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Abstract

Alkanes and their mixtures are some of the physically simplest molecules and are widely
used in industry, yet the connection between their structure and physical properties is still
poorly understood. To make progress, we study the properties of pure alkanes with neural
networks and molecular dynamics, while we develop a new theoretical framework to study
the properties of mixtures of alkanes.

We first encode alkanes’ structure into five non-negative integers and use them as neural
network inputs. Then, we utilize the neural networks to study the boiling point, vapor
pressure, heat capacity, and melting point of light alkanes, as well as flash point and kinematic
viscosity of linear alkanes. Neural networks model all these properties more accurately than
the competing statistical and physico-chemical methods, while the cross-validation results
indicate that they can confidently and accurately extrapolate the boiling point, heat capacity,
and vapor pressure models to heavy alkanes. Still, due to a lack of experimental data for non-
linear alkanes, neural network flash point and kinematic viscosity models cannot extrapolate
to heavy alkanes, while the comparatively low accuracy of melting point models relative to
other properties’ models suggests that additional physical effects need to be incorporated
into them.

To obtain synthetic data as a supplement for the experimental kinematic viscosity dataset,
we perform molecular dynamics simulations for density and non-equilibrium molecular dy-
namics (NEMD) simulations for dynamic viscosity. Density simulation results are corrected
through a data-driven approach to increase their accuracy, and we develop a sampling algo-
rithm that automatically selects the shear rates at which to perform the viscosity simulations.
The sampling algorithm is tested on linear alkanes, and simulation results are in excellent
agreement with the experiments, encouraging applications to more complex alkanes.

Then, we use neural networks with molecular structure as inputs to model the molecular
dynamics density simulation values and extrapolate to 11-heptyltricosane, 8,11-dipentyloctadecane,
and 8,14-dipentylhenicosane at 40°C and 100°C. These extrapolated density values are used
as state points for the NEMD viscosity simulations, which are performed with the help of
the shear rate sampling algorithm. While the accuracy of neural network models is high,
and the usefulness and reliability of the sampling algorithm is further established, viscosity
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simulation results are not in a good agreement with the experiment due to systematic error in
the force field.

Finally, to model properties of mixtures of alkanes, we develop a theory of mixtures
whose molecules’ positions have a uniform spatial distribution. We apply this theory to molar
volume, isentropic compressibility, surface tension, and dynamic viscosity of mixtures of
alkanes, first by fitting to experimental data, and then by using the best fit parameters for
viscosity to predict viscosity of further mixtures. Best fits and predictions show excellent
agreement with the experiments, and our theory shows promise for further applications to
mixtures of alkanes, while its conceptual basis has the potential to be applied to other types
of mixtures as well.
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Chapter 1

Background

1.1 Introduction

Physical sciences encompass the most successful set of methods to study the material non-
living natural phenomena. These methods have enabled humanity to better understand the
universe around us, from the microscopic atoms and molecules up to macroscopic planets and
galaxies. Beyond their epistemic value, advances in physical sciences have led to innovations
that have altered the course of the human civilization. From the personal computers to
automobiles, modern society would be unimaginable without inventions stemming from the
physical sciences.

One of the most important applications of physical sciences are the discovery and
production of materials, which has enabled the development of essential modern machines
and devices, such as airplanes or printers. With a continued increase in world population and
the per capita consumption, the search for improved materials will underpin the attempts to
create a more resource efficient society. Among the many materials that will undergo a major
evolution in the coming decades are the industrial lubricants. They are already an important
component of the modern industry, helping protect the surfaces that are in contact with each
other, transfer heat, and reduce corrosion and friction. Even as the world moves away from
the carbon based energy products, the demand for them is expected to grow 1.

1.2 Alkanes

A demand for improved lubricants is accompanied by the need for deeper understanding of
their physics. This necessitates a deeper investigation of their components’ properties. It

1https://www.grandviewresearch.com/industry-analysis/lubricants-market

https://www.grandviewresearch.com/industry-analysis/lubricants-market
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is known that the lubricants are produced by combining a base oil with additives to obtain
the desired properties. The majority of base oils comprise alkanes [82][7] (Figure 1.1),
the are hydrocarbons in which the carbon atoms are connected by a single covalent bond
[21][115](Figure 1.1).

Alkanes are mostly found as components of crude oils, which are organic materials usually
found in the Earth’s crust, and made by disintegration of the fossilised organic materials
under high pressure and temperatures without the presence of oxygen. Consequently, alkanes
have a range of applications in the oil and gas industry. The lightest alkanes, methane, ethane,
propane, and butane are used for heating and cooking purposes, and alkanes with between
five and eight carbon and with between nine and sixteen carbon atoms are essential elements
of petrol and jet fuels. Beyond their immediate applications, they are often used as a basis
for production of various organic compounds [17], while there has been a growing interest in
their role in the chemistry of atmosphere [108].

Alkanes are commonly split into three categories, which differ by the number of carbon
atoms connected to each other:

• Linear alkanes, where two carbon atoms are connected to one, and the rest to two
carbon atoms.

• Branched alkanes, where two carbon atoms are connected to one, and the rest to two
or three carbon atoms.

• Cycloalkanes, where each carbon atom is connected to two carbon atoms.

One can study either alkanes properties when they react with other components (chemical
properties), or independent of them (physical properties). In this Thesis, we study their phys-
ical properties of linear and branched alkanes with fewer than three branches. Specifically,
we investigate the properties that are important for assessing the performance of base oil
lubricants: melting point, flash point, boiling point, vapour pressure, density, and dynamic
viscosity.

1.3 Artificial neural networks

1.3.1 Linear regression

Physical properties of most alkanes have not been measured, since alkanes with more than
twelve carbon atoms are rarely found as pure components in nature, forming mixtures with
the other molecules instead. Additionally, while statistical mechanics [103] in principle offers
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Fig. 1.1 An example of a branched alkane (7-hexyl-tridecane).

a suitable framework for theoretical studies of alkanes’ properties, it has not yet produced a
formalism capable of accurately describing them.

To make progress, we look for patterns in the existing alkanes’ data and utilize computa-
tional statistics, which can learn and generalize from data to predict the unknown property
values. To accomplish this, we propose a model M(W ) expecting that it accurately describes
the mathematical relationship between the physically motivated independent variables (⃗x)
and a physical property (y). Then, we analytically or numerically find the weights that best
(WOPT) describe this relationship by minimizing a measure of the distance (µ(W )) between
the experimental physical property values and their model approximations. To make predic-
tions, the model with optimal weights is applied to independent variables with the unknown
property values.

The simplest possible such model is linear. When the distance function is equal to half
the average square difference between the properties and their model estimates, which is
known as a mean square error (MSE) function, this formalism is called linear regression [57]

M(W ) = XW

MSE(W ) =
1

2N
(XW −Y )T (XW −Y ),

(1.1)

where M(W ) is a N-dimensional column vector of property fits, X a N × (p+1) matrix
comprising independent variable data entries augmented by a N-dimensional identity column
vector to allow the modelled physical property values to be non-zero even when the values of



4 Background

all the independent properties are zero, W a (p+1)-dimensional column vector of weights, Y
a N-dimensional column vector of experimental property values, N a number of data entries,
p a number of independent variables, and T the transpose of a matrix.

In linear regression, the optimal weights and their uncertainties can be found analytically

E(WOPT) = (XT X)−1XTY

δ (WOPT) =

(
1

N − (p+1)
(XT X)−1I(p+1)×1

N

∑
i=1

(yi − ŷ)2
)0.5∗

,
(1.2)

where I(p+1)×1 symbolises a (p+1)-dimensional identity column vector, i a data entry
index, ŷ an average of all the physical property values, and 0.5∗ a square root function acting
on a matrix element-wise.

1.3.2 Universal approximation property

Mathematical simplicity of linear regression relative to other modern statistical methods
enables simpler analysis of its mathematical properties and the results’ accuracy. However,
linear regression cannot capture non-linear functional dependencies between the independent
and dependent variables. Accordingly, unless we are able to identify a set of independent
variables that are linearly correlated with a property of interest, linear regression cannot
successfully model physical properties of alkanes.

Fortunately, we can build upon the idea of a linear model to capture the non-linear
dependencies among the variables. To do so, we represent a linear model as a network. While
this representation looks cumbersome, if we set

X̃2 = σ(X1W 1), (1.3)

where σ is a non-polynomial continuous function called the transfer function, acting on
a matrix element-wise, X1 is a N × (p+1) matrix of independent variables augmented with
a N-dimensional column of ones and W 1 a matrix of hidden node weights, we construct an
artificial neural network [57] [43] [14] (Figure 1.2). Note that X2 is obtained by augmenting
X̃2 with an identity column vector to allow the modelled physical property values to be
non-zero even when the values of all the independent properties are.

Non-linear transfer functions equip artificial neural networks with the theoretical ability
to approximate the optimal functional relationship between the independent variables and
the dependent variable to an arbitrary accuracy [31] [106] [52] [89], which is known as the
universal approximation property (UAP). Coupled with the increasing power of computational
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hardware, the UAP has helped neural networks become a cornerstone of the digital age and
find applications in diverse scientific fields, from image recognition and computer vision
[43] [123] to natural language processing [41].

Due to their versatility, neural networks can have many structures, which mutually differ
by the number of hidden layers, types of connections and mathematical relationships between
the nodes, and the transfer function(s) used. In this Thesis, we use a feedforward neural
network with one hidden node (Figure 1.2) and the rectified linear unit transfer function

ReLu(x) =

0 if x < 0

x if x ≥ 0.
(1.4)

.

...
...

x1
1

x1
2

x1
3

x1
ni

x2
1

x2
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Input
layer
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layer

Output
layer

Fig. 1.2 Schematic of a feedforward neural network with one dependent variable. Circles
represent networks’ nodes, which themselves represent the variables. Variables are denoted
by xk

l , where x is the variable, k the layer index, l the node index, and x3 the prediction for y.

1.3.3 Calculating the optimal weights

Approximating arbitrary functional relationships between variables is mathematically chal-
lenging. This is because the neural network MSE function (Equation 1.1) is non-convex,
with multiple local minima, so a numerical scheme needs to be used to find the best weights.
A numerical scheme is not guaranteed to find the global minimum. In practice, however, the
values of the distance function around most local minima are close to the distance function
value at a global minimum, so finding a "good" local minimum is sufficient [24].

Probably the most famous numerical algorithm to find the best weights, i.e. to train the
network is the gradient descent [30], although the conjugate gradient [49] and the L-BFGS
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[72] algorithms are frequently used as well. Before performing the gradient descent, we
normalize all the variables through

X̃1 =
X̃1 −µX̃1

σX̃1

Y =
Y −µY

σY
,

(1.5)

where X̃1 is the X1 matrix without the last column, Y a set of dependent variable values,
(µX̃1,σX̃1) are matrices whose columns comprise the means and standard deviations of
independent variables, and (µY ,σY ) are the mean and the standard deviation of the dependent
variable. The normalization ensures all the independent variables are treated with equal
importance, which helps us to find better weights more quickly.

We then initialize each weight with Gaussian random numbers with 0 mean and 2
q

variance, where q is the number of hidden nodes. This weight initialization has been shown
to be mathematically optimal for the ReLu function [45]. The weights are iteratively updated
with a negative product of a positive real number α , known as a learning rate, and the gradient
of the cost function with respect to the weights

Wk+1 =Wk −α∇Wk µ(Wk), (1.6)

where k denotes the iteration step and ∇ the gradient. For the datasets used in this Thesis,
we found the learning rate of 0.01 to be large enough to allow the gradient descent to find a
good local minimum in a few enough steps but small enough not to "overshoot" good local
minima and get stuck in a bad one. To find the gradient, we use a backpropagation algorithm
[111], in which the partial derivatives of the MSE with respect to the weights are calculated
through chain rule.

Unfortunately, since each weight needs to be updated separately, gradient descent is much
slower than the L-BFGS or conjugate gradient algorithms. Nonetheless, we can speed it up,
typically by O(102) through vectorization, which allows us to update all the weights at once.
With vectorization, we can typically train a neural network in under a minute on datasets
used in this Thesis. The vectorized form of gradient descent is

W 2
k+1 =W 2

k − α

N
(X2

k )
T (X3 −Y )

W 1
k+1 =W 1

k − α

N
(X1)T

(
(X̃2

k W̃ 2
k −Y

)
(W̃ 2

k )
T ⊙H(X1W 1

k )

)
,

(1.7)
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where k denotes the iteration step , W 2 a set of weights in the output layer, W 1 a set of
weights in the hidden layer, W̃ 2 is W 2 without the final row, X̃2 is given by Equation 1.3,
X2 is X̃2 augmented by an identity column vector, ⊙ the Hadamard product, and H the
Heavyside function acting on a matrix element-wise.

The weights are updated until a convergence criterion is met or the maximum number of
steps is performed. In this Thesis, we use the early stopping convergence criterion. In early
stopping, we first split the data into k subsets, merge k−1 of them into a training set, and
test the network’s predictive power on the remaining set. We record the MSE’s training and
test set values every 250 steps. Once more than 5000 steps have been performed, we also
start recording the averages of the last 20 training and test set errors. If this average has been
decreasing for last 20 training recordings yet increasing for last 20 test recordings, we stop
training the network. Otherwise, we train it for 200000 steps (Figure 1.3).

When we perform the above procedure k times, with each of the k subsets serving as
a test set exactly once, we perform a k-fold cross-validation, which allows us to estimate
the true predictive power of neural networks. In this Thesis, we usually use k = 5. With
cross-validation, we can also find the optimal number of hidden nodes by fixing the data split
and performing the cross-validation as a function of number of nodes. The optimal neural
network structure is the one with the best cross-validation performance (Figure 1.3).

25000 30000 35000 40000 45000 50000
Number of steps

0.0

0.1

0.2
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0.4

lo
g 1
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)

Cross-validation
Training
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Fig. 1.3 Optimization of neural network’s performance, illustrated on the boiling point of
alkanes. Early stopping is illustrated on the left and the identification of optimal number of
hidden nodes through cross-validation is illustrated on the right. For early stopping, only
the 25000th to 50000th steps are shown. The logarithm under a base 10 of training and test
MSE functions rescaled by their minima are presented. Test error is the smallest after 31000
steps so the would have stopped at 36000 steps had the early stopping been applied. To select
the best number of nodes, we use a coefficient of determination R2 as a metric (chapter 2),
whose maximization is mathematically equivalent to the minimization of the MSE.
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Even after normalizing the data, optimally initializing the weights, choosing a good
learning rate, vectorizing the gradient descent, applying early stopping and selecting the
optimal number of hidden nodes, we are not guaranteed to find a good local minimum, since
an unlucky weight initialization can lead to gradient descent being stuck in a saddle point
region. To resolve this issue, we train 16 neural networks in parallel, each with a different
fixed random seed, and take results from only 6 of them. A different constant random seed
for each network is chosen, which ensures reproducibility of results. With a multiple good
set of weights, we can reliably calculate the expected value and the uncertainty in neural
network fits/predictions.

1.4 Molecular dynamics

1.4.1 Motivation

Unfortunately, neural network still cannot predict all the properties of large alkanes, as
insufficient experimental data limit their extrapolative power. This is a major issue in
predicting kinematic viscosity, which is a primary measure of alkanes’ flow properties, and
is defined as a ratio of dynamic viscosity [13] and density. To alleviate this difficulty, we
obtain synthetic experimental data through physics based simulations. This would allow
neural networks to use the experimental and synthetic data, as well as their discrepancy, to
predict the kinematic viscosity of alkanes, and their knowledge is used to model properties
of quantum many body systems.

Several different simulation methods are commonly applied to model the properties of
physical many body systems, the most famous of which are:

• Monte Carlo simulations [98][46]

• Density functional theory [102]

• Molecular dynamics [60]

Monte Carlo simulations are used to estimate the ground state energy of quantum systems
(QMC) [98] and to calculate the physical properties of classical systems by sampling from
the Boltzmann distribution (MC) [46]. In density functional theory (DFT), one models the
properties of quantum many body systems, just like in QMC. However, the primary objects
of study are spatially dependent functions of electron density.

Despite their success in modelling the various properties of quantum and classical systems,
neither the QMC nor DFT are commonly used to model the kinematic viscosity of alkanes.
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While their use of atomic electronic structure to study many body systems adds a layer of
physical complexity, it makes simulations prohibitively computationally expensive to obtain
enough synthetic data. MC does not suffer from the same problem, yet "since MC only
depends on the positions of the atoms, dynamic information is lacking, and MC cannot be
used to e.g. estimate transport properties or diffusion constants" [81].

1.4.2 Introduction to molecular dynamics

By treating atoms as single particles with no underlying substructure, and with the ability
to incorporate dynamic information, molecular dynamics does not suffer from the same
pitfalls as QMC, DFT, or MC. Despite modeling physical systems at a lower level of physical
complexity, molecular dynamics has found applications in many areas of science, from
biology [53] to materials science [116]. Motivated by classical statistical physics, the
fundamental object of study in molecular dynamics is the classical many body Hamiltonian

H0({p⃗i}, {⃗r}) =
N

∑
i=1

||p⃗i||22
2mi

+U({⃗ri}), (1.8)

where H0 is the Hamiltonian, {(ri, pi,mi)} a set of atomic coordinates, momenta and
masses, and U({⃗ri}) the potential energy. The atomic equations of motion are given by the
Hamiltonian dynamics

v⃗0
i = ∇p⃗iH

0({ p⃗i}, {⃗ri}) =
p⃗i

mi

a⃗0
i =

−∇⃗riH
0({p⃗i}, {⃗ri})

mi
=

F⃗i

mi
,

(1.9)

where (⃗vi, a⃗i) symbolize atomic velocity and acceleration, and the force on each atom is
given by the gradient of potential energy, known as a force field [35], with respect to atom’s
position

F⃗i =−∇⃗riU({⃗ri}). (1.10)

Force field is expressed as a sum of interatomic angle dependent bond energy, the
interatomic distance dependent Van der Waals energy, and the interatomic distance dependent
Coulomb energy

U({⃗ri}) =UΘ({θ⃗i})+UV dW ({ri})+UC({ri}), (1.11)
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where {θ⃗i} is the set of angles and {ri} a set of distances between the atoms. The full
details of interactions between the atoms are not known, so they are estimated, usually
semi-empirically by fitting a specific functional form to experimental data. Some of the most
common force fields obtained in such a way are Amber [1], GROMOS [3], CHARMM [2],
and OPLS [58]. There has, however, been an increase in the use of machine learning [122]
and density functional theory methods [55], [84] in designing force field with the intention
of bridging the gap in the accuracy between molecular dynamics and the quantum mechanics
based simulation methods such as DFT or QMC.

In this Thesis, we use the SciPCFF force field, which is a Scienomics2 implementation
of the PCFF [118] force field with primarily COMPASS [117], and several proprietary
parameters. This force field uses a 9-6 Lennard-Jones (LJ) potential for the Van der Waals
potential, and we apply a dielectric constant of 1 to the Coulomb potential. We calculate the
Lennard-Jones and Coulomb interactions through the particle mesh algorithm [51] with a
precision of 0.0001, and apply a 12Å cutoff without smoothing to both of them. Additionally,
we apply tail corrections to the r−6 part of the Lennard-Jones, and Coulomb potentials. These
corrections do not influence the properties studied in this Thesis, yet affect the pressure,
whose average simulation value is used as a check that density simulations have been
performed correctly.

1.4.3 Density simulation details

To model density with molecular dynamics, we first prepare simulation input files in the
Scienomics’ MAPS platform by building a cubical unit cell with a side length of 40Å
and density of 800g

l at the simulation temperature, and then apply the periodic boundary
conditions. Cell’s geometry is optimized through 500 steps of conjugate gradient [49] energy
minimization to find the best initial simulation conditions.

We perform the simulations in the LAMMPS software [107], and the NPT ensemble
for 1ns with a time step of 1fs, to approximate real life experimental conditions. Equations
of motion are the non-Hamiltonian generalisations [121] of Equation 1.9 and include the
equations for the heat bath, with their full details presented in Shinoda et al [59]. To ensure
the system is kept at constant pressure and temperature, we use a 10fs temperature damping
and a 350fs pressure damping. During the simulation, a volume measurement is taken
every 1ps. The mean and the uncertainty in simulation density are calculated from the
measurements after 30ps, after the system has equilibriated (Figure 1.4).

2https://www.scienomics.com/

https://www.scienomics.com/
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Fig. 1.4 Volume vs simulation time for density of 4-ethyl-4-methylheptane at 25◦C for first
150ps of the simulation. V (t = 0) = 64nm3 and is not shown since it’s a guess system
volume. System equilibriates after approximately 25ps, but we conservatively consider
volume measurements only after 30ps.

1.4.4 Non-equilibrium molecular dynamics

Molecular dynamics can also be utilized to model dynamic viscosity. A common approach
is to use the equilibrium molecular dynamics in the canonical (NVT) ensemble. In this
approach, viscosity is calculated through the mathematically exact Green-Kubo relationship
[37]

µ =
V

kBT

∫
∞

0
E[Pxy(t)Pxy(0)]dt, (1.12)

where V is the system volume, T the absolute temperature, kB the Boltzmann constant, E
the expectation operator, and Pxy the xy component of the viscous stress tensor, given by

Pxy =
N

∑
i=1

px
i py

i
mi

−∑
i> j

(xi − x j)
∂Ui j

∂y j
, (1.13)

where i is the atomic index, p j the jth component of atomic momenta, x and y atomic
coordinates, and Ui j the potential energy arising from the interaction between two atoms.
Since the viscous stress autocorrelation function (E[Pxy(t)Pxy(0)]) effectively vanishes for
large times, the integral in Equation 1.12 can be truncated without compromising the accuracy
of the Green-Kubo method. However, since it vanishes very slowly for larger molecules,
increasing by an order of magnitude when several carbon atoms are added to a molecule [76],
equilibrium molecular dynamics is impractical to use for larger alkanes.
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One can, however, perform the simulations outside of equilibrium to model viscosity of
heavy alkanes. We accomplish this by adding a term H

′
to the Hamiltonian in Equation 1.8.

In the case of dynamic viscosity, this term takes the form of Doll’s tensor [124]

H
′
=

N

∑
i=1

r⃗i ⊗ p⃗i : (∇u⃗)T , (1.14)

where ⊗ symbolizes the outer product, : the dyadic product, T a matrix transpose, and
(∇u⃗)T the strain tensor whose elements are given by the partial derivative of speeds with
respect to coordinates. The modified, DOLLS equations of motion are then

v⃗i = v⃗0
i +(∇u⃗)⃗ri

p⃗i = p⃗0
i − (∇u⃗)T p⃗i,

(1.15)

where v⃗0
i and p⃗0

i are given by Equation 1.9. For small perturbations from the equilibrium,
these equations of motion agree with the linear response theory, and in the limit of a zero
strain rate perturbation the Green-Kubo (Equation 1.12) expression for the dynamic viscosity.
Still, viscosity simulations are unreliable and inaccurate at small perturbations, and the
DOLLS equations of motion cannot describe the full range of shear flow in a non-linear
regime [37].

We can, however, adapt the DOLLS equation of motion for the momenta, with the only
difference the disappearance of the transpose of the strain rate

p⃗i = p⃗0
i − (∇u⃗)p⃗i. (1.16)

These equations of motions are known as the SLLOD equations of motion [38], and they
lead to the same results as the DOLLS formalism in the linear regime, but can accurately
describe the shear flow for all the shear rates [37].

1.4.5 Viscosity simulation details

With the SLLOD equations of motion, we can perform the non-equilibrium molecular
dynamics viscosity simulations. We do so by simulating the Couette flow, with the shear
applied only in the xy plane, such that (∇u⃗)xy = γ̇ is the only non-zero strain rate element. To
physically reproduce the Couette flow in the simulation box, we impose the Lees-Edwards
boundary conditions, which, unlike the periodic boundary conditions for density, alter the x
positions and velocities when the particle leaves the simulation box in the y direction [70].
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Preparing the viscosity simulations follows the same recipe as in subsection 1.4.3, but a
simulation cell has the experimental/best approximation of density to ensure that simulation
is performed at an accurate pressure. Simulations are performed in the NVT ensemble, and
equations of motion are integrated with the velocity Verlet algorithm

r⃗i(t +∆t) = r⃗i(t)+ v⃗i(t)∆t +
1
2

a⃗i(t)(∆t)2

v⃗i(t +∆t) = v⃗i(t)+
1
2

(
a⃗i(t)+ a⃗i(t +∆t)

)
∆t,

(1.17)

where t is the time, and ∆t = 1 f s is the timestep. The simulation cell is kept at a constant
temperature through the Nosé-Hoover chain thermostat [83] with a 100fs time damping,
while a 0.2 drag coefficient is introduced to prevent the temperature oscillations. Simulation
time varies as a function of shear rate to improve the confidence in viscosity predictions
(Table 1.1). The xy component of the stress tensor (Pxy) is recorded every 100fs and its
expectation value and uncertainty calculated the same way as for density.

log(γ̇) (s−1) Tsim (ns)
10.30-12.00 1
10.10-10.30 2
9.35-10.10 4
<9.35 8

Table 1.1 Viscosity simulation times

The expected value of kinematic viscosity at a shear rate γ̇i is calculated as the ratio of
the negative expected value of the xy component of the viscous stress tensor and a product of
the simulation shear rate and liquid density

η(γ̇i) =
−E[Pxy]

ργ̇i
, (1.18)

where E, ρ and γ̇i denote the expectation operator, alkane’s density and the shear rate,
while its uncertainty is calculated as the ratio of the uncertainty in the xy component of the
viscous stress tensor and a product of shear rate and liquid density

δη(γ̇i) =
δPxy

ργ̇i
, (1.19)
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where δPxy denotes the uncertainty in the xy component of the shear stress tensor and
we have neglected the uncertainty in density, since typically δρ

ρ
≪ δPxy

Pxy
. Uncertainty in

kinematic viscosity can in principle be reduced by increasing the simulation time, but its
ultimate minimum is in practice limited by its dependence on the reciprocal shear rate.

Since we cannot perform the simulations at small shear rates, viscosity’s shear rate profile
is first fitted to the Carreau model

η(γ̇) = η∞ +(η0 −η∞)[1+(λ γ̇)2]
n−1

2 , (1.20)

where η0 is Newtonian viscosity, η∞ is the value of lower Newtonian plateau, n a
nonnegative parameter that determines the shape of the Carreau curve between two plateaus,
and λ determines the range of shear rates between the two plateaus. To calculate Newtonian
viscosity, we minimize the weighted least squares (WLS) cost function

C(η0,η∞,n,λ ) = ∑
i

[ηi −η(γi)]
2

δη2
i

, (1.21)

where ηi is the simulation result of kinematic viscosity at γi,η(γi) is the Carreau model
viscosity at shear rate γi, and δηi is the uncertainty in kinematic viscosity. The choice of
cost function ensures that we assign higher weights to viscosity results at higher shear rates,
with a larger signal to noise ratio which ensures a more reliable extrapolation of Newtonian
viscosity. We minimize the WLS cost function with the Levenberg-Marquardt algorithm [71]
[80] and the initial parameter guesses of

{η0,η∞,n,λ}=
{

max{η},min{η},1, 1
min{γ̇}

}
, (1.22)

where {n} and {γ} are the set of viscosity simulation results and shear rates at which we
perform the simulations.

