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Thesis Summary

My thesis considers the theme of comorbidity between cardiometabolic disorders and schizophrenia
by focussing on three key aspects: the nature of association between cardiometabolic disorders and
schizophrenia; the potential for common underlying biological mechanisms for the comorbidity; and

the prediction of cardiometabolic risk in young adults with psychosis.

On the nature of association between cardiometabolic disorders and schizophrenia, using longitudinal
repeat measure data from a large birth cohort, I found that disruption to glucose-insulin homeostasis
through childhood/adolescence is associated with increased risk of psychosis in early-adulthood; may

not be fully explained by common sociodemographic and lifestyle factors; and may be specific to it.

On the mechanisms of association between cardiometabolic disorders and schizophrenia, I used a
range of genetic and observational epidemiological methods to examine whether inflammation and
shared genetic liability may be common underlying biological mechanisms for the comorbidity.
Using birth cohort data, I show that genetic risk for type 2 diabetes is associated with psychosis-risk
in adulthood, and vice versa. 1 also show that genetic risk for type 2 diabetes may influence psychosis
risk by increasing systemic inflammation. Using summary data from large genome-wide association
studies (GWAS), I show a thread of evidence for shared genetic overlap between schizophrenia,
cardiometabolic and inflammatory traits. Finally, using Mendelian randomization, I show evidence

supporting that inflammation may be a common cause for insulin resistance and schizophrenia.

On the prediction of cardiometabolic risk in young adults with psychosis, I performed a systematic
review of cardiometabolic risk prediction algorithms and explored their predictive performance in a
sample of young people at risk of developing psychosis. In doing so, I show that none are likely to
be suitable for this population. Then, using patient data, I developed and externally validated the
Psychosis Metabolic Risk Calculator (PsyMetRiC), the first cardiometabolic risk prediction

algorithm specifically tailored for young people with psychosis.

Together, my work suggests that cardiometabolic disorders and schizophrenia share aetiologic
mechanisms, namely inflammation and shared genetic liability. I have shown that it is possible to
accurately predict cardiometabolic risk in young people with psychosis using a tool tailored for the
population. Such tools can in future become valuable resources for clinicians to reduce the risk of

long-term cardiometabolic morbidity and mortality in people with schizophrenia.
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SECTION A

BACKGROUND






Chapter 1

General Introduction
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During my PhD, I have addressed the theme of comorbidity between cardiometabolic disorders and
schizophrenia-spectrum disorders by focussing on three key aspects, which I have presented in three
sections of this thesis. First, I have examined the nature of association between cardiometabolic
disorders and schizophrenia-spectrum disorders, addressing the key limitations of existing research.
Second, I have examined the potential for common mechanisms, namely shared genetic influences
and inflammation, which could at least in part explain the comorbidity between cardiometabolic
disorders and schizophrenia. Third, I have considered approaches to improving the clinical
identification of cardiometabolic risk in young people with psychosis, focussing on the role of

prognosis research.

In the proceeding introduction section, I will first briefly introduce schizophrenia-spectrum and
cardiometabolic disorders and then summarise the comorbidity between them. I will outline different
mechanisms for the comorbidity, beginning with the traditional attributions of sociodemographic,
lifestyle and clinical factors, and ending with evidence from historical studies and studies of young
adults, which may call into question the traditional attributions as sole explanations for the
comorbidity. I will then describe how existing evidence may indicate the possibility of common
biological mechanisms for comorbid cardiometabolic disorders and schizophrenia, focussing on the
role of inflammation and shared genetic liability. Finally, I will introduce prognosis research, describe
efforts to predict cardiometabolic risk in the general population, and consider the usefulness of

cardiometabolic risk prediction in young people with psychosis.
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1.1 Evidence for the Comorbidity between Cardiometabolic Disorders and

Schizophrenia
1.1.1 A Brief Introduction to Schizophrenia-Spectrum and Cardiometabolic Disorders
1.1.1.1 Schizophrenia-Spectrum Disorders: Definitions, Epidemiology and Mechanisms

Psychotic disorders are a group of psychiatric syndromes characterised by combinations of positive,
negative, and cognitive symptoms. Positive symptoms include hallucinations, delusions, and
disorganised behaviour and speech. Negative symptoms involve disruptions to motivational and
emotional function. Cognitive symptoms can affect numerous cognitive domains, including attention,
working memory, verbal learning and memory, and executive function (Kahn et al., 2015). However,
psychotic disorders may differ in severity, chronicity, pathophysiology, and treatment (Lieberman
and First, 2018). The psychotic disorder group includes schizoaffective disorder, schizophreniform
disorder, delusional disorder, and substance-induced psychotic disorder, but the cardinal member of

the group is schizophrenia (Lieberman and First, 2018).

Schizophrenia is a complex neuropsychiatric illness first classified in the late 19* century as dementia
praecox, with the term schizophrenia coined later in 1908 by Eugen Bleuler (Jablensky, 2010).
Schizophrenia usually takes the form of a chronic course of episodic acute illness episodes, termed
psychosis, followed by periods of either partial to complete recovery or gradual deterioration in social
and occupational function over time (see Figure 1) (Thara, 2004). Frank symptoms of schizophrenia
usually precipitate between the second and third decades of life, with the peak age of incidence in
males, age 22 years, slightly earlier than the peak age of onset in females, age 26 years (Eranti et al.,
2013, Castle et al., 1998). In the UK, schizophrenia accounts for around 30% of all spending on adult
mental health care in the NHS. More broadly, mental illness costs the UK economy around £77 billion

per year, around 4% of gross domestic product (Department of Health., 2014).

At the first clinical presentation of psychosis (first-episode psychosis; FEP), it may not be possible to
pinpoint an accurate classification beyond the broad psychotic disorder group owing to, for example,
an incomplete history, pathophysiological uncertainty, and aspects of diagnostic criteria such as
symptom chronicity which may require more extended clinical observation (Lieberman and First,
2018). Furthermore, there are no diagnostic laboratory tests for schizophrenia; and so, the diagnosis

relies on clinical observation and self-report (See Table 1).
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Figure 1: Types of Longitudinal Illness Course in Schizophrenia

Prevalence | Description Illness Course
One Episode
No Functional

22% Impairment

Multiple Episodes

Minimal or No
35% Functional
Impairment

Multiple Episodes

Functional Impairment
8% After First Episode
‘Which Does Not
Progressively Worsen

Multiple Episodes

Progressive Functional
38% Impairment After Each
Episode

Adapted from Ciompi et al (Ciompi, 1980) and Shepherd et a/ (Shepherd et al., 1989)

Table 1: ICD-10 Diagnostic Criteria for Schizophrenia

At least one of
Thought insertion/withdrawal/broadcast/echo

Delusions of control, influence, or passivity
Delusional perception

Third-person auditory hallucinations giving a running commentary

Persistent bizarre delusions

Or at least two of
Persistent hallucinations in any modality
Thought disorder
Catatonic behaviour

Negative symptoms
Significant behaviour change

Duration

Symptoms present for one month

Exclusions

Symptoms not attributable to a mood disorder, an organic brain disorder or a substance use
disorder

A prodromal phase consisting of a more subtle decline in cognitive and social functioning commonly
precedes the first psychotic episode and can begin years before the onset of frank psychotic symptoms
(Compton, 2004). A duration of untreated psychosis (DUP) may also precede the first clinical
diagnosis of FEP (McGlashan, 1999), whose length is associated with time to symptom remission
(Loebel et al., 1992), response to antipsychotics (Karson et al., 2016), symptom severity, and
functional outcomes (Marshall et al., 2005). Meta-analytic evidence suggests that the length of DUP
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could explain between 2-13% of the variance of outcome in schizophrenia (Penttila et al., 2014). A
core aim of psychosis early intervention services (EIS) is to identify psychosis in its early stages and
reduce the length of DUP (McGorry et al., 2008). While some associate a long DUP with a prolonged
neurotoxic environment (McGorry et al., 2008) or have hypothesised that it may reflect a more severe
subtype of schizophrenia (Morgan et al., 2006), more recent research suggests that lead-time bias may
confound the association between prolonged DUP and poor outcomes (Jonas et al., 2020). Therefore,
the apparent poor outcomes associated with a prolonged DUP may instead relate to a more advanced

stage of psychotic illness that is already associated with poorer functioning.

Schizophrenia has a global prevalence that is relatively heterogeneous in its reporting. Meta-analytic
evidence suggests estimates of 0.33% and 0.40-0.47% for period and lifetime prevalence respectively
(Saha et al., 2005, Simeone et al., 2015), whereas estimates derived from single samples can be
slightly higher. For example, one general population survey reported a lifetime prevalence of 0.87%
for schizophrenia, and over 3% for broader categories of psychotic disorders (Perala et al., 2007).
Along with differences in study methodology, the heterogeneity in prevalence estimates suggests the
importance of both individual- and population-level factors which may influence schizophrenia risk.
For example, schizophrenia is more common amongst first- and second-generation migrant groups
than people who do not have a personal or family history of migration (Cantor-Graae and Selten,
2005). Schizophrenia is also more common in people who live in disadvantaged areas of inner cities

(Kirkbride et al., 2007), and areas with low social cohesion (Boydell et al., 2001).

Additionally, the influential neurodevelopmental hypothesis of schizophrenia posits that early-life
environmental disruption can lead to neuronal circuits primed to generate psychotic symptoms in later
life, often in the context of heightened biological or psychological stress (Nour and Howes, 2015,
Fatemi and Folsom, 2009). For example, babies born in late winter and spring are slightly over-
represented among patients with schizophrenia, possibly due to an increased risk of intrauterine
infection or maternal vitamin D deficiency during the winter months (see Section 1.2.3). A range of
childhood adversities including physical abuse, sexual abuse, maltreatment and bullying, are also

associated with an increased risk of developing schizophrenia in adulthood (Stilo and Murray, 2010).

The pathophysiology of schizophrenia is not yet fully understood, but is traditionally considered to
result from a final common pathway involving disruption to brain dopaminergic signalling pathways
(Howes and Kapur, 2009). The dopamine hypothesis of schizophrenia originated after the discovery
of antipsychotics in the 1950s, when animal model studies confirmed that the medications altered
dopamine metabolism (Carlsson and Lindqvist, 1963). Research then showed that amphetamine,
which increases synaptic dopamine levels, can induce psychotic symptoms (Lieberman et al., 1987).

Since those early findings, a wealth of molecular imaging (McGowan et al., 2004, Breier et al., 1997),
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post-mortem (Mackay et al., 1982, Howes et al., 2013) and experimental animal model evidence
(Featherstone et al., 2007, Moore et al., 2006, Lapiz et al., 2003) has accumulated, indicating
abnormal dopamine signalling in areas such as the mesocortical, mesolimbic, and nigrostriatal
pathways in schizophrenia. However, more recently, with an understanding that not all patients
respond to antipsychotic medications which aim to target the dopamine-D2 receptor, there is a
growing understanding that not all patients with schizophrenia show abnormalities in dopamine
signalling (Demjaha et al., 2012). Instead, schizophrenia may consist of hyperdopaminergic and
normodopaminergic subtypes, with the latter subtype characterised by abnormalities in other

neurotransmitter pathways (Howes and Kapur, 2014).

Indeed, a range of other neurotransmitter pathways are associated with schizophrenia, such as
glutamate (Hui et al., 2009), acetylcholine (Tani et al., 2015) and gamma-aminobutyric acid (GABA)
(Blum and Mann, 2002). Disruption to these pathways may occur in combination and relate to

different aspects of symptomatology and illness course (Howes and Kapur, 2009).

Schizophrenia risk has a strong genetic component. The genetic underpinnings of schizophrenia
gained prominence initially from early studies showing familial clustering of schizophrenia (Rudin,
1916). Studies of monozygotic twins show concordance rates for a schizophrenia diagnosis are
around 30% (Hilker et al., 2018). Studies have shown that the risk of a schizophrenia diagnosis in the
offspring of affected and non-affected monozygotic twins is similar, suggesting that even unaffected
twins carry a heritable component for schizophrenia without expressing the disease (Kringlen and
Cramer, 1989). Such findings suggest that psychosis may lie on a continuum in the population (van
Os et al., 2009), with a diagnosis of schizophrenia corresponding to the most extreme end of the

spectrum.

Adoption studies, which permit the dissection of genetic from environmental disease risk, help to
confirm the importance of genetic risk in schizophrenia. For example, the risk of schizophrenia in
offspring of mothers who had the illness was similar whether the biological or an adoptive parent
raised them (Tienari et al., 1994, Heston, 1966). Additionally, the offspring of mothers without
schizophrenia did not have an increased risk for the illness when raised by parents who had

schizophrenia (Wender et al., 1974).

Schizophrenia has a heritability (the amount of phenotypic variance that genetic factors could explain)
of up to 80% (Sullivan et al., 2003, Hilker et al., 2018). However, the pattern of genetic influence in
schizophrenia, like many complex diseases, is thought to be polygenic rather than Mendelian.
Relatively recent genomic advances have helped to illustrate this. For example, over the past 20 years

and owing to the breakthroughs of the Human Genome Project (Lander et al., 2001), genome-wide
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association studies (GWAS), which involve scanning large sets of genetic variants (single nucleotide
polymorphisms; SNPs) across complete sets of deoxyribonucleic acid (DNA), have transformed our
understanding of the polygenic component of many complex diseases. The first GWAS of
schizophrenia was published in 2007 and, with a sample size of =322, did not report any genome-
wide significant findings (Lencz et al., 2007). Contrastingly, a more recently published GWAS for
schizophrenia, which included #»=105,318 participants, reported 145 genetic variants significantly

associated with schizophrenia (Pardinas et al., 2018).

However, only around 23% of the current variance of schizophrenia risk can be explained by
identified genetic variation, with only 3% arising from GWAS significant SNPs (Woo et al., 2017).
Therefore, a large proportion of the genetic contribution to schizophrenia risk is still unknown. One
reason for this is that GWAS measure only common genetic variation, and recent evidence from
whole-phenome studies suggests that individuals with schizophrenia carry a significant burden of

rare, damaging variants that go undetected with standard GWAS methods (Singh et al., 2017).

1.1.1.2 Cardiometabolic Disorders: Definitions, Epidemiology and Mechanisms

Cardiometabolic disorders encompass a constellation of related traits, including cardiovascular
diseases (CVD) such as hypertension, atherosclerosis and coronary heart disease, alongside metabolic
traits such as type 2 diabetes (T2D) and its predeterminants (insulin resistance and impaired glucose
tolerance), dyslipidaemia and obesity. Symptoms of cardiometabolic disorders are broad and range
from being subtle or imperceptible, particularly in the earliest stages (e.g., isolated
hypercholesterolaemia, insulin resistance or mild hypertension), through to severe pain and loss of
consciousness (as in the case of acute myocardial infarction), permanent loss of cognitive or physical
function (as in the case of cerebrovascular events) and, at their most severe endpoint, death. Together,
cardiometabolic disorders are the number one causes of death worldwide, accounting for 17.9 million
lives each year (World Health Organization, 2018). Around 6.8 million adults live with CVD in the
UK, costing the NHS around £7.4 billion per year, and the broader economy an estimated £15.8
billion per year (Waterall, 2019).

The traits and features encompassing cardiometabolic disorders are interrelated, interdependent and
progressively additive. In the earliest stages, subtle changes to biochemistry may be detectable, e.g.,
compensated disruption to glucose-insulin homeostasis or disruption to lipid storage (Cohn et al.,
2001, Savage et al., 2007). These subtle biochemical changes both predispose to and are predisposed
by weight gain and hypertension via mechanisms including inflammation and other intracellular

signalling mechanisms, such as the mitogen-activated protein kinase (MAPK) and
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Phosphatidylinositol 3-kinase/protein kinase B pathways (PI3/AKT) (de Luca and Olefsky, 2008,
Kumphune et al., 2013, Fujishiro et al., 2003).

Over time and left unchecked, these changes can progress to the clustering of components that make
up the metabolic syndrome (Gehart et al., 2010). The metabolic syndrome was first coined in 1988
as ‘syndrome X’ due to an increasing understanding of the links between glucose-insulin homeostasis,
blood pressure, lipid storage and adiposity (Reaven, 2001). In the ensuing decades, there was debate
about the characterisation and definition of the syndrome (Reaven, 2006, Oda, 2012), and it was
renamed metabolic syndrome in 2001 (World Health Organization, 2006). Since that time, there have
been numerous diagnostic criteria to define metabolic syndrome (see Table 2). Some have placed
precedence on disruption to glucose-insulin homeostasis, others on adiposity, and the most recent
harmonised definition taking an agnostic stance and also recognising the importance of ethnic

differences in weight deposition.

Regardless of the diagnostic criteria used to define it, the metabolic syndrome has consistently shown
a high risk of progression to more distal and chronic phenotypes such as T2D (Shin et al., 2013) and
CVD (Wilson et al., 2005), alongside severe disease endpoints such as myocardial infarction (Y ounis
et al., 2016), cerebrovascular events (Boden-Albala et al., 2008) and death (Hildrum et al., 2009).
Therefore, the metabolic syndrome is an important marker of past, present, and future

cardiometabolic risk.

The global prevalence of cardiometabolic disorders is increasing universally, and they are now a
critical global health concern (Saklayen, 2018). For example, in the USA between 1988-2010,
average body mass index (BMI) in adults increased by around 0.5% a year (National Center for Health
Statistics, 2012). The prevalence of obesity in US adults has now surpassed 40%, and over one in
three US adults meets the criteria for metabolic syndrome (National Center for Health Statistics,

2012).

Similarly, in China, the prevalence of adult overweight and obesity has increased from 14.6% to 29%
since 1992, and the prevalence of metabolic syndrome is 16% (Delavari et al., 2009). A national
survey in Iran reported a metabolic syndrome prevalence in adults of around 35% (Delavari et al.,
2009). Further, the global survey of obesity found that the prevalence of overweight and obesity has
doubled since 1980 in over half of the 195 countries surveyed, with the most significant increases in
nations with a lower socioeconomic index (Afshin et al., 2017). Additionally, the International
Diabetes Federation expects the global prevalence of T2D to increase to 10.4% by 2040, with over
half of all those diagnosed living in Southeast Asia and the Western Pacific region (Ogurtsova et al.,

2017).
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Table 2: Diagnostic Criteria for Metabolic Syndrome

WHO (1998)
(Alberti and Zimmet,
1998)

EGIR (1999)
(Balkau and
Charles, 1999)

IDF (2005) (Zimmet
et al., 2005)

NCEP ATP 111
Revised (2005)
(Grundy et al.,

Harmonized
Consensus
Definition (2009)

/ <1.0mmol/L (F)

/ <1.3mmol/L(F);
or Rx

/ <1.3mmol/L(F);
or Rx

2005) (Alberti et al., 2009)
Required IGT /IFG / T2D Plasma FI1 >75" | Central Obesity - -
percentile (Ethnicity-specific
waist circumference)
Criteria Above plus two Above plus two | Above plus two At least three from: At least three from:
from: from: from:
Obesity WHR>0.90 (M) / WC>9%cm (M) - WC>100cm (M) / Central Obesity
>0.95 (F); or / 80cm (F) >88cm (F) (Ethnicity-specific
BMI>30 waist circumference)
or BMI >30
Hyperglycaemia | - - FPG>5.6mmol/L FPG >5.6mmol/L; FPG>5.6mmol/L;
or Rx or Rx
Dyslipidaemia TG>1.7mmol/L; TG>2mmol/L; TG>1.7mmol/L; TG>1.7mmol/L; TG>1.7mmol/L;
or or or or or
HDL<0.9mmol/L(M) | HDL<Immol/L | HDL<I1.0mmol/L(M) | HDL<I.0mmol/L(M) | HDL<I.0mmol/L(M)

/ <1.3mmol/L (F);
or Rx

Hypertension >140/90mmHg >140/90mmHg; | >130mmHg systolic; | >130mmHg systolic; | >130mmHg systolic;
or Rx or >85mmHg or >85mmHg or >85mmHg
diastolic diastolic; diastolic
or Rx or Rx
Other Microalbuminuria - - - -

WHO=World Health Organization; EGIR=European Group for the Study of Insulin Resistance; IDF=International Diabetes Federation;
NCEP=National Cholesterol Education Program; ATP IlI=Adult Treatment Panel III; IGT=Impaired Glucose Tolerance; IFG=Impaired
Fasting Glucose; T2D=Type 2 Diabetes; FI=Fasting Insulin, WHR=Waist: Hip Ratio; M=Male; F=Female; WC=Waist Circumference;
BMI=Body Mass Index; FPG=Fasting Plasma Glucose; Rx=Prescribed Treatment; TG=Triglycerides; HDL=High Density Lipoprotein.

Cardiometabolic disorders have a common set of malleable and non-malleable risk factors. Non-
malleable risk factors include sex, ethnicity, and age. For example, there are well-known sex
differences in the epidemiology, aetiology, biology and clinical expression of cardiometabolic
disorders (Pradhan, 2014). Before the menopause, increased adiposity is more commonly precipitated
in females than males (Kuk and Ardern, 2010), whereas hypertension and disrupted biochemical
indices are more common in males (Kim and Reaven, 2013), possibly due to a metabolically-active
effect of oestrogen (Gupte et al., 2015). Longer-term cardiovascular outcomes such as CVD affect

both sexes but also show differences in presentation and clinical course (Beale et al., 2018).

Ethnicity is also an important cardiometabolic risk factor, and non-White ethnicity is an important
risk factor for cardiometabolic disorders (Deboer, 2011). For example, a UK population-based study
reported that South Asian ethnicity carried the highest risk for cardiometabolic disorders, followed
by Black/African-Caribbean ethnicity, followed by White European ethnicity (Tillin et al., 2005).
East Asian ethnicity has also shown to confer a significant risk for the development of

cardiometabolic disorders (Nestel et al., 2007).

Age is an important cardiometabolic risk factor, and the risk of all cardiometabolic disorders increases
with increasing age (Dhingra and Vasan, 2012). Age is also likely to interact with many non-
malleable risk factors because most contribute a cumulative risk over time (Reinikainen et al., 2015).

Thus, age becomes increasingly relevant as one gets older.
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In the general population, the most important malleable cardiometabolic risk factors include smoking,
physical inactivity, sedentariness, and an unhealthy diet. All are thought to be dose-dependent,

conveying greater risk with increased length and amount of exposure.

Smoking is strongly associated with adverse cardiometabolic and cardiovascular outcomes (Banks et
al., 2019) and remains the leading cause of death in developed nations (Lariscy, 2019). However,
whilst a prolonged smoking history increases cardiometabolic risk compared with ‘never smoked’
(Duncan et al., 2019), some research suggests that smoking cessation in young people can reduce this

risk to baseline in as little as five years (Lloyd-Jones et al., 2017).

Physical inactivity is the next most important cause of death in developed nations (McGinnis and
Foege, 1993). Findings from the UK analysis of the Global Burden of Diseases Injuries and Risk
Factors Study suggest that physical inactivity contributed to 10% of premature deaths from coronary
heart disease and 35% of all-cause deaths (Allender et al., 2007). Sedentariness has a global impact
on mortality comparable with smoking (Lee et al., 2012) and is distinct from physical inactivity
(Salman et al., 2019). For example, high volumes of high-intensity physical activity only partly
attenuate the cardiometabolic risk associated with sedentariness (Ekelund et al., 2016). Replacing
sedentariness with even light physical activity leads to improvements in insulin sensitivity and lipid
profiles not replicated by combining intensive physical activity and a sedentary lifestyle (Duvivier et
al., 2018). In increasing recognition of the importance of physical inactivity and sedentariness on
cardiometabolic risk, in 2019, the UK Chief Medical Officer published combined guidelines on
increasing physical activity levels and reducing sedentariness (Department of Health and Social

Care., 2019).

Diet is an important cardiometabolic risk factor, and dietary habits have changed considerably in
recent decades, imparting considerable cardiometabolic risk (Anand et al., 2015). For example,
snacking and snack foods have risen to prominence (Popkin and Duffey, 2010), eating frequency has
increased (Monteiro et al., 2010), and a dietary increase in fried, processed and sugary foods is a
global phenomenon (Monteiro et al., 2013). Data from meta-analyses and large cohort studies suggest
that such diets are intricately related to cardiometabolic disorders such as T2D (Schwingshackl et al.,

2017), obesity (Askari et al., 2020), and CVD (Srour et al., 2019).

Genetic variation conveys a key influence on cardiometabolic risk. Similarly to schizophrenia, family
studies have shown clustering of cardiometabolic disorders within families (Slack and Evans, 1966),
and twin (Zdravkovic et al., 2002) and adoption (Sundquist et al., 2011) studies have confirmed the
genetic contribution to cardiometabolic disorders. More recently, while there has been success in

elucidating monogenic causes of rare cardiometabolic disorders such as familial
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hypercholesterolaemia via loss-of-function mutations in the low-density lipoprotein (LDL) receptor
gene LDLR (Goldstein and Brown, 1974), rare forms of cardiometabolic disorders do not significantly
impact population-level prevalence (Cambien and Tiret, 2007). Conversely, discoveries of mutations
in other genes such as apolipoprotein E are much more common in the general population. While
they contribute a weak effect on individual-level disease risk, their common frequency results in a

more significant impact at the population level (Cambien and Tiret, 2007).

Recent GWAS of cardiometabolic traits such as BMI have been conducted on samples of close to
700,000 adults, identifying over 300 significant variants (Pulit et al., 2019). Similarly, GWAS of
cardiometabolic disorders such as T2D have been conducted in over 400,000 adults, identifying over
150 significant variants (Mahajan et al., 2018). However, while the heritability of most
cardiometabolic is predicted to be high, the variance explained by identified genetic variants is but a
fraction of this (Elks et al., 2012). Therefore, rarer variants may together play a significant polygenic

role in the genetic influence of cardiometabolic risk.

