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Abstract
Purpose of the Review Proteins are the central layer of information transfer from genome to phenome and represent the largest
class of drug targets. We review recent advances in high-throughput technologies that provide comprehensive, scalable profiling
of the plasma proteome with the potential to improve prediction and mechanistic understanding of type 2 diabetes (T2D).
Recent Findings Technological and analytical advancements have enabled identification of novel protein biomarkers and signatures
that help to address challenges of existing approaches to predict and screen for T2D. Genetic studies have so far revealed putative
causal roles for only few of the proteins that have been linked to T2D, but ongoing large-scale genetic studies of the plasma proteome
will help to address this and increase our understanding of aetiological pathways and mechanisms leading to diabetes.
Summary Studies of the human plasma proteome have started to elucidate its potential for T2D prediction and biomarker
discovery. Future studies integrating genomic and proteomic data will provide opportunities to prioritise drug targets and identify
pathways linking genetic predisposition to T2D development.
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Introduction

The global prevalence of diabetes, currently affecting 9.3% of the
adult population, is predicted to increase up to 10.9% by 2045 [1].
This pandemic is largely attributable to an increase in the inci-
dence of type 2 diabetes (T2D), the most common form of diabe-
tes. A large proportion of affected adults do not have a clinical
diagnosis [1], which can be delayed for several years after T2D
onset [2, 3]. This leaves individuals with undiagnosed and untreat-
ed diabetes at high risk of developing severe and often irreversible
microvascular and macrovascular complications [2, 4], and up to
30% of patients with T2D have been reported to present with
evidence of retinopathy at the time of their diagnosis [5].

Criteria for screening and diagnosis of diabetes are fo-
cussed on glycaemic control, and guidelines recommend mea-
surement of fasting glucose and HbA1c [6, 7]. The risk of
developing future T2D can be relatively well predicted using
simple, non-invasive measures such as age, sex, body mass
index, and family history, and a range of algorithms have been
tested and compared [8]. Over the last decade, genetic studies
have greatly advanced our understanding of the polygenetic
architecture of T2D, but with little evidence so far for im-
proved prediction [9, 10] or genetically targeted strategies
for prevention and treatment of T2D [11, 12].

The comprehensive assessment of the entirety of biomole-
cules across different layers of biological information, i.e. the
genome, transcriptome, proteome, and metabolome, com-
monly referred to as the –omics, is now applied at scale in
clinical and population-based settings to identify novel disease
pathways. Proteins are the main effector molecules on cellular
function, representing the largest class of pharmaceutical drug
targets [13]. Over 150 FDA-approved biomarkers and diag-
nostic laboratory tests are based on plasma proteins [14], pro-
viding a source of clinically translatable discoveries. As the
central layer of biological information transfer, the proteome
can help to bridge the gap in our understanding of how genetic
variation affects disease risk, including T2D and related met-
abolic disorders. Systematic identification of novel protein
biomarkers and signatures also has the potential to improve
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targeted approaches for screening, diagnosis, and treatment
and inform our understanding of disease heterogeneity and
subtypes [15]. Comprehensive profiling of the circulating pro-
teome has only recently been implemented in epidemiological
studies due to challenges such as high cost, long measurement
times, lack of scalable approaches, and the large dynamic
range of the plasma proteome spanning almost ten orders of
magnitude [16].

In this review, we describe the potential of plasma pro-
teomics for T2D prediction, building on existing strategies
and previous work focusing on the role of genetic risk. We
summarise recent proteomic studies and their contribution
to T2D prediction, biomarker discovery, and genetically
informed target prioritisation. We searched PubMed and
established preprint servers (BioRxiv/MedRxiv) for pub-
lished studies that used high-throughput plasma proteomic
profiling for T2D prediction, protein to T2D association
studies, or integrated genetic data for causal assessment
of proteins in Mendelian randomisation (MR) studies of
T2D or related traits.