1.4.6 Data blocking

Since the motion of atoms and molecules during the molecular dynamics simulations is
deterministic, consecutive measurements of physical quantities are correlated, which results
in underestimating their uncertainty.

To accurately determine the uncertainty in the property of interest, we use data blocking
[40]. In data blocking, consecutive measurements are first assembled into blocks of equal
size. Next, the mean of each block is taken as its representative value. The uncertainty in the
property of interest is calculated as a standard deviation in the mean in the blocked set. To
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obtain an actual value of uncertainty, blocking procedure is performed iteratively until the
uncertainty reaches its maximum, which indicates that the measurements are decorrelated. In
this Thesis, the number of data entries is halved with each blocking round.

We illustrate the data blocking procedure by determining the uncertainty in density of
4,4-dimethyl-heptane at 100◦C (Figure 1.5), which arises from expansion and contraction of
the simulation cell. In this example, volume measurements become uncorrelated after five
blocking rounds (highlighted by a blue dot with error bars in Figure 1.5).
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Fig. 1.5 Applying data blocking to determine the uncertainty in density of 4,4-dimethyl-
heptane at 100°C. Dots represent expected values of uncertainties while bars represent their
uncertainties.

1.5 Mixtures

Base oils are mixtures, comprising several types of alkanes and the knowledge of pure alkanes’
physical properties is insufficient to computationally design them. This is because different
alkane species interact, so their properties cannot be predicted from weighted averages of
pure alkanes properties [87]. To resolve this issue, several semi-empirical mathematical
expressions have been developed to model properties of alkane mixtures as a function of their
components’ molar fractions [86] [44] [100] [62] [9]. None of these expressions, however,
have enough extrapolative power nor offer new physical insight, so we do not use them in
this Thesis.

The lack of experimental physical property data for mixtures of alkanes is the reason why
we also do not use the neural networks or molecular dynamics to model properties of mixtures.
The smaller amount of experimental data coupled with the larger number of compounds than
for pure alkanes mean neural networks cannot at present establish the connection between
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the mixtures’ composition and their properties, and that sufficient number of molecular
dynamics simulations cannot be performed in an allocated time period for this project to
expand the mixtures’ dataset to a level where neural networks can use it. Instead, we derive a
mathematical expression for properties of mixtures whose components are uniformly spatially
distributed molecules in a liquid phase (Figure 1.6), and apply it to alkanes. To apply this
mathematical expression to mixtures of alkanes, we first fit it to experimental data and then
use the best fit parameters to predict properties of new alkane mixtures.

Fig. 1.6 Examples of two mixtures with different spatial molecular distributions. The mixture
on the left comprises molecules that follow a uniform spatial distribution, while the ones on
the right form clusters with the other molecules of the same type.

1.6 Outline

With the motivation for studying the properties of alkanes and the basics of methods used to
study them in place, we now outline the body of this Thesis:

• In chapter 2, we encode molecular structure of linear, single-branched, and double-
branched alkanes into a set of non-negative integers, and use neural networks to
correlate it to flash point, density and viscosity of linear alkanes, and the boiling point,
molar heat capacity, melting point, and vapor pressure of alkanes with up to 12 carbon
atoms and 2 branches.

• In chapter 3, we model the density of alkanes with up to ten carbon atoms with
molecular dynamics, present a statistical scheme that corrects the systematic error in
simulation results, develop a sampling algorithm that automatically selects the shear
rates at which to perform the viscosity simulations, and apply this sampling algorithm
to linear alkanes.

• In chapter 4, we use the neural networks to model the molecular dynamics density
values and extrapolate to density of 11-heptyltricosane, 8,11-dipentyloctadecane, and
8,14-dipentylhenicosane at 40°C and 100°C to obtain viscosity simulation state points,



1.6 Outline 17

then perform the viscosity simulations with the help of the sampling algorithm from
the previous chapter, and use the simulation results to calculate the viscosity index.

• In chapter 5, we develop a theory of mixtures of molecular liquids whose molecules
follow a uniform probability distribution, and apply it to model the molar volume,
surface tension, isentropic compressibility, and dynamic viscosity, as well as predict
the dynamic viscosity of mixtures of alkanes

In each chapter, we compare our results to experiments, and offer the final remarks in
chapter 6.





Chapter 2

Predicting physical properties of pure
alkanes with neural networks

We encode alkanes’ molecular structure into a set of five non-negative integers to model the
boiling point, vapor pressure, and molar heat capacity of light alkanes with up to 2 branches,
and flash point and kinematic viscosity of linear alkanes with artificial neural networks. The
accuracy of neural network models is assessed through cross-validation and compared to
linear regression and several other semi-empirical methods. Neural networks show higher
accuracy, consistency and confidence than all the models, suggesting they can predict the
boiling point, the vapor pressure and heat capacity of alkanes. However, due to insufficient
amount of branched alkane data, they cannot predict the flash point or kinematic viscosity,
while accounting for additional physical effects is necessary to predict their melting point.
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2.1 Introduction

2.1.1 Motivation

Lubricants are an important component in modern industry. They are used to reduce friction
between surfaces, protect them from wear, transfer heat, remove dirt, and prevent surface
corrosion to ensure the smooth functioning of mechanical devices. The demand for lubricants
makes them an important economic component in the oil and gas business, while their
importance is only expected to grow, even as we move towards a future where fossil fuels are
a less significant source of energy.

A typical industrial lubricant comprises mainly base oils, which are a mixture of pre-
dominantly alkanes with between 18 and 40 carbon atoms, and base oil enhancing additives.
Unfortunately, the connection between the lubricants’ composition and their properties is not
understood. Understanding the link between the physical properties of pure alkanes and their
molecular structure is the first step in illuminating this connection. This would be a first step
towards computationally designing optimal base oils, which would motivate the distillation
of base oil constituents to approach this optimum in practice.

Melting, boiling, and flash point, molar heat capacity, vapor pressure, density, and
dynamic viscosity are key alkanes’ physical properties for application in base oils. Boiling
and melting point tell us the range of temperature values at which alkane is a liquid. Dynamic
viscosity and density are usually not useful individually, yet their ratio, kinematic viscosity
is a primary measure of alkane’s internal resistance to flow. Vapor pressure is a measure of
alkane’s tendency to evaporate, and flash point of its flammability in the presence of fire, so
are key indicators of alkane’s safety.

2.1.2 Previous work

The physical properties of alkanes relevant for base oil lubricant design have previously
been modeled with a variety of semi-empirical and empirical methods. Wei explored
the relationship between rotational entropy and the melting point [60], while Burch and
Whitehead used a combination of molecular structure and topological indices to model the
melting point of single branched alkanes with fewer than 20 carbon atoms [15]. To predict
the normal boiling point of alkanes, Messerly et al. merged an infinite chain approximation
and an empirical equation [88], while Burch, Wakefield, and Whitehead [16] used topological
indices and molecular structure to model it for alkanes with fewer than 13 carbon atoms and
Constantinou and Gani [26] developed a novel group contribution method to calculate it for
various organic compounds.
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Mathieu developed a group contribution based method to calculate the flash point of
various alkanes [36], while Ruzicka and Domalski estimated the heat capacity of various
liquid alkanes using a second order group additivity method [112]. De La Porte and Kossack
have developed a model based on free volume theory to study long chain linear alkane
viscosity as a function of temperature and pressure [68], Riesco and Vesovic have expanded a
hard sphere model to study similar systems [99], and Novak has established a corresponding-
states model to study viscosity of linear alkanes for the entire fluid region [75]. Marano et
al. developed an empirical set of asymptotic behavior correlations to predict the physical
properties of a limited family of alkanes and alkenes [77],[78],[79]. Alqaheem and Riazi,
and Needham et al. have explored correlations between different properties ([6],[96]) to
predict the missing values.

While all the semi-empirical and empirical approaches have merits they do not possess
enough extrapolative power and cannot be used to predict the physical properties of alkanes.
Fortunately, there is another statistical tool that we could use to accomplish this goal, called an
artificial neural network (ANN) [14],[57] (Figure 1.2). Their ability to accurately approximate
continuous functional relationships between the variables [31] [106] made them a cornerstone
of the digital age, with applications from computer vision to digital marketing, and they have
already been applied to physical properties of organic compounds in a variety of settings.
Suzuki, Ebert and Schüürmann used physical properties and indicator variables for functional
groups to model viscosity as a function of temperature for 440 organic liquids [119], and
Ali implemented a conceptually similar approach to model vapor pressure as a function of
temperature for various organic compounds [120]. Hosseini, Pierantozzi, and Moghadasi,
on the other hand used pressure, pseudo-critical density, temperature and molecular weight
as neural network inputs to model dynamic viscosity of several fatty acids and biodiesel
fuels as a function of temperature [54]. In this chapter we apply the neural network protocol
from section 1.3, since the neural network outputs are property uncertainties as well as their
average values.

2.1.3 Molecular basis

To capture the connection between alkanes’ physical properties and their molecular structure,
we develop molecular basis, which uniquely encodes the structure of every linear, single-
branched and double-branched alkane into a set of five non-negative integers up to optical
isomerism, which has no effect on the properties studied here. This allows us to have a set
of input nodes for each property without possessing experimental alkane data. Molecular
basis of an alkane is first found by representing a molecule as a graph (Figure 2.1) and then
determining its elements as
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Fig. 2.1 The molecular basis of 3-ethyl-2-methylhexane comprises the five parameters
(9,1,1,3,2).

1. The number of carbon atoms.

2. The smaller number of C-C bonds between the end of the longest carbon chain and its
closer branch.

3. The number of C-C bonds in the branch closer to an end of the longest carbon chain.

4. The number of C-C bonds between the other end of the longest carbon chain and its
closer branch.

5. The number of C-C bonds in the second branch.

Note that if an alkane has a single branch, the last two basis elements are 0, while if an
alkane is linear, only the first element is nonzero.

2.2 Results

2.2.1 Simulation protocol

In this section, we apply artificial neural networks to model the physical properties of alkanes.
In subsection 2.2.2, we model the molar heat capacity at 25◦C, in subsection 2.2.3 the
boiling point, in subsection 2.2.4 the vapor pressure, in subsection 2.2.5 the flash point, in
subsection 2.2.6 the melting point, and finally in subsection 2.2.7 the kinematic viscosity. The
predictive power of neural networks is estimated through cross-validation (subsection 1.3.3),
and the accuracy of neural network models compared to linear regression (LR) models
with the same independent variables and the same cross-validation data split, as well as to
another semi-empirical method where possible. We assess the models’ accuracy through the
coefficient of determination R2 and the average absolute deviation (∆)
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R2 = 1− E[(Ymod −Yexp)
2]

σ2[Yexp]

∆ = E[|Ymod −Yexp|],
(2.1)

where Ymod symbolizes model estimate of the experimental physical property values Yexp,
E the expectation, and σ2 the variance operator. Coefficient of determination has been chosen
for its frequent use in linear regression, while ∆ allows us to directly assess the closeness of
model to experimental values. To assess the models’ performance further, we also use the
standard deviation in the absolute deviation (σ∆) and the expected model uncertainty (δ )

σ∆ = (σ2[|Ymod −Yexp|])0.5

δ = E[δYmod],
(2.2)

where δYmod is the uncertainty in the modelled property values. These two additional
metrics help us assess the consistency in model accuracy and the confidence in their predic-
tions.

2.2.2 Heat capacity

We model the molar heat capacity of branched alkanes with 5 to 12 carbon atoms in a liquid
phase at 25◦C, whose 175 experimental values taken from the TRC Thermodynamic Tables
[4]. To do so, we train neural networks with 6 hidden nodes and molecular basis as inputs,
and perform 5-fold cross-validation. We also compare model accuracy with a second order
group additivity (GA) method [112]. While all three methods accurately model heat capacity,
the neural network is the most accurate, with the highest accuracy, results’ consistency, and
the smallest uncertainty, and the group contribution method is the least accurate, with the
lowest accuracy and no uncertainty in predictions (Figure 2.2).
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[112] heat capacity values are presented on the left, and the statistical summary on the right.
∆, σ∆, and δ all have the units of J
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clarity of presentation.

2.2.3 Boiling point

Next, we model the boiling point of 186 linear, single-branched and double-branched alkanes
with 5 to 12 carbon atoms, whose experimental values have been obtained from the TRC
Thermodynamic Tables ([4]). We train neural networks with 6 hidden nodes and perform a
5-fold cross-validation. For 63 of these alkanes, we compare results to model 7.2 from Burch
et al [16].

The neural network models have the highest R2 and the lowest σ∆, but model 7.2 has
the lowest ∆ (Figure 2.3). Model 7.2 performed badly on 3-ethyl-2-methylheptane, 3-ethyl-
3-methylpentane and 3-ethyl-3-methyl pentane, with the deviations of 19.4◦C, 19.5◦C and
24.3◦C, and R2 penalizes the outliers more heavily than ∆. Moreover, despite a low ∆, results
obtained from model 7.2 are direct fits to data and not their cross-validation extrapolations, so
no metric is indicative of model 7.2’s predictive power. Consequently, we deduce that neural
networks offer superior performance. Across a full dataset, neural networks outperform
linear regression on all metrics, with a higher R2 (0.993 vs 0.958), and a smaller ∆ (2.95 ◦C
vs 7.15 ◦C), σ∆ (3.55 ◦C vs 8.82 ◦C) and δ (1.41 ◦C vs 16.01 ◦C).
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Fig. 2.3 Parity plot of experimental vs neural network, linear regression, and model 7.2
[16] boiling point values are presented on the left, and the statistical summary on the right.
∆ and σ∆ have the units of ◦C. Uncertainties have been omitted to enhance the clarity of
presentation.

2.2.4 Vapor pressure

Vapor pressure is rarely experimentally recorded directly; instead, it is first measured as a
function of temperature, fit to a semi-empirical Antoine equation

log10 p = A− B
C+T

, (2.3)

and the coefficients A, B, C are recorded instead. Coefficients A and B arise from the
solution to the Clausius-Clapeyron relation in an ideal gas approximation, while C is empirical
and introduced to capture the temperature dependence of latent heat, and temperature T is
measured in ◦C. The Antoine equation is assumed to give an accurate description of alkanes’
vapor pressure between the temperatures at which p = 0.0013kPa and p = 1.97kPa.

To model the vapor pressure, we first model B and C with neural networks that have
6 hidden nodes on a dataset of 72 alkanes whose values have been obtained from the
TRC Thermodynamics Tables [4], and perform a 5-fold cross-validation. While the neural
network models outperform linear regression on all the metrics in modeling B, they are of
approximately equal accuracy for C, as linear regression has a slightly smaller ∆ but a larger
uncertainty than the neural network (Figure 2.4). The accuracy of linear regression models
for C is an indication that C is an approximately linear function of the molecular basis, and
that neural networks have slightly overfit this relationship.
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We can now calculate the vapor pressure and compare results to experimental values.
Before calculating the vapor pressure directly, we use the neural network boiling point, B,
and C values to calculate A, which is approximately constant for all the alkanes. We have
excluded methane from the calculation, as its boiling point calculated from the Antoine
equation with the experimental values of the coefficients does not agree with its experimental
value, and 3-ethyl-3-methylhexane and 3-ethyl-2-methylhexane as we cannot check that the
experimental boiling point value agree with the Antoine equation fit, as they have not been
measured.

As vapor pressure is a continuous function of temperature, we cannot use R2, ∆ or σ∆ to
determine the model accuracy. Instead, we define their continuous counterparts, R̃2, ∆̃, and
σ̃∆, given by
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R̃2 = 1− E[Ẽ2
[pexp(T )− ppred(T )]]

σ2[Ẽ2
[pexp(T )− p̄exp(T )]]

∆̃ = E[Ẽ1
[pexp(T )− ppred(T )]]

σ
∆̃
= (σ2[Ẽ1

[pexp(T )− ppred(T )]])0.5,

(2.4)

where

Ẽl
[A(T )−B(T )] =

∫ Tmax
Tmin

|A(T )−B(T )|ldT

Tmax −Tmin

p̄exp =

∫ Tmax
Tmin

pexp(T )dT

Tmax −Tmin

(Tmin,Tmax) =
Bexp

Aexp − (−1.875,0.294)
+Cexp.

(2.5)

For these three metrics, we obtain R̃2 = 0.986, ∆̃ = 0.028kPa and σ
∆̃
= 0.025kPa, which

shows that neural networks can consistently accurately model the vapor pressure of light
alkanes.

2.2.5 Flash point

We model the flash point of linear alkanes with fewer than 31 carbon atoms, whose exper-
imental data was collected from two online sources [109], [105]. The quoted flash point
values of henicosane, docosane, tricosane, tetracosane, pentacosane, and hepatcosane are
estimated lower bounds rather than their values [105], so we do not use them in.

To model the flash point, we use the number of carbon atoms and boiling point as inputs.
The number of carbon atoms is in practice equal to the molecular basis for linear alkanes,
and the boiling point has been chosen for its approximately linear correlation with the flash
point for hydrocarbons ([6]). We train the neural network models with 5 hidden nodes,
perform a 10-fold cross-validation since the dataset is smaller than it was for the other
properties, and compare results to the group contribution method [36]. Neural networks
perform the best, with the highest accuracy, consistency and the smallest uncertainty, while
the group contribution method performs the worst, mispredicting the flash point of octane
and triacontane by over 30◦ C.
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Fig. 2.5 Parity plot of experimental vs neural network, linear regression, and group contribu-
tion [36] flash point values are presented on the left, and the statistical summary on the right.
∆, σ∆, and δ have the units of ◦C. Uncertainties have been omitted to enhance the clarity
of presentation. ∗ indicates the summary of all results, with methane included, whose flash
point the group contribution method does not model.

Since neural network is the most accurate of the three methods, we have used it to predict
the flash point values of remaining linear alkanes. These values could replace the erroneous
experimental entries and the missing flash point values (Table 2.1).

Name T nn
f (◦C) δT nn

f (◦C)

Henicosane 184.43 7.37
Docosane 194.71 3.60
Tricosane 199.50 5.45

Tetracosane 204.27 8.55
Pentacosane 214.94 6.24
Hexacosane 222.03 8.06
Heptacosane 224.87 6.97
Nonacosane 233.00 3.28

Table 2.1 Neural network predictions of erroneous/missing linear alkane flash point values.

2.2.6 Melting point

We model melting point of 51 alkanes with up to 12 carbon atoms, whose experimental
entries have been obtained from TRC Thermodynamic Tables [4]. Initially, we train neural
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networks with molecular basis as inputs and 6-hidden nodes, performing an 8-fold cross-
validation. Unfortunately, neither the neural networks nor linear regression are accurate, with
R2 = 0.723 for the neural network, and R2 = 0.528 for the linear regression.

To improve the accuracy of neural network and linear regression models, we introduce
two additional input variables. The first can be either 1 or 0, depending on whether the
longest carbon chain has an even or odd number of carbon atoms. Its introduction has
been motivated by the empirical observation that alkanes with the even number of carbon
atoms in the longest carbon chain have a higher melting point than the ones with an odd
number of atoms. The number of molecular symmetries is the second input variable, and
its introduction has been motivated by the observation that alkanes with a higher number of
molecular symmetries have a higher melting point [60].

With these two additional input variables, we model the melting point again, this time
using the neural networks with 8 hidden nodes. The model accuracy has improved for
both methods (Figure 2.6), and the neural network models with the additional symmetry
information is the most accurate. This shows the usefulness of symmetry information in
modeling and signals the importance of entropic effects on the alkanes’ melting point.
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Fig. 2.6 Parity plot of experimental vs neural network and linear regression, with and without
symmetry inputs melting point values are presented on the left, and the statistical summary
on the right. ∆, σ∆, and δ have the units of ◦C. Uncertainties have been omitted to enhance
the clarity of presentation.

2.2.7 Kinematic viscosity

Finally, we model liquid density and dynamic viscosity of linear alkanes as a function of
temperature. Our dataset comprises 84 data entries for density and 89 for viscosity, with data
collected from several research papers ([8], [12], [18], [20], [48], [85], [114], [125]). We
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train a set of neural networks for density and another set for viscosity, each with a number
of carbon atoms and temperature as inputs, 5-hidden nodes and a 5-fold cross-validation.
We note that neural networks perform better than linear regression for both properties on all
metrics
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Now, we use the neural networks to predict kinematic viscosity of linear alkanes at 20◦

C, and compare to a model based on a free volume theory (FVT) [68]. Neural networks are
shown to be more accurate (Figure 2.8), with a much higher accuracy, results consistency and
the uncertainty in predictions which the free volume model does not include, with a higher
R2 (0.982 vs 0.749) and smaller ∆ (0.15cSt vs 0.31cSt) and σ∆ (0.08cSt vs 0.57cSt).
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Fig. 2.8 Neural network and free volume theory kinematic viscosity predictions of linear
alkanes at 20◦C.

2.3 Conclusions

In this chapter, we have used artificial neural networks (section 1.3) to model and predict
the physical properties of alkanes from their molecular structure, which was encoded in a
molecular basis. We have modelled the boiling point, melting point, heat capacity and vapor
pressure of linear, single-branched and double-branched alkanes with up to 12 carbon atoms,
and flash point and kinematic viscosity as a function of temperature of linear alkanes. Neural
network results have been compared to the ones from linear regression and, where available,
to a competing semi-empirical method.

Neural networks perform better than linear regression or other semi-empirical methods,
with the highest accuracy, consistency, and confidence in predictions. Still, for molar heat
capacity and the Antoine C coefficient, linear regression performs about as well as neural
networks. This signals that molecular basis adequately describes the molecular structure for
the purposes of modeling these properties, and exhibits a linear relationship with them. A
full set of results is presented in Appendix A.

From the applied standpoint, work in this chapter shows that we can use neural networks
to predict the boiling point, molar heat capacity, and vapor pressure of heavier alkanes with
molecular basis as inputs. The approximately linear relationship between the boiling point
and the flash point for linear alkanes offers signs that the same can be done for flash point
as well, although the lack of data for branched alkanes prevents us from checking whether
the same linear relationship holds for non-linear alkanes as well. Unfortunately, we still
cannot predict the melting point, which has not been accurately modeled and for which
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more physical effects need to be incorporated, or the kinematic viscosity due to a lack of
experimental data for non-linear alkanes. This means that several hurdles still have to be
overcome before we can accurately describe the connection between the alkanes’ structure
and their physical properties.



Chapter 3

Enhancing NEMD with automatic shear
rate sampling

We perform molecular dynamics simulations to model density as a function of temperature for
74 alkanes with 5 to 10 carbon atoms and non-equilibrium molecular dynamics simulations
in the NVT ensemble to model kinematic viscosity of 10 linear alkanes as a function of
molecular weight, pressure, and temperature. To model density, we perform simulations
in the NPT ensemble and apply correction factors to exploit the systematic error in the
SciPCFF force field. Comparing results to experimental values, we obtain an average
absolute deviation of 3.4 g

l at 25°C and of 7.2 g
l at 100°C. We develop a sampling algorithm

that automatically selects good shear rates at which to perform viscosity simulations in the
NVT ensemble and use Carreau model with weighted least squares regression to extrapolate
Newtonian viscosity. Viscosity simulations are performed at experimental densities and show
an excellent agreement with experimental viscosities, with an average percent deviation of
-1% and an average absolute percent deviation of 5%. Future plans to study and apply the
sampling algorithm are outlined.
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3.1 Introduction

Alkanes are of great interest to both the academic community and a large number of scientists
and engineers using them in industry. In academia, their chemical simplicity makes them an
ideal testing ground for applications of novel computational methods in studying physical
properties of complex fluids. In industry, understanding alkanes and their properties is
essential to produce superior oil and gas products.

Kinematic viscosity, which is a measure of their flow properties, is one of alkanes’ most
important properties. However, the viscosity of pure alkanes is still poorly understood. While
many viscosity measurements of mixtures are made in industrial laboratories on a daily basis,
the viscosity of only about 20 pure alkanes has been published in the academic literature,
and difficulties in separation of different isomers beyond dodecane prevent engineers and
scientists from making measurements of viscosity of large alkanes. Consequently, several
theoretical and computational methods have been developed to investigate alkanes’ viscosity
variation with molecular structure, temperature, and external pressure. For example, De La
Porte and Kossack modelled viscosity of long chain n-alkanes with a model motivated by the
free volume theory [68]; Riesco and Vesovic used a hard sphere model to predict viscosity of
similar systems [99], and Novak modelled viscosity of alkanes with a corresponding states
model [75]. Modern statistical methods have also been used to model viscosity of alkanes.
Santak and Conduit modelled kinematic viscosity of n-alkanes with a neural network that
can make predictions on sparse datasets [113]; Suzuki et al. utilized fully connected neural
networks to model viscosity as a function of temperature of various organic compounds
[119], while Hosseini et al. used a neural networks and a hard sphere model to model similar
systems[54].

Equilibrium molecular dynamics (EMD), frequently applied to model viscosity of light
alkanes, is another popular computational method. Cui et al. modelled viscosity of hex-
adecane, tetracosane, and decane [28], and compared molecular and atomic formalisms for
EMD simulations of decane [27]; Singh, Payal et al. modelled viscosity of hexadecane with
several force fields [104]; Zhange and Ely modelled viscosity of alkane systems and alcohols
[129], while Kondratyuk modelled viscosity of triacontane [67]. Furthermore, Kioupis and
Maginn modelled viscosity of a hexane/hexadecane mixture [64], and determined the vis-
cosity number in addition to investigating viscosity variation with pressure of three distinct
poly-α-olefins [65] [66], while Mundy et al. predicted viscosity of n-decane, n-hexadecane,
6-pentylundecane, 7,8-dimethyltetradecane, 2,2,4,4,6,8-heptamethylnonane, n-triacontane
and squalane [94] and determined pressure-viscosity coefficient of decane [95].

Nevertheless, none of the semi-analytical methods, the modern statistical methods and
EMD have been certified to reliably model the viscosity of all alkanes. Semi-analytical
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methods do not possess enough sufficient predictive power to be judiciously extrapolated
to alkanes outside of the training set, which usually comprises a limited set of light alkanes.
Modern statistical methods possess greater extrapolative power than their semi-analytical
counterparts, yet their utility is still limited by the lack of experimental data. EMD can
in principle be used for all alkanes, but because of slow relaxation of the stress-stress
autocorrelation function [101] [28] for larger molecules [76], it is recommended to primarily
use it to model viscosity of light molecules [76].