1.1.2 The Burden of Cardiometabolic Comorbidity of Schizophrenia

Schizophrenia is a life-shortening illness (McGrath et al., 2008), and people with schizophrenia live
on average 10-15 years less than the general population (Plana-Ripoll et al., 2019). Moreover, while
mortality rates in the general population are decreasing, the same reductions in mortality rates have
not been observed to the same extent in people with schizophrenia, so the mortality gap is widening
(Hayes et al., 2017). Mortality rates for people with schizophrenia are now over 2.5 times higher than

the general population, irrespective of sex and socioeconomic status (Saha et al., 2007).

Unnatural causes such as accidents and suicide account for only a small portion of the increased
mortality, with more than two-thirds explained by physical illnesses such as a significantly higher
prevalence of cardiometabolic disorders (Saha et al., 2007). For example, the prevalence of obesity
in older adults with chronic schizophrenia is twice as high as in the general population at 55%, the
prevalence of dyslipidaemia is five times as high as in the general population at 70%, and the
prevalence of hypertension is three times as high as in the general population at 60% (De Hert et al.,
2011). These cardiometabolic phenotypes result in a higher prevalence of metabolic syndrome, which
is five times as common as in the general population, and T2D, which is twice as common as in the
general population (De Hert et al., 2011). Together, the higher prevalence of cardiometabolic
disorders in people with schizophrenia contributes to a three-fold higher risk of death from
myocardial infarction and cerebrovascular events than the general population, even after adjusting

for factors such as sex, ethnicity, and social class (Correll et al., 2017).
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The significant burden of comorbid schizophrenia and cardiometabolic disorders is not just felt by
the individual but by the whole of society. Comorbid schizophrenia and cardiometabolic disorders
lead to increased health service use through emergency hospital admissions, GP consultations, and
prolonged lengths of hospital stay (Hochlehnert et al., 2011). In already stretched healthcare systems,
this can contribute toward increased waiting times and poorer care standards universally. Increased
use of health services translates into substantial additional healthcare costs. For example, studies have
shown that comorbid schizophrenia and cardiometabolic disorders can increase direct healthcare costs
by up to 45-75%, even after controlling for severity of physical illness and not including the costs

associated with the treatment of schizophrenia (Naylor, 2012).

Together, comorbid physical and psychiatric disorders account for up to 18% of all expenditure on
long-term health conditions in the UK (Naylor, 2012). Moreover, in addition to increasing health
service costs, comorbid schizophrenia and cardiometabolic disorders can have broader economic
implications, such as higher levels of unemployment (Hutter et al., 2010), higher workplace absence
due to sickness (Von Korff et al., 2005), and increased use of the benefits system (Naylor, 2012). In
the UK, the yearly total societal costs of comorbid schizophrenia and cardiometabolic disorders are
£700m higher than the costs of treating schizophrenia and cardiometabolic disorders separately

(McDaid, 2015).

1.1.3. Traditional Attributions for the Cardiometabolic Comorbidity of Schizophrenia
1.1.3.1 The Adverse Effects of Antipsychotic Medication

In 1952, the accidental discovery that chlorpromazine, an anaesthetic medication, may be effective
as a calming agent (Laborit et al., 1952) led to its first investigation as a psychiatric treatment (Delay
etal., 1952), and later its widespread introduction as the first licensed antipsychotic medication (Ban,
2007). Chlorpromazine catalysed the fledging period of ‘deinstitutionalisation’, involving the large-
scale transfer of psychiatric patients from inpatient units to community care. The introduction of
chlorpromazine coincided with the culmination of a wider socio-political movement to provide
improved freedoms to psychiatric patients (Niles, 2013). This medication transformed our
understanding of schizophrenia pathophysiology (Howes and Kapur, 2009), helped to instil patients
with civil liberties, and stimulated the field of psychopharmacology toward the discovery of an array
of antipsychotic medications commonly used in modern psychiatry. Whilst none could doubt the
transformational improvements these pharmacological developments instigated, they have
nonetheless added complexity in examining associations between cardiometabolic disorders and

schizophrenia due to an increased risk of confounding.
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But a few years after the introduction of chlorpromazine into clinical psychiatric practice, studies
began to be published highlighting the potential adverse effects of the medication on cardiometabolic
indices. For example, early meta-analytic evidence reported that the more recent ‘second-generation’
antipsychotics, developed initially to combat the common adverse effects of movement disorders in
earlier antipsychotics, exerted more influence on cardiometabolic indices than the earlier ‘first-

generation’ antipsychotics (Bergman and Ader, 2005, Smith et al., 2008).

However, more recently, the consideration that newer °‘second-generation’ or ‘atypical’
antipsychotics have greater adverse cardiometabolic effects than older ‘first-generation’ or ‘typical’
antipsychotics has been called into question. Newer meta-analyses have shown that the differential
cardiometabolic effects of antipsychotics do not necessarily abide by these distinctions (Leucht et al.,
2013, Pillinger et al., 2020). For example, aripiprazole conveys relatively little adverse
cardiometabolic risk, yet olanzapine conveys significant adverse cardiometabolic risk, and both are
second-generation antipsychotics. Similarly, chlorpromazine conveys significant cardiometabolic
risk, yet haloperidol does not, and both are typical antipsychotics. It is now generally understood that
the metabolically-active nature of different antipsychotics lies on a continuum rather than across a
dichotomy (See Figure 2), and the cardiometabolic impact of such medications can precipitate

relatively quickly after initiation (Spertus et al., 2018).

Figure 2: Comparative Cardiometabolic Impact of Different Commonly Prescribed Antipsychotic Medications

Quetiapine
Lurasidone
Clozapine
Amisulpiride
Olanzapine
Haloperidol
Chlorpromazine

Aripiprazole Risperidone

Less Cardiometabolically Active More Cardiometabolically Active

Adapted from Leucht et a/ (2013) (Leucht et al., 2013) and Pillinger et al (2020) (Pillinger et al., 2020)

There is biological plausibility for the cardiometabolic impact of antipsychotic medications. While
all antipsychotic medications target the dopamine D2 receptor, none are specific to it and have
differing affinities for a wide array of other receptors in the central nervous system and the periphery.
For example, antipsychotics bind to histamine-1 (HI), serotonin-2¢ (5-HT2c¢) and adrenergic
receptors (a2 and b3) in the brain (Starrenburg and Bogers, 2009). Each is important in regulating
food intake, and animal model studies have shown that knockouts of the genes coding these receptors

cause rats to become obese (Kroeze et al., 2003, Jackson et al., 1997, Leibowitz, 1984).
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Additionally, antipsychotics may disrupt glucose-insulin homeostasis at the level of the pancreatic
beta-cell in the periphery through a decrease in insulin sensitivity and a resultant increase in insulin
secretion (Starrenburg and Bogers, 2009). More metabolically-active antipsychotics such as
clozapine, olanzapine, and quetiapine also show relatively high affinities for serotonin-la (SHT-1a),
muscarinic-3 (m3), and a2 receptors, which are expressed on pancreatic beta-cells (DeFronzo and
Ferrannini, 1991, Reaven, 1988, Shulman, 2000). Conversely, less metabolically-active
antipsychotics such as aripiprazole and ziprasidone show considerably less affinity to these receptors

(Leucht et al., 2013).

1.1.3.2 The Effects of Lifestyle Factors

Schizophrenia exerts substantial impacts upon all aspects of the lives of people who are diagnosed
with it. Whilst frank positive psychotic symptoms are perhaps the most instantly recognisable features
of the illness, they are also the features of the illness that respond the most quickly with antipsychotic
treatment. Negative and cognitive symptoms of schizophrenia can be harder to identify due to their
subtle and insidious nature and typically respond less actively to antipsychotic treatment (Harvey et
al., 2016). Negative and cognitive symptoms are common in schizophrenia and account for much of
the long-term morbidity and poor functional outcome associated with it (Austin et al., 2013). Negative
symptoms such as amotivation, decreased sociability and decreased spontaneity can be pervasive.
Such changes can have wide-ranging impacts upon the health of the sufferer (Kirkpatrick et al., 2001)

and may predispose to lifestyle factors that could increase cardiometabolic risk.

1.1.3.2.1 Diet

Multiple studies (McCreadie et al., 1998, McCreadie and Scottish Schizophrenia Lifestyle, 2003,
Heald et al., 2017) have shown that the diets of people with schizophrenia may be less healthy than
the general population. A recent systematic review of observational and interventional studies on diet
in schizophrenia found consistent associations between having the illness and consuming a diet higher
in refined sugars and saturated fats and lower in fibre (Aucoin et al., 2020). Such a pattern is typical

of the ‘Western diet’ and is associated with adverse cardiometabolic outcomes (Fung et al., 2001).

Furthermore, cross-sectional studies have shown that people with schizophrenia, on average, may
consume lower than recommended levels of ®-3 polyunsaturated fatty acids (PUFAs) (Aucoin et al.,
2020). Similarly, a large prospective cohort study of women also found that lower consumption of ®-

3 PUFAs was associated with an increased risk of psychotic symptoms (Hedelin et al., 2010). ®-3
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PUFAs are associated with a favourable cardiometabolic profile of lower cholesterol levels, lower

blood pressure and lower levels of systemic inflammation (Natto et al., 2019, Cabo et al., 2012).

1.1.3.2.2 Smoking

People with schizophrenia are over three times more likely to smoke than the general population (de
Leon and Diaz, 2005). While the prevalence of smoking in the general population has declined over
the past two decades (Windsor-Shellard, 2020), the prevalence of smoking in schizophrenia remains
high (Ziaaddini et al., 2009). Some attribute the higher prevalence of smoking in schizophrenia to
symptom amelioration since nicotine may have short-term cognitive-enhancing effects (Freedman,
2014). Also, smoking may ameliorate perturbations in dopaminergic, glutamatergic and GABAergic

pathways observed in schizophrenia (Lucatch et al., 2018).

However, more recent research is beginning to call the symptom-amelioration hypothesis into
question, finding that cigarette smoking in schizophrenia was associated with impairments in memory
(Stramecki et al., 2018) and even increased suicidality (Dickerson, 2019). A systematic review of
longitudinal studies also found that adolescent exposure to smoking was associated with a higher risk
of developing schizophrenia (Gurillo et al., 2015), and recent evidence suggests a potential bi-

directional association of smoking with risk of schizophrenia (Wootton et al., 2020).

1.1.3.2.3 Physical Inactivity and Sedentariness

A meta-analysis of 69 case-control studies reported that, compared with the general population,
people with schizophrenia on average spend more time sedentary and are less likely to meet
recommended physical activity guidelines (Vancampfort et al., 2017). In addition, people with
schizophrenia may overestimate their physical activity levels. For example, a large-scale population-
based cohort study found that while people with schizophrenia self-reported similar physical activity
levels to the general population, objective accelerometer data suggested that they engaged in much
less physical activity than the general population, and so over-estimated their activity levels (Firth et

al., 2018).

1.1.3.2.4 Alcohol

While some studies have found that light alcohol consumption with meals is associated with a lower
risk of incident cardiometabolic disorders (Zhang et al., 2014), possibly due to beneficial effects on

inflammation (Piano, 2017), an abundance of research suggests that heavy alcohol use is associated
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with increased risk of metabolic syndrome (Vieira et al., 2016), hypertension (Bermudez et al., 2015),
T2D and CVD (Roerecke and Rehm, 2014). These associations may be explained by the effects of
alcohol itself on endothelial function and myocardial function (Goncalves et al., 2015), apoptosis
(Fernandez-Sola et al., 2011), oxidative stress (Piano and Phillips, 2014) and haemostatic factors

(Salem and Laposata, 2005), or mediated via comorbid poor diet or smoking (Sluik et al., 2016).

People with schizophrenia have up to a three-times higher prevalence of alcohol use disorders than
the general population (Hartz et al., 2014). A recent meta-analysis found that over one in four patients
with schizophrenia would meet the criteria for an alcohol use disorder (Hunt et al., 2018), and alcohol

use disorders could be present before the onset of psychosis in young adults (Brunette et al., 2018).

A combination of genetic and environmental factors could explain the comorbidity between alcohol
use disorders and schizophrenia. Regarding genetic factors, alcohol use disorders and schizophrenia
may share genetic liability and genetic overlap (Walters et al., 2018). For example, genetic variants
associated with brain-derived neurotrophic factor (BDNF) correlate with comorbid schizophrenia and
alcohol use disorders but not with alcohol use disorders alone (Cheah et al., 2014). Regarding
environmental factors, alcohol use in schizophrenia may lead to symptom reduction (Hjorthoj et al.,
2015) or decrease antipsychotic side effects (Khantzian, 1997). Alcohol use disorders in
schizophrenia are associated with poor adherence to treatment, an increased frequency of psychosis
relapse, longer duration of inpatient stays, and poor functional outcomes (Kerner, 2015, Archibald et

al., 2019).

1.1.3.2.5 Sleep

Inadequate sleep quantity and quality is associated with adverse cardiometabolic outcomes. In both
children and adults, short sleep duration is associated with an increased risk of obesity in meta-
analyses of cross-sectional and longitudinal studies (Miller et al., 2018). Poor sleep quality and
quantity are also longitudinally associated with the development of hypertension (Knutson et al.,
2009), T2D (Cappuccio et al.,, 2010), coronary heart disease (Cappuccio et al., 2011) and
cerebrovascular events (Leng et al., 2015). Proposed mechanisms include alterations to circadian
rhythms involving cortisol which may disrupt glucose-insulin homeostasis; increases in appetite-
increasing grehlins; increases in systemic inflammation; and hypothalamic-pituitary-adrenal (HPA)

axis alterations leading to weight gain (Cappuccio and Miller, 2017).

Disturbed sleep is common in schizophrenia and is self-reported in 30-80% of patients, depending on
the severity of symptomatology (Yang and Winkelman, 2006, Royuela, 2002, Kato et al., 1999).

Meta-analyses of studies examining objective measures of sleep such as polysomnography have
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shown changes in sleep latency, sleep efficiency, awake time, slow-wave sleep and random eye
movement (REM) sleep in schizophrenia (Yang and Winkelman, 2006, Chouinard et al., 2004,
Krystal et al., 2008). Antipsychotics may also affect sleep, depending on the level of histamine-1
receptor (H1) antagonism (Kane and Sharif, 2008). Histamine receptors may be involved in regulating
circadian rhythms and the sleep-wake cycle, and H1-receptor blockade can lead to an increase in

somnolence and sedation as well as changes in sleep architecture (Monti and Monti, 2004).

Metabolically-active antipsychotics such as clozapine and quetiapine show a high affinity to the H1
receptor and have pronounced effects on sleep induction and total sleep time. Comparatively, less
metabolically-active antipsychotics such as aripiprazole and risperidone show low affinity to the H1
receptor (Monti and Monti, 2004). Additionally, antipsychotics differ in affinities to adrenergic, SHT-

2 and cholinergic receptors, which all have roles in sedation (Cohrs, 2008).

1.1.3.3 Healthcare Inequalities

Healthcare inequalities are another important cause for the increased risk of cardiometabolic disorders
in schizophrenia. Research has shown that people with schizophrenia may be less likely to attend
their general practitioner for physical health concerns than the general population (Goldman, 1999,
Brown et al., 2000). When they do attend, they may be less likely to be diagnosed with physical health
problems than the general population (Goldman, 1999, Jeste et al., 1996). Research from whole-
population studies suggests that following a first hospital admission for CVD, people with
schizophrenia are more likely to die and die sooner than the general population (Westman et al.,

2018).

Other research has found that amongst hospital admission for ischemic heart disease, people with
schizophrenia were half as likely to be recommended for surgical intervention (Lawrence and Kisely,
2010), twice as likely to suffer from hospital-acquired infections, and have a longer length of stay
than the general population (Daumit et al., 2006). Among people with a diagnosis of T2D, people
with comorbid schizophrenia were half as likely to be offered a referral for specialist care (Jones et

al., 2008).

One potential contributor to the discrepancies in healthcare access for people with schizophrenia may
be ‘diagnostic overshadowing’, which is defined as the attribution of clinical symptoms and
behaviours by clinicians to the mental disorder rather than a physical illness, leading to inadequate
assessment and delayed treatment (Jones et al., 2008). Surveys of liaison psychiatrists have cited
concerns about stigmatising attitudes by general healthcare staff toward people with schizophrenia

and a lack of understanding of complex presentations and challenging behaviours. Similarly,
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qualitative research of patients with mental disorders, including schizophrenia, has reported common
themes such as feeling stigmatised against by healthcare staff, and barriers to healthcare access due

to perceived social isolation (Kemp, 2014).

Furthermore, fragmentation of physical healthcare across primary and secondary mental health
services may contribute to healthcare inequalities in schizophrenia (Crawford et al., 2014). For
example, primary care staff may not always be confident working with patients with mental disorders,
including schizophrenia (Blythe and White, 2012), and reciprocally, secondary mental health staff
report low confidence in identifying and managing physical health problems (Happell et al., 2012).

1.1.4 Evidence That the Association between Cardiometabolic Disorders and Schizophrenia

May Not Be Fully Explained By Lifestyle Factors and Adverse Treatment Effects

Antipsychotic medications, lifestyle factors and healthcare inequalities are key contributors to the
comorbidity between cardiometabolic disorders and schizophrenia. However, a growing body of
observational evidence is beginning to question the notion that the aforementioned traditional
attributions are likely to be the full explanation for the comorbidity. This observational research can
be divided into historical research that predates antipsychotic medication; research conducted on
young adults with FEP; and research conducted on adolescents/young adults who are at risk of

developing psychosis.

1.1.4.1 Historical Evidence Predating The Use of Antipsychotic Medication

The scientific literature has recognised the cardiometabolic comorbidity of schizophrenia since the
beginning of the 20" century (Kohen, 2004), long before the discovery of antipsychotic medication.
Indeed, Henry Maudsley once referred to T2D as ““a disease which often shows itself in families in
which insanity prevails” (Maudsley, 1895). The first observational research in the field was published
in 1919 and consisted of a small cross-sectional study of 10 participants showing the commonality of
hyperglycaemia in schizophrenia (Kooy, 1919). Two years later, a cross-sectional study of 22
participants with schizophrenia found common abnormalities in glucose tolerance, using an early
form of the oral glucose tolerance test (Lorenz, 1922). In 1944, the first case-control study was
published examining for differences in glucose tolerance between returning war-time soldiers with
psychiatric diagnoses and healthy controls, finding higher rates of impaired glucose tolerance in the

case compared with the control group (Drury, 1921).
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While these historical studies had some methodological shortcomings, for example, small sample
sizes and an inability to consider the direction of association, they demonstrate a thread of consistent
evidence for the association of disrupted glucose-insulin homeostasis in schizophrenia in
antipsychotic-naive individuals. Therefore, this suggests that confounding by antipsychotic

medication may not fully explain the cardiometabolic comorbidity of schizophrenia.

Additionally, other important features of historical studies suggest that confounding by chronic
lifestyle factors may not fully explain the cardiometabolic comorbidity of schizophrenia. While the
average UK life expectancy has increased from 50 to 80 years since 1910 (Raleigh, 2020), several
negative influences on population health have increased over the last century to offset those gains.
For example, participants recruited into historical studies may have been less affected by the adverse
impacts of the modern ‘Western diet’ as outlined in Section 1.1.1.2, including food over-supply and
over-consumption, along with consumption of higher proportions of high-calorie and nutrient-
deficient foods. For example, McDonalds opened its first restaurant in 1937, the first KFC franchise
opened in 1952, and the first Burger King franchise opened in 1954. Moreover, the menu offerings

of such establishments are becoming increasingly unhealthy over time (McCrory et al., 2019).

Sedentary behaviour is also increasing over time (Yang et al., 2019). Contributors to this trend include
an increasing amount of time spent across childhood, adolescence and adulthood watching television,
and technological advances leading to increasing amounts of leisure time spent on computers (Yang
et al., 2019). Furthermore, work roles have become increasingly sedentary over recent decades.
Research in the US has shown average decreases in occupation-related energy expenditure of over

100 calories per day in both men and women since the 1960s (Church et al., 2011).

Together, this pattern of change in population health suggests that historical research on the
associations between cardiometabolic disorders and schizophrenia may be less affected than modern
research by some of the traditional attributions for the cardiometabolic comorbidity of schizophrenia.
Therefore, historical findings imply that factors such as metabolically-active antipsychotic
medications, a poor diet, and sedentariness may more likely exacerbate rather than cause the
cardiometabolic comorbidity of schizophrenia. Nevertheless, there are limitations in interpreting the
findings of historical studies in the field. For example, the majority featured small sample sizes, were
cross-sectional, included dated definitions and assessment techniques for schizophrenia and

cardiometabolic disorders, and may be rated at high risk of bias by modern standards.
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1.1.4.2 Evidence of Cardiometabolic Dysfunction in Young Adults with FEP

Modern studies conducted on samples of young adults with FEP provide further evidence that
traditional attributions may not fully explain the cardiometabolic comorbidity of schizophrenia. Such
studies are essential because most cardiometabolic risk factors such as smoking, diet, and physical
activity confer cumulative risk over time (Reinikainen et al., 2015). Therefore, studies conducted on

young adults can lessen the confounding impact of these traditional attributions.

Studies conducted in participants presenting with FEP can also help to address the confounder of
antipsychotic medication at least partly, since participants enrolled in such studies are likely to have
had minimal, if any, prior antipsychotic exposure. Modern studies are also able to address

methodological and measurement-related shortcomings of historical studies.

1.1.4.2.1 Evidence for Disruption to Glucose-Insulin Homeostasis in FEP

Consistent findings from recent meta-analyses of case-control studies (Perry et al., 2016, Pillinger et
al., 2017a, Greenhalgh et al., 2017) suggest that subtle aberrations in glucose-insulin homeostasis are
detectable from the onset of psychosis in young antipsychotic naive adults compared with healthy
controls matched on age, sex, ethnicity and body mass index. For example, compared with controls,
FEP cases had a higher prevalence of insulin resistance measured using the updated and computerised
homeostatic model assessment (HOMA?2) method (Levy et al., 1998); and a higher prevalence of

impaired glucose tolerance.

Insulin resistance and impaired glucose tolerance are early forms of disrupted glucose-insulin
homeostasis and relate to decreased sensitivity of peripheral cells to insulin (O'Rahilly et al., 1994).
This decreased insulin sensitivity results in lower glucose transport into cells. In turn, this leads to a
negative feedback loop involving increased insulin secretion to maintain stable plasma glucose levels.
Therefore, insulin resistance corresponds to a physiological state where higher circulating insulin

levels are required to maintain steady plasma glucose levels (Samuel and Shulman, 2016).

Impaired glucose tolerance represents a state of reduced peripheral insulin sensitivity, progressive
loss of beta-cell function, and reduced secretion of glucose-dependent insulinotropic polypeptide
(Faerch et al., 2009). This state of disrupted glucose-insulin homeostasis accentuates following oral
consumption of a glucose-rich bolus. In impaired glucose tolerance, plasma glucose levels take longer
to stabilise secondary to a) decreased sensitivity of cells to insulin; and b) an attenuated response
range for insulin to correct plasma glucose imbalance. Therefore, both insulin resistance and impaired

glucose tolerance represent states of early glucose-insulin dyshomeostasis (Tabak et al., 2012).
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Recent studies have reported consistent findings regarding the higher risk of insulin resistance in FEP,
extending upon previous meta-analytic results. For example, cross-sectional research suggests that
insulin resistance at FEP may be more strongly associated with negative rather than positive
schizophrenia symptomatology (Misiak et al., 2019), may be associated with childhood stressful life
events (Tosato et al., 2020), and may not be explained by chronic stress (Steiner et al., 2017).
Longitudinal research also suggests that insulin resistance in FEP may be a baseline risk factor for

weight gain during the first year after FEP (Keinanen et al., 2015).

Studies of glucose-insulin homeostasis in FEP have not found evidence for abnormalities in fasting
plasma glucose or glycated haemoglobin (Perry et al., 2016, Pillinger et al., 2017a), which is
unsurprising since such alterations represent more chronic, pronounced and potentially irreversible
phenotypes within the realms of a T2D diagnosis. Therefore, insulin resistance is an early marker of
a more chronic phenotype in T2D, just as FEP could be considered an early marker of a more chronic
phenotype of schizophrenia. Since these early phenotypes appear to precipitate during the same
period in the life course, even after accounting for several relevant confounders, shared biological

processes may link both phenotypes, in at least a subset of individuals with FEP.

1.1.4.2.2 Evidence for Disruption to Lipid Homeostasis in FEP

Recent meta-analyses of case-control studies have also shown that alterations in lipid homeostasis,
such as hypertriglyceridaemia and reduced total and low-density lipoprotein (LDL) cholesterol levels,
are also detectable from FEP in young adults (Pillinger et al., 2017b, Misiak et al., 2017). One meta-
analysis also reported lower high-density lipoprotein (HDL) levels in FEP cases compared with
controls (Misiak et al., 2017). Additionally, findings from subsequent studies have extended upon the
meta-analytic results. For example, longitudinal research indicates that triglycerides may be

associated with worse psychiatric outcomes at both one and two years (Osimo et al., 2021) after FEP.

Together, this pattern of lipid alteration suggests that the primary cardiometabolic risk-increasing
phenotype in early psychosis relates to disruption to glucose-insulin homeostasis rather than lipid
dysfunction for two reasons. First, a pattern of low total and LDL cholesterol represents lower
cardiometabolic risk. For example, large-scale observational studies have consistently found that
LDL and total cholesterol are positively associated with a higher risk of coronary heart disease
(Ference et al., 2017, Peters et al., 2016). Second, a pattern of raised triglycerides and low HDL is a
hallmark of insulin resistance both in older (McLaughlin et al., 2005) and younger adults (Murguia-
Romero et al., 2013). A raised triglyceride:HDL ratio has been suggested as a suitable surrogate
marker for insulin resistance when it may not be possible to measure it using the HOMA?2 or gold

standard hyperinsulinaemic-euglycaemic clamp method (Pantoja-Torres et al., 2019).
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1.1.4.2.3 Limitations of Existing Studies of Young Adults with FEP

While the consistency and biological plausibility from studies of cardiometabolic dysfunction at FEP
suggest the possibility for primary disruptions to glucose-insulin homeostasis in schizophrenia,
current studies are limited primarily for three reasons. First, existing research in the field is mostly
either cross-sectional or has included incident cases of FEP at baseline, so it is not possible to consider
the direction of association. For example, the first clinical presentation of FEP may not accurately
correspond with the actual onset of psychotic symptoms, and a duration of untreated psychosis may

precede the first clinical presentation by months or even years (Compton, 2004).

