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Data-driven models of water and methane

Eszter Székely

Abstract

In the field of materials modelling, traditional atomistic models seldom achieve high

accuracy and speed at the same time. Recent developments using high-dimensional fits

to approximate the quantum chemical potential energy surface (PES) have overcome this

problem. This thesis presents such models for methane–water mixtures, in particular

for methane clathrates. Since the discovery of their existence on Earth about half

a century ago, methane clathrates have been subject to numerous studies motivated

by industrial and environmental perspectives. This project develops atomistic models

that describe methane–water interactions with high accuracy. The model development

in this work focuses on the dimer and the trimer PESs, which are fitted to quantum

mechanical data. The fitting methods used are the Gaussian Approximation Potentials

(GAP) [1, 2] and the permutationally invariant polynomials (PIP) [3] methods, the latter

applied in collaboration. The long-range electrostatic interactions are calculated using a

classical force field, the modified TTM4F [4]. The resulting models are validated against

quantum mechanical and experimental data. A clathrate phase diagram is calculated

in the quasi-harmonic approximation using the model based on PIPs. As the fitted

level, CCSD(T)-F12, is not applicable to larger systems, we compare the calculations

to DMC results for the larger clusters and periodic systems. However, small systematic

differences are found between the developed models and DMC; comparing different

CCSD(T)-F12 versions against DMC, this inconsistency is confirmed to arise from the

differences between the two quantum chemical methods. In another collaboration [5],

different potential fitting methods are also compared using the same datasets and found

to achieve similar accuracies when applied to only the energy differences.
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Chapter 1

Introduction

1.1 Overview

This project creates methane–water models by fitting quantum chemical results for the

short-range interactions and using classical force fields for the long-range interactions.

The motivation behind this is that whereas the quantum chemical effects are significant in

the short-range interactions, the long-range interactions are dominated by electrostatics

which can be described with sufficient accuracy by classical potentials. Two models

are presented: one fully developed in this project, TTM4Fmod+GAPs, which uses the

Gaussian Approximation Potentials (GAP) [1] fitting technique, and the second, MB-nrg,

developed by collaborators [6] and improved for this project in collaboration, which uses

the permutationally invariant polynomials (PIP) [3] method. These models are validated

against quantum mechanical results. As the fitted level, CCSD(T)-F12 (see Section 2.2.4),

would be too expensive for larger systems, we compare the results to benchmark diffusion

Monte Carlo (DMC) results for larger structures and periodic systems. However, the

results do not fully agree with the DMC energies, and therefore, we test CCSD(T)-F12

with different settings against DMC on smaller structures, finding some inconsistency

between the results of the two methods. Physical properties of ices and clathrates are

also predicted using the MB-nrg model in the quasi-harmonic approximation.
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1.2 Data-driven models

Traditional models in materials modelling are seldom able to be accurate and fast enough

at the same time. On the one hand, quantum chemistry can achieve very high accuracy,

but this comes with a high computational cost. On the other hand, classical force fields

are fast but have low accuracy. Recently, the development of machine learning force

fields has managed to overcome this problem by fitting the quantum chemical results on

large datasets using complex fitting tools [1,3, 7]. The models thus developed are only

fitted to quantum mechanics, so they are transferable to different physical states. In

addition, their accuracy is improvable by adding more data to regions of the geometry

space where higher accuracy is necessary. It is also possible to fit the quantum mechanical

energies as corrections to a lower accuracy method which can be used to approximate

the long-range interactions [4, 8]. This project develops new models by fitting corrections

to the modified TTM4F (TTM4Fmod) [4] force field using the Gaussian Approximation

Potentials (GAP) [1, 9] and the permutationally invariant polynomials (PIP) [3] methods.

These methods are also compared to each other, and with the Behler–Parinello neural

networks [7] method in Chapter 3.

1.3 Data-driven methane–water models

While numerous data-driven potentials have been developed for pure water systems

(e.g. [10–13]), efforts to develop potentials for mixtures including methane began only

in recent years [6, 14–19]. Whereas most of these models have been mostly concerned

with the lower order terms of the many-body expansion [14–18], one fitted coefficients

of classical potentials [19], and a recent one fitted both the lower order terms and the

coefficients of force field [6].

Joel Bowman and co-workers fitted the methane–water and methane–water–water

interactions using PIPs on the CCSD(T)-F12 and the MP2-F12 levels, respectively,

using mixed basis sets [15, 16, 20]. Combining these terms with their earlier developed

WHBB water potential, which includes fits for the monomer, dimer and trimer water
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interactions [12], they calculated vibrational properties for small methane-in-water cage

structures [20].

Akin–Ojo and Szalewicz fitted a potential to SAPT data for the methane–water

dimer of rigid molecules [14] which they complemented by including polarisation in their

2019 paper [17]. In the same year, another model was developed by Szalewicz and

co-authors [18] using the autoPES method [21] to fit CCSD(T) energies, which included

dimer terms for rigid CH4 and H2O molecules [18]. Also in 2019, coefficients of classical

potentials were fitted to less accurate quantum mechanical data (MP2) by Thakre and

Jana [19].

There was no available methane–water force field with coupled cluster accuracy

applicable to flexible molecules that included the long-range interactions up to the

final year of this project when Riera et al. developed the MB-nrg model [6, 22] using

PIP. This model also uses the TTM4Fmod potential, but here, it is also implemented

for the methane molecules. For this PhD project, we complemented MB-nrg with a

methane–water–water correction term in collaboration with the developers. This model

is described in detail in Section 2.5.1.

The model developed fully in this project, TTM4Fmod+GAPs, was created by fitting

GAPs on the CCSD(T)-F12a/AVTZ level for the dimer and trimer interactions. As the

aim was to model methane clathrates where the methane molecules are further from each

other, only terms including up to one methane molecule were included. The water dimer

and trimer potentials were fitted as corrections to a classical force field, the TTM4Fmod

potential of MB-pol [4], and the long-range interactions for methane molecules were not

included.

1.4 Methane clathrates

Methane–water systems are simple examples of apolar–polar interactions. Although

these molecules do not mix under normal conditions due to their different polarities,

under high pressure and low temperatures, they can mix [23] and form molecular crystals,
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clathrates [24]. In the clathrates, the guest molecules, here the methanes, are in cages of

water molecules. These cages are different polyhedra joining each other at their faces and

having water molecules at their vertices. They can be denoted by the types and number

of their faces: for example, 51262 stands for a polyhedron having twelve pentagonal and

two hexagonal faces [24].

Clathrates occur in large amounts within the seafloor, often near hydrocarbon re-

sources [24, 25], so studying them has several environmental and industrial motivations.

A little environmental change can cause the structures to decompose and release methane

which has a 20 times stronger greenhouse effect than CO2 [26]. Additionally, oil drills

accidentally drilling into the clathrate layer might cause the clathrate to decompose,

potentially resulting in environmental hazards as it happened in 2010 [27]. In oil pipelines,

clathrate formation can impede the flow [28]. On the other hand, clathrates are also

a possible methane resource for the energy industry and petrochemistry [28–31]. The

first exploitation of clathrates started about 50 years ago at the Messoyakha field in

Russia [32]. In recent years, exploitation of marine clathrates has also been attempted in

Japan [29,30] and China [31]. The possibility of storing methane in the structures has

been studied [33], too. It is also promising that creating a CO2 clathrate shell around

the methane clathrate can increase its stability, a strategy which could help reduce

greenhouse contributions from the two gases [34].

(a) sI, at 0.01 GPa. (b) sH_L2, at 1.5 GPa. (c) fIIh, at 2.0 GPa.

Fig. 1.1 The most common methane clathrate structures optimised using the MB-nrg
model (see Section 5). The sH_L2 hexagonal structure has two CH4 molecules in its
largest cage. The carbon, oxygen and hydrogen atoms are shown with grey, red and
white, respectively.
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Although it is known that there are large amounts of clathrates, the estimates of

this vary in the literature [25, 32], with the quantities at certain reservoirs still being

explored [35,36]. The total amount of methane captured in clathrates was estimated to be

around 3 · 1015 m3 ten years ago [25]. Apparently, the existence of methane clathrates on

Earth was only predicted in the middle of the 20th century [32, 37] and confirmed in the

1970s and 1980s [38–40]. Given this, it is not so surprising that the full methane–water

phase diagram and the kinetics of mixing and clathrate formation are not fully known

yet and are still the subject of recent studies [23,41,42].

The most common form of methane clathrates on Earth is the so-called structure

I : sI [24] (see Fig. 1.1). Other structures were found and described by high-pressure

spectroscopic studies in the 2000s [43–49]: the hexagonal structure, sH; the filled ice Ih

structure, fIIh; and the post-filled ice Ih structure, post-fIIh. Although some of these

results were sometimes controversial – for example, some studies found structures that

the other studies did not, such as sII between 0.1–0.6 GPa [43] or "structure B" between

1.6–2.1 GPa [44] – nowadays there seems to be agreement on the phase changes up to

80 GPa. Many of the spectroscopic studies in the early 2000s found two phase transitions,

the sI–sH transition around 0.8–1.0 GPa [44–47,50], and the sH–fIIh phase change around

1.9–2.0 GPa [45–50]. Later, a transition to a new structure, post-fIIh, was also described

around 40 GPa [48, 49]; Schaack et al. [51] observed different steps of this transition

between 30.0–50.0 GPa.

The exact filling ratio of the sH clathrate has only been determined earlier this year by

Noguchi et al. [42]. In the early 2000s, even its water skeleton was not yet confirmed to be

the sH [52]. The sH structure has two kinds of smaller cages: three 512 cages, two 435663

cages, and one large cage: 51268 [24]. Recently, the water structure has been confirmed

to be the hexagonal clathrate structure, and there has been an agreement on the small

cages being singly filled [41,42,47]. However, there have been different suggestions for the

number of methanes in the large cage [41,42,47,52]. Loveday et al. [52] suggested that

their earlier spectroscopic data [53,54] might be explained by the large cage containing

five CH4 molecules in it [52]. Kumazaki et al. [47] reported only one Raman band below
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around 1.3 GPa and two above this pressure. As the two smaller cages have similar radii,

the methanes in them might correspond to one peak, and the small cages might be filled

singly below 1.3 GPa [47]. Kumazaki et al. explained the appearance of the new band by

a change in the filling of the large cage, which they assumed to have an average of 2.5

guest molecules in it above 1.3 GPa [47]. As they approximated the filling of the large

cage from the ratio of the peaks [47] and as the clathrates can have cages that are not

filled, it might be different in case the small cages were not fully filled. According to

the neutron diffraction experiments at 1.9 ± 0.2 GPa of Tulk et al. [41], the two smaller

cavities have a bit less than one CH4 in them while the large (51268) cavity will have a

bit more than three CH4 in it. The very recent IR and Raman spectroscopy work using

D2O of Noguchi et al. [42] showed that while all the cages are occupied by a single CH4

molecule between 0.9–1.3 GPa, the large cage will be occupied by two CH4 molecules

between 1.3–2.0 GPa [42].

It has also been suggested that sII could be a kinetically preferred but metastable

phase [55–57]. Schicks and Ripmeester [55] showed by Raman spectroscopic measurements

that sI and sII can coexist between 0.003–0.009 GPa. Shin et al. [56] found that although

sII was formed, it later turned into the thermodynamically stable phase at the given

conditions. This finding can also explain why Chou et al. [43] saw the sII structure in

their experiments. The formation of sII in the presence of other hydrocarbons was also

studied by Stoporev et al. [57]. One of the models studied, MB-nrg, is applied to predict

the phase diagram in the quasi-harmonic approximation and compared to the above

experimental transitions (see Section 5.3.3).

1.5 Computational studies of methane clathrates

Previous computational studies have predicted some new methane clathrate phases.

Vatamanu and Kusalik found a new structure, sK, while simulating clathrate formation

using classical models [58]. This structure has three types of cage: the same cages as

sI, 512 and 51262, along with a cage that has three hexagonal faces 51263 [58], which is
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a transition between the larger cages of the sI (51262) and sII (51264). This structure

was later shown to exist as a metastable phase for Xe-clathrate by Yang et al.’s X-ray

experiments; here it was termed HSI [59]. Cao and co-authors predicted some additional

structures called MH-IV [60], MH-V [60] and MH-VI [61] using simulated annealing with a

force field to look for possible structures and studying the stability of the different phases

using DFT; however, they found only the MH-VI to appear in their computational phase

diagram [61].

Clathrate phase diagram predictions have been computed previously, but to date,

qualitative accuracy for the full phase diagram has not yet been achieved. Some of the

studies using classical models looked at only the transitions at low pressures, and thus

only included the sI clathrate, liquid water and methane gas phases [62–64]. Lenz and

Ojamäe [65] also studied the low pressure region using DFT, computed properties for the

sI, sII and sH clathrates and calculated the ice Ih–sI transition. The studies of Cao and

co-workers [60, 61] considered a wider pressure range; they compared the stabilities of

different phases using DFT. In their 2017 paper [60], they predicted two new structures

having a 1:4 methane–water ratio, MH-IV and MH-V. However, looking at the chemical

potentials needed to form the clathrate structures, they suggested that MH-IV would only

be stable in a very narrow region, and MH-V would not be present at all. Moreover, in

their later paper, Huang et al. [61] calculated positive formation enthalpies for MH-V [61].

In the same paper [61], looking at the formation enthalpies per molecules, they predicted

the sK, sII, MH-VI, and fIIh phases to be stable with increasing pressure, yet only the

fIIh appears in the experimental phase diagram.

The filling ratio of the large cage of sH has also been the subject of computational

simulations. Alavi et al. [66] calculated free energies from molecular dynamics simulations

using classical force fields. Fixing the water–water and methane–water potentials and

changing only the description of the methane–methane interactions, they found that two

of the methane–methane models (OPLS, Tse–Klein–McDonald) predicted five methanes

and the Murad–Gubbins model predicted two methanes for filling the large cage [66].

Studying the energetics of separate cages using DFT, both Cao et al. [67] and Liu et al. [68]
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suggested that the cavity would contain five CH4 molecules. Later, however, both groups

found that the cage would contain fewer methane molecules when simulating the whole

clathrate structure. Looking at the formation enthalpies of the periodic structure, Cao

and co-workers [61] suggested that the large cavity contained three methane molecules.

Liu et al. [69], calculating cohesive and deformation energies, suggested that the structure

that has four methanes in the large cage would be the most stable.

Previous computational studies mostly used methods with lower accuracy than the

target level of this thesis, coupled cluster. The models used were mostly classical force

fields [58,62,64,66,70–78] or density functional theory (DFT) functionals [51,60,61,65,

68, 69, 79], but some studies used data-driven models [20]. Both the force fields and DFT

functionals have low accuracy, and DFT functionals also have higher computational cost

than the simple potentials. As explained in Section 1.3, the current data-driven models

also leave room for improvement, for example, the one used in Ref. [20] does not include

long-range interactions. Some of the DFT calculations used different schemes to achieve

higher accuracy than simple DFT functionals: Schaack et al.’s study [51] combined DFT

with PIMD to include quantum nuclear effects; and multiple papers [60,69,79,80] included

the Tkatchenko–Scheffler dispersion corrections in their DFT calculations. However, Cox

et al. [81] showed that even the dispersion-corrected DFT functionals can have large

errors when compared to diffusion Monte Carlo (DMC) results. Thus, a model with near

quantum chemical accuracy but much better scaling would serve as a valuable tool for

theoretical research on clathrates and for predicting physical properties of methane–water

mixtures for industrial use. This work contributes by developing such a model.

1.6 Outline of the thesis

The thesis is organised as follows: this Introduction has given an overview on potential-

development efforts using data-driven techniques (Section 1.2), then has reviewed models

developed for methane–water systems (Section 1.3) and described available knowledge

on methane clathrate structures (Section 1.4). Chapter 2 provides descriptions of the
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methods used for building the models, their inherent datasets and the reference structures.

Chapter 3 compares three potential energy fitting techniques. The models described in

Chapter 2 are validated against quantum mechanics on small clusters in Chapter 4, and

comparisons of different quantum mechanical methods are also presented in Section 4.3.1.

Calculations for periodic systems by the developed models are presented in Chapter 5.

Finally, Chapter 6 summarises the study.





Chapter 2

Model components

The models are built using two different strategies for the different ranges: the short-

range interactions are approximated by high-dimensional fits to the quantum mechanical

potential energy surface (PES), while the long-range interactions are described by a

classical model, TTM4Fmod. As the classical force field is already applied to the system,

the quantum mechanical interactions are fitted as corrections to the force field, on the

quantum chemistry–force field differences. The datasets include configurations of different

geometries with the corresponding quantum chemical energies and sometimes the forces

(see Section 2.4.3). However, as the evaluation time of quantum chemistry scales really

badly with system size, a method is needed to break down the total energies to terms

involving only smaller numbers of molecules and build the training datasets from these

fragments. For this, we use the many-body expansion and thus avoid the need to calculate

the total energy by quantum chemistry (see Section 2.1).