Existing Strategies for T2D Prediction,
Screening, and Diagnosis

Early preventative interventions have been shown to halt or
delay T2D onset [17] and reduce long-term morbidity and
mortality in individuals with impaired glucose tolerance
[18], demonstrating the benefit of strategies targeting high risk
individuals. Non-invasive scores, such as the Cambridge
Diabetes Risk Score [19], have been proposed as practical
and cost-effective tools to identify high-risk individuals [20].
These rely on an individual’s age, sex, ethnic origin, family
history, medication use anthropometric and behavioural fac-
tors, which achieve good discrimination (C-statistics ranging
from 0.76 to 0.81), and no strong evidence for superior per-
formance of one score over another [21, 22]. Invasively ob-
tained clinical predictors, such as glucose, glycated
haemoglobin (HbA1c), blood lipids, or uric acid, improve
the C-statistics (up to 0.90) [8] but with associated cost and
organisational burden of obtaining blood samples.

Current guidelines for the diagnosis of T2D suggest the use of
HbA1c or fasting plasma glucose [23], with thresholds originally
determined on the basis of the risk of diabetic retinopathy
[24–26]. An oral glucose tolerance test (OGTT)measures plasma
glucose 2 hours after a standard glucose challenge (2hPG) and
elevated levels of 2hPG are a major risk factor for diabetic reti-
nopathy [25], but are not widely measured in the clinic due to the
inconvenience for patients and healthcare professionals of the
challenge test. This means that individuals with impaired glucose
tolerance (IGT) and specifically isolated IGT and isolated post-
challenge hyperglycaemia (IPH, i.e. normal fasting glucose but
elevated 2hPG) are missed by current diagnostic strategies and

are at greater risk of underdiagnosis and severe complications
caused by their untreated chronic hyperglycaemia [27, 28]. IPH
has been estimated to account for up to 60% of undiagnosed
diabetes [29, 30] and is poorly predicted by existing scores and
algorithms based on traditional clinical risk factors.

The tests recommended by current guidelines predomi-
nantly capture and focus on aspects of glucose metabolism.
This is only one, relatively late alteration of the heterogeneous
metabolic changes that are associated with T2D, which also
involve hepatic lipid metabolism, adipose tissue accumula-
tion, distribution and dysfunction, and inflammatory re-
sponses [31]. The current criteria for the definition of diabetes
therefore do not fully reflect the existing aetiological hetero-
geneity and subtypes of T2D with consequences for predic-
tion, screening, diagnosis, and ultimately prognosis. Whether
more comprehensive metabolic or proteomic profiling could
help to identify and target some of the larger existing sub-
types, such as isolated IGT, and present a cost-effective strat-
egy, remains uncertain.

Polygenic Susceptibility and its Contribution to T2D
Prediction

Over the past decade, genome-wide association studies
(GWAS) have revealed the polygenic basis of T2D based on
the identification of rare-to-common DNA sequence varia-
tions in the human genome [11, 32]. Over 400 distinct T2D
signals have been published to date [33, 34], with common
variants of small effects jointly explaining around 18% of the
(chip-based) heritability, almost half of the heritability esti-
mated from twin and family studies [33]. Genetic studies of
T2D intermediate phenotypes (such as plasma glucose, insu-
lin, and HbA1c) have identified regions involved in glycaemic
regulation in non-diabetic individuals [35–37], many but not
all of which also increase the risk of T2D [33, 35]. This com-
plementary approach has greatly advanced our understanding
of pathways leading to T2D development, previously
reviewed in more detail [11].

Polygenic scores that combine risk alleles across T2D var-
iants have been used as a measure for assessing genetic sus-
ceptibility or predisposition to T2D and identifying individ-
uals at high risk [38]. However, there is little evidence for a
clinically meaningful improvement of T2D prediction over
and above simple and cheap (non-invasive) prediction models
[11, 38]. There is substantial interest in the identification of
distinct diabetes ‘subtypes’, and studies have proposed both
genetic [39] and clinical risk factors [40–42] for their identi-
fication and classification. Partitioned polygenic scores have
been developed by assigning subsets of variants to specific
pathophysiological categories, such as insulin resistance, adi-
posity, or insulin secretion [39], and proposed as a tool to
enable classification of patients to specific disease subtypes.
However, this approach does not align well with what has
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been proposed based on biomarkers of newly diagnosed T2D
patients [41], and there is currently no consensus on definitive
T2D subcategories. It remains to be established whether these
genetic approaches will provide new and actionable clinical
insights for the identification and management of patients with
diverse aetiologies over and above established risk factors
[42]. While human genetics clearly offers translational oppor-
tunities, the integration of other -omics layers of information
promises to improve T2D risk prediction beyond what can
currently be achieved, by identifying individuals and popula-
tion subgroups at sufficiently high risk of developing future
diabetes that are not well captured with conventional ap-
proaches and poorly characterised by common variants with
small effects.