Another physics based simulation method that has gained momentum in the past several
decades is the non-equilibrium molecular dynamics (NEMD) [92], in which shear is applied
to a molecular system, usually at fixed temperature and volume. A molecular dynamics
simulation is performed at several shear rates, and the shear rate profile of the kinematic
viscosity is then extrapolated to Newtonian viscosity. In addition to applying EMD, Kioupis
and Maginn also used NEMD to model viscosity of hexane/hexadecane binary mixture
[64], and of three poly-α-olefins [65] [66], while Mundy et al. utilised NEMD to study
viscosity of decane [93] and several large branched alkanes [94]. Cui et al. used NEMD
to model viscosity of decane at 25◦C, hexadecane at 27◦C and 50◦C, tetracosane and 10-
hexylnonadecane at 60◦C, and squalane at 39◦C and 99◦C [29] [28]; McCabe, Pan, and
Evans modelled viscosity of decane [101] [32]; Liu et al. modelled viscosity of squalane and
1-decene-trimer [74]; Cho, Jeong, and Buig modelled viscosity of polymer melts [23]; Yang,
Pakkanen, and Rowley determined viscosity index of various lubricant size molecules [128],
as well as of several small alkane mixtures [127]; Liu et al. determined a pressure viscosity
coefficient of a 1-decene trimer [73]; Allen and Rowley compared different force fields to
model viscosity of small alkanes [5], while Khare, de Pablo and Yethiraj modelled viscosity
of hexadecane, docosane, octacosane and 5,12-dipropyl-hexadecane [63] and J.D Moore, S.T
Cui, H.D Cochran and P.T Cummings modelled viscosity of C100 [91] .

However, despite its past success in modeling viscosity of some alkanes, the contemporary
NEMD approach still suffers from three pitfalls. Any viscosity simulation result carries a
systematic error from the force field that determines the motion of atoms and molecules.
Also, to perform NEMD simulations at accurate external conditions, the density of the alkane
of interest needs to be either experimentally known or accurately modelled with molecular
dynamics. Despite possessing more experimental data for density than for viscosity, the
density of most alkanes is experimentally unknown, and while molecular dynamics simulation
results are frequently used to replace experimental values, they need to be in close agreement
with true values to be confidently applies as initial conditions in NVT simulations; otherwise,
simulations are performed at a wrong external pressure and viscosity simulation results will
carry a large systematic error due to viscosity’s pressure dependence. Finally, the reliability
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of viscosity simulations decreases, while uncertainty in viscosity simulation results increases
with decreasing shear rate, making direct identification of Newtonian viscosity difficult, with
its accurate extrapolation dependent on performing the simulations at appropriate shear rates.
Currently, no computational method is capable of systematically and automatically selecting
good simulation shear rates for any alkane at arbitrary external conditions.

In this chapter, we present two computational techniques that enhance the current NEMD
method. Firstly, in section 3.2, we use a data driven approach to correct the discrepancies
between the experimental and simulation density values. Then, in section 3.3, we develop a
sampling algorithm that automatically selects the good shear rates at which to perform the
simulations, and apply it to linear alkanes. Density simulations follow the procedure described
in subsection 1.4.3, and viscosity simulations the procedure described in subsection 1.4.4.
To assess the agreement between the experimental and modeled values, we use an average
absolute deviation (Equation 2.1) for density, and the average (∆%) and the absolute average
percent deviation (∆%) for kinematic viscosity, all the metric chosen for their interpretability
and widespread use in the literature

∆% = 100 ·E
[

Ymod −Yexp

Yexp

]
∆|%| = 100 ·E

[ |Ymod −Yexp|
|Yexp|

]
.

(3.1)

3.2 Density

We perform molecular dynamics simulations in the NPT ensemble for 74 alkanes at 25°C
and 34 alkanes at 100°C, and compare to experimental data from the TRC Thermodynamic
Tables [4]. To check the reliability of NPT simulation results, we investigate the average
pressures obtained in the NPT simulations. During a typical simulation, pressure varies
between -1500atm and 1500atm. However, after averaging within a simulation, pressure
varies between -30atm and 30atm, with statistical uncertainty obtained through data blocking
(subsection 1.4.6) from between 20atm and 30atm, and the atmospheric pressure within
the 95% confidence interval, which confirms that density simulations have been performed
properly.

Next, we analyse the statistical uncertainty in density simulations. First, we compare
uncertainties at two different temperatures. The average uncertainty at 25°C is 0.53 g

l , while
at 100°C it is 0.61 g

l , so there is no indication that increasing the temperature by 75°C
increases the statistical uncertainty in density simulation results for small alkanes. Then, we
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investigate the uncertainty as a function of molecular weight (Table 3.1) and deduce that
increasing molecular weight does not increase the uncertainty in average densities for light
linear, single-branched, and double-branched alkanes.

NC Nmol E[δρ] (g
l )

6 10 0.69
7 16 0.51
8 26 0.57
9 24 0.58

10 32 0.50
Table 3.1 Summary of uncertainty as a function of molecular weight. NC, Nmol and E[δρ] de-
note the number of carbon atoms, the number of molecules and the mean value of uncertainty
in density.

Initially, we obtain an average absolute deviation of 11g
l at 25°C, and of 16g

l at 100°C.
Since large discrepancies between the experimental and simulated densities lead to inaccurate
initial conditions for viscosity simulations if simulation densities are used as inputs, we look
to correct them. We do so through a data-driven approach by splitting the alkanes for which
we performed simulations into six groups, with each group either a homologous series or a
set of homologous series (Table 3.2). The discrepancy between simulations and experiment
within each group is approximately constant (Figure 3.1, left) , likely due to the systematic
bias in the SciPCFF force field, as the density of alkanes with fewer branches is modelled
more accurately, indicating that its parameters for alkanes have been developed mostly
from linear alkane data. For each group apart from the linear alkanes, the average group
discrepancy is larger at 100°C than at 25°C, possibly due to development of the SciPCFF
force field parameters mostly from room temperature data.
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Group Nmol (25 °C) |∆25◦C| (g
l ) Nmol (100 °C) |∆100◦C| (g

l )
linear 5 3.6 5 2.5

methyl series 14 6.1 7 9.4
2,2-dimethyl 5 26 3 34

other dimethyl 28 15 12 22
methyl-ethyl series 14 7.9 4 20

other 8 2.4 3 5.2
Table 3.2 Summary of group discrepancies. At both temperatures, number of molecules and
the average absolute deviation and standard deviation in discrepancy are presented. Since the
signs of discrepancies are consistent for each group, for all the groups but the linear group,
∆ = |∆|, with ∆ =−|∆| for linear alkanes.

Since viscosity simulations are in general performed at a constant density, results of
NPT simulations with large discrepancies are insufficiently accurate to be used as state
points for NVT simulations. To obtain more accurate results, we subtract the value of
average discrepancy between a group to which an alkane belongs from the simulation result
(Table 3.2). A small average pressure variation in simulation results justifies applying
the same correction factor at all pressures, since the isothermal compressibility factor is
approximately constant for the range of average pressures obtained from simulations [39].
However, since applying correction factors to simulation results is a poor indication of the
actual merit of applying them, we perform a leave-one-out cross-validation [57], in which
correction factors are calculated from all but one data entry and applied to the remaining data
entry, repeating for each entry in a dataset.

After applying a leave-one-out cross-validation, we obtain an average absolute deviation
of 3.4 g

l at 25°C (Figure 3.1) and of 7.2 g
l at 100°C, a significant improvement over the

results obtained from molecular dynamics simulations. The summary of all the results
is presented in Table 3.3, while the parity plot of corrected densities is presented in the
right part of Figure 3.1. At 25°C, the model performs the best for linear alkanes and the
worst for the 2,2-dimethyl homologous series and the group of other dimethyl alkanes. At
100°C, the model still performs the best for linear alkanes, but now it performs the worst
for the methyl-ethyl group, for which the average absolute deviation is 17 g

l . Such a large
discrepancy arises from a large spread in discrepancies in original simulation results across
the ethyl-methyl group. A full list of results can be found in Table B.1 and Table B.2.
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Group Nmol (25 °C) |∆25◦C| (g
l ) Nmol (100 °C) |∆100◦C| (g

l )
linear 5 0.93 5 0.84

methyl series 14 2.1 7 4.3
2,2-dimethyl 5 5.0 3 5.4

other dimethyl 28 4.9 12 9.6
methyl-ethyl series 14 3.1 4 17

other 8 1.4 3 2.8
Table 3.3 Summary of discrepancies after applying the correction factors and running a
leave-one-out cross validation. At both 25 °C and 100 °C, number of molecules and absolute
average deviation are presented.
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Fig. 3.1 Parity plot of density results vs experimental values before (left) and after (right)
correction factors are applied. Orange dots denote the linear alkane series, red dots denote
the methyl group, blue dots denote the 2,2-dimethyl series, violet dots denote the group
comprising all the other alkanes, light green dots denote the ethyl-methyl group, while the
group of all the other molecules is denoted with grey dots.

3.3 Viscosity

3.3.1 Identifying good shear rates

The ratio of speeds due to shear and due to particle interactions is proportional to the shear
rate, resulting in a low signal to noise ratio for viscosity simulations performed at low shear
rates. For a fixed shear rate, this ratio is smaller for larger temperatures due to smaller relative
contribution of the kinetic term to the shear stress tensor, heavier molecules due to inverse
relation between speed at a fixed temperature and molecular mass, and at higher pressures due
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to an increased virial term contribution arising from closer proximity of molecules at a fixed
volume. Therefore, direct identification of Newtonian viscosity with NEMD is challenging,
while poor statistics at low shear rates becomes an obstacle in its accurate extrapolation. The
range of good shear rates at which to perform viscosity simulations is a priori unknown, and
while the authors of previous NEMD studies have performed their simulations at reasonable
shear rates, they have selected them manually. Currently, an algorithm to automatically
sample good shear rates for an arbitrary alkane at any temperature and pressure does not
exist.

To automatically sample good shear rates for an arbitrary alkane, we first run a simulation
at the largest shear rate γ̇0. Next, we successively decrease the shear rate by a constant
x > 1 and perform simulations at two smaller shear rates γ̇1 = γ̇0

x and γ̇2 = γ̇0
x2 . Then, to

assess the vicinity to the upper Newtonian plateau, we calculate the probability that the
shear rate profile of kinematic viscosity between two smallest shear rates is concave up,
P[η(γ̇2)−η(γ̇1)> η(γ̇1)−η(γ̇0)] and compare it to a constant C ∈ [0,1] under the assump-
tion that kinematic viscosity at each shear rate is normally distributed under its mean and the
uncertainty. If P[η(γ̇2)−η(γ̇1)> η(γ̇1)−η(γ̇0)]>C, we again decrease the shear rate by a
constant x and run a simulation at γ̇3 =

γ̇2
x before we determine the probability that viscosity’s

shear rate profile between γ̇1 and γ̇3 is concave up. The process of performing the simulations
at successively smaller shear rates that are a constant fraction of the previous shear rate is re-
peated until P[η(γ̇n)−η(γ̇n−1)> η(γ̇n−1)−η(γ̇n−2)]<C. To avoid performing simulations
with a low signal to noise ratio, we do not perform the simulations at smaller shear. Instead,
we perform three more simulations at shear rates uniformly spaced between two smallest
shear rates γ̇n+1 =

γ̇n+γ̇n−1
2 , γ̇n+2 =

γ̇n+1+γ̇n
2 , and γ̇n+3 =

γ̇n+1+γ̇n−1
2 . In this manuscript, we use

γ̇0 = 1012s−1, x = 3 and C = 0.95 to cover a large range of shear rates with a relatively small
number of simulations and continue performing simulations at smaller shear rates only if
we’re 95% confident that viscosity’s shear rate profile in the region of interest is concave up.
A flow chart that concisely summarizes the sampling algorithm is shown in Figure 3.2.
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Run simulations at γ̇0,
γ̇0
x and γ0

x2

Calculate

P [η(γ̇n)− η(γ̇n−1) > η(γ̇n−1)− η(γ̇n−2)]

If P>C,

Run a simulation at γ̇n+1 = γ̇n
x

If P<C,

Run simulations at γ̇n+1 = γ̇n+γ̇n−1

2 ,

γ̇n+2 = γ̇n+1+γ̇n
2 and

γ̇n+3 = γ̇n+1+γ̇n−1

2

Fit to a Carreau model

Fig. 3.2 Schematic of the algorithm applied to determine appropriate shear rates.

We illustrate the sampling algorithm in modelling kinematic viscosity of octadecane at
50°C (Figure 3.3). Shear rate is consecutively decreased by a third down to log(γ̇) = 9.14,
when η = 3.39±0.29cSt. Kinematic viscosity at two immediate smaller shear rates (log(γ̇)=
9.61 and log(γ̇) = 10.09) is simulated and found to be 2.63±0.13cSt and 1.52±0.05cSt.
Since P[η(109.14)−η(109.61)> η(109.61)−η(1010.09)] = 0.1847, three more simulations
are performed at log(γ̇) = 9.44, log(γ̇) = 9.32 and log(γ̇) = 9.54, and data is fitted to the
Carreau model with a WLS regression (section 2.3).

While neither simulation has been performed at a low enough shear rate to directly
identify the upper Newtonian plateau, we have extrapolated Newtonian viscosity of 3.24cSt,
an excellent agreement with the experimental value of 3.23cSt reported in Caudwell et al.
[20].
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Fig. 3.3 Kinematic viscosity plotted against the shear rate for octadecane at 50◦C. Shear rate
is plotted on the logarithmic scale. Orange dots represent simulation results at high shear
rates; light green dot represents the simulation result at the lowest shear rate, while red dots
represent simulation results at intermediate shear rates.

3.3.2 Results

We now study kinematic viscosity of linear alkanes, which serve as a case study for evaluating
the reliability and accuracy of the sampling algorithm for two reasons. Firstly, they are the
homologous alkane series with the most available experimental data. Secondly, guided by the
results of density simulations, we expect the systematic error in the SciPCFF force field for
linear alkanes to be small compared to for the other homologous series. Consequently, the
discrepancy between simulations and the experiments arises primarily from the remaining
imperfections in choosing the shear rates. To directly assess the performance of the sampling
algorithm, we perform the simulations at experimental densities.

We first study viscosity as a function of molecular weight, modeling kinematic viscosity
of hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane and tetradecane
at 20°C at atmospheric pressure and compare results to experimental values from the TRC
Thermodynamic Tables [4] (Table B.3). Simulations accurately reproduce the experimental
data, with an average percent error of 5% (Figure 3.4) and the absolute percent error of 6.4%.
Simulations are the least accurate for heptane and tetradecane, with the percent errors of 13%
and -10%, while experimental values for all the alkanes apart from tetradecane are within the
95% confidence interval. Simulations systematically underestimate kinematic viscosity of
decane and heavier alkanes, which we attribute to the small systematic error in the SciPCFF
force field that also underestimated the density of linear alkanes.



3.3 Viscosity 43

To further evaluate the performance of the sampling algorithm, we compare the accuracy
of our prediction for decane to the prediction made in Cui et al.[29] at 25°C. Our prediction of
1.13±0.08cSt is in excellent agreement with the experimental value of 1.24cSt and compares
favourably with their prediction of 0.84±0.11cSt against the experimental value of 1.17cSt.

He
xa

ne

He
pt

an
e

Oc
ta

ne

No
na

ne

De
ca

ne

Un
de

ca
ne

Do
de

ca
ne

Tr
id

ec
an

e

Te
tra

de
ca

ne

0.5

1.0

1.5

2.0

2.5

3.0
(c

St
)

Fig. 3.4 Viscosity of linear alkanes at 20°C. Blue dots present experimental data, while orange
dots represent molecular dynamics predictions with accompanying statistical uncertainty.

Then, we explore the variation of viscosity with pressure, with tridecane at 60°C as a
case study, and the experimental data coming from Daug et al. [33] (Table B.4). Simulations
results are in excellent agreement with experiments (Figure 3.5), with an average percent
error of 2%, an absolute percent error of 4%, and the least accurate prediction at 100MPa,
with a percent error of 8%. All the experimental values are within a 95% confidence interval
of our predictions.
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Fig. 3.5 Viscosity of tridecane at 60°C as a function of pressure. Kinematic viscosity varies
approximately with the simulation density, highlighting the importance of using the accurate
initial simulation conditions.

Next, we calculate the pressure-viscosity coefficient, which is a measure commonly used
in industry to assess the pressure gradient of alkanes’ viscosity at a fixed temperature T . The
pressure-viscosity coefficient appears in the exponent of the following equation:

η(p,T ) = ηatm(T )eαp, (3.2)

where ηatm(T ) is a value of kinematic viscosity at atmospheric pressure and the tem-
perature of interest, and p is the pressure. An experimental value of the pressure viscosity
coefficient is 0.00886 MPa−1, while the simulations predict 0.00869 MPa−1. A percent error
of only -2% and the absolute percent error of 4% further confirm that we can accurately
capture the variation of alkane’s viscosity with pressure.

Thirdly, we study the variation of viscosity with temperature, focusing on viscosity of
octane, dodecane, and octadecane. Simulations are performed at temperatures at least 20°C
above alkanes’ melting points to avoid the crystallization of the cell. We first model viscosity
of octane (Table B.5) and dodecane (Table B.6), whose experimental viscosity’s temperature
profile was obtained from Caudwell et al. [20] [18]. Simulation results are in excellent
agreement with experiments, with the average percent error of -0.4% for octane and of 4% for
dodecane, and the absolute percent error of 4% and of 8% for dodecane (Figure 3.6). All the
experimental values lie within the 95% confidence interval of mean simulation predictions
apart from the octane results at 25 °C and 100 °C and the dodecane results at 200°C, primarily
due to an excellent fit of viscosity’s shear rate profile to the Carreau model.
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Finally, we model viscosity of octadecane, whose experimental values were obtained
from Caudwell et al.[18]. We observe that the simulations are in excellent agreement with
experimental values (Figure 3.6), with an average percent deviation of 0.4%, and the absolute
average percent error of 4%. Viscosity at 100°C was simulated with the smallest accuracy,
with a 6% percent deviation, while all the results apart from the one at 200°C are within
a 95% confidence interval. The longest total simulation time to model viscosity at a fixed
temperature is 36ns, which is only 5.14 times longer than the time spent to model viscosity
of hexane at 20°C. Such a small increase in total simulation time gives us further confidence
that we can apply the sampling algorithm to heavy alkanes without requiring excessive
computational resources like in equilibrium molecular dynamics.
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Fig. 3.6 Viscosity of octane, dodecane and octadecane as a function of temperature. Blue,
green and grey dots represent experimental values of their viscosity, while orange, red and
purple dots with accompanying statistical uncertainty represent values predicted by the
NEMD simulations.

With all the molecules’ viscosity modeled , we analyse the overall accuracy of viscosity
simulations. A parity plot showing experimental values against simulation results for all
the alkanes studied is shown in Figure 3.7. Simulations are in excellent agreement with
experiments, with an average error of -1% and the average absolute percent error of 5%.
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Fig. 3.7 Parity plot showing experimental viscosity values against the NEMD simulation
results.

Then, we study the percent error in our models as a function of predicted viscosity to
assess whether the simulations perform equally well at all viscosities (Figure 3.8). We note
that the average error fluctuates between about -10% and 10% for all the modelled viscosities,
indicating that the sampling algorithm could be successfully applied to heavy alkanes.
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Fig. 3.8 Percent error for all the data as a function of viscosity simulation results.

Finally, we study the statistical uncertainty in the mean predictions. We observe that the
uncertainty in NEMD viscosity predictions increases approximately linearly as a function of
predicted viscosity (Figure 3.9), with an R2 = 0.61 of the linear fit. The approximate linear
dependence of uncertainty on viscosity arises from uncertainty in the best fit parameters’
dependence on the matrix of uncertainties in kinematic viscosity at different shear rates,
whose entries are inversely proportional to the shear rate.
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Fig. 3.9 Uncertainty in Newtonian viscosity predictions as a function of viscosity predictions
and its best linear fit δηmodel = 0.065ηmodel +0.004

3.4 Conclusion

In this chapter, we modeled density and dynamic viscosity of alkanes with molecular dy-
namics. For density, we first performed molecular dynamics simulations in the NPT and
then applied correction factors to rectify the systematic error arising from the SciPCFF force
field, obtaining an absolute deviation of 3.4 g

l at 25°C and an absolute deviation of 7.2 g
l at

100°C. To model viscosity, we have developed a sampling algorithm to identify the good
shear rates at which to perform viscosity simulations. We have then utilised this algorithm
to study the kinematic viscosity of hexane, heptane, octane, nonane, decane, undecane,
dodecane, tridecane, and tetradecane at 20°C; viscosity of tridecane at 60°C as a function
of pressure, and viscosity of octane, dodecane, and octadecane as a function of temperature
at experimental densities. Simulation results are in excellent agreement with experiments,
with an average percent error of -1% and the average absolute percent error of 5%. The
average percent error stays approximately constant and fluctuates about 10% in magnitude as
a function of viscosity, while the uncertainty in viscosity predictions increases approximately
linearly with increased viscosity.

Work presented in this chapter sets a solid foundation for performing simulations of
more complex alkanes. The data driven approach to correct densities is ad hoc, and offers
no novel conceptual insights, yet upon performing more density simulations, more patterns
in the discrepancy between the simulations and the experiments can be identified, so better
correction factors to simulation densities can be applied. This would ensure that good initial
conditions for viscosity simulations are used when experimental densities for alkanes of
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interest are not available. Beyond automatically identifying good shear rates, our sampling
algorithm can be straightforwardly applied in high throughput screening, and its generality
means that it can be used as a basis to study viscosity of other liquids with a known functional
dependence on shear rates. To make the sampling algorithm better, one can also study
its mathematical properties, which would help the non-equilibrium molecular dynamics
simulations in the NVT ensemble to reach their optimum.



Chapter 4

Predicting kinematic viscosity and its
index of three heavy alkanes

We perform non-equilibrium molecular dynamics simulations in the NVT ensemble to predict
kinematic viscosity of 11-heptyltricosane, 8,11-dipentyloctadecane, and 8,14-dipentylhenicosane
at 40°C and 100°C, and calculate their viscosity index. To determine viscosity simulation
state points, we perform molecular dynamics density simulations at 25°C and 100°C for 141
linear, single-branched or double-branched alkanes with between 10 and 41 carbon atoms,
apply neural networks to extrapolate to other molecules and linearly interpolate network
predictions to 40°C. Neural network models are in excellent agreement with the molecular
dynamics density values, with cross-validation R2 ≥ 0.996, but viscosity simulations are
not in a good agreement with the experiments, with a percent error up to 55%. We identify
the systematic error in the SciPCFF force field as the main source of discrepancy between
simulations and the experiments.
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4.1 Introduction

Viscosity is a measure of alkanes’ resistance to flow, and one of their most physical properties.
Understanding its connection with the alkanes’ structure would enable manufacturing of
superior oil and gas products, such as lubricants. However, alkanes are most often found
in mixtures, and difficulties in separating their isomers with more than 12 carbon atoms
prevents experimental measurements of their viscosity. Moreover, as no theoretical method is
capable of predicting alkanes’ viscosity, several semi-empirical methods have been developed
to model it [18] [19] [68] [75] [99]. Unfortunately, the utility of these methods is still
dependent on the quantity of experimental data, so they cannot be used to extrapolate to
heavy alkanes.

Consequently, molecular dynamics simulations, in which the empirically parametrized
force fields govern the Newtonian equations of motion for atoms and molecules, are used
to model the real life behaviour of alkanes and model their viscosity. Molecular dynamics
can be performed in equilibrium (EMD)[76] and out of equilibrium (NEMD)[92], and both
approaches have been used to model viscosity of a range of alkanes [5] [27] [32] [64] [93]
[94] [95] [97] [101] [33]. However, as the computational cost of the EMD grows quickly
with the increase in molecular weight [76], EMD is used mostly to model viscosity of light
alkanes.

The same, however, is not the case for the NEMD, which has been applied to heavy
alkanes. For example, Cui et al. modelled dynamic viscosity of tetracosane and of 10-n-
hexylnonadecane at 60°C, and of squalane at 38°C and at 99°C [29] [28]; Khare et al. of n-
docosane, n-octacosane, and 5,12-dipropylhexadecane [63]; Scott, McCabe, and Cummings
of squalane[11]; Lahtela et al. of eicosane isomers [69]; Moore et al. of n-triacontane,
9-octyldocosane, and squalane[90], and Kioupis et al. of 3-poly-α-olefin isomers as a
function of pressure and temperature, [66] [65]; Liu et al. determined a pressure-viscosity
coefficient of a 1-decene trimer [73], while Yang et al. determined a viscosity index of
2,2,4,4,6,8,8-heptamethylnonane[128].

Unfortunately, the predictive limits of NEMD viscosity simulations are still unknown, as
NEMD viscosity results either have no experimental data available for comparison, or the
simulations have not been performed independent of experiments, which allows to perform
the simulations at as many manually chosen shear rates as possible to obtain better agreement
with the experiments. In this chapter, however, we look to test the predictive limits of
NEMD for the SciPCFF force field (subsection 1.4.2) by performing viscosity simulations
for 11-heptyltricosane, 8,11-dipentyloctadecane, and 8,14-dipentylhenicosane independent
of experiments, which have been performed by the BP scientists in Hull. In section 4.2, we
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describe the calculation of viscosity state points, in section 4.3 we present the simulation
results, while in section 4.4 we offer concluding remarks.

4.2 Preparing NEMD simulations

To obtain viscosity simulation state points, we first follow the procedure from subsection 1.4.3
to perform the molecular dynamics density simulations for 141 linear, single-branched, and
double-branched alkanes at 25°C and at 100°C. Although some alkanes modeled are likely
solids at 25°C, density of alkanes is a continuous function of temperature in liquid and solid
phases, which justifies the use of molecular dynamics simulations even if we are performing
simulations in a wrong phase.

Instead of performing molecular dynamics density simulations for 11-heptyltricosane,
8,11-dipentyloctadecane, and 8,14-dipentylhenicosane, we predict their molecular dynamics
density values with neural networks (section 1.3) from molecular basis (subsection 2.1.3) to
assess whether they can be used to prepare viscosity simulation state points without needing
to perform density simulations every time, which would simplify and speed up the overall
simulation process. The neural network models have previously been trained on molecular
dynamics data for 141 alkanes, and its optimal structure with 6 hidden nodes found with a
5-fold cross-validation (subsection 1.3.3, [57]).