The quantum mechanical techniques and baseline classical force field used in the

thesis are discussed in Sections 2.2 and 2.3, respectively. The underlying datasets and

the main fitting tool of the project: the Gaussian Approximation Potentials (GAP) are

described in Section 2.4. The other fitting method applied, the permutationally invariant

polynomials (PIP), is described in Section 2.5.
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2.1 Many-body expansion (MBE)

The core of the model development is the many-body expansion which is a formal

expansion of the energy of a molecular system. Using this method, the short- and

long-range interactions can be separated and calculated by different models [4, 8]: the

long-range interactions are approximated well at the classical level, and the short-range

interactions are calculated by high-dimensional fits at the quantum mechanical level.

The total energy is expanded as a sum of interaction energies appearing between groups

of different numbers of molecules (or atoms). Here, it is used in the molecular basis as in

[82]. The total energy (EN(r1, ..., rN)) of an N -molecular system is written as a sum of

X-body (XB) terms (X = {1, 2, ..., N}):

EN(r1, ..., rN) =
N∑
I

E1B(rI) +
N∑
I,J

E2B(rI , rJ)

+
N∑

I,J,K

E3B(rI , rJ , rK) + ... + ENB(r1, r2, ..., rN) (2.1)

where EX denotes the total energy of X molecules and EXB stands for the X-body

interaction energy of the X molecules. E1B(rI) are the one-body (1B) energies of the

monomers (as if they were in vacuum having the same rI coordinates as in the original

system, where rI denotes the coordinates of all the atoms within molecule I); E2B(rI , rJ)

are the interaction energies between pairs of molecules:

E2B(rI , rJ) = E2(rI , rJ) − E1B(rI) − E1B(rJ) (2.2)

The higher-order EXB terms are defined as the interaction energies that are only present

between the X molecules but not between any (X − 1) molecular subset of the system:

EXB(r1, r2, ..., rX) = EX(r1, r2, ..., rX) −
(X−1)∑
Y =1

∑
I<J<...<Y

EY B(rI , rJ , ..., rY ) (2.3)
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Using the MBE in the model development has several advantages. Firstly, the

lower order terms are larger in magnitude and have lower dimensionalities, so if fitted

separately, can be fitted more accurately (in a fractional sense) from less data. However,

in a big structure, there are more higher-order terms, so their contribution becomes more

important. Secondly, the higher-order terms usually decrease quicker with the inter-

molecular distances, so shorter cutoff radii can be used for them. Thirdly, calculating the

databases for the higher-order terms becomes more and more computationally expensive,

so to avoid high computational cost, one can use quantum mechanical methods with

lower cost for the higher-order terms. Moreover, it is possible to truncate the expansion

at some term, and use classical force fields or DFT functionals for the terms above

it [4, 13]. When computer speed permits, the models can be systematically improved by

recalculating the training sets of the fits with higher level quantum chemical methods.

Similarly, corrections for the higher-order terms will be possible to fit. In this thesis, the

developed models approximate quantum chemistry in the 2B and 3B terms by adding

corrections to a force field fitted by either GAP or PIP. The higher-order terms are

calculated by the baseline classical force field.

2.2 Quantum chemical methods

To calculate the training datasets with quantum chemistry, a quantum mechanical method

is needed which has high accuracy, but a computational cost that is still tractable for

the large numbers of configurations in the databases. In this work, the CCSD(T)-F12a

method with the AVTZ basis set and the counterpoise correction was chosen as it has

very high accuracy and large databases were already available for the systems studied.

However, we later found that not all the databases were calculated at the same level, so

we recalculated subsets of them (see Section 2.4.3).
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2.2.1 Basis sets

The basis sets in this work are the AVXZ correlation-consistent polarized basis sets

of Dunning [83] with the X cardinality, where X = D, T, Q for the double, triple and

quadrupole cardinalities. These basis sets are built as sets of Gaussians [83].

For the datasets of the GAP fitting, AVTZ is used. When comparing different

quantum mechanical settings, we also tested the correlation consistent VXZ-F12 sets [84]

that were optimised for the F12-methods [84].

2.2.2 Counterpoise correction

Counterpoise correction (CP) [85] is a method for reducing the basis set superposition

error (BSSE). The BSSE arises when many-body energies are calculated using different

basis sets for the different fragments involved. To illustrate, the 2B energy of an AB

dimer could be calculated in the following two ways [86]:

E2B,noCP = EAB(ϕAB) − EA(ϕA) − EB(ϕB) (2.4)

E2B,CP = EAB(ϕAB) − EA(ϕAB) − EB(ϕAB) (2.5)

where ϕA and ϕB are the basis sets of the individual molecules A and B, and ϕAB is

the joint basis set of the AB dimer. The monomer energies are lower when calculated

with the joint basis set, EA(ϕAB) ≤ EA(ϕA), as the basis set extension improves on

the original basis set [86, 87]. Thus in the case of Eq. (2.4), one might subtract larger

monomer energies leading to an interaction energy that is lower than the real value. The

CP correction uses Eq. (2.5) to calculate the interaction energy and converges to the

complete basis set value from above [88]. The value of the correction can be defined as

∆EA,CP = EA(ϕAB) − EA(ϕA).

Although it seems straightforward that the counterpoise correction eliminates BSSE

which is a known source of error, this correction still causes controversies in the literature.

Those arguing against using it state that not correcting BSSE works better, because
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there is a possibility of BSSE and the so-called basis set convergence error (BSCE)

partially cancelling each other out [88, 89]. The BSSE and BSCE constitute the basis set

incompleteness error (BSIE) [88,89]:

EBSIE = EBSSE + EBSCE (2.6)

Using large basis sets would reduce both parts; however, it would be highly computation-

ally expensive for large systems or large numbers of configurations. The two components

(EBSSE and EBSCE) have opposite signs, so correcting only one of them might lead to a

larger error [87–89]. A similar reasoning also led to the suggestion of Halkier et al. [90] for

the so-called half–half approximation which suggests averaging the CP and noCP values:

Ehalf–half = 1
2 · (ECP + EnoCP). (2.7)

Sheng et al. [89] showed that the relative magnitudes of EBSSE and EBSCE change with

the distance between the monomers and with the basis sets on the example of the helium

dimer so the two errors do not always cancel each other out. An extensive study by

Burns et al. [91] on the effects of the different CP corrections on the predictions of the

MP2 and CCSD(T) methods for bimolecular complexes showed that the most accurate

correction-type depends on the methods. Another extensive study in the same year by

Brauer et al. focusing on the MP2-F12 and CCSD(T)-F12 methods, which also made

different suggestions for the different methods and basis sets, noted that the half weight

is arbitrary [88]. Even the paper of Halkier et al. [90] which first suggested the half–half

method noted that, for HF (Hartree–Fock) calculations, whether the half–half or the CP

method is the more accurate is system-dependent. However, using different CP versions

depending on the methods and chemical systems is inconsistent. While it is not possible

to correct the BSIE completely, there is no reason not to correct BSSE as it might lead

to more physical results. Moreover, CP always approaches the exact result from above

while noCP does not [89,90].
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Generalising the counterpoise correction for the higher-order terms of the many-body

expansion can be done in different ways [92, 93]. Two possible methods are calculating it

as a sum of pairwise BSSEs or the so-called "site–site function counterpoise" [92]. The

site–site function CP method calculates the interaction energy using the full basis set for

all the fragments involved. Thus, the CP correction can be defined as:

∆EA,CP = EA(ϕABC...) − EA(ϕA). (2.8)

In this work, this site–site function CP method is used for the CP-corrected 3B energies,

so they are calculated as:

E3B(ABC),CP =EABC(ϕABC) − EAB(ϕABC) − EAC(ϕABC) − EBC(ϕABC)

+ EA(ϕABC) + EB(ϕABC) + EC(ϕABC). (2.9)

2.2.3 MP2

MP2 is second order Møller–Plesset perturbation theory [94]. Here, its density-fitted

version (DF-MP2) is used to reduce computational time [95]. This method scales as N5

and thus it is possible to calculate the forces for the fitting datasets of the thesis.

2.2.4 CCSD(T)-F12

CCSD(T)-F12 is generally regarded as the "gold-standard" of quantum chemistry [91].

The abbreviation stands for coupled cluster with singles and doubles excitations and

perturbative triples, and F12 denotes a correlation factor [96, 97]. The implementation of

Adler et al. [97] is included in Molpro [94]. The results of this coupled cluster method

using the AVTZ basis set are more accurate than CCSD(T)/AV5Z [97]. This method

scales as N7 [98], so it has a high computational cost for larger systems. The force

calculations would also have high computational cost. However, the version of Molpro

used in the project (2012.1 version [94]) did not have forces available for this method;
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the analytical gradients for versions of coupled cluster were only made available in the

2018.1 version [99].

The fitted quantum chemical level of the developed TTM4Fmod+GAPs model is

CCSD(T)-F12a/AVTZ with the counterpoise correction [85] calculated by Molpro [94].

The F12a version is chosen because the Molpro manual suggested this version of F12

for the AVTZ basis set [99] and using larger basis sets would be more computationally

expensive.

2.3 The baseline electrostatic model: TTM4Fmod

from MB-pol

We chose to use the same baseline model for water as in MB-pol [4,10] that is a modified [4]

TTM4F [100]. TTM4F [100] is a Thole-type model (TTM) [101,102] where the electrostatic

properties of the H2O molecule are described by three point charges placed on the hydrogen

atoms and on an M site, and by inducible point dipoles placed on all the three atoms [4].

The electrostatic energy is calculated as a sum of interactions between these charges and

dipoles, and a spring term corresponding to the dipoles’ energies [4]. However, with the

choice of parameters of the model, the energy is simplified to the sum of only two terms:

interactions between the charges, and the dipoles’ interactions with the electrostatic

field [4]:

VTTM = 1
2

∑
i ̸=j

qiqj

(αiαj)1/6 λ1(uij) − 1
2

∑
i

(µi · Ei) (2.10)

where qi are the charges, µi are the dipoles, αi are the dipole polarizabilities, Ei is

the electric field at i, uij = rij/(αiαj)1/6, and λ1 is a function to define the screened

interaction that replaces the point charges by charge density distributions [4].

The TTM4Fmod is a modified version of TTM4F as introduced by Babin et al. [4].

They changed the damping parameter corresponding to the intra-molecular H–H dipole–

dipole interaction and thus the model became more stable for distorted molecules [4].
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2.3.1 The TTM4Fmod-to-QUIP interface

The TTM4Fmod model is invoked by the MB-pol plugin [4, 10,103] for OpenMM [104]

which is interfaced to ASE [105] by a code written by Ádám Fekete and the author.

The PIP fits of MB-pol are turned off to get the baseline TTM4Fmod model. This

interface is available at [106]. Fig. 2.1 shows the dependencies of the codes building

the TTM4Fmod+GAPs model, which sums the baseline water model with the 1B CH4

term of Schwenke and Partridge [107,108] and the GAP corrections fitted in this project.

The PIPs are not simply substituted by GAPs as the latter ones are fitted on different

quantum mechanical levels and have different cutoff functions. Due to restrictions of

the underlying MB-pol plugin, the force field is only applicable to orthogonal lattices.

This version of TTM4Fmod does not use parallelisation, so it is slower than the version

implemented in MBX (see Section 2.5.1). As published, due to license reasons, the

TTM4Fmod+GAPs package can only be used for the TTM4Fmod model, and the GAPs

need to be calculated by the latest version of QUIP and GAP.

Fig. 2.1 Schematic dependency graph of the code for the TTM4Fmod+GAPs model.

2.4 Gaussian Approximation Potentials (GAP)

The Gaussian Approximation Potentials [1,2,8,9,109] is an implementation of the Gaussian

Processes machine learning method for fitting potential energy surfaces (PESs), which
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have been applied to many systems including materials and molecular structures [1,8,110–

112]. The underlying fitting method can also be described as kernel-ridge regression [109,

113,114], so here, we will explain the technique according to this logic.

The PES is fitted in the space defined by the geometries of the training set: {R}(N).

The basis functions are defined from the geometries by the so-called descriptors: d(R)

functions that describe the geometries (see Section 2.4.2). The similarity of two structures

is defined by the squared exponential (ARD_SE) kernel [1, 109]; then, a kernel matrix is

built having the similarity measure of RI and RJ as its I, J element:

K(d(RI), d(RJ)) = δ2 exp
 −

∑
i

(di(RI) − di(RJ))2

2θ2
i

 (2.11)

where i runs over the elements of the descriptor d, δ and θi are hyperparameters of the

fit, θi being the typical decorrelation length for the descriptor element di [1]. The kernel

will be an N × N matrix where N is the number of representative geometries. Then,

the energy for a new structure, RN+1, can be calculated by multiplying the similarity

of this new structure with the RI representative structures with the corresponding wI

weights [8, 109,114]:

E(d(RN+1)) =
N∑

I=1
wI · K(d(RN+1), d(RI)) (2.12)

The wI weights are determined by a least squares fit minimising the loss function:

l(w) = ||K · w − E(d)||2 (2.13)

where ||v||2 = ⟨v, v⟩ for an arbitrary vector v, ⟨v, v⟩ denoting the dot product. This

would lead to the solution for the weights:

w = K−1E(d) (2.14)
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To regularise the linear algebra, the loss function is modified as [8, 109]:

l(w) = ||K · w − E(d)||2 + σ2wT Kw (2.15)

here σ2 is a small, positive regularisation parameter. Then the vector of weights can be

obtained by minimising Eq. (2.15), which leads to [8, 109]:

w = (K + σ2 · I)−1E(d) (2.16)

where I is the N × N unit matrix.

2.4.1 Sparsification

For large datasets, the matrix inversion appearing in Eq. (2.16) can have a high compu-

tational cost and the time of evaluation (Eq. (2.12)) also increases linearly. Actually, the

geometry space defined by the train set can be represented by a subset of the training

geometries [1, 115], so including all the train structures for the basis functions might be

unnecessary. For a fit, a smaller number of representative configurations are chosen as

sparse points: {R}(M), which define the basis functions of the fit [1,115]. In GAP [9], there

are several methods implemented for choosing these structures, for instance, randomly,

using the CUR matrix decomposition [116], in which an A matrix is decomposed as

A ≈ CUR where C and R consist of columns and rows of the original matrix [116]; or

defining them by the indices. For some of the fits of the project, we used the furthest

point sampling (FPS) [117] technique to choose the sparse points, and specified them by

the indices.

Using M sparse points, smaller covariance matrices can be defined [1]; an M × M

matrix, built from the similarity measures of the sparse configurations: KMM , and an

N × M matrix : KNM , in which the N rows correspond to the train set geometries and

the M columns correspond to the geometries of the sparse subset [1]. For the fit, an
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N × N matrix, Λ, is also needed, defined as [1]:

Λ = diag(KNN − KNMK−1
MMKMN) (2.17)

where diag denotes the diagonal elements of a matrix so that: (diag(M))i,j = δi,j · Mi,j.

The similarity of a new structure with the M sparse structures is the vector:

kN+1 = {K(d(RN+1), d(RI)}M
I=1 (2.18)

Defining a K ′
MM kernel including the regularisation as [1]:

K ′
MM = KMM + KMN(Λ + σ2I)−1KNM (2.19)

the prediction for a new structure will be [1]:

E(d(RN+1)) = kT
N+1K

′−1
MMKMN(Λ + σ2I)−1E(d) (2.20)

2.4.2 Descriptors

To define the kernel basis functions from the representative geometries, the structures

need to be described by some functions, the so-called descriptors. As these functions

are inherent to the fit of the energy functional, it is desirable that they change with

the geometries as the energy would change. Thus, the descriptors should be smooth,

symmetric and differentiable with respect to changes of the geometries. In this thesis

two main types of descriptors are applied: a class based on interatomic distances [109]

and the SOAP (smooth overlap of atomic positions) [118,119] descriptor.

The interatomic distance descriptors are based on permutationally symmetrised

interatomic distances or their powers. The original version is simply the set of the

interatomic distances within the structure [109]:

d(R) = {rij | rij ∈ R} (2.21)
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Fig. 2.2

and it is made permutationally invariant for the change of the order of monomers of the

same type and the order of atoms of the same species (within the monomers and if set,

also between them) [9]. For the fits of this thesis, it is set to only swap the atoms within

the monomers. The descriptor function is smoothly turned off at the cutoff distance

using a cosine function [109] (see Eq.-s (2.24), (2.25)).

