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Background: Immune system conditions of the patient is a key factor in COVID-19
infection survival. A growing number of studies have focused on immunological
determinants to develop better biomarkers for therapies.

Aim: Studies of the insurgence of immunity is at the core of both SARS-CoV-2 vaccine
development and therapies. This paper attempts to describe the insurgence (and the
span) of immunity in COVID-19 at the population level by developing an in-silico model.
We simulate the immune response to SARS-CoV-2 and analyze the impact of infecting
viral load, affinity to the ACE2 receptor, and age in an artificially infected population on the
course of the disease.

Methods: We use a stochastic agent-based immune simulation platform to construct a
virtual cohort of infected individuals with age-dependent varying degrees of immune
competence. We use a parameter set to reproduce known inter-patient variability and
general epidemiological statistics.

Results: By assuming the viremia at day 30 of the infection to be the proxy for lethality, we
reproduce in-silico several clinical observations and identify critical factors in the statistical
evolution of the infection. In particular, we evidence the importance of the humoral
response over the cytotoxic response and find that the antibody titers measured after
day 25 from the infection are a prognostic factor for determining the clinical outcome of the
infection. Our modeling framework uses COVID-19 infection to demonstrate the
actionable effectiveness of modeling the immune response at individual and population
levels. The model developed can explain and interpret observed patterns of infection and
makes verifiable temporal predictions. Within the limitations imposed by the simulated
environment, this work proposes quantitatively that the great variability observed in the
patient outcomes in real life can be the mere result of subtle variability in the infecting viral
load and immune competence in the population. In this work, we exemplify how
computational modeling of immune response provides an important view to discuss
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hypothesis and design new experiments, in particular paving the way to further
investigations about the duration of vaccine-elicited immunity especially in the view of
the blundering effect of immunosenescence.
Keywords: COVID-19, in-silico modeling, virtual cohort, SARS-CoV-2, immunosenescence
INTRODUCTION

The global pandemic set up by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in the early months of
the year 2020 has reached considerable proportions and, to date,
does not show signs of a slowdown when considered globally. In
fact, as of 3:10pm CEST, 24 April 2021, there have been
145,216,414 confirmed cases of COVID-19, including
3,079,390 deaths, reported to WHO (1).

The mortality rates of the SARS-CoV-2 greatly differ across
the globe, ranging from 0.8 to 9.2% (2), as a result of many
factors including the ability to react to the pandemic by the
various national health systems.

TheCOVID-19disease has a quite variable clinical presentation:
while the majority of individuals present with very mild disease,
often asymptomatic, a few patients develop a life-threatening
disease requiring intensive care. Recent review papers describing
the characteristics of the virus SARS-CoV-2 and the disease
COVID-19 can be found in (3). The strongest determinant of
disease severity is age, with children presenting almost exclusively
with mild disease, while individuals over 70 years of age are much
more likely todevelop severeCOVID-19.This variation is likely due
to both host and pathogen factors. Host factors may include
differences in the immune response due to genetic determinants
and immunological history. On the other hand, pathogen factors
include transmission, entry and spreadwithin the host, cell tropism,
virus virulence, and consequent disease mechanisms.

To better understand what impact these factors may have in the
differences observed in the host response to SARS-CoV-2, we set
up the analysis of the dynamics generated by a computer model
that considers both, the magnitude of the viral harm, and the
subsequent innate and adaptive response set up to attempt
achieving control of the infection. Thus, we used computer
simulations to create a virtual cohort of infected individuals to
study the effects on the pathogenesis of both host and pathogen
factors. Note that this approach goes beyond the machine learning
paradigm as the knowledge is generated through a set of equations/
algorithms confirmed by the scientific literature and by past
models. The simulation allows systems-level, multi-evidence
analyses to simultaneously capture the dynamics of the major
immune cell populations and themany proteinmediators by which
cells communicate, to sort out the determinants of disease severity.
SIMULATING SARS-COV-2 COURSE OF
EVENTS IN THE HOST

Up to date, there have been a large number of attempts to use
mathematical and computational models to elucidate various
org 2
aspects of the pandemic, from virus infection of the host to the
pathogenesis of COVID-19 and the epidemiological aspects of
viral spread in the population including the efficacy of
containment measures (4) . Al l k inds of model ing
methodologies have been employed so far from classical
differential equation models to describe the system dynamics
to machine learning techniques to analyze available data (5).

The simulation model that we used in this study is a hybrid
agent-based model for the simulation of the immune response to
generic pathogens. It is equipped with elements of innate
immunity consisting in macrophages, dendritic cells, natural
killer cells, proinflammatory cytokines (e.g., IL-6, IL-12, IL-18,
TNFa, IFNg), and of the adaptive immunity represented by B
lymphocytes, plasma B antibody-producing lymphocytes, CD4 T
helper and CD8 cytotoxic T lymphocytes. It is a polyclonal
model as it embodies the primary sequences of binding sites of B-
cell receptors (BCRs) and T-cell receptors (TCR), as well as the
peptides and epitopes of the infectious agent (i.e., the SARS-
CoV-2 in this case) (6).

The model (called C-IMMSIM) represents a portion of, i)
primary lymphatic organs where lymphocytes are formed and
mature (i.e., mainly the red bone marrow and the thymus gland),
ii) secondary lymphoid organs (e.g., a lymph node), which filters
lymph, and where naïve B and T-cells are presented to antigens,
and, iii) peripheral tissue which is dependent on the pathogen
considered (in this case the lung).