The Contribution of Plasma Proteomics to T2D
Prediction

Early efforts to identify novel T2D biomarkers used prior
biological knowledge for targeted assessment of mostly blood
and immunoassay-based candidate biomarkers in observa-
tional association studies of prevalent or incident T2D. A sys-
tematic review described 167 protein, metabolite, or clinical
biomarkers [43] for T2D, but established that their predictive
value had only been evaluated for a small subset, with evi-
dence for predictive utility for uric acid as the only non-
glycaemic marker. This together with the lack of external val-
idation and assay standardisation for new biomarkers has lim-
ited the translational value of previous studies, and there is
currently no robust evidence of their added clinical value.
Future studies that maximise biomarker coverage and thereby
enable hypothesis-free approaches and analytical methods in
prospective and sufficiently powered studies are required to
systematically assess the potential of blood-based biomarkers
to refine T2D prediction and classification beyond what is
currently known.

The plasma proteome provides a snapshot of human phys-
iology by integrating contributions from various tissues [44]
and effectors such as genetic predisposition, medication, life-
style, and undiagnosed or prevalent disease status [45]. It
therefore provides opportunities for discoveries with high
translational potential through (1) improved aetiological un-
derstanding, (2) development of risk assessment and stratifi-
cation strategies based on the present state of the organism (as
opposed to germline genetic variation), and (3) identification
of novel pathways for intervention and prioritisation of drug
targets, as most drugs act on human proteins [13]. High-
throughput proteomic technologies with broad coverage of
the proteome have only relatively recently becomemore wide-
ly available, compared with untargeted technologies assessing
the metabolome, for example [46, 47]. Earlier challenges in-
clude plasma concentrations spanning several orders of mag-
nitude, with high abundance proteins (including albumin and

immunoglobulins) making up ~ 99% of total plasma proteome
mass [48], technical difficulties in detecting low abundance
proteins, such as cytokines and hormones, and achieving a
balance between increasing the number of proteins measured
while retaining target specificity.

Proteomic technologies can be broadly divided into mass
spectrometry (MS) and affinity-based assays. MS can be
classified into targeted or untargeted (providing larger pro-
teome coverage) and is considered the gold standard for
multiple protein detection and measurement as it depends
on peptide masses and sequences making it highly specific
[49]. It further enables detection of post-translational mod-
ifications that regulate proteins’ biological activity, of
which phosphorylation has been the most widely studied.
High-throughput application of MS to human plasma faces
several challenges. It is a labour-intensive multi-step tech-
nique, making it harder to reproducibly scale up for large
epidemiological studies. A major disadvantage of
untargeted approaches is the selected coverage of only mod-
erate to highly abundant proteins, such as coagulation fac-
tors, immunoglobulins, or carrier proteins (Fig. 1a). Plasma
fractionation [50], targeted methods such as isobaric tags
for relative and absolute quantification (iTRAQ) [51], and
coupling with an affinity-based step that enables capture
and enrichment of specific targets [52] have been shown
to increase coverage of low abundance proteins. The suc-
cessful development of a novel MS methodology that cou-
ples a modified sample preparation pipeline with short-
gradient high-flow liquid chromatography has been shown
to increase throughput and reproducibility and now has the
potential to enable high-precision proteomic profiling of
hundreds of samples per day at low cost and is predicted
to enhance the phenotypic characterisation of large-scale
population-based studies soon [53].