Second, existing studies have primarily included one-off measures of cardiometabolic markers,
overlooking the potential for dynamic temporal changes in these markers. Cardiometabolic indices,
including measures of glucose-insulin homeostasis (Moebus et al., 2011) are subject to normal
fluctuation, which cannot be addressed with a one-off measurement. Alternatively, repeated
measurements of glucose-insulin homeostasis over time could provide a more reliable measure of

potential underlying biological mechanisms.

Third, whilst meta-analyses have included case-control studies that matched participants for relevant
potential confounders, residual confounding remains a possible explanation, as is the case with all
observational research. For example, existing studies have mostly not adjusted for alcohol use,
smoking, physical activity levels, dietary intake, or sleep problems. As described in Section 1.1.3,
these lifestyle factors are associated with schizophrenia and cardiometabolic disorders and are likely

to be relevant potential confounders.

1.1.4.3 Evidence for Cardiometabolic Dysfunction in Adolescents/Young Adults at Risk of
Developing Psychosis

Studies of cardiometabolic indices in adolescents/young adults who are at risk of developing
psychosis provide further evidence for the potential of a primary disruption to cardiometabolic
function in schizophrenia. Evidence from such studies potentially casts backwards further in the life-
course the cardiometabolic associations of schizophrenia and may point to the suggestion that
cardiometabolic dysfunction may precede the onset of psychosis in at least some individuals.
Evidence from such studies can also further address the potential for confounding since participants
may be even less likely to have been prescribed antipsychotic medications than cases of FEP.
Additionally, since participants are generally younger, the risk of confounding by chronic lifestyle

factors is further reduced.
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A 2016 meta-analysis of 47 studies, which examined the association of cardiometabolic risk factors
with ultra-high risk for psychosis (UHR) in young adults, found that none included indices of glucose-
insulin or lipid homeostasis (Carney et al., 2016). The review also found no significant difference in
BMI between cases of UHR with matched controls (Carney et al., 2016). However, since that time, a
consistent thread of evidence has emerged showing an association between insulin resistance and
UHR status, for example, in case-control studies matched by factors such as age, sex, ethnicity and
BMI levels (Petruzzelli et al., 2018, Cadenhead et al., 2019); and cross-sectional studies (Scott et al.,
2019, Perry et al., 2018) including one which adjusted for a range of potential confounders including
sex, ethnicity, BMI, social class, smoking and alcohol use (Perry et al., 2018). One longitudinal study
found no evidence between childhood insulin levels and psychotic symptoms at age 18 years,

although the sample size was relatively small (Perry et al., 2018).

Lipid alterations have also been detected in at-risk mental states in the findings from case-control
studies and may be helpful to predict transition to psychosis (Lamichhane et al., 2021, Dickens et al.,
2021). One longitudinal study found an association between childhood alteration in lipid profiles with
psychotic symptoms at age 18 years (Madrid-Gambin et al., 2019). Paradoxically, longitudinal
research suggests that lower BMI in childhood and adolescence (Zammit et al., 2007, Weiser et al.,
2004, Sorensen et al., 2006) is associated with a higher risk for developing schizophrenia in

adulthood.

1.1.4.3.1 Limitations of Existing Studies of Adolescents/Young Adults at Risk of Developing
Psychosis

Together, existing evidence suggests that alterations to cardiometabolic indices may occur before the
development of psychosis. However, the primary limitation of existing research on younger
participants at risk of developing psychosis is the heterogeneity of at-risk mental states. At present,
there are no accurate means to distinguish who will and who won’t develop psychosis from a baseline
of being at risk of developing it. For example, psychotic symptoms in adolescence are also strongly
associated with other mental disorders, including anxiety and depression (Varghese et al., 2011), and
only around 30% of people classified as at risk for psychosis develop FEP within three years (Fusar-
Poli et al., 2012). Other limitations of existing research mirror those of research in FEP (See Section
1.1.4.2.3), for example, the paucity of adequately powered longitudinal studies, the lack of
appropriate confounding adjustment, and the inclusion of single point-measures of cardiometabolic

indices.
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1.2 Existing Evidence for Common Biological Mechanisms for Comorbid

Cardiometabolic Disorders and Schizophrenia

1.2.1 Evidence for Disruption to Glucose-Insulin Homeostasis as a Potential Cause for

Comorbid Cardiometabolic Disorders and Schizophrenia

Recently developed epidemiological approaches can examine for evidence of potential causality
between an exposure and an outcome. For example, Mendelian randomisation (MR) is an
epidemiological approach that uses genetic variants (single nucleotide polymorphisms or SNPs) as
proxies for a putative risk factor to untangle the problems of reverse causation and unmeasured
confounding. This is because genetic variants are fixed at conception; hence genetically-predicted
levels of risk factors must precede any event, and genetic variants are often specific in their

associations with risk factors (Smith and Ebrahim, 2003).

MR studies examining the associations between genetically-predicted levels of cardiometabolic
indices and schizophrenia are relatively scarce, have included a limited set of cardiometabolic
exposures, and have reported mixed findings. For example, one previous MR study reported only
weak evidence of an association between genetically-predicted insulin resistance schizophrenia
(Polimanti et al., 2017). Another reported an association between genetically-predicted fasting insulin
and schizophrenia, which attenuated to the null after adjusting for BMI (Li et al., 2018). Furthermore,
previous MR studies have included ethnically heterogeneous samples, which increases the risk of
population stratification bias (Brumpton et al., 2020). Finally, since the previous MR studies were
published, larger GWAS have been conducted, which could increase the statistical power of MR

research.

There is biological plausibility for the potential causal association between disruption to glucose-
insulin homeostasis and schizophrenia. For example, CNS insulin can regulate striatal dopamine and
glutamate levels (Nash, 2017, Caravaggio et al., 2015), and, reciprocally, both CNS insulin and
striatal dopamine can regulate peripheral glucose-insulin homeostasis (Berndt et al., 2013). Peripheral
insulin can also cross into the CNS via cannabinoid and N-methyl-D-aspartate (NMDA) receptors,
and is actively transported into the CNS via the blood-brain barrier (Dodd and Tiganis, 2017). Insulin
receptors are widely expressed in the brain, with notable concentrations in regions of the brain known
to be associated with schizophrenia, such as the hypothalamus, midbrain and dopaminergic neurons
(Figlewicz et al., 2003), striatum, prefrontal cortex, amygdala, and hippocampus (Unger et al., 1991).
Brain insulin is associated with the regulation of neuronal growth and neuronal plasticity
(Schulingkamp et al., 2000, Ferrario and Reagan, 2018), and is associated with memory and cognition

(Grillo et al., 2015).
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1.2.2 Evidence for Genetic Liability as a Common Biological Mechanism for Comorbid

Cardiometabolic Disorders and Schizophrenia

Shared genetic liability may also be a common biological mechanism for the cardiometabolic
comorbidity of schizophrenia, as first mooted in perspectives articles in the early 2000s (Lin and
Shuldiner, 2010, Gough and O'Donovan, 2005). Since that time, due to improving analysis methods
and larger genetic samples, evidence has begun to accumulate to suggest that shared genetic liability
may at least partly explain the common comorbidity between schizophrenia and cardiometabolic
disorders. This evidence can be divided into prospective observational research; and secondary

analyses of large-scale GWAS datasets.

Regarding prospective observational research, studies conducted in relatively small samples have
shown that the prevalence of insulin resistance (Chouinard et al., 2019) and impaired glucose
tolerance (Ferentinos and Dikeos, 2012) is higher in unaffected relatives of patients with
schizophrenia compared with matched controls. These findings suggest that genetic influences on
glucose-insulin signalling may co-occur with genetic influences for psychosis, independent of disease
expression and treatment effects. Additionally, a prospective GWAS from a relatively small sample
has shown that people with comorbid schizophrenia and T2D have a higher genetic predisposition
for both disorders than controls (Hackinger et al., 2018). Also, a small study of people with
schizophrenia found an association between genetic predisposition for schizophrenia, insulin
resistance and antipsychotic treatment response (Tomasik et al., 2019). Conversely, another relatively
small study found no evidence of an association between genetic risk for T2D and schizophrenia
(Padmanabhan et al., 2016). The main limitations of existing evidence are that studies remain

relatively scarce and are likely underpowered owing to relatively small sample sizes.

Regarding the secondary analysis of GWAS data, genomic methods have been developed to examine
for genetic similarity between traits. The most well-known and commonly used method is linkage-
disequilibrium (LD) score regression (LDSC) (Bulik-Sullivan et al., 2015a), which examines for
genetic correlation between traits by comparing the association between test statistics of genetic
variants of each trait on their LD scores. Where LD is defined as the non-random association of alleles
at different loci, the LD score of a genetic variant is the sum of LD 7° measured with all other SNPs,
and can be calculated in a reference sample of the same ethnicity when individual genotype data are
not available for the GWAS sample (Ni et al., 2018). Previous studies have predominantly used LDSC
to estimate whole-genome correlation between schizophrenia and cardiometabolic traits, with one
recent study reporting evidence of partial genetic similarity between schizophrenia and BMI
(Bahrami et al., 2020). However, there is limited evidence for other cardiometabolic traits (Bulik-

Sullivan et al., 2015a).
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Nevertheless, the LDSC approach may have limitations. First, LDSC could be susceptible to the
‘missing heritability’ problem, where subtle population stratification may bias the effects of relatively
lower-frequency variants towards the null (Mathieson and McVean, 2012). Therefore, genetic
correlation analysis which considers the relative frequency of variants is required. Second, LDSC
estimates may be biased towards the null when opposing mechanisms exist (e.g., regions of positive
and negative correlation nullifying each other when averaged (Shi et al., 2017)). Opposing
mechanisms are likely to be relevant for a relatively heterogeneous condition like schizophrenia
(Wolfers et al., 2018). Therefore, more fine-grained locus level genetic correlation analysis is required
to identify genomic regions of interest. Third, while LDSC can provide evidence of overall genomic
similarity between traits, it cannot provide information to consider biological plausibility, or infer
potential causality. Therefore, methods that can distinguish between correlation and potential

causation, and consider biological plausibility, are required.

1.2.3 Evidence for Inflammation as a Common Biological Mechanism for Comorbid

Cardiometabolic Disorders and Schizophrenia

Emerging evidence indicates that inflammation could be relevant for the pathogenesis of
cardiometabolic disorders and schizophrenia. Higher levels of circulating inflammatory markers are
associated with schizophrenia and cardiometabolic disorders (Dandona et al., 2004, Upthegrove et
al., 2014, Khandaker et al., 2014). Particularly, schizophrenia and cardiometabolic disorders share
similar patterns of association with elevated concentrations of circulating inflammatory markers such
as C-reactive protein (CRP) and interleukin-6 (IL-6), both cross-sectionally (Upthegrove et al., 2014,
Wang et al., 2013) and longitudinally (Bowker et al., 2020, Khandaker et al., 2014).

Longitudinal research has also reported that inflammation may interact with disruption to glucose-
insulin homeostasis to increase the risk of psychotic symptoms in young adults (Perry et al., 2018).
Additionally, two independent longitudinal studies of clinical samples have shown that a combination
of adverse inflammatory and cardiometabolic indices at baseline, including CRP and triglycerides,
were associated with psychosis symptom severity and worse outcomes (Nettis et al., 2019, Osimo et

al., 2021).

Longitudinal research conducted on clinical samples has also shown that FEP patients with higher
CRP levels at baseline were more likely to develop hypertriglyceridaemia at three-month follow-up
(Russell et al., 2015). Finally, MR studies have provided similar evidence suggesting that genetically-
predicted levels of IL-6 and CRP could be causally related to cardiometabolic disorders (Georgakis
et al., 2020) and schizophrenia (Hartwig et al., 2017) separately.
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A potential shared role of inflammation in the pathogenesis of cardiometabolic disorders and
schizophrenia is biologically plausible. For example, animal model studies have shown that
neuroinflammation in the hypothalamus is associated with impaired peripheral insulin sensitivity
(Zhang et al., 2008); and central infusion of tumour necrosis factor can impair the peripheral function
of the insulin receptor (Arruda et al., 2011). Finally, MAPK pathways are associated with
inflammatory regulation, particularly regarding inflammatory pathways involving IL-6 and CRP
(Thalhamer et al., 2008). Activation of c-Jun-N-terminal Kinase, one of the MAPKSs, phosphorylates
the insulin receptor substrate, thus inhibiting insulin action at the cell membrane (Aguirre et al., 2000)

and has been associated with the development of insulin resistance (Aguirre et al., 2002).

Post-mortem brain studies have found abnormal activity of the MAPK pathways in schizophrenia,
(Kyosseva et al., 1999) and genetic modelling studies have found that genes implicated in MAPK
pathways are associated with schizophrenia (Perez-Santiago et al., 2012). Additionally, animal
models of schizophrenia have shown that maternal inflammation is associated with dose-dependent
increases in MAPK phosphorylation in the striatum (Deng et al., 2011), and that treatment with

antipsychotics can reverse these changes (Farrelly et al., 2015).

Early life factors may contribute to changes in the immune system and inflammatory pathways
leading simultaneously to increased risk of cardiometabolic disorders and schizophrenia. This idea is
consistent with the developmental programming hypothesis first proposed by British epidemiologist
David Barker. This hypothesis posits that the early developmental environment can have implications

far-ranging and far-reaching on the life-course (Barker et al., 1993).

Barker’s early studies (Barker et al., 1993, Barker and Osmond, 1987, Barker et al., 1989) involved
ecological comparisons of infant mortality rates in the early 20" century and mortality rates from
adult CVD in the latter part of the 20" century in local authority regions of England and Wales. Barker
discovered that the most impoverished, polluted, and crowded regions in the early 20" century had
the highest infant mortality rates and adult CVD mortality rates decades later despite improvements
to living conditions and pollution levels in the intervening period. Barker surmised that the surviving
infants in the early 20" century were likely to have been exposed to similar environmental conditions
to those who died, and this could help to explain the excess adult mortality decades later. Barker
proposed that there may be a critical developmental period in early life that, if disrupted, could

predispose to adult disease.

This early work has paved the way for discoveries that disruptions to prenatal and early life conditions
are strongly associated with risks of developing obesity (Entringer et al., 2012), hypertension (Ojeda
et al., 2008), metabolic syndrome (Rinaudo and Wang, 2012), T2D (Yajnik, 2010) and CVD
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(Alexander et al., 2015) in adulthood. These findings have been extended to include various

neurodevelopmental conditions, including schizophrenia (Knuesel et al., 2014).

Disruption to the early-life environment may permanently alter the function of the immune system,
and this may be a putative mechanism that could link cardiometabolic disorders and schizophrenia.
For example, poor intrauterine nutrition such as vitamin D deficiency is associated with a higher risk
of schizophrenia (Eyles et al., 2018) and CVD in later life (Sauder et al., 2019). Vitamin D holds
important roles in the development and regulation of the immune system, and intrauterine vitamin D

deficiency is associated with alterations in immune function in adulthood (Harvey et al., 2010).

Additionally, prenatal infection is associated with an increased risk of schizophrenia and CVD in the
offspring (Mazumder et al., 2010, Khandaker et al., 2012, Khandaker et al., 2013), either through
direct effects of the pathogen on the foetus after crossing the placenta or indirectly via activation of
the maternal immune system (Hsiao and Patterson, 2011). Prenatal infection is also associated with

lasting changes to offspring immune function (Pedersen et al., 2019).

Furthermore, prenatal and early-life stressful life events (SLEs) are also associated with an increased
risk of developing schizophrenia and CVD in adulthood (Kershaw et al., 2014, Malaspina et al.,
2008). Prenatal SLESs are also associated with lasting alterations to the immune system in the offspring

(Merlot et al., 2008).

Genetic influences may also lead to permanent alterations of the immune system and an increased
risk of cardiometabolic disorders and schizophrenia. For example, genetic variation in the /L-6R gene
1s associated with changes to CRP levels and a higher risk of heart disease in later life (Swerdlow et
al., 2012, Georgakis et al., 2020). The same genetic variation can influence the risk of schizophrenia
in adulthood (Hartwig et al., 2017). Genetic correlation studies have shown evidence for an overlap
between cardiometabolic and inflammatory traits (Wu et al., 2014) . They have also identified
common-causal risk genes for immune changes and increased risk of cardiometabolic disorders in
adulthood (Nath et al., 2019). Genetic studies have also identified the potential for common genetic
variants, which could simultaneously increase the risk for schizophrenia and cardiometabolic

disorders. Several are related to the immune system (So et al., 2019).

However, large-scale genetic studies examining the role of inflammation on the simultaneous risk of
comorbid cardiometabolic disorders and schizophrenia remain relatively scarce. Therefore, putative
mechanisms must at present be extrapolated largely from studies examining either the genetic overlap

of inflammation and cardiometabolic disorders, or inflammation and schizophrenia.

In summary, there is evidence from observational, genetic, and animal model studies suggesting a

biologically plausible association of inflammation as a potential biological mechanism for comorbid
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cardiometabolic disorders and schizophrenia. However, observational studies are limited by the risk
of residual confounding, and a scarcity of longitudinal research has prevented an examination of the
temporal role that inflammation might play in the comorbidity between cardiometabolic disorders
and schizophrenia. Furthermore, while genetic studies involving methods such as MR or LDSC can
help to show evidence of potential causality or genetic overlap, current studies have not examined

schizophrenia with cardiometabolic and inflammatory traits simultaneously.
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1.3 Approaches to Improving The Prediction of Cardiometabolic Comorbidity

of Schizophrenia

1.3.1 An Introduction to Prognostic Research

Having discussed the links between cardiometabolic and schizophrenia spectrum disorders, including
the potential for commmon biological mechanisms, I now turn to the clinical prediction of

cardiometabolic disorders in young people with psychosis.

At its essence, prognostic research can be distinguished from traditional observational research in that
it analyses at the individual rather than the group level (Breiman, 2001). Prognostic research deals in
estimating the accuracy with which a prediction model, usually a regression equation consisting of
weighted sums of predictors, can estimate the probability of an outcome occurring (Moons et al.,
2009). Preferably, these estimations are achieved by first fitting the regression equation in a model
development sample and then testing the equation in similar unobserved individuals separated by
geography, time, or clinical setting (Altman et al., 2009). This external validation step is fundamental
for prognostic research since risk prediction models can only be useful if they are generalisable

(Altman et al., 2009).

Replication is also central to observational research, since observational studies are usually conducted
on population sub-samples. Therefore, replication in observational findings helps to account for
inaccuracies due to sampling variability and helps to show consistency (Casella, 2002). However, in
prognostic research, the bar for generalisation is raised since it goes beyond replication that amounts
to testing the same association twice (Bzdok et al., 2021). For example, showing that an exposure is
associated with a disease in a second patient sample does not mean that this same exposure can tell

health and disease apart at the individual level (Bzdok and Ioannidis, 2019).

Prognostic research is increasingly relevant for a diverse range of disease states to improve outcomes
for those affected (Riley, 2019). For example, more people live with one or more disease or health-
impairing conditions than ever before, putting strain on already stretched resources. Consequently,
there is increasing interest in prognostic research at the level of the clinician, who is interested in the
long-term interests of the patient; the commissioner who is interested in future service planning; and

the politician who is interested in international health comparisons (Riley, 2019).

In the UK general population, risk prediction algorithms are commonly used to identify high-risk
individuals for tailored interventions from baseline demographic, lifestyle, and clinical information.
The UK National Institute for Health and Care Excellence (NICE) first published guidance on the use

of risk prediction algorithms for cardiometabolic and cardiovascular risk assessment in March 2003
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(National Institute for Health and Care Excellence., 2003). In 2010 the guidance was updated to
specify that the QRISK algorithm (Hippisley-Cox et al., 2007), developed to predict the 10-year risk
of CVD, should be used preferentially (National Institute for Health and Care Excellence., 2010).

The QRISK family of cardiometabolic risk prediction algorithms are therefore good examples of
prognosis research that are integrated into routine clinical practice. However, the positive example
set by the QRISK family of algorithms is seemingly rarely replicated. A systematic review of
cardiometabolic risk prediction algorithms in 2016 found that the literature is “overwhelmed with
models for predicting the risk of cardiovascular outcomes in the general population” (Damen et al.,
2016). The review concluded that the reporting quality of most algorithms was poor, very few
algorithms were externally validated, and almost none were assessed for their impact or uptake in

clinical practice (Damen et al., 2016).

1.3.2 Cardiometabolic Risk Prediction in Young People with Psychosis

As outlined in detail throughout this introduction, young people who have psychosis are at high risk
for developing cardiometabolic disorders. Therefore, there is a clear and crucial need for accurate
clinical tools to predict cardiometabolic risk in this population, to optimise care and improve long-
term outcomes. However, due to antipsychotic medications (see Section 1.1.3.1), a higher prevalence
of most traditionally attributed lifestyle factors compared with the general population (see Section
1.1.3.2), and the possibility of intrinsic biological or genetic links (see Section 1.2), there are likely
to be tangible differences in the type, balance, and sum of cardiometabolic risk factors which affect

young people who have psychosis compared with the general population.

Such differences are likely to result in differences in baseline cardiometabolic risk, the ideal balancing
of predictor weights, and in the choice of predictors. For example, the prescription of cardiometabolic
risk-increasing antipsychotic medications is likely to be of prime importance in predicting
cardiometabolic risk in young people with psychosis, but is unlikely to be important in the general

population since such medications are rarely prescribed in that setting.

Therefore, it is unclear whether existing cardiometabolic risk prediction algorithms developed for the
general population are likely to be suitable for use in young people who have psychosis. A recent
study of a small sample of people with chronic schizophrenia found that commonly used general
population cardiometabolic risk prediction algorithms, including QRISK, returned significantly
different risk scores when tested on the same participants (Berry et al., 2018). This calls into question
the reliability and suitability of such algorithms for relatively older people with chronic

schizophrenia, let alone young people with psychosis. Indeed, no studies have sought to examine the
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predictive accuracy of existing cardiometabolic risk prediction algorithms in young people who have
psychosis, even though current guidance recommends the routine use of the QRISK algorithm in this

population (Royal College of Psychiatrists., 2020).
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1.4 Aims of the Analytic Work Presented in this Thesis

1.4.1 Section B — Examining the Nature of Association between Cardiometabolic Disorders

and Schizophrenia

In Section B of this thesis, I have aimed to establish a more detailed understanding of the nature of
association between cardiometabolic disorders and schizophrenia. Specifically, I have sought to test
whether cardiometabolic dysfunction could be a cause or consequence of schizophrenia. A more
detailed understanding of the nature of association between cardiometabolic disorders and
schizophrenia could lead to improvements in the treatment of the cardiometabolic comorbidity of
schizophrenia and could contribute toward closing the mortality gap of 10-15 years faced by people
who have the illness (Plana-Ripoll et al., 2020).

To summarise, existing research to date has shown that: a) chronic schizophrenia is strongly
associated with a range of cardiometabolic disorders including T2D, obesity and CVD, and this leads
to a shortened life expectancy; b) FEP is associated more strongly with measures of aberrant glucose-
insulin homeostasis than other cardiometabolic traits; c¢) limited research has shown that at-risk
mental states are associated with altered cardiometabolic indices, particularly relating to glucose-

insulin homeostasis.

However, existing research is limited for three key reasons. First, current studies have predominantly
been cross-sectional or have included prevalent cases of schizophrenia spectrum disorders. Therefore,
existing research cannot appropriately test the direction of association between cardiometabolic and
psychiatric traits. Second, most existing research in the field has not appropriately addressed the risk
of confounding by sociodemographic, lifestyle or treatment factors. Third, current studies have
primarily included one-off measurements of cardiometabolic indices, overlooking the potential for
dynamic temporal changes in these markers. Longitudinal repeated measurements could provide a
more reliable measure of underlying biological mechanisms and could identify population sub-

groups.

I have aimed to address each of these limitations using data from the Avon Longitudinal Study of
Parents and Children (ALSPAC), a population-representative UK birth cohort. Using ALSPAC data,
I aimed to (1) delineate longitudinal trajectories of fasting insulin and BMI from repeated
measurements of these indices between ages 1-24 years in the total ALSPAC sample; (2) examine
the clinical and biochemical characteristics of the identified trajectories; (3) test associations of
cardiometabolic developmental trajectories with psychosis at age 24 years, before and after adjusting
for a set of key potential sociodemographic and lifestyle confounders. I chose fasting insulin and BMI

since they are markers of distinct pathways and have shown the strongest associations with early
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schizophrenia-spectrum phenotypes in young adults (Perry et al., 2018, Zammit et al., 2007). To test
the specificity of association, To test specificity of association, I also included depression as an
outcome at age 24 years since depression has also shown strong associations with cardiometabolic
traits such as T2D (Kan et al., 2016), obesity (Gibson-Smith et al., 2020) and CVD (Khandaker et al.,
2019).

1.4.2 Section C — Testing Potential Mechanisms of Association between Cardiometabolic

Disorders and Schizophrenia

In Section C of the thesis, | have aimed to examine potential mechanisms by which cardiometabolic
traits could be associated with schizophrenia, over and above the traditional attributions of
sociodemographic, lifestyle and clinical factors. [ have focused on the potential roles of shared genetic
liability and inflammation. A more detailed understanding of the mechanisms of association between
cardiometabolic disorders and schizophrenia could lead to pathophysiological insights into the
cardiometabolic comorbidity of schizophrenia and possibly schizophrenia itself. A more detailed
mechanistic understanding could help identify novel therapeutic targets for schizophrenia and its

associated cardiometabolic comorbidity.

To summarise, existing research to date has: a) shown some evidence that shared genetic liability
may be responsible for the development of comorbid cardiometabolic disorders and schizophrenia;
b) reported consistently on the potential biological role of inflammation in the pathogenesis of
cardiometabolic disorders and schizophrenia separately; c) reported heterogeneously regarding the

potential causal role of genetically-predicted cardiometabolic traits with schizophrenia.