A variation of this descriptor using the inverse distances with a distance shift was

suggested by A. P. Bartók during this project [120]. The inverse distance descriptor is a

modification of the interatomic distance descriptor to use the inverse distances. To avoid

the inverse distance being very large at short distances, we added a small shift, r′, to the
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distance:

d(R) =
{

1
rij + r′ | rij ∈ R

}
(2.22)

Different powers of the distances can be applied for the descriptor, but for the fits of

this project, the inverse power seems to work best. This choice of the descriptor is

convenient for fitting the PES because both the inverse distances and the interaction

energy are more sensitive to changes in the molecular distances at short distances than at

larger separations. Functions of the inverse distances were also used for potential energy

fitting in PIP and GP by Joel Bowman and co-workers [121,122] and in sGDML by A.

Tkatchenko and co-workers [123].

The functions of the distances entering the kernel changing the power and the distance

shift are shown in Figures 2.2a, 2.2b. The powers of distances are fed into the same

kernel functions as the distances in the case of the interatomic distance descriptors. For

the interatomic distance descriptors, the squared exponential kernel is used to calculate

the similarity of two structures [1]. The equation for the kernel of the distance shifted

inverse interatomic distance descriptor using the squared exponential kernel:

K(d(RA), d(RB)) = δ2 exp
−

∑
rij∈R

| 1
rij,A+r′ − 1

rij,B+r′ |2

2θ2
ij

·fcut,R(RA)·fcut,R(RB)
 (2.23)

where the θij is the typical decorrelation length for the shifted inverse interatomic distance,

and the fcut,structure(R) cutoff function for a structure is defined as:

fcut,R(R) = 1
Ncut

∑
i,j ̸=H

fcut(rij) (2.24)

with the sum running over the distances between the non-hydrogen atoms and Ncut is

the number of distances included in the sum. The fcut(rij) is a smooth cutoff function,
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defined as [9, 109]:

fcut(rij) =



1 rij < (rcut − rcut transition width)

1
2

(
cos π(r−rcut+rcut transition width)

rcut transition width
+ 1

)
(rcut − rcut transition width) < rij < rcut

0 rcut < rij

(2.25)

with rcut transition width being a cutoff transition width, usually set to 1 Å for the interatomic

distance descriptors.

The kernel element for a simple structure described by one distance (e.g. a diatomic

molecule), without the cutoff function and setting δ = 1 and θ2
i,j = 0.5, is shown in

Figures 2.2c and 2.2d, changing the power and the distance shift, respectively.

With the SOAP descriptor [118], GAP compares atomic environments, so datasets

including structures of different compositions can also be fitted. The environment of atom

i is described as an atomic neighbour density where the neighbour atoms are described

by Gaussians centred on their relative positions [5, 118,124]:

ρα
i (r) =

∑
j

exp
(

− |r − rij|2

2σ2
at

)
fcut(rij). (2.26)

where the sum is over the neighbours of species α, the neighbour densities being defined

separately for the different species. Here σat is a smoothing parameter depending on the

species, and the cutoff function fcut(rij) is the same as in (2.25) [9, 109]. This atomic

neighbour density can also be expanded in the space of orthogonal radial basis functions

gn(|r|) and spherical harmonics Ylm(r̂) [5, 118,124]:

ρα
i (r) =

∑
j

∑
nlm

c
(j)
nlmgn(|r|)Ylm(r̂). (2.27)

The similarity of two environments is calculated as the overlap of these atomic densities

and rotational invariance is enforced by integrating over three dimensional rotations,
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defined by R̂ 3 × 3 matrices [119,124]:

k̃(ρα
i , ρα

j ) =
∫

dR̂|ρα
i (r)ρα

j (R̂r)dr|n (2.28)

where the exponent n ≥ 2. Usually, n = 2 is used as it would become more expensive to

evaluate the kernel for larger exponents, and for n = 1, the angular information would

be lost [118,125].

As derived in Ref. [118], the power spectrum: p̃i
nn′l = ∑l

m=−l ci
nlm(ci

n′lm)∗ can be used

for calculating the kernel without evaluating the above integral [118,124]:

k̃(ρα
i , ρα

j ) =
∑
nn′l

p̃i
nn′lp̃

j
nn′l = p̃ip̃j. (2.29)

where p̃ is a vector created by the p̃nn′l elements. Then, the kernel is normalised to one,

and the final atomic kernel is calculated as a positive integer power of the normalised

kernel [118,124]:

k(ρα
i , ρα

j ) =
 k̃(ρα

i , ρα
j )√

k̃(ρα
i , ρα

i ) · k̃(ρα
j , ρα

j )

ζ

(2.30)

where the exponent ζ is a small positive integer, in this work ζ = 2. Using Eq. (2.29),

one can also calculate the kernel using the normalised power spectrum [118,124]: pi =

p̃i/
√

p̃ip̃i:

k(ρα
i , ρα

j ) = (pipj)ζ . (2.31)

2.4.3 Datasets of fits

For the TTM4Fmod+GAPs model, each correction term was fitted by GAP in two

steps: the first on the MP2 level and the second on the CCSD(T)-F12a–MP2 differences.

We used datasets from different sources; however, in the end, to make the fitted levels

uniform, subsets were recalculated at the CCSD(T)-F12a/AVTZ and the DF-MP2/AVTZ

levels using the counterpoise correction. In the original datasets, some [10] used only

CCSD(T), some [15, 16] used mixed basis functions and some [15, 16] did not use the
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counterpoise correction. The details of the fitting datasets of the GAPs are summarised

in Table 2.1.

The 2B water database on the MP2/AVTZ level has 12040 configurations in it:

9040 are from Bartók et al. [8] and 3000 are sampled from a molecular dynamics (MD)

simulation. The additional configurations were chosen as follows: 2000 structures

were chosen by two furthest point samplings (FPSs) [117] from two snapshots of a MD

simulation using a cutoff of 7.0 Å. To better sample configurations that have long OO

distances, 1000 structures were added with OO distances between 6.0–7.0 Å, which were

chosen as a sum of two FPSs each choosing 500 dimers from all the configurations with

this distance criterion from different snapshots of a MD simulation. The CCSD(T)-

F12a–MP2 2B correction was fitted on a subset of the MP2 database containing 1507

structures [11,127], for which the quantum chemical energies were recalculated.

The 3B water MP2 dataset consists of 14554 configurations. One part of it is

a subset of the dataset by Babin et al. [10], containing 11554 structures which were

chosen and calculated with DF-MP2/AVTZ for the paper of Cisneros et al. [11]. (The

original training set of [10] contained CCSD(T) level calculations with an AVTZ basis set

extended with midbond functions [10].) 3000 additional structures were sampled from a

MD simulations as a union of six FPSs, each choosing 500 configurations from different

timesteps. The CCSD(T)-F12a–MP2 fit was fitted on a subset of 2654 configurations,

chosen from the 11554 configurations of Cisneros et al. [11], which was calculated by

CCSD(T)-F12a/AVTZ for this project. The structures are chosen as a union of two FPSs

with different settings for the descriptors choosing 1500 each which lead to 2218 structures

due to overlaps between the two sets. Finally, we added every 25th configurations that

was not selected by the FPS samplings which resulted in 436 additional structures.

For the 2B methane–water term, the dataset of Qu et al. [15] was filtered discarding

the configurations that have CO distances larger than 6.0 Å, then a subset was chosen

by CUR analyses [116] which resulted in 13713 structures. This dataset was calculated

at the MP2/AVTZ level. For the CCSD(T)-F12a–MP2 calculations, further subsets of

this set were chosen: the first choosing all the configurations where the CO distance was



2.4 Gaussian Approximation Potentials (GAP) 27

Fi
t

Fi
tt

ed
da

ta
C

on
fig

.s
fro

m
so

ur
ce

s
N

ot
es

E
H

2
O

2B
(M

P
2-

T
T

M
4F

m
od

)
∆

E
,∆

F
90

40
fro

m
[8

]
20

00
by

2
FP

Ss
fro

m
M

D
w

ith
cu

to
ff

of
7.

0Å
10

00
by

2
FP

Ss
fro

m
M

D
,w

ith
6Å

<
r O

O
<

7Å
E

H
2
O

3B
(M

P
2-

T
T

M
4F

m
od

)
∆

E
,∆

F
11

55
4

su
bs

et
of

[1
0]

,c
ho

se
n

by
[1

1]
re

ca
lc

ul
at

ed
by

[1
1]

30
00

by
6

FP
ss

fro
m

M
D

st
ep

E
H

2
O

2B
(C

C
SD

(T
)-

F
12

-M
P

2)
∆

E
15

07
fro

m
[1

1]
re

ca
lc

ul
at

ed
E

H
2
O

3B
(C

C
SD

(T
)-

F
12

-M
P

2)
∆

E
26

54
su

bs
et

of
[1

1]
,c

ho
se

n
as

2
FP

Ss
ch

oo
sin

g
15

00
+

ev
er

y
25

th
re

ca
lc

ul
at

ed
E

C
H

4
(H

2
O

)
2B

(M
P

2)
E

,F
12

70
1

su
bs

et
of

[1
5]

w
he

re
r C

O
<

6.
0Å

,a
nd

fu
rt

he
r

su
bs

et
by

C
U

R
re

ca
lc

ul
at

ed
10

00
fro

m
M

D
,c

ho
se

n
ra

nd
om

ly
by

A
.V

.–
M

.[
12

6]
ca

lc
ul

at
ed

by
A

.V
.–

M
.[

12
6]

E
C

H
4
(H

2
O

) 2
3B

(M
P

2)
E

,F
11

77
7

su
bs

et
of

[1
6]

w
he

re
r C

O
,m

in
<

6.
0Å

an
d

al
lr

C
H

/
O

H
<

1.
5Å

re
ca

lc
ul

at
ed

th
en

su
bs

et
ch

os
en

as
a

un
io

n
of

FP
S

an
d

C
U

R
40

00
by

2
FP

Ss
fro

m
M

D
E

C
H

4
(H

2
O

)
2B

(C
C

SD
(T

)-
F

12
-M

P
2)

∆
E

23
28

su
bs

et
of

[1
5]

ch
os

en
fro

m
M

P2
se

t:
al

lr
C

O
<

3.
0Å

an
d

FP
S

re
ca

lc
ul

at
ed

10
00

fro
m

M
D

,c
ho

se
n

ra
nd

om
ly

by
A

.V
.–

M
.[

12
6]

ca
lc

ul
at

ed
by

A
.V

.–
M

.[
12

6]
E

C
H

4
(H

2
O

) 2
3B

(C
C

SD
(T

)-
F

12
-M

P
2)

∆
E

18
75

su
bs

et
of

[1
6]

w
he

re
r C

O
,m

in
<

6.
0Å

an
d

al
lr

C
H

/
O

H
<

1.
5Å

re
ca

lc
ul

at
ed

ch
os

en
by

su
bs

et
as

a
un

io
n

of
FP

S
an

d
C

U
R

Ta
bl

e
2.

1
D

et
ai

ls
of

th
e

G
A

P
da

ta
se

ts
.

A
ll

qu
an

tu
m

ch
em

ic
al

ca
lc

ul
at

io
ns

us
ed

th
e

AV
T

Z
ba

sis
se

t
an

d
co

un
te

rp
oi

se
co

rr
ec

tio
n

(s
ee

Se
ct

io
n

2.
2.

2)
;t

he
CC

SD
(T

)-F
12

ca
lcu

la
tio

ns
us

ed
th

e
CC

SD
(T

)-F
12

a/
AV

TZ
an

d
th

e
M

P2
ca

lcu
la

tio
ns

us
ed

th
e

de
ns

ity
-fi

tt
ed

D
F-

M
P2

/A
V

T
Z

ve
rs

io
ns

.



28 Model components

shorter than 3.0 Å; the second by an FPS sampling from the configurations that have

CO distances between 3.0–6.0 Å. For better sampling, 1000 configurations were added

to both the sets, sampled and calculated by Álvaro Vázquez–Mayagoitia [126], which

were selected randomly from a molecular dynamics simulation of a methane molecule in

water. Finally, the distorted configurations that have intra-molecular OH or CH distances

longer than 1.5 Å were discarded. The datasets of the fits contained 13701 and and 3328

configurations for the MP2 and CCSD(T)-F12a–MP2 levels, respectively.

For the 3B methane–water–water fit, the database of Conte et al. [16] was filtered

so that the structures had at least one CO distance shorter than 6.0 Å; then a subset

was chosen by a union of CUR and FPS samplings; and finally, the structures that have

intra-molecular OH or CH distances longer than 1.5 Å were discarded. This dataset

of 11777 configurations was calculated at the MP2/AVTZ level. Then 4000 additional

configurations were added by choosing twice 2000 structures by FPSs from two different

snapshots of a MD simulation. The CCSD(T)-F12a–MP2 dataset was chosen similarly

to the MP2 set from the database of Ref. [16]. First, the configurations that did not

have CO distances shorter than 6.0 Å were discarded. Second, a union of FPS and

CUR samplings resulted in 1987 configurations. Finally, the distorted structures that

have intra-molecular OH or CH distances longer than 1.5 Å were discarded. Thus, 1875

configurations remained in the dataset.

When generating new structures using MD simulations, the simulations were run in

Amber [128]. The periodic box contained one methane molecule and 430 water molecules.

After equilibration, the configurations were sampled from an NVT simulation having

0.9 g/cm3 density.

The datasets were split to train and test subsets, having a 95:5 ratio. The test sets

were chosen randomly but uniformly along the CO/OO distances for the 2B sets and

along the minimum OO and CO distances for the water 3B and methane–water–water

3B sets, respectively. The datasets and their train subsets are available at [129].
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2.4.4 Parameters of the TTM4Fmod+GAP model

The model is built by fitting GAP corrections to a classical water force field, TTM4Fmod,

to correct it to the CCSD(T)-F12a/AVTZ level in the 2B and 3B interactions. The 1B

terms are not fitted because the water force field includes the highly accurate Partridge–

Schwenke 1B potential [130] of water, and the TTM4Fmod+GAPs model includes the

1B CH4 fit [107,108] of Schwenke and Partridge, too.

Fitting on the forces can significantly improve the accuracy of the fits because the

forces contain additional information [8]; and as the forces are the derivatives of the

potential, information about the behaviour of the potential function near the data points

is also included by them. Thus, fits including the forces better approximate the quantum

mechanical PES, and reduce overfitting of the train data. However, the target CCSD(T)-

F12a/AVTZ has a high computational cost and the forces were not available in the

version of Molpro used for this project (2012.1), so the forces are only calculated at the

MP2 level, and the corrections are fitted in two steps. The first steps target the MP2

level, including energy and force data, and the second steps target the CCSD(T)-F12a

level, including energy data only, fitted on smaller datasets than the first steps. The

datasets of the fits are described in Section 2.4.3.

The water interactions are calculated by the TTM4Fmod model, along with GAP

corrections for the 2B and 3B interactions. These terms are fitted by GAP in two steps:

the first targeting the MP2 level fitted on the MP2–TTM4Fmod differences including

energy and force differences, and the second targeting the CCSD(T)-F12a level fitted on

the CCSD(T)-F12a–MP2 differences.

The methane–water interactions are added to the model for the 1B, 2B and 3B terms,

including only one methane molecule. In the clathrates, the methane molecules are

further away from each other, so the terms with higher methane content are unnecessary

in the first approximation. For the 1B CH4 PES, a potential [107,108] fitted by Schwenke

and Partridge is used invoked by the code of the authors [107,108] as downloaded from

the supplementary material of [131] which is interfaced to QUIP for this project [127].

This potential is not as accurate as the Partridge–Schwenke water 1B potential [130] as
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it is fitted only on the CCSD(T)/VTZ level [107]. The methane–water 2B and methane–

water–water 3B terms are built similarly to the water terms with the difference that

the first step is fitted directly on the MP2 level as there is no methane–water force field

included. Thus, the model is only applicable to low methane concentrations currently. It

would be interesting to add 2B and 3B GAPs with more methane molecules in future

work.

All the fits used inverse general distance descriptors with distance shifts. The

hyperparameters of the fits were optimised for each fit manually. The monomer cutoffs

were 1.9 Å and 1.3 Å for water and methane, respectively. The fits on the MP2 level used

sparse points chosen with the FPS method [117]. As the CCSD(T)-F12a–MP2 datasets

were a magnitude smaller than the MP2 ones, the fits used all the data points as sparse

points, except for the methane–water–water 3B fit, which fit was already accurate enough

with a smaller number of randomly chosen sparse points.