The two major high-throughput affinity-based technolo-
gies, proximity extension assay (PEA) [54] as implemented
by Olink® and multiplex aptamer microarrays [55] as imple-
mented by SomaLogic®, capture a much wider dynamic
range specifically improving detection at the lower end of
the abundance spectrum including signalling and effector pro-
teins. PEA targets each protein by several polyclonal antibody
pairs coupled to complementary oligonucleotides (Fig. 1b),
overcoming previous multiplexing limitations of commonly
used antibody-based techniques (such as ELISA) due to re-
agent cross-reactivity and consequent loss of specificity.
Aptamer-based targeting (Fig. 1c) uses short single-stranded
oligonucleotides, which fold into a spatial configuration that
specifically binds to protein targets, and has further expanded
multiplexing capabilities, now covering ~ 5000 proteins as
implemented by the latest version of the SomaScan assay.
Compared with MS, affinity-based assays are highly scalable
and reproducible, with low intra-assay coefficients of varia-
tion. However, these methods cannot measure post-
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translational modifications or proteins for which there is no
corresponding affinity reagent. In addition, genetic variants
that cause a change on the tri-dimensional structure of the
target protein’s region (i.e. protein altering variants)
recognised by the antibody or aptamer, resulting in decreased
(or increased) affinity, can lead to measurement biases in car-
riers of this genotype, known as epitope effects.

Early studies using high-throughput proteomic technolo-
gies identified only a few plasma proteins associated with
incident T2D over follow-up times of up to 9.5 years
(Table 1) [56–58]. Very recently, Gudmundosdottir V. et al.

reported 99 plasma proteins associated with incident T2D in
2940 participants of whom 112 were incident cases over a 5-
year follow-up time [59•]. Only one of these studies showed a
modest improvement in discrimination by adding 3 proteins
(MASP, ApoE, and CRP) to the standard clinical model
(AUC increased from 0.75 to 0.77). Up to 142 plasma proteins
have been associated with prevalent T2D [59•, 60, 61] in
cross-sectional studies, which aim to identify differences be-
tween T2D patients and well-matched control samples or as-
sociations with glycaemic parameters, providing a cost-
effective and simple prioritisation strategy. However, these

Fig. 1 High-throughput proteomic technologies. a Mass spectrometry
(MS)-based techniques rely on peptide sequences and are highly
specific. However, they have limited throughput and mainly cover
medium to high abundance plasma proteins. b Proximity extension
assay (PEA) has increased throughput and coverage. Dual antibody
targeting coupled to complementary oligonucleotides increases
specificity and multiplexing capabilities of conventional immunoassays
up to 92-plex or 384-plex panels quantified by qPCR or next-generation
sequencing (NGS), respectively. Olink provides assays for over 1500
human proteins. c Aptamer microarrays have equally high throughput
and coverage, capturing the full abundance spectrum in plasma but has

increasedmultiplexing capabilities compared to PEA. Aptamers contain a
fluorescent tag (green), cleavable link (black), and biotin (turquoise).
Aptamer-bound proteins are biotinylated, and aptamer-protein
complexes are released by photocleavage. Unspecific aptamer-protein
binding is addressed by incubation with an anionic competitor that
preferentially causes dissociation of non-specific complexes. Aptamer-
protein complexes are captured onto streptavidin-coated beads, and
aptamer still bound is released and quantified by hybridisation to
microarrays. The SomaScan assay provides measures for over 5000
proteins (some being targeted by more than one aptamer).
Figure created with BioRender.com
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studies suffer from reverse confounding, i.e. changes in the
plasma proteome due to the widespread effect of insulin resis-
tance on metabolism, and lack of rigorous assessment of pre-
dictive utility. Similarly, between four and 60 plasma proteins
have been associated with measures of insulin resistance (IR)
[56, 62–64] and pre-diabetes (IGT and/or impaired fasting
glucose) [65, 66] (Table 1), implicating extracellular matrix
components, inflammatory processes, the complement sys-
tem, lipoprotein metabolism and the epithelial-mesenchymal
transition pathway. Larger sample sizes and replication in in-
dependent prospective studies are needed to systematically
assess specificity, i.e. the unique role of those proteins in
T2D, and sensitivity, i.e. performance of such protein markers
in diverse populations, of those markers.