Neural network models accurately reproduce the simulation data, with the coefficient of
determination R2=0.996 at both temperatures, the average absolute deviation of is 1.16 g

l at
25°C and of 1.21 g

l at 100°C, with their standard deviations of 0.86g
l and 1.02g

l , meaning that
a lot of time can be saved in preparing the viscosity simulations when we use the SciPCFF
force field. These results also demonstrate that molecular dynamics simulations exhibit
regularity, verifying that the simulations have been performed properly, and display that
molecular basis (subsection 2.1.3) efficiently encodes molecular structure for the purposes of
density predictions.
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Fig. 4.1 Molecular dynamics density results plotted against the 5-fold cross-validation neural
network results. Data entries at 25°C are highlighted in blue, while the ones at 100°C are
highlighted in purple.

4.3 Results

We can now perform NEMD viscosity simulations for 11-heptyltricosane, 8,11-dipentyloctadecane,
and 8,14-dipentylhenicosane. To perform the simulations, we follow the procedure from sub-
section 1.4.5 and use the sampling algorithm to select the good shear rates (subsection 3.3.1),
while the density state points are given by either the mean neural network density prediction
at 100°C or the linear interpolation of densities at 25°C and at 100°C. The linear interpolation
of density is justified by the empirically observed linear dependence of alkanes’ density on
temperature.

After performing the simulations, we first note that the maximum total simulation time
and the number of simulations are 46ns and 11 for the viscosity of 8,14-dipentylhenicosane
at 40°C, as compared to the simulation time of 7ns and the total number of simulations
of 7 required to simulate viscosity of hexane at 20°C (chapter 3), the smallest molecule
considered in our study. This further shows why NEMD is the currently preferred method
to simulate high viscosities. Simulation results are also in an excellent agreement with the
Carreau model (Equation 1.22), with the coefficient of determination R2 ≥ 0.99 for all the
simulations performed. A relatively small increase in the number of required simulations
and the total physical simulation time when simulating viscosity of heavy rather compared to
light alkanes, as well as an excellent agreement of simulation results with the Carreau model
are an additional mark of the merit of the sampling algorithm (section 3.3).
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Fig. 4.2 Viscosity of 11-heptyltricosane (green), 8,11-dipentyloctadecane (blue), and 8,14-
dipentylhenicosane (violet), and their best Carreau fit at 40°C(left) and 100°C(right). Shear
rates are plotted on the logarithmic scale.

While the simulation results signal that branching affects the viscosity more heavily
than molecular weight (Figure 4.2), the ultimate test of molecular dynamics comes from
comparing its predictions to experimental data. Simulations are in good agreement with
the experiments for 11-heptyltricosane, with percent errors of 8.8% at 40°C and of 16% at
100 °C, but are less accurate for 8,11-dipentyloctadecane and 8,14-dipentylhenicosane, with
percent errors of 55% at 40°C and of 23% at 100°C for 8,11-dipentyloctadecane and of 39%
at 40°C and 28% at 100°C for 8,14-dipentylhenicosane (Table 4.1).

We cannot determine the exact contributions of distinct sources to discrepancy between
the simulations and the experiments, but it is highly likely that the systematic error in the
SciPCFF force field is its main source. Since the accuracy of molecular dynamics density
simulations is unknown, we do not know whether the simulations have been performed at
correct external pressures (subsection 3.3.2). Also, the ranking of molecules’ simulation
viscosity values is constant as a function of the shear rates at both temperatures, so bad choice
of shear rates cannot explain most of the discrepancies either.
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Name T(°C) ρ (g
l ) ηexp (cSt)) ηsim (cSt) δηsim (cSt) ∆%

8,11-dipentyloctadecane 40 792.29 12.02 18.65 1.38 55
8,11-dipentyloctadecane 100 753.47 2.99 3.68 0.28 23
8,14-dipentylhenicosane 40 794.4 16.97 23.66 1.13 39
8,14-dipentylhenicosane 100 756.28 3.77 4.83 0.22 28

11-heptyltricosane 40 787.9 13.46 14.61 1.11 8.8
11-heptyltricosane 100 750.58 3.47 2.93 0.21 -16

Table 4.1 Summary of viscosity results

From viscosities at 40◦C and 100◦C, we can predict the alkanes’ viscosity index (V I)

V I = 100
L−U
L−H

(4.1)

with U the kinematic viscosity at 40°C, and L and H obtained from the kinematic viscosity
at 100°C [25]. To determine σV I , the uncertainty in the viscosity index, we propagate the
uncertainties in L, U , and H

σV I =V I

√
σ2

L +σ2
U

(L−U)2 +
σ2

H +σ2
L

(L−H)2 −2
σ2

L −σ2
LH

(L−U)(L−H)
(4.2)

where we have used bilinearity of the covariance function, as well as Cov[L,H]=Cov[L,U]=0.
Expected values and the elements of the L and H covariance matrix are calculated by taking
100 random samples from the normal distribution of kinematic viscosity at 100°C. After
comparing our predictions with the experiments, we observe that the viscosity index of
8,14-dipentylhenicosane is the most accurate, with the 12% error and the experimental
viscosity index within the predicted statistical uncertainty, despite the low accuracy of 8,14-
dipentylhenicosane viscosity simulation results, since the discrepancies partially cancel.
Unfortunately, the same is not the case for the other two molecules, and in particular for
11-heptyltricosane, for which the different signs of discrepancies at two temperatures have
resulted in the viscosity index that is of a different order of magnitude to its experimental
value (Table 4.2).
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Name VIexp VImodel

8,11-dipentyloctadecane 85 65±57
8,14-dipentylhenicosane 115 129±19

11-heptyltricosane 145 12±64
Table 4.2 Summary of viscosity index results

4.4 Conclusion

The results in this short chapter illuminated the current applicability of neural networks and
molecular dynamics in predicting the kinematic viscosity of large alkanes. Neural networks
have shown that they can reproduce molecular dynamics density results, and the sampling
algorithm has shown consistency, speed and reliability. These are encouraging signs for the
future of NEMD. Unfortunately, the viscosity simulation results still do not agree with the
experiments due to a poor force field. To resolve this issue, one can collect more experimental
density and viscosity data and exploit the patterns in discrepancy between simulations and
experiments, like in section 3.2. However, a probably better approach would be to develop
more accurate force fields, through either machine learning [122] or DFT [55] [84]. In any
case, the accuracy of force fields remains a major obstacle that needs to be resolved before
NEMD viscosity simulations can be used as an accurate substitute for experiments.





Chapter 5

Theory of uniform mixtures of molecular
liquids

We develop a predictive theory of intermolecular forces dependent physical properties of
mixtures whose molecules are uniformly spatially distributed. To test its validity, we apply
this theory to mixtures of alkanes by fitting it to experimental mixture data for molar volume,
surface tension, isentropic compressibility, and dynamic viscosity, and then using the best
fit parameters for dynamic viscosity to predict dynamic viscosity of other mixtures and
compare to experiments. Theoretical predictions and best fits show excellent agreement
with experiments, with the average absolute percent deviation equal to at most 0.8% for
predictions and to 0.2% for fits. These results suggest that our theory can be used to
accurately model and predict many physical properties of mixtures of alkanes, while the
conceptual basis behind it holds promise to be applicable to more complex mixtures.
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5.1 Introduction

Liquid mixtures are ubiquitous in nature. From the blood that pumps through our veins to a
cup of coffee or tea that give us a head start every morning, they play an essential role in our
lives. In addition to their everyday importance, they are of great interest to scientists, as the
interactions between unlike substances give rise to property values that are different to the
weighted average of pure component properties [87].

Molecular liquids comprise a large subset of liquid mixtures, yet many of their property
values are unknown. Difficulties in separating them prevents empirical analysis of their
properties. Moreover, while several theoretical formalisms have been developed to model
mixture properties [100] [86] [110] [44] [62], most commonly molar volume and dynamic
viscosity of binary alkane mixtures, their predictive power is limited, and none of them apart
from the Flory theory [100] deliver insights into the underlying physics.

A canonical insight into the mixture physics is the effect of spatial probability distribution
of individual molecules on their physical properties that depend on intermolecular forces. In
this chapter, we use this insight to develop a theory of mixtures whose individual molecules
follow a uniform spatial probability distribution, called uniform mixtures. Then, we apply this
theory to mixtures of alkanes, and describe ideas for its future applications and extensions.

5.2 Theory

Physical properties of different phases of matter are usually described in terms of interactions
between the matters’ basic constituents, such as atoms or molecules. Two examples of
physical systems at the extremes of interactions between the particles are the ideal gas, where
the widely separated molecules do not interact, and the crystalline solid, where densely
packed atoms form equally spaced repeating patterns and strongly interact. Molecular liquids
lie between these two extremes, with their molecules interacting, but irregularly due to
uneven spacing between the molecules. These irregularities mean that, unlike for the ideal
gas or the crystalline solid, there is at present no theory of physical properties of molecular
liquids, so the best we can do is to express the ones that depend on intermolecular forces [56]
as an expectation value

E[Q] = E[ fQ(F⃗II (⃗α)], (5.1)

where Q represents a physical property, E the expectation operator, and fQ an unknown
property specific function of the intermolecular forces F⃗II (⃗α) between the same molecular
species, described by a set of parameters α⃗ . The expectation value is taken over all possible
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relative molecular orientations and distances, and the variance in Q is neglected, since the
system is macroscopic and does not exhibit long range orientational order.

To obtain a similar expression for the physical properties of uniform mixtures of molecular
liquids, we initially look into the local property contributions due to interactions with species
I. Working under a physically realistic assumption that the effect of intermolecular forces is
negligible beyond a cutoff radius, and considering only the 2-body interactions, its average
QI is given by

QI =
1

Ñ −1

[ ÑI−1

∑
i=1

fQ(F⃗II(α⃗i))+ ∑
J ̸=I

ÑJ

∑
i=1

fQ(F⃗IJ(α⃗i))

]
, (5.2)

such that Ñ symbolises the total number of molecules within the cutoff radius, ÑI and
ÑJ the number of molecules of each type within the cutoff radius, while fQ(F⃗II (⃗α)) and
fQ(F⃗IJ (⃗α)) represent the function of forces between the molecular species I and J. We
determine the expectation value of this contribution by conditioning over fQ and Ñ. Under
the assumption that the spatial probability distribution of each molecule is uniform, and with
the conservation of expectation value of the function of intermolecular forces between the
like molecules upon mixing, we obtain

E[QI] =
1

N −1

[
(NI −1)E[QII]+ ∑

I ̸=J
NJ E[QIJ]

]
, (5.3)

where E[QII] is the property value of I species (Equation 5.1), E[QIJ] = E[ fQ(F⃗IJ (⃗α))]

is attributed to interactions between unlike molecules, while N, NI , NJ are the total number
of molecules, and the number of molecules of each type. We can now obtain the expression
for the physical properties of uniform mixtures. By averaging over all the local contributions
(Q = ∑I

NI
N QI), and with QJI = QIJ , we find that

E[Q] = ∑
I

x2
I E[QII]+2 ∑

I<J
xIxJ E[QIJ], (5.4)

where {xI =
NI
N } denote the molar fraction of molecular species. Since {E[QIJ]} depend

only on molecular species, theory of uniform mixtures of molecular liquids enables prediction
of multicomponent mixture properties from the binary mixture properties, and vice versa.
Additionally, two familiar expressions arise as special cases of Equation 5.4, with the Raoult’s
law of ideal mixtures appearing when QIJ =

QII+QJJ
2 ∀ I ̸=J, and the empirical expression

from Hind et al. [50] arising when Equation 5.4 models dynamic viscosity of binary mixtures.
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5.3 Application to mixtures of alkanes

We now apply the theory of uniform mixtures of molecular liquids to mixtures of alkanes.
These mixtures are miscible and non-polar, with the London dispersion force the only inter-
molecular interaction, allowing us to approximate the spatial distribution of their molecules
as uniform. Also, they have a considerable amount of available experimental data relative to
other types of mixtures, which enables a more in depth comparison of theory to experiment.

To assess the accuracy of the theory of uniform mixtures of molecular liquids, we fit
Equation 5.4 to experimental molar volume [10], surface tension [34], isentropic compress-
ibility [42], and dynamic viscosity [126] [22] data with linear regression [57] without the bias
parameter, molar fraction terms as independent variables, and {E[QIJ]} as model parameters.
The best fits show an excellent agreement with the experiments, with the maximum average
absolute percent error ∆|%| (section 3.1) of 0.2% for the viscosity of the mixture of heptane,
octane, undecane, and tridecane (Appendix D). Also, the pure component properties obtained
as best fit parameters are within experimental uncertainties for the surface tension and isen-
tropic compressibility, and still in a very good agreement for the molar volume and dynamic
viscosity, with the largest ∆|%| of 1.5% for viscosity of undecane (Table 5.1). Then, as a
simple assessment of overfitting (subsection 1.3.3), we fit Equation 5.4 to mixtures that have
a pure component in common. Since the best fit pure component properties are independent
of the mixture used to find them, with the worst agreement of 1.9% for hexane and of at most
0.2% for other pure component properties (Table 5.1), we deduce that Equation 5.4 did not
overfit the experimental data.

Property Mixture T(°C) E[QII] E[QIJ]

Vm(10−6m3mol−1)
nonane

isooctane
25

179.62±0.01
166.13±0.01∗

(179.61±0.01)
(166.14±0.01)

172.57±0.01

Vm(10−6m3mol−1)
dodecane
isooctane

25
228.60±0.01
166.10±0.01∗

(228.57±0.01)
(166.14±0.01)

196.67±0.02

σ(10−3kg s−2)
heptane

isooctane
40

18.16
17.23‡

(18.15±0.03)
(17.23±0.03)

17.62±0.01

σ(10−3kg s−2)
octane

isooctane
40

19.82
17.23‡

(19.82±0.03)
(17.23±0.03)

18.44

KS,m

(10−6kg m3mol−1s−2)

nonane
toluene

10
151720±40
63850±30|

(151700±300)
(63910±130)

109590±30

KS,m

(10−6kg m3mol−1s−2)

hexane
toluene

10
147000±60
63900±50|

(147000±290)
(63910±130)

95710±100
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µ(10−3kg m−1 s−1)

heptane
octane

undecane
tridecane

25

0.3886±0.0323
0.5099±0.0077
1.0648±0.0063
1.6684±0.0079

(0.3889±0.0004)
(0.5105±0.0005)
(1.0810±0.0011)
(1.6880±0.0017)

µ7+8=0.4411±0.0201
µ7+11=0.6224±0.0181
µ7+13=0.7562±0.0163
µ8+11=0.7657±0.0145
µ8+13=0.8826±0.0147
µ11+13=1.3636±0.0132

µ(10−3kg m−1 s−1)
hexane

tetradecane
25

0.3198§

2.0460¶

(0.2920±0.0003)
(2.0620±0.0021)

0.6975

µ(10−3kg m−1 s−1)
hexane

hexadecane
25

0.3258§

3.0159∗∗
(0.2920±0.0003)
(3.0480±0.0030)

0.7964

µ(10−3kg m−1 s−1)
tetradecane
hexadecane

25
2.0445¶

3.0209∗∗
(2.0620±0.0021)
(3.0480±0.0030)

2.4857

Table 5.1 Summary of fitting parameters of Equation 5.4 to experiments for the molar
volume (Vm), surface tension (σ ), molar isentropic compressibility (KS,m), and dynamic
viscosity (µ). QII represent property values of pure components and QIJ the terms arising
from intermolecular interactions between unlike molecules. Experimental values of pure
component properties are found in the parentheses. Uncertainties in the best fit parameters
for viscosity of binary mixtures and surface tension are zero to four, and two decimal places,
so are not reported. If the pure property value of a pure liquid has been obtained twice
by fitting Equation 5.4 to experimental data of multiple mixtures, it is highlighted with a
bespoke superscript.

With the fitting accuracy of Equation 5.4 established, we now use the best fit parameters
for viscosity Table 5.1 to assess our theory’s predictive power. Specifically, we use the best fit
parameters from the hexane+tetradecane, hexane+hexadecane, and tetradecane+hexadecane
mixtures to predict the dynamic viscosity of the hexane+tetradecane+hexadecane mixture
at 25°C, and the best fit parameters from the heptane+octane+undecane+tridecane mixture
to predict the dynamic viscosity of six binary (heptane+octane, heptane+undecane, hep-
tane+tridecane, octane+undecane, octane+tridecane, undecane+tridecane) and four ternary
(heptane+octane+undecane, heptane+octane+tridecane, heptane+undecane+tridecane, oc-
tane+undecane+tridecane) mixtures at the same temperature. For the hexane+tetradecane+hexadecane,
heptane+octane, octane+undecane, octane+tridecane, and undecane+tridecane mixtures,
which have available experimental data, we compare predictions to experiments, and note
that they are in excellent agreement, with ∆|%| ≤ 0.8% for all of them (Figure 5.1).
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Fig. 5.1 Experimental values plotted against theoretical predictions of viscosity of mixtures
of hexane, tetradecane, and hexadecane (yellow), heptane and octane (light blue), octane and
undecane (green), octane and tridecane (orange), and undecane and tridecane (dark blue) are
shown on the left, while the statistical summary of predictions is show on the right. The parity
line µexp = µpred is also plotted as a reference, to help visualize the accuracy of predictions.

5.4 Conclusion

In this chapter, we have developed a theory of uniform mixtures of molecular liquids, and
applied it to mixtures of alkanes. The theory was fitted to experimental data for the molar
volume, surface tension, isentropic compressibility, and dynamic viscosity, and the best fit
viscosity parameters were used to predict the viscosity of other mixtures. Predictions and
theoretical fits are in an excellent agreement with the experiments, showing that our theory is
an excellent description of many physical properties of mixtures of alkanes when the pure
components are far away from their phase transition points.

Work presented in this chapter offers new insights and has the potential to open new
avenues in mixture research. From the applied perspective, experimentally measuring
properties of additional mixtures of alkanes would allow us to test the theory of uniform
mixtures further, as well as to investigate the effects of mixture composition on the interaction
constants between unlike molecules. The latter would allow us to extrapolate the interaction
constants between unlike molecules with machine learning section 1.3, and predict many
properties of alkane mixtures far away from the phase transition points of pure alkanes. More
importantly, work in this chapter suggests that mixtures’ deviation from ideal behaviour is
driven by the spatial probability distribution of their molecules. With this in mind, different
probability distributions can be used to develop theories of different types of mixtures, and
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tested against experiments. If these theories are proven correct, they would illuminate the
currently unexplored rich world of mixtures’ physics.





Chapter 6

Conclusion

In this Thesis, we have applied neural networks and molecular dynamics to model the
physical properties of pure alkanes (chapter 2, chapter 3, and chapter 4). We have also
developed a theory of mixtures of molecular liquids whose molecules’ positions follow a
uniform probability distribution, and applied it to mixtures of alkanes in chapter 5. The
approach to model properties of molecular systems with a cocktail of computational methods
is likely to grow in popularity and importance in the upcoming years, especially as the
demand for new materials increases. Still, even if our results are encouraging, the lack of
experimental data and low accuracy of molecular dynamics force fields still remain major
obstacles. The theory of uniform mixtures (chapter 5) can be applied to further mixtures
of alkanes, subject to availability of experimental data, while the conceptual basis behind
it can be further exploited to construct theories of more complex mixtures. However, the
experimental data is currently scarse, and theories of more complex mixtures will likely
require significant effort.

Overall, we should be content with the progress made in understanding the physical
properties of alkanes and their mixtures. However, we should also be aware that the full
implications of the work presented in this Thesis are unlikely to be immediately known,
while our work will not instantly lead to production of superior lubricants. This is neither
emotionally nor economically satisfying. Unfortunately, scientific progress is neither linear
nor instant, contrary to how it is viewed by the majority of people. Many discoveries are
unplanned, and sometimes even accidental. However, if the modern society genuinely wishes
to fully exploit the potential of scientific knowledge, we should first all accept that research
is often arcane and confusing, even for the experts, that there are many phenomena we still
cannot explain or even know about, and that we cannot always force discoveries, no matter
how much we want to.
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Appendix A

Chapter 2: Full results

A.1 Heat capacity

Name Cexp
mol(

J
molK ) Cga

mol(
J

molK ) Creg
mol(

J
molK ) Cnn

mol(
J

molK ) δCreg
mol(

J
molK ) δCmol(

J
molK )

2-methylbutane 164.85 163.49 152.93 150.17 4.90 0.68
Pentane 167.19 165.26 153.14 152.38 3.55 0.57

2,2-dimethylbutane 189.67 186.20 186.00 184.14 5.34 0.78
3-methylpentane 191.16 193.28 186.73 183.78 5.28 0.55
2-methylpentane 194.19 193.28 184.69 188.86 5.16 2.14

Hexane 195.52 195.05 184.89 190.66 3.80 1.17
3-methylhexane 216.70 223.07 217.56 218.49 5.69 1.45

2,3-dimethylpentane 219.58 221.31 217.28 218.31 5.56 1.59
2,2-dimethylpentane 221.00 215.99 217.04 217.00 5.79 0.35

2-methylhexane 222.92 223.07 218.22 221.19 4.61 2.32
Heptane 224.64 224.83 218.01 216.02 3.41 0.92

3-ethyl-3-methylpentane 245.89 251.10 247.83 250.19 7.63 1.10
3,3-dimethylhexane 246.60 245.77 248.12 248.67 7.14 1.42
3,4-dimethylhexane 246.90 245.77 248.41 248.94 6.87 1.35
2,3-dimethylhexane 248.78 251.10 248.32 251.46 6.01 2.93

3-ethyl-2-methylpentane 248.91 251.10 248.10 248.23 6.28 0.87
2,5-dimethylhexane 249.20 251.10 248.80 250.33 5.56 1.41
2,2-dimethylhexane 249.20 245.77 247.45 250.37 7.11 0.51
2,4-dimethylhexane 250.08 251.10 248.32 249.09 6.58 0.64

3-methylheptane 250.20 252.86 249.21 249.60 5.25 1.09
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3-ethylhexane 250.29 252.86 249.71 247.23 6.03 0.51
4-methylheptane 251.08 252.86 248.77 251.56 6.27 1.13
2-methylheptane 252.00 252.86 250.08 251.24 4.78 1.60

Octane 254.09 254.62 249.29 254.21 3.64 1.39
3,4-dimethylheptane 273.20 280.89 279.77 282.64 6.71 1.76
2,3-dimethylheptane 276.50 280.89 279.35 280.76 6.46 0.33
2,5-dimethylheptane 278.30 280.89 279.84 280.95 6.01 0.48
3,3-diethylpentane 278.80 275.56 278.70 281.96 8.88 0.85

3-ethyl-3-methylhexane 279.60 275.56 278.49 281.03 8.23 0.65
3-ethyl-4-methylhexane 279.90 280.89 279.49 280.60 6.99 0.73

3-methyloctane 281.00 282.65 280.53 281.67 6.22 0.95
4-methyloctane 281.20 282.65 280.20 281.02 5.90 0.59
4-ethylheptane 282.30 282.65 279.62 282.38 7.75 0.78

3,3-dimethylheptane 282.40 275.56 278.43 279.72 7.91 0.87
2,6-dimethylheptane 282.60 280.89 280.24 281.39 6.58 0.53

3-ethyl-2-methylhexane 282.80 280.89 279.13 282.11 6.73 0.50
2,2-dimethylheptane 283.40 275.56 279.31 280.63 7.45 0.80
3,5-dimethylheptane 283.70 280.89 279.49 282.84 7.32 1.72

2-methyloctane 284.20 282.65 281.08 282.95 5.53 0.29
Nonane 284.50 284.41 281.29 288.63 4.22 2.56

4,4-dimethylheptane 285.70 275.56 278.74 280.24 8.07 1.41
2,4-dimethylheptane 287.60 280.89 279.60 283.07 6.23 1.65

4-ethyl-2-methylhexane 289.10 280.89 279.80 282.09 6.56 0.44
3,4-dimethyloctane 303.60 310.68 310.79 311.19 7.18 0.17
4,5-dimethyloctane 303.90 310.68 310.35 312.66 8.39 0.65
3,6-dimethyloctane 305.90 310.68 310.97 312.81 7.58 0.52
2,3-dimethyloctane 307.30 310.68 310.59 312.78 7.70 0.79
2,5-dimethyloctane 309.40 310.68 310.85 314.47 7.37 1.30

3-methylnonane 309.40 312.44 312.01 313.12 6.48 0.80
3-ethyl-3-methylheptane 309.60 305.35 310.10 312.26 8.46 0.99

2,6-dimethyloctane 310.10 310.68 311.58 311.53 6.25 0.93
4-ethyl-3-methylheptane 310.40 310.68 310.50 311.18 7.46 0.94
3-ethyl-4-methylheptane 310.60 310.68 310.77 311.50 7.71 0.50
5-ethyl-2-methylheptane 310.70 310.68 311.05 314.55 6.78 0.33
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4-ethyl-4-methylheptane 312.70 305.35 309.88 312.09 8.68 0.85
3,3-diethylhexane 312.90 305.35 310.62 311.83 8.15 0.72

3-ethyl-2-methylheptane 313.10 310.68 310.24 312.71 8.21 0.83
2,7-dimethyloctane 313.30 310.68 311.72 311.73 6.84 0.85
3,3-dimethyloctane 313.30 305.35 310.07 314.57 8.19 1.42

3-ethyloctane 313.30 312.44 312.15 312.29 7.10 0.86
2-methylnonane 313.50 312.44 312.36 313.71 5.78 0.78

4-ethyloctane 313.50 312.44 311.68 312.28 7.84 0.42
2,2-dimethyloctane 314.00 305.35 309.55 312.89 8.17 0.73

4-propylheptane 314.10 312.44 311.29 314.38 8.89 1.26
5-methylnonane 314.40 312.44 310.81 313.32 7.25 0.68

Decane 314.50 314.20 313.15 317.46 4.01 0.62
3,5-dimethyloctane 314.80 310.68 310.53 310.11 7.85 0.71
4,4-dimethyloctane 315.70 305.35 310.05 312.81 7.52 0.84
3,4-diethylhexane 317.30 310.68 310.49 311.99 7.99 0.73
4-methylnonane 317.40 312.44 311.48 312.40 6.12 0.49

2,4-dimethyloctane 318.00 310.68 310.42 311.82 7.63 0.18
4-ethyl-2-methylheptane 320.20 310.68 310.41 313.67 6.95 0.29
6-ethyl-3-methyloctane 338.00 340.46 342.28 340.81 8.42 0.42

3,7-dimethylnonane 339.00 340.46 342.53 341.40 6.90 0.72
3,6-dimethylnonane 339.00 340.46 342.23 341.95 8.19 1.22
3,5-diethylheptane 339.00 340.46 342.15 340.81 8.15 0.57

6-ethyl-2-methyloctane 340.00 340.46 342.59 341.89 7.94 0.25
4-ethyl-2-methyloctane 340.00 340.46 341.73 341.33 8.47 0.08
5-ethyl-3-methyloctane 340.00 340.46 341.84 341.61 8.68 1.06
4-ethyl-3-methyloctane 340.00 340.46 341.52 341.05 7.93 0.35