The regularising parameters of the energies (σE) and forces (σF ) were scaled for all

the fits on the MP2 level; and σE was also scaled for the 2B methane–water fit on the

CCSD(T)-F12 level. These can be set for each configuration under the energy_sigma

and force_sigma names in the xyz files. For the other fits, the regularising parameters

were set to constant. The σE parameters were scaled with powers of the distances and

set to each configurations as:

σE = max
 σE,0(

r
r0

)p , σE,min

 (2.32)

where r is a distance between non-hydrogen atoms (see Table 2.2), r0 is set to 2 Å, and

p is a positive integer power. In the case of the fits on the MP2 level, the regularising

parameters for the forces were also scaled. For the methane–water fits, they were scaled

with the distance similarly as the σE:

σF = max
 σF,0(

r
r0

)p , σF,min

 (2.33)
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Fig. 2.3 Energy plots of the water GAPs. In the plots, the larger circles visualise multiple
points which would be at the same coordinates. The plots show the energy distribution
of the train energies with light blue, and the energy error distributions of the fit for the
train and test sets with orange and red, respectively. Both the energies and energy errors
are shown with respect to the OO distances of the dimers and minimum OO distances of
the trimers. The green σE is the regularising parameter of the energy.

σF,at scaled with |Fat| σE,0 r p σE,min σF,frac σF,min
EH2O

2B(MP2-TTM4Fmod) 0.0001 rOO 1 1 · 10−5 0.1 0.001
EH2O

3B(MP2-TTM4Fmod) 0.0001 rOO,min 8 2 · 10−7 0.01 0.0001
σF scaled with r σE,0 r p σE,min σF,0 σF,min

E
CH4(H2O)
2B(MP2) 0.001 rCO 1 1 · 10−5 0.005 0.001

E
CH4(H2O)2
3B(MP2) 0.0001 rCO,min 1 1 · 10−5 0.001 0.001

only σE scaled σE,0 r p σE,min - -
E

CH4(H2O)
2B(CCSD(T)-F12-MP2) 5 · 10−5 rCO 1 1 · 10−6 - -

Table 2.2 The parameters used to set the regularising parameters for the fits. r0 = 2.0 Å.



32 Model components

2 3 4 5 6 7
RCO[Å]

10 8

10 6

10 4

10 2

100

|E
|[e

V]

RMSE = 0.001963
train =  0.001958
test  =  0.002063

E

EMP2
Etrain
Etest

(a) 2B MP2 (CH4)(H2O)

2 3 4 5 6 7
RCO [Å]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

|E
|[

eV
]

RMSE = 0.000878
train =  0.000855
test  =  0.001253
 

E

ECCSD(T) F12 MP2
Etrain
Etest

(b) 2B CCSD(T)-F12–MP2 (CH4)(H2O)

2 3 4 5 6 7 8
RCO, min [Å]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

|E
|[

eV
]

RMSE = 0.000624
train =  0.000588
test  =  0.001109

E

EMP2
Etrain
Etest

(c) 3B MP2 (CH4)(H2O)2

2.5 3.0 3.5 4.0 4.5 5.0 5.5
RCO, min [Å]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
|E

|[
eV

]

RMSE = 0.000082
train =  0.000071
test  =  0.000203

E

ECC MP2
Etrain
Etest

(d) 3B CCSD(T)-F12–MP2 (CH4)(H2O)3

Fig. 2.4 Energy plots of the methane–water GAPs. The notation is similar to the one in
Fig. 2.3, but the energies and energy errors are shown with respect to the CO distances
of the dimers and minimum CO distances of the trimers.

fitted data rcutoff Nsparse points ( Nconfigurations ) RMSEtest
EH2O

2B(MP2-TTM4Fmod) ∆E, ∆F 7.0 2000 (11442) 0.003290
EH2O

3B(MP2-TTM4Fmod) ∆E, ∆F 6.0 5000 (13832) 0.001189
EH2O

2B(CCSD(T)-F12-MP2) ∆E 7.0 1435 (1435) 0.000352
EH2O

3B(CCSD(T)-F12-MP2) ∆E 5.0 2524 (2524) 0.000113
E

CH4(H2O)
2B(MP2) E, F 7.0 5000 (13021) 0.002063

E
CH4(H2O)2
3B(MP2) E, F 6.0 5000 (14998) 0.001109

E
CH4(H2O)
2B(CCSD(T)-F12-MP2) ∆E 7.0 3167 (3167) 0.001253

E
CH4(H2O)2
3B(CCSD(T)-F12-MP2) ∆E 5.0 700 (1787) 0.000203

Table 2.3 Details of the GAP fits. The units of the cutoff radius and RMSEs are Å and
eV, respectively.
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For the water interactions, they were set using the force_atom_sigma parameter, which

can set them to different values for each atom; they were calculated as a fraction of the

magnitude of the atomic forces:

σF,at = max
(
(|Fat| · σF,frac), σF,min

)
(2.34)

where Fat is the target atomic force (the 2B or 3B MP2–TTM4Fmod difference force

in this case). To avoid overfitting, we used the minimum values σE,min and σF,min. For

the parameters used in the fits building the TTM4Fmod+GAPs model, see Table 2.2.

Scaling the sigmas with the distance meant we could set a lower target accuracy for

the configurations with higher energies which often occur at shorter distances. Thus,

the models are more accurate for the configurations that occur more often in dynamical

simulations or geometry optimisations.

0.000 0.001 0.002
RCO [Å]

0.0170

0.0165

0.0160

E
[e

V]

= 1.0e-06
= 1.0e-05
= 1.0e-04

= 2.0e-04
= 5.0e-04

Fig. 2.5 PES scan of a methane–water dimer for different GAPs fitted on an earlier
version of the MP2 database. The dimer studied is taken from an sI clathrate structure
optimised by an initial version of the TTM4Fmod+GAPs model, in which the atoms
are moved by very small distance steps (0.0001 Å) in the direction of the corresponding
atomic forces (calculated by the initial TTM4Fmod+GAPs model), the inter-molecular
CO distance of this dimer being RCO = 4.049 for the first configuration. The GAPs differ
only by changing the values of the regularisation parameters, σE and σF , that are set to
the same constant value in this case. All the train geometries are used as sparse points.
As the distance changes are very small, a smooth potential is expected, so the GAPs that
predict energies changing very quickly are presumably overfitted. The figure shows that
setting the regularisation parameters to too low constant values can lead to overfitting.
(Note: when using a smaller number of sparse points, it also helps reduce overfitting.)
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The accuracies of the GAPs with different parameters were compared by looking at

their error distributions with respect to some selected distances using the plotting tools

of M. D. Veit [132], as shown shown in Figures 2.3, 2.4. We chose fits for which not only

the RMSEs were low, but the errors did not have large outliers. However, while running

test MD simulations with the initially optimised models, the MDs sometimes failed. We

found that this happened because the potentials were not smooth due to overfitting the

train sets. To reduce overfitting, we decreased the number of sparse points and increased

the regularising parameters. We tested whether the fits are overfitted by the gradient

tests of the QUIP package and by looking at the smoothness of PES scans (see Fig. 2.5).

The data included in the fits, the cutoffs, the number of sparse points, the number

of configurations in the fitting database, and the test energy root mean square errors

(RMSEs) of the GAPs building the model are shown in Table 2.3. The files of the GAPs

are available at [129] along with the corresponding datasets. The exact parameters of the

fits are given in Appendix B and the energy plots of the fits are shown in Figures 2.3, 2.4.

2.5 Permutationally Invariant Polynomials (PIP)

In the permutationally invariant polynomials [3], the potential energy surface is fitted in

the space of polynomials built from symmetrised monomials of distances between atoms,

sometimes including distances between atoms and lone electron pairs, too [4–6,10]. The

functions are permutationally symmetrised with respect to exchanging the atoms (or lone

pairs) of the same type within a molecule and with respect to exchanging the molecules

of the same composition [4,6, 10,133]. The parameters are optimised using kernel-ridge

regression [5, 6]. Versions of PIP have been applied to fit the PES for numerous systems

including molecules and materials [4, 6, 10,15,16,134].

For the PIPs of Chapter 3, the polynomials are built from symmetrised monomials

up to the fourth degree of the functions: e−krij , e−k(rij−r
(0)
ij ) and e−krij /rij [5] where rij

are the distances between atoms and in the case of the 2B fit, also the lone pairs. These
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fits are the same ones that are included in MB-pol water model and are described in

detail in the publications on the model [4, 10].

2.5.1 The MB-nrg model

During the course of this project, MB-pol was extended to include other molecules by the

same group that developed MB-pol, and this new model is named MB-nrg [6,22,135]. The

MB-nrg and the current version of MB-pol are available in the MBX software [22], and

at the time of this thesis, only this version is supported [136]. This software has several

advantages over the old MB-pol plugin for OpenMM: firstly, its electrostatic baseline,

TTM4Fmod [4] (described in Section 2.3 for water), includes the methane molecules as

well [6, 22]. Secondly, as it is implemented using OpenMP parallelisation [22], it is faster.

Moreover, it was simple to interface it to QUIP on the Fortran level as it already had

Fortran function calls implemented.

The water part of MB-nrg is the MB-pol model [4, 10]. The 2B water PIP was

trained on a dataset of 42508 structures with energies by the CCSD(T) method with the

counterpoise correction and a basis set extrapolation between the AVTZ and AVQZ basis

sets supplemented by midbond functions [4]. The 3B water PIP was fitted on a dataset of

12347 trimers calculated at the CCSD(T) level using the AVTZ basis set supplemented

by midbond functions [10].

The parameters of the methane–water part of the TTM4Fmod model were determined

by fitting to quantum chemical data by M. Riera et al. [6]. The 1B and 2B terms

including methane molecules were also published in the same paper [6]. The target level

for the 1B CH4 term was CCSD(T)-F12b using a 2-point basis set extrapolation between

AVTZ and AVQZ, and this PIP was fitted on 7882 structures [6]. The 2B datasets used

CCSD(T)-F12b with counterpoise correction and basis set extrapolation between AVDZ

and AVTZ, and these sets consisted of 32811 and 48239 configurations for (CH4)(H2O)

and (CH4)2, respectively [6]. The 3B (CH4)(H2O)2 term, added for this project, was

fitted on 15777 configurations with counterpoise-corrected MP2/AVTZ energies and is

described in the next section (Section 2.5.2). We test the model with and without this



36 Model components

3B correction term in Sections 4.3, 5.3.1 by simply turning off this PIP in the input json

file, and we use the full complemented model for the periodic calculations using the

quasi-harmonic approximation.

The polynomials of the PIPs are built from monomials of interatomic distances

and for the 2B terms, distances between atoms and lone electron pairs of the water

molecules [4, 6,133]. The monomials are up to fifth degree for the 1B CH4 term, up to

fourth degree for the 2B (H2O)2, 3B (H2O)3 and 2B (CH4)2 terms, and up to third degree

for the 2B (CH4)(H2O) and 3B (CH4)(H2O)2 terms [4, 6, 10].

In the earlier version of the model, the geometry optimisation of clathrate structures

at high pressures sometimes found holes in the potential and failed. The holes are

geometries where the potential predicts physically not correct, very low energies. Thus,

the geometry optimisation will "fall into" these geometries and predict non-physical

structures; sometimes even fail due to other errors occurring related to numerical overflow

or atoms being at the same positions. To avoid this, M. Riera–Riambau added a switch

according to the monomer energies [133]. When the 1B energies are higher than EMAX1B

(currently set to 60 kcal/mol (2.602 eV)), the model is switching back to the TTM4Fmod

electrostatics from the PIPs. This means the model will have lower accuracy for structures

that include distorted molecules, which might occur at high pressures.

2.5.2 The methane–water–water fit for the MB-nrg model

A 3B methane–water–water term was added to MB-nrg during the author’s visit to

Francesco Paesani’s group (University of California, San Diego) with the help of Marc

Riera–Riambau [133]. This term is fitted on the dataset assembled for the methane–

water–water MP2 GAP of this thesis, described in Section 2.4.3. We also tested fitting

on the CCSD(T)-F12 dataset, but it was too small for the PIP fits.

We used the MB-nrg fitting code for optimising the PIP as M. Riera et al. [6] did for

the other terms of the model describing methane interactions. The polynomials are built

from monomials up to third degree of the functions: e−krij where rij are interatomic

distances [133].
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Fig. 2.6 Energy plot of the 3B methane–water–water fit for MB-nrg. The notations are
similar to Fig. 2.3, but here the x axis is the minimum CO distance of the trimers.

The energy range of the fit was set to 20 kcal/mol (0.867 eV) and the regularization

parameter was set to 0.0005 kcal/mol (2.168 · 10−5 eV). The cutoff was 6.0 Å, with the

cutoff transition starting at 5.0 Å. The code used the "binding energies" for weighting

the configurations for the fits of the 3B energies. As the "binding energy" is only for

the weights, we used the differences between the total energy of the structures and the

lowest total energy of the dataset in the end. Optimising the fit, we made 20 PIP fits

in MB-nrg with the same parameters and chose the one having the lowest RMSE on

the low energy train set, also looking at whether the full train set RMSE is of the same

magnitude. (This low energy train set was defined as the set of configurations that have

binding energies which are within the energy range of the fit (0.867 eV) of the energy of

the configuration having the lowest binding energy [133].) The RMSEs were 0.4786 meV

for the low energy train set and 1.471 meV for the full train set. The test set’s RMSE

was 2.004 meV. The energy error distribution of the fit on the train and test sets is shown

in Fig. 2.6.

2.5.3 The MBX-to-QUIP interface

MBX is interfaced to QUIP by calling the Fortran functions of MBX through the

IPModel template of QUIP, which is also written in Fortran. For easier initialisation

of the potential for different structures, python functions are written – available in
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mbx_functions.py at [137], which generate the strings needed for the MBX’s Fortran

function. Also, the periodic MB-pol and MB-nrg models need larger minimum boxsizes

than the unit cells of some of the structures of the project, so for quicker simulations,

an ASE [105] Calculator is created which increases the cell only for the time of the

calculation and gives back the result for the original structure (SuperCellCalcMBX in

SuperCellCalcMBX.py). This function enhances the speed of dynamical simulations or

geometry optimisations, for example. To initialise the nonperiodic version similarly in

one line, the Calculator CalcMBX (in CalcMBXnonperiodic.py) is created.

Fig. 2.7 Schematic graph of the MBX-to-QUIP interface

2.6 Differences between TTM4Fmod+GAPs and MB-

nrg

The differences between the water parts of the TTM4Fmod+GAPs model and MB-nrg,

called MB-pol for the water part, arise from using different fitting techniques, different

databases (however, the 3B sets of GAP are subsets of MB-pol’s fitting set), different

cutoff functions and different levels of coupled cluster approximated by them. While

the GAP model’s target level is the CCSD(T)-F12a/AVTZ in each term, MB-pol’s level

is the CCSD(T)/CBS in the 2B [4] and the CCSD(T) level calculations with an AVTZ
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basis set extended with midbond functions in the 3B [10]. Moreover, in the earlier version

of MB-pol [103], from which the baseline force field is invoked for the GAP model, the

cutoff of the 3B PIP had a bug and used the maximum OO distance only. This meant

that the correction term was not applied to the configurations which only had two OO

distances within 4.5 Å. However, this is corrected in the MB-pol version available in the

MBX software [133].

The two models differ even more in the interactions involving methane molecules.

While TTM4Fmod+GAPs only has the TTM4Fmod baseline for the water part, MB-nrg

also has it implemented for the electrostatic interactions including methane molecules.

As for the correction fits, both models have fits for the methane–water and methane–

water–water interactions, and MB-nrg also has a 2B fit for the methane–methane term.

The methane–water–water 3B fits use the same MP2 dataset for the two models; however,

the PIP is only fitted on the MP2 level because the CCSD(T)-F12–MP2 dataset is not

large enough for it. The methane–water datasets and their target levels are different.

While GAP targets the CCSD(T)-F12a/AVTZ level, the PIP of MB-nrg targets the

CCSD(T)-F12b level using a basis set extrapolation with the AVDZ and AVTZ basis sets.

However, as the double zeta basis set has low accuracy, this extrapolation might lead

to energies with lower accuracy than the pure AVTZ basis. Also, the Molpro manual

suggests using the F12a version of CCSD(T)-F12 for basis sets up to triple zeta [99].

Moreover, MB-nrg uses a PIP for the 1B methane PES, whereas TTM4Fmod+GAPs

includes the 1B PES of Schwenke and Partridge [107,108] which are also fitted on different

levels; in this term, the level of MB-nrg has the higher accuracy. Finally, the switch

function of MB-nrg for high monomer energies is not present in the GAP model.

