unknown 

80 1 M Full P4HTM NM_177939.3:c.659G>A p.(Trp220Ter) # 
NM_177939.3:c.569_579del p.(Gln190fs) # 

P 
P 

Biallelic 

81 36 F Full PDGFB Gene deletion P Monoallelic 
AD 

82 11 F Partial PHKB NM_000293.3:c.2109delT p.(Ser704fs) # 
NM_000293.3:c.2427+977C>T # 

P 
P 

Biallelic 

83 3 M Partial PKD2 NM_000297.4:c.1390C>T p.(Arg464Ter) P Monoallelic 
AD 

84 45 F Full PMM2, 
 
AQP2 

NM_000303.3:c.442G>A p.(Asp148Asn) 
NM_000303.3:c.305A>G p.(Tyr102Cys) # 
NM_000486.6:c.707_720dupTGCTGAAGG
GCCTG p.(Glu241fs) # 
NM_000486.6:c.34G>A p.(Ala12Thr) # 

P 
LP 
LP 
 
LP 

Biallelic 
 
Biallelic 

85 2 F Full POGZ NM_05100.4:c.2571-2delA# P Monoallelic 
de novo 

86 54 F Full POLR3A NM_007055.4:c.2119C>T p.(Gln707Ter) 
NM_007055.4:c.1909+22G>A  

P 
P 

Biallelic 

87 2 M Full PPP2R5D NM_006245.4:c.592G>A p.(Glu198Lys) 
 

P Monoallelic 
de novo 

88 7 F Full SAMD9 NM_001193307.1: c.2053C>T p.(Arg685Ter) LP Monoallelic 
de novo 

89 24 M Full SCN2A NM_021007.3:c.4480C>A p.(Gln1494Lys) # 
 

LP Monoallelic 
de novo 

90 49 F Full SHOC2 NM_007373.4:c.519G>A p.(Met173Ile) LP Monoallelic 
unknown 

91 56 M Partial SLC20A2 NM_001257180.2:c.852delC p.(Ile1285fs) # LP Monoallelic 
unknown 

92 25 M Full SLC52A2 NM_001363118.2:c.368T>C p.(Leu123Pro) 
NM_001363118.2:c.916G>A p.(Gly306Arg) 

P 
P 

Biallelic 
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93 11 F Full SOS1 NM_005633.3.3:c.1294T>C p.(Trp432Arg) P Monoallelic 
de novo 

94 12 M Partial TAB2 NM_001292034.3: c.-90+1G>C LP Monoallelic 
de novo 

95 7 F Full TANGO2 Deletion exons 3-9 
Homozygous 

P Biallelic 

96 58 M Partial TTN NM_001267550.2:c.59926+1G>A 
 

P Monoallelic 
unknown 

97 73 M Full TTR  NM_000371.3:c.407A>C p.(Tyr136Ser) P Monoallelic 
unknown 

98 22 F Full ZBTB20 NM_001164342.2: c.1916G>A 
p.(Cys639Tyr) # 

LP Monoallelic 
unknown 

Probable 
99 59 F Full CTNNB1 NM_001904.4:c.2315delA p.(Asn772fs) # LP Monoallelic 

Unknown 
100 0 M Full MYBPC3 NM_000256.3:c.1357_158delCC p.(Pro453fs) 

NM_000256.3:c.1576G>C p.(Ala526Pro) # 
P 
LP 

Biallelic 

101 22 F Full PEX16 NM_057174.2:c.851A>C p.(Tyr284Ser) # 
Homozygous 

VUS Biallelic 

Possible 
102 60 F Full MARS1 NM_004990.4:c.493_495delGAG 

p.(Glu165del) # 
LP Monoallelic 

Unknown 
103 52 M Full MYH2 

 
 

NM_017534.6:c.2387C>A p.(Ala796Asp) # VUS Monoallelic 
unknown 

104 13 M Full MYO9A NM_006901.4:c.6796A>T p.(Asn2266Tyr) # 
NM_006901.4:c.1574A>T p.(Glu525Val) # 

VUS 
VUS 

Biallelic 
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Figure 1.  Overview of the analyses performed and sources of diagnoses.  Variants in nuclear genes were analysed using the Genomics 
England tiering system.  All tier 1 and tier 2 variants were reviewed and these provided 66% of the diagnoses.  A further 19.5% of diagnoses 
were based on feedback from the Genomic Medicine Centre (GMC) labs, comparison to Clinvar pathogenic and likely pathogenic variants, and a 
review of the top ten Exomiser prioritised variants. mtDNA variants were analysed separately using an in-house pipeline and comparison against 
a list of 89 pathogenic variants, yielding and extra 5 diagnoses (6%).  Copy number variants accounted for 8% of diagnoses, and short tandem 
repeat expansions for 3%. 
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Figure 2. Demographics and Human Phenotype Ontology terms for the participants recruited.  (a) Ethnicities recorded in the participants 
reflected the ethnicity of the overall population in England.  (b) The most commonly recruited family structures were trios with both parents and 
singletons.  (c) Genomic Medicine Centres. Participants were recruited from Genomic Medicine Centres across England. (d) Clinical HPO 
terms. The most commonly recorded clinical HPO terms including delayed gross motor development, intellectual disability and myopathy. (e) 
Investigation HPO terms.  The most commonly recorded investigation results HPO terms including decreased activity of mitochondrial complex 
IV, lactic acidosis and decreased activity of mitochondrial complex I. (f) HPO Systems.  The total number of HPO terms recorded for the 345 
participants according to the ancestor HPO system.  (Note that some HPO terms have more than one ancestor HPO system.)  
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Figure 3. Clinical features in patients with different types of diagnoses. (a) Overview of proportion of patients diagnosed. (b) Age 
distribution of the participants at the time of enrolment and the type of diagnoses made.  The diagnostic yield was higher in younger participants, 
but diagnoses were still being made in patients enrolled in their 70s and 80s. (c) Inheritance patterns in nuclear mitochondrial disorders and 
different types of non-mitochondrial disorders. Most families with nuclear mitochondrial disorders showed autosomal recessive inheritance.   De 
novo dominant pathogenic variants were common in families with developmental disorders causing intellectual disability and in epileptic 
encephalopathies.  (d) HPO-Modified Nijmegen Mitochondrial Diagnostic Scores in participants with confirmed genetic diagnoses of 
mitochondrial and non-mitochondrial disorders and in undiagnosed participants.  Participants with ‘probable’, ‘possible’ and ‘partial’ diagnoses 
were excluded from this analysis. MDC scores were higher in patients with mitochondrial diagnoses than non-mitochondrial or undiagnosed 
(p<0.05) 
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Figure 4. Comparison of the Human Phenotype Ontology terms in patients with mitochondrial and non-mitochondrial diagnoses. HPO 
ancestor systems for the HPO terms recorded in participants with definite mitochondrial diagnoses and definite non-mitochondrial diagnoses 
(excluding partial diagnoses).   Each column represents one participant (family number in brackets), and those with mitochondrial diagnoses 
(nuclear or mtDNA) are shown on the left side, and those with non-mitochondrial diagnoses are shown on the right side.  Each row represents a 
different HPO ancestor system, listed in order of how frequently they were affected, with the nervous system at the top.  The numbers indicate 
how many of the participant’s HPO terms related to the HPO ancestor system (for example the nervous system or the musculoskeletal system).  
The colours go from green through to red as the number of terms related to the HPO ancestor system increases.  Overall, the pattern of HPO 
systems involved is similar between the two groups, but the Metabolism was more commonly affected in patients with mitochondrial disorders 
(p=0.0002). 
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