However, existing research on the mechanisms of association between cardiometabolic disorders and
schizophrenia is limited for three key reasons. First, existing prospective research examining for
genetic overlap between cardiometabolic traits and schizophrenia has included small sample sizes
and so may be limited in statistical power. Second, existing secondary studies of GWAS datasets may
be limited due to methodological shortcomings and in its consideration of biological plausibility.
Third, while a wealth of research has accumulated on the possible pathophysiological role of
inflammation in both cardiometabolic disorders and schizophrenia, most studies have not included

schizophrenia, cardiometabolic and inflammatory traits simultaneously to test this hypothesis.

I have aimed to address each of these limitations across three studies. In the first study, I aimed to use
data from the relatively large ALSPAC birth cohort to examine whether (1) genetic predisposition
for schizophrenia was associated with insulin resistance at age 18 years, before and after adjusting

for relevant confounders; (2) genetic predisposition for T2D was associated with risk of psychosis at
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age 18 years, before and after adjusting for relevant confounders; (3) these associations may be
mediated by genetic influences on childhood inflammatory markers. In the second study, I performed
an analysis of summary data from large-scale GWAS to rigorously examine for the potential of a
common genetic basis for schizophrenia, cardiometabolic and inflammatory traits, using a range of
complementary genomic approaches which can address the key methodological shortcomings of
previous research. In the third study, I performed bidirectional and multi-variable two-sample MR
analysis of summary GWAS data to examine whether: (1) insulin resistance-related cardiometabolic
traits could have a potentially causal role in schizophrenia pathogenesis or vice versa; (2)

inflammation could be a common mechanism linking insulin resistance and schizophrenia.

1.4.3 Section D: Improving the Prediction of Cardiometabolic Risk in Schizophrenia

In Section D of the thesis, I turned to the clinical significance central to Sections A&B, which is the
prediction of cardiometabolic risk in young people with psychosis. Accurate prediction of
cardiometabolic risk in young people with psychosis is a fundamental step toward reducing its

significant short, medium, and long-term impact upon the lives of people who have schizophrenia.

To summarise existing research in the field, it is long established that the best way to address
cardiometabolic disorders is with primary prevention and intervening early to slow or prevent
progression to more distal, chronic and deadly disease endpoints (Chrysant, 2011). Given the
cardiometabolic associations of schizophrenia that I have described in the introduction and have
tested in Sections B & C of this thesis, this means intervening at the earliest possible opportunity in
young people at the onset of psychotic illness. In the general population, risk prediction algorithms
have been developed to predict an individual’s probability of developing an adverse cardiometabolic
outcome years in advance. Healthcare professionals can then use the risk estimates to tailor
interventions in the intervening period to reduce the probability of adverse cardiometabolic outcomes

occurring.

Given the tangible differences in baseline cardiometabolic risk and the differences in lifestyle and
treatment factors between people who have schizophrenia and the general population, it is unlikely
that tools developed for the general population will be suitable for the schizophrenia population.
Indeed, research has shown that existing tools developed for the general population return extremely
variable risk estimates when tested on older adults with chronic schizophrenia (Berry et al., 2018),

let alone young people at the onset of their psychotic illness.

Therefore, 1 first aimed to gain a comprehensive understanding of the current field of prognostic

research for cardiometabolic disorders. [ have done this by performing a systematic review of existing
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cardiometabolic risk prediction algorithms developed either for the general or psychiatric populations
and assessing whether any existing algorithm is likely to be suitable for young people who have
psychosis. Furthermore, I aimed to quantify the predictive performance of potentially suitable
algorithms identified from the systematic review by testing their predictive performance in a sample

of young people with or at risk of developing psychosis, using ALSPAC data.

Next, using patient data from three psychosis early intervention services (EIS), I aimed to develop
and externally validate The Psychosis Metabolic Risk Calculator (PsyMetRiC), a cardiometabolic

risk prediction algorithm developed and tailored specifically for young people with psychosis.
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SECTION B

EXAMINING THE NATURE OF ASSOCIATION
BETWEEN CARDIOMETABOLIC DISORDERS AND
SCHIZOPHRENIA
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Section B Summary

This section addresses the temporality of association between cardiometabolic disorders and
schizophrenia by analysing prospective data from the ALSPAC birth cohort (Chapter 2). This study
examined: a) whether disrupted cardiometabolic indices could be a cause or consequence of the
mental disorder by testing the direction of association between disrupted cardiometabolic indices and
psychosis; b) the specificity of association between disrupted cardiometabolic indices and psychosis;

c¢) whether confounding by sociodemographic or lifestyle factors could explain any associations.

[ used a growth mixture modelling approach to delineate developmental trajectories of fasting insulin
and BMI from 5,790 and 10,463 ALSPAC participants, respectively. Fasting insulin was measured
at four time-points (ages 9, 15, 18, and 24 years), and BMI was measured at twelve (ages 1, 2, 3, 4,
7,9,10, 11, 12, 15, 18 and 24 years). I used regression analyses to examine the sociodemographic,
biochemical, and clinical characteristics of the identified trajectories. Next, I tested longitudinal
associations between the identified trajectories and the risk of schizophrenia-spectrum and depression
phenotypes at age 24 years. I included depression as an outcome to test the specificity of association
because depression shows strong genetic (Anttila et al., 2018) and phenotypic (Buckley et al., 2009)
overlap with schizophrenia and has similar associations with cardiometabolic disorders (Firth et al.,
2019). I adjusted for a detailed range of potential confounders, including sex, ethnicity, social class,
childhood emotional and behavioural problems, and cumulative scores of sleep problems, average

calorie intake, physical activity, smoking, alcohol, and substance use in childhood/adolescence.

To the best of my knowledge, this is the first longitudinal study that is sufficiently able to examine
the direction of association between cardiometabolic traits and psychosis and the first study to model

the cardiometabolic exposures as repeated measurements through childhood/adolescence.

This study presents evidence that disruptions to glucose-insulin homeostasis may predate the onset
of psychosis. The study also presents evidence suggesting that disrupted glucose-insulin homeostasis
may be specific to psychosis. The associations persisted after adjusting for a detailed range of
potential confounders, suggesting that disrupted glucose-insulin homeostasis could be a risk factor

for psychosis.

Findings from this study have been published in JAMA Psychiatry (Perry et al., 2021b). See Appendix
B for the published manuscript.
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Chapter 2

Longitudinal Trends in Insulin Levels and BMI From Childhood
and Their Associations with Risks of Psychosis and Depression in

Young Adults in the ALSPAC Birth Cohort
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2.1 Introduction

Cardiometabolic disorders commonly co-occur with depression and schizophrenia (Firth et al., 2019),
leading to a reduced quality of life, increased healthcare costs (Naylor, 2012) and a shortened life
expectancy (Laursen et al., 2019, Plana-Ripoll et al., 2019). This comorbidity is usually attributed to
chronic lifestyle factors (e.g. physical inactivity or smoking) or the adverse effects of psychotropic
medications (Leucht et al., 2013). However, meta-analyses report altered glucose-insulin homeostasis
in relatively young drug-naive first-episode psychosis patients (Perry et al., 2016, Pillinger et al.,
2017a). Similarly, reports from population-based longitudinal studies suggest a bidirectional
association between depression and CVD (Penninx et al., 2001, van Melle et al., 2004). Together,
this evidence indicates that cardiometabolic and psychiatric conditions may share pathophysiologic

mechanisms. However, three key issues remain.

First, existing studies have predominantly included prevalent depression or psychosis cases, so cannot
appropriately test the direction of association between cardiometabolic and psychiatric phenotypes.
Second, most existing research in the field has not appropriately addressed the risk of confounding
by sociodemographic, lifestyle or treatment factors. Third, studies have primarily included one-off
measures of cardiometabolic indices, overlooking dynamic temporal changes in these markers.
Longitudinal repeated measurements could provide a more reliable assessment of underlying
homeostatic mechanisms and could identify population sub-groups. For example, aberrant trajectories
of childhood BMI are associated with adult cardiometabolic disorders (Buscot et al., 2018). While
cardiometabolic function encompasses a broad range of parameters, two pathways, insulin sensitivity
and adiposity, are of particular interest regarding psychosis and depression. Previous genetic studies
indicate distinct associations of BMI with depression (Tyrrell et al., 2019) and fasting insulin with
schizophrenia (Li et al., 2018). However, to the best of my knowledge, no studies have examined
whether fasting insulin and BMI trajectories from childhood are associated with adult psychosis and

depression.

2.2 Aims and Objectives

Using data from ALSPAC, I aimed to: (1) delineate longitudinal trajectories of fasting insulin and
BMI from repeated measurements between 1-24y; (2) examine the characteristics of identified
trajectories; (3) test associations with risks of psychosis and depression at age 24 years, in the total
sample and two sexes separately. I hypothesised that altered cardiometabolic development from

childhood would be associated with increased risks for depression and psychosis in adulthood.
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2.3 Methods

2.3.1 Description of cohort and sample

ALSPAC initially recruited 14,541 pregnant women resident in southwest England, with expected
delivery dates between 1.4.1991-31.12.1992, resulting in 14,062 live births (Boyd et al., 2013b,
Fraser et al., 2013, Northstone et al., 2019). An additional 913 participants were recruited

subsequently. See www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/ for a fully

searchable data dictionary. Data were collected and managed using REDCap (University of Bristol
(Harris et al., 2019, Harris et al., 2009)). ALSPAC Ethics and Law Committee and Local Research
Ethics Committees provided ethical approval for the study. All participants provided informed
consent. Modelling of fasting insulin and BMI trajectories were based on 5,790 and 10,463
participants, respectively. See Figure 1 of Appendix B for a flow-chart of participants in the study.
Missing exposure data was handled using full-information maximum likelihood (FIML) estimation,
as FIML estimates parameters directly using all the information that is already contained in the
incomplete data set (Dong and Peng, 2013). FIML has demonstrated to produce unbiased estimates

(Enders, 2001b) and valid model fit information (Enders, 2001a).

2.3.2 Measurement of Exposures
2.3.2.1 Fasting insulin

Fasting insulin was measured at ages 9 (n=894), 15 (n=3484); 18 (n=3286); and 24 (n=3253) years
using the ultrasensitive ELISA (Mercodia, Uppsala, Sweden) automated microparticle enzyme
immunoassay, that does not cross-react with proinsulin. Its sensitivity was 0.07 mU/L, and inter- and
intra-assay coefficients of variation were <6%. Fasting blood samples were drawn at 0900 after a 10-

hour fast, then spun and stored at -80°C. There was no evidence of freeze-thaw cycles during storage.

2.3.2.2 BMI

BMI was measured at ages 1 (n=1236); 2 (n=1036); 3 (n=1050); 4 (n=1018); 7 (n=8200); 9
(n=7633); 10 (n=7465); 11 (n=7100); 12 (n=6704); 15 (n=5415); 18 (n=5061) and 24 (n=3975)

years.
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2.3.3 Measurement of Psychiatric Qutcomes at Age 24
2.3.3.1 Schizophrenia Spectrum Qutcomes
2.3.3.1.1 Psychotic Experiences (PEs)

PEs were identified through the semi-structured Psychosis-Like Symptom Interview (PLIKSi)
conducted by trained psychology graduates and coded per the definitions in the Schedules for Clinical
Assessment in Neuropsychiatry, V2.0. The PLIKSi had good interrater (Intraclass correlation: 0.81;
95% CI, 0.68-0.89) and test-retest (0.9; 95% CI 0.83-0.95) reliability (Sullivan et al., 2020). PEs,
occurring in the last six months, covered the three main positive symptom domains: hallucinations,
delusions, and thought interference. After cross-questioning, interviewers rated PEs as absent,
suspected, or definite. I included cases of definite PEs; the comparator group was suspected/absent

PEs.

2.3.3.1.2 Psychosis At Risk Mental State (ARMS)

Cases of ARMS were identified by mapping PLIKSi data to Comprehensive Assessment of At-Risk
Mental State (CAARMSYS) criteria (Yung et al., 2005). Cases were defined as participants meeting
CAARMS criteria for attenuated psychosis (symptoms not reaching the psychosis threshold due to
intensity or frequency) or brief limited intermittent psychosis (frank psychotic symptoms that

resolved spontaneously within one week).

2.3.3.1.3 Psychotic Disorder

Cases of psychotic disorder were defined (Sullivan et al., 2020) as definite PEs that were not
attributable to sleep/fever, had occurred >once per month over the previous six months, and were
either (i) very distressing, (i1) negatively impactful on social/occupational functioning, (iii) led to
professional help-seeking. I also included participants meeting the criteria for CAARMS psychotic
disorder (threshold psychotic symptoms for >1 week).

2.3.3.1.4 Negative Psychotic Symptoms Score

Ten questions from the Community Assessment of Psychic Experiences questionnaire (Stefanis et
al., 2002) were administered covering interest, motivation, emotional reactivity, pleasure, and

sociability. Participants rated each item O=never; 1=sometimes; 2=often; and 3=always. I recoded the
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variables by coding ‘always’ and ‘often’ as 1; ‘never’ and ‘sometimes’ as 0, and then summed giving

a total score of 0-10.

2.3.3.2 Depression OQutcomes

Depression was measured using the computerised Clinical Interview Schedule—Revised (CIS-R)
(Lewis et al., 1992). The CIS-R assesses symptoms of depression occurring in the past week and
provides a diagnosis of depressive episode based on the International Statistical Classification of
Diseases (ICD), 10th Revision criteria, which I used as a binary outcome (ICD-10 codes F32.0-32.2).
I also included a CIS-R depression severity score - comprising scores for mood, thoughts, fatigue,

concentration, and sleep - as a continuous outcome.

2.3.4 Assessment of Potential Confounders
2.3.4.1 Sociodemographic Confounders

I included sex at birth, ethnicity, and paternal social class. Sex was recorded at birth (binary variable).
Ethnicity was recorded from participant-completed questionnaire data and coded as White vs. non-
White. Paternal social class was recorded from participant-completed questionnaire data based on
occupation as per the UK Office of National Statistics classification system: I, II, III non-manual, III

manual, IV, V).

2.3.4.2 Lifestyle Confounders

I included childhood emotional and behavioural problems and cumulative scores of smoking, physical
activity, alcohol use, substance use, sleep problems and average calorie intake. Childhood emotional
and behavioural problems were assessed at age 7 years via the Strength and Difficulties Questionnaire
(SDQ) (Goodman, 2001), which screens for emotional symptoms, hyperactivity/inattention and peer
relationship problems, and summed into a ‘total difficulties score’, which I used as an adjustment
variable. However, due to a considerable reduction in the available sample size when the SDQ ‘total
difficulties score’ was included as an adjustment variable, I used the k-nearest neighbours (Knn)
imputation algorithm of the VIM package (Kowarik, 2016) in R (using recommended settings) to
replace missing data for the SDQ variable only. The Knn algorithm is sensitive and robust to different
data types and performs comparatively well to other imputation methods such as multiple imputation

using chained equations (Schmitt, 2015, Liao, 2014). I used Knn imputation in place of multiple
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imputation methods since where the former produces a single imputed dataset; the latter produces
multiple imputed datasets, which would have led to significant and prohibitive computation burden

coupled with the three-step method of analysis.

Smoking (on average >1 cigarette each day) was coded as a binary variable at ages 15, 18 and 24
years from participant-completed questionnaire data and summed to create a cumulative smoking

score between ages 15-24 years of 0-3.

Physical activity (averaged over the past year) was recorded from participant-completed
questionnaire data at ages 15, 18 and 24 years as O=never, 1=less than once per month; 2=one to three
times per month; 3=one to four times per week; 4= five or more times per week. | summed the three

variables creating a cumulative physical activity score between ages 15-24 years of 0-12.

Alcohol use was coded as a binary variable (>1 alcoholic beverage on average each week) at ages 12,
15, 18 and 24 years from participant-completed questionnaire data. I summed the four variables

creating a cumulative alcohol use score between ages 12-24 years of 0-4.

Substance use was coded as a binary variable at ages 12, 15, 18 and 24 years. At age 12 years, the
self-report questionnaire asked whether the participant had ever taken any illicit substance. At ages
15 and 18 years, the self-report questionnaire asked whether the participant had taken any illicit
substance in the past year. At age 24 years, the self-report questionnaire asked how many illicit
substances the participant had taken in the past year. I recoded the age 24 variable as a binary variable,
with a score of 1 if the participant recorded taking at least one illicit substance in the past year. I
summed the four variables creating a cumulative substance use score between ages 12-24 years of 0-

4.

Sleep problems were coded as binary variables at ages 7, 8, 9 and 14 years from questionnaire data
completed by the primary caregiver and 15 years completed by the participant. At ages 7 and 9 years,
the primary caregiver was asked whether the participant had difficulty sleeping in the past year, and
at ages 8, 14 and 15 years, the same question was asked with a duration of the past month. I summed

the five variables creating a cumulative sleeping difficulties score between ages 7-15 years of 0-5.

Average calorie intake was assessed at ages 7, 10 and 13 years via a food frequency questionnaire,
sent to the primary caregiver a week before the child’s clinic appointment. The primary caregiver was
asked to record everything the child ate or drank for three days, including one weekend day. When
they brought the child to the clinic appointment, they were interviewed by a trained member of the
nutrition team to ensure the completeness of the record concerning the type of food/drink and the

amount consumed. At each age, average daily calorie (kcal) intake was recorded. I standardized (z-
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scores) the three variables and summed them together, creating a cumulative average calorie intake

score between ages 7-13 years.

2.3.5 Statistical Analysis
2.3.5.1 Delineating trajectories of fasting insulin and BMI

I standardized (z-transformed) fasting insulin and BMI separately in males and females, then
combined to delineate trajectories individually for fasting insulin and BMI using growth mixture
modelling (GMM) (Ram and Grimm, 2009). I used z-scores to measure relative change in fasting

insulin and BMI since BMI increases in all young people during early life.

GMM was run iteratively whilst increasing the number of trajectory classes to fit. Estimates of the
Bayesian Information Criterion (BIC), entropy, Vuong-Lo-Mendell-Rubin Likelihood Ratio Test
(VLMR-LRT) and Parametric Bootstrap Likelihood Ratio Test (BLRT) were recorded at each
iteration, along with a visual inspection of graphical outputs. Once achieving successful convergence,
checks were performed to rule out local solutions by replicating the estimation using the same seed
values and comparing model parameter estimates for replication. A successfully converged model
with no local solutions would have the best loglikelihood values repeated (Jung, 2007). In selecting
the optimum class solution, I aimed to choose the solution with the lowest BIC, suitable statistical
evidence (p<0.05) in VLMR-LRT and BLRT tests (suggesting the solution with n trajectories is an
improvement over the solution with n-/ trajectories), and high entropy values (close to 1.0). Also, I
aimed to include no less than 1% of the total sample in a particular trajectory (Jung, 2007) to allow

suitable statistical power in subsequent analysis.

Since the sample size for fasting insulin at age 9 years was smaller, I repeated GMM without data
from that time-point and compared the characteristics of the resultant trajectories. Analyses were
conducted using MPlus Version 8 (Muthen, 2017) and R (R Core Team, 2017). P-values were
corrected for multiple testing using the Holm-Bonferroni method (Holm, 1979) for the six psychiatric
outcomes. I estimated how participants overlapped between fasting insulin and BMI trajectories (the

most common and highest-risk) using the phi-coefficient.
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2.3.5.2 Associations of Sociodemographic, Lifestyle and Clinical Factors with Trajectories

I used the three-step method (Asparouhov, 2014) to estimate associations of sociodemographic,
lifestyle and clinical factors with trajectory membership. The three-step method allows class
separation unaffected by auxiliary variables, retains and includes information on class uncertainty,

and is robust when entropy is >0.60 (Asparouhov, 2014).

After establishing the optimum number of trajectories, the second step is to calculate classification
uncertainty, which is computed as a natural log of the average latent class probabilities for most likely
class membership and the number of observations per trajectory class. These logits are used in the
third step, including regression on predictors of trajectory class membership (using trajectory class
membership as an outcome) or regression of trajectory classes on an outcome (using trajectory class
membership as a predictor). Detailed information on the statistical methodology underpinning the

three-step method alongside data simulations are available elsewhere (Asparouhov, 2014).

Multinomial regression estimated ORs and 95% confidence intervals (CI) for the associations of
sociodemographic/lifestyle factors with fasting insulin and BMI trajectories, compared with the most
common trajectory. I considered time-invariant (sex, ethnicity, social class at birth, family history of
CVD, gestational age, birthweight, perinatal stressful life events) and time-variant (physical activity

and smoking in adolescence/early adulthood) factors.

The coding and description of sex, ethnicity, social class at birth, physical activity and smoking is
presented in Section 2.3.4. A positive family history of cardiometabolic disorders was coded from
self-report questionnaire data encompassing T2D, hypercholesterolaemia, or CVD. Stressful life
events (SLEs) were based on self-report questionnaire data comprising a summed total of up to 42
pre-specified life events affecting the mother at 18- and 36-weeks gestation and the participant at 8-
weeks and 6-months postpartum. Examples included loss of a partner or family member, loss of
employment, moving-house or financial difficulty. A complete list of the 42 SLEs is reported
elsewhere (Kingsbury et al., 2016). I compared the top tertile of summed SLE scores vs the bottom
tertile. Birthweight and gestational age were coded as continuous variables derived from
questionnaire data. ORs represent the increase in risk of trajectory membership per SD increase in

factor.

Next, I examined the clinical phenotype of trajectories at age 24 years, examining mean levels of
commonly measured clinical and biochemical factors for participants, grouped by most-likely
trajectory membership. I included measures of BMI, waist circumference (cm, assessed during
clinical assessment), FPG, HDL, LDL (all mmol/L), fasting insulin (uIU/mL), and CRP (mg/L). All

biochemical samples were taken at 0900 during clinic assessment from consenting participants,
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following a 10-hour fast (water only). I present mean values for waist circumference separately for

males and females since the reference ranges are different.

Next, I used logistic regression to estimate the association of trajectory membership with an age-
appropriate cardiometabolic outcome, metabolic syndrome at age 24 years. Metabolic syndrome was

defined using the most recent harmonized consensus definition (Alberti et al., 2009) (see Table 2).

2.3.5.3 Associations of Cardiometabolic Trajectories with Risk of Psychiatric Qutcomes

Logistic regression was used to estimate ORs and 95% Cls for binary outcomes per trajectory
compared with the most common trajectory via the three-step method. Linear regression for
continuous outcomes estimated B-coefficients and 95% Cls representing the SD increase in the risk
of outcome per trajectory. I tested associations for the total sample and then separately for males and
females, before and after adjusting for potential confounders. Regression models for negative

symptoms were additionally adjusted for depressive symptoms and vice versa.
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2.4 Results

2.4.1 Trajectories of Fasting Insulin from Childhood to Young Adulthood

Based on 5,790 participants (45.9% male), the three-trajectory solution was optimum (Table 3),
representing ‘stable average’ (Class 1; 77.8%, n=4,939), ‘minor increase’ (Class 2; 19.0%, n=693),
and ‘persistently high’ (Class 3; 3.1%, n=158) fasting insulin trajectories between ages 9-24 years
(Figure 3A). See Appendix B Figures 2A-C for trajectory means and individual values per
developmental trajectory of fasting insulin. The trajectories were similar after excluding age 9 data

(Appendix B Figure 3).

Table 3: Growth Mixture Model Fit Indices for Fasting Insulin

n Trajectories | BIC Entropy VLMR-LRT (p- | BLRT
value) (p-value)

1 76474 - - -

2 69389 0.957 0.007 <0.001

3t 66304 0.853 0.034 <0.001
4* 67872 0.750 0.253 0.042

S5* 67688 0.836 0.319 0.114

6* 67521 0.729 0.409 0.440

BIC = Bayesian Information Criterion; VLMR-LRT = Vuong-Lo-Mendell-Rubin Likelihood Ratio Test; BLRT =
Parametric Bootstrap Likelihood Ratio Test; *Contained one trajectory with <1% of sample; "Selected for further
analysis

2.4.2 Trajectories of BMI from Childhood to Young Adulthood

Based on 10,463 participants (49.0% male), the five-trajectory solution was optimum (Table 4),
representing ‘stable average’ (Class 1; 71.1%, n=8,383), ‘gradually decreasing’ (Class 2; 7.0%, 949),
‘puberty-onset minor increase’ (Class 3; 14.5%, n=668), ‘puberty-onset major increase’ (Class 4;
1.9%, n=174), and ‘persistently high’ (Class 5; 5.5%, n=289) BMI trajectories between ages 1-24
years (Figure 3B). See Appendix B Figure 4A-E for trajectory means and individual values per

trajectory of BMI.