3,4-dimethylnonane 340.00 340.46 341.35 342.47 8.44 0.49
3-ethyl-3-methyloctane 340.00 340.46 341.41 341.16 9.22 0.27
3-ethyl-4-methyloctane 340.00 340.46 341.57 341.47 9.26 0.52

4,5-dimethylnonane 340.00 340.46 341.27 343.28 8.86 0.87
2,7-dimethylnonane 341.00 340.46 342.83 342.74 6.47 0.90

5-ethyl-2-methyloctane 341.00 340.46 341.69 342.23 7.18 0.62
2,3-dimethylnonane 341.00 340.46 341.57 341.59 8.22 0.70

3-methyl-4-propylheptane 341.00 340.46 341.23 339.72 8.21 1.87
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3,5-dimethylnonane 341.00 340.46 341.94 341.13 8.43 1.34
3,3-dimethylnonane 341.00 340.46 341.56 341.88 7.90 0.18
3,4-diethylheptane 341.00 340.46 341.91 341.99 9.63 0.53

2,6-dimethylnonane 342.00 340.46 342.33 342.09 7.63 1.02
2,5-dimethylnonane 342.00 340.46 342.35 342.99 6.97 0.83

3-ethyl-2-methyloctane 342.00 340.46 341.60 342.44 8.50 0.44
3-ethylnonane 342.00 342.23 343.25 343.17 7.80 0.75

3,3-diethylheptane 342.00 335.14 341.62 341.99 9.87 0.44
4,6-dimethylnonane 342.00 340.46 342.11 341.83 8.65 0.64

4-ethyl-4-methyloctane 342.00 335.14 340.86 341.88 9.20 0.21
4-ethylnonane 342.00 342.23 342.91 342.64 7.83 0.88
5-ethylnonane 342.00 342.23 342.97 342.86 7.54 0.36

2-methyl-4-propylheptane 343.00 340.46 341.89 343.71 8.84 0.52
2,2-dimethylnonane 343.00 335.14 341.27 343.52 8.49 0.50

3-methyldecane 343.00 342.23 343.05 343.88 5.92 0.48
4-methyldecane 343.00 342.23 343.23 341.30 6.31 1.35

4,4-dimethylnonane 343.00 335.14 341.49 340.82 8.08 1.68
4-propyloctane 343.00 342.23 343.76 342.29 7.89 0.66
5-methyldecane 343.00 342.23 343.09 341.97 7.84 0.16

5,5-dimethylnonane 343.00 335.14 340.62 340.08 9.14 1.01
2,8-dimethylnonane 344.00 340.46 342.93 339.62 7.24 1.86
2,4-dimethylnonane 344.00 340.46 342.11 342.97 7.22 1.58
4,4-diethylheptane 344.00 335.14 341.51 341.23 10.05 1.10

Undecane 345.00 343.99 343.85 347.78 4.72 0.60
2-methyldecane 345.00 342.23 343.85 342.14 5.44 0.26

4-methyl-4-propylheptane 345.00 335.14 341.64 346.00 9.77 1.34
3,6-diethyloctane 367.00 370.25 373.56 369.90 9.24 1.21

7-ethyl-3-methylnonane 368.00 370.25 374.04 370.92 8.76 0.60
3,8-dimethyldecane 369.00 370.25 373.53 370.49 7.87 0.79

6-ethyl-3-methylnonane 369.00 370.25 372.68 368.66 7.82 2.11
3,7-dimethyldecane 370.00 370.25 373.98 372.16 8.44 0.95
3,6-dimethyldecane 370.00 370.25 373.30 371.60 7.62 0.30
3,4-dimethyldecane 370.00 370.25 372.42 370.85 8.00 0.51
3,5-diethyloctane 370.00 370.25 372.76 371.20 8.68 0.74
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4,7-dimethyldecane 370.00 370.25 372.86 370.01 7.74 0.40
7-ethyl-2-methylnonane 371.00 370.25 373.22 372.08 7.17 0.36
6-ethyl-2-methylnonane 371.00 370.25 372.97 371.97 7.40 0.92
5-ethyl-2-methylnonane 371.00 370.25 373.21 371.44 8.73 0.28
3-methyl-5-propyloctane 371.00 370.25 373.52 371.37 9.56 0.39
5-ethyl-3-methylnonane 371.00 370.25 373.46 373.10 9.24 0.87
3-methyl-4-propyloctane 371.00 370.25 372.24 371.26 8.69 0.36
4-ethyl-3-methylnonane 371.00 370.25 372.46 371.37 9.48 0.30
3-ethyl-3-methylnonane 371.00 364.93 371.96 371.55 8.50 0.17

3,3-dimethyldecane 371.00 364.93 372.57 368.76 8.37 2.12
3-ethyl-5-methylnonane 371.00 370.25 373.04 369.61 8.40 2.26

3,4-diethyloctane 371.00 370.25 372.52 367.92 8.93 2.84
3-ethyl-4-methylnonane 371.00 370.25 372.93 370.57 9.51 0.65
6-ethyl-4-methylnonane 371.00 370.25 373.01 371.16 9.43 0.53
5-ethyl-4-methylnonane 371.00 370.25 373.34 370.37 9.71 0.54

4,5-dimethyldecane 371.00 370.25 372.11 371.81 9.17 0.46
4-ethyl-5-methylnonane 371.00 370.25 372.72 372.70 9.72 0.66

5,6-dimethyldecane 371.00 370.25 373.45 372.18 9.61 0.19
2,8-dimethyldecane 372.00 370.25 374.09 371.73 6.69 0.55
2,7-dimethyldecane 372.00 370.25 373.74 372.80 7.65 0.65

2-methyl-5-propyloctane 372.00 370.25 373.64 372.34 9.09 0.73
2,6-dimethyldecane 372.00 370.25 373.61 372.98 7.19 0.59
2,5-dimethyldecane 372.00 370.25 373.15 370.46 8.20 0.41

3-ethyl-2-methylnonane 372.00 370.25 372.58 372.47 9.02 0.31
2,3-dimethyldecane 372.00 370.25 372.47 369.49 7.81 2.24
3,5-dimethyldecane 372.00 370.25 373.40 367.33 8.92 4.14

3-ethyl-4-propylheptane 372.00 370.25 373.14 368.20 10.40 2.85
4-methyl-5-propyloctane 372.00 370.25 371.93 371.17 8.74 0.60

4,6-dimethyldecane 372.00 370.25 373.57 372.12 9.15 0.66
4,5-diethyloctane 372.00 370.25 372.45 371.16 9.12 0.79
3-methylundecane 373.00 372.02 374.97 372.17 7.00 0.97

3-ethyldecane 373.00 372.02 374.83 371.95 6.92 1.43
3,3-diethyloctane 373.00 364.93 372.44 372.51 10.36 0.21

4-ethyl-4-methylnonane 373.00 364.93 372.22 371.92 8.84 1.36
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4,4-dimethyldecane 373.00 364.93 371.81 372.31 9.45 0.37
4-ethyldecane 373.00 372.02 374.23 367.75 7.31 2.94

4-propylnonane 373.00 372.02 374.63 368.39 9.25 3.53
5-ethyl-5-methylnonane 373.00 364.93 373.22 371.75 10.17 1.54

5,5-dimethyldecane 373.00 364.93 372.44 372.34 8.74 1.00
5-ethyldecane 373.00 372.02 374.77 371.26 8.98 0.60

5-propylnonane 373.00 372.02 374.68 371.68 9.87 0.52
2,9-dimethyldecane 374.00 370.25 374.34 373.30 7.10 0.81

2-methyl-4-propyloctane 374.00 370.25 373.03 373.84 9.31 1.64
4-ethyl-2-methylnonane 374.00 370.25 373.29 372.27 9.02 0.46

2,4-dimethyldecane 374.00 370.25 372.85 373.82 8.47 0.58
2,2-dimethyldecane 374.00 364.93 372.64 372.50 8.19 0.79
4-methylundecane 374.00 372.02 374.66 372.30 7.48 0.37
5-methylundecane 374.00 372.02 374.18 372.30 6.97 0.65
6-methylundecane 374.00 372.02 373.46 371.62 7.41 0.52

4-methyl-4-propyloctane 375.00 364.93 371.87 371.62 10.00 0.44
4,4-diethyloctane 375.00 364.93 373.26 372.25 10.60 0.28

Dodecane 376.00 373.78 375.62 367.40 5.16 1.84
2-methylundecane 376.00 372.02 375.29 370.99 6.52 1.64

4-ethyl-4-propylheptane 377.00 364.93 372.43 368.37 9.51 2.91
Table A.1 Full molar heat capacity results. The table contains experimental heat capacity
values, their group additivity fits [112], and linear regression and neural network cross-
validation predictions accompanied by their uncertainties.

A.2 Boiling point

Name T exp
b (◦C) T m7.2

b (◦C) T reg
b (◦C) T nn

b (◦C) δT reg
b (◦C) δT nn

b (◦C)

Methane -161.51 -59.75 -119.77 3.38 4.80
Ethane -88.58 -34.88 -93.88 3.75 4.28

Propane -42.07 -24.51 -52.37 6.02 2.93
2-methylpropane -11.73 3.10 -16.41 9.79 2.81

Butane -0.50 2.71 -4.70 6.60 2.44
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2,2-dimethylpropane 9.50 25.62 13.51 12.31 3.33
2-methylbutane 27.85 27.85 19.31 10.15 1.97

Pentane 36.07 28.90 31.91 7.09 3.50
2,2-dimethylbutane 49.74 50.40 58.95 48.33 8.61 2.64
2,3-dimethylbutane 57.99 57.70 51.16 53.95 12.50 2.57

2-methylpentane 60.27 56.50 56.07 59.30 10.92 1.81
3-methylpentane 63.23 62.60 53.56 57.28 11.80 2.65

Hexane 68.74 66.30 55.60 61.30 7.62 5.87
2,2-dimethylpentane 79.20 76.10 76.39 80.60 14.66 3.80
2,4-dimethylpentane 80.50 80.40 84.86 88.36 8.61 2.63
3,3-dimethylpentane 86.04 85.50 83.37 81.05 9.63 3.16
2,3-dimethylpentane 89.78 88.60 76.80 80.98 13.79 1.15

2-methylhexane 90.05 87.00 82.55 89.67 11.49 3.04
3-methylhexane 91.35 91.30 81.48 86.77 12.50 3.10
3-ethylpentane 93.48 96.40 81.53 85.69 14.31 2.63

Heptane 98.42 96.90 83.03 94.20 8.45 5.33
2,2-dimethylhexane 106.84 103.40 101.78 109.21 15.83 2.17
2,5-dimethylhexane 109.11 107.00 105.35 115.40 13.82 1.09
2,4-dimethylhexane 109.43 110.60 104.12 114.24 14.44 1.72
3,3-dimethylhexane 111.97 110.80 101.37 107.69 16.19 1.63
2,3-dimethylhexane 115.61 113.30 102.67 108.29 14.96 1.07

3-ethyl-2-methylpentane 115.66 117.70 101.11 111.09 15.95 3.14
2-methylheptane 117.65 114.90 112.54 119.08 7.76 2.68
4-methylheptane 117.71 116.90 106.22 116.61 14.00 0.87

3,4-dimethylhexane 117.73 102.78 115.07 15.24 1.61
3-ethyl-3-methylpentane 118.27 119.40 106.47 114.38 10.84 2.01

3-ethylhexane 118.34 121.20 107.12 119.20 14.83 1.97
3-methylheptane 118.93 118.80 112.09 120.82 8.42 1.24

Octane 125.67 126.20 109.01 124.07 8.69 3.21
2,2-dimethylheptane 132.82 129.30 127.47 132.29 16.76 1.96
2,4-dimethylheptane 132.89 133.60 132.52 136.12 10.08 2.06

4-ethyl-2-methylhexane 133.80 136.00 127.60 137.54 16.51 2.29
4,4-dimethylheptane 134.90 133.20 127.14 134.81 17.72 2.22
2,6-dimethylheptane 135.22 133.20 131.27 140.70 14.10 2.12
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3,5-dimethylheptane 135.70 138.60 129.52 139.06 16.12 1.20
2,5-dimethylheptane 136.00 135.70 130.46 138.78 15.17 2.44
3,3-dimethylheptane 137.02 135.40 127.41 137.14 17.48 0.45

3-ethyl-4-methylhexane 140.40 120.90 126.74 138.52 17.60 0.93
3,4-dimethylheptane 140.40 120.90 128.29 137.19 16.74 2.26
2,3-dimethylheptane 140.50 138.20 128.26 135.72 16.40 1.86

4-ethylheptane 141.20 143.00 134.85 138.90 16.71 1.16
4-methyloctane 142.44 142.90 133.80 144.60 14.73 2.33
2-methyloctane 143.16 142.50 135.65 142.86 12.33 1.74
3-ethylheptane 143.22 145.20 135.05 143.47 15.65 1.86
3-methyloctane 144.21 145.20 134.41 145.24 13.44 2.62

3,3-diethylpentane 146.19 151.60 126.83 145.54 18.98 2.12
Nonane 150.82 151.60 139.21 147.58 6.31 2.53

2,4-dimethyloctane 155.90 157.80 155.50 159.60 16.68 0.75
4-ethyl-2-methylheptane 156.20 153.08 159.43 17.01 1.11

2,2-dimethyloctane 156.90 155.60 153.07 159.35 18.01 0.95
4,4-dimethyloctane 157.50 156.10 153.04 162.34 19.13 1.69

4-propylheptane 157.50 156.10 161.06 162.06 19.25 1.96
5-ethyl-3-methylheptane 158.20 156.21 161.12 11.58 1.02

2,5-dimethyloctane 158.50 157.90 156.75 159.60 16.15 0.43
3,5-dimethyloctane 159.40 159.80 155.35 160.30 16.87 0.87

5-ethyl-2-methylheptane 159.70 154.09 158.16 17.08 1.69
2,7-dimethyloctane 159.87 159.50 158.05 160.98 15.13 0.98
2,6-dimethyloctane 160.38 160.90 158.43 162.33 10.07 0.63
3,6-dimethyloctane 160.80 156.19 158.41 16.30 0.59

4-ethyl-4-methylheptane 160.80 150.33 161.38 19.71 0.58
3-ethyl-2-methylheptane 161.20 141.80 152.71 158.63 17.97 1.31

3,3-dimethyloctane 161.20 141.80 152.76 157.80 18.52 1.43
4,5-dimethyloctane 162.13 161.40 154.41 159.68 17.97 0.21

4-ethyl-3-methylheptane 162.20 151.86 158.47 18.58 0.31
3-ethyl-4-methylheptane 163.00 138.70 154.99 162.77 19.10 1.69

3,4-dimethyloctane 163.40 153.89 162.03 18.04 1.13
4-ethyloctane 163.64 165.50 160.04 161.98 10.97 0.78

3-ethyl-3-methylheptane 163.80 151.29 159.03 18.67 1.60
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3,4-diethylhexane 163.90 154.86 161.50 12.73 1.03
2,3-dimethyloctane 164.31 162.70 155.32 159.95 11.18 0.52

5-methylnonane 165.10 165.10 159.20 164.54 16.13 1.61
4-methylnonane 165.70 165.20 160.30 165.54 15.35 0.60

3,3-diethylhexane 166.30 152.20 161.18 20.39 1.66
3-ethyloctane 166.50 169.10 161.02 163.97 15.92 0.89

2-methylnonane 167.00 166.20 162.01 166.04 13.18 1.41
3-methylnonane 167.30 168.70 161.09 167.93 13.93 1.02

2-methyl-4-propylheptane 174.00 176.61 178.34 19.59 1.12
Decane 174.16 174.40 162.42 168.85 9.75 0.49

4-ethyl-2-methyloctane 176.00 179.66 181.67 18.52 0.79
3-ethyl-5-methyloctane 176.00 181.95 180.20 19.64 0.82

5,5-dimethylnonane 177.00 178.67 178.35 20.78 2.17
2,4-dimethylnonane 177.40 181.32 182.54 17.44 0.79

5-ethyl-2-methyloctane 178.00 180.73 180.44 17.89 0.40
4-methyl-4-propylheptane 178.00 173.90 177.40 21.55 2.93

4,4-dimethylnonane 178.00 179.43 179.85 19.64 0.68
2,6-dimethylnonane 179.00 183.68 180.77 16.70 1.03
2,5-dimethylnonane 179.00 182.45 180.41 17.32 0.68

3-methyl-4-propylheptane 179.00 175.62 179.76 19.88 0.80
3,5-diethylheptane 179.00 180.23 184.19 20.31 0.65

4,6-dimethylnonane 179.00 181.36 182.89 12.13 1.75
2,2-dimethylnonane 180.00 179.22 182.99 19.11 0.81
3,5-dimethylnonane 180.00 180.92 184.43 18.45 1.53
3,4-diethylheptane 180.00 179.40 183.85 20.62 1.86

4-ethyl-4-methyloctane 180.00 176.66 180.07 21.03 0.75
4-propyloctane 180.00 189.76 180.33 19.80 1.16

6-ethyl-2-methyloctane 182.00 181.81 181.20 17.26 0.91
3-ethyl-2-methyloctane 182.00 178.41 182.27 12.39 0.88
6-ethyl-3-methyloctane 182.00 179.68 179.53 18.07 0.60

3,6-dimethylnonane 182.00 182.15 178.80 17.83 0.76
3,3-dimethylnonane 182.00 179.06 180.29 19.59 0.95
4,5-dimethylnonane 182.00 180.27 182.11 19.07 0.69
2,8-dimethylnonane 183.00 185.68 182.81 15.34 0.63
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2,7-dimethylnonane 183.00 183.84 179.83 15.74 1.81
4-ethyl-3-methyloctane 183.00 179.00 186.14 12.68 1.78

5-ethylnonane 183.00 185.49 186.73 18.68 1.42
4,4-diethylheptane 183.30 178.14 181.62 22.37 1.18

3,7-dimethylnonane 184.00 182.58 182.90 17.39 0.81
4-ethylnonane 184.00 187.17 184.13 17.86 0.98

3,4-dimethylnonane 185.00 179.74 182.49 12.21 0.86
3-ethyl-3-methyloctane 185.70 176.42 179.57 20.56 1.72

2,3-dimethylnonane 186.00 180.00 187.26 18.55 0.86
5-methyldecane 186.00 185.90 182.84 16.66 1.43

3,3-diethylheptane 186.90 177.90 182.76 21.90 2.26
4-methyldecane 187.90 186.78 187.78 15.91 0.87
3-ethylnonane 188.00 185.36 182.13 10.68 1.50

2-methyldecane 189.19 190.71 188.40 13.56 0.74
3-methyldecane 190.30 189.18 188.08 14.69 1.09

2-methyl-5-propyloctane 191.00 203.58 196.16 12.86 0.92
2-methyl-4-propyloctane 191.00 202.54 194.41 13.23 0.39
3-methyl-5-propyloctane 194.00 203.13 196.15 13.52 0.68
5-ethyl-3-methylnonane 195.00 204.70 196.04 19.74 1.30
4-methyl-4-propyloctane 195.00 201.65 199.08 14.55 0.65

Undecane 195.93 188.94 191.60 7.04 1.13
5-ethyl-2-methylnonane 196.00 205.65 199.13 18.64 0.52
4-ethyl-2-methylnonane 196.00 205.53 198.46 19.69 0.62
3-ethyl-4-propylheptane 196.00 202.62 194.76 23.19 0.86
6-ethyl-4-methylnonane 196.00 204.25 198.69 20.99 1.28
4-methyl-5-propyloctane 196.00 201.38 199.12 22.33 0.71
3-methyl-4-propyloctane 197.00 202.10 196.34 13.89 0.58

3,5-diethyloctane 197.00 206.10 199.75 21.48 0.83
4,5-diethyloctane 197.00 205.15 197.96 22.25 0.82

4-ethyl-4-propylheptane 197.00 202.07 200.79 23.88 1.38
5,5-dimethyldecane 197.00 204.60 195.25 21.73 1.29

5-propylnonane 197.00 215.15 197.81 21.48 2.34
6-ethyl-2-methylnonane 198.00 205.36 202.74 12.02 0.80

2,6-dimethyldecane 198.00 209.40 202.22 17.77 0.82
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2,5-dimethyldecane 198.00 208.15 199.99 18.49 0.90
4,6-dimethyldecane 198.00 206.98 197.26 19.60 0.88

5-ethyl-4-methylnonane 198.00 203.42 201.22 13.71 0.69
5-ethyl-5-methylnonane 198.00 202.81 198.53 21.94 0.93
6-ethyl-3-methylnonane 199.00 204.91 199.99 12.68 1.17
3-ethyl-5-methylnonane 199.00 207.82 200.24 20.82 0.62

3,4-diethyloctane 199.00 205.54 200.05 22.28 1.01
4,7-dimethyldecane 199.00 206.23 202.60 12.49 1.59

4-ethyl-4-methylnonane 199.00 203.05 200.19 21.91 1.54
4,4-dimethyldecane 199.00 204.77 197.81 21.25 0.96

4-ethyl-5-methylnonane 199.00 207.37 201.04 22.12 0.75
4-propylnonane 199.00 214.67 201.65 20.05 0.75

2,4-dimethyldecane 200.00 205.52 201.44 19.31 0.31
3,5-dimethyldecane 200.00 207.08 201.69 19.07 0.37

3-ethyl-6-methylnonane 200.00 208.90 199.04 20.19 0.97
4,4-diethyloctane 200.00 202.08 198.61 14.86 1.58

2,2-dimethyldecane 201.00 203.32 199.21 20.53 0.96
3,6-dimethyldecane 201.00 207.84 200.96 19.00 0.80

4-ethyl-3-methylnonane 201.00 204.29 198.50 20.80 0.54
5,6-dimethyldecane 201.00 204.78 200.91 21.26 1.44

7-ethyl-2-methylnonane 202.00 206.39 200.27 11.65 1.07
2,7-dimethyldecane 202.00 209.71 203.23 16.84 0.73
3,7-dimethyldecane 202.00 208.76 203.08 17.94 0.80
3,6-diethyloctane 202.00 208.00 198.64 21.04 1.58

4,5-dimethyldecane 202.00 205.09 202.62 20.75 0.78
5-ethyldecane 202.00 209.33 201.77 12.36 0.34

3-ethyl-2-methylnonane 203.00 202.24 201.77 13.13 0.81
7-ethyl-3-methylnonane 203.00 206.38 201.69 18.61 0.95

3,3-dimethyldecane 203.00 204.16 197.86 20.85 0.78
3-ethyl-4-methylnonane 203.00 207.64 198.15 21.05 0.76

2,9-dimethyldecane 204.00 213.06 203.40 16.02 0.54
2,8-dimethyldecane 204.00 211.83 199.50 16.64 0.92

3-ethyl-3-methylnonane 204.00 203.21 203.11 21.43 0.77
4-ethyldecane 204.00 209.77 204.27 11.70 1.03
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3,8-dimethyldecane 205.00 210.31 203.21 17.62 0.70
3,4-dimethyldecane 205.00 203.57 201.83 12.94 0.20
3,3-diethyloctane 205.00 204.31 198.66 22.89 1.37

2,3-dimethyldecane 206.00 206.17 201.52 19.66 1.03
5-methylundecane 206.00 212.61 205.59 17.20 0.98
6-methylundecane 206.00 211.51 204.81 18.64 0.70

3-ethyldecane 208.70 214.51 198.64 17.34 2.08
4-methylundecane 209.00 211.12 206.17 10.55 1.44
2-methylundecane 210.00 216.50 209.29 13.97 0.96
3-methylundecane 210.30 216.11 208.84 15.24 0.67

Dodecane 216.32 215.46 206.20 11.27 2.36
Table A.2 Full boiling point results. The table contains boiling point values, their model 7.2
fits [16], and linear regression and neural network cross-validation predictions accompanied
by their uncertainties.