The QUIP interface of the MBX software is faster than the one of the TTM4Fmod+GAPs

model due to multiple reasons. Firstly, it is interfaced on the Fortran level, while the

earlier implementation of TTM4Fmod in the MB-pol plugin for OpenMM was interfaced

on the python level. Secondly, MBX uses parallelisation for the baseline force field.

Finally, the PIPs can be evaluated faster than the GAPs – also because a part of the 3B

GAP finding the trimers is not parallelised yet.
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2.7 Other softwares

The calculations with the developed potentials and the structure manipulations are

performed using the python packages: ASE [105] and quippy [9]. The Molpro software,

version 2012.1 [94], is used for all the quantum mechanical calculations of the thesis. It

is invoked by an interface to QUIP [9] written by A. Nichol and updated by Max D. Veit

and the author of the thesis to include more options.

The data was processed in Jupyter notebooks [138], and the graphs were made using

the Matplotlib [139] package. To show the error distributions of the fits on the "bubble

plots" (e.g. Fig. 2.3), the python tools of Max D. Veit were used (available at [132]). The

structures were visualised in the Ovito software [140].

The GenIce software [141,142] was used to generate hydrogen-disordered structures

for the ices and clathrates. The WebPlotDigitizer software [143] was applied to extract

data from published graphs. The thesis is written using a template provided by the

University of Cambridge [144].



Chapter 3

Comparison of different

potential-fitting methods

3.0.1 Author contribution details

This chapter is based on work done with collaborators for Ref. [5]. The GAPs were fitted

by the author of the thesis. Fig. 3.1 and Table 3.1 were made by the first author, Thuong

T. Nguyen, and are adapted from the paper [5].

3.1 Introduction

In the recent years, several methods have been developed to approximate the quantum

chemical potential energy surface by high dimensional fits. Amongst these methods,

different representations of the structures and different fitting techniques were used. In

this chapter, we report results of our study [5] in which we compared three popular

potential fitting methods by applying them to the same datasets: the Gaussian Ap-

proximation Potentials (GAP) [1], permutationally invariant polynomials (PIP) [3] and

Behler–Parinello neural networks (BPNN) [7]. This allows both a comparison of relative

accuracy of each method and provide further evidence that many-body expansion (MBE)

and data-driven techniques combined can create accurate potentials for water. For short
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descriptions of PIP and GAP, see the corresponding sections of Chapter 2. BPNN is

described by Behler and Parrinello in [7, 145], and a short description is in the paper [5].

3.2 Datasets of the paper

The fits for the comparison are performed on the two datasets that were used for the

development of the MB-pol model [4, 10] (briefly described in Section 2.5.1). However,

the 2B training set was modified by removing the structures having high binding energies

(above 60 kcal/mol (2.6 eV)) or larger than 6.5 Å OO distances [5]. The energies fitted

are coupled cluster–TTM4Fmod differences as described in Section 2.5.1. The datasets

were split to train (81 %), validation (9 %) and test (10 %) sets [5], and the best fits were

chosen according to their accuracy on the train and validation sets.

3.3 Parameters of the GAP fits

The 2B and 3B GAPs were both fitted according to the same strategy. The descriptors

used were double SOAPs where the atomic energies are calculated as sums of two

kernels with different cutoffs and smoothing parameters. (For a description of SOAP,

see Section 2.4.2.) The SOAPs building up the double SOAPs had cutoffs of 4.5 Å and

6.5 Å for the 2B, and 4.5 Å and 7.0 Å for the 3B fit. The smoothing parameters were

0.4 Å and 1.0 Å for the descriptors with the shorter and longer cutoffs, respectively. The

number of radial basis functions and the spherical harmonics basis band limit were both

set to 10. The 2B and 3B fits used 10000 and 9000 sparse points, respectively, chosen by

the CUR method [116] as implemented in QUIP. The exact parameters are given in the

supplementary material of the paper [5].

3.4 Results

All three fitting methods achieved high accuracy for the two datasets. As shown in

Table 3.1, the test RMSEs of the fits are of the same magnitude, and all of them are
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below 4 meV. According to the test RMSEs, the best fits for both terms were achieved

by PIP which used the same parameters as optimised for the MB-pol model earlier [4,10].

The values of GAP were only about 10 % higher, while BPNN’s values were about 60 %

and 35 % higher for the 2B and 3B fits, respectively. However, the 3B GAP fit overfitted

the train set very much: the train RMSE was only tenth of the test RMSE.

We also studied the errors of the models developed with the different techniques on

small water clusters. As shown in Fig. 3.1, all the methods achieved accuracies within

0.3 kcal/mol (13.01 meV) for the summed 2B and 3B energies. Dividing by the number of

molecules in the clusters, this value is within 2.2 meV / H2O for all the structures. Note

that although the 3B GAP seemed to overfit the train set, it performs well for these

clusters, having lower errors than the other two methods.

As for the computational time required for the fitting, which is a one-time cost, all

the three fitting codes use parallelisation, so were ready in several hours [5]. The fits were

done on different computing facilities, so we only provide rough comparisons here. The

PIPs required about third of the CPU hours of the time of the GAPs – GAP required

150 and 64 CPU hours for the 2B and 3B fits, respectively [5]. The BPNN code was run

on GPUs, and was ready within 3 and 1 hours for the 2B and 3B fits, respectively [5].

In this paper [5], we did not study the cost of evaluation – this cost would also depend

on how fast the methods collect the dimer and trimer structures of the larger systems,

how many basis functions are used for a fit, and how large minimum cell sizes the models

require.

Table 3.1 RMSE (in kcal/mol) per isomer on the provided training, validation, and test
sets in the PIP, BPNN, and GAP short range interaction two-body (2B) and three-body
(3B) energy fitting. Reproduced from Nguyen, T. T. et al., J. Chem Phys 148(241725),
(2018), with the permission of AIP Publishing.

2B 3B
training validation test training validation test

PIP 0.0349 0.0449 0.0494 0.0262 0.0463 0.0465
BPNN 0.0493 0.0784 0.0792 0.0318 0.0658 0.0634
GAP 0.0176 0.0441 0.0539 0.0052 0.0514 0.0517
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In summary, this study shows that the three fitting methods can achieve similar

accuracies when applied to high-quality datasets which sample the configuration space

well. Thus, when building data-driven models, it is probably more important to choose

the underlying datasets carefully than to choose the fitting methods when choosing from

state-of-the-art techniques.

For future work, it would be interesting to test these techniques on datasets including

force data along with the energies. Including the forces would also reduce overfitting for

the 3B GAP. Also, fitting in two steps, the first on the MP2 level including the forces and

the second on the coupled cluster–MP2 differences, could be tested. Moreover, testing

how well they extrapolate to structures outside the geometry space of the train set would

be useful for applications. Finally, comparing the data efficiency of the techniques would

also be important for future projects fitting potentials.

Fig. 3.1 Errors (in kcal/mol) in the 2B and 3B interaction energies calculated with PIP,
BPNN, and GAP short-range potentials with respect to reference CCSD(T) values for
water clusters (H2O)n, n = 4, 5, 6. Reproduced with permission from Nguyen, T. T. et al,
J. Chem. Phys. 148(241725), (2018), with the permission of AIP Publishing.
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3.5 Other comparative studies in the literature

Another study comparing neural networks and Gaussian Processes (GP) by Kamath et

al. [146] fitting the PES of the formaldehyde monomer (H2CO) was published in the same

issue of J. Chem. Phys. as our study. They used the same descriptors of distances and

angles for both methods and found that the GP performed better than the NN [146].

Qu et al. [122] compared PIPs, their version of GP, and PIP–GP, which is a permu-

tationally invariant GP, on small molecules. Note that GAP also has permutationally

invariant descriptors. They found the methods to perform very well, PIP-GP achieving

the highest accuracy [122].

In the last year, Käser et al. [147] compared three other potential energy fitting

techniques also on the example of a formaldehyde monomer, including the forces in the

training data. They studied a method based on neural networks and two versions of

kernel-ridge regression [147]. Their study also found that all the three techniques achieved

high accuracy, the kernel-ridge methods being more accurate and better at extrapolation

than the neural networks [147].

Obviously, the performance of the methods depends on the choice of descriptors,

implementations of the techniques, the systems studied and the quality and size of the

datasets, so it is worth testing various techniques and chemical species in the future.





Chapter 4

Static energy calculations for small

clusters

4.1 The reference quantum chemical method: DMC

As the target quantum chemical method of the developed models, CCSD(T)-F12, has

high computational cost and size restrictions, we compare our results to DMC (diffusion

quantum Monte Carlo) energies for larger clusters. DMC is a version of QMC (quantum

Monte Carlo) which is a stochastic wave function based method. It scales as N3 [148,149]

with a large prefactor, so it is applicable to periodic systems.

DMC and coupled cluster have been thought to be comparable as in principle both the

methods converge to the solution of the Schrödinger equation in the Born–Oppenheimer

approximation [150, 151]; however, there are small differences between the energy results

of these methods [98, 150, 152]. The selected settings affect the results of both the

coupled cluster (where the options include basis sets, counterpoise correction, basis

set extrapolation, using different variants of F12 or not using it at all) [91] and the

DMC (where the options include fixed node approximation, finite time step, choice of

pseudopotentials, modifications to Green’s function) [98, 153]. Zen et al. [153] studied the

size consistency of DMC and suggested a new modification to the Green’s function to

decrease the size consistency errors for large time steps. They showed that with a time
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step of 0.005 a.u., the error can be as much as 20 meV for the methane–water dimer [153],

which error was reduced when using their modification. The same time step was used

by [154] which we compare the developed models and variants of the coupled cluster

method to in Section 4.3; however, as tested in the paper [154], changing the time step

to 0.002 a.u. only causes differences up to 8.16 meV per monomer, which is less than half

of the above error. (This difference between the two papers is probably due to different

other setting choices and different geometries.) The improvement of Zen et al. [153]

regarding the modification of the Green’s function was also used in the newer ice DMC

results [155] that we compare our results to in Section 5.2.1.

In this chapter, the water clusters and the methane–water clusters studied are from

Alfè et al. [156,157] and Gillan et al. [154], respectively; all downloaded from Dario Alfè’s

website [158]. The structures are indexed starting from 0 (python indexing) using the

order of the downloaded files. After showing that the developed models and the fitted

quantum chemical level differ systematically from DMC, we also compare other versions

of CCSD(T)-F12 to DMC in Section 4.3.1.

4.2 Water clusters

The developed models are compared to the DMC results on the compressed water clusters

of Alfè et al. [156, 157], which were sampled from molecular dynamics (MD) simulations

of the clusters in Ref. [156]. The 1B, 2B and 3B energies of the first ten nonamers are also

calculated with the fitted levels: MP2 and CCSD(T)-F12. (These quantum mechanical

calculations were performed by the author for her Master’s thesis [159].)

For the first ten nonamers, both MB-pol and TTM4Fmod+GAPs are more negative

than DMC, as shown in Fig. 4.1a. Sometimes this difference is within the error bars for

the GAP model, but mostly it is larger than the error bars. The fitted level, CCSD(T)-

F12a/AVTZ is also more negative than DMC, and the GAP–CCSD(T)-F12/AVTZ

differences are smaller than the predicted error bars of GAP, so the GAP–DMC dif-

ferences might be consequences of the fitted level differing from DMC. Interestingly,
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MP2/AVTZ seems to be systematically more positive than DMC, and the MP2/AVQZ–

DMC differences are smaller and have both signs. Looking at all the 100 nonamers with

the developed models in Fig. 4.1b, TTM4Fmod+GAPs is still always more negative than

DMC. However, MB-pol is mostly negative for the structures having DMC energies lower

than −0.1 eV / H2O but its errors have both signs for structures having DMC energies

above this value. The average errors (with the mean absolute errors in parenthesis) are

−12.75 meV (12.80 meV) and −3.264 meV (7.880 meV) per H2O for the GAP model and

MB-pol, respectively. However, as shown in Table 4.1, the errors are much larger for

both models for the structures with DMC energies larger than −0.1 eV / H2O.
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Fig. 4.1 The total energy differences from DMC using different methods on the compressed
water nonamers shown with respect to the DMC energies. a) shows the first 10 structures
including quantum chemical calculations summing up the different body-terms up to the
3B terms (note: the lines are only to guide the eye) and b) shows all the structures using
the studied data-driven models.

Average errors [meV] structures 0–9 all structures EDMC < −0.1 eV EDMC > −0.1 eV
TTM4Fmod+GAPs −6.256 −12.75 −8.661 −23.80
MB-pol −7.773 3.264 −5.580 3.000
MAE [meV] structures 0–9 all structures EDMC < −0.1 eV EDMC > −0.1 eV
TTM4Fmod+GAPs 6.256 12.80 8.729 23.80
MB-pol 7.773 7.880 6.635 11.25

Table 4.1 Average errors and mean absolute errors (MAE) for the 100 nonamers and for a
split based on whether the DMC energy is lower or higher than −0.1 eV / H2O, resulting
in 73 and 27 structures in each group, respectively.
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Fig. 4.2 Many-body expansion of the energy of water nonamers number 0 and 4. These
structures were the ones that had the largest differences from DMC using MB-pol from the
first ten structures (and largest and third largest differences using TTM4Fmod+GAPs).
The DMC energies are −0.2922 and −0.2811 eV/ H2O. a) shows the summed 1B, 2B
and 3B terms of the total energy, "diff from DMC" is the difference of the total energy
from the DMC energy; and b) shows the differences from CCSD(T)-F12a/AVTZ in the
summed 1B, 2B and 3B energies using different methods.
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Fig. 4.3 The total energy differences from DMC using the TTM4Fmod+GAPs and
MB-pol models on the larger compressed water clusters of Ref. [156] shown with respect
to the DMC energies.

Looking at the many-body expansion of the energy of the two nonamers having the

largest DMC–MB-pol differences from the first ten structures in Fig. 4.2, we see that

both the summed 2B and 3B terms of the developed models agree with CCSD(T)-F12 to
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within about 2 meV / H2O accuracy, while the total differences from DMC are higher than

10 meV / H2O. Note that the 1B energies also have differences from CCSD(T)-F12a/AVTZ

of about 2 meV / H2O but this is because the Partridge–Schwenke 1B term included in

the model is fitted on a quantum chemistry method that has higher accuracy than

CCSD(T)-F12a/AVTZ [130].

For larger structures, similar trends to Fig. 4.1b can be seen in Fig. 4.3. Both the

data-driven models are generally more negative than DMC for low energies, lower than

−0.10 eV / H2O for the pentadecamers (15-mers) and lower than −0.15 eV / H2O for the

icosiheptamers (27-mers). The absolute errors are higher for both models at the more

positive DMC energies. While TTM4Fmod+GAPs still has negative differences, MB-pol

has differences of both signs.

4.3 Methane-in-water clusters

The methane–water interaction energies of the models are compared to DMC results on

the methane-in-water structures (CH4(H2O)x) of Gillan et al. [154] (downloaded from

[158]). They sampled the methane-in-water configurations from a MD simulation using

rigid molecules [154]. Firstly, a CH4 molecule that did not have any CH4 molecule

neighbours within 7.5 Å was randomly selected, and the closest x H2O molecules were

chosen according to the CO distances [154]. Gillan et al. [154] calculated the DMC

methane–water binding energies as differences between the original structure and an

"unbound" structure where the methane molecule is displaced along the x coordinate

by 10.58 Å [160] assuming that the interaction energy between the methane molecule

and the water cage is negligible at this distance [154]. However, as shown in Fig. 4.4a,

there are CO distances as short as 6.0 Å in the "unbound" structures, so the assumption

of having negligible methane–water interactions might be questionable. To compare to

the paper’s DMC energies, we also calculated the energy differences between these two

structures with the developed models.
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methane molecule is displaced along the x co-
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the developed models were calculated for all
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structures shown in Fig. 4.6 (2 structures for
x = 5, 10, 15 and 1 structure for x = 20).

Fig. 4.4

Another possible source of error, in this case mentioned by the authors [154], is that

using a smaller time step for the DMC calculations would cause differences in the results

for the CH4(H2O)10 clusters of between 5.44–8.16 meV, which would lie within the error

bars of DMC [154].

In Figures 4.4b, 4.5, 4.6, different methods are compared to the DMC methane–water

interaction energy. For the quantum mechanical methods and the GAP model, the energy

of the structures is calculated as the sum of the methane–water 2B and methane–water–

water 3B energies. For the two MB-nrg versions, the electrostatic baseline includes the

methane–water interactions as well, so the energy is the total energy calculated by the

models. In both cases, we calculate the interaction energies as the differences between the

original and the "unbound" structures. The methane–water 2B and methane–water–water

3B energies are also shown in Fig. 4.6 to compare the different methods. As the goal

was to see where the differences come from, the quantum chemical calculations were

performed on the clusters for which the differences between the initial GAP-predictions
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and DMC were largest. (Note: some of the CCSD(T)-F12 2B and 3B calculations for

the smaller clusters were performed for the Master thesis of the author [159].)
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Fig. 4.5 The difference in the methane–water binding energy between the developed
models and DMC w.r.t. the DMC values in the CH4(H2O)x clusters.