Analytical Advancements in Proteomics for T2D
Prediction

The multifactorial aetiology of complex diseases such as T2D
resulting from a mixture of genetic and environmental drivers
of altered physiological mechanisms suggests that assessment
of combinations or signatures of many biomarkers covering a
large range of metabolic pathways may provide a more

comprehensive picture of an individual’s present health status
and/or future risk and allow identification of population sub-
groups who share similar aetiologies. Huth et al. [67] used a
targeted proteomic approach, grouping 47 biomarkers into 19
pathways, to illustrate the contribution of different pathways
to the percentage of explained variance in incident T2D,
showing the insulin-like growth factor (IGF)/IGF-binding
proteins (IGFBP) system and adipose-derived hormone path-
ways, as the largest contributors to T2D risk. However, one of
the challenges for identifying signatures is the high correlation
among the variables, which can lead to some degree of redun-
dancy and biased risk estimates [68]. To address this, some
studies have started to implement more sophisticated analyti-
cal methods such as machine learning-based feature selection
[69••] or dimensionality reduction strategies [70]. In a recent
proof-of-principle study, the authors demonstrated the predic-
tive utility of coupling large-scale proteomic profiling with
machine learning, to simultaneously provide informative sig-
natures of 11 health status indicators [69••]. To predict con-
version from pre-diabetes to T2D within 10 years, they iden-
tified a 365-protein signature that improved sensitivity over
standard fasting and 2-h post-load glucose levels. Machine
learning algorithms come with their own set of challenges,

Table 1 High-throughput proteomic association studies with intermediate phenotypes, prevalent, and incident T2D

Trait Sample size (number of cases) Proteomic technology
(number of target proteins)

Number of target proteins
associated with the outcome*

Reference

Prospective studies

Incident T2D (9.5 years
mean follow-up time)

1367 (111 incident T2D cases) Olink (92) 2 [56]

Incident T2D (follow-up
after 6.5 years)

892 (123 incident T2D cases) MS (14) 2 (MASP and adiponectin) [57]

Incident T2D (follow-up
after 8 years)

1026 (146 incident T2D cases) Olink (92) 7 [58]

Incident T2D (follow-up
after 5 years)

2940 (112 incident T2D cases). Validation
in 356 (179 incident T2D cases)

SOMAscan (4137) 99, none remained significant
when adjusting for BMI

[59•]

IGT (follow-up after
3 years)

72 (36 incident IGT cases) SOMAscan (1025) 60 in univariate analysis, 30 in
multivariable analysis

[65]

HOMA IR (follow-up after
1 year)

42 MS (437 in average per
individual)

40 [62]

Cross-sectional studies

HOMA IR 1367 Olink (92) 7 [56]

Prevalent T2D 2467 (211 prevalent T2D cases) Olink (249) 29 [60]

Prevalent T2D 528 (12% with prevalent T2D) SOMAscan (~ 5000) 21 [61]

Prevalent T2D 4784 (654 prevalent T2D cases) SOMAscan (4137) 142 [59•]

Pre-diabetes 439 MS (23) 4 (MASP, THBS1, GPLD1, and
ApoA-IV)

[66]

IGT 80 (40 prevalent IGT cases) SOMAscan (1025) 41 in univariate analysis, 18 in
multivariate analysis

[65]

Disposition index 100 SOMAscan (1129) 17 [63]

HOMA IR 100 SOMAscan (1129) 22 [63]

IR 17 (8 IR individuals) SOMAscan (1499) 44 [64]

*depending on the threshold used in the original study
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of which model overfitting is a major one when applied to
these high-dimensional settings. The three-strep approach
used by Williams et al. [69••], in which the data were divided
into a training (to identify top informative features and/or
models typically between 50 and 70% of the data), an optimi-
sation (to tune top models’ parameters, between 15 and 25%),
and a validation set (between 15 and 25%), has proven suc-
cessful in reducing overfitting. Stability selection procedures
during the first training step can further improve robustness of
selected features [71]. For clinical purposes, however, a bal-
ance must be achieved between the number of biomarkers (as
large signatures are unlikely to be measured in routine clinical
settings) while retaining substantial improvements in model
accuracy and specificity.

As the first candidate biomarkers are emerging from the
high-throughput proteomic platforms, several questions must
be addressed before translation into the clinic. Proteins
encoded by the same gene can have several isoforms with
distinct biological effects and target tissues. Similarly, post-
translational modifications and processing can change protein
expression levels or its biological activity. As affinity-based
proteomic platforms are so far unable to detect and distinguish
these differences among the plasma proteome, follow-up on
the specific nature of biological effects is required for candi-
dates identified by these technologies. Additionally, cross-
reactivity and specificity remain an issue. Efforts to validate
candidate proteins through systematic comparison between
different platforms are on their way and will be crucial.
Alternatively, integration with genetic information can pro-
vide a readily available tool to address some of these questions
such as target specificity and potential epitope effects.