While primary organs are just the source of lymphocytes
equipped with a randomly generated receptor (actually only its
complementarity-determining region, CDR), the secondary
organs and the tissue are mapped onto a three-dimensional
Cartesian lattice (however it is worth to specify that, since the
initial condition, i.e., the initial cell counts, is uniform on the
lattice and the diffusion is isotropic, spatiality does not really play
a role in the present study). The thymus is implicitly represented
by the positive and negative selection of immature thymocytes
(7) before they enter the lymphatic system (8), while the bone
marrow generates already immunocompetent B lymphocytes.

C-IMMSIM incorporates several working assumptions or
immunological theories, most of which are regarded as
established mechanisms, including the clonal selection theory
of Burnet (9, 10), the clonal deletion theory (e.g., thymus
education of T lymphocytes) (7, 11), the hypermutation of
antibodies (12–14), the replicative senescence of T-cells, or the
Hayflick limit (i.e., a limit in the number of cell divisions) (15,
16), T-cell anergy (17, 18) and Ag-dose induced tolerance in B-
cells (19, 20), the danger theory (21–23), the (generally unused)
idiotypic network theory (24, 25).

Being a general-purpose modeling platform, C-IMMSIM lends
itself to characterize the role of the immune response in different
September 2021 | Volume 12 | Article 646972
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human pathologies. For instance, in simulating viral infections
such as HIV we have depicted the evolutionary path of the wild
type virus inside the host due to its high replication rate (26); in the
case of EBV infection, we have shown that the ability of the virus
to establish long term persistence is dependent on access of
latently infected cells to the peripheral pool where they are not
subject to immunosurveillance (27). While simulating cancer
immuno-prevention we have shown, as supported by in vivo
mice experiments, that the humoral response is fundamental in
controlling the tumor growth (28, 29). In a study of type 1
hypersensitivity we have elucidated the role of timing and
dosage in the administration of anticancer drugs with respect to
the risk of having an allergic reaction (30). While reproducing the
pathogenesis of type 2 diabetes we have pinpointed the deleterious
effects of a chronic inflammation (31). The model has also been
used to describe specific aspects of the immune dynamics such as
lymphocytes homing in lymph nodes (32), the gene regulation
leading to cell differentiation (33), the clonal dominance in
heterologous immune responses (34) and also vaccination-
eliciting fish immunity (35). Finally, and relevant to the present
study, the model has recently been used to test in silico the
response to a multi-epitope vaccine against SARS-CoV-2 (36, 37).

In C-IMMSIM each simulated time step corresponds to eight
hours of real life. Cells diffuse randomly in the represented
volume and interact among them. Upon specific recognition
through receptor bindings, they perform actions that determine
their functional behavior. These probabilistic rules define the
transition of the entities from one “condition” to another. Each
rule is executed only if the involved parties are in enabling states
(e.g., naïve, active, resting, antigen-presenting).

Besides cell-cell interaction and cooperation, the model
simulates the intra-cellular processes of antigen uptake and
presentation. Endogenous antigens are fragmented and
combined with MHC class I molecules for presentation on the
cell surface to CTLs’ receptors (this is the cytosolic pathway),
whereas exogenous antigens are degraded into small pieces,
which are then bound to MHC class II molecules for
presentation to T helpers’ receptors (this is the endocytic pathway).

The stochastic execution of the algorithms that code for the
dynamical rules of the automaton, results in a sequence of cause/
effect events culminating in the production of effector immune
cells and setup of immunological memory. The starting point of
this series of events is the injection of an antigen which, here,
consists of the virus. This may take place any time after the
simulation starts (the sequence of events of the SARS-CoV-2
simulation is reported in Appendix A of the Supplementary
Materials). Initially, the system is “naïve” in the sense that there
are neither T and B memory cells nor plasma cells and
antibodies. Moreover, the system is designed to maintain a
steady-state of the global population of cells (homeostasis of
the normal peripheral blood leukocyte counts), if no infection
takes place.

Besides the parameters defining the characteristics of the
virus related to attachment, penetration, replication, and
assembly (i.e., its fitness), the SARS-CoV-2 virus in this model
is defined as a set of B-cell epitopes and T-cell peptides consisting
Frontiers in Immunology | www.frontiersin.org 3
of amino acid 9-mers and defining its antigenicity. If the
infection is stopped or becomes persistent or even kills the
virtual patient it depends on the dose of the virus, its fitness,
and the strength of the immune response aroused. All of these
variables determine if, and to what degree, the success of the
immune system requires the cooperation of both the cellular and
the humoral branch, as shown in past simulation studies (38).

To improve the peptide-prediction performance, the most
important difference to the previous version of the model (39) is
that, rather than using position-specific-score-matrices (PSSM)
to weight the binding contribution of the amino-acids
composing the protein segments in the bounds (40, 41), we
resort to pre-computed ranked lists of T-cell epitopes calculated
with the original neural network NetMHCpan method (42–44).
This feature, which is described below, follows the choice of a
specific Human Leukocyte Antigen (HLA) set as described in the
next section. A diagram of the model components is shown
in Figure 1.

Selecting the HLA Haplotype
The C-IMMSIM model accounts for differences in the HLA
haplotype when determining which peptides are presented by
antigen-presenting cells. To this end, for each HLA molecule, it
takes in input a list of such peptides together with a propensity of
each of them to bind to the HLA. This list is computed by using
third-party immunoinformatics tools as described in the next
section (Computing the peptide immunogenicity).