In Fig. 4.5, we can see that the energies of the developed models are mostly more

negative than the DMC energies. Figures 4.5a, 4.5b show the results using the models

without the 3B methane–water–water fit, which models show poorer agreement with

DMC than the models including this fit. Showing the average energy differences in

Fig. 4.4b, the differences from DMC increase with the size of the structures and this is in

agreement with the behaviour of the CCSD(T)-F12a/AVTZ energies (where calculated,

see caption of figure), calculated as a sum of the many-body terms up to the 3B level.

Interestingly, MP2/AVTZ has different errors: for x = 5 and x = 10, it is more positive
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Fig. 4.6 Many-body expansion of the methane–water binding energy for seven of the
CH4(H2O)x 5,10,15,20 clusters (indices shown in the graph titles). The sum of the 2B
and 3B energies are shown with MP2, CCSD(T)-F12a and CCSD(T)-F12b using the
AVTZ basis set and with the MB-nrg and GAP models using different amounts of the
fitted corrections. The "diff from DMC" is the difference of the total binding energy
from the DMC value (this is approximated using the sum of the 2B and 3B terms for
CCSD(T)-F12 and MP2). The blue error bars are the error bars of the GAP models
(calculated from the test set RMSEs) and the red error bars are the error bars of the
DMC results.
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than DMC but for the larger structures it is within the error bars of DMC. Comparing

the summed 2B and 3B energies of MP2 and CCSD(T)-F12 in Fig. 4.6, it seems that

the differences between their energies are mostly due to the large differences in the 2B

energies: these are always more positive for MP2 than for CCSD(T)-F12. The 3B energies

of MP2 and CCSD(T)-F12 also differ (in the other direction) but those differences are

much smaller – maybe because the absolute 3B energies are smaller, too.

Looking at the clusters studied in Fig. 4.6, the sum of the 2B and 3B GAP energies

by the TTM4Fmod+GAPs (shown with green) are close to the CCSD(T)-F12a/AVTZ

values. Also, the summed MB-nrg 2B energies are close to the CCSD(T)-F12 values,

while the summed 3B terms of MB-nrg are close to its fitted MP2 level. For these seven

structures, the MP2 3B terms seem to be always more negative than CCSD(T)-F12,

which explains why the MB-nrg energies have larger negative energy differences from

DMC than the GAP model. However, it is still a smaller error for most of the structures

than the error of the original MB-nrg, which did not have the 3B methane–water–water

correction fit (shown with orange). It would be interesting for future work to add a 3B

term to MB-nrg fitted on the coupled cluster level, too. For comparison, a GAP version

without the 3B CCSD(T)-F12–MP2 correction is also shown (with red) which has only a

3B term fitted on the same MP2 dataset as the 3B PIP of MB-nrg. As expected, this

GAP version has similar summed 3B energies as the original MB-nrg version.

4.3.1 Benchmark quantum chemistry calculations

A CH4(H2O)5 cluster

As there seemed to be a systematic difference between the fitted quantum chemistry and

DMC, we also performed benchmark calculations with other versions of the MP2 and

coupled cluster methods.

Fig. 4.7a shows the many-body expansion of the methane–water interaction energy

in the CH4(H2O)5 cluster (number four) up to the 4B level calculated by the MP2,

MP2-F12, CCSD(T)-F12a/b methods with AVDZ and AVTZ basis sets. Fig. 4.7b also
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shows the many-body expansion for CCSD(T)-F12 using the VXZ-F12 basis sets and

the CCSD(T*)-F12a which scales the triples energy contribution using the MP2-F12

calculation (automatically by Molpro [94]). While the summed 2B energies differ when

changing AVXZ to VXZ-F12, the summed 3B energies are very similar. Also, the 4B

energies are very small with all the methods where calculated, so the differences from

DMC are not due to truncating the many-body expansion at the 3B level. As shown

in Fig. 4.6, the CCSD(T)-F12a–DMC difference is about −20 meV for the CH4(H2O)5

cluster, so a method that is comparable to DMC would be 20 meV more positive than

CCSD(T)-F12a/AVTZ. The CCSD(T)-F12a calculations using the less accurate double

zeta basis sets have the largest differences from CCSD(T)-F12a/AVTZ, with the CCSD(T)-

F12a/VDZ-F12 result having almost that much difference. All the other studied coupled

cluster results are within 5 meV of the CCSD(T)-F12a/AVTZ result, so they are still

at least 15 meV more negative than DMC. According to these tests, it seems that the

CCSD(T)-F12 and DMC significantly differ when using at least triple zeta basis sets.

Looking at the less accurate MP2 results in Fig. 4.7a, we see a large variety in the

summed 2B energies. The MP2-F12 2B values are closer to the CCSD(T)-F12 values

than MP2, though they are still positive while the CCSD(T)-F12 values are negative.
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Fig. 4.7 Many-body expansion of the methane–water binding energy for one CH4(H2O)5
cluster including the 4B terms that are found to be very small using different quantum
chemical methods with the AVXZ and VXZ-F12 basis sets.
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Methane–water dimers

To examine the coupled cluster–DMC differences in more detail, we compare the 2B

energy of the different quantum chemical methods on the (CH4)(H2O) dimers of Gillan

et al. [154]. These dimers were sampled from a high-temperature MD using DFT, and

the monomers were modified to their equilibrium gas phase geometries [154]. Different

versions of coupled cluster are tested against DMC along with the one used in the datasets:

CCSD(T)-F12a/AVTZ with the counterpoise (CP) correction, and we find that there

seems to be a systematic negative difference for most of the coupled cluster methods

except for the ones with the lowest accuracy.
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Fig. 4.8 Coupled cluster–DMC 2B energy differences w.r.t. the carbon–oxygen distance
of the methane–water dimers (100 configurations from Ref. [154]) using different coupled
cluster settings. The dashed lines show the average differences.

The DMC 2B energies were calculated [154] by subtracting the energies of the isolated

monomers from the total energy. Here, unless noted otherwise, the 2B energies are

calculated with the CP correction to correct the basis set superposition error (BSSE)

(see Section 2.2.2). Note that this is what the original paper [154] did when comparing

different quantum chemistry methods to DMC, too. Using the CP correction causes large

differences in the monomer energies which are subtracted to achieve the 2B energies:

with the CCSD(T)-F12a/AVTZ method, the maximum differences between the monomer

energies using extended basis sets (of the CP approximation) and the monomer basis

sets are 4.6 meV and 1.3 meV for H2O and CH4, respectively. When not using the CP
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correction, the CCSD(T)-F12a/AVTZ results will have even larger differences from DMC

than the version using it has (see Fig. 4.8a).

Testing different coupled cluster methods using the AVTZ basis set in Fig. 4.8a, the

energies are almost always more negative than DMC except for the not so accurate

CCSD(T). Fig. 4.8b shows that CCSD(T)-F12a/AVXZ is systematically more negative

in the methane–water 2B energy when using larger than double zeta basis sets. Using the

VXZ-F12 basis sets would only change little on these differences (as shown in Fig. 4.9c);

and indeed, the average differences from DMC would still be negative for larger than

double zeta basis sets: −0.21 meV and −0.52 meV for the VTZ-F12 and VQZ-F12 basis

sets, respectively.

Improving the basis set from AVTZ to AVQZ would cause smaller than 1 meV

differences per dimer as shown in Fig. 4.9b. With the AVTZ basis set, the Molpro

manual [94] suggests using the CCSD(T)-F12a version, but we also show the differences

between using the -F12a or -F12b varieties of the method in Fig. 4.9a, and the differences

for AVTZ are mostly smaller than 1.5 meV for this change, too.



4.3 Methane-in-water clusters 59

3 4 5 6 7
RCO [Å]

0.004

0.003

0.002

0.001

0.000

E
[e

V]

E2B, CCSD(T) F12a CCSD(T) F12b

AVDZ
AVTZ
AVQZ

(a)

3 4 5 6 7
RCO [Å]

0.000

0.002

0.004

0.006

0.008

E
[e

V]

E2B, CCSD(T) F12a
AVDZ - AVQZ
AVTZ - AVQZ
VDZ-F12 - VQZ-F12
VTZ-F12 - VQZ-F12

(b)

3 4 5 6 7
RCO [Å]

0.002

0.001

0.000

E
[e

V]

E2B, CCSD(T) F12a

AVDZ - VDZ-F12
AVTZ - VTZ-F12
AVQZ - VQZ-F12

(c)

Fig. 4.9 Energy differences between using different CCSD(T)-F12 settings w.r.t. the
carbon–oxygen distance of the methane–water dimers (100 configurations from Ref. [154]).
a) shows CCSD(T)-F12a–CCSD(T)-F12b differences using AVXZ basis sets, b) shows
CCSD(T)-F12a differences between using XZ or QZ basis sets and c) shows differences
between using AVXZ and VXZ-F12 basis sets.





Chapter 5

Properties of periodic systems

5.1 Methods

5.1.1 Generation of hydrogen-disordered structures

The GenIce software [141,142] is used to generate hydrogen-disordered structures for the

ices: Ih, VI, VII, VIII and XI; and the clathrates: structure I (sI), structure II (sII),

structure III (sIII), structure IV (sIV), structure VII (sVII), hexagonal structures (sH),

filled ice C0 (c0te) [161], hydrogen-ordered hydrate C1 / filled ice II (c1te) [161], filled

ice Ic / C2 (c2te) [161]. We chose the structures which are known to exist for methane

clathrate. Also, we included some other structures to test if the model finds any of them

more stable than the known structures.

The sH structure has three different cages: 512, 435663, 51268, and we studied five

different fillings. (As explained in Section 1.4, 435663 stands for a cage having three

tetragonal, six pentagonal and three hexagonal faces.) As the largest cage, 51268, is

thought to be too large for one CH4 molecule [43] and different numbers of methanes

have been suggested for this cage [41, 42, 47, 52, 61, 66–69], we tested having 0, 1, 2

and 3 methane molecules in it, named as "sH_v2", "sH_full", "sH_L2" and "sH_L3",

respectively. Additionally, we tested the structure where only the 512 cage was filled

("sH"). The structures having only empty or singly filled cages were generated by GenIce:
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sH, sH_v2 and sH_full. To create initial geometries for the structures with multiply

occupied large cages, we modified the fully occupied structure. For the doubly-occupied

large cage (sH_L2), we placed a methane-dimer (having 3.0 Å CC distance) on the

position of the CH4 molecule’s C atom. For the triply-occupied large cage (sH_L3), we

placed a methane-trimer on the same position having 2.5 Å CC distances along the x

axis.

We used the random seed 0 for the hydrogen orientations, but we also tested how large

errors this can lead to. Structures generated using different random seeds were geometry

optimised for the Ih, VI and sII structures, and we looked at how large the differences

are between the lowest enthalpy structure and the one generated with the 0 random

seed. For the ices Ih and VI, the most stable structures amongst the 1–20 configurations

have enthalpies 5.9 meV / H2O and 2.3 meV / H2O lower than the structures using the 0

random seed. Amongst the 1–9 random orientations for sII, the lowest enthalpy is only

0.43 meV / H2O lower than the enthalpy of the structure generated with the 0 random

seed. Using the hydrogen orientations having the lowest enthalpies would probably

improve the accuracy of the results; however, it would need much more computational

time to minimise all the structures starting from different random seeds. (One might

also consider looking at the different random seed configurations at various pressures

to see if the same orientation is appropriate there.) Using the lowest Gibbs free energy

structures would need even more computer time as the quasi-harmonic calculations have

high computational cost.

5.1.2 Structures from other sources

The filled ice Ih (fIIh) structure is from the Supporting Information of Ref. [161]. We

also studied the MH-IV structure which is from the data of Cao et al. [60]’s Supporting

Information. Note: for their MH-V structure, the angle information was missing in the

Supporting Information; however, the formation enthalpies for this phase are positive (as

calculated by the same group in [61]), so it is unlikely to appear in the phase diagram.

Their MH-VI structure [61] was not orthogonal, so was left out from this study.
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The structural data for the sK (also called: HSI) clathrate of [58] missed two oxygen

atoms in the paper’s Supporting Information and the original structure was not available

at the time of this study. However, the sIV / HS1 clathrate of GenIce [142] seems to be

equivalent with this structure.

The structures for the DMC comparisons are from the studies of Santra et al. [162]

and Raza et al. [163] for the ices, and from Cox et al.’s paper [81] for the sI clathrate

(the structures of the DMC calculations of [81] were not available, so we use the ones

provided by Stephen J. Cox [164], see details in Section 5.3.1).

5.1.3 Geometry optimisation

The structure optimisation was done in ase [105] using preconditioned optimiser meth-

ods [165]: PreconFIRE and PreconLBFGS. (The un-preconditioned FIRE and LBFGS

methods are described in [166] and [167].) When the structures were far from the

equilibrium, the PreconFIRE method was run, then the PreconLBFGS was run firstly

with the Armijo and then with the Wolfe line search methods. The optimisations were

run using variable cells with the cells kept orthogonal because the earlier version of the

MBX software did not have non-orthogonal cells. The optimisations were performed

changing the pressures gradually, each starting from the structure of the previous step.

5.1.4 Quasi-harmonic approximation

Phonon calculations are performed using the phonopy software of Togo and Tanaka [168,

169] on the geometry-optimised structures. In phonopy, the phonon free energies are

calculated in the harmonic approximation using the finite displacement method.

In the harmonic approximation, the free energy of the system is approximated as [168]:

F (T, V ) = U(V ) + Fphonon(T, V ) (5.1)
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Fig. 5.1 Illustrating the fit according to Eq. 5.4. The red stars show the minimum Gibbs
free energy (G) at the corresponding volume (V ) for the given pressure and temperature.
When the minimum of the curve is outside the calculated range, the T, p condition is
considered to be outside the validity range, such as the 3 GPa fit for the sI phase. Each
G(T, p) point is determined by a separate fit.

Phonopy does not account for the entropy of mixing, so it is added as:

∆Smix = −kBNA
∑

i

ni ln(xi) (5.2)

where kB is the Boltzmann constant, NA is the Avogadro constant, i runs over the

different species (CH4 and H2O), ni is the amount of the given species and xi is the

corresponding mole fraction.

Then the free energy is:

F (T, V ) = U(V ) + Fphonon(T, V ) − T∆Smix (5.3)

In the quasi-harmonic approximation (QHA), the Gibbs free energy is calculated by

transforming the (T, V ) variables to the (T, p) variables [168]:

G(T, p) = minV (F (T, V ) + p · V ) (5.4)

To determine the Gibbs free energy and the corresponding volume according to this

transformation, we fitted the a · (V − V0)2 + c equation to the (F (T, V ) + p · V ), V curves
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at different temperatures and pressures (see Fig. 5.1). To include the curves’ minima

within the fitted data, we needed to add calculations for structures geometry-optimised

at negative pressures (−0.5 GPa, sometimes −1.0 GPa) and sometimes at pressures

higher than the target pressure of the calculations (4.0 GPa). The pressures for the

geometry-optimised structures for the quasi-harmonic calculations are spaced by 0.5 GPa.

Due to the calculated data, our predictions’ upper pressure limit is 2.0 GPa for most

of the structures. As shown in Fig. 5.1, the validity for the pressure range is decided by

whether a point is within the range of the data included in the curve fitting. This means

there are predictions for these pressures but as they are outside the calculated data, their

accuracy is lower. For the temperatures up to 135 K, the limit of validity for the QHA is

2 GPa for the ices Ih and XI. It is also 2 GPa for all the clathrates, except for sH_L2, fIIh,

MH-IV and c1te, the limit for these structures is 3.0 GPa. At 0 K, the limit is slightly

lower, 1.9 GPa for sII, sH, sH_v2, sH_full, sIII, sIV and c2te. Additionally, for sVII, it

is even lower, 1.8 GPa, even when including calculations optimised at 4.0 GPa. However,

these phases are not predicted to exist in the QHA (see Fig. 5.5a), so the lower accuracy

does not cause any issues. As all the phases that appear in the phase diagrams have

validity limits of at least 2.0 GPa, we will use this limit for the predicted phase diagrams.

This validity range could be widened in future work by including more calculations;

however, the current version of the studied potential has also lower accuracy at high

pressures.