A.3 Antoine coefficients

Name Bexp(kPa◦C) Breg(kPa◦C) Bnn(kPa◦C) δBreg(kPa◦C) δBnn(kPa◦C)

Methane 500.25 666.12 546.43 22.69 8.31
Ethane 657.10 747.70 670.64 36.09 3.19

Propane 828.30 840.08 801.28 43.43 2.95
Butane 960.05 921.85 935.32 44.98 6.91
Pentane 1082.54 1027.57 1060.19 44.58 7.80

2,2-dimethylbutane 1090.16 1110.98 1093.30 95.78 11.76
2,3-dimethylbutane 1127.40 1111.02 1119.68 87.84 8.76

Hexane 1143.56 1117.93 1165.59 50.05 11.35
2-methylpentane 1145.80 1119.23 1142.31 72.87 10.02
3-methylpentane 1162.37 1134.73 1131.10 82.06 7.88

2,2-dimethylpentane 1191.96 1186.60 1197.65 105.25 10.22
2,4-dimethylpentane 1193.61 1206.92 1223.90 95.11 12.78
3,3-dimethylpentane 1227.02 1195.10 1236.69 132.55 7.36

2-methylhexane 1235.52 1224.42 1243.40 86.70 5.72
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2,3-dimethylpentane 1238.99 1203.31 1210.87 80.21 13.34
3-methylhexane 1242.02 1214.43 1251.60 112.87 11.92
3-ethylpentane 1254.06 1216.92 1249.53 124.69 10.58

2,2-dimethylhexane 1271.18 1274.57 1290.53 156.19 7.51
Heptane 1271.23 1208.30 1253.91 55.53 8.55

2,5-dimethylhexane 1285.47 1303.35 1310.16 141.23 6.28
2,5-dimethylhexane 1285.85 1302.23 1307.17 100.28 5.12
3,3-dimethylhexane 1306.96 1285.56 1316.72 116.41 4.27
2,3-dimethylhexane 1314.29 1280.55 1298.51 111.41 8.76

3-ethyl-2-methylpentane 1317.05 1293.61 1316.47 155.92 9.35
4-methylheptane 1325.74 1318.94 1318.53 96.86 2.90
3-methylheptane 1326.14 1311.48 1325.46 124.93 3.24

3-ethylhexane 1327.93 1312.03 1343.39 101.22 16.20
3,4-dimethylhexane 1329.40 1295.96 1310.16 87.97 5.24

2-methylheptane 1335.22 1313.08 1332.71 126.54 9.99
3-ethyl-3-methylpentane 1345.92 1296.92 1324.82 95.08 6.81

2,2-dimethylheptane 1346.10 1362.03 1374.77 173.23 4.36
Octane 1347.92 1302.02 1355.19 80.14 6.64

4,4-dimethylheptane 1360.20 1384.51 1389.40 127.57 4.49
3,3-dimethylheptane 1365.40 1368.63 1374.47 100.41 2.15
2,4-dimethylheptane 1367.00 1375.19 1393.45 94.64 4.69
2,6-dimethylheptane 1376.40 1392.88 1379.09 87.68 3.80

4-ethyl-2-methylhexane 1377.80 1385.00 1398.31 98.26 7.28
3,5-dimethylheptane 1378.60 1390.84 1391.98 120.51 3.93
2,5-dimethylheptane 1380.00 1384.66 1381.36 112.49 3.53

3-ethyl-3-methylhexane 1389.70 1379.46 1401.14 171.36 3.82
4-methyloctane 1395.90 1414.60 1388.00 106.79 2.83

3-ethyl-2-methylhexane 1397.40 1378.82 1376.11 130.11 6.81
2-methyloctane 1399.90 1409.19 1405.75 101.38 11.24

3,4-dimethylheptane 1400.50 1377.48 1383.49 96.93 4.68
2,3-dimethylheptane 1401.00 1364.67 1369.12 126.02 3.16

3-methyloctane 1404.30 1410.19 1402.66 95.68 3.85
4-ethylheptane 1406.20 1414.80 1403.82 90.00 4.65

3-ethyl-4-methylhexane 1408.50 1393.77 1397.58 125.61 5.36
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3-ethylheptane 1415.70 1411.02 1398.51 148.81 5.42
Nonane 1432.28 1391.61 1424.58 75.75 7.79

4-ethyl-2-methylheptane 1438.20 1471.20 1457.11 137.46 4.96
2,7-dimethyloctane 1444.19 1492.26 1448.16 121.04 6.32
4,4-dimethyloctane 1446.90 1468.31 1464.46 138.80 5.07
3,5-dimethyloctane 1448.80 1485.23 1462.34 126.39 3.17

5-ethyl-2-methylheptane 1448.80 1477.04 1450.19 127.69 6.69
2,6-dimethyloctane 1450.53 1487.86 1452.25 170.33 6.07

5-ethyl-3-methylheptane 1455.20 1489.38 1458.58 131.83 4.40
3,3-diethylpentane 1455.75 1391.22 1422.25 137.37 11.25
3,6-dimethyloctane 1456.90 1486.25 1454.81 168.72 4.17
3,3-dimethyloctane 1457.60 1453.14 1454.76 138.87 6.99

3-ethyl-2-methylheptane 1457.90 1464.69 1447.14 137.21 3.65
4-propylheptane 1458.70 1531.14 1463.94 136.53 6.63

4,5-dimethyloctane 1460.52 1474.20 1468.61 134.66 3.05
4-ethyl-3-methylheptane 1464.20 1468.80 1455.68 109.50 3.18
4-ethyl-4-methylheptane 1464.90 1483.25 1474.61 140.74 4.32

3,4-dimethyloctane 1465.90 1466.77 1462.46 131.15 7.65
3-ethyl-4-methylheptane 1466.80 1479.73 1462.04 140.97 3.59
3-ethyl-3-methylheptane 1472.90 1465.40 1466.51 143.13 5.36

3,4-diethylhexane 1473.20 1488.60 1488.83 190.25 4.12
Decane 1479.02 1479.39 1493.46 71.94 7.77

3,3-diethylhexane 1490.90 1481.83 1481.89 150.31 5.49
Undecane 1570.86 1595.66 1559.72 88.08 6.51
Dodecane 1628.18 1700.40 1628.08 164.55 8.49

Table A.3 Full Antoine B coefficient results. The table contains experimental coefficient val-
ues and their linear regression and neural network cross-validation predictions accompanied
by uncertainties.

Name Cexp(◦C) Creg(◦C) Cnn(◦C) δCreg(◦C) δCnn(◦C)

Dodecane 180.64 176.47 181.87 2.49 0.97
Undecane 187.91 185.35 186.18 2.29 0.39

Decane 191.99 194.42 194.00 1.76 0.31
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2,7-dimethyloctane 198.27 198.77 200.16 4.33 0.41
2,6-dimethyloctane 199.40 199.09 200.61 4.00 0.31
3,6-dimethyloctane 200.50 199.86 200.95 4.34 0.28

4-propylheptane 201.20 199.61 201.98 5.67 0.51
5-ethyl-2-methylheptane 201.30 201.44 201.57 4.39 0.28

3,5-dimethyloctane 201.30 200.37 200.84 4.48 0.43
3,4-dimethyloctane 201.40 200.93 202.23 4.70 0.16
4,5-dimethyloctane 201.90 201.24 202.31 5.57 0.55

Nonane 202.04 201.65 201.72 2.10 1.08
3-ethyl-2-methylheptane 202.20 202.56 203.06 4.82 0.66
4-ethyl-2-methylheptane 202.30 202.34 202.10 5.22 0.32
5-ethyl-3-methylheptane 202.40 202.15 202.52 4.73 0.30

3,3-dimethyloctane 202.50 200.99 203.17 5.22 0.68
3-ethyl-4-methylheptane 203.00 201.55 203.55 5.32 0.37
4-ethyl-3-methylheptane 203.30 203.09 203.14 3.72 0.23

4,4-dimethyloctane 203.50 201.37 202.59 5.37 0.16
2-methyloctane 204.00 203.70 203.42 3.51 0.29
4-methyloctane 204.00 205.17 203.74 4.30 0.40
3-methyloctane 204.00 204.37 204.61 3.25 0.44

3,4-diethylhexane 204.20 204.26 205.46 5.32 0.27
3-ethyl-3-methylheptane 204.50 203.20 202.89 5.42 0.48
4-ethyl-4-methylheptane 205.20 203.43 204.38 5.29 0.20

4-ethylheptane 206.00 206.88 206.01 3.14 0.67
3-ethylheptane 206.00 205.91 206.44 3.85 0.12

3,3-diethylhexane 206.20 204.14 206.30 5.75 0.50
2,3-dimethylheptane 208.00 208.28 209.07 4.85 0.79
3,5-dimethylheptane 208.00 208.01 208.71 4.80 0.77
2,6-dimethylheptane 208.00 206.89 207.73 2.75 0.22
2,4-dimethylheptane 208.00 207.93 205.97 3.06 0.93
3,4-dimethylheptane 208.00 208.56 206.54 3.30 0.42
3,3-dimethylheptane 208.00 209.07 208.71 3.46 0.60
2,2-dimethylheptane 208.00 208.99 208.33 4.55 0.05
2,5-dimethylheptane 208.00 207.08 210.00 3.98 0.38
4,4-dimethylheptane 208.00 208.99 207.11 5.01 0.20
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Octane 208.70 209.75 209.23 2.35 0.52
3-ethyl-2-methylhexane 209.00 210.34 208.05 5.07 0.38
4-ethyl-2-methylhexane 209.00 209.61 209.14 3.22 0.19
3-ethyl-3-methylhexane 209.00 211.24 210.86 4.88 0.22
3-ethyl-4-methylhexane 209.00 210.19 211.01 4.60 0.28

3-methylheptane 211.81 212.29 212.12 3.18 0.17
4-methylheptane 212.37 213.26 212.53 3.73 0.39

3-ethylhexane 212.65 213.93 213.30 3.65 0.31
2-methylheptane 213.42 211.52 211.63 2.84 0.66

2,3-dimethylhexane 214.06 215.46 214.80 4.09 0.67
2,5-dimethylhexane 214.25 214.76 214.33 3.51 0.29
2,5-dimethylhexane 214.60 214.60 213.53 3.46 0.42
2,2-dimethylhexane 214.83 216.53 215.20 4.19 0.47
3,4-dimethylhexane 214.84 215.71 216.19 3.05 0.44

3-ethyl-2-methylpentane 215.23 218.01 216.42 4.18 0.18
3,3-diethylpentane 216.13 211.71 210.36 5.13 0.58

Heptane 217.23 217.44 215.07 1.46 0.94
3,3-dimethylhexane 217.38 216.22 216.53 4.49 0.84

3-methylhexane 219.44 220.42 219.33 3.05 0.41
2-methylhexane 219.50 219.70 219.70 3.21 0.26

3-ethyl-3-methylpentane 219.58 217.92 217.92 3.36 0.85
3-ethylpentane 220.14 222.17 221.24 3.59 1.43

Hexane 221.16 225.11 225.62 1.36 0.33
2,4-dimethylpentane 221.81 222.69 222.21 3.49 0.35
2,3-dimethylpentane 221.94 222.76 222.59 2.70 0.34
2,2-dimethylpentane 223.50 223.45 223.15 3.96 0.45
3,3-dimethylpentane 225.12 224.26 224.06 3.94 0.81

2-methylpentane 227.82 227.76 224.70 2.52 1.79
3-methylpentane 228.29 228.44 226.13 3.46 1.73

2,3-dimethylbutane 228.97 230.67 231.47 3.20 0.32
2,2-dimethylbutane 230.52 231.27 230.08 3.95 0.58

Pentane 233.90 232.79 231.66 1.26 0.51
Butane 241.54 241.63 242.66 1.46 0.35
Propane 250.18 249.75 251.82 1.61 0.30
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Ethane 256.11 257.75 261.14 1.46 0.42
Methane 272.73 263.48 265.12 0.86 0.97

Table A.4 Full Antoine C coefficient results. The table contains experimental coefficient val-
ues and their linear regression and neural network cross-validation predictions accompanied
by uncertainties.

A.4 Flash Point

Name T exp
f (◦C) T gc

f (◦C) T lin
f (◦C) T nn

f (◦C) δT lin
f (◦C) δT nn

f (◦C)

Methane -188.00 -189.86 -183.92 3.21 2.10
Ethane -135.00 -129.04 -136.22 -133.70 1.96 0.67

Propane -104.00 -97.15 -102.37 -98.49 4.53 0.08
Butane -60.00 -71.15 -74.04 -74.27 5.46 3.28
Pentane -49.00 -47.15 -46.66 -46.13 8.16 0.39
Hexane -26.00 -26.15 -22.51 -21.69 10.92 0.68
Heptane -4.00 -6.15 -1.86 -4.41 12.69 0.19
Octane 13.00 11.85 17.77 10.22 14.24 1.37
Nonane 31.00 28.85 35.50 29.36 15.56 2.51
Decane 46.00 44.85 52.59 43.33 17.46 3.09

Undecane 60.00 60.85 67.33 60.71 21.45 0.53
Dodecane 71.00 74.85 82.22 72.80 20.82 0.91
Tridecane 94.00 89.85 94.98 90.28 22.10 0.80

Tetradecane 100.00 102.85 107.88 111.21 23.86 2.37
Pentadecane 132.00 115.85 119.09 123.50 22.67 1.44
Hexadecane 135.00 128.85 131.32 138.17 26.21 0.49
Heptadecane 149.00 141.18 141.52 147.09 33.95 3.07
Octadecane 165.00 153.14 151.50 160.34 22.92 1.12
Nonadecane 168.00 164.79 161.28 163.96 29.07 3.54

Eicosane 176.00 176.13 170.86 175.66 31.79 0.43
Octacosane 227.00 258.19 234.81 225.55 40.83 1.25
Triacontane 238.00 276.80 250.04 239.83 47.75 6.16
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Table A.5 Full flash point results. The table contains boiling point values, their group
contribution [36] fits, and linear regression and neural network cross-validation predictions
accompanied by their uncertainties.

A.5 Melting point

Name T exp
m (◦C) T reg

m (◦C) T reg+
m (◦C) δT reg

m (◦C) δT reg+
m (◦C)

Propane -187.68 -146.71 -165.92 20.68 18.35
Ethane -182.80 -166.16 -121.87 24.60 19.46

Methane -182.47 -179.18 -83.40 25.68 17.67
2-methylbutane -159.90 -133.67 -143.54 44.11 40.07

2-methylpropane -159.60 -161.84 -168.03 33.22 36.58
2-methylpentane -153.66 -122.70 -138.59 38.46 42.16

Butane -138.36 -137.80 -145.47 27.69 20.03
3,3-dimethylpentane -134.44 -127.87 -133.46 60.14 67.09

Pentane -129.73 -122.58 -134.24 23.59 22.05
2,3-dimethylbutane -128.54 -112.40 -117.15 59.18 56.32
3,3-dimethylhexane -126.10 -126.26 -123.49 69.21 73.30
2,2-dimethylpentane -123.81 -131.56 -140.57 47.06 47.38
2,2-dimethylhexane -121.18 -123.07 -123.36 60.41 67.42

4-methylheptane -120.96 -122.96 -127.13 50.36 56.96
3-methylheptane -120.53 -107.52 -118.88 43.96 49.16

2,3-dimethylpentane -119.24 -120.22 -137.49 55.35 60.19
2,4-dimethylpentane -119.22 -100.17 -120.13 50.36 56.64

3-ethylpentane -118.58 -138.77 -137.37 50.63 59.41
2-methylhexane -118.27 -110.36 -118.67 44.42 43.76

2,3-dimethylheptane -116.70 -113.84 -121.04 51.61 52.86
5-ethyl-2-methylnonane -116.00 -31.98 -39.02 66.89 83.32
3-ethyl-2-methylpentane -115.00 -82.79 -96.39 52.61 53.26

4-methyloctane -113.20 -112.09 -110.01 56.85 60.50
2,2-dimethylheptane -113.00 -129.46 -132.78 70.59 79.23
4,4-dimethyloctane -110.00 -128.22 -112.99 81.23 86.48
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2-methylheptane -109.04 -95.26 -105.89 40.25 43.71
3-methyloctane -107.50 -95.56 -96.28 52.45 52.25

2,6-dimethylheptane -102.90 -72.34 -86.39 52.61 60.35
2,2-dimethylbutane -99.87 -129.58 -143.49 57.08 59.84

4-methylnonane -98.70 -95.78 -97.30 46.03 56.66
Hexane -95.32 -114.08 -102.36 24.33 26.58

4-methyldecane -92.00 -78.87 -70.14 58.49 60.70
2,5-dimethylhexane -91.17 -88.16 -92.55 57.96 59.13

3-ethyl-3-methylpentane -90.84 -106.42 -123.62 70.49 78.61
Heptane -90.58 -93.12 -100.37 26.30 24.78

5-methylnonane -87.70 -112.95 -105.43 57.56 68.87
3-methylnonane -84.33 -82.68 -87.62 47.94 50.52

2,5-dimethyldecane -84.00 -85.52 -67.94 76.74 82.90
2-methyloctane -80.40 -81.82 -82.73 49.34 47.24
3-methyldecane -79.50 -67.32 -62.84 54.58 53.98
2-methylnonane -74.65 -67.97 -72.40 42.02 48.60

3-methylundecane -58.00 -51.05 -53.05 39.86 40.13
Octane -56.76 -88.04 -72.89 26.57 30.14

2,7-dimethyloctane -54.00 -69.40 -57.67 64.88 60.65
Nonane -53.49 -77.77 -76.30 30.77 29.43

2-methyldecane -48.86 -54.57 -49.48 52.28 50.63
2-methylundecane -46.81 -40.95 -38.84 47.28 52.32
3,3-diethylpentane -33.09 -100.71 -17.80 100.09 91.95

Decane -29.64 -62.00 -43.41 28.81 33.71
Undecane -25.58 -53.16 -45.30 34.11 33.08

2,2-dimethylpropane -16.55 -136.70 -105.68 52.78 38.79
Dodecane -9.58 -40.86 -18.88 42.56 34.91

Table A.6 Full melting point linear regression results.. The table contains experimental
melting point values and linear regression cross-validation predictions with uncertainties,
both without and with symmetry parameters included.

Name T exp
m (◦C) T nn

m (◦C) T nn+
m (◦C) δT nn

m (◦C) δT nn+
m (◦C)

Propane -187.68 -161.12 -167.48 2.44 3.08
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Ethane -182.80 -179.14 -188.90 3.42 4.95
Methane -182.47 -165.29 -140.69 15.00 4.22

2-methylbutane -159.90 -153.94 -156.54 3.93 4.31
2-methylpropane -159.60 -143.10 -173.38 9.32 2.63
2-methylpentane -153.66 -143.23 -145.42 5.33 2.84

Butane -138.36 -150.39 -162.08 1.82 2.98
3,3-dimethylpentane -134.44 -90.63 -106.48 15.08 5.25

Pentane -129.73 -135.03 -141.96 4.54 2.45
2,3-dimethylbutane -128.54 -93.63 -97.84 5.05 2.33
3,3-dimethylhexane -126.10 -119.61 -106.40 4.62 2.00
2,2-dimethylpentane -123.81 -125.94 -130.84 2.97 1.86
2,2-dimethylhexane -121.18 -119.14 -108.39 5.39 4.33

4-methylheptane -120.96 -115.74 -125.27 4.91 1.67
3-methylheptane -120.53 -125.84 -124.10 2.77 2.69

2,3-dimethylpentane -119.24 -112.22 -121.49 6.18 3.17
2,4-dimethylpentane -119.22 -102.69 -119.97 2.99 2.15

3-ethylpentane -118.58 -95.68 -128.90 19.99 7.38
2-methylhexane -118.27 -130.02 -115.66 1.11 4.73

2,3-dimethylheptane -116.70 -116.39 -118.01 4.66 1.97
5-ethyl-2-methylnonane -116.00 -101.51 -96.70 12.09 3.09
3-ethyl-2-methylpentane -115.00 -98.20 -105.13 8.99 4.44

4-methyloctane -113.20 -114.61 -111.15 2.85 2.20
2,2-dimethylheptane -113.00 -121.45 -118.57 3.78 2.84
4,4-dimethyloctane -110.00 -121.56 -102.99 5.90 2.48

2-methylheptane -109.04 -119.19 -106.11 8.22 3.21
3-methyloctane -107.50 -107.75 -99.67 3.04 1.34

2,6-dimethylheptane -102.90 -80.96 -97.35 5.94 2.40
2,2-dimethylbutane -99.87 -108.65 -135.80 2.57 3.51

4-methylnonane -98.70 -91.13 -99.36 3.78 3.38
Hexane -95.32 -101.92 -110.15 2.97 2.99

4-methyldecane -92.00 -77.50 -88.23 6.16 3.93
2,5-dimethylhexane -91.17 -101.17 -80.22 1.27 3.77

3-ethyl-3-methylpentane -90.84 -78.61 -123.25 31.86 4.50
Heptane -90.58 -80.60 -94.74 6.22 1.05
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5-methylnonane -87.70 -109.27 -103.20 5.45 3.52
3-methylnonane -84.33 -90.63 -91.41 4.26 3.94

2,5-dimethyldecane -84.00 -100.30 -103.87 6.96 4.71
2-methyloctane -80.40 -90.40 -80.36 4.61 0.65
3-methyldecane -79.50 -67.67 -79.18 1.86 5.26
2-methylnonane -74.65 -74.83 -68.51 5.67 1.98

3-methylundecane -58.00 -68.16 -67.70 9.29 1.74
Octane -56.76 -83.04 -60.06 10.67 2.18

2,7-dimethyloctane -54.00 -90.50 -79.12 2.19 2.38
Nonane -53.49 -40.06 -50.75 2.12 4.02

2-methyldecane -48.86 -59.64 -59.57 3.01 2.77
2-methylundecane -46.81 -45.94 -46.15 3.32 3.15
3,3-diethylpentane -33.09 -8.18 26.35 11.93 15.43

Decane -29.64 -34.52 -26.24 3.35 3.72
Undecane -25.58 -36.01 -26.26 13.24 4.25

2,2-dimethylpropane -16.55 -126.15 -90.54 6.31 7.26
Dodecane -9.58 -1.93 -2.96 4.56 3.92

Table A.7 Full melting point neural network results. The table contains experimental melting
point values and neural cross-validation predictions with uncertainties, both without and with
symmetry parameters included.

A.6 Kinematic viscosity

Name T (◦C) ρexp(g
l ) ρ reg(g

l ) ρnn(g
l ) δρ reg(g

l ) δρnn(g
l )

Decane 25.00 726.60 724.76 727.29 4.69 0.64
Decane 50.00 707.40 705.72 705.41 5.00 1.14
Decane 75.00 687.70 686.70 683.60 5.43 1.32
Decane 75.00 687.90 686.05 682.53 5.20 2.98
Decane 100.00 667.50 666.89 663.58 6.05 1.42

Dodecane 20.00 748.50 745.30 748.89 5.04 0.85
Dodecane 25.00 746.00 741.42 745.42 5.44 0.28
Dodecane 30.00 741.40 737.88 741.75 5.08 0.79
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Dodecane 40.00 734.10 730.18 734.33 5.42 0.51
Dodecane 50.00 726.90 722.44 727.59 5.41 0.23
Dodecane 50.00 727.40 722.23 727.59 5.29 0.23
Dodecane 60.00 719.70 714.90 720.23 5.42 0.69
Dodecane 70.00 711.90 707.06 713.46 6.06 0.41
Dodecane 75.00 708.90 703.40 708.79 5.72 0.84
Dodecane 80.00 704.40 699.07 705.10 5.66 1.00
Dodecane 90.00 697.00 692.07 697.50 6.03 1.27
Dodecane 100.00 689.80 684.44 687.45 6.15 3.26
Dodecane 100.00 690.00 683.63 689.58 5.90 1.43
Dodecane 125.00 670.90 665.07 667.25 6.82 1.90
Dodecane 150.00 651.10 646.25 647.27 6.65 3.13
Dodecane 175.00 630.40 626.90 626.49 7.51 2.92
Dodecane 200.00 608.90 606.44 605.91 7.13 2.76
Nonane -17.78 749.99 748.17 746.24 4.21 1.38
Nonane -12.22 745.34 744.93 743.12 3.93 1.01
Nonane -6.67 740.54 740.53 739.98 4.09 0.47
Nonane -1.11 735.89 736.35 735.46 4.07 0.48
Nonane 4.44 731.08 732.32 729.44 4.18 1.07
Nonane 10.00 726.44 726.96 726.64 4.59 0.20
Nonane 15.56 721.63 723.49 720.01 4.28 1.10
Nonane 21.11 716.99 719.37 716.67 4.56 0.21
Nonane 26.67 712.34 714.24 713.13 4.82 0.63
Nonane 30.00 710.20 712.74 710.43 4.47 0.72
Nonane 32.22 707.54 710.90 706.49 4.57 1.22
Nonane 37.78 702.89 706.33 703.41 4.55 0.27
Nonane 40.00 702.50 705.08 700.24 4.59 0.95
Nonane 43.33 698.09 702.44 697.47 4.83 1.35
Nonane 48.89 693.44 697.27 691.93 5.13 1.40
Nonane 50.00 694.70 697.42 691.01 4.71 1.41
Nonane 54.44 688.64 693.97 686.63 4.97 2.15
Nonane 60.00 683.99 689.18 683.31 4.82 1.34
Nonane 65.56 679.18 685.49 676.77 5.10 2.66
Nonane 71.11 674.54 681.26 673.87 5.17 1.35
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Nonane 76.67 669.73 676.99 669.15 5.01 1.36
Octadecane 50.00 763.20 772.89 763.86 6.48 0.86
Octadecane 75.00 744.60 753.70 747.01 6.80 0.47
Octadecane 100.00 726.20 734.85 726.05 7.41 0.86
Octadecane 125.00 709.20 716.90 710.71 8.11 0.63
Octadecane 150.00 691.80 696.74 689.94 8.01 1.77
Octadecane 175.00 674.20 676.40 674.67 8.01 0.70
Octadecane 200.00 656.20 659.64 656.64 9.14 0.96

Octane 25.00 698.60 708.01 700.27 4.40 0.64
Octane 50.00 678.20 688.99 677.93 4.59 0.88
Octane 75.00 657.20 669.89 655.41 4.79 2.22
Octane 100.00 635.30 650.89 635.14 5.21 2.12

Pentadecane 20.00 768.50 770.39 767.64 5.65 0.37
Pentadecane 30.00 761.60 763.01 761.23 5.93 0.18
Pentadecane 40.00 754.50 755.15 754.04 5.90 0.18
Pentadecane 50.00 747.40 748.24 747.69 6.43 0.83
Pentadecane 60.00 740.40 739.91 739.59 6.15 0.16
Pentadecane 70.00 733.30 732.38 732.24 6.14 0.20
Pentadecane 80.00 726.20 725.34 726.05 6.84 0.86
Pentadecane 90.00 719.10 716.68 717.31 6.37 0.39
Pentadecane 100.00 712.10 709.41 710.39 6.49 0.43
Tetradecane 10.00 770.00 769.85 770.04 5.47 0.85
Tetradecane 15.00 766.40 766.04 766.05 5.53 0.23
Tetradecane 20.00 762.90 762.03 762.47 5.45 0.23
Tetradecane 25.00 759.40 758.42 759.26 5.66 0.51
Tetradecane 35.00 752.30 750.60 751.75 5.63 0.06
Tetradecane 45.00 745.40 742.98 744.38 5.76 0.13
Tetradecane 65.00 731.40 727.54 729.80 5.87 0.15
Tetradecane 85.00 717.20 712.68 714.61 6.39 0.55
Tetradecane 100.00 706.50 700.52 703.81 6.30 0.77
Tridecane 20.00 755.80 753.87 757.01 5.58 0.83
Tridecane 30.00 748.70 746.20 748.87 5.51 0.12
Tridecane 40.00 741.60 738.60 741.71 5.39 0.14
Tridecane 40.00 741.90 738.60 741.71 5.39 0.14
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Tridecane 50.00 734.70 730.81 734.42 5.61 0.29
Tridecane 60.00 727.50 723.34 727.47 6.14 0.66
Tridecane 70.00 720.50 715.57 719.28 5.86 0.55
Tridecane 80.00 715.00 707.52 712.52 5.86 0.16
Tridecane 90.00 705.70 699.80 705.12 5.98 0.18
Tridecane 100.00 698.50 692.08 697.94 6.10 0.28
Undecane 30.00 733.00 729.50 734.08 4.87 1.31
Undecane 50.00 718.50 713.70 719.88 5.57 0.43

Table A.8 Full density results. The table contains density experimental values, and linear re-
gression and neural network cross-validation predictions accompanied by their uncertainties.