Table 4: Growth Mixture Model Fit Indices for Body Mass Index

n Trajectories | BIC Entropy VLMR-LRT (p- | BLRT
value) (p-value)

1 223514 - - -

2 224574 0.663 <0.001 <0.001

3 222745 0.774 <0.001 <0.001

4 222142 0.768 0.029 <0.001
5t 221575 0.885 0.010 <0.001
6* 221138 0.766 0.102 0.073

BIC = Bayesian Information Criterion; VLMR-LRT = Vuong-Lo-Mendell-Rubin Likelihood Ratio Test; BLRT =
Parametric Bootstrap Likelihood Ratio Test; *Contained one trajectory with <1% of sample; "Selected for further

analysis

65




99

Figure 3: Fasting Insulin (Ages 9-24 years) and Body Mass Index (Ages 1-24 years) Trajectories

A: Fasting Insulin

urnsuy Sunse,] pouLIOJSULI] -7

-0.2
-0.4-
.06
-0.8-

3.8
3.6
3.4
3.2

2.84
2.6
2.4+
224

1.8
1.6+
1.4+
12+

0.8
0.6
0.4+
0.2

Class 3 ‘Persistently High’

Class 2 ‘Minor Increase’;

‘on

E

Class 1 ‘Stable Average’;

10.5+
1

11.54
124

12,5+
13

Age (Years)

13.5+

14

14.5

15

15.54

16

16.54

174

17.54

184

18.5

19

19.54

204

2054

211
215
22-
225
23
23.5-]
24-
245

25+

255

26



L9

B: BMI

[INg pawojsuel] -7

2.85+
2.754
2654
2.554
2.45+
2.354
2.254
2154
2.05+
1.954
1.854
1.75+
1.65
1.554
1.45+
1.354
1.25+
1.15+
1.054
0.95+
0.854
0.754
0.65+
0.55+
0.45+
0.35+
0.25+
0.15+
0.05+
-0.054
-0.154
-0.254
-0.35+
-0.454
-0.554
-0.654

—0

3 Class 4 ‘Puberty Onset — Major Increase’; 1.9%

Class 5 ‘Persistently High’;

< Class 3 ‘Puberty Onset — Minor Increase’;

Class 2 ‘Gradually Decreasing’;

C

-3

4

Class 1 ‘Stable Average’;

-0.75
o

0.5+

15+
16+
174
17.54
184
19+

15.54

T
<
AR

1
1.5
2
25
3
3.5
4
45
54
55
6
6.5
7
7.5
8
8.5
9
9.5
10
1
11.5-
12
20
224

T T
w o
N

10.5-]
1
3.5
14,51
16.5-]
18.5-]
19.5-]
2054
211
2154
2254

Age (Years)

Trajectories were delineated using growth mixture modelling at four time points for Fasting Insulin, and twelve time-points for body mass index.
Nodes in the graph represent mean z-scores for fasting insulin or BMI at each time-point for each developmental trajectory

23
23.54

24|

2454
25

25.54

26



2.4.3 Correlation between Fasting Insulin and BMI Trajectories

The ‘stable average’ fasting insulin and BMI trajectories were weakly but statistically significantly

correlated (r,=0.233, p<0.001), as were the ‘persistently high’ trajectories (1,=0.092, p<0.001).

2.4.4 Associations of Sociodemographic, Lifestyle and Clinical Factors with Trajectories
2.4.4.1 Fasting Insulin

Both deviating fasting insulin trajectories were associated with lower social class, family history of
cardiometabolic disease, lower physical activity and smoking in adolescence/early adulthood. Lower
birthweight and more perinatal stressful life events were associated with the ‘persistently high’
trajectory (Table 5), which also had mean fasting insulin, HDL, triglycerides, and CRP levels outside
of UK reference ranges at age 24 years (Table 6). Deviating fasting insulin trajectories were
associated with metabolic syndrome at age 24 years (adjusted OR for the ‘persistently high’
trajectory=9.21; 95% C.1., 3.77-20.15) (see Appendix B Table 1).

Table 5: Odds Ratios for Multinomial Logistic Regression Analyses Examining Predictors of
Membership of Fasting Insulin Developmental Trajectories

Variable Odds Ratio (95% CI)

Class 1° Class 2 Class 3

‘Stable Average’ | ‘Minor Increase’ ‘Persistently High’
Female Sex 1.00 1.37 (1.10-2.04) 1.10 (0.89-1.23)
Non-White British Ethnicity 1.00 1.22 (0.89-1.62) 1.21 (0.91-1.73)
Lower Social Class 1.00 1.05 (1.00-1.09) 1.89 (1.35-2.50)
FHx Cardiometabolic Disorders 1.00 1.10 (0.92-1.41) 1.66 (1.14-1.69)
Gestational Age 1.00 1.10 (0.95-1.31) 1.21 (0.90-1.44)
Birthweight 1.00 0.89 (0.60-1.10) 0.76 (0.44-0.92)
Stressful Life Events (Top tertile) 1.00 1.21 (0.55-4.32) 2.06 (1.43-4.31)
Low Exercise (age 15) 1.00 1.13 (1.06-1.31) 1.16 (1.02-1.41)
Smoking (age 15) 1.00 1.45 (1.03-1.76) 1.10 (0.86-1.55)
Low Exercise (age 18) 1.00 1.45 (1.14-1.89) 1.54 (1.06-2.22)
Smoking (age 18) 1.00 1.39 (1.07-1.43) 1.40 (1.10-1.78)

aReference group
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Table 6: Anthropometric and Biochemical Measures for Different Fasting Insulin Trajectories

Measure, Mean (SD) Trajectory

Class 1 (Stable Class 2 (Minor Class 3

Average) Increase) (Persistently High)
Fasting Insulin (uI[U/mL) 6.93 (2.70) 8.57 (1.21)* 13.65 (4.32)*
Body Mass Index (kg/m?) 22.12 (3.76) 26.18 (4.23)* 24.76 (7.74)
Waist Circumference, Males (cm) 84.58 (8.79) 99.56 (15.34) 94.45 (16.72)
Waist Circumference, Females (cm) 75.62 (9.44) 91.41 (14.14)* 89.20 (18.14)*
Fasting Plasma Glucose (mmol/L) 5.24 (0.67) 5.49 (0.65) 5.78 (0.78)
HDL Cholesterol (mmol/L) 1.60 (0.41) 1.32 (0.38)* 1.31 (0.46)*
Triglycerides (mmol/L) 0.89 (0.38) 1.31 (0.88) 1.75 (1.01)*
LDL Cholesterol (mmol/mL) 2.39(0.73) 2.71 (0.80) 2.73 (0.89)
C-Reactive Protein (mg/L) 1.85(3.98) 2.19 (3.24) 3.40 (4.21)*

*indicates outside of UK. reference range: Body Mass Index=18.5-24.9kg/m? ; Fasting Insulin=3-8ulU/mL; Waist
Circumference (males)=<102cm; Waist Circumference (females)=<88cm; Fasting Plasma Glucose=<7mmol/L;
HDL=>1.35mmol/L; Triglycerides=<1.70mmol/L; LDL=<3.36mmol/L; CRP<3mg/L.

2.4.4.2 BMI

Deviating BMI trajectories were associated with lower social class, family history of cardiometabolic
disease, more perinatal stressful life-events, lower physical activity and smoking in adolescence/early
adulthood. Higher birthweight was associated with the ‘gradually decreasing’ and ‘persistently high’
trajectories, whereas lower birthweight was weakly associated with both ‘puberty-onset’ increase
trajectories (Table 7). Deviating BMI trajectories were associated with mean values of fasting insulin,
waist circumference, HDL, and CRP outside of UK reference ranges at age 24 years (Table 8). All
deviating BMI trajectories were associated with metabolic syndrome at age 24 years (adjusted OR

for the ‘persistently high’ trajectory=10.62; 95% C.1., 5.89-19.13) (see Appendix B Table 1).
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Table 7: Odds Ratios for Multinomial Regression Analyses Examining Predictors
Membership of BMI Developmental Trajectories

of

Variable Odds Ratio (95% CI)

Class 1* Class 2 Class 3 Class 4 Class 5

‘Stable ‘Gradually ‘Puberty Onset — | ‘Puberty Onset — | ‘Persistently

Average’ | Decreasing’ Minor Increase’ | Major Increase’ High’
Female Sex 1.00 1.10 (0.90-1.21) | 1.35(1.12-1.56) 1.10 (0.91-1.26) 0.89 (0.70-1.13)
Non-White British Ethnicity 1.00 1.76 (1.16-2.65) | 1.09 (0.61-1.93) 1.12 (0.35-3.56) 0.62 (0.20-1.96)
Lower Social Class 1.00 1.08 (0.99-1.17) | 1.11 (1.01-1.21) 1.13 (1.05-1.22) 1.26 (1.11-1.44)
FHx Cardiometabolic Disorders | 1.00 1.19 (0.92-1.55) | 1.48 (1.20-1.84) 2.43 (1.35-4.37) 2.69 (1.82-3.98)
Gestational Age 1.00 0.98 (0.92-1.05) | 1.00 (0.94-1.07) 1.12 (0.43-2.95) 1.12 (0.87-1.32)
Birthweight 1.00 1.30 (1.18-1.43) | 0.99 (0.93-1.07) 0.90 (0.83-1.15) 1.44 (1.25-1.65)
Stressful Life Events 1.00 0.84 (0.68-1.04) | 1.11 (0.96-1.30) 1.44 (1.01-2.07) 1.89 (1.44-3.21)
Low Exercise (age 15) 1.00 1.06 (0.84-1.32 1.38 (1.13-1.69) 1.90 (1.08-3.35) 1.36 (0.87-2.12)
Smoking (age 15) 1.00 1.22 (0.75-2.03) | 1.62 (1.17-2.25) 1.14 (0.57-3.67) 1.20 (0.72-2.01)
Low Exercise (age 18) 1.00 0.78 (0.56-0.95) | 1.31 (1.04-1.65) 1.50 (1.01-2.90) 0.94 (0.65-1.36)
Smoking (age 18) 1.00 1.15(0.71-1.86) | 1.63 (1.12-2.38) 2.37 (0.99-5.72) 1.44 (0.73-2.84)

reference group

Table 8: Anthropometric
Trajectories

and Biochemical Characteristics of Participants included in BMI

Measure, Mean (SD) Trajectory
Class 1 Class 2 Class 3 Class 4 Class 5
(Stable (Gradually (Puberty Onset — | (Puberty Onset— | (Persistently
Average) Decreasing) Minor Increase) | Major Increase) | High)
Body Mass Index 23.60 (3.46) | 25.32 (3.85)* | 27.25 (4.47)* 33.67 (8.68)* 31.55 (5.66)*
Fasting Insulin (uIU/mL) 6.42 (2.12) 6.45 (3.39) 7.32 (4.44) 8.44 (5.43)* 8.21 (3.19)*
Waist Circumference Males (cm) 83.50 (8.45) | 86.40(10.36) | 100.67 (11.60) 121.46 (6.70)* 111.77 (12.29)*
Waist Circumference Females (cm) | 75.62 (9.12) | 78.80(10.15) | 87.12 (11.71) 99.76 (19.17)* 94.97 (14.26)*
Fasting Plasma Glucose (mmol/L) 5.28 (0.70) 5.24 (0.49) 5.44 (0.59) 5.36 (0.51) 5.49 (0.97)
HDL Cholesterol, (mmol/L) 1.57 (0.42) 1.54 (0.42) 1.45 (0.32)* 1.32 (0.21)* 1.35 (0.46)*
Triglycerides (mmol/L) 0.94 (0.50) 0.93 (0.47) 1.34 (0.82) 1.44 (0.61) 1.29 (0.77)
LDL Cholesterol (mmol/mL) 2.41(0.75) 2.37(0.73) 2.48 (0.80) 2.77 (0.62) 2.79 (0.87)
C-Reactive Protein (mg/L) 2.08 (6.93) 2.11(3.99) 3.01 (4.49)* 4.76 (3.76)* 4.03 (4.20)*

*indicates outside of UK. reference range: Body Mass Index=18.5-24.9kg/m? ; Fasting Insulin=3-8ulU/mL; Waist
Circumference (males)=<102cm; Waist Circumference (females)=<88cm; Fasting Plasma Glucose=<7mmol/L;
HDL=>1.35mmol/L; Triglycerides=<1.70mmol/L; LDL=<3.36mmol/L; CRP<3mg/L;
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2.4.5 Associations of Cardiometabolic Trajectories with Psychiatric Outcomes at Age 24
2.4.5.1 Fasting Insulin

The ‘persistently high’ fasting insulin trajectory was associated with psychosis ARMS (adjusted
OR=5.01; 95% C.1., 1.76-13.19), psychotic disorder (adjusted OR=3.22; 95% C.I., 1.29-8.02), and
weakly associated with negative symptoms (adjusted f=0.07; 95% C.1., 0.01-0.13) at age 24 years.

Fasting insulin trajectories were not associated with depression (Figure 4; Table 9 & Table 10).

Figure 4: Associations of Fasting Insulin Trajectories with Binary Psychiatric Outcomes at Age
24 Years
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Forest plots denote adjusted odds ratios (points) and 95% ClIs (whiskers) showing associations of fasting insulin
trajectories with risk of binary psychosis and depression outcomes at age 24, after adjusting for sex, ethnicity, social class,
childhood emotional and behavioural problems, cumulative smoking, physical activity, alcohol and substance use, sleep
problems and calorie intake.
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Table 9: Odds Ratios (95% Cls) for Associations of Fasting Insulin Trajectories with Binary
Psychiatric Outcomes at Age 24 Years

Trajectory/Outcome Sample Odds Ratio (95% C.I.) P-
value®
Unadjusted Adjusted for sex, ethnicity, social class,

SDQ (7y), cumulative smoking,

physical activity, alcohol and substance

use, sleep problems and calorie intake
Definite PEs at Age 24
Class 1 — ‘Stable Average’ 4,939 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 693 1.48 (0.98-2.24) 1.31 (0.56-3.35) >0.999
Class 3 — ‘Persistently High’ 158 1.88 (1.05-3.60) 1.50 (0.98-2.41) 0.329
Psychosis ‘At Risk Mental State’ at Age 24
Class 1 — ‘Stable Average’ 4,939 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 693 1.59 (0.20-8.02) 1.36 (0.32-5.76) >0.999
Class 3 — ‘Persistently High’ 158 6.33 (1.97-20.30) 5.01 (1.76-13.19) 0.006
Psychotic Disorder at Age 24
Class 1 — ‘Stable Average’ 4,939 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 693 1.85 (0.70-4.88) 1.23 (0.55-2.74) >0.999
Class 3 — ‘Persistently High’ 158 4.74 (1.67-13.42) 3.22 (1.29-8.02) 0.048
Depressive Episode at Age 24
Class 1 — ‘Stable Average’ 4,939 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 693 1.26 (0.73-2.67) 1.36 (0.57-2.81) 0.883
Class 3 — ‘Persistently High’ 158 1.31 (0.81-4.32) 1.38 (0.75-2.54) 0.686
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Table 10: Beta Coefficients (95% Cls) for Associations of Fasting Insulin Trajectories with
Continuous Psychiatric Outcomes At Age 24 Years

Trajectory Sample Beta Coefficient (95% C.1.) D-
value®
Unadjusted Adjusted for sex, ethnicity, social class,

SDQ (7y), cumulative smoking, physical

activity, alcohol and substance use, sleep,

calorie intake, negative/depressive

symptoms
Depressive Symptom Score at Age 24
Class 1 — ‘Stable Average’ 4,939 0.00 [reference] 0.00 [reference] -
Class 2 — “‘Minor Increase’ 693 0.03 (-0.02, 0.08) 0.02 (-0.04. 0.08) >0.999
Class 3 — ‘Persistently High’ | 158 0.08 (0.04, 0.13) 0.05 (-0.03,0.13) 0.669
Negative Psychotic Symptom Score at Age 24
Class 1 — ‘Stable Average’ 4,939 0.00 [reference] 0.00 [reference] -
Class 2 — “Minor Increase’ 693 0.08 (-0.01,0.16) 0.05 (0.01,0.09) 0.192
Class 3 — ‘Persistently High’ | 158 0.18 (0.10,0.26) 0.07 (0.01, 0.13) 0.049

ap-values adjusted for multiple testing using Holm-Bonferroni method

2.4.5.2 BMI

The ‘puberty-onset major increase’ trajectory was associated with higher risk of depressive episode
(adjusted OR=4.46; 95% C.I., 2.38-9.87) and depressive symptoms (adjusted 3=0.08; 95% C.I., 0.03-
0.14) at age 24 years. The ‘puberty-onset minor increase’ trajectory was weakly associated with
depressive symptoms at 24y (adjusted =0.06; 95% C.I., 0.01-0.11). BMI trajectories were not
associated with psychosis outcomes (Figure 5; Table 11 & Table 12).
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Figure 5: Associations of BMI Trajectories with Binary Psychiatric Outcomes At Age 24 Years
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Forest plots denote adjusted odds ratios (points) and 95% Cls (whiskers) showing associations of BMI trajectories with
risk of binary psychosis and depression outcomes at age 24, after adjusting for sex, ethnicity, social class, childhood
emotional and behavioural problems, cumulative smoking, physical activity, alcohol and substance use, sleep problems
and calorie intake.
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Table 11: Odds Ratios (95% ClIs) for Associations of BMI Trajectories with Binary Psychiatric
Outcomes at Age 24 Years

Trajectory/ Outcome Sample Odds Ratio (95% C.I.) P-
value®
Unadjusted Adjusted for sex, ethnicity,

social class, SDQ (7y),

cumulative smoking, physical

activity, alcohol and substance

use, sleep problems and calorie

intake
Definite PEs at Age 24
Class 1 — ‘Stable Average’ 8,383 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 949 1.43 (0.82-1.96) 1.26 (0.79-1.99) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 668 1.66 (0.87-2.55) 1.22 (0.79-1.89) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 174 3.56 (0.87-11.54) 1.97 (0.56-6.92) >0.999
Class 5 — ‘Persistently High 289 3.21(1.01-9.11) 2.44 (1.00-5.65) 0.367
Psychosis ‘At Risk Mental State’
Class 1 — ‘Stable Average’ 8,383 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 949 0.49 (0.10-3.21) 0.71 (0.19-2.89) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 668 1.12 (0.23-5.43) 1.09 (0.26-4.58) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 174 1.32 (0.10-13.11) 1.14 (0.15-12.22) >0.999
Class 5 — ‘Persistently High 289 1.55(0.44-3.21) 1.29 (0.18-10.29) >0.999
Psychotic Disorder at Age 24
Class 1 — ‘Stable Average’ 8,383 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 949 0.44 (0.21-2.03) 0.52 (0.11-2.46) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 668 1.97 (0.60-3.46) 1.57 (0.64-3.85) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 174 2.14 (0.65-6.21) 1.98 (0.56-7.79) >0.999
Class 5 — ‘Persistently High 289 3.11 (0.53-13.22) 1.87 (0.44-8.06) >0.999
Depressive Episode at Age 24
Class 1 — ‘Stable Average’ 8,383 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 949 1.33 (0.77-1.88) 1.18 (0.75-1.92) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 668 1.69 (0.90-3.21) 1.40 (0.81-2.55) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 174 8.91 (4.21-17.12) 4.46 (2.38-9.87) 0.006
Class 5 — ‘Persistently High 289 3.01 (0.91-7.59) 2.07 (0.64-6.62) >0.999

ap-values adjusted for multiple testing using Holm-Bonferroni method
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Table 12: Beta Coefficients (95% ClIs) for Associations of Body Mass Index Trajectories with
Continuous Psychiatric Outcomes at Age 24 Years

Trajectory Sample | Beta Coefficient (95% C.1.) p-value®
Unadjusted Adjusted for sex, ethnicity, social

class, SDQ (7y), cumulative

smoking, physical activity,

alcohol and substance use, sleep,

calorie intake

negative/depressive symptoms
Depressive Symptom Score at Age 24
Class 1 — ‘Stable Average’ 8,383 0.00 [reference] 0.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 949 0.02 (-0.06, 0.10) | 0.01 (-0.05, 0.08) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 668 0.14 (0.08, 0.20) 0.06 (0.01, 0.11) 0.124
Class 4 — ‘Puberty Onset — Major Increase’ | 174 0.20 (0.10, 0.31) 0.08 (0.03, 0.14) 0.033
Class 5 — ‘Persistently High 289 0.10 (-0.09, 0.21) | 0.02 (-0.08, 0.13) >0.999
Negative Psychotic Symptom Score at Age 24
Class 1 — ‘Stable Average’ 8,383 0.00 [reference] 0.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 949 0.07 (-0.03, 0.16) | 0.04 (-0.05, 0.13) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 668 0.11 (0.05, 0.17) 0.03 (-0.05, 0.11) 0.796
Class 4 — ‘Puberty Onset — Major Increase’ | 174 0.18 (0.11, 0.24) 0.06 (-0.03, 0.16) 0.514
Class 5 — ‘Persistently High 289 0.13(0.02,0.24) | 0.09 (-0.04, 0.23) >0.999

ap-values adjusted for multiple testing using Holm-Bonferroni method

2.4.6 Sex Stratified Associations of Fasting Insulin and BMI Trajectories with Risks for

Psychosis and Depression

For fasting insulin, the pattern of association with risks for psychiatric outcomes in sex stratified
analysis was similar to the primary analysis (Figure 6; Table 13; Appendix B Table 2). For BMI,
point estimates for depression for both ‘puberty-onset’ increase trajectories were larger in females.
There was no significant association of BMI trajectories with psychosis outcomes (Figure 7; Table

14; Appendix B Table 3).
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Figure 6: Sex-Stratified Associations of Fasting Insulin Trajectories with Binary Psychiatric

Outcomes at Age 24 Years
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Forest plots denote adjusted odds ratios (points) and 95% Cls (whiskers) showing associations of fasting insulin
trajectories with risk of binary psychosis and depression outcomes at age 24 years in males and females separately, after
adjusting for sex, ethnicity, social class, childhood emotional and behavioural problems, cumulative smoking, physical
activity, alcohol and substance use, sleep problems and calorie intake.
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Table 13: Odds Ratios for Sex-Stratified Associations of Fasting Insulin Trajectories
Binary Psychiatric Outcomes at Age 24 Years

Trajectory Sample Odds Ratio (95% C.1.) D-
value?
Unadjusted Adjusted for sex, ethnicity,
social class, SDQ (7y),
cumulative smoking,
physical activity, alcohol and
substance use, sleep, and
calorie intake
Definite PEs at Age 24 (Males)
Class 1 — ‘Stable Average’ 2,319 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 278 1.51 (0.91-2.54) 1.01 (0.55-1.83) >0.999
Class 3 — ‘Persistently High’ | 66 1.91 (1.02-5.03) 1.82 (0.67-4.82) 0.472
Definite PEs at Age 24 (Females)
Class 1 — ‘Stable Average’ 2,620 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 415 1.32(1.11-1.89) 1.19 (0.66-2.10) >0.999
Class 3 — ‘Persistently High’ | 92 1.65 (1.12-2.01) 1.22 (0.70-2.15) >0.999
Psychosis At Risk Mental State at Age 24 (Males)
Class 1 — ‘Stable Average’ 2,319 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 278 1.65 (0.42-5.30) 1.44 (0.15-13.92) >0.999
Class 3 — ‘Persistently High’ | 66 8.32 (3.13-16.49) | 4.48 (1.84-10.91) 0.006
Psychosis At Risk Mental State at Age 24 (Females)
Class 1 — ‘Stable Average’ 2,620 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 415 1.39 (0.29-5.57) 1.06 (0.22-5.11) >0.999
Class 3 — ‘Persistently High’ | 92 4.84 (0.47-31.18) | 2.99 (0.46-18.37) 0.842
Psychotic Disorder at Age 24 (Males)
Class 1 — ‘Stable Average’ 2,319 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 278 1.55(0.61-4.31) 1.26 (0.49-3.04) >0.999
Class 3 — ‘Persistently High’ | 66 5.79 (1.24-27.09) | 3.94 (1.37-11.34) 0.046
Psychotic Disorder at Age 24 (Females)
Class 1 — ‘Stable Average’ 2,620 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 415 1.45 (0.63-3.35) 1.42 (0.60-3.31) >0.999
Class 3 — ‘Persistently High’ | 92 3.29 (0.53-9.86) 2.50(0.57-11.09) >0.999
Depressive Episode at Age 24 (Males)
Class 1 — ‘Stable Average’ 2,319 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 278 1.80 (1.04-3.11) 1.33 (0.82-2.24) >0.999
Class 3 — ‘Persistently High’ | 66 0.97 (0.23-4.13) 0.95 (0.22-4.12) >0.999
Depressive Episode at Age 24 (Females)
Class 1 — ‘Stable Average’ 2,620 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Minor Increase’ 415 1.23 (0.88-1.73) 1.17 (0.83-1.66) >0.999
Class 3 — ‘Persistently High’ | 92 1.61 (0.82-3.14) 1.50 (0.76-2.96) >0.999

ap-values adjusted for multiple testing using Holm-Bonferroni method
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Figure 7: Sex-Stratified Associations of BMI Trajectories with Binary Psychiatric Outcomes at
Age 24 Years
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Forest plots denote adjusted odds ratios (points) and 95% Cls (whiskers) showing associations of BMI trajectories with
risk of binary psychosis and depression outcomes at age 24 years in males and females separately, after adjusting for sex,
ethnicity, social class, childhood emotional and behavioural problems, cumulative smoking, physical activity, alcohol and
substance use, sleep problems and calorie intake.
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Table 14: Odds Ratios for Sex-Stratified Associations of Body Mass Index Trajectories with
Binary Psychiatric Outcomes at Age 24 Years

Trajectory Sample Odds Ratio (95% C.I.) p-value®
Unadjusted Adjusted for sex, ethnicity, social class,