The Future of Prediction Strategies

Technological developments driving assessment of other
omics, such as epigenomics [72], transcriptomics [73], and
metabolomics [74, 75], provide an unprecedented expansion
in the molecular information that can be systematically stud-
ied for biomarker discovery at scale. Integration of different
layers of information ‘flow’ promises to provide a more com-
prehensive picture of the biology of complex diseases [76].
Recent studies on a few individuals at high risk of T2D with
repeated multi-omics measures [77••, 78] provide proof of
principle of the utility of multi-omics to improve predictive
modelling for insulin resistance and to identify individual dis-
ease trajectories that integrate molecular events across these
layers of information. Outlier biomarker analysis at healthy
baseline visits enabled identification of early molecular signa-
tures of disease, which promises to improve characterisation
of aetiological subtypes. However, the strong interindividual
variability in several omics measures means that large sample
sizes are required to reliably identify these molecular
signatures.

Beyond Prediction: Integration of Genomics and
Proteomics to Identify Novel Causal Pathways

Biomarkers for which evidence for predictive utility exists do
not necessarily reflect causal mechanisms since model perfor-
mance strongly depends on effect sizes regardless of whether
a biomarker is confounded or the consequence of the disease
or its risk factors. However, elucidating underlying causal
pathways can contribute to identification of early disease tra-
jectories that could have clinical implications for classifica-
tion, risk assessment, and management. Genetic approaches
that attempt to assess causality of observational ‘statistical’
protein-disease associations [79] are built on the principle of
randomisation used in controlled trials (RCTs), which aims to
minimise systematic differences between the intervention and
control group [80] that can lead to spurious or confounded
associations. Analogous to the design of an RCT,
‘Mendelian Randomisation’ uses the ‘random allocation’ of
genetic variants to minimise confounding and draw inference
about the causal effect of a protein on a disease outcome. Only
a few studies have applied this method to protein biomarkers
in the context of targeted or candidate biomarkers and T2D
[43], and have not provided strong evidence of causality for
most proteins investigated [81], even in cases with consistent
and statistically significant observed associations. Such is the
case for C-reactive protein, which despite the strong positive
association with T2D has been deemed likely non-causal. This
further highlights the importance of integrating genetic infor-
mation to prioritise protein targets for the purpose of identify-
ing novel causal pathways and developing effective
interventions.

Proteins are under tight genetic control as regulatory or
structural variants can alter their expression level, biological
activity, interaction properties, and multiple processes in-
volved from synthesis to secretion. Integration of genomic
variation with the plasma proteome can therefore inform bio-
logical as well as technical aspects, such as affinity-based
reagents’ target specificity and potential binding artefacts
[16]. Protein GWAS (pGWAS) have identified variants that
modulate protein abundance in plasma [82•, 83, 84], termed
protein quantitative trait loci (pQTLs), which can be defined
as in cis, those located in or around the protein coding gene, or
in trans, those located elsewhere in the genome. A list of
pGWAS studies was originally published by Suhre et al.
[74] and updated in their online web resource. Two of the
most comprehensive studies used the SomaLogic platform
and have identified 5553 exome array variants affecting
1931 proteins in 5457 individuals [83] and 1927 genome-
wide variants affecting 1478 proteins in 3301 individuals
[82•]. We recently expanded the genetic discovery for a subset
of 179 proteins from the SomaLogic platform, including 45
proteins with no previously described pQTLs, in 10,708 indi-
viduals [85]. Larger efforts in terms of sample size, such as
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those by the SCALLOP consortium (www.scallop-
consortium.com), are underway to expand pQTL discovery.
Their first results in over 30,000 individuals identified 467
pQTLs for 85 proteins from the Olink CVD-I panel [84]. Of
note, these efforts will enable systematic evaluation of consis-
tency between proteomic platforms and provide orthogonal
validation of correct protein targeting, supported by pQTLs
located in or around the protein coding gene, and help identify
epitope effects. Open access platforms will further facilitate
interrogation and validation of results from pQTL discovery
efforts, such as our recently published interactive webserver
(https://omicscience.org/apps/covidpgwas/) for a subset of
host proteins interacting with SARS-CoV-2 [85].