Name T (◦C) µexp(cP) µ reg(cP) µnn(cP) δ µ reg(cP) δ µnn(cP)

Octane 25.00 0.51 0.73 0.53 0.30 0.01
Octane 50.00 0.39 0.41 0.41 0.31 0.01
Octane 75.00 0.30 0.07 0.29 0.32 0.03
Octane 100.00 0.25 -0.28 0.22 0.36 0.02
Nonane 1.67 0.94 1.23 1.06 0.29 0.01
Nonane 4.44 0.90 1.20 0.95 0.30 0.03
Nonane 7.22 0.87 1.12 0.90 0.29 0.05
Nonane 10.00 0.83 1.12 0.85 0.30 0.02
Nonane 12.78 0.80 1.04 0.85 0.29 0.06
Nonane 15.56 0.77 1.03 0.70 0.29 0.03
Nonane 18.33 0.74 0.98 0.73 0.30 0.03
Nonane 21.11 0.71 0.93 0.69 0.30 0.02
Nonane 23.89 0.68 0.93 0.79 0.31 0.07
Nonane 26.67 0.66 0.88 0.77 0.31 0.08
Nonane 29.44 0.64 0.86 0.75 0.32 0.08
Nonane 30.00 0.62 0.84 0.63 0.31 0.01
Nonane 32.22 0.61 0.77 0.61 0.29 0.01
Nonane 35.00 0.59 0.79 0.59 0.32 0.01
Nonane 37.78 0.57 0.69 0.70 0.30 0.09
Nonane 40.00 0.55 0.71 0.56 0.32 0.01
Nonane 40.56 0.55 0.69 0.56 0.31 0.01
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Nonane 43.33 0.54 0.65 0.55 0.32 0.01
Nonane 46.11 0.52 0.62 0.51 0.32 0.02
Nonane 48.89 0.50 0.53 0.49 0.31 0.02
Nonane 50.00 0.49 0.59 0.63 0.32 0.10
Decane 25.00 0.85 1.09 0.82 0.32 0.01
Decane 50.00 0.61 0.75 0.60 0.34 0.01
Decane 75.00 0.46 0.44 0.48 0.36 0.01
Decane 100.00 0.36 0.10 0.39 0.38 0.02

Undecane 30.00 0.99 1.22 0.98 0.33 0.05
Undecane 50.00 0.75 0.94 0.74 0.34 0.02
Dodecane 20.00 1.49 1.54 1.48 0.34 0.05
Dodecane 25.00 1.34 1.48 1.36 0.34 0.03
Dodecane 25.00 1.34 1.45 1.41 0.34 0.03
Dodecane 30.00 1.25 1.41 1.23 0.35 0.02
Dodecane 40.00 1.07 1.26 1.03 0.35 0.05
Dodecane 50.00 0.91 1.14 0.87 0.36 0.02
Dodecane 60.00 0.81 1.00 0.88 0.35 0.06
Dodecane 70.00 0.72 0.88 0.71 0.37 0.01
Dodecane 75.00 0.66 0.82 0.68 0.38 0.01
Dodecane 80.00 0.64 0.75 0.65 0.40 0.01
Dodecane 90.00 0.57 0.63 0.58 0.39 0.01
Dodecane 100.00 0.50 0.42 0.61 0.39 0.11
Dodecane 125.00 0.40 0.19 0.44 0.41 0.02
Dodecane 150.00 0.32 -0.12 0.32 0.43 0.01
Dodecane 175.00 0.26 -0.56 0.21 0.46 0.02
Dodecane 200.00 0.22 -1.02 0.09 0.46 0.03
Tridecane 20.00 1.80 1.76 1.95 0.36 0.02
Tridecane 30.00 1.57 1.62 1.51 0.37 0.06
Tridecane 40.00 1.29 1.50 1.20 0.35 0.02
Tridecane 50.00 1.10 1.33 1.04 0.37 0.03
Tridecane 60.00 0.97 1.19 0.89 0.38 0.03
Tridecane 70.00 0.85 1.06 0.82 0.39 0.01
Tridecane 80.00 0.75 0.92 0.75 0.40 0.01
Tridecane 90.00 0.67 0.81 0.68 0.42 0.02
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Tridecane 100.00 0.59 0.63 0.63 0.40 0.01
Tetradecane 9.98 2.88 2.00 2.76 0.35 0.03
Tetradecane 12.17 2.74 2.04 2.67 0.36 0.02
Tetradecane 14.65 2.57 2.00 2.55 0.36 0.01
Tetradecane 14.65 2.58 1.94 2.55 0.36 0.02
Tetradecane 19.63 2.31 1.88 2.27 0.36 0.09
Tetradecane 25.58 2.04 1.80 2.12 0.37 0.02
Tetradecane 25.58 2.04 1.91 2.10 0.35 0.02
Tetradecane 44.82 1.41 1.56 1.35 0.38 0.03
Tetradecane 44.82 1.41 1.64 1.52 0.37 0.05
Tetradecane 44.83 1.41 1.56 1.47 0.38 0.04
Tetradecane 64.81 1.04 1.34 1.01 0.41 0.02
Tetradecane 64.83 1.04 1.31 1.01 0.40 0.02
Tetradecane 64.83 1.04 1.34 1.01 0.41 0.02
Tetradecane 64.83 1.04 1.34 1.01 0.41 0.02
Tetradecane 64.83 1.04 1.35 1.01 0.38 0.02
Tetradecane 84.46 0.80 1.07 0.89 0.41 0.06
Tetradecane 84.46 0.81 1.07 0.89 0.41 0.06
Tetradecane 84.46 0.81 1.07 0.89 0.41 0.06
Pentadecane 20.00 2.86 2.14 2.69 0.39 0.03
Pentadecane 30.00 2.29 1.93 2.30 0.39 0.02
Pentadecane 50.00 1.58 1.77 1.65 0.39 0.04
Pentadecane 60.00 1.35 1.56 1.33 0.41 0.04
Pentadecane 70.00 1.16 1.46 1.09 0.43 0.02
Pentadecane 80.00 1.01 1.31 1.02 0.43 0.03
Pentadecane 90.00 0.89 1.17 0.85 0.43 0.01
Pentadecane 100.00 0.79 1.05 0.78 0.42 0.01
Octadecane 50.00 2.46 2.24 2.53 0.44 0.02
Octadecane 75.00 1.60 1.96 1.66 0.46 0.03
Octadecane 100.00 1.12 1.60 1.11 0.48 0.03
Octadecane 125.00 0.83 1.30 0.79 0.49 0.02
Octadecane 150.00 0.65 0.94 0.70 0.52 0.03
Octadecane 175.00 0.52 0.68 0.57 0.53 0.02
Octadecane 200.00 0.42 0.26 0.46 0.56 0.01
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Table A.9 Full dynamic viscosity results. The table contains density experimental values,
and linear regression and neural network cross-validation predictions accompanied by their
uncertainties.

Name ηexp(cSt) µ fv(cSt) µnn(cSt) δηnn(cSt)

Octane 0.65 0.72 0.77 0.04
Nonane 1.00 0.98 0.94 0.06
Decane 1.31 1.25 1.24 0.08

Undecane 1.56 1.77 1.68 0.12
Dodecane 1.96 1.97 2.19 0.13
Tridecane 2.48 3.12 2.55 0.14

Tetradecane 2.99 3.01 3.10 0.07
Pentadecane 3.78 5.50 3.57 0.09
Hexadecane 4.54 4.56 4.23 0.21

Table A.10 Predictions of kinematic viscosity of linear alkanes at 20◦ C. The table contains
experimental values, free volume theory fits [68] and neural network predictions with their
accompanying uncertainty.
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Chapter 3: Full results

B.1 Density at 25°C

Name ρexp(g
l ) ρmodel(

g
l ) δρmodel(

g
l ) |∆|(g

l )

2,2-dimethylbutane 644.43 651.44 0.67 7.0
2,2-dimethylheptane 706.60 702.49 0.72 4.1
2,2-dimethylhexane 691.11 691.47 0.40 0.35
2,2-dimethyloctane 721.00 712.54 0.47 8.5

2,2-dimethylpentane 669.48 674.69 0.52 5.2
Decane 726.14 727.59 0.82 1.5
Heptane 679.50 678.40 0.42 1.1
Hexane 654.89 653.67 0.41 1.2
Nonane 713.75 714.01 0.97 0.26
Octane 698.76 699.37 0.49 0.61

3-ethylheptane 722.50 723.07 0.65 0.57
3-ethylhexane 709.45 709.08 0.77 0.37
3-ethyloctane 735.40 734.29 0.44 1.1
3-ethylpentane 693.92 690.89 0.52 3.0

3,3-diethylpentane 749.92 754.54 0.40 4.6
4-ethylheptane 722.30 722.38 0.37 0.08
4-ethyloctane 734.30 733.16 0.78 1.1

4-propylheptane 731.90 732.27 0.93 0.37
2-methylheptane 693.87 696.93 0.45 3.1
2-methylhexane 674.34 677.72 0.38 3.4
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2-methylnonane 722.70 723.37 0.66 0.67
2-methyloctane 709.60 711.43 0.75 1.8

2-methylpentane 648.50 653.61 0.44 5.1
3-methylheptane 701.73 700.21 0.37 1.5
3-methylhexane 682.88 682.17 0.45 0.7
3-methylnonane 729.50 726.73 0.51 2.8
3-methyloctane 716.70 714.95 0.42 1.8

3-methylpentane 659.76 657.87 1.12 1.89
4-methylheptane 700.54 700.83 0.58 0.29
4-methylnonane 728.20 726.63 0.54 1.6
4-methyloctane 716.30 714.70 0.53 1.6
5-methylnonane 728.40 725.88 0.42 2.5

3-ethyl-2-methylheptane 739.80 729.11 0.43 11
3-ethyl-2-methylhexane 729.00 728.87 0.37 0.13
3-ethyl-2-methylpentane 715.20 717.26 0.51 2.1
3-ethyl-3-methylheptane 744.40 747.21 0.43 2.8
3-ethyl-3-methylhexane 736.00 736.93 0.53 0.93
3-ethyl-3-methylpentane 723.54 724.90 0.57 1.4
3-ethyl-4-methylheptane 746.60 742.77 0.31 3.8
3-ethyl-4-methylhexane 735.00 732.52 0.48 2.5
4-ethyl-2-methylheptane 732.20 734.77 0.37 2.6
4-ethyl-2-methylhexane 720.20 724.34 0.66 4.1
4-ethyl-3-methylheptane 746.80 742.22 0.33 4.6
4-ethyl-4-methylheptane 743.20 746.97 0.41 3.8
5-ethyl-2-methylheptane 731.50 733.73 0.40 2.2
5-ethyl-3-methylheptane 736.80 738.63 0.67 1.8

2,3-dimethylbutane 657.00 659.81 0.65 2.8
2,3-dimethylheptane 722.00 716.74 0.76 5.3
2,3-dimethylhexane 708.16 703.73 0.58 4.4
2,3-dimethyloctane 734.10 727.82 0.78 6.3

2,3-dimethylpentane 690.81 688.19 0.43 2.6
2,4-dimethylheptane 711.50 713.36 0.32 1.9
2,4-dimethylhexane 696.11 701.16 0.32 5.1
2,4-dimethyloctane 722.60 725.86 0.52 3.3
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2,4-dimethylpentane 668.23 679.09 0.47 11
2,5-dimethylheptane 713.60 713.11 0.44 0.49
2,5-dimethylhexane 689.37 695.62 0.52 6.3
2,5-dimethyloctane 723.80 724.17 0.50 0.37

2,6-dimethylheptane 704.50 714.67 0.40 10.2
2,6-dimethyloctane 724.80 723.64 0.35 1.2
2,7-dimethyloctane 719.80 719.95 0.46 0.15

3,3-dimethylheptane 721.60 723.01 0.42 1.4
3,3-dimethylhexane 705.95 709.36 0.50 3.4
3,3-dimethyloctane 734.40 730.25 0.50 4.2

3,3-dimethylpentane 689.16 704.56 0.58 15
3,4-dimethylheptane 727.50 722.15 0.52 5.4
3,4-dimethylhexane 715.15 708.17 0.34 7.0
3,4-dimethyloctane 741.00 730.96 0.42 10

3,5-dimethylheptane 716.60 717.96 1.19 1.4
3,5-dimethyloctane 732.90 728.38 0.43 4.5
3,6-dimethyloctane 731.50 726.47 0.39 5.0

4,4-dimethylheptane 718.30 722.99 0.54 4.7
4,4-dimethyloctane 731.20 732.77 0.56 1.6
4,5-dimethyloctane 743.20 730.89 0.36 12

Table B.1 Results obtained from molecular dynamics simulations after correction factors in a
leave-one-out cross validation are applied for density at 25°C. Experimental data is obtained
from the TRC Thermodynamic tables [4].

B.2 Density at 100°C

Name ρexp(g
l ) ρmodel(

g
l ) δρmodel(

g
l ) |∆|(g

l )

Decane 667.70 667.99 0.32 0.29
Heptane 611.00 612.63 0.47 1.6
Hexane 581.40 579.66 0.85 1.7
Nonane 652.50 652.14 0.67 0.36
Octane 635.19 635.37 0.60 0.18
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2-methylheptane 632.00 631.69 0.52 1.7
2-methylhexane 602.00 611.99 0.63 8.8
2-methylpentane 574.30 580.04 0.70 4.5
3-methylheptane 638.40 636.39 0.66 3.4
3-methylhexane 619.00 614.50 0.65 6.0
3-methylpentane 582.40 586.35 0.52 2.7
4-methylheptane 639.00 635.54 0.53 4.9

3-ethylhexane 647.00 644.06 0.66 2.9
3-ethylpentane 621.00 625.14 0.60 4.1

4-propylheptane 673.40 672.20 0.44 1.2
2,3-dimethylbutane 582.50 584.21 0.74 1.7
2,3-dimethylhexane 644.10 635.12 0.57 9.0
2,3-dimethylpentane 626.00 627.51 0.62 1.5
2,4-dimethylhexane 616.30 632.27 0.52 16
2,4-dimethylpentane 601.00 605.48 0.52 4.5
2,5-dimethylhexane 623.60 625.31 0.48 1.7
2,6-dimethylheptane 640.00 644.74 0.42 4.7
2,7-dimethyloctane 660.20 656.44 0.86 3.8
3,3-dimethylhexane 646.70 640.78 1.05 5.9
3,3-dimethylpentane 608.00 635.21 0.45 27
3,4-dimethylhexane 658.50 639.86 0.64 19
4,5-dimethyloctane 685.50 665.46 0.63 20
2,2-dimethylbutane 568.30 576.37 0.75 8.1
2,2-dimethylhexane 626.10 618.23 0.83 7.9
2,2-dimethylpentane 601.90 601.71 0.46 0.19

3-ethyl-2-methylpentane 657.00 638.35 0.45 19
3-ethyl-3-methylhexane 641.00 661.82 0.43 21
3-ethyl-3-methylpentane 663.30 648.87 0.85 14
5-ethyl-2-methylheptane 672.70 658.79 0.60 14

Table B.2 Results obtained from molecular dynamics simulations after correction factors
in a leave-one-out cross validation are applied for density at 100°C. Experimental data is
obtained from the TRC Thermodynamic tables [4].
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B.3 Viscosity of linear alkanes

Name ρexp(
g
l ) ηexp (cSt) ηpred (cSt) δηpred (cSt) ∆%

Hexane 659 0.46 0.43 0.04 -7
Heptane 684 0.60 0.68 0.08 13
Octane 703 0.78 0.78 0.04 0
Nonane 718 0.99 1.01 0.03 2
Decane 730 1.24 1.13 0.08 -9

Undecane 740 1.60 1.53 0.04 -4
Dodecane 749 2.00 1.81 0.12 -9.5
Tridecane 756 2.38 2.32 0.27 -2.5

Tetradecane 762 3.01 2.70 0.14 -10
Table B.3 Summary of viscosity simulations for linear alkanes at 20◦. Alkane’s name,
experimental value of kinematic viscosity, simulation result, its uncertainty, and percent error
are presented.

B.4 Viscosity of tridecane as a function of pressure at 60°C

p(MPa) ρexp(
g
l ) ηexp (cSt) ηpred (cSt) δηpred (cSt) ∆%

0.1 728 1.33 1.38 0.16 3.8
20 743 1.67 1.67 0.06 0
40 757 2.02 2.09 0.18 3.5
60 768 2.36 2.23 0.08 -6
80 779 2.74 2.84 0.18 3.6
100 788 3.12 3.37 0.16 8.0

Table B.4 Results of viscosity simulations for tridecane at 60◦ as a function of pressure.
Pressure, experimental value of kinematic viscosity, simulation result, its uncertainty, and
percent error are presented.
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B.5 Viscosity of octane, dodecane and octadecane as a func-
tion of temperature

T(◦C) ρexp(
g
l ) ηexp (cSt) ηpred (cSt) δηpred (cSt) ∆%

-10 729 1.15 1.10 0.05 -4
0 721 0.99 1.01 0.02 2

25 699 0.73 0.68 0.01 -7
40 686 0.63 0.66 0.03 5
60 669 0.53 0.50 0.05 -6
80 652 0.45 0.48 0.10 6.67

100 635 0.39 0.38 0.003 -3
125 618 0.33 0.34 0.02 3

Table B.5 Summary of viscosity simulations for octane as a function of temperature. Tem-
perature, experimental value of kinematic viscosity, simulation result, its uncertainty, and
percent error are presented.

T(◦C) ρexp(
g
l ) ηexp (cSt) ηpred (cSt) δηpred (cSt) ∆%

40 734 1.46 1.57 0.06 8
60 720 1.12 1.03 0.09 -8
80 704 0.90 0.87 0.04 -3

100 690 0.73 0.79 0.11 8.2
125 671 0.60 0.58 0.02 -3
150 651 0.50 0.54 0.03 8
175 630 0.42 0.47 0.03 12
200 609 0.36 0.40 0.02 11

Table B.6 Summary of viscosity simulations for dodecane as a function of temperature.
Temperature, experimental value of kinematic viscosity, simulation result, its uncertainty,
and percent error are presented.
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T(◦C) ρexp(
g
l ) ηexp (cSt) ηpred (cSt) δηpred (cSt) ∆%

50 762 3.23 3.24 0.25 0.31
75 744 2.14 2.02 0.18 -5.7
100 727 1.55 1.65 0.20 6.5
125 709 1.18 1.12 0.12 -5.1
150 691 0.93 0.96 0.05 3
175 674 0.77 0.81 0.07 5
200 656 0.64 0.63 0.04 -2

Table B.7 Results of viscosity simulations for octadecane as a function of temperature.
Temperature, experimental value of kinematic viscosity, simulation result, its uncertainty,
and percent error are presented.
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Chapter 4: Full results

C.1 Density at 25°C

Name ρMD(g
l ) ρANN(g

l ) δρMD(g
l ) δρANN(g

l )

2-methyldecane 739.87 740.23 0.64 0.87
2,8-dimethylnonane 745.15 746.37 0.65 1.01

5-ethyl-2-methyloctane 750.72 751.31 0.50 0.69
2-methyl-4-propylheptane 750.49 751.21 0.58 1.95

2,5-dimethylnonane 748.06 748.77 0.48 0.37
3-ethyl-2-methyloctane 755.52 754.24 0.60 0.83

2,2-dimethylnonane 749.41 750.17 0.57 0.57
3-methyl-4-propylheptane 758.87 757.82 0.61 1.01

3,4-dimethylnonane 754.77 752.77 0.69 0.43
3-ethylnonane 745.91 744.96 0.50 0.74

3,5-diethylheptane 757.79 760.03 0.55 2.10
3-methyl-4-propylheptane 758.87 757.82 0.59 1.01

4-methyldecane 742.25 742.14 0.59 0.75
4-methyl-4-propylheptane 764.06 762.53 0.62 1.42

4,5-dimethylnonane 755.82 754.79 0.59 0.66
4,4-diethylheptane 771.22 769.66 0.60 0.98

4-propyloctane 744.74 744.51 0.50 0.54
5-ethylnonane 744.67 745.24 0.55 1.07

Dodecane 743.34 743.86 0.55 2.00
2-methylundecane 748.23 748.86 0.58 1.09
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2,9-dimethyldecane 753 754.33 0.58 1.25
2,8-dimethyldecane 756.54 755.47 0.52 1.11

5-ethyl-2-methylnonane 758.03 759.20 0.60 0.61
2-methyl-4-propyloctane 757.56 759.13 0.56 0.96

2,5-dimethyldecane 754.26 755.95 0.60 0.81
2,4-dimethyldecane 754.93 756.44 0.58 0.70

3-ethyl-2-methylnonane 762.05 761.29 0.60 0.67
2,2-dimethyldecane 756.52 757.17 0.52 0.90
3-methylundecane 749.93 750.08 0.56 1.09

6-ethyl-3-methylnonane 760.62 761.09 0.68 1.86
3-methyl-5-propyloctane 760.68 762.00 0.66 1.06

3,5-dimethyldecane 758.67 758.71 0.62 0.50
3-ethyl-3-methylnonane 768.22 767.74 0.67 1.44

3,3-dimethyldecane 762.14 761.41 0.61 0.97
3-ethyldecane 753.96 752.64 0.54 0.54

3-ethyl-7-methynonane 764.7 763.71 0.53 1.14
3-ethyl-6-methylnonane 760.66 762.68 0.55 1.17

3,5-diethyloctane 765.15 767.26 0.58 1.91
3-ethyl-4-propylheptane 760.8 761.32 0.64 2.76

4,6-dimethyldecane 758.8 760.86 0.57 1.32
4-methyl-4-propyloctane 769.02 767.87 0.53 1.23

4,4-dimethyldecane 761.83 762.19 0.59 0.74
4-ethyldecane 751.18 752.93 0.51 0.59

4,5-diethyloctane 767.73 770.27 0.50 1.00
4-ethyl-4-propylheptane 774.79 771.38 0.58 2.45

4-propylnonane 751.45 752.38 0.57 0.72
5,6-dimethyldecane 760.88 762.77 0.44 0.66

5-ethyl-5-methylnonane 767.63 768.46 0.61 0.97
5-ethyldecane 753.34 752.64 0.68 0.88

5-propylnonane 752.47 752.27 0.61 0.27
6-methylundecane 749.4 750.12 0.54 1.43

2,4-dimethylundecane 761.39 762.81 0.62 0.69
7-ethyl-2-methylundecane 770.82 769.84 0.81 0.53
2-methyl-4-propyldecane 768.93 771.04 0.53 0.77
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2,2-dimethyltridecane 773.28 772.20 0.57 2.27
9-ethyl-2-methyldodecane 773.84 773.77 0.62 1.44
4-ethyl-6-methyldodecane 777.4 779.53 0.7 0.98
5-ethyl-6-methyldodecane 780.24 781.61 0.73 2.04

2-methyl-4-propyldodecane 778.83 780.18 0.46 0.78
5-butyl-2-methylundecane 777.96 779.94 0.76 0.44

3-methyl-4-propyldodecane 782.86 782.64 0.61 1.03
7-ethyl-4-methyltridecane 779.92 781.16 0.72 0.80

4-methyl-4-propyldodecane 785.36 784.47 0.5 1.47
4-ethyl-8-methyltridecane 780.69 781.56 0.64 1.07

4,5-diethyldodecane 785.67 787.83 0.58 1.00
4,6-dipropyl-decane 781.42 782.15 0.57 1.81

6-ethyl-4-propylundecane 781.6 784.06 0.94 1.98
6-propyltridecane 773.47 774.19 0.62 0.26

3-ethyl-9-propyl-tridecane 789.52 789.51 0.87 1.67
4-methyl-6-propyl-tetradecane 788.01 789.34 0.53 1.35

6-butyl-6-methyl-tridecane 793.4 792.72 1.48 0.67
2,16-dimethyl-heptadecane 788.23 785.86 0.6 2.87

7-butyl-2-methyl-tetradecane 787.92 787.32 0.79 1.34
3,12-diethyl-pentadecane 793.22 792.68 0.62 0.74

4-methyl-7-pentyl-tridecane 788.57 788.18 0.81 1.11
11-ethyl-6-methyl-hexadecane 790.07 790.98 0.95 1.21

6,11-dimethyl-heptadecane 787.77 790.41 0.58 1.54
7-ethyl-8-propyl-tetradecane 799.09 797.18 1.19 0.70

8-ethyl-heptadecane 784.09 784.27 0.61 1.02
8,8-diethyl-pentadecane 799.93 798.26 0.84 0.98

2,11-dimethyl-octadecane 791.21 789.53 0.5 2.15
3-ethyl-octadecane 788.98 786.37 0.59 1.32

4-ethyl-8-methyl-heptadecane 792.57 792.88 1.44 2.01
6-ethyl-10-propyl-pentadecane 794.95 796.67 0.91 0.89

6,6-diethyl-hexadecane 801.93 798.20 0.63 1.09
7-methyl-nonadecane 787.5 786.52 0.85 1.78

6,12-dimethyl-octadecane 796.62 792.50 0.69 1.49
9-ethyl-7-methyl-heptadecane 791.97 794.77 0.68 0.82
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7-butyl-7-ethyl-tetradecane 800.67 799.19 1.48 1.84
8,8-dimethyl-octadecane 793.21 792.91 0.89 0.66

8-ethyl-octadecane 787.91 787.11 0.48 0.67
8,8-diethyl-hexadecane 802.36 799.92 2.56 1.20

7-methyl-9-pentyl-pentadecane 793.16 791.18 0.69 1.73
4-methyl-9-propyl-heptadecane 795.2 795.15 1.03 1.50
4-ethyl-11-propyl-hexadecane 795.8 796.72 0.84 1.39

5,6-diethyl-heptadecane 799.24 799.25 0.8 0.79
7,8-diethyl-heptadecane 797.51 800.13 0.5 0.84

11-methyl-4-propyl-octadecane 794.59 796.75 0.8 3.23
7-pentyl-6-methyl-pentadecane 795.78 797.60 0.91 0.96

7,8-diethyl-octadecane 800.81 802.12 1.08 0.50
8-heptyl-pentadecane 791.57 791.02 0.88 0.65

10-hexyl-5-methyl-hexadecane 797.65 797.35 0.54 0.67
7-hexyl-heptadecane 794.34 793.78 1 0.59

8-ethyl-9-propyl-octadecane 800.88 804.49 0.56 1.09
8-heptyl-hexadecane 794.23 793.19 1.03 0.29

7-ethyl-6-pentyl-heptadecane 801.23 801.66 1.45 1.56
7-hexyl-octadecane 795.36 795.63 0.82 0.54

8-heptyl-heptadecane 795.72 795.09 1.33 0.36
9-heptyl-heptadecane 795.46 795.19 1.55 0.40
2,8-dimethyl-tricosane 799.19 798.79 1.1 1.35

3-ethyl-tricosane 791.77 795.86 0.54 2.81
3,19-diethyl-henicosane 804.07 803.02 0.73 1.57

3-ethyl-17-propyl-icosane 805.42 803.66 1.03 1.31
15-butyl-3-ethyl-nonadecane 804.69 802.31 0.77 2.28

3,5-diethyl-henicosane 804.79 803.53 0.68 0.45
4-ethyl-9-propyl-icosane 804.41 804.54 1.21 1.33

13-butyl-6-propyl-octadecane 799.76 800.59 1.35 1.21
7-hexyl-nonadecane 799.38 797.34 1.35 0.57
8-heptyl-octadecane 795.15 796.77 0.94 0.54

9,9-dipropyl-nonadecane 807.2 805.95 0.5 2.21
9-heptyl-octadecane 796.32 796.94 0.67 0.25
9-octyl-heptadecane 797.11 796.59 0.93 0.85
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9-butyl-4-ethyl-tricosane 810.16 809.09 1.27 1.21
6-butyl-8-propyl-pentacosane 811.24 810.93 1.32 1.21

7,22-dimethyl-tricosane 808.58 808.40 1.07 1.39
13-butyl-8-propyl-pentacosane 809.01 810.50 1.15 1.65
14-butyl-5-methyl-nonacosane 812.51 812.54 1.01 1.27

8-heptyl-octacosane 806.61 807.88 1.03 0.99
7-butyl-4-ethyl-hentriacontane 814.1 814.92 0.93 0.81

15-butyl-16-methyl-tritriacontane 814.33 814.31 1.5 0.33
16-butyl-16-methyl-tritriacontane 814.63 814.38 1.17 0.36
18-nonyl-5-propyl-heptacosane 812.56 813.37 1.35 0.87

15-butyl-16-methyl-tetratriacontane 815.5 814.84 0.81 0.44
16-butyl-17-methyl-tetratriacontane 813.46 814.86 0.97 0.41

10,20-dipentyl-tricosane 817.21 816.70 2.02 0.90
15-butyl-17-methyl-pentatriacontane 815.27 815.34 1.27 0.46
15-butyl-16-methyl-pentatriacontane 815.13 815.34 0.73 0.57
16-butyl-19-methyl-pentatriacontane 814.02 815.37 1.04 0.40
16-butyl-16-methyl-pentatriacontane 815.81 815.35 0.81 0.36
16-butyl-17-methyl-pentatriacontane 816.72 815.34 1.6 0.47
17-butyl-18-methyl-pentatriacontane 816.51 815.52 0.83 0.66

Table C.1 MD and ANN results for density at 25°C.