The “HLA haplotype freq search” in the “Allele Frequency
Net Database” (45) was used to select two HLA-A, two HLA-B
and two DRB alleles which are most prevalent in the US
population (46). The result pointed to the following alleles:
HLA-A*02:01, HLA-A*24:02, HLA-B*35:01, HLA-B*40:02,
DRB1*07:01, and DRB1*15:01.

Computing the Peptide Immunogenicity
The strain of SARS-CoV-2 used in this study corresponds to the
reference sequence NCBI Reference Sequence: NC_045512.2. The
primary structure of these proteins has been used to identify
cytotoxic T peptides (CTL peptides) and helper T peptides (HTL
peptides). To this aim, we have employed two immunoinformatics
tools. In particular, for the definition of CTL epitopes, the “ANN
4.0 prediction method” in the online tool MHC-I binding
prediction of the IEDB Analysis Resource (47) was used for the
prediction of 9-mer long CTL peptides which had an affinity for
the chosen set of HLA class I alleles (i.e., HLA-A*02:01, HLA-
A*24:02, HLA-B*35:01 and HLA-B*40:02) (48–50). The peptides
were classified as strong, moderate, and weak binders based on the
peptide percentile rank and IC50 value. Peptides with IC50 values
<50 nM were considered to have high affinity, <500 nM
intermediate affinity, and <5000 nM low affinity towards a
particular HLA allele. Also, the lower the percentile rank, the
greater is meant the affinity (48–50). The list of peptides is
reported in Appendix B of the Supplementary Materials.

For what concerns the HTL peptides, the NetMHCIIpan 3.2
server (51) was used for the prediction of 9-mer long HTL
peptides which had an affinity for the HLA class II alleles (i.e.,
September 2021 | Volume 12 | Article 646972
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DRB1*07:01 and DRB1*15:01) used in this study (52). The
predicted peptides were classified as strong, intermediate, and
non-binders based on the concept of percentile rank as given by
NetMHCII pan 3.2 server with a threshold value set at 2, 10, and
>10%, respectively. In other words, peptides with percentile rank
≤2 were considered as strong binders whereas a percentile rank
between 2 and 10% designate moderate binders; peptides with
percentile score >10 are considered to be non-binders (52). The
list of CTL and HTL peptides and the relative affinity score is
reported in Appendix C of the Supplementary Materials.

Quantifying the Immunological
Competence
It is widely accepted that aging is accompanied by remodeling of
the immune system. With time, there is a decline in overall
immune efficacy, which manifests itself as an increased
vulnerability to infectious diseases, a diminished response to
antigens (including vaccines), and a susceptibility to
inflammatory diseases. The most important age-associated
immune alteration is the reduction in the number of
peripheral blood naïve cells, accompanied by a relative increase
in the frequency of antigen-specific memory cells. These two
alterations are extensively reported in the literature and account
for the immune repertoire reduction (53, 54). Along with the
process called “inflammaging”, the reduction of immune
repertoire is considered the hallmark of immunosenescence (55).

To model the reduction of immune efficacy we first defined
the parameter “immunological competence” IC∈(0,1] and
Frontiers in Immunology | www.frontiersin.org 4
assumed it in a simple linear relationship with age. Specifically,
we set IC ≡ IC(age) = –a age + 1 with the value of the parameter
a = 45 · 10-4 determined using epidemiological data as described
below. Given the age, the parameter IC is then used to modulate
both innate and adaptive immunity as follows: i) the phagocytic
activity of macrophages and dendritic cells, represented by a
probability to capture a viral particle, is rescaled respectively as
pM = IC · u and pDC = IC · v, where u~U[a,b] and v~U[5×a,5×b] are
two random variables uniformly distributed in the ranges [a, b]
and [5 · a, 5 · b] with a = 25 × 10-4 and b = 10-2; ii) as for the
adaptive immunity it is adjusted according to the immunological
competence parameter IC by decreasing the lymphocyte counts
(hence B, Th, and Tc) to reflect a reduction in the repertoire of
“naïve” cells with immunological history due to accumulation of
memory cells filling the immunological compartment. In
particular, the number of white blood cells N is computed asN ∼
IC ·N (m,s 2) = N (IC · m, IC2 · s 2) where N (m,s 2) is a normal
distribution with average m and standard deviation s (for each
lymphocyte type B, Th and Tc) chosen to reflect the reference
leukocyte formula for an average healthy human adult (see
Figure 2) (56).

Adapting the Model to SARS-
CoV-2 Characteristics
The infection and the dynamical features of the SARS-CoV-2
viral strain have been characterized by two parameters: i) V0

corresponding to the infectious viral load at time zero, and, ii) the
affinity of the virus spike protein to the ACE2 receptor on target
FIGURE 1 | Diagram of the in-silico model components and accepted input. The model embodies functions to calculate the clonal affinity to precomputed viral
peptides of the selected pathogen (defined by its primary sequence) with respect to a specific Human Leukocyte Antigen (HLA) set. The population-dynamics of the
elicited lymphocytes clones, resulting from the infection by the SARS-CoV-2, provides a varying degree of efficiency of the immune response which, as it turns out,
correlates with the parameters defining both the immunological competence (IC) of the virtual host and the virus definition.
September 2021 | Volume 12 | Article 646972
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cells, called pA. In particular, V0 ∼ U½c1,d1�has been taken
randomly in the interval [c1 = 5, d1 = 5 · 105], while pA ∼
U½c2,d2� in the interval [c2 = 10-3, d2 = 10-1].