To use pQTLs as instrumental variables to assess the causal
association between proteins and diseases, specific conditions
must be met, in addition to the key assumptions underlying
MR studies more generally [86]. Cis-pQTLs are characterised
by large effects sizes on protein expression, compared with
other more distal traits, and are less likely to violate the “no
horizontal pleiotropy” assumption (i.e. effects on the outcome
through other paths than the protein in question) than trans-
pQTLs. The use of cis-pQTLs ensures that genetic variants are
clearly and specifically linked to the protein of interest and not
to other, possibly unwanted, phenotypes.

Systematic causal assessment for protein candidates on T2D
had little success at first [56, 60, 87], and only recently, several
proteins are suggested to be causally related to T2D (Table 2).
WFIKKN2 is the only protein identified by more than one study
with consistent effect directions. However, only 14 of these caus-
al candidates are covered by both SomaScan and Olink plat-
forms, which may account in part for the limited overlap in
findings between studies. Furthermore, consistency between
findings poses a challenge, due to different approaches for var-
iant selection as instrumental variables. There are several out-
standing challenges in protein MR studies which must be ad-
dressed to strengthen current evidence and expand the list of
proteins causally involved in T2D development. First, owing
to limited sample sizes, only a few pQTLs per protein have been
identified so far (Table 2), compared with other exposures being
investigated through MR, e.g. up to hundreds of variants are
used to emulate the effect of obesity. However, pQTLs explain
a much larger proportion of the variance in protein levels (more
than 60% for IL-6sRa [85]) compared with the variance ex-
plained for complex traits. Larger studies and in different ethnic
backgrounds will be required to expand pQTL discoveries.
Second, there is currently no consensus on how to deal with
trans-pQTLs, which are more prone to pleiotropy and in some
cases are known to affect many proteins (examples include the
ABO andCFH locus [82•]).Cis-onlyMR has been performed in
some studies. However, incorporating bona fide trans-pQTLs
could improve power. Tiered systems have been proposed to
differentiate pQTLs according to their degree of pleiotropy and
consistency between studies, and this can help to identify pQTLs

more likely to meet the assumptions underlyingMR [87]. Third,
few studies have systematically performed the sensitivity analy-
ses required to be able to discern between causality, reverse
causality, and confounding by linkage disequilibrium (LD), i.e.
the non-random inheritance of close-by single-nucleotide poly-
morphisms. The later can be assessed by colocalisation tech-
niques to investigate if the protein and the outcome share the
same causal variant. Finally, as largeGWAS are becoming avail-
able for multiple complex traits, causal inference will be increas-
ingly performed across a range of phenotypes, raising the ques-
tion of candidate specificity. Several complex diseases share
common pathogenic mechanisms, as proposed by the common
soil hypothesis, postulating that the strong association between
T2D and cardiovascular disease could be driven by genetic and
environmental antecedents that are shared between diseases [89].
Phenome-wide MR studies will have the potential to discern
between causal proteins specific for T2D and those linked to
general pathogenic mechanisms involved in several diseases.

Polygenic scores based on disease variants have been alter-
natively used to identify disease-mediating candidate proteins.
Ritchie et al. [88] evaluated the influence of genetic predisposi-
tion to complex diseases on the plasma proteome, identifying 48
proteins whose levels were modulated by polygenic scores for
coronary artery disease, chronic kidney disease, and T2D. A
large proportion of pQTLs (Emilsson V. et al. [83] report 60%
of their discovery set) overlap with known disease-associated
loci identified through GWAS, suggesting a common causal
variant. However, in most cases where pQTLs overlap with
variants composing disease GRSs (or with variants in high
LD), associations were largely driven by polygenic effects rather
than by these overlapping single loci [88].