SDQ (7y), cumulative smoking,

physical activity, alcohol and substance

use, sleep, and calorie intake
Definite PEs at Age 24 (Males)
Class 1 — ‘Stable Average’ 4,164 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 443 1.22 (0.46-1.87) 0.76 (0.37-1.55) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 311 1.22 (0.63-2.36) 0.62 (0.19-1.98) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 105 5.87 (0.53-9.21) 3.22 (0.74-12.55) >0.999
Class 5 — ‘Persistently High 107 1.47 (0.43-4.98) 1.28 (0.65-2.44) >0.999
Definite PEs at Age 24 (Females)
Class 1 — ‘Stable Average’ 4,219 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 506 1.14 (0.74-1.75) 1.48 (0.92-2.38) 0.501
Class 3 — ‘Puberty Onset — Minor Increase’ | 357 1.90 (1.11-3.26) 1.65 (0.99-2.62) 0.328
Class 4 — ‘Puberty Onset — Major Increase’ | 184 1.54 (0.65-3.66) 0.81 (0.24-2.77) 1.000
Class 5 — ‘Persistently High 67 2.32(0.88-6.13) 1.79 (0.90-3.49) 0.182
Psychosis At Risk Mental State at Age 24 (Males)
Class 1 — ‘Stable Average’ 4,164 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 443 0.60 (0.44-2.12) 0.73 (0.31-1.84) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 311 1.51 (0.55-4.64) 1.22 (0.61-2.39) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 105 3.13(1.01-5.12) 2.21 (0.81-5.65) >0.999
Class 5 — ‘Persistently High 107 1.69 (0.60-2.01) 1.31 (0.39-4.87) >0.999
Psychosis At Risk Mental State at Age 24 (Females)
Class 1 — ‘Stable Average’ 4,219 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 506 0.61 (0.14-2.14) 0.68 (0.19-2.89) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 357 0.76 (0.76-3.21) 0.86 (0.32-2.62) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 184 1.81 (0.25-6.43) 1.41 (0.28-5.43) >0.999
Class 5 — ‘Persistently High 67 1.21 (0.77-3.21) 1.09 (0.31-4.88) >0.999
Psychotic Disorder at Age 24 (Male)
Class 1 — ‘Stable Average’ 4,164 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 443 0.76 (0.54-2.01) 1.08 (0.23-5.01) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 311 1.02 (0.65-1.43) 0.92 (0.21-4.76) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 105 2.12 (0.91-4.12) 1.62 (0.71-3.98) >0.999
Class 5 — ‘Persistently High 107 3.52 (0.44-15.09) | 2.25(0.62-10.12) >0.999
Psychotic Disorder at Age 24 (Female)
Class 1 — ‘Stable Average’ 4,219 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 506 0.40 (0.09-1.21) 0.60 (0.10-3.87) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 357 3.16 (1.29-5.12) 1.88 (0.70-5.06) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 184 1.31 (0.65-3.21) 2.60 (0.66-8.21) >0.999
Class 5 — ‘Persistently High 67 1.21 (0.40-6.21) 2.74 (0.62-12.22) >0.999
Depressive Episode at Age 24 (Males)
Class 1 — ‘Stable Average’ 4,164 1.00 [reference] 1.00 [reference] -
Class 2 — ‘Gradually Decreasing’ 443 1.31 (0.71-2.44) 1.31 (0.67-2.55) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 311 1.62 (0.83-3.17) 1.60 (0.76-3.36) >0.999
Class 4 — ‘Puberty Onset — Major Increase’ | 105 3.21(0.67-8.21) 2.23(0.41-12.72) >0.999
Class 5 — ‘Persistently High 107 1.31 (0.30-5.67) 1.77 (0.65-4.39) >0.999
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Depressive Episode at Age 24 (Females)

Class 1 — ‘Stable Average’ 4,219 1.00 [reference] 1.00 [reference] -

Class 2 — ‘Gradually Decreasing’ 506 1.20 (0.82-1.85) 1.35(0.90-2.01) >0.999
Class 3 — ‘Puberty Onset — Minor Increase’ | 357 1.91 (1.15-2.91) 1.52 (1.08-2.29) 0.047
Class 4 — ‘Puberty Onset — Major Increase’ | 184 5.21(2.09-8.21) 6.28 (2.14-18.44) 0.006
Class 5 — ‘Persistently High 67 1.73 (0.86-3.51) 1.94 (0.83-4.67) >0.999

ap-values adjusted for multiple testing using Holm-Bonferroni method
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2.5 Discussion

I delineated fasting insulin and BMI trajectories from early life using prospective repeated
measurements in a large population-representative birth cohort and report distinct associations with
adult schizophrenia-spectrum and depression outcomes. After adjusting for several relevant
confounders, I found that persistently high fasting insulin from mid-childhood was associated with
increased risk of schizophrenia-spectrum outcomes at 24 years, while BMI increases around the age
of puberty onset were associated with depression at 24 years. Associations of fasting insulin and BMI
trajectories with cardiometabolic risk factors such as social class, ethnicity, smoking and physical
activity alongside adult metabolic syndrome provides face validity to the identified trajectories.
Although the last data point for fasting insulin/BMI overlapped with outcome assessment, trajectories
were differentiated by mid-childhood, suggesting a temporal relationship between exposure and
outcome. Evidence for the association of ‘puberty-onset’ BMI increase and adult depression remained
after adjusting for childhood emotional and behavioural problems, suggesting that reverse causality
may not fully explain this finding. Whilst the same adjustment may be less capable of ruling out
reverse causality for associations involving schizophrenia-spectrum outcomes; it is improbable that
many participants had experienced psychosis before age 9 years since the prevalence of pre-pubertal
psychosis is rare (McClellan and Werry, 1997). Therefore, reverse causality for associations with

schizophrenia-spectrum outcomes is rare.

I found consistent evidence for an association between fasting insulin trajectories and schizophrenia-
spectrum outcomes. Effect sizes were largest in the ‘persistently high’ trajectory, consistent with a
dose-response relationship, and point estimates were larger in more clinically relevant outcomes. The
findings complement meta-analyses reporting altered glucose-insulin homeostasis in FEP (Perry et
al., 2016, Pillinger et al., 2017a). Moreover, I show that disruptions to glucose-insulin homeostasis
detectable at FEP may begin much earlier in life. The point estimates partly attenuated after
adjustment for confounders, so malleable lifestyle factors such as smoking, physical activity and diet
must remain crucial targets for reducing the risk of incident cardiometabolic disorders in young
people with psychosis. I also found that participants classified into the ‘persistently high’ fasting
insulin trajectory, who had the highest risk of schizophrenia-spectrum outcomes, had mean BMI and
FPG values within the reference range at age 24 years. Therefore, these individuals may be ‘hiding
in plain sight’ in EIS since commonly measured physical indices may not identify them.
Consequently, careful assessment and clinical considerations are needed to minimise the risk of

cardiometabolic disorders in these individuals.
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The findings suggest that altered glucose-insulin homeostasis could be a shared mechanism for
schizophrenia and T2D, which could be genetic and/or environmental in origin. People with comorbid
schizophrenia and T2D have a higher genetic predisposition to both disorders than controls
(Hackinger et al., 2018), and genetic predisposition for schizophrenia is associated with insulin
resistance in schizophrenia patients (Tomasik et al., 2019). Additionally, I found that the highest risks
for schizophrenia-spectrum outcomes were found in the fasting insulin trajectory associated with
lower birth weight and more perinatal stressful life events. I found similar patterns of association in
BMI trajectories which were associated with depression. These findings are consistent with the
developmental programming hypothesis (Barker et al., 1993), positing that disruption to early-life

development can have wide-ranging and far-reaching impacts on adult health.

The findings regarding BMI trajectories with depression at age 24 years are in line with meta-analyses
(Gariepy et al., 2010, Luppino et al., 2010) suggesting an association between BMI and risk of
depression. Similar trajectories of BMI have previously been linked with adult T2D (Zhang et al.,
2019), obesity (Rolland-Cachera and Peneau, 2013) and CVD (Barker et al., 2005). The character
and composition of BMI trajectories I identified are consistent with previous studies, although the

length of follow-up was longer than most previous studies (Mattsson et al., 2019).

The findings provide further insights into the link between BMI and depression (Luppino et al., 2010),
showing that puberty-onset increases in BMI specifically are associated with risk of adult depression.
This finding, together with the lack of evidence for an association between persistently high BMI and
depression, indicates that BMI might be a risk indicator for depression rather than a risk factor. This
is because individuals in the ‘persistently-high” BMI trajectory would likely have been exposed to
the “largest dose” of BMI. Therefore, if BMI were the risk factor, one would have expected the largest
effect size for depression in that trajectory. Consequently, environmental and/or genetic factors
influencing BMI during puberty are likely to be important risk factors for depression. For instance,
social stressors such as bullying may predispose to altered eating behaviours and increased risk of
depression in adolescents (Lee and Vaillancourt, 2018). Additionally, deviating childhood BMI
trajectories have previously been associated with a greater risk of adolescent/adult eating disorders

(Yilmaz et al., 2019), which are highly comorbid with depression (Welch et al., 2016).

Also, effects of the female sex hormone oestrogen may be relevant since the associations of puberty-
onset BMI increases and depression appeared stronger in females. Changes in oestrogen levels are
associated with depressive symptoms throughout the life course, including pregnancy (Schiller et al.,
2015), menopause (Dalal and Agarwal, 2015) and puberty (Soares and Zitek, 2008). Oestrogen is
associated with obesity (Li et al., 2017a) and may explain the genetic correlation of age at menarche

with adult obesity (Bell et al., 2018) and depression (Lewis et al., 2018). Further research is needed
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to identify factors influencing pubertal BMI increases, as they may represent critical preventative

targets for depression.

I did not find consistent evidence for associations of fasting insulin trajectories with depression or of
BMI trajectories with schizophrenia-spectrum outcomes. Previous research has reported mixed
findings regarding the association between insulin resistance and depression in young adults
(Timonen et al., 2006, Perry et al., 2020b). However, some estimates for the associations of BMI
trajectories with schizophrenia-spectrum outcomes in the analyses had wide confidence intervals,
possibly due to sample size. These particular findings require replication in larger samples of people

with psychosis.

Strengths of the study include a longitudinal design with repeated measurements of fasting insulin
and BMI between ages 1-24 years in a relatively large sample, enabling a detailed examination of
dynamic cardiometabolic change from childhood to early adulthood. I included several relevant
schizophrenia-spectrum and depression outcomes, which allowed me to examine for specificity and

a biological gradient of evidence.

Limitations of the study include missing data. Whilst I used a robust method to handle missing data,
FIML may be biased in instances where data are ‘missing not at random’ (Cham et al., 2017).
However, the risk of bias in FIML is no greater than the bias associated with traditional complete-
case methods (Little et al., 2014), and FIML permitted a larger sample size and therefore increased
statistical power. Nevertheless, missing psychiatric outcome data may have affected the results.
Furthermore, residual confounding could still be an issue. For example, I could not account for
psychological stress since data on cortisol levels were available only at age 9 years, in a small sub-
section of the cohort. In addition, the confidence intervals were relatively wide for the sex-stratified
analysis, likely due to reduced statistical power. Therefore, replication of the work in larger samples
is required. Finally, the ALSPAC dataset does not include an ICD diagnosis of schizophrenia as an
outcome. However, the psychotic disorder outcome would likely meet the threshold for clinical

intervention, and all the psychosis outcomes I included lie on the schizophrenia continuum.

In summary, I report that the cardiometabolic comorbidity of psychosis and depression may have
distinct early-life origins. Disrupted glucose-insulin homeostasis from mid-childhood is associated
with adult psychosis, and BMI increases starting around the time of puberty onset are associated with
adult depression. Whilst residual confounding may still be an issue; the results suggest that these
cardiometabolic markers could be among shared risk factors/indicators for adult cardiometabolic and
psychiatric disorders and may represent novel targets for treatment/prevention of cardiometabolic

disorders in people with psychosis and depression.
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Section B: Summary of Main Findings and Conclusions

Three aspects of the findings from Section B enrich our understanding of the nature of association
between cardiometabolic disorders and schizophrenia. First, the results suggest that disruptions to
glucose-insulin homeostasis may predate the onset of psychosis. Reverse causality is unlikely to
explain this finding since psychosis is rare in prepubertal children (McClellan and Werry, 1997).
Therefore, these findings counter the traditionally attributed notion that the high prevalence of
cardiometabolic disorders in schizophrenia can be explained fully by lifestyle and clinical factors
such as diet, exercise, and antipsychotic medications (i.e., cardiometabolic disorders are a

consequence of the illness).

Second, the associations persisted after adjusting for a detailed range of potential sociodemographic
and lifestyle confounders, suggesting that disrupted glucose-insulin homeostasis could be a risk factor
for psychosis. This argument is also strengthened given that the study was conducted in a relatively
young sample who would have been less affected by chronic lifestyle factors than studies of older
adults. In addition, given the relatively young age of the sample, it is unlikely that the results could
be explained by antipsychotic medications, which are not recommended (National Institute for Health

and Care Excellence., 2013) and rarely prescribed (Olfson, 2009) in childhood.

Third, while depression shows strong genetic (Anttila et al., 2018) and phenotypic (Buckley et al.,
2009) overlap with schizophrenia, and has similar associations with cardiometabolic disorders (Firth
et al., 2019), my results suggest the cardiometabolic origins of the two psychiatric disorders are
distinct. The results indicate that primary glucose-insulin homeostasis may be specific to psychotic
disorders such as schizophrenia, further strengthening the idea that disruption to glucose-insulin

homeostasis may be a risk factor for psychosis.
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SECTION C

TESTING POTENTIAL MECHANISMS OF
ASSOCIATION BETWEEN CARDIOMETABOLIC
DISORDERS AND SCHIZOPHRENIA
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Section C Summary

Having established evidence for the direction and specificity of association between glucose-insulin
homeostasis and psychosis in Section B, in Section C I have examined for potential shared
mechanisms for cardiometabolic disorders and schizophrenia, focussing on a shared genetic basis and

inflammation.

In Chapter 3, I used prospective ALSPAC data from up to 7,977 participants to examine whether
genetic predisposition to T2D is associated with risk of schizophrenia-spectrum outcomes in early
adulthood and vice versa. | also examined whether genetic predisposition to T2D or schizophrenia
influences childhood inflammation, and whether this mediates the associations with risk of psychosis
or T2D, respectively. Findings from this study have been published in Schizophrenia Research (Perry
et al., 2020a). See Appendix C Manuscript 1 for the published manuscript.

In Chapter 4, I have used summary data from large-scale GWAS to rigorously examine, using
multiple complementary genomic methods, for shared genetic overlap between schizophrenia,
cardiometabolic and inflammatory traits. I also examined for a biologically plausible genetic

common-causal basis for the physical and psychiatric traits.

In Chapter 5, I have conducted two-sample, uni- and multivariable MR analysis of summary data
from large-scale GWAS to explore whether there is likely to be an unconfounded association between
disruption to glucose-insulin homeostasis and schizophrenia; to further explore the direction of
association between cardiometabolic traits and schizophrenia; and, to examine whether inflammation
may be a common biological mechanism for comorbid cardiometabolic disorders and schizophrenia.
Findings from this study have been published in PLOS Medicine (Perry et al., 2021a). See Appendix
C Manuscript 2 for the published manuscript.

Together, these studies build a consistent body of evidence that indicates that a summation of genetic
variation may influence biological pathways leading to changes in inflammatory pathways/immune
function, which in turn simultaneously increases the risk of both disrupted glucose-insulin
homeostasis and schizophrenia. The findings from these studies can help to explain why disruption
to cardiometabolic indices can be detected from the onset of psychosis in young adults in the absence
of chronic lifestyle or treatment factors, and in light of the results of Section B, may be detectable

from childhood/adolescence, years before the onset of psychosis.
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Chapter 3

Associations of Genetic Liability for Type 2 Diabetes and
Schizophrenia with Schizophrenia-Spectrum Outcomes, Insulin

Resistance, and Inflammation in the ALSPAC Birth Cohort
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3.1 Introduction

Shared genetic liability may contribute to the comorbidity between cardiometabolic disorders and
schizophrenia (Lin and Shuldiner, 2010). For example, the risks of insulin resistance (Chouinard et
al., 2019) and impaired glucose tolerance (Ferentinos and Dikeos, 2012), two key precursors of T2D,
are higher in unaffected relatives of patients with psychosis compared with controls. People with
comorbid schizophrenia and T2D have a higher genetic predisposition for both disorders than controls
(Hackinger et al., 2018), and an association between genetic predisposition for schizophrenia and
insulin resistance has been reported in a clinical sample (Tomasik et al., 2019). However, each of

these studies is limited by small sample sizes and thus limited statistical power.

Another limiting feature of existing studies is that they have included adult cases of established
schizophrenia or T2D or have relied on blood measurements taken in adulthood. Therefore,
confounding by cumulative effects of lifestyle and other factors is possible (Reinikainen et al., 2015).
Population-based prospective studies have identified early markers of disease risk associated with
T2D and schizophrenia. For instance, PEs in adolescence or young adulthood are associated with risk
of schizophrenia in adulthood (Zammit et al., 2013, Poulton et al., 2000), and insulin resistance is a
precursor of T2D (Martin et al., 1992). To the best of my knowledge, no studies have examined
whether genetic predisposition for T2D or schizophrenia are associated with, respectively, PEs or
insulin resistance in young adulthood. Demonstrating such associations with early markers of illness
in young adults with lessened effects of cumulative lifestyle confounding would be consistent with

the idea that shared genetic variation is a common mechanism for comorbid T2D and schizophrenia.

Although existing studies provide some evidence for a shared genetic basis for T2D and
schizophrenia, underlying pathophysiologic mechanisms remain unclear. Low-grade inflammation
may be one such mechanism, which is associated with insulin resistance (Bowker et al., 2020), T2D
(Pradhan et al., 2001) and psychosis (Upthegrove et al., 2014). Population-based longitudinal studies
have reported that higher levels of circulating inflammatory markers at baseline are associated with
risks of psychosis and disrupted glucose-insulin homeostasis subsequently at follow-up (Khandaker
et al., 2014, Perry et al., 2018). MR studies have reported associations of genetic variants regulating
inflammatory biomarkers such as IL-6 and CRP with schizophrenia (Hartwig et al., 2017) and T2D
(Bowker et al., 2020), suggesting that inflammation may be associated with schizophrenia and

disrupted glucose-insulin homeostasis beyond any effects of confounding.
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3.2 Aims and Objectives

I examined whether shared genetic variation and inflammation could be common mechanisms for
T2D and psychosis using prospective, population-based data from the ALSPAC birth cohort. I tested
whether: (i) genetic predisposition for T2D is associated with risk of schizophrenia-spectrum
outcomes at age 18 years; (ii) genetic predisposition for schizophrenia is associated with insulin
resistance at age 18 years; (ii1) these associations may be mediated by childhood CRP or IL-6 levels

measured at age 9 years.

3.3 Methods

3.3.1 Description of Cohort and Sample Selection

See Section 2.3.1 for a full description of the ALSPAC cohort. This study received ethics approval
from the ALSPAC Ethics and Law Committee and local research ethics committees. All participants
provided written or implied informed consent. In total, 7,977 participants had genotyping data, 3,768
participants had data on both genotyping and psychosis outcomes, and 2,344 participants had data on
genotyping and insulin resistance as outcome. See Appendix C Figure 1 for a flow-chart of
participants in the study. The analysis was conducted on participants without missing data for the

covariates or outcomes of interest.

3.3.2 Assessment of Schizophrenia-Spectrum Outcomes at Age 18 Years
3.3.2.1 Psychotic Experiences

PEs were identified through the face-to-face, semi-structured PLIKSi conducted by trained
psychology graduates. The PLIKSi comprised of an introductory set of questions on unusual
experiences, and then 12 “ core’ questions eliciting key symptoms covering the three main domains
of positive psychotic symptoms: hallucinations (visual and auditory); delusions (delusions of being
spied on, persecution, thoughts being read, reference, control, grandiose ability and other unspecified
delusions); and symptoms of thought interference (thought broadcasting, insertion and withdrawal).
For these 12 core items, 7 stem questions were derived from the Diagnostic Interview Schedule for
Children—1V (DISC-1V) and 5 stems from section 17-19 of the Schedules for Clinical Assessment in
Neuropsychiatry version 2.0 (SCAN 2.0). After cross-questioning, interviewers rated PEs as not
present, suspected, or definitely present. Interviewers rated down (i.e., suspected rather than definite,

or none rather than suspected) if unsure. For suspected or definite PEs, interviewers also recorded the
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frequency; effects on social/educational/ occupational function; help seeking; and attributions
including fever, hypnopompic/ hypnogogic state, or illicit drugs. For interrater reliability, the
interviewers recorded audio interviews at three time points, approximately 6 months apart, across the
clinic duration (75 interviews in total). The average kappa value of PEs was 0.83, with no evidence
of differences across time. Test-retest reliability was assessed using 162 individuals reinterviewed
after approximately 47 days (kappa=0.76, SE=0.078), 46 of whom were reinterviewed by the same
interviewer (kappa=0.86, SE=0.136). The primary outcome was presence of definite PEs, referring
to at least one definite PE since age 12 years; the comparator group was suspected/no PEs. The
outcome is therefore reflective of a six-year period prevalence of definite PEs. From the total number
of participants with definite PEs at age 18 years (230, 4.9%), 80 participants (45.3%) had suffered
definite PEs at least once in the month preceding assessment. From the total sample of participants
reporting definite PEs, 146 participants (63.5%) reported auditory hallucinations, 63 participants
(28.2%) reported any delusion, and 22 participants (9.9%) reported thought disturbance. See the main
reporting study for further information (Zammit et al., 2013).

3.3.2.2 Psychotic Disorder

Psychotic disorder was defined (Zammit et al., 2013) as the presence of PEs when symptoms were
not attributable to fever/sleep/drugs, had occurred at least once per month over the previous six
months, and caused significant distress resulting in either help-seeking from a professional source
(general practitioner, counsellor, mental health team), or significantly disrupted social/occupational
function. From the total ALSPAC sample who underwent the PLIKSi, 46 participants (1.0%) met
criteria for psychotic disorder. Psychotic disorder was included as a secondary outcome due to its

lower prevalence in the study sample.

3.3.3 Assessment of Insulin Resistance at Age 18 Years

Insulin resistance was calculated as a binary variable from fasting plasma glucose and fasting insulin
levels at age 18 years, using the validated HOMA-IR equation (Levy et al., 1998). There is no
consensus-agreed cut-off for insulin resistance based on HOMA-IR in the literature since levels vary
between populations (Wallace et al., 2004). Therefore, I used the 75™ centile of the study population
to define insulin resistance. The 75™ centile cut-off has been used in previous research (Hedblad et
al., 2000, Marques-Vidal et al., 2002, Geloneze et al., 2006, Cediel et al., 2016). In the ALSPAC
sample, The 75" centile for HOMA-IR was 2.15.
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3.3.4 Assessment of Polygenic Risk Scores for T2D and Schizophrenia

From the ALSPAC cohort, 8,812 participants were genotyped using the [llumina HumanHap550 quad
genome-wide SNP genotyping platform by 23andMe subcontracted to the Wellcome Trust Sanger
Institute, Cambridge, UK and the Laboratory Corporation of America, Burlington, NC, USA.
Individuals were excluded from further analysis by ALSPAC based on gender mismatches, minimal
or excessive heterozygosity, disproportionate levels of individual missingness (>3%), evidence of
cryptic relatedness (>10% of alleles identical by descent) and being of non-European ancestry
(assessed by multidimensional scaling analysis including HapMap 2 individuals). Imputation of the
target data was performed using Impute V2.2.2 against the 1000 genomes reference panel (Phase 1,
Version 3; all polymorphic SNPs excluding singletons), using 2186 reference haplotypes (including
non-Europeans), by ALSPAC. Following quality control assessment, imputation, and restricting to 1

young person per family, genetic data was available for 7,977 ALSPAC participants.

Polygenic risk scores (PRS) for schizophrenia and T2D were constructed for all 7,977 participants
with genotype data, using training sets based on the second Psychiatric Genomics Consortium (PGC)
Schizophrenia GWAS (Schizophrenia Working Group of the Psychiatric Genomics Consortium,
2014) and a large T2D GWAS (Mahajan et al., 2014), respectively. Both GWAS analyses adjusted
for principal components to reduce the impact of population stratification (Price et al., 2006). PRS
were calculated using the PLINK (v1.9) (Chang et al., 2015, Purcell et al., 2007) ‘score’ command
following the methodology described by the International Schizophrenia Consortium (Purcell et al.,
2009). Prior to construction of scores, SNPs were removed from the analysis if they had a minor allele
frequency (MAF) less than 0.01, an imputation quality less than 0.8 or if there was allelic mismatch
between samples. Due to the presence of strand differences between ALSPAC and the T2D GWAS,
and lack of allele frequency information in the T2D summary statistics, palindromic SNPs were also
removed prior to construction of the T2D PRS. Because of the high linkage disequilibrium (LD)
within the extended major histocompatibility complex (MHC; chromosome 6: 25-34Mb) only a
single SNP was included to represent this region. SNPs were pruned for LD using the PLINK ‘clump’
command to remove SNPs in LD (2> 0.25) with a more significant SNP in the training set. Windows

of 500kb were used to assess inter-SNP LD for pruning.

For the primary analysis, PRS were constructed using a list of SNPs with the optimal p-value
thresholds to capture phenotypic variance defined by both GWAS individually (p<10~ for T2D
(Mahajan et al., 2014) and p<0.05 for schizophrenia (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014)). Scores were weighted by the logarithm of the odds ratio
(OR) for schizophrenia or T2D reported by the GWAS training sets, for the schizophrenia and T2D

PRS respectively. Ten principal components (PCs) were generated using unrelated individuals (IBS
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< 0.05) and independent SNPs (with long range LD regions removed) using the "-- pca’ command in
PLINK v1.9. All PRS analyses were adjusted for the 10 PCs to reduce the risk of population
stratification. Two PRS measures were calculated for T2D; the first including all SNPs associated
with T2D, and the second after excluding a SNP located in the 7O gene region, which is understood
to be associated with T2D only through its influence on BMI variation (Frayling et al., 2007); the
latter was used in sensitivity analysis. Additionally, since the optimal p-value thresholds of both PRS
scores differed, sensitivity analyses were conducted to examine PRS-outcome associations using a

range of p-value thresholds from p=0.50 to genome-wide significance (p<5x107%).

3.3.5 Measurement of IL-6 and CRP at Age 9 Years

Data on IL-6 and CRP were available from 5,076 and 5,086 participants respectively. Blood samples
were collected at non-fasting state, frozen at —80°C, and assayed in 2008 after a median of 7.5 years
in storage. There was no evidence of freeze-thaw cycles during storage period. IL-6 was measured
by ELISA (R&D systems, Abingdon, UK), and CRP was measured by automated particle-enhanced
immunoturbidimetric assay (Roche UK, Welwyn Garden City, UK). All assay coefficients of
variation were <5%. The minimum detection limit for IL-6 was 0.1pg/mL. This represents the lowest
measurable analytic level that can be distinguished from zero. Those below this limit were assigned
a value of zero (0.4% of the sample) and were also included in the analysis. The minimum detection
limit for CRP was 0.03mg/L. Twenty-nine participants (0.6% of the sample) were below this limit
and were assigned values of 0.01 (n=16) and 0.02 (n=13); they were also included in the analysis. 32
subjects had CRP levels >10mg/L and were excluded from analysis due to the risk of acute

inflammatory state such as infection, which may have confounded results.