Upon cho ice o f the age-c la s s dete rmining the
immunocompetence value IC(age) hence pA and pDC as well as
the lymphocyte counts, the simulations depict the immune-virus
competition eventually culminating in a successful, or not, virus-
clearing response controlling its growth. Sometimes this control
is not perfectly efficient. In those cases, the result is a longer viral
persistence possibly going much beyond the length of the
observation period of 30 days (cf. Figure 4).

The sequence of events from viral infection leading to a
full-fledged immune response is detailed in Appendix A of
the Supplementary Materials. At each time step of the
simulation, C-IMMSIM dumps all variables allowing for a
detailed analysis of the dynamics. A full output example of a
simulation is reported and described in Appendix D of the
Supplementary Materials.
MODELING A REPRESENTATIVE COHORT
OF INFECTED INDIVIDUALS

We have simulated a large number of infections (1500 for each
age-class for a total of 10500 independent simulations) by
varying the parameters identifying both the viral characteristics
and the individual immunological competencies. The seven age
classes considered were 0-9, 10-39, 40-49, 50-59, 60-69, 70-79
and 80+. As specified above, the age-class determines the
immunocompetence parameter IC which, in turn, sets pM and
pDC as well as the lymphocyte counts in the in-silico individual,
we can characterize each simulation by the set of parameters (IC
(age), V0, pA). Moreover, due to the stochasticity of the model
depending on the random number realizations, each simulation
corresponds to a different trajectory in the space of the variables.
It follows that each simulation coincides with an in-silico patient
Frontiers in Immunology | www.frontiersin.org 5
with variable immunological characteristics (IC) and, at the same
time, infected by a slightly different viral burden (V0 and pA).

The intervals within which these parameters vary have been
chosen to reproduce the age-class incidence of disease severity of
infected individuals. The age-class incidence varies wildly among
regions mostly due to a different definition of COVID-19 related
deaths. Moreover, due to the lack of confirmation of the causes of
death in many cases in periods of high emergency as that of
March/April 2020 in Italy, these rates should not be considered
strictly but rather indicative of the negative exponential-like
relationship of the death incidence with age. Reference values
we used were the fatality rates from the Chinese Center for
Disease Control and Prevention (CDC) as of 17th February, the
Spanish Ministry of Health as of 24th March, the Korea Centers
for Disease Control and Prevention (KCDC) as of 24th March,
and the Italian National Institute of Health, as presented in the
paper by Onder et al. (57) as of 17th March (57, 58).

To reproduce this age-related incidence of in-silico cases we
linked the simulated viral load at a certain time to the clinical
status (clinical endpoint). This has been done according to the
rationale that a patient whose viral load is still quite high after
thirty days from infection can be considered at a very high risk of
death. In fact, in most mild cases, the clinical signs and
symptoms (mostly fever and cough) have been reported to
resolve within 3 weeks from the diagnosis (which translates
into approximately 30 days from infection). Instead after 3
weeks, several authors have described severe cases with
progressive multi-organ dysfunction with severe acute
respiratory dyspnea syndrome, refractory shock, anuric acute
kidney injury, coagulopathy, thrombocytopenia, and death (59).

Stratifying the In-Silico Cohort of Patients
The analogy of some simulation variable to a realistic clinical
endpoint allows stratifying the in-silico patients for a more
concrete interpretation of the results. Based on the viral load
observed at day 30 (indicated by V30) and a threshold q we
assume to identify the virtual patients in one of the three
following classes:

• Critical: if V30 > q, namely, the viral load at day 30 is still high;
this class includes weak and late responders;

• Partially recovered: those who are still positive but have a low
viral load, meaning that the immune response is controlling
the viral replication (i.e., 0 < V30 ≤ q); note that this class
includes the asymptomatics;

• Fully recovered (or just Recovered): those who have cleared
the virus (i.e., V30 = 0).

According to this assumption/definition, by choosing the
cutoff q =120 viral particles per micro-liter of simulated
volume, we obtain the stratification of the virtual individuals
shown in Figure 3A. Of all in-silico individuals, we get 4.3% of
critical cases (broken down in age classes in Figure 3A), 46.8% of
partially recovered (Figure 3B), and 48.8% recovered cases
(Figure 3C). These figures sound very much in line with
current epidemiological statistics when considering that the
recovered cases here simulated include asymptomatics (57).
FIGURE 2 | Modified lymphocytes counts by age-class. Given the chosen
value of a, the immunological competence is less than one, therefore by
increasing the age, the cell numbers are drawn by a normal distribution with
reduced mean value m · IC (age) and reduced variance [s · IC(age)]2.
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This result shows an interesting and surprisingly high fraction
of in-silico patients in the partially recovered class. This class
includes patients that, at the end of the simulated period of thirty
days, are still positive albeit manifesting an active immune
response, regardless of being asymptomatic or not. This
question is discussed below.

These special cases can be better examined in Figure 4, which
shows four distinct exemplifying runs with different outcomes.
In Figure 4A the viremia is shown as a function of time. Red
lines correspond to individuals who reach the critical condition
V30 > q thus falling in the class “critical”. The green line
corresponds to a viral clearance corresponding to a fully
recovered case, and the blue line shows a situation in which
the virus is not completely cleared but stays below the threshold
value q. This case corresponds to one of what we call partially
recovered as it represents virtual individuals that produce an
immune response (cf. same figure, Figure 4A showing the
corresponding antibody titers) which turns out to be
insufficient to clear the virus. These “unresolved infections”
include asymptomatic cases and are worth the further analysis
described below.