All the calculations were run using a phonopy supercell 1x1x1 because the phonopy

software would reorder the atoms of the structure within itself when building larger

supercells, which would cause problems in running the MB-nrg calculations through the

MBX software. (MBX needs to have the atoms grouped according to the molecules in a

specified order.) Thus, the unit cells contained at least 12 molecules for the clathrates

(fIIh having the smallest cell) and 16 molecules for the ices (Ih and XI having the smallest

cells). For the finite displacement, the atoms were displaced by 0.02 Å.

Note that the QHA assumes that the molecules only vibrate about their equilibrium

positions. As the methane molecule in the hexagonal clathrate’s largest cage behaves as



66 Properties of periodic systems

a quasi-rotor when singly filled even below 40 K [42], this approximation might not work

well for the sH_full structure. Moreover, this approximation is supposed to be valid only

up to 1/2–2/3 of the melting temperature [170–172]. The decomposition temperatures are

between 300–323 K depending on the pressure for sI [173], around 323 K for the hexagonal

phase [173], and between 340–400 K [174] at the studied pressures for fIIh. Thus, the

validity limit of the QHA might be between 150–160 K for sI, 160 K for the hexagonal

clathrate, and between 170–200 K for fIIh. For the reference ices which are used to adjust

the methane-to-water ratios, this temperature limit will be even lower: in the case of ice

Ih, around 135 K at ambient pressure.

5.2 Ices

5.2.1 Comparison to DMC results

The interaction energies of the developed models are compared to DMC energies on the

ice structures Ih [162], VIII [162], XIc [163] and XIh [163], downloaded from D. Alfè’s

website [158]. The DMC technology has been improved in recent years by Zen et

al. [153,155], so we include their DMC results too for the structures calculated (they used

the same geometries as Santra et al. [162]). Zen et al. [155] presented two DMC results,

and we chose to use the more accurate ones, which used large supercells. The differences

between the old and new DMC versions for the ices Ih and VIII are higher than the error

bars of the DMC calculations (the difference being greater than 25 meV / H2O for ice

VIII), so the earlier results of [163] for the ices XIh and XIc could possibly be improved,

too.

The TTM4Fmod+GAPs model is almost always more positive than DMC, being

within the sum of the error bars of GAP and DMC for the earlier results of the ices Ih,

VIII and XIh, but having a larger error for ice XIc. TTM4Fmod+GAPs and MB-pol

are close to each other for the first three structures, but not for ice XIc, where the GAP

model has a larger difference from the DMC value. MB-pol is mostly closer to DMC

than GAP, except for the earlier DMC result for ice VIII, where GAP is very close to
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the DMC result. Interestingly, both the data-driven models have higher errors (about

20–25 meV/H2O) compared to the two newer DMC values.

method Ih VIII XIh XIc
DMC [162,163] −0.5960 ± 0.0050 −0.5670 ± 0.0040 −0.5890 ± 0.0040 −0.5950 ± 0.0040
DMC [155] −0.6146 ± 0.0052 −0.5939 ± 0.0062 - -
experiment [162] * −0.6100 −0.5770 - -
experiment [155] * −0.6094 −0.5949 - -
TTMF4mod+GAPs −0.5894 ± 0.0059 −0.5668 ± 0.0158 −0.5711 ± 0.0103 −0.5517 ± 0.0105
MB-pol −0.5938 −0.5730 −0.5863 −0.5840

Table 5.1 Ice interaction energies (in eV). The DMC energies are from [155,162, 163]; for
the earlier version of DMC, the ices Ih and VIII are from [162] and XIc and XIh are from
[163]. The earlier DMC values are taken from the xyz files published on the website [158].
The updated values are from [155]. *For the experimental values of Ih and VIII, we show
the recalculated values with zero point effects removed from the experimental values of
[175] (by [162] and [155]). As explained in the Supporting Information of [155], there is
an uncertainty of ≥ 0.01 eV for their estimated value of VIII.

5.2.2 Ice densities

The densities (see Fig. 5.2a) are calculated from the volumes corresponding to the

minimum G in the QHA using MB-pol. Comparing to experimental data of Brill and

Tippe [176] (extracted from Fukusako [177]’s Fig. 4.), the predicted densities of the model

are about 2.5–5 % lower. The larger differences are at the higher temperatures, and this

is as expected because the QHA is only a good approximation up to about two thirds or

half of the melting temperature [170–172]. Up to 135 K, the densities are within 3.6 % of

the experimental data.

5.2.3 Phase diagram prediction

Studying the Ih, VI, VII, VIII and XI ice structures in the quasi-harmonic approximation

using MB-pol, the model predicts the ice XI to ice VIII phase transition at around

0.25 GPa (see Fig. 5.2b), which is between the experimental values for the XI–II and

XV–VIII transitions (0.08 GPa and 1.40 GPa for 50 K, and 0.09 and 1.46 GPa for 100 K,

as extracted from [179]). Ice XI is the proton-ordered pair of ice Ih [180], which is stable
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Fig. 5.2 Predictions for ice properties using MB-pol in the quasi-harmonic approximation.

at low temperatures (below 70 K). According to experiments, ice Ih is stable above

about 70 K [179]; however, predicting the proton-ordered pair of this ice is an acceptable

result. The predicted Gibbs free energy difference between ice Ih and ice XI is less than

5 meV / H2O above 150 K at 0.0 GPa with an ice XI to ice Ih phase transition predicted

around 273 K, and the maximum of the Ih–XI Gibbs free energy difference being around

6 meV below 150 K (see Fig. A.2). Note that this difference is of the same magnitude

as the enthalpy difference caused by using different random seeds for the hydrogen

orientations of Ih, 5.9 meV / H2O (see Section 5.1.1). We do not show temperatures above

270 K in the phase diagrams because the liquid water phase is not included in this study.

The experimental ice XI/Ih to ice VIII transition would also have two intermediate

phases: the ices II and VI or XV or β-XV at low temperatures [179]. We did not

include the ices II, XV and β-XV in these calculations which are only stable in small

areas of the experimental phase diagram, as the aim of these calculations was to create

reference phases for the clathrate phase diagram. (Ice XV is only the proton-ordered

pair of ice VI [180].) As noted above, the QHA only works well up to about half of the

melting temperature, so the results are not expected to be accurate above about 135 K

at atmospheric pressure.
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To improve the accuracy of this phase diagram, different hydrogen orientations should

be calculated for each structure. Additionally, to get predictions for the ices stable in

smaller areas of the phase diagram, the corresponding ices would need to be included in

the calculations. Running path integral molecular dynamics (PIMD) would improve the

predictions at high temperatures, and the liquid phase could be calculated, too.

5.3 Methane clathrates

5.3.1 Comparison to DMC on the sI clathrate

The developed models are compared to DMC results for the sI clathrate by Cox et al. [81].

The DMC values of [81] were calculated on the optPBE-vdW-optimised structures after

re-optimising them in Quantum Espresso [81, 164]; however, these original structures

were not available at the time of our study [181]. Thus, we performed the calculations on

the optPBE-vdW-optimised structures received from Stephen J. Cox [164]. The energies

are calculated as in Ref. [81], so the total cohesive energy is the total energy minus the

equilibrium monomer energies; the water cohesive energy is the total energy of the water

skeleton subtracting the equilibrium water monomer energies; finally, the methane–water

interaction energy is the difference between the energies of the full structure and the

water skeleton, with the energies of the equilibrium methane monomers subtracted [81].

For the water interactions in the clathrate (see Fig. 5.3a), both TTM4Fmod+GAPs

and MB-pol are about 10 meV / H2O more positive than DMC. This positive difference

is similar to the trend for the ices, where the developed models were also either more

positive than the DMC values or close to them (see Table 5.1).

As for the total interaction energy (shown in Fig. 5.3c), MB-nrg performs well, while

the TTM4Fmod+GAPs model has higher errors. Adding the 3B methane–water–water

term improves the MB-nrg result; however, the GAP model becomes more negative when

adding this 3B term. Moreover, the full TTM4Fmod+GAPs’ lattice constant is lower

than the one of DMC. The main difference between the two models is that MB-nrg has

the electrostatic baseline implemented for the methanes too. Moreover, MB-nrg also
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has a correction fit for the methane–methane interactions that the GAP model does

not include; however, the sum of this term only accounts for about −1.64 meV / H2O

molecules for MB-nrg (and −1.45 meV for TTM-nrg) at a = 11.4 Å, where the CH4

molecules are the closest to each other. The cutoff for the methane–water 2B correction

term is longer for the MB-nrg (9.0 Å) than for GAP (7.0 Å). Additionally, the target levels

of the methane–water 2B and 3B correction fits differ. The 2B corrections approximate

different versions of CCSD(T)-F12 (see Section 2.6). The difference between the 3B terms

of the two models is that TTM4Fmod+GAPs has the CCSD(T)-F12–MP2 correction

as well, while MB-nrg has only a correction targeting the MP2 level. Including the

CCSD(T)-F12–MP2 methane–water–water GAP decreases the total cohesive energy by

about 3–4 meV / H2O, which is only a small fraction of the GAP model–MB-nrg difference.

Interestingly, the force field (TTM-nrg) included in the MBX software also achieves

values very close to the ones of DMC.

Note that the experimental lattice constant, 11.77 ± 0.01 Å (measured at 5.2 K in

D2O) [182], is also smaller than DMC’s value, but the GAP model’s lattice constant is

even lower than this value. However, the TTM4Fmod+GAPs model being more negative

than DMC is in agreement with the results for small clusters in Figures 4.1, 4.4b.

Note also that this DMC result might also be improved by the method of A. Zen et

al. [153], who suggested a new modification to the Green’s function and thus, decreased

the time-step errors. The results of Ref. [155] using this modification for ices were

sometimes even 25 meV / H2O lower than the ones of the earlier DMC calculations of

Ref. [162].

Nevertheless, the reported results of the developed models are more accurate (when

compared to DMC) than those of the best performing DFT calculations of Ref. [81]’s Fig. 2,

where most of the DFT functionals had errors higher than 125 meV / H2O for the total

interaction energy, except PBE and revPBE-vdW. Additionally, some of the functionals

predict lattice constants below the experimental value, with errors between 2–7 % in the

case of LDA, PBE-D2, PBE-vdWTS, optB88-vdW and optB86b-vdW [81]. Moreover, as

explained in Ref. [81], the DFT functionals producing the seemingly best results are not
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Fig. 5.3 Comparing the developed models on different parts of the sI clathrate’s cohesive
energy to DMC benchmarks with respect to the lattice constant. Different parts of the
TTM4Fmod+GAPs model are shown: the model without the methane–water–water 3B
term is with cyan, and the model with only the MP2 fit for the methane–water–water 3B
term is with red. The MB-nrg is also shown without the 3B methane–water–water PIP
of this thesis, as published in [6] (orange). The TTM-nrg model [6] is also shown (with
magenta) which is the MB-pol model with the electrostatic interactions of TTM4Fmod
for the interactions involving methane molecules.
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accurate everywhere: although the cohesive energy of revPBE-vdW is close to DMC, it

predicts a higher lattice constant (12.077 Å), and has a too negative methane insertion

energy [81]. Also, PBE’s good result, being only about 10 meV / H2O more negative

than DMC, is due to cancellation of errors between the water–water and methane–water

interactions [81]. In the developed models, each term is fitted separately, so there is no

cancellation of errors between the different parts of the energy by construction.

5.3.2 Clathrate densities

The clathrate densities are studied in the QHA using the MB-nrg model (see Fig. 5.4).

The experimental densities are the values calculated from the experimental results of

Davidson et al. [182] for sI, from the results of Chou et al. [43] for sII and the hexagonal

structures, and recalculated by Cao et al. [60] from the results of Loveday et al. [45] for

the fIIh structure.
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Fig. 5.4 Predicted clathrate densities at 5 K and 293 K w.r.t. pressure. The experimental
densities (shown by x-s) are the values calculated from the lattice constant for sI by
Davidson et al. [182] that was result of a neutron diffraction study at 5.2 K and the
pressure was not specified; calculated from the volumes of Chou et al. [43] that used x-ray
spectroscopy at 298.15 K for sII and the hexagonal structure (where the methane:water
ratio was unspecified so we used the volume for all the versions of sH); and recalculated
by Cao et al. [60] from the neutron diffraction results of Loveday et al. [45], at room
temperature.
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We show calculations at 5 K and 293 K, but the temperature had mostly little effects

on the densities at the lower pressures in our calculations. The predictions are generally

close to the experimental values (within 2 %), except for the high-pressure structure,

fIIh, for which the predicted density is about 12 % higher than the experimental value

(comparing to results calculated at 5 K for sI, and at 293 K for the other structures).

Note that the large error for fIIh might be coming from being above the QHA validity

temperature (170 K) for the structure. These results suggest that while the MB-nrg

model combined with the QHA is very accurate at low pressures, it is less accurate at

higher pressures. This is also what we saw when optimising the fIIh structure, and the

model found holes before the addition of the switch function; a function which switches

back to the baseline model for structures with distorted monomers in them (see Section

2.5.1).

5.3.3 Phase diagram prediction

The phase diagram (shown in Fig. 5.5a) is predicted in the QHA using the full MB-nrg

model. The structures studied are: sI, sII, sH, sH_v2, sH_full, sH_L2, sH_L3, fIIh, sIII,

sIV, sVII, MH-IV, c0te, c1te and c2te. The most stable phase at the given conditions

is decided by which clathrate phase has the lowest Gibbs free energy per CH4(H2O)5.75

formula. This water-to-methane ratio is chosen to be the same as the one of the sI

clathrate because in the experimental phase diagram, this phase has the highest water

content. To achieve this constant ratio, we virtually complement the systems with the

ice stable at the given conditions (see Fig. 5.2b) by adding its Gibbs free energy in

the appropriate numbers. (From the studied structures, only the sH, sH_v2, sVII and

c1te have higher water-to-methane ratios, for which the Gibbs free energy of the ice is

subtracted.) We choose to look at the stability this way because then we only need to

have the reference ice phases and not the methane phases. For methane, the reference

phases would include the liquid, for which the free energy calculation would need a

different calculation method, path integral molecular dynamics (PIMD), which requires

longer computation time. Also, the accuracy of the water part of MB-nrg (MB-pol) has
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been tested more extensively than the accuracy of MB-nrg for methane as this model is

very recent. Moreover, while the model has the 3B correction term for water, it has only

correction terms up to 2B for pure methane, so its accuracy might not be sufficient when

going to phases where the methanes can get closer to each other than in the clathrates.

Comparing to the experimental phase diagram of Noguchi et al. [42] (see Fig. 5.5b),

which combined IR and Raman spectroscopy experiments, the predicted phase diagram

captures some aspects of the experimental results well: that sI is stable below 0.9 GPa,

and fIIh is stable above 2.0 GPa; however, it only predicts the hexagonal phase to be

stable in a small pressure range between them and with a higher methane content than

the experimental result [42], although this methane content agrees with the experimental

result of Tulk et al. [41]. According to the most recent experiments [42], the hexagonal

phase would be stable between 0.9–2.0 GPa with an increase in the methane content from

one to two in the large case at around 1.3 GPa. The MB-nrg model predicts the sI–sH_L3

transition at 0.9 GPa at 100 K (and around 1.3–1.4 GPa between 250–270 K), but already

predicts the fIIh phase to be more stable than the sH_L3 slightly above the transition

pressure. Missing the hexagonal phase almost completely might be partly explained by

the guest molecule being able to rotate in the large cage of sH_full [42], and rotations

are not accounted for in the QHA. Predicting the large cage of sH to contain three

methanes is an error probably due to the approximation, but the previous computational

papers also predicted three or more methane molecules for this cage [61,66–69], except

for a classical force field, the Murad–Gubbins model [66]. The current phase diagram

prediction agrees better with experiments than the previous computational prediction

by Huang et al. [61], which only agreed with the experimental results in finding the fIIh

structure at high pressures. Huang et al. [61] looked at enthalpies; interestingly, when

looking at the enthalpies per CH4(H2O)5.75 formula, the predictions using MB-nrg also

differ for the low pressures, predicting sII to be slightly more stable than sI (see Fig. A.1).

Moreover, the transition pressures between the phases are lower than when looking at

the Gibbs free energies. Predicting the sII phase is similar to Huang et al.’s results

who predicted the sK, sH_L3, MH-VI and fIIh phases to be stable with increasing the
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pressure [61]. Note: here, we did not include MH-VI and Huang et al. [61] did not include

sII; but sK is a transition phase between sI and sII. Thus, probably the results of Huang

et al. would also be different if calculating the Gibbs free energies.

To improve these results, one might need to include different hydrogen orientations

in the geometry optimisation and run the quasi-harmonic calculations on the structures

having the lowest energies. Of course, this would increase the computational cost.