3.3.6 Assessment of Potential Confounders

I included sex (categorical), ethnicity (binary caucasian / non-caucasian due to the predominantly

caucasian sample), social class (categorical) and BMI at age 18 years (continuous).

3.3.7 Statistical Analysis

I examined the distribution of PRS-T2D and PRS-schizophrenia using the Shapiro-Wilk test for
normality, and from visual inspection of Q-Q plots. The distributions were p>0.05 and appeared

normally distributed. PRS variables were standardized (Z-transformed).
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3.3.7.1 Association between PRS and Outcomes at Age 18 Years

I conducted logistic regression analyses to examine the association between PRS-T2D and risks for
schizophrenia-spectrum outcomes, and PRS-schizophrenia and insulin resistance at age 18 years.
ORs indicate the increase in risk of outcome per SD increase in PRS. P-values for adjusted regression
models in the primary analysis were corrected for multiple testing per the three outcomes included
(definite PEs, psychotic disorder and insulin resistance) using the Holm-Bonferroni method (Holland,
1987). To test for linearity of associations, I included a quadratic term (PRS?) in the logistic regression

models.

3.3.7.2 Association between PRS scores and Childhood Inflammatory Markers at Age 9 Years
I used linear regression analyses to test associations of PRS for T2D or schizophrenia, separately,
with IL-6 and CRP levels at age 9 years (Z-transformed values), before and after adjustments for

potential confounders listed above.

3.3.7.3 Mediation by Childhood Inflammatory Markers at Age 9 Years

I performed mediation analyses to examine whether any evident associations may be mediated by
any childhood inflammatory markers that also showed evidence for associations with PRS. I
calculated direct and indirect effects between exposure (PRS-T2D or PRS-schizophrenia) and
outcome (e.g., PEs or insulin resistance) taking into account the mediator variable (e.g., CRP).
Evidence of an indirect effect is consistent with mediation. The indirect effect was bootstrapped using

5000 iterations to determine the 95% Cls.

3.3.8 Missing Data

I assessed the potential impact of missing data by comparing mean PRS score between the analytic
sample and participants with missing data for psychosis and insulin resistance outcomes, using
separate variance t-tests. I also performed logistic regression analysis to determine sociodemographic

and other predictors (sex, ethnicity, BMI, and social class) of missing data.
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3.4 Results

3.4.1 Baseline Characteristics of The Analytic Sample

Of the 3,768 participants with data on PRS-T2D and schizophrenia-spectrum outcomes, 283 met the
criteria for suspected/definite PEs (7.5%), 183 for definite PEs (5.1%), 29 (0.7%) for psychotic
disorder at age 18 (Table 15). Of the 2,344 participants with data on PRS-schizophrenia and insulin

resistance, 173 met the criteria for insulin resistance at age 18 (7.3%).

Table 15: Baseline Characteristics of the Analytic Sample

Characteristic, All Sample Definite PEs Psychotic Disorder | No/Suspected
n (%) unless otherwise stated PEs
Male Sex 1846 (49) 71 (38) 7(15) 1775 (49)
White British Ethnicity 3692 (98) 179 (98) 39 (95) 3513 (98)
Social Class
[&11 1,582 (42) 62 (35) 5(16) 1,456 (40)
III - non manual & manual 1,616 (43) 75 (43) 15 (48) 1,630 (44)
IV&V 565 (15) 11 (36)

38 (22) 583 (16)
BMI (kg/m?) at 18 years, mean (SD) | 22.71 (3.76) 23.37 (4.49) 22.73 (4.26) 22.60 (3.71)
HOMA at 18 years, mean (SD) 0.92 (0.73) 1.03 (0.75) 1.28 (1.00) 0.92 (0.73)
Insulin Resistance 251 (8) 25 (17) 7 (20) 209 (7)
Current Smoking 220 (7) 22 (15) 5(18) 188 (7)
CRP (mg/L) at 9 years, mean (SD) 0.68 (2.52) 0.72 (2.61) 0.75 (1.33) 0.67 (2.49)

BMI=body mass index; HOMA=homeostatic model assessment for insulin resistance; CRP=C-reactive protein;
PE=psychotic experiences

3.4.2 The Association of Genetic Predisposition for T2D with Schizophrenia-Spectrum
Outcomes at Age 18 Years

The prevalence of schizophrenia-spectrum outcomes at age 18 years was higher for participants in
the top third of PRS-T2D distribution compared with those in the bottom third (Figure 8). PRS-T2D
was associated with definite PEs (adjusted OR=1.21; 95% CI, 1.01-1.45 per SD increase in PRS-
T2D) and psychotic disorder (adjusted OR=1.51; 95% CI, 1.04-2.05 per SD increase in PRS-T2D) at
age 18 years after controlling for sex, ethnicity, social class, and BMI (Table 16). Quadratic terms for
PRS-T2D in these regression models were non-significant suggesting no evidence for departure from
linearity (all p>0.05). The results for sensitivity analyses using PRS-T2D score excluding a SNP in
the FTO gene region were similar (Table 17).
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3.4.3 Association between Genetic Predisposition for Schizophrenia and Insulin Resistance at

Age 18

There was weaker evidence for an association between PRS-schizophrenia and insulin resistance at
age 18 (adjusted OR=1.10; 95% CI, 0.99-1.22 per SD increase in PRS-schizophrenia) after
controlling for sex, ethnicity, social class, and BMI. The quadratic term for PRS-schizophrenia was

non-significant suggesting no evidence for departure from linearity (p>0.05).

Figure 8: The Prevalence of Schizophrenia-Spectrum Outcomes at Age 18 Years Per Tertile of
Genetic Risk for Type 2 Diabetes
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A=Prevalence of psychotic experiences per tertile of genetic risk for type 2 diabetes; B=Prevalence of psychotic
disorder per tertile of genetic risk for type 2 diabetes
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Table 16: Odds Ratios (95% Cls) for Outcomes at Age 18 Years Per SD Increase in Genetic
Risk for Type 2 Diabetes or Schizophrenia

Outcome / Sample | OR (95% C.IL.) Corrected
Risk Factor p-value | p-value®
Unadjusted® Adjusted for sex,
ethnicity, social class
and BMI®
Definite PEs
PRS-T2D | 3,768 | 1.15(0.99-1.34) [ 1.21 (1.01-145) [ 0.020 | 0.049

Psychotic Disorder
PRS-T2D | 3,768 | 1.42(1.00-1.96) | 1.51 (1.04-2.05) [ 0.016 | 0.042*

Insulin Resistance
PRS-SCZ ’ 2,344 ’ 1.16 (1.04-1.32) ’ 1.10 (0.99-1.22) ’ 0.089 0.089

PRS-T2D=polygenic risk for type 2 diabetes; PRS-SCZ=polygenic risk for schizophrenia; * The unadjusted analysis
was adjusted for 10 principal components only; ® Samples for adjusted analysis included 3,070 participants for
psychosis outcomes and 1,970 participants for insulin resistance outcome; “p-value corrected from adjusted analysis
using Holm-Bonferroni method; *evidence surpasses Holm-Bonferroni threshold

Table 17: Odds Ratios (95% Cls) for Schizophrenia-Spectrum OQutcomes at Age 18 Years Per
SD Increase in Genetic Risk for Type 2 Diabetes Excluding F70 Associated SNP

Risk Factor/outcome Sample OR (95% C.I.) p-value | Corrected
p-value®
Unadjusted® Adjusted for  sex,
ethnicity, social class
and BMI"
Definite PEs
PRS-T2D without F7O | 3,768 1.15 (0.99-1.34) 1.21 (1.02-1.46) 0.025 0.051
Psychotic Disorder
PRS-T2D without F7O | 3,768 1.42 (1.01-1.96) 1.50 (1.04-2.03) 0.016 0.048*

PRS-T2D=polygenic risk for type 2 diabetes; * The unadjusted analysis was adjusted for 10 principal components only
bSamples for adjusted analysis included 3,070 participants; °p-value corrected from adjusted analysis using Holm-
Bonferroni method; *evidence surpasses Holm-Bonferroni threshold

3.4.4 Associations of PRS Scores with Inflammatory Markers at Age 9 Years

Data on both PRS scores and serum IL-6 and CRP levels were available for 2,180 and 2,176
participants, respectively. After adjustments for sex, ethnicity, social class, and BMI, PRS-T2D was
associated with CRP ($=0.03; 95% CI, 0.01-0.08, p=0.040), but not with IL-6 ($=0.01; 95% CI, -0.02
—0.05, p=0.082). There was also trend level evidence for an association between PRS-schizophrenia
and CRP (B=0.05; 95% CI, -0.01 — 0.10, p=0.061) but not with IL-6 (=0.01; 95% CI, -0.04-0.09,
p=0.670).
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3.4.5 The Mediating Effect of Childhood CRP Levels on the Associations of PRS scores with

Schizophrenia-Spectrum Outcomes or Insulin Resistance

Based on 1,955 participants with data on PRS-T2D, CRP levels at age 9 and PEs at age 18 years,
CRP at age 9 years partially mediated the association between PRS-T2D and definite PEs at age 18
years. There was evidence of an indirect effect indicative of mediation; the coefficients were 0.28;
95% CI, 0.07-0.45, p=0.044 for direct effect; co-efficient=0.05; 95% CI 0.02-0.12, p=0.040 for
indirect effect. Due to the low number of participants meeting the criteria for psychotic disorder I
could not reliably test the mediation model with psychotic disorder as outcome. Since IL-6 levels at
age 9 years were not associated with PRS-T2D, I did not perform mediation analysis using IL-6.
There was no evidence for a mediating effect of CRP on the association between PRS-schizophrenia
and insulin resistance at age 18; the coefficients were 0.14; 95% CI, -0.06-0.34, p=0.756 for direct
effect; co-efficient=0.01; 95% CI, -0.01-0.03, p=0.180 for indirect effect.

3.4.6 Results for Sensitivity Analysis Using Different P-Value Thresholds for PRS

Figure 9 presents the associations between PRS-T2D and PEs alongside the associations between
PRS-schizophrenia and insulin resistance, at different PRS p-value thresholds. The point estimates
for the PRS-T2D-PEs associations were >1 for all p-value thresholds, though the strength of
association weakened at more stringent p-value thresholds. A similar pattern was observed for the
PRS-schizophrenia-insulin resistance association, where the evidence for a positive association

attenuated at p-value thresholds more stringent than 1.00x10.

3.4.7 Missing Data

Fifty-three percent of participants with data on PRS-T2D had psychotic outcomes data missing, and
71% of participants with PRS-schizophrenia had insulin resistance outcome data missing (Appendix
C Figure 1). Compared with the analytic sample, the missing sample had higher mean PRS-
schizophrenia but lower PRS-T2D scores (Table 18). Male sex, lower social class and higher BMI
predicted missing data for psychotic outcomes, and non-white ethnicity was associated with having

missing data for insulin resistance (Table 19).
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Figure 9: The Association of PRS Score and Outcome at Age 18 Years Across a Range of PRS

p-value Thresholds
A =PRS-T2D and PEs
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Point estimate highlighted in red box represents association at GWAS-defined optimum p-value threshold for the
exposure. PRS-SCZ = Polygenic Risk Score for Schizophrenia; PRS-T2D = Polygenic Risk Score for Type 2 Diabetes;
PEs = Psychotic Experiences

Table 18: Mean PRS-T2D and PRS-Schizophrenia in the Analytic and Missing Samples
Compared Using Separate Variance T-Test

Mean Z-transformed
PRS Score

Outcome n Test Statistic, p-value

PRS-T2D with Missin

g Psychosis-Risk Data

Analytic sample

3,768

0.033

Missing sample

4209

-0.252

t=3.2, p=0.002

PRS-Schizophrenia w

ith Missing Insulin Resistance Data

Analytic sample

2,344

-0.083

Missing sample

5,633

0.334

t=-4.7, p<0.001
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Table 19: Predictors of Missing Outcome Data at Age 18 Years for Participants with Data on
PRS

Predictor/OQutcome n (%) with data' OR (95% C.1L.) p-value

Psychosis outcomes

Sex? 7,870 (99) 1.69 (1.55-1.84) <0.001
Ethnicity’ 7,876 (89) 0.62 (0.11-3.40) 0.583
Social Class® 7,060 (89) 1.11 (1.08-1.13) <0.001
BMI 5,062 (63) 1.05 (1.02-1.07) 0.001

Insulin Resistance

Sex? 7,870 (99) 1.00 (0.92-1.03) 0.203
Ethnicity? 7,876 (89) 0.51 (0.42-0.60) <0.001
Social Class® 7,060 (89) 1.01 (0.98-1.04) 0.827
BMI 5,062 (63) 1.06 (0.91-1.17) 0.547

'n with predictor from risk set of all participants with data on PRS (#=8,812); *Female sex is reference
3White-British is reference; “Social Class I is reference

3.5 Discussion

Using prospective birth cohort data, I found that genetic predisposition for T2D is associated with
schizophrenia-spectrum outcomes at age 18 years in a linear fashion. The PRS-T2D findings were
consistent using two genetic scores, one with and one without a SNP at the F7O locus, which is
related to BMI (Frayling et al., 2007). Additionally, there was evidence for a dose-response pattern
in the association between PRS-T2D and schizophrenia-spectrum outcomes; the effect size was
largest for psychotic disorder, which is a more clinically relevant outcome than PEs. I also found
some evidence, albeit slightly weaker, for an association between genetic predisposition for
schizophrenia and insulin resistance at age 18 years. However, the sample of participants with missing
data had higher mean PRS-schizophrenia scores than included participants, thus missing data may
help explain the weaker evidence. Nonetheless, the findings provide evidence that the comorbidity
between disrupted glucose-insulin homeostasis and schizophrenia arises partly due to shared genetic

factors.
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The point estimates across various p-value thresholds were similar in both combinations of genotype-
phenotype analysis. However, in both cases, at more stringent p-value thresholds, the evidence of
association weakened. This weakening effect is consistent with a previous study examining the
association between PRS-schizophrenia and adolescent psychopathology (Jones et al., 2016), which
also reported that PRS-schizophrenia was associated with attrition. Therefore, type I statistical error
may contribute to the weaker associations between PRS-schizophrenia and insulin resistance at age

18 years.

The results of this study are in line with previous research, which found that people with comorbid
schizophrenia and T2D have a higher genetic predisposition to both disorders compared to controls
(Hackinger et al., 2018). The findings also align with a report of an association between PRS for
schizophrenia and insulin resistance in a clinical sample of people with schizophrenia (Tomasik et
al., 2019). Another study found evidence for a genetic overlap of schizophrenia with triglycerides and
HDL (Andreassen et al., 2013), which are associated with insulin resistance (Laws and Reaven,
1992). However, one previous study found no evidence for an association between PRS-T2D and
schizophrenia (Padmanabhan et al., 2016), though it featured a much smaller sample size than the

present study and may have been underpowered to detect a difference.

Genetic liability for T2D or schizophrenia may increase the risk of both disorders via pleiotropic
mechanisms. For example, genetic liability for schizophrenia may influence inflammatory pathways
(Slopen et al., 2013), leading to disrupted glucose-insulin homeostasis. I found some evidence for the
association of childhood CRP levels with both PRS-T2D and PRS-schizophrenia. However, I did not
find an association with IL-6. This is perhaps unexpected since IL-6 stimulates the production of CRP
(Calabro et al., 2003) and is associated with psychosis (Khandaker et al., 2014) and insulin resistance
(Bowker et al., 2020).

However, it is also possible that genetic predisposition for T2D or schizophrenia influences CRP via
mechanisms other than the [L-6 pathway. CRP plays an active role in hepatic insulin resistance, partly
through impairment in insulin signalling independent of IL-6 (Xi et al., 2011). Interestingly, CRP has
shown to be protective of schizophrenia in MR studies (Hartwig et al., 2017). However, the GWAS
studies included in previous MR research measured phenotypic markers in adults. I used CRP

measured in childhood, which may be reflective of a distinct biological environment.

I found evidence that genetic predisposition for T2D may influence risk of psychosis in early
adulthood by increasing inflammation in childhood. Still, the magnitude of this mediating effect was
small, suggesting that other mechanisms are likely to be involved. On the other hand, I found no

evidence that childhood IL-6/CRP mediated the association between genetic predisposition for
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schizophrenia and insulin resistance. The mediating effect of inflammation for the outcome of PEs is
consistent with previous research reporting an association between genetic risk for schizophrenia and

immune-related disorders (Stringer et al., 2014, Tylee et al., 2018).

Due to the relatively small number of participants with psychotic disorder in the sample and
associated lack of power, I did not consider testing psychotic disorder in mediation analyses. Future
longitudinal research conducted on larger samples may seek to perform a mediation analysis of CRP
between PRS-T2D and more clinically relevant schizophrenia-spectrum outcomes. Other mediators
for PRS-T2D and schizophrenia-spectrum outcomes may include non-immune mechanisms such as
pleiotropic genes affecting distinct biological pathways. For example, a study examining the genetic
overlap between T2D and schizophrenia highlighted, among others, PROXI as a potentially
pleiotropic locus (Hackinger et al., 2018). PROX1 acts both as a transcriptional activator and repressor
and is implicated in human pancreatic beta-cell development and neurogenesis (Holzmann et al.,

2015).

Strengths of this study include a larger sample compared with previous research in the field;
considering different genetic scores for T2D to address the potential pleiotropic effect of PRS-T2D
on BMI, and in using childhood inflammatory markers in a mediation model to test a hypothesis that
inflammation may be a biological mechanism of association. Since the exposures in the study were
genetic risk, the potential for confounding by environmental and lifestyle factors is limited. In
addition, I was able to control for potential confounding effects of sex, BMI, social class, and
inflammatory disease. Regarding ethnicity, participants of non-European genetic ancestry were
removed at the stage of genotyping analysis. I also adjusted regression analyses for ethnicity since
ethnicity is significantly associated with T2D-risk (Oldroyd et al., 2005). I adjusted for PCs (Price et
al., 2006) in PRS analyses to further reduce the risk of population stratification bias.

An important limitation is missing data. Over half of the risk set with data on PRS had outcome data
missing at follow-up. The missing sample had a higher mean score for PRS-schizophrenia but a lower
mean score for PRS-T2D. Thus, the analyses may underestimate the true association between genetic
predisposition for schizophrenia and insulin resistance. In contrast, the opposite might be the case for

the association between PRS-T2D and schizophrenia-spectrum outcomes.

Furthermore, whilst PEs have been shown to reflect an increased risk for psychotic disorders (Zammit
et al., 2013, Sullivan et al., 2020), and PEs lie on a continuum with clinical psychosis in the general
population (van Os et al., 2009), the transition from PEs to clinical psychosis is low (Kaymaz et al.,
2012) and PEs are also associated with other psychiatric phenotypes such as depression and anxiety

disorders. Additionally, since the schizophrenia-spectrum outcomes were measured before the peak
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age of psychosis onset (Eranti et al., 2013), some participants may not have yet developed psychotic
symptoms. This point also applies to the sample of participants meeting the criteria for insulin
resistance at age 18 years. Whilst I attempted to address these limitations by reversing the genotype
and phenotype to more accurately capture schizophrenia/T2D liability, replication of the methods in
a clinical sample is necessary. In addition, certain antipsychotic medications can have adverse effects
on glycaemic indices (Leucht et al., 2013). At present, ALSPAC does not have treatment record
linkage, so I could not adjust for antipsychotic treatment. This may have impacted the analyses
examining PRS-schizophrenia and insulin resistance since a higher genetic predisposition for
schizophrenia may be associated with antipsychotic use. Finally, one-off measurements of
inflammatory markers in childhood may not reflect lifelong levels of inflammation. However, if non-
differential, measurement error introduces a bias towards the null, so the results may underestimate

the true association between PRS-T2D and IL-6 and CRP.

In conclusion, this study provides evidence that a summation of minor genetic variation, set at
conception, representing lifetime risk for T2D or schizophrenia, may contribute a portion of the
variance of the comorbidity of these disorders in adulthood. This genetic variation may influence
inflammatory pathways to increase the risk of comorbidity. In future, similar research may seek to
examine the associations between PRS for T2D and other mental disorders, including depression or
bipolar disorder, both of which are known to have higher rates of cardiometabolic disorders than the
general population (Martin et al., 2016). Such research may also help to test the specificity of the
findings in this study.
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Chapter 4

Evidence for Shared Genetic Aetiology between Schizophrenia,
Cardiometabolic and Inflammatory Traits: Genetic Correlation

and Colocalization Analyses
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4.1 Introduction

The cardiometabolic comorbidity of schizophrenia is traditionally attributed to lifestyle factors, such
as smoking and physical inactivity, and the adverse effects of antipsychotic medication (Leucht et al.,
2013). However, cardiometabolic dysfunction is detectable in antipsychotic-naive young adults with

FEP, suggesting that lifestyle factors/medication may not be the full explanation (Perry et al., 2016).

For example, schizophrenia and cardiometabolic disorders share similar associations with elevated
concentrations of circulating inflammatory markers such as CRP and IL-6, both cross-sectionally
(Upthegrove et al., 2014, Wang et al., 2013) and longitudinally (Khandaker et al., 2014, Bowker et
al., 2020). MR studies have similarly shown that genetically predicted levels of IL-6 and CRP could
be causally linked with cardiometabolic disorders (Georgakis et al., 2020) and schizophrenia

(Hartwig et al., 2017).

Therefore, schizophrenia, cardiometabolic and inflammatory traits could share pathophysiologic
mechanisms, including a common genetic basis. An improved understanding of the mechanisms
underlying the comorbidity between schizophrenia, cardiometabolic and inflammatory traits is

pivotal to inform novel approaches to treatment and prevention.

Previous studies have predominantly used LDSC (Bulik-Sullivan et al., 2015a) to estimate the whole-
genome correlation between schizophrenia and cardiometabolic traits, with one recent study reporting
evidence of partial genetic similarity between schizophrenia and BMI (Bahrami et al., 2020). There

1s limited evidence for other cardiometabolic and inflammatory traits (Bulik-Sullivan et al., 2015a).

However, the LDSC approach may have limitations. First, LDSC could be susceptible to the 'missing
heritability' problem, where subtle population stratification downwardly bias the effects of lower-
frequency variants (Mathieson and McVean, 2012). Therefore, genetic correlation analysis which
considers the relative frequency of variants is required. Second, LDSC estimates may be biased
towards the null when opposing mechanisms exist (e.g., regions of positive and negative correlation
nullifying each other when averaged (Shi et al., 2017)). This may be expected in a relatively
heterogeneous condition like schizophrenia (Wolfers et al., 2018). Therefore, more fine-grained locus
level genetic correlation analysis is required to identify genomic regions of interest. Third, while
LDSC can provide evidence of overall genomic similarity between traits, it cannot provide

information with which to consider biological plausibility or infer potential causality.
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4.2 Aims and Objectives

I aimed to use a range of complementary genomic approaches in a stepwise manner to rigorously
examine the potential for a common genomic basis for schizophrenia and a range of cardiometabolic
and inflammatory traits previously reported to be associated with it (Vancampfort et al., 2015, Miller
et al., 2014). I aimed to identify specific putative biological pathways underpinning the comorbidity
and address limitations of previous approaches. First, in addition to LDSC to estimate the genome-
wide correlation between traits, I used genetic covariance analyser (GNOVA (Lu et al., 2017)), a
recent methodological extension of LDSC, to estimate genetic correlation after stratifying variants by
MAF. Second, I used Heritability Estimation from Summary Statistics (p-HESS (Shi et al., 2017)) to
identify positive or negative regions of locus-level genetic correlation that otherwise may be masked
by LDSC. Finally, to estimate colocalization between clusters of traits and to identify putative
common-causal variants amongst locally correlated genomic regions, I used hypothesis prioritization
multi-trait colocalization (HyPrColoc (Foley et al., 2021)), a novel type of multi-trait colocalization

analysis (Giambartolomei et al., 2018).

4.3 Methods

4.3.1 Summary Statistics for Schizophrenia, Cardiometabolic and Inflammatory Traits

For schizophrenia, I used publicly available summary data from the Psychiatric Genomics
Consortium (PGC) (40,675 cases, 64,643 controls (Pardinas et al., 2018)). I used publicly available
summary GWAS data for twelve cardiometabolic and inflammatory traits (fasting insulin, HOMA-
IR, T2D, FPG, glucose tolerance, HbA1C, LDL, HDL, triglycerides, BMI, CAD, and CRP) from
large-scale consortia (Table 20). All GWAS were conducted in mostly European samples and
adjusted for population stratification, age, and sex. Ethical approval was obtained by the original

GWAS authors as per each individual GWAS protocol.
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Table 20: Summary GWAS Data Used For Cardiometabolic and Inflammatory Traits

Trait Consortium (Author, Year) Sample Cases/Controls® Participant PMID
Size Description
Schizophrenia | PGC (Pardinas et al., 2018) 105,318 40,675 / 64,643 European Adults 29483656
Fasting MAGIC (Lagou, 2019) 140,595 - European Adults -
Insulin
FPG MAGIC (Scott et al., 2012) 133,010 - European Adults 22885924
HOMA-IR MAGIC (Dupuis et al., 2010) 46,186 - European Adults 20081858
Glucose MAGIC (Scott et al., 2012) 42,854 - European Adults 22885924
Tolerance
HbA1C MAGIC (Wheeler et al., 2017) 123,665 - European Adults 28898252
T2D Mahajan et al, 2017 (DIAGRAM) | 898,130 74,124 / 824,006 European Adults 30297969
(Mahajan et al., 2018)
LDL GLGC (Liu et al., 2017) 237,050 - European Adults 29083408
HDL GLGC (Liu et al., 2017) 237,050 - European Adults 29083408
Triglycerides | GLGC (Liu et al., 2017) 237,050 - European Adults 29083408
BMI GIANT and UK Biobank (Pulit et al., | 694,649 - European Adults 30239722
2019)
CAD CARDIoGRAM C4D (van der Harst et | 547,261 122,733 /424,528 | European Adults 29212778
al, 2017) and UK Biobank (van der Harst
and Verweij, 2018)
CRP CHARGE (Ligthart et al., 2018) 204,402 - European Adults 30388399

FPG=fasting plasma glucose; HOMA-IR=homeostatic model assessment for insulin resistance; HbA1C=glycated
haemoglobin; T2D=type 2 diabetes; LDL=low-density lipoprotein; HDL=high-density lipoprotein; BMI=body mass
index; CAD=coronary artery disease; CRP=C-reactive protein, PGC=Psychiatric genomics consortium; MAGIC=Meta-
analyses of glucose and insulin-related traits consortium; DIAGRAM=Diabetes genetics replication and meta-analyses;
GLGC=Global lipids genetics consortium; GIANT=Genetic investigation of anthropometric traits;
CARDIoGRAM=Coronary artery disease genome wide replication and meta-analysis; C4D=Coronary artery disease
genetics consortia; CHARGE=Cohorts for heart and aging research in genomic epidemiology.