To note that the two examples of critical outcomes (red
curves) originate from a quite different initial viral load. Also,
to note that the fully recovered (green) case starts with a viral
load that is higher than one critical case, still the immune
Frontiers in Immunology | www.frontiersin.org 6
response manages to control the infection. The blue curve
shows a partially recovered case which greatly decreases the
viral load (inset plot of Figure 4A) but does not clear
it completely.

How the Model Explains Symptoms
It is worth clarifying that the term “symptom” has no meaning in
the in-silico framework unless a link between model variables
and possible clinical endpoints is drawn. Also, we should note
that we have no concept of comorbidity here that would help in
defining the “status” of the virtual patient. To overcome this
limitation, besides the viral load at day 30, we think up the
following quantities (or variables) as clinical endpoints: (a) the
damage in the epithelial compartment, namely, percent of virus-
target cells that are dead at the time of observation as a surrogate
marker of vascular permeability; (b) the concentration of
pyrogenic cytokines as a surrogate marker of fever, i.e.,
Prostaglandins TNFa, IL-1, and IL-6 causes fever people get
varying degree of severity with COVID-19.

Of these two potential surrogate markers of criticality, the
first appears more appropriate. While the amount of pyrogenic
cytokines (surrogate clinical endpoint b.) correlates with the
severity of the disease, the most striking difference in the critical
cases versus non-critical (i.e., recovered plus partially recovered)
is seen when comparing the accumulated damage in the
A

B C

FIGURE 3 | Age incidence of stratified in-silico patients (q = 120 virions per micro liter). Panel (A) shows the percentages of critical cases broken down in age
classes. Overall they account for 4.3% of the total virtual individuals. Panel (B) shows the partially recovered ones for a gross 46.8%, and panel (C) shows the
remaining 48.8% classified in the recovered cases class. These figures are in good agreement with epidemiological statistics (57).
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epithelial compartments (j) computed as the fraction of depleted
epithelial cells due to the immune cytotoxicity of SARS-CoV-2
infected cells during the whole observation period (surrogate
clinical endpoint a.),

f = 1 −
1

T · E(0)

Z 0

T
E(t)dt (1)

where E(t) is the epithelial count per microliter of simulated
volume and T is the time horizon of 30 days (note that j ∈ [0,1]).
Indeed, when we plot the distribution of j for the critical and
non-critical cases (i.e., partially recovered plus fully recovered)
we obtain what is shown in Figure 5. The plot clearly shows that
for critical in-silico patients the damage is much more
pronounced than for non-critical ones. This prompt us to use
the threshold jc = 0.63 to set apart patients who have mild
infections [about 80% as in reality (60–62)] to those having a
severe disease [15% with dyspnea, hypoxia, lung changes on
images (63)] or critical illness [5%, respiratory failure, shock,
Frontiers in Immunology | www.frontiersin.org 7
multi organic dysfunction, cytokine storm syndrome (64)].
Therefore, we label patients with j ≥ jc as symptomatic while
those with j < jc asymptomatic. According to this further
stratification patients who are still positive (i.e., 0 ≤ V30 < q)
and have no symptoms (i.e., j < jc) account for about 44% of the
simulations which is in line with current estimates of
asymptomatic incidence (65).

The Model Indicates That a High Infective
Viral Load Carries a Serious Risk
We tested the correlation between the antigen abundance (or
infective viral load V0) and the severity of the infection. The
Mann-Whitney-Wilcoxon (MWW) test shows a significant (i.e.,
p-value< 10-3) difference between infecting viral load V0 in the
three classes critical, partially recovered, recovered. In particular,
we find that a higher V0 is a strong correlate of disease severity
(66). Of interest is the fact that there is no significant difference
among age groups, that is, V0 is not predictive of the disease
severity for the age (67) (MWW test p-value>0.05).
A B

FIGURE 4 | Examples of four in-silico cases with different outcome. Panel (A) shows the viral load while panel (B) the corresponding antibody titers. Red lines show
critical cases; blue a partially recovered case; green a fully recovered case.
FIGURE 5 | Distribution of epithelial damage j of the cohort cases classified in critical and non-critical. A delimiting value jc = 0.63 separates well the two classes.
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Simulated IL-6 Correlates With Disease
Severity but Youngers Generate More
Significantly, in most critically ill patients, SARS-CoV-2 infection
is associated with a severe clinical inflammatory picture based on a
severe cytokine storm that is mainly characterized by elevated
plasma concentrations of interleukin 6 (68). In this scenario, it
seems that IL-6 owns an important driving role in the cytokine
storm, leading to lung damage and reduced survival (69).