Conclusions

High-throughput proteomic technologies now provide the op-
portunity for large-scale hypothesis-free discovery of T2D plas-
ma protein biomarkers and signatures, with specific technical
and analytical challenges depending on the method used.
Evidence for the predictive utility of novel protein biomarkers
over and above established risk models is sparse, but larger
prospective studies with improved analytical approaches are un-
derway and anticipated to enable development of tailored risk
assessment strategies for currently underdiagnosed subgroups.
Integration of genomics and proteomics has the potential to pro-
vide technical validation, improve our understanding of the bio-
logical mechanisms linking genetic susceptibility to T2D, and
prioritise causal pathways for intervention. Large population-
based protein GWAS and validation of protein signals across
diverse ancestries and proteomic platforms will be required to
capitalise on the promise of early proof of concept studies and
the potential of proteomics to contribute to the identification of
novel and validation of existing therapeutic targets for T2D.
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Table 2 Protein causal candidates for T2D, identified in high-throughput proteomic studies

Protein target UniProt
ID

#
snps

Causal effect estimate (beta coefficient per SD increase in protein levels)
(95% confidence interval)

Proteomic
platform

Reference, year of
publication

CFH P08603 4 0.02 (0.005, 0.034) SOMAscan Preprint, [88], 2019

CFI P05156 4 − 0.02 (− 0.03, − 0.003) SOMAscan Preprint, [88], 2019

SHBG P04278 5 − 0.05 (− 0.07, −0.02) SOMAscan Preprint, [88], 2019

WFIKKN2 Q8TEU8 12 − 0.01 (− 0.02, − 0.004) SOMAscan Preprint, [88], 2019

COMT P21964 1 − 0.11 (− 0.17, − 0.06) Olink
METABOLI-
SM

Preprint, [90], 2020

ENTPD5 O75356 2 − 0.09 (−0.13, − 0.04) Olink
METABOLI-
SM

Preprint, [90], 2020

LRIG1 Q96JA1 1 0.06 (0.04,0.08) Olink
METABOLI-
SM

Preprint, [90], 2020

QDPR P09417 2 − 0.10 (− 0.16, − 0.05) Olink
METABOLI-
SM

Preprint, [90], 2020

TYRO3 Q06418 1 0.08 (0.05, 0.11) Olink
METABOLI-
SM

Preprint, [90], 2020

CHI3L1 P36222 2 0.06 (0.02, 0.09) Olink CVD-III Preprint, [90], 2020

TNFRSF11A Q9Y6Q6 2 − 0.06 (− 0.09, − 0.03) Olink CVD-II Preprint, [90], 2020

A4GALT Q9NPC4 4 − 0.08 (− 0.12, − 0.03) SOMAscan Preprint, [59•], 2020

AMY2B P19961 2 0.12 (0.05, 0.19) SOMAscan [59•], 2020

CCDC126 Q96EE4 6 0.08 (0.03, 0.12) SOMAscan [59•], 2020

COLEC11 Q9BWP8 16 − 0.02 (− 0.03, − 0.005) SOMAscan [59•], 2020

FAM177A1 Q8N128 6 − 0.03 (− 0.06, − 0.01) SOMAscan [59•], 2020

GDF15 Q99988 12 0.03 (0.014, 0.05) SOMAscan [59•], 2020

HIBCH Q6NVY1 12 − 0.03 (− 0.05, − 0.01) SOMAscan [59•], 2020

KNG1 P01042 12 0.04 (0.02, 0.06) SOMAscan [59•], 2020

MLN P12872 15 0.03 (0.01, 0.05) SOMAscan [59•], 2020

MMP12 P39900 14 − 0.03 (− 0.05, − 0.02) SOMAscan [59•], 2020

PLXNB2 O15031 9 − 0.06 (− 0.1, − 0.02) SOMAscan [59•], 2020

SEMA3G Q9NS98 4 − 0.06 (− 0.1, − 0.02) SOMAscan [59•], 2020

SEMA4D Q92854 13 − 0.02 (− 0.03, − 0.008) SOMAscan [59•], 2020

TNFSF12 O43508 6 − 0.02 (− 0.04, − 0.009) SOMAscan [59•], 2020

WFIKKN2 Q8TEU8 12 − 0.03 (− 0.04, − 0.01) SOMAscan [59•], 2020

PAPPA Q13219 2 − 0.27 (− 0.42, − 0.11) Olink CVD-I Preprint, [84], 2020

RAGE Q15109 2 − 0.17 (− 0.27, − 0.08) Olink CVD-I Preprint, [84], 2020
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