Additionally, studying non-integer filling ratios might change these predictions but would

be even more computationally expensive. Including the ices which are stable only in small

areas of the water phase diagram might change the corresponding areas of this phase

diagram, too. Moreover, path integral molecular dynamics simulations could be run, this

technique includes quantum nuclear effects and is also reliable at higher temperatures

than the QHA. The accuracy at high pressures could be improved using more stable

correction terms, which are less likely to have holes. The stability of the PIPs could be

enhanced for example by using more robust monomials for all the PIPs, such as the ones

included in the methane–water–water 3B PIP [133]; using datasets which better represent

the distorted configurations; or including the forces in the fits might also help. Thus,

the model would not need to switch back to the baseline force field for structures having

high monomer energies, which occurred during the geometry optimisation process of

fIIh. Additionally, MB-nrg could be made more accurate and reliable for higher methane

concentrations by adding 3B correction terms which include more than one methane

molecule. Using a uniformly accurate target level for the different correction terms of

MB-nrg might also improve the results.



Chapter 6

Conclusions

This work has presented the first two many-body methane–water models which achieve

quantum mechanical accuracy, one developed fully in this project and the other improved

in collaboration. The models were built by adding data-driven correction terms to

classical force fields, correcting them to quantum chemical (mostly CCSD(T)-F12)

accuracy. The model developed fully in the project, TTM4Fmod+GAPs, used the

Gaussian Approximation Potentials (GAP) method for the fitting. The second model,

MB-nrg, was developed by Marc Riera et al. [6] using the the permutationally invariant

polynomials (PIP) method, and we added the 3B methane–water–water correction term

in collaboration with Marc Riera–Riambau and Francesco Paesani [133]. Note that the

water part of this model is the MB-pol [10].

While developing the TTM4Fmod+GAPs model, the geometrical representations

of the structures were changed to use an inverse distance descriptor with a distance

shift which made the fits more accurate. In addition, the datasets were complemented

to better represent the geometry space, and also recalculated at a uniform quantum

chemical level to make the target level of the fits consistent. One of these datasets was

also used for adding the 3B methane–water–water term to the MB-nrg model.

The two models were tested against DMC results, and they achieved similarly good

accuracies for small molecular clusters, but the PIP model (MB-pol/MB-nrg) was found

to be more accurate for periodic systems. While benchmarking quantum mechanics on
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small clusters, we demonstrated that there is an inconsistency between CCSD(T)-F12

and DMC. The difference between CCSD(T)-F12 and DMC was found to increase with

system size (see Fig. 4.4b), and thus might be even larger for periodic systems. DMC

is currently being improved (e.g. [153]), so it might provide more useful benchmarks

in the future. However, in the light of our findings, comparing data-driven models to

earlier DMC results might not be the best way to verify their accuracy. In the future, it

would be interesting to check which CCSD(T)-F12 settings would be comparable with

the improved DMC technique.

The complemented MB-nrg model has several advantages over the GAP model.

Firstly, it is faster. Secondly, its electrostatic baseline also includes methane molecules.

Moreover, it has a methane–methane 2B correction term, so it is applicable to systems

with higher methane concentrations. However, for distorted configurations, it was found

to be necessary to switch to the baseline force field in order to avoid holes in the correction

terms, which might cause lower accuracy at high pressures.

Results of the faster model, MB-pol/MB-nrg, were also compared to experimental

results. In the quasi-harmonic approximation (QHA), the predicted densities of the ice Ih

and the clathrates sI, sII and hexagonal structure were within 3.6 % of the experimental

data, while the high-pressure value for fIIh was about 12 % higher than the experimental

value; however, the temperature for this experiment was above the estimated validity

limit of QHA for fIIh. Thus, the MB-pol/MB-nrg model combined with the QHA is

expected to be very accurate at low pressures and less accurate at higher pressures.

Phase diagram calculations were also performed in the QHA using the MB-pol/MB-

nrg model. As the aim was to determine the clathrate phase diagram, only the more

important ice phases were included. The model predicted the proton-ordered pair of

ice Ih: ice XI instead of the Ih phase, but it captured the XI-to-VIII transition at a

pressure between the experimental values for the XI–II and XV–VIII transitions. For

the clathrate phase diagram, the phases sI and fIIh were predicted to be stable with a

phase transition around 1 GPa, while the hexagonal phase was predicted to be stable in

a very small region. This is only in qualitative agreement with the experiments. These
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results could possibly be improved by running path integral molecular dynamics (PIMD)

simulations, calculating structures with different hydrogen orientations and with various

cage-filling ratios, and adding 3B correction terms including more than one methane

molecules.

In collaboration [5], we also compared three popular potential energy fitting methods:

GAP, PIP and the Behler–Parinello neural networks (BPNN), for which the author of

the thesis optimised the GAP fits. We found that the three methods are able to fit the

same water 2B and 3B datasets with the corresponding energies with similarly high

accuracy; this suggests that when having high-quality datasets, any of these methods can

be applied. It would also be interesting to compare the accuracies of the different fitting

methods on datasets that also include the forces along with the energies. The results of

this collaboration [5] also suggest that changing the GAP to PIP in this project probably

does not affect the results much. Of course, the other differences, for example having

different datasets with different target levels, having the baseline force field implemented

for both molecules and having the 2B methane–methane term fitted, change the results.

In future work, the phase diagrams could be improved by running PIMD simulations,

which could, in particular, increase the accuracy at high temperatures. Additionally,

running calculations for different hydrogen orientations and different cage-filling ratios

could make the predictions more realistic. To make the developed models applicable to

higher methane concentrations, 3B correction terms with higher methane content could be

added. For the TTM4Fmod+GAPs model to be applicable to the higher concentrations,

one would also need to add a baseline force field that includes the methane molecules as

well, such as the TTM4Fmod in the MB-nrg model. Additionally, the speed of the GAP

model could be increased by using parallelisation for the 3B descriptor’s trimer finding

routine, and by using a parallel implementation of the baseline force field. Turning to

MB-nrg, its accuracy might be increased by using a uniform target quantum chemical

level for its correction fits, but this might not cause changes significant enough to be

worth the computational cost of the re-calculation of the datasets. However, for its 2B

terms including methane, it would be interesting to test the model using the AVTZ basis
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set instead of the basis set extrapolation using the low accuracy AVDZ set. Moreover,

improving its correction fits to avoid having holes and thus the need to switch back to

the baseline force field would make the MB-nrg model more accurate for high-pressure

structures. Finally, the MB-nrg model could also be used to predict physical properties

of clathrates and other methane–water mixtures, and to study the kinetics of clathrate

formation and decomposition.



Appendix A

Supplementary graphs

Thermodynamics calculations

Enthalpy differences

The enthalpy is calculated for the geometry-optimised structures at pressure p as:

H = U + p · V (A.1)

where p is calculated for the structures (slightly differing from the target pressures).
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Fig. A.1 Clathrate enthalpy differences between the different clathrate structures and sI.
b) is the enlarged version to show the details at low pressures.
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The enthalpies are compared per CH4(H2O)5.75 formula, complemented by the en-

thalpies of the ices having the lowest enthalpies at the given pressure, similarly to the

Gibbs free energies (see Sec. 5.3.3).
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Fig. A.2 Ice Gibbs free energy differences between different ices and ice XI
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Fig. A.3 Clathrate Gibbs free energy differences (per CH4(H2O)5.75 formula, as explained
in Section 5.3.3) between the experimental clathrate structures and sI.
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Parameters of the GAP fits

These parameters are written after the gap_fit command. The input files and the fitted

GAP files can be found at the repository of the University of Cambridge [129].

Water fits

2B MP2–TTM4Fmod

a t _ f i l e=ww_mp2_ttm_12040Subset0 . 95 sigma_E0 .0001 d1 . 0 F_at0 . 1 min1e−05_0 . 0 0 1 .

↪→ xyz

gap={water_dimer covar iance_type=ARD_SE sparse_method=INDEX_FILE

s p a r s e _ f i l e=fps_2000_tht1 . 0 pow−1_cut7 . 0 _from_ww_mp2_ttm_12040Subset0 . 9 5 .

↪→ xyz . txt

c u t o f f =7.0 n_sparse=2000 t h e t a _ f i l e=theta2 . 0_0 . 5 . dat de l t a =1.0

cuto f f_trans i t i on_width =1.0 monomer_cutoff =1.9 OHH_ordercheck=F power=−1

d i s t _ s h i f t =0.25 } default_sigma={1 1 1 1} s p a r s e _ j i t t e r =1.0e−10 e0 =0.0

energy_parameter_name=E_MP2_TTM_2b force_parameter_name=F_MP2_TTM_2b

spa r s e_sepa ra t e_ f i l e=T do_copy_at_file=F gp_f i l e=${xml_file_name}
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2B CCSD(T)-F12–MP2

a t _ f i l e=train_cc_mp2_2bSubset0 . 9 5 . xyz gap={water_dimer

covar iance_type=ARD_SE sparse_method=RANDOM c u t o f f =7.0 n_sparse=1435

t h e t a _ f i l e=theta2 . 0_0 . 5 . dat de l t a =0.05 cuto f f_trans i t i on_width =1.0

monomer_cutoff =1.9 OHH_ordercheck=F power=−1 d i s t _ s h i f t =0.25 }

default_sigma ={0.00001 1 1 1} s p a r s e _ j i t t e r =1.0e−10

e0 =0.0 energy_parameter_name=E_CC_MP2_2B spa r s e_sepa ra t e_ f i l e=T

do_copy_at_file=F gp_f i l e=${xml_file_name}

3B MP2–TTM4Fmod

a t _ f i l e=www_mp2_ttm_14554Subset0 . 95 sigma_E0 .0001 d8 . 0 F0 .01 _min2e−07_0 . 0 0 0 1 .

↪→ xyz

gap={genera l_tr imer covar iance_type=ARD_SE sparse_method=INDEX_FILE

s p a r s e _ f i l e=fps_5000_tht1 . 0_pow−1_cut6 . 0 _from_www_mp2_ttm_14554Subset0 . 9 5 .

↪→ xyz . txt

c u t o f f =6.0 cuto f f_trans i t i on_width =1.0 monomer_one_cutoff=1.9

monomer_two_cutoff=1.9 monomer_three_cutoff =1.9

s ignature_one={{8 1 1}} signature_two={{8 1 1}} s ignature_three ={{8 1 1}}

n_sparse=5000 atom_ordercheck=F s t r i c t=F

t h e t a _ f i l e=theta3b_1 . 0_0 . 5 . dat de l t a =0.05 power=−1 d i s t _ s h i f t =0.1 }

default_sigma={1 1 1 1} s p a r s e _ j i t t e r =1.0e−10 e0 =0.0

energy_parameter_name=E_MP2_TTM_3b force_parameter_name=F_MP2_TTM_3b

spa r s e_sepa ra t e_ f i l e=T do_copy_at_file=F gp_f i l e=${xml_file_name}

3B CCSD(T)-F12–MP2

a t _ f i l e=www_ccmp2_2654Subset0 . 9 5 . xyz gap={genera l_tr imer

covar iance_type=ARD_SE sparse_method=RANDOM c u t o f f =5.0

cuto f f_trans i t i on_width =1.0

monomer_one_cutoff=1.9 monomer_two_cutoff=1.9 monomer_three_cutoff =1.9

s ignature_one={{8 1 1}} signature_two={{8 1 1}} s ignature_three ={{8 1 1}}

n_sparse=2524 t h e t a _ f i l e=theta3b_1 . 0_0 . 5 . dat de l t a =0.01 power=−1

d i s t _ s h i f t =0.25 atom_ordercheck=F s t r i c t=F }
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default_sigma ={0.00002 1 1 1} s p a r s e _ j i t t e r =1.0e−10

e0 =0.0 energy_parameter_name=E_CC_MP2_3B spa r s e_sepa ra t e_ f i l e=T

do_copy_at_file=F gp_f i l e=${xml_file_name}

Methane–water interaction fits

2B (CH4)(H2O) MP2

a t _ f i l e=mw_mp2Filt1 . 5 Subset0 . 95 sigma_E0 .001F0 .005 d1 . 0 _min1e−05_0 . 0 0 1 . xyz

gap={general_dimer covar iance_type=ARD_SE sparse_method=INDEX_FILE

s p a r s e _ f i l e=fps_5000_tht1 . 0 _cut7 . 0 _from_mw_mp2atz_conc_filt1 . 5

↪→ _minus_subset_5 . 0 percent . xyz . txt

c u t o f f =7.0 n_sparse=5000 t h e t a _ f i l e=theta1 . 0_0 . 5 . dat de l t a =5.0

cuto f f_trans i t i on_width =1.0 monomer_one_cutoff=1.3 monomer_two_cutoff=1.9

internal_swaps_only=T signature_one={{6 1 1 1 1}} signature_two={{8 1 1}}

s t r i c t=F mpif ind=F atom_ordercheck=F double_count=F power=−1

d i s t _ s h i f t =0.5 } default_sigma={1 1 1 1} s p a r s e _ j i t t e r =1.0e−10 e0 =0.0

energy_parameter_name=E_MP2_2b force_parameter_name=F_MP2_2b

spa r s e_sepa ra t e_ f i l e=T do_copy_at_file=F gp_f i l e=${xml_file_name}

2B (CH4)(H2O) CCSD(T)-F12–MP2

a t _ f i l e=mw_cca_mp2_3328Subset0 . 95 sigma_E5e−05d1 . 0 min1e −06. xyz

gap={general_dimer covar iance_type=ARD_SE sparse_method=RANDOM c u t o f f =7.0

n_sparse=3167 t h e t a _ f i l e=theta1 . 0_0 . 5 . dat de l t a =0.01

cuto f f_trans i t i on_width =1.0 monomer_one_cutoff=1.3 monomer_two_cutoff=1.9

internal_swaps_only=T power=−1 d i s t _ s h i f t =0.5 s ignature_one={{6 1 1 1 1}}

signature_two={{8 1 1}} s t r i c t=F mpif ind=F atom_ordercheck=F

double_count=F } default_sigma={1 1 1 1} s p a r s e _ j i t t e r =1.0e−10

e0 =0.0 energy_parameter_name=E_CC_MP2_2b

force_parameter_name= spa r s e_sepa ra t e_ f i l e=T do_copy_at_file=F

gp_f i l e=${xml_file_name}
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3B (CH4)(H2O)2 MP2

a t _ f i l e=mww_mp2_15777Subset0 . 95 sigma_E0 .0001F0 .001 d1 . 0 _min1e−05_0 . 0 0 1 . xyz

gap={genera l_tr imer covar iance_type=ARD_SE sparse_method=INDEX_FILE

s p a r s e _ f i l e=fps_5000_tht1 . 0 pow−1_cut5 . 0 _from_mww_mp2_15777Subset0 . 9 5 . xyz .

↪→ txt

c u t o f f =6.0 n_sparse=5000 t h e t a _ f i l e=theta3b_3 . 0_0 . 5 . dat de l t a =0.1

cuto f f_trans i t i on_width =1.0 monomer_one_cutoff=1.3 monomer_two_cutoff=1.9

monomer_three_cutoff =1.9 s ignature_one={{6 1 1 1 1}}

signature_two={{8 1 1}} s ignature_three ={{8 1 1}} s t r i c t=F

atom_ordercheck=F power=−1 d i s t _ s h i f t =0.25

mpif ind=F } default_sigma={1 1 1 1} s p a r s e _ j i t t e r =1.0e−10 e0 =0.0

energy_parameter_name=E_MP2_3B force_parameter_name=F_MP2_3B

spa r s e_sepa ra t e_ f i l e=T do_copy_at_file=F gp_f i l e=${xml_file_name}

3B (CH4)(H2O)2 CCSD(T)-F12–MP2

a t _ f i l e=mww1875ccmp2Subset0 . 9 5 . xyz gap={genera l_tr imer

covar iance_type=ARD_SE sparse_method=RANDOM

c u t o f f =5.0 n_sparse=700 t h e t a _ f i l e=theta3b_3 . 0_0 . 5 . dat

de l t a =0.02 cuto f f_trans i t i on_width =1.0 monomer_one_cutoff=1.3

monomer_two_cutoff=1.9 monomer_three_cutoff =1.9

s ignature_one={{6 1 1 1 1}} signature_two={{8 1 1}}

s ignature_three ={{8 1 1}} s t r i c t=F atom_ordercheck=F

power=−1 d i s t _ s h i f t =0.6 mpif ind=F } default_sigma ={0.000005 1 1 1}

s p a r s e _ j i t t e r =1.0e−10 e0 =0.0 energy_parameter_name=E_CC_MP2_3B

force_parameter_name= spa r s e_sepa ra t e_ f i l e=T do_copy_at_file=F gp_f i l e=${

↪→ xml_file_name}
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