The simulation agrees with this finding as reported in
Figure 6. Plotting the peak value of the viral load (i.e., the
maximum value attained in the observed period) versus the
logarithm of the integral of IL-6 over the whole period (cf. eq(2)
in next section 3.5), we see a positive correlation regardless of
the outcome.
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For all age classes, as shown in Figure 7A, a critical clinical
course is associated with a significantly higher concentration of pro-
inflammatory cytokine IL-6. Figure 7B shows the same
information for all age classes lumped together. The cytokine
concentration on the y-axis is calculated as the integral over the
whole simulated period (definition in eq(2) of section 3.5). The
positive correlation between inflammation and severity of the
clinical course is a consequence of the struggle of the immune
system to cope with the infection. However what Figure 6 reports is
a generic higher production of IL-6 in younger individuals
compared to elders. The explanation of this outcome becomes
visible following the line of consequences starting from a stronger
cytotoxic activity (see Figure 12B below) that killing infected cells
cause a stronger release of danger signal to which macrophages
respond by secreting IL-6. Since younger have a higher
immunological competence (IC), they respond with both stronger
cytotoxic response and better innate (i.e., macrophage) activity. The
result is the somehow counterintuitive observation that while
younger individuals have a higher degree of inflammation, they
report a smaller propensity to experience severe outcomes.
Younger In Silico Individuals Deal With the
Virus by Producing More Cytokines
What is observed in the production of IL-6 in younger
individuals extends to all cytokines produced during the
response to the inflammation. We find that, in general,
cytokines’ cumulative production during the whole simulated
period correlates inversely with the age. Calling cx the
concentration of cytokines x in the simulated volume, where x
is one of IL-6, D, IFNg, and IL-12, we define

sx =
Z T

0
cx tð Þdt  (2)

the cumulative value of cytokines in the whole observation
FIGURE 6 | IL-6 concentration (log-scale) correlates positively with the viral
load measured at the peak (i.e., its maximum value during the simulated
period). The correlation is positive for all groups, critical, partially recovered
and recovered with no significant difference in the degree of correlation.
A B

FIGURE 7 | IL-6 (measured as the area under the curve, as defined in section Younger In Silico Individuals Deal With the Virus by Producing More Cytokines) to age
and severity of the disease. Panel (A) shows the difference in IL-6 between critical and recovered as a function of age. Panel (B) shows the same information for all
severity classes, lumping up the age. Inflammation correlates positively with severity of the disease (MWW test, p-value < 10^{-3}) (70).
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period. Figure 8 shows sIL6, sD, sIFNg, and sIL12 against age.
What Figure 8 shows is that there is a clear reduction of
cytokines’ production with age. This, similarly to what was
discussed in the previous section, is due to the reduced
immune activity which indeed is determined by a reduced
immunological competence with the age (71). To justify the
apparent contrast with the fact that elder acute infected
individuals are more prone to experience a cytokine storm, we
should openly regard one of the limitations of the model, namely,
the lack of further cytokine feedbacks that are activated during
extended pneumonia.

Model Predicted IFNg Concentration Is
Higher in Milder Courses of the Infection
The expression of IFNg by CD4 tends to be lower in severe cases
than in moderate cases as shown in Figure 9A. This is in
agreement with (72).

The inverse correlation of interferon-gamma (IFNg) with
disease severity is observed in all age groups (Figure 9A and
also in Figure 9C when summing all age classes). Interestingly,
recovered and partially recovered do not show a meaningful
difference when compared to the critical cases (Figure 9C).

IFNg is released by natural killer (NK) cells upon bystander
stimulation by danger signals (Rule n.5 in Appendix A of
Frontiers in Immunology | www.frontiersin.org 9
Supplementary Materials) which, in turn, is released by
infected/injured epithelial cells upon viral infection (Rule n.3)
and when killed by cytotoxic cells (Rule n.18). This means that in
young individuals a prompt activation of NK cells due to higher
immunological competence, and a stronger cytotoxic response
killing infected cells, are sufficient to control the “acute”
production of danger signal impacting on the production
of IFNg.

In Silico Cytokine Storm Goes
With Symptoms
If we use the cumulative value of inflammatory cytokines as a
variable, namely, sIFNg + sIL6 + D + sTNFa (i.e., the sum of the
integrals) and we use the accumulated damage in the epithelial
compartments, that is, the fraction of depleted epithelial cells due
to the immune cytotoxicity j defined in eq(1) (cf. section 3.2) as
the discriminating criteria between symptomatic and
asymptomatic, we observe what is shown in Figure 10.

Compared with asymptomatic cases, the symptomatic ones
more frequently have markedly higher levels of inflammatory
cytokines. The difference of the virtual patients in the two classes
is statistically significant (MWW test, p-value< 10-3), which is in
line with the clinical finding of higher inflammatory levels in
severe disease progressions (72). This result seems to contrast
A B

C D

FIGURE 8 | Cytokines. Panel (A) shows IL-6 (cfr. Figure 7A summing disease severity classes); panel (B) shows Danger signal; panel (C) shows IFNg, and panel
(D) shows IL-12. Each plot shows the cumulative value of the cytokine in the whole observation period per each age-class. All panels exhibit the same reduction for
increased age.
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what is stated in section 3.5, namely that younger individuals
produce more cytokines but have a less severe course of the
disease. However, the explanation provided by the simulation is
that those who deal with the infection more rapidly (including
asymptomatic) produce, overall, a smaller amount of cytokines
and therefore have a lower risk of “cytokine storm”. On the other
hand, an inconclusive immune response leads to chronic
inflammation, hence pronounced symptoms (e.g., extended
epithelial damage) and ultimately in a cytokine storm.

Why Is the Predicted Immune Response
Quicker in Younger Individuals?
It has been suggested that in younger individuals several factors
contribute to the lower numbers of patients observed with severe
disease, namely: lower number of ACE receptors, overlapping
immunity against coronaviruses, and a more efficient intact
immune system.