C.2 Density at 100°C

Name ρMD(g
l ) ρANN(g

l ) δρMD(g
l ) δρANN(g

l )

2-methyldecane 683.56 683.37 0.56 0.63
2,8-dimethylnonane 687.97 691.15 0.58 1.10

5-ethyl-2-methyloctane 693.84 694.52 0.54 0.69
2-methyl-4-propylheptane 693.52 692.38 0.53 1.30

2,5-dimethylnonane 690.54 692.92 0.53 0.92
3-ethyl-2-methyloctane 700.13 698.44 0.58 0.92

2,2-dimethylnonane 693.85 694.84 0.52 0.64
3-methyl-4-propylheptane 703.49 702.10 0.61 1.00
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3,4-dimethylnonane 699.78 697.01 0.61 0.86
3-ethylnonane 690.16 688.82 0.53 0.32

3,5-diethylheptane 703.15 704.43 0.53 0.90
3-methyl-4-propylheptane 703.49 702.10 0.61 1.00

4-methyldecane 685.28 685.21 0.56 0.17
4-methyl-4-propylheptane 707.3 707.33 0.63 0.92

4,5-dimethylnonane 698.33 699.25 0.56 0.71
4,4-diethylheptane 716.48 714.42 0.58 1.61

4-propyloctane 688.54 688.44 0.55 0.61
5-ethylnonane 687.83 687.70 0.52 0.84

Dodecane 687.07 687.64 0.52 0.74
2-methylundecane 692.99 693.08 0.57 0.53

2,9-dimethyldecane 697.67 699.75 0.55 0.67
2,8-dimethyldecane 701.56 699.83 0.57 1.11

5-ethyl-2-methylnonane 702.77 703.52 0.59 0.67
2-methyl-4-propylheptane 693.52 692.38 0.53 1.30

2,5-dimethyldecane 699.37 701.39 0.57 0.98
2,4-dimethyldecane 700.86 701.86 0.60 0.95

3-ethyl-2-methylnonane 707.47 705.51 0.55 1.29
2,2-dimethyldecane 702.39 703.30 0.60 1.10
3-methylundecane 694.95 694.62 0.56 0.70

6-ethyl-3-methylnonane 705.09 706.12 0.65 0.41
3-methyl-5-propyloctane 705.8 708.19 0.57 1.08

3,5-dimethyldecane 703.32 704.13 0.58 0.57
3-ethyl-3-methylnonane 714.53 710.36 0.61 1.46

3,3-dimethyldecane 709.74 708.49 0.55 0.82
3-ethyldecane 698.7 698.47 0.53 0.37

3-ethyl-7-methynonane 710.16 707.84 0.58 0.89
3-ethyl-6-methylnonane 707.06 707.64 0.54 1.84

3,5-diethyloctane 709.52 711.46 0.62 1.10
3-ethyl-4-propylheptane 705.96 707.47 0.57 1.52

4,6-dimethyldecane 703.9 706.01 0.56 0.38
4-methyl-4-propyloctane 714.69 713.18 0.55 1.38

4,4-dimethyldecane 707.34 706.78 0.61 0.81
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4-ethyldecane 696.12 698.12 0.52 0.98
4,5-diethyloctane 712.57 713.22 0.53 1.02

4-ethyl-4-propylheptane 722.1 719.18 0.62 1.49
4-propylnonane 697.59 698.13 0.57 0.75

5,6-dimethyldecane 707.44 707.83 0.53 1.18
5-ethyl-5-methylnonane 713.44 714.79 0.64 1.65

5-ethyldecane 697.23 697.23 0.61 1.01
5-propylnonane 697.29 697.78 0.62 0.46

6-methylundecane 693.73 693.60 0.53 1.72
2,4-dimethylundecane 708.16 709.23 0.64 0.99

7-ethyl-2-methylundecane 716.98 716.45 0.72 1.15
2-methyl-4-propyldecane 715.94 716.09 0.58 0.57

2,2-dimethyltridecane 720.26 719.42 0.72 1.18
9-ethyl-2-methyldodecane 722.76 721.45 0.48 1.09
4-ethyl-6-methyldodecane 724.75 727.07 0.68 0.94
5-ethyl-6-methyldodecane 727.39 727.89 0.51 0.89

2-methyl-4-propyldodecane 726.97 726.92 0.45 0.82
5-butyl-2-methylundecane 725.35 727.42 0.59 0.86

3-methyl-4-propyldodecane 731.22 729.86 0.65 0.76
7-ethyl-4-methyltridecane 727.99 730.05 0.7 1.50

4-methyl-4-propyldodecane 735.94 734.73 0.69 1.20
4-ethyl-8-methyltridecane 728.5 730.64 0.79 0.87

4,5-diethyldodecane 734.46 733.74 0.77 1.03
4,6-dipropyl-decane 728.62 731.38 0.59 1.91

6-ethyl-4-propylundecane 728.86 731.22 0.92 1.00
6-propyltridecane 722.19 724.39 0.77 1.47

3-ethyl-9-propyl-tridecane 738.22 737.79 0.82 0.65
4-methyl-6-propyl-tetradecane 733.43 737.41 0.92 0.71

6-butyl-6-methyl-tridecane 740.05 739.04 0.79 0.41
2,16-dimethyl-heptadecane 737.69 735.40 0.83 1.48

7-butyl-2-methyl-tetradecane 736.95 736.22 1.09 1.00
3,12-diethyl-pentadecane 743.37 740.98 0.57 0.86

4-methyl-7-pentyl-tridecane 736.53 738.50 0.62 0.73
11-ethyl-6-methyl-hexadecane 740.28 741.06 0.68 2.28
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6,11-dimethyl-heptadecane 737.67 741.75 0.44 0.76
7-ethyl-8-propyl-tetradecane 751.21 746.68 0.79 1.69

8-ethyl-heptadecane 735.92 735.29 0.66 0.34
8,8-diethyl-pentadecane 748.29 748.07 0.49 1.09

2,11-dimethyl-octadecane 739.84 739.45 0.66 1.26
3-ethyl-octadecane 740.07 738.30 0.66 0.45

4-ethyl-8-methyl-heptadecane 744.43 745.25 1.06 1.69
6-ethyl-10-propyl-pentadecane 742.23 746.65 0.52 1.72

6,6-diethyl-hexadecane 752.01 749.21 0.85 1.18
7-methyl-nonadecane 737.54 737.97 0.63 2.48

6,12-dimethyl-octadecane 748.63 745.21 0.43 1.78
9-ethyl-7-methyl-heptadecane 742.12 744.21 0.48 2.13

7-butyl-7-ethyl-tetradecane 749.98 749.19 0.64 2.37
8,8-dimethyl-octadecane 744.51 745.54 0.63 1.40

8-ethyl-octadecane 738.42 738.36 0.54 0.58
8,8-diethyl-hexadecane 752.21 749.55 0.33 0.70

7-methyl-9-pentyl-pentadecane 743.09 740.46 0.67 1.01
4-methyl-9-propyl-heptadecane 745.21 744.84 0.55 0.76
4-ethyl-11-propyl-hexadecane 747.82 747.14 0.56 0.89

5,6-diethyl-heptadecane 749.22 749.70 0.41 1.48
7,8-diethyl-heptadecane 749.1 750.67 0.42 0.95

11-methyl-4-propyl-octadecane 747.29 747.19 0.7 1.54
7-pentyl-6-methyl-pentadecane 746.56 747.92 0.58 1.40

7,8-diethyl-octadecane 751.43 752.30 0.41 0.66
8-heptyl-pentadecane 741.16 741.74 0.46 0.99

10-hexyl-5-methyl-hexadecane 748.26 748.72 0.57 1.03
7-hexyl-heptadecane 745.26 745.41 0.59 0.40

8-ethyl-9-propyl-octadecane 751.87 753.95 2.56 1.51
8-heptyl-hexadecane 744.81 744.54 0.43 0.47

7-ethyl-6-pentyl-heptadecane 753.49 753.45 0.5 1.52
7-hexyl-octadecane 747.57 747.78 0.59 0.41

8-heptyl-heptadecane 746.41 747.07 0.71 0.21
9-heptyl-heptadecane 747.02 747.39 0.66 0.54
2,8-dimethyl-tricosane 752.92 754.19 0.64 1.91
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3-ethyl-tricosane 745.07 747.80 0.44 1.66
3,19-diethyl-henicosane 756.16 755.10 0.51 1.21

3-ethyl-17-propyl-icosane 757.84 755.54 0.66 1.33
15-butyl-3-ethyl-nonadecane 755.97 754.53 0.54 1.10

3,5-diethyl-henicosane 757 756.76 0.73 0.73
4-ethyl-9-propyl-icosane 755.2 755.51 0.64 0.48

13-butyl-6-propyl-octadecane 753.76 755.47 0.73 2.24
7-hexyl-nonadecane 750.63 749.91 0.53 0.48
8-heptyl-octadecane 749.65 749.37 0.7 0.42

9,9-dipropyl-nonadecane 759.87 760.17 0.57 3.69
9-heptyl-octadecane 750.24 749.84 0.64 1.05
9-octyl-heptadecane 748.94 748.63 0.57 0.50

9-butyl-4-ethyl-tricosane 761.94 761.49 0.33 1.34
6-butyl-8-propyl-pentacosane 765.92 765.62 0.68 1.12

7,22-dimethyl-tricosane 763.32 763.97 0.51 0.97
13-butyl-8-propyl-pentacosane 765.59 766.15 0.49 1.04
14-butyl-5-methyl-nonacosane 767.87 766.00 2.12 1.62

8-heptyl-octacosane 764.34 764.26 0.52 1.63
7-butyl-4-ethyl-hentriacontane 770.72 770.83 1.18 0.50

15-butyl-16-methyl-tritriacontane 771.31 771.10 1.76 0.78
16-butyl-16-methyl-tritriacontane 770.66 770.81 0.52 0.55
18-nonyl-5-propyl-heptacosane 764.52 766.24 3.21 1.31

15-butyl-16-methyl-tetratriacontane 772.77 772.01 0.61 0.56
16-butyl-17-methyl-tetratriacontane 771.15 771.78 0.62 0.32

10,20-dipentyl-tricosane 773.02 771.97 2.43 2.26
15-butyl-17-methyl-pentatriacontane 770.68 772.74 0.64 0.48
15-butyl-16-methyl-pentatriacontane 773.44 772.92 1.11 0.46
16-butyl-19-methyl-pentatriacontane 772.13 772.50 0.63 0.53
16-butyl-16-methyl-pentatriacontane 772.75 772.60 0.53 0.40
16-butyl-17-methyl-pentatriacontane 773.6 772.74 1.15 0.31
17-butyl-18-methyl-pentatriacontane 773.08 772.64 0.56 0.54

Table C.2 MD and ANN results for density at 100°C.
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C.3 Viscosity simulation results

γ̇ η(γ̇) (cSt) δη(γ̇) (cSt)
9.06 15.92 0.44
8.84 20.25 0.73
8.96 16.36 0.55
8.66 19.26 1.13
9.14 13.72 0.39
9.61 8.22 0.17

10.09 4.08 0.07
10.57 1.98 0.04
11.05 1.01 0.01
11.52 0.60 0.00
12.00 0.46 0.00

Table C.3 Simulation results for 8,11-dipentyloctadecane at 40°C.

γ̇ η(γ̇) (cSt) δη(γ̇) (cSt)
10.01 2.72 0.06
9.79 3.14 0.10
9.91 2.95 0.07
9.61 3.56 0.14

10.09 2.40 0.05
10.57 1.38 0.04
11.05 0.82 0.01
11.52 0.52 0.00
12.00 0.42 0.00

Table C.4 Simulation results for 8,11-dipentyloctadecane at 100°C
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γ̇ η(γ̇) (cSt) δη(γ̇) (cSt)
9.06 18.91 0.40
8.84 22.78 0.66
8.96 18.88 0.48
8.66 24.92 0.98
9.14 17.93 0.33
9.61 9.13 0.15

10.09 4.27 0.05
10.57 2.03 0.03
11.05 1.01 0.01
11.52 0.61 0.00
12.00 0.46 0.00

Table C.5 Simulation results for 8,14-dipentylhenicosane at 40°C

γ̇ η(γ̇) (cSt) δη(γ̇) (cSt)
9.53 4.51 0.17
9.31 5.00 0.20
9.44 4.13 0.22
9.14 4.82 0.33
9.61 4.17 0.16

10.09 2.69 0.05
10.57 1.52 0.03
11.05 0.83 0.01
11.52 0.53 0.00
12.00 0.42 0.00

Table C.6 Simulation results for 8,14-dipentylhenicosane at 100°C.
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γ̇ η(γ̇) (cSt) δη(γ̇) (cSt)
9.06 12.76 0.38
8.84 14.74 0.62
8.96 13.78 0.48
8.66 14.22 0.96
9.14 11.61 0.32
9.61 6.55 0.14

10.09 3.47 0.05
10.57 1.71 0.03
11.05 0.91 0.01
11.52 0.54 0.00
12.00 0.42 0.00

Table C.7 Simulation results for 11-heptyltricosane at 40°C.

γ̇ η(γ̇) (cSt) δη(γ̇) (cSt)
10.01 2.38 0.06
9.79 2.59 0.09
9.91 2.51 0.07
9.61 3.09 0.14

10.09 2.12 0.05
10.57 1.23 0.03
11.05 0.74 0.01
11.52 0.47 0.00
12.00 0.39 0.00

Table C.8 Simulation results for 11-heptyltricosane at 100°C.
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D.1 Model fits

xnonane Vexp(
cm3

mol ) Vfit(
cm3

mol )

1 179.61±0.01 179.62±0.01
0.92282 178.52±0.01 178.54±0.01
0.78722 176.64±0.01 176.64±0.01
0.6706 175.03±0.01 175.04±0.01

0.59027 173.94±0.01 173.94±0.01
0.47483 172.39±0.01 172.39±0.01
0.30417 170.10±0.01 170.10±0.01
0.28569 169.86±0.01 169.86±0.01
0.18143 168.48±0.01 168.48±0.01
0.11767 167.65±0.01 167.65±0.01
0.07895 167.15±0.01 167.15±0.01
0.0339 166.56±0.01 166.56±0.01

Table D.1 Molar volume of the mixture of nonane and isooctane at 25°C. Experimental data
was obtained from Awwad and Allos[10].
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xdodecane Vexp(
cm3

mol ) Vfit(
cm3

mol )

1 228.57±0.01 228.60±0.01
0.9077 222.72±0.01 222.71±0.01

0.84311 218.63±0.01 218.61±0.01
0.74973 212.72±0.01 212.70±0.01
0.62534 204.87±0.01 204.86±0.01
0.52136 198.35±0.01 198.34±0.01
0.4111 191.45±0.01 191.46±0.01

0.32383 186.04±0.01 186.04±0.01
0.24026 180.84±0.01 175.55±0.01
0.1541 175.52±0.01 175.55±0.01

0.09376 171.84±0.01 171.84±0.01
0.05433 169.42±0.01 169.42±0.01
0.02669 167.76±0.01 167.72±0.01

Table D.2 Molar volume of the mixture of dodecane and isooctane at 25°C. Experimental
data was obtained from Awwad and Allos[10].

xheptane σexp(
mN
m ) σfit(

mN
m )

0 18.15±0.03 18.16
0.1 18.05±0.03 18.05
0.2 17.95±0.03 17.95
0.3 17.85±0.03 17.85
0.4 17.75±0.03 17.75
0.5 17.65±0.03 17.65
0.6 17.56±0.03 17.56
0.7 17.47±0.03 17.47
0.8 17.39±0.03 17.39
0.9 17.30±0.03 17.30
1 17.23±0.03 17.23

Table D.3 Surface tension of the mixture of heptane and isooctane at 40°C. Experimental
data was obtained from S. López-Lázaro et al. [34]
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xoctane σexp(
mN
m ) σfit(

mN
m )

0 19.82±0.03 19.82
0.1 19.55±0.03 19.55
0.2 19.28±0.03 19.27
0.3 19.01±0.03 19.01
0.4 18.74±0.03 18.74
0.5 18.48±0.03 18.48
0.6 18.22±0.03 18.23
0.7 17.97±0.03 17.97
0.8 17.72±0.03 17.72
0.9 17.47±0.03 17.47
1 17.23±0.03 17.23

Table D.4 Surface tension of the mixture of octane and isooctane at 40°C. Experimental data
was obtained from S. López-Lázaro et al. [34]

xnonane KS,m−exp(m3(TPa)−1mol−1) KS,m−fit(m3(TPa)−1mol−1)

0 0.06391 ± 0.00013 0.06385 ± 0.00003
0.096 0.07257 ± 0.00015 0.07260 ± 0.00003
0.1942 0.08141 ± 0.00016 0.08148 ± 0.00003
0.2952 0.09054 ± 0.00018 0.09054 ± 0.00003
0.3954 0.09946 ± 0.00020 0.09946 ± 0.00003
0.4954 0.1083 ± 0.00022 0.10828 ± 0.00003
0.5929 0.11683 ± 0.00023 0.11682 ± 0.00004
0.6939 0.12562 ± 0.00025 0.12559 ± 0.00004
0.7939 0.13422 ± 0.00027 0.13420 ± 0.00004
0.8947 0.14279 ± 0.00029 0.14281 ± 0.00004

1 0.1517 ± 0.00030 0.15172 ± 0.00005
Table D.5 Molar isentropic compressibility of mixture of nonane and toluene at 10°C.
Experimental data was obtained from González et al [42].
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xhexane KS,m−exp(m3(TPa)−1mol−1) KS,m−fit(m3(TPa)−1mol−1)

0 0.0639 ± 0.00013 0.06390 ± 0.00006
0.083 0.06931 ± 0.00014 0.06932 ± 0.00007

0.1713 0.07535 ± 0.00015 0.07537 ± 0.00007
0.298 0.08463 ± 0.00017 0.08459 ± 0.00008
0.396 0.09217 ± 0.00018 0.09215 ± 0.00008

0.5011 0.10076 ± 0.00020 0.10067 ± 0.00008
0.5949 0.10865 ± 0.00022 0.10864 ± 0.00008
0.6973 0.11781 ± 0.00024 0.11774 ± 0.00008
0.7955 0.12674 ± 0.00025 0.12684 ± 0.00007
0.8949 0.13637 ± 0.00027 0.13643 ± 0.00007

1 0.14717 ± 0.00029 0.14700 ± 0.00006
Table D.6 Molar isentropic compressibility of mixture of hexane and toluene at 10°C.
Experimental data was obtained from González et al [42].

xheptane xoctane xundecane µexp(cP) µfit(cP)
0.1641 0.1442 0.0999 1.1388±0.0011 1.1379±0.0338
0.1831 0.1419 0.3025 1.0135±0.0010 1.0128±0.0222
0.1767 0.1413 0.5794 0.8855±0.0009 1.8857±0.0338
0.1676 0.3678 0.1004 0.8724±0.0009 0.8724±0.0139
0.1528 0.3674 0.3159 0.8002±0.0008 0.7995±0.0220
0.1679 0.5003 0.1067 0.7364±0.0007 0.7339±0.0159
0.4303 0.1366 0.0948 0.7952±0.0008 0.7935±0.0172
0.4293 0.1376 0.2687 0.7241±0.0007 0.7221±0.0200
0.3628 0.3421 0.1008 0.6699±0.0007 0.6692±0.0197
0.3264 0.1127 0.0787 0.9620±0.0010 0.9579±0.0292
0.0554 0.0316 0.1948 1.4098±0.0014 1.4088±0.0415
0.067 0.0665 0.7109 1.0535±0.0011 1.0529±0.0120

0.1107 0.656 0.0913 0.6570±0.0007 1.6575±0.0139
Table D.7 Viscosity of the mixture of heptane, octane, undecane and tridecane at 25°C.
Experimental data was obtained from Wu et al [126].
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Name xheavier µexp(cP)
tetradecane,hexane 0.8002 1.5462
tetradecane,hexane 0.4999 0.9402
tetradecane,hexane 0.3351 0.6820
hexadecane,hexane 0.7988 2.1936
hexadecane,hexane 0.5013 1.2372
hexadecane,hexane 0.2002 0.5844

hexadecane,tetradecane 0.8002 2.8105
hexadecane,tetradecane 0.4998 2.5085
hexadecane,tetradecane 0.2068 2.2307

Table D.8 Viscosity of the binary mixture of hexane and tetradecane, hexane and hexadecane,
and tetradecane and hexadecane at 25 °C. Theory fits the data perfectly. Experimental data
comes from Chevalier et al [22].
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D.2 Viscosity predictions

xhexadecane xtetradecane µexp(cP) µpred(cP)
0.065 0.0796 0.4631±0.0005 0.4712

0.1028 0.1119 0.5654±0.0006 0.5649
0.1046 0.1763 0.6538±0.0007 0.6518
0.1521 0.1151 0.6582±0.0007 0.6524
0.165 0.1831 0.7862±0.0008 0.7759

0.0878 0.3651 0.9111±0.0009 0.9069
0.2118 0.2258 0.9491±0.0010 0.9463
0.3274 0.0947 0.9851±0.0010 0.9814
0.1297 0.4208 1.1144±0.0011 1.1060
0.2648 0.2924 1.2078±0.0012 1.2018
0.3995 0.1514 1.2787±0.0013 1.2748
0.1105 0.5396 1.3054±0.0013 1.2931
0.2522 0.3998 1.4001±0.0014 1.3928
0.3777 0.2696 1.4749±0.0015 1.4701
0.5182 0.1243 1.5625±0.0016 1.5605

Table D.9 Viscosity of the ternary mixture of hexane, tetradecane, and hexadecane at 25 °C.
Experimental data comes from Heric and Brewer [47].

Mixture x1 µexp(cP) µpred(cP)
octane,heptane 0.9008 0.4940±0.0005 0.4964±0.0096
octane,heptane 0.5999 0.4558±0.0005 0.4575±0.0173
octane,heptane 0.3027 0.4216±0.0004 0.4219±0.0248
octane,heptane 0.7713 0.4777±0.0005 0.4793±0.0129
octane,heptane 0.4948 0.4442±0.0004 0.4446±0.2000
octane,heptane 0.2102 0.4110±0.0004 0.4114±0.0271
octane,heptane 0.7076 0.4701±0.0005 0.4711±0.0145
octane,heptane 0.3918 0.4320±0.0004 0.4323±0.0226
octane,heptane 0.1046 0.3990±0.0004 0.3998±0.0297

octane,undecane 0 1.081±0.0011 1.0640±0.0060
octane,undecane 0.0992 1.012±0.0010 1.0035±0.0078
octane,undecane 0.2059 0.9412±0.0009 0.9399±0.0094
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octane,undecane 0.2978 0.8829±0.0009 0.8861±0.0104
octane,undecane 0.3916 0.8255±0.0008 0.8324±0.0111
octane,undecane 0.5019 0.7644±0.0008 0.7705±0.0115
octane,undecane 0.5959 0.7093±0.0007 0.7190±0.0115
octane,undecane 0.7154 0.6474±0.0006 0.6551±0.0111
octane,undecane 0.8041 0.6023±0.0006 0.6088±0.0104
octane,undecane 0.9011 0.5559±0.0006 0.5592±0.0094
octane,undecane 1 0.5105±0.0005 0.5099±0.0080
octane,tridecane 0 1.688±0.0017 1.6680±0.0080
octane,tridecane 0.1246 1.492±0.0015 1.4787±0.0095
octane,tridecane 0.1988 1.383±0.0014 1.3720±0.0102
octane,tridecane 0.3028 1.239±0.0012 1.2302±0.0110
octane,tridecane 0.3936 1.112±0.0011 1.1137±0.0113
octane,tridecane 0.4971 0.9963±0.0010 0.9891±0.0115
octane,tridecane 0.5956 0.885±0.0009 0.8788±0.0114
octane,tridecane 0.697 0.7811±0.0008 0.7736±0.0110
octane,tridecane 0.7898 0.6921±0.0007 0.6848±0.0103
octane,tridecane 0.8988 0.5929±0.0006 0.5896±0.0093
octane,tridecane 1 0.5105±0.0005 0.5099±0.0080

undecane,tridecane 0 1.688±0.0017 1.6680±0.0080
undecane,tridecane 0.1023 1.619±0.0016 1.6058±0.0089
undecane,tridecane 0.2031 1.549±0.0015 1.5447±0.0095
undecane,tridecane 0.2991 1.487±0.0015 1.4865±0.0099
undecane,tridecane 0.3981 1.423±0.0014 1.4266±0.0101
undecane,tridecane 0.4981 1.362±0.0014 1.3661±0.0100
undecane,tridecane 0.5976 1.304±0.0013 1.3061±0.0097
undecane,tridecane 0.7028 1.244±0.0012 1.2427±0.0091
undecane,tridecane 0.8 1.189±0.0012 1.1842±0.0083
undecane,tridecane 0.9004 1.134±0.0013 1.1238 ± 0.0073
undecane,tridecane 1 1.081±0.0011 1.0640±0.0060

Table D.10 Viscosity of mixtures of octane with heptane, undecane, or tridecane, and the
mixture of undecane and tridecane. Experimental data for the mixture of heptane and octane
has been obtained from Chevalier et al. [22], with remaining data coming from Wu et al.
[61].
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