Figure 11 shows that the immune response is quicker in
younger virtual individuals compared to elder ones. The speed of
Frontiers in Immunology | www.frontiersin.org 10
the immune response is calculated in terms of the time [in
days) the viral load V(t) reaches its maximum [indicated tVmax

where t:V(t) = Vmax and Vmax = max
t
V(t)] and starts to decline

due to the immune response. Figure 11A shows the distribution
of tVmaxfor each age class. Younger individuals develop a faster
response and consequently, the virus is cleared earlier. This is
shown in Figure 11B which plots the distribution of the time (in
days) it takes the immune response to decrease the viral load
below the threshold q whenever this happens (the cases for
which V(t) > q,∀t, are not counted in this statistics). Figure 11B
is in line with the fact that younger individuals mount a quicker
immune response that is generally more efficient than those in
elder people thus eradicating the virus in a shorter time.

The Key Role of the Humoral Response
Figure 12 shows that younger individuals have a higher production
of antibodieswhen compared to elder individuals. This is evident for
both critical and recovered (partial or fully recovered) individuals.
A

B C

FIGURE 9 | Severe cases are associated to a lower concentration of IFNg. IFNg is measured as the area under the curve (i.e., the integral in the simulation time
window). Panel (A) shows that the concentration of IFNg is lower in severe cases than in moderate cases. This is in agreement with (72). When summing all age
classes (C) IFNg shows an inverse correlation with disease severity. The same is observed when looking at each age group separately (B). Interestingly, recovered
and partially recovered do not show a meaningful difference when compared to the critical cases (C).
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However, the most striking observation when considering the
difference between recovered and critical cases is the gap in
antibody titers present in virtually all age classes (Figure 12A).
This indicates a strong protective role of the humoral response
making a split between recovered and critical patients.

Figure 12B shows the corresponding statistics for the
cytotoxic T cell (peak value) count per age-class and critical
status. This plot consistently evidences that youngers have a
stronger response than elders. Interestingly, in contrast to the
humoral response, in all age classes, the cytotoxic response in
critical individuals is higher than in recovered ones revealing the
attempt of the immune system to counterbalance the inefficacy of
the humoral response.

Moreover, a further view at the antibody titers reveals that its
peak value [i.e., Vmax = max

t
V(t)] correlates inversely with the

clearance time (tq), that is, faster responses are obtained with
Frontiers in Immunology | www.frontiersin.org 11
lower production of antibodies (cf. Figure 13). This is in line
with the hypothesis that asymptomatic individuals develop a
rapid but mild response which clears the infection (73).

It should be noted, however, that there are still substantial
uncertainties on the data available due to the variable diagnostic
accuracy of different serological tests for COVID-19, therefore
more well-designed large clinical studies are warranted to
address this matter (74, 75). Interestingly, the same cannot be
said when considering peak values of Tc counts, that is, the
cytotoxic response does not correlate, either positively or
negatively, with time-to-clearance (not shown).

Antibody Titers Have a Prognostic Value
After Day 25
We have used a logistic regression classification to see if by
measuring the antibody titers and the CTL counts at day t < 30
A B

FIGURE 10 | Compare the “cytokine storm” in the two groups asymptomatic j < jc and symptomatic j ≥ jc. Panel (A) shows the histogram, panel (B) compares
the whiskers. The difference is statistically significant (p-value< 10-3).
A B

FIGURE 11 | Panel (A) shows for each age class, the days elapsed from infection until the viral load starts to decrease. This is indicated as tVmax = maxtfV (t)gsince it
means the distribution of the time when the antigen reaches the peak. It is a measure of how the immune defenses are mobilized, hence its speed. Panel (B) shows
the corresponding distribution of tq = mintfV (t) ≤ qgnamely the time it takes for the immune response to bring the viral load to fall below q. It is a measure of the
efficiency of the immune response in clearing the infection.
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we can infer the outcome at the end of the simulated period of t =
30 days. We call V(t = 30) = V30 the viral load on day 30 after
the infection.

Formally, the logistic regression classifier uses the data set
{(xi, yi)}i=1…m where xi = (x(1)i , x(2)i )is the feature vector
consisting of the normalized cytotoxic T-cell lymphocytes
count, x(1)i = Tc(t)and the antibody titers at day t, x(2)i = Ab(t) :
While yi = 0 if the corresponding run has V30 ≤ q and yi = 1 if the
corresponding runs has V30 > q.

Figure 14A shows the features xi corresponding to the
recovered cases (i.e., yi = 0) represented as yellow circles and
the critical cases (i.e., yi = 1) corresponding to black daggers. This
panel shows the best separation curve found after training a
logistic regression model on the training sample xi = [Tc(25), Ab
(25)], namely, Tc count and antibody titers measured at day 25
from infection.

Figure 14A shows the data set after the classification in
recovered and critical and the separation curve. In the figure,
Frontiers in Immunology | www.frontiersin.org 12
the data set corresponds to the observation at day 30 while the
analysis has been conducted at different time points. Figure 14B
shows how the classification accuracy increases over time. In this
panel, we plot the Sørensen-Dice coefficient [most known as the
F1 score (76)] which increases when the assessment is made by
using features (i.e., Tc and Ab measurements) later as the
infection and corresponding immune response develops.
Interestingly, before day 10 after the infection it is not possible
to find a meaningful classification criterion that predicts the
outcome, while the Sørensen-Dice coefficient increases to a high
value already at day 25 indicating that 25 days after infection, the
level of immune activation represented by the antibody titers and
cytotoxic counts is predictive of the clinical outcome.
DISCUSSION AND CONCLUSIONS

The immunological correlates of COVID-19 are far from being
elucidated in clinical studies. Simulation studies can help to
disentangle the importance of factors such as a reduced ability
to mount an efficient (i.e., not off-target) immune response due
to age or the infective viral load determining the initial
viral burden.

We have set up a computational model that simulates the
infection with a varying dosage of the virus and with a slightly
different affinity to the ACE2 receptor of target cells, in
individuals with different immunological competence.

The results of a large number of simulations that we call
virtual or in-silico cohort demonstrate that the great variability
observed in the real pandemic can be the mere result of such
diversity in both viral and human characteristics.

The computational model used can explain several clinical
observations of SARS-CoV-2 infection. In particular, it evidences
the importance of the humoral response in discriminating
efficiently from poor immune responses which fail to
completely clear the infection and, in some cases, bring the
viral load down below a threshold value while showing no
markers of symptoms.
A B

FIGURE 12 | The relationship between the magnitude of the immune response and age is maintained also when looking at antibodies and cytotoxic cells. Panel (A)
shows the antibody titers for all age classes comparing recovered with critical patients. Panel (B) shows cytotoxic cell (Tc) counts (peak values).
FIGURE 13 | The peak value of antibody titers correlates inversely with the
time-to-clear-virus tq.
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The model has been tuned for parameters able to reproduce
the relationship of age with the disease severity (cf. Figure 3).
Starting from that, any other observation revealed an emergent
property of such a complex simulation environment. In
particular, we observe the correlations among infective viral
load V0 and severity, among immunological (in)competence
(thus age) and severity, among the overall cytokine levels and
symptoms (i.e., a virtual cytokine storm), and, finally, the key
role of the humoral response in clearing the infection yet
sustained by the cytotoxic activity (cf. Figure 12).

Indeed recent clinical data suggest that several hyper-
inflammation markers can serve as accurate and reliable tools
to identify mild or severe cases of COVID-19 infection (77).

Within cytokines, interleukin-6 (IL-6) is widely accepted to
play a pivotal role, therefore it has been considered a possible
therapeutic target. Indeed, the IL-6-receptor antagonist
tocilizumab, has been used to treat patients with severe
COVID-19 symptoms and pneumonia. However, clinical trials
exploring tocilizumab’s therapeutic effects in patients with life-
threatening SARS-CoV-2 infection have yielded very conflicting
results (78). It should be noted that IL-6 production in vivo and
real patients is usually accompanied by a relevant array of other
cytokines and chemokines, and because of this, the therapeutic
activity of tocilizumab might have been significantly hampered
in some patients. There are also other potential confounding
factors, for example, types of patients recruited in different trials
and timing of treatment (early vs late).

It should be pointed out that in the context of this rapidly
evolving scenario, defining best clinical practices is very challenging
since results from ongoing trials are updated globally on a daily
basis. Also in a global pandemic overall population outcomes may
be measurable only during a long follow-up.

Our simulation study identifies day 25 after infection (which
we can roughly associate to about day 15th-18th after the
appearance of the symptoms) as the time for predictive
measurement of the antibody response to assess the risk of
developing a severe form of the diseases. Before that time, our
Frontiers in Immunology | www.frontiersin.org 13
data suggest that the prediction is not statistically meaningful.
Manifestly, the choice of antibody titers as marker to test for
predictivity is due to the large availability of testing facilities and
the short time and low cost for obtaining such readouts in clinics.

The model is restricted in many aspects. It simplifies reality
and works with a limited number of mechanisms and a reduced
diversity. For instance, it does not include type I IFN which has
been recently evidenced as potentially important in the
resolution of the infection (76, 79–81). However, type I IFN
dynamics during SARS-CoV-2 infection are not yet fully clarified
and future studies will explore whether IFN production is
reduced at the beginning of infection or whether it is delayed
or exhausted after an initial normal response (82–84).

Moreover, our model does not reproduce diverse organs and
tissues and therefore we cannot observe site-specific pathological
problems, including the spatial extension of pneumonia.
Nevertheless, the analysis conducted in the present work
accounts for such limitations and the results obtained can be
reasonably considered independent of such restrictions.

Of course, there are some cases reported in the literature in
which the course of infection has been extremely long, especially
in severely immunocompromised patients. However, the very
complex and lengthy dynamics taking place in those cases are
beyond the scope of this study, which instead represents at large
the majority of observed cases.

Finally, we should consider that the clinical ground of
observation inevitably starts much later than in our model, as
people ask for medical attention only after developing symptoms
or after knowing of accidentally having been in contact with
patients/carriers. Therefore, the window of observation we
consider in this paper is recapitulating more precisely the
infection dynamics of the early days.

Potential study directions should cover the duration of
immunity, either natural or induced by the vaccine, including
ways to indirectly verify it, the impact of immunosenescence on
the elicited immunity, or the combined effect of monoclonal
antibody and vaccines in potential future therapies.
A B

FIGURE 14 | Sørensen-Dice coefficient (F1 score) of a logistic regression ML model to predict the outcome (recovered/critical) from Tc(t) and Ab(t) at various days
(B). The analysis shows that starting from day 25 from infection, the cytotoxic T cell counts and the antibody titers are informative for predicting the outcome. Panel
(A) shows the discriminating curve of the measurements at day 25.
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Despite the extraordinary complexity of the immune system
dynamics, the progress of simulation platforms suggests that a
more intense interaction between clinicians and researchers in
the computational model could bring these models to the desired
quality for deployment in the medical field.
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