Case/Control numbers supplied for binary traits

4.3.2 Statistical Analysis
4.3.2.1 LDSC for Genome-wide Correlations

Genome-wide SNP-heritability estimates (h2), standard errors (SEs), and genome-wide genetic
correlation estimates (rg) between all trait-pairs were estimated using LDSC (Bulik-Sullivan et al.,
2015b) and an LD reference panel from the 1000 Genomes Project’s Phase 3 European (1kG CEU)
sample. Quality control (QC) steps on each GWAS dataset prior to analysis were: 1) filtering SNPs
that were not included within the HapMap3 reference panel or had MAF <5% within the 1kG CEU
reference sample; 2) filtering SNPs within the major histocompatibility complex (MHC) due to the
complex LD structure within the region (Miretti et al., 2005). I used a Bonferroni-adjusted threshold

of p<0.004 to define strong evidence of genome-wide genetic correlation.
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4.3.2.2 MAF-Stratified Genetic Correlation

MAF-stratified genetic correlations between schizophrenia and other traits were estimated using
GNOVA (Luetal., 2017). GNOVA is an extension to classical LDSC, allowing estimates of genetic
correlation across continuous annotations (e.g., MAF). QC methods were the same as above. MAF
quartiles were defined by the GNOVA authors (Lu et al., 2017) and calculated using genotyping data
from the 1kG CEU reference sample. MAF cut-offs for each quartile were as follows: Q1=0.05-0.11;
Q2=0.11-0.22; Q3=0.22-0.35; Q4=0.35-0.50. I used a Bonferroni-adjusted threshold of »p<0.004 to

define significant evidence of MAF-stratified genetic correlation.

4.3.2.3 Locus-Level Genetic Correlation

Next, I explored locus level correlation between schizophrenia and traits with at least nominal
evidence of either whole-genome or MAF-stratified genetic correlation. I accepted a less-stringent
significance threshold to select traits for locus level correlation analysis to allow for an examination
of opposing mechanisms (Shi et al., 2017), which may have biased ‘averaged’ correlation estimates
(e.g., from LDSC or GNOVA) toward the null. I used p-HESS (Shi et al., 2017) to estimate partitioned
heritability and genetic correlations within pre-defined genomic LD-blocks based on European
participants (Berisa and Pickrell, 2016), allowing for greater resolution of the correlation within each
LD block. No sample overlap between data from different consortia was assumed, as recommended,
due to the heterogeneity of analysed trait-pairs (i.e., a psychiatric trait with a
cardiometabolic/inflammatory trait) (Shi et al., 2017). Where no SNPs were available for analysis
within a particular LD block, that LD block was removed from analysis of that trait pair. I used a
Bonferroni-adjusted threshold dependent on the number of LD blocks tested between pairs of traits

to determine significant evidence of locus-level correlation (between p<3.14x107 and p<2.7x107).

4.3.2.4 Multi-trait Colocalization

To provide greater resolution and allow for a consideration of biological plausibility in genomic
regions with evidence of local correlation, I used HyPrColoc (Foley et al., 2021). HyPrColoc
estimates the posterior probability of colocalization across multiple traits at a single causal variant by
enumerating putative causal configurations. In doing so, HyPrColoc can identify distinct clusters of
traits which colocalize at independent putative causal variants within the genomic region of interest.
To conduct this stage of analysis, I identified the lead SNP for schizophrenia within each LD-block

showing Bonferroni-significant evidence of locus-level correlation with cardiometabolic and
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inflammatory traits. For each trait, I included all SNPs located 500kb either side of the schizophrenia
lead SNP. I did not consider regions within the MHC. The primary analysis used the recommended
variant-specific prior configuration (prior 1=1x10"*; prior 2=0.02) and regional and alignment
threshold settings (0.5 for both). Assistance with the codes for the colocalization analysis was

provided by Dr Nick Bowker (University of Cambridge).

4.3.2.5 Colocalization Sensitivity Analysis

To test the strength of evidence for colocalization and also cluster stability, I repeated colocalization
analysis over: a) increasingly stringent prior settings, (0.02, 0.01, 0.001); and b) increasingly stringent
regional and alignment threshold settings (0.5, 0.6, 0.7, 0.8, 0.9). To visualise cluster stability across
the permutations, heatmaps were drawn based on a similarity matrix between clusters. Where there
was evidence for potential colocalization, stacked regional association plots were drawn to visually
inspect putative candidate SNPs, their strength of association within each putative colocalized trait,

and the LD structure in the genomic region.

4.4 Results

4.4.1 Genome-wide Correlation between Schizophrenia and Cardiometabolic/Inflammatory
Traits

Using LDSC, I found Bonferroni-significant evidence of correlation of schizophrenia with BMI (ry=-
0.09; 95% C.1., -0.06, -0.12; p=1.83x10%; h,=0.21; SE=0.007) and T2D (r,=-0.07; 95% C.I., -0.03- -
0.12; p=0.002; h»=0.04; SE=0.002). In hierarchical clustering, two clusters were formed:
schizophrenia in the first, and all other included traits in the second (Figure 10). See Appendix C
Table 1 for complete LDSC results for all trait pairs.
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Figure 10: Whole Genome Correlations between Schizophrenia, Cardiometabolic and
Inflammatory Traits
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X indicates correlations that did not meet Bonferroni-corrected evidential threshold (p=0.004). Hierarchical clusters
are indicated with red boxes. SCZ=schizophrenia; LDL=low-density lipoprotein; CAD=coronary artery disease;
glucose.tol=two-hour glucose; FPG=fasting plasma glucose; HbA1C=glycated haemoglobin; CRP=C-reactive
protein; TG=triglycerides; HDL=high-density lipoprotein; T2D=type 2 diabetes mellitus; BMI=body mass index;
INS=fasting insulin; HOMA.IR=homeostatic model assessment for insulin resistance.

4.4.2 MAF-Stratified Genetic Correlation between Schizophrenia and Cardiometabolic /

Inflammatory Traits

I found a trend of nominal evidence for correlation in the lowest MAF-quartile between schizophrenia
and a range of cardiometabolic and inflammatory traits (fasting insulin (rg=0.22; p=0.029);
triglycerides (rg=0.14; p=0.020); CAD (rg=0.24; p=0.025); HDL (rz=-0.11; p=0.053); T2D (1,=0.06;
p=0.076); CRP (1,=0.18; p=0.088)); in the second-lowest MAF-quartile between schizophrenia and
LDL (1rg=0.06; p=0.037); and in the highest MAF-quartile between schizophrenia and both BMI (rg=-
0.13; p=0.006) and T2D (r,=-0.12; p=0.012) (Table 21).
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Table 21: MAF Stratified Genetic Correlations between Schizophrenia, Cardiometabolic and
Inflammatory Traits

Trait MAF!

Q1 Q2 Q3 Q4

I'g )4 Ig 14 Ig 14 Ig 14
T2Df 0.062 0.076 | 0.045 0.585 | -0.056 0.433 | -0.120 0.012
FPG 0.078 0.296 | 0.052 0971 | 0.143 0.345 | -0.127 0.173
Fasting Insulin 0.223 0.029 | 0.110 0.266 | 0.095 0.174 | -0.050 0.790
HOMA-IR -0.122 0.507 | -0.147 0.284 | 0.056 0.652 | -0.067 0.570
Glucose Tolerance | 0.030 0220 | -0.112 0.670 | -0.063 0.691 | 0.023 0.842
HbA1C 0.013 0.459 | 0.032 0.844 | -0.097 0.350 | 0.044 0414
HDLY -0.114 0.053 | -0.070 0.280 | 0.043 0.105 | 0.051 0.572
LDL' 0.053 0.371 | 0.063 0.037 | 0.036 0.291 | 0.039 0.231
Triglycerides' 0.136 0.020 | 0.025 0.106 | -0.003 0.188 | 0.031 0.201
BMI' -0.109 0219 | -0.086 0.187 | -0.078 0.143 | -0.127 0.006
CAD ' 0.235 0.025 | -0.025 0.761 | 0.054 0.484 | -0.041 0.446
CRPf 0.181 0.088 | 0.018 0.859 | 0.091 0.196 | -0.049 0.358

HDL~=high-density lipoprotein; LDL=low-density lipoprotein; FPG=fasting plasma glucose; BMI=body mass index;
T2D=type 2 diabetes mellitus; HOMA-IR=homeostatic model assessment of insulin resistance; HbA1C=glycated
haemoglobin; CAD=coronary artery disease; CRP=C-reactive protein; re=genetic correlation estimate.; 'MAF split into
quartiles; Q1=lowest to Q4=highest; findicates traits taken to next stage of analysis based upon nominal evidence of
whole or stratified genetic correlation

4.4.3 Locus-Level Genetic Correlation Between Schizophrenia and Cardiometabolic /
Inflammatory Traits

All included cardiometabolic and inflammatory traits showed Bonferroni-significant evidence of at
least one region of local genetic correlation with schizophrenia. BMI exhibited 78 regions of
Bonferroni-significant local genetic correlation with schizophrenia, the most of any trait. All traits
showed evidence of opposing mechanisms with schizophrenia (Table 22). See Figure 11 for
Manhattan Plots of locus-level correlation between schizophrenia, cardiometabolic and inflammatory
traits. See Appendix C Table 2 for the full numerical results from locus-level correlation analysis for

all trait pairs.

Table 22: Summary of Local Genetic Correlation Analyses between Schizophrenia,
Cardiometabolic and Inflammatory Traits

Trait LD  Blocks, | Bonferroni p-value | Regions of local correlation® with
No. Threshold schizophrenia, No.

BMI 1,684 2.70x10° 78

Fasting Insulin 1,676 2.98x10° 30

T2D 1,591 3.14x10° 8

CRP 1,684 2.70x10? 5

Triglycerides 1,684 2.70x10°° 5

HDL 1,684 2.70x10° 4

Coronary Artery Disease | 1,676 2.98x10? 4

LDL 1,684 2.70x10° 2

BMI = body mass index; T2D = type 2 diabetes mellitus; CRP = C-reactive protein; HDL = high-density lipoprotein;
LDL = low-density lipoprotein; *regions with evidence of local correlation surpassing Bonferroni significance threshold
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Figure 11: Manhattan Plots Showing Regions of Local Genetic Correlation between Schizophrenia and Cardiometabolic/Inflammatory Traits
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E. Triglycerides
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G. Coronary Artery Disease
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4.4.4 Multi-Trait Colocalization between Schizophrenia and Cardiometabolic / Inflammatory
Traits

I found the strongest evidence for colocalization (posterior probability for colocalization (PPcoloc)
>(0.80) between schizophrenia, cardiometabolic and inflammatory traits at seven loci, which included
missense (rs13107325; rs6265), intronic (rs17514846; rs8192675; rs3800229) and synonymous
(rs3814883) variants, and one intergenic variant (rs12782894) (Table 23). See Figure 12 for stacked
regional association plots for four colocalized variants with strong evidence for colocalization
(rs8192675/SLC2A2, rs13107325/SLC39A48, 1s6265/BDNF’, rs17514846/FURIN). 1 found additional
evidence for colocalization (PPcoloc=0.54-0.79) at five loci, including intronic (rs11191514;
rs2108349; rs6031855; rs340874) and synonymous (rs2239647) variants (Table 23). See Appendix
C Figure 2 for stacked regional association plots of the remaining variants with evidence for

colocalization.

Table 23: Results from Colocalization Analysis between Schizophrenia, Cardiometabolic and
Inflammatory Traits

Candidate Gene Variant Type | Colocalized Traits PPeoloc® | PPexplainea® | N SNPs¢
SNP Implicated

rs17514846 FURIN Intron SCZ, CAD 1.00 1.00 1071
rs3814883 TAOK2 Synonymous SCZ, BMI 0.99 0.99 193
rs8192675 SLC2A42 Intron SCZ, BMI, CRP, T2D 0.93 0.50 919
rs3800229 FOX03 Intron SCZ, BMI 0.89 0.96 872
rs12782894 * * SCZ, BMI 0.88 0.68 1255
rs13107325 SLC3948 Missense SCZ, HDL, TG, BMI, T2D | 0.86 1.00 936
1s6265 BDNF Missense SCZ, BMI, CRP, CAD 0.86 0.75 925
1s2239647 AKAP6 Synonymous SCZ, BMI, T2D 0.79 0.66 1584
rs11191514 CNNM?2 Intron SCZ, BMI, CAD 0.77 0.30 710
rs2108349 GRBI0 Intron SCZ, F1 0.60 0.88 1272
rs6031855 YWHAB Intron SCZ, BMI 0.59 0.28 990
rs340874 PROXI Intron SCZ, T2D 0.54 0.66 1324

SCZ=schizophrenia;, BMI=body mass index; CAD=coronary artery disease; HDL=high-density lipoprotein;
TG=triglycerides; LDL=low-density lipoprotein; T2D=type 2 diabetes; CRP=C-reactive protein; FI=fasting insulin
2PPeoloc indicates posterior probability of single shared causal SNP at default prior and threshold settings

PPPexplained indicates the amount of shared trait variance explained by the candidate SNP

°Corresponds to the number of SNPs present in all datasets; “Intergenic
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Figure 12: Examples of Regional Genetic Association Plots for Four Loci Returning Strong
Evidence for Colocalization between Schizophrenia, Cardiometabolic and Inflammatory Traits
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B. rs13107325 - SLC39A48
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C. rs6265 - BDNF
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D. rs17514846 - FURIN
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Regional association plots denote chromosomal location (x axis) and strength of association with listed trait (-logiow)) (Y
axis). SNP 1% was estimated from the EPIC-Norfolk cohort. See Appendix C Figure 2 for regional association plots of the
remaining colocalized variants described in Table 23. scz=schizophrenia; bmi=body mass index; tg=triglycerides;
hdl=high-density lipoprotein; t2ds=type 2 diabetes; crp=c-reactive protein
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4.4.5 Colocalization Sensitivity Analysis

Trait clusters for all loci were stable in sensitivity analysis, returning in all instances the same
candidate colocalized variant over increasingly stringent prior and threshold configurations. See
Appendix C Table 3 and Appendix C Figure 3 for full sensitivity analysis results and heatmap
sensitivity analysis plots. To summarise the sensitivity analysis results, clusters at rs17514846 and
rs3814883 were stable across all permutations of priors. Clusters at two loci (rs12782894; rs3800229)
were stable till prior settings surpassed the most stringent level of 0.99. Clusters at three loci
(rs8192675; rs13107325; rs2239647) were stable till regional/alignment thresholds surpassed a
stringent level of 0.8, and then T2D was dropped from the clusters and the PPcoioc increased for the
remaining traits. Clusters at rs6265 were stable till regional/alignment thresholds surpassed 0.7, then
CRP was dropped and the PP¢o1oc increased for the remaining traits. Clusters at rs2108439 were stable
till regional/alignment thresholds surpassed 0.6. Clusters at the remaining three variants (rs340874;
rs11191514; rs6031855) were stable only at the recommended prior settings and regional/alignment

thresholds.

4.5 Discussion

Using a complementary set of approaches leveraging GWAS summary data, I tested whether
schizophrenia, cardiometabolic and inflammatory traits may share common genetic aetiology. First,
I report evidence for partial genome-wide genetic correlation of schizophrenia with T2D and BMI.
Second, I report that a 'cardiometabolic risk increasing' pattern of partial genetic correlation between
schizophrenia, cardiometabolic and inflammatory traits may be confined to relatively lower-
frequency genetic variants. Yet, a 'cardiometabolic risk lowering' pattern of partial genetic correlation
may be present amongst the highest-frequency common genetic variants. I identified numerous
regions of Bonferroni-significant locus-level genetic correlation between schizophrenia,
cardiometabolic and inflammatory traits, which I interrogated using colocalization analysis. In doing
so, I found robust and biologically plausible evidence for 12 colocalized SNPs that may at least in
part contribute toward the comorbidity between schizophrenia, inflammation and cardiometabolic
disorders. Together, the results suggest that the comorbidity between schizophrenia, inflammation
and cardiometabolic disorders could be partly attributable to shared genes rather than being fully

explained by lifestyle factors and medication side-effects.

Findings from the LDSC analysis are in line with previous research. For example, a similar negative

correlation between schizophrenia and BMI was recently reported (Bahrami et al., 2020), and a large
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genotyping meta-analysis has shown an inverse association between polygenic risk for schizophrenia
and obesity (Zheutlin et al., 2019). Additionally, observational evidence indicates that low
birthweight (Wahlbeck et al., 2001, Abel et al., 2010, Nielsen et al., 2013) and thinness in childhood
(Zammit et al., 2007, Weiser et al., 2004, Sorensen et al., 2006) are associated with a higher risk for
developing schizophrenia in adulthood. However, the LDSC SNP-heritability estimate suggests that
only a modest fraction of phenotypic variance could be explained by the additive effects of shared
genetic variants. This can be interpreted in one of two ways; either shared genetic architecture is only
likely to explain a small fraction of the variance of phenotypic comorbidity, or LDSC estimates have

been downwardly biased due to the limitations described in Section 4.2.

I also found a weak Bonferroni-significant overall negative genetic correlation between schizophrenia
and T2D, which was not found in a previous LDSC study that used data from a smaller T2D GWAS
(Bulik-Sullivan et al., 2015a). This finding is inconsistent with observational studies suggesting
increased T2D risk in psychosis (Ward and Druss, 2015, Perry et al., 2016). The observed partial
negative correlation between schizophrenia and BMI could explain this since T2D and BMI are
highly genetically correlated (Zhang et al., 2017). This finding could also highlight the importance of
environmental influences upon cardiometabolic risk in schizophrenia, given the small amount of
phenotypic explained variance from LDSC. Alternatively, the finding could be explained by both the
missing heritability phenomenon and presence of opposing mechanisms, and findings from the MAF-

stratified and locus-level correlation analyses support the relevance of the latter interpretation.

Stratifying LDSC by MAF helps address the limitation of missing heritability and suggests that
similar risk-increasing genetic architecture between schizophrenia and cardiometabolic disorders is
likely to be confined to relatively lower-frequency GWAS-detectable variants. I identified a
consistent pattern at nominal significance of 'cardiometabolic risk-increasing' partial correlation in
the lowest MAF-quartile of schizophrenia with fasting insulin, triglycerides, CAD, HDL, T2D and
CRP, and in the second-lowest MAF quartile of schizophrenia with LDL, which aligns with
observational findings (Vancampfort et al., 2015, Miller et al., 2014). These findings also align with
previous GWAS research, which leveraged pleiotropy with cardiovascular traits to improve detection
of schizophrenia risk variants to reduce the impact of missing heritability (Andreassen et al., 2013).
However, I also identified a pattern of 'cardioprotective' partial correlation in the highest MAF-
quartile of schizophrenia with BMI and T2D, in line with whole-genome correlation estimates. These
results suggest the presence of opposing mechanisms, which may be related to the heterogeneity of
schizophrenia. Nevertheless, the Bonferroni significance threshold was not met for most traits in
MAF stratified analysis. So, future replication of my work with better-powered GWAS is necessary

to confirm these findings.
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I found numerous regions of Bonferroni-significant locus-level correlation between included trait-
pairs. Across all trait pairs, I found evidence of multiple regions of positive and negative correlation
with schizophrenia, indicating opposing mechanisms. This may help explain the weaker evidence
found in LDSC and GNOVA and the results of previous LDSC research (Bulik-Sullivan et al.,
2015a), which found limited evidence for genetic correlation between schizophrenia and
cardiometabolic traits. This is because the combination of regions of positive and negative correlation

may have biased estimates toward the null (Shi et al., 2017).

I found twelve loci indicating evidence of colocalization between traits at the default prior
configuration. Many of these were stable over increasingly stringent settings in sensitivity analysis,
suggesting robust evidence for colocalisation. Several loci exhibited stronger evidence for
colocalization after one weaker trait was dropped at more stringent thresholds. Of the seven loci
returning the strongest evidence of colocalization (PPco10c>0.80), four (rs6265; 1s8192675; rs3800229;
rs17514846) relate to pathways involving BDNF. BDNF is an important member of the neurotrophin
family and is associated with a range of clinical features of schizophrenia (Notaras et al., 2015); is
involved in the regulation of cardiometabolic function (Tasci et al., 2012); and is associated with

cardiometabolic function in schizophrenia (Nurjono et al., 2014).

First, 156265 (Val66Met) is a missense SNP in the BDNF gene. Val66Met reduces intracellular
trafficking and activity-dependent secretion of BDNF (Egan et al., 2003). Interestingly, meta-analytic
evidence suggests lower BDNF levels in people with schizophrenia (Cui et al., 2012), which may
contribute to disease-specific changes of neuronal synaptic plasticity and the immune system
(Zakharyan and Boyajyan, 2014). The Val66Met polymorphism may additionally influence food
intake and body weight (Hong et al., 2012) in humans.

Second, rs8192675 is located in an intronic region of SLC2A42, which encodes the facilitated glucose
transporter GLUT2. GLUT2 regulates the entry of glucose into the pancreatic -cell, thus initiating
the cascade of events leading to insulin secretion. GLUT?2 is also highly expressed in both the liver,
where it regulates both glucose uptake and output and the hypothalamus, where it regulates synaptic
activity and neurotransmitter release (Jurcovicova, 2014). Variants in SLC242 impair GLUT2
expression and are strongly associated with T2D (Sansbury et al., 2012). Rs8192675 is associated
with increased diabetic symptomatology but may also be related to favourable T2D treatment
response (Rathmann et al., 2019). Impaired GLUT2 expression is associated with lower levels of
BDNF (Maekawa et al., 2013), and conversely, higher levels of BDNF are associated with a
protective effect on GLUT?2 in pancreatic -cells, reducing T2D risk (Bathina and Das, 2019).

123



Third, rs3800229 lies in an intron of FOXO3, which regulates diverse cellular processes, for example,
adult stem cell homeostasis (Eijkelenboom and Burgering, 2013) and immuno-metabolic processes
(Lundell et al., 2019). FOXO3 is associated with brain development and intracranial volume (Renault
et al., 2009) and is associated with poor cognition in schizophrenia (Smeland et al., 2017).
Interestingly, FOXO3 is implicated as a potential therapeutic target for obesity (Deng et al., 2018)
and mediates the inhibitory actions of insulin in diverse pathways, including cell metabolism and
survival (Lee and Dong, 2017). FOXO3 signalling can be disrupted by BDNF, mediated by the
phosphatidylinositol 3-kinase (PI3K)/Akt pathway (Zhu et al., 2004). The PI3K/AKT pathway has
roles in insulin sensitivity, neuronal development, dopamine regulation, and the immune system
(Hers et al., 2011) and is implicated as a putative mechanism linking schizophrenia and T2D (Liu et

al., 2013).

Fourth, the rs17514846 variant lies in an intron of FURIN, which encodes a protease that processes
latent precursor proteins into their biologically active products. FURIN is expressed in
neuroendocrine, liver, gut, and brain tissues. A recent GWAS found a significant association between
rs17514846 and CAD (Webb et al.,, 2017), and rs17514846 regulates FURIN expression in
monocytes, which modulates their migration and proliferation in atherosclerotic plaques (Turpeinen
etal., 2011). Furthermore, rs17514846 is in high-LD with rs4702, a genome-wide significant variant
for schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics, 2014) which lies in
the 3' untranslated region of FURIN, leading to reduced gene expression and impaired BDNF
secretion (Hou et al., 2018).

Outside of BDNF-related pathways, there is biological plausibility for additional colocalized variants.
One of these is rs13107325, a missense SNP in SLC3948, which encodes a protein responsible for
metal ion transport and homeostasis. Rs13107325 has been associated with weight gain (Pulit et al.,
2019), lipid dysfunction (Willer et al., 2013), changes in brain volume (Luo et al., 2019) and brain
metal homeostasis, the latter of which may influence schizophrenia risk (Carrera et al., 2012).
Rs340874 is a genome-wide significant variant for T2D (Mahajan et al., 2014) and lies in an intron
of PROXI. PROXI has been proposed as a possible genetic mechanism for comorbid schizophrenia
and T2D (Hackinger et al., 2018) and is associated with pancreatic beta-cell development and
neurogenesis (Holzmann et al., 2015). Rs2108349 lies in an intron of GRBI0, which encodes an
inhibitor of insulin receptor signalling (Morrione, 2000). The variant is in high-LD with rs2237457,
which is associated with schizophrenia treatment resistance (Li and Meltzer, 2014). Finally, two
variants, rs3814883 in TAOK?2 and rs11191514 in CNNM2, are each associated with schizophrenia
(Guan et al., 2016, Li et al., 2017b), and both are associated with increased risks of cardiometabolic

and cardiovascular disorders (Lv et al., 2017, Zhang et al., 2017).
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The main strengths of this study include the use of several complementary genomic analysis methods
that refine genetic correlation estimates to putative common-causal SNPs. This can inform future
basic research and highlight potential pathways that might be investigated for therapeutic potential
for schizophrenia and its associated cardiometabolic comorbidity. The findings represent a consistent
pattern of evidence across complementary methods, which can address the limitations of previous

research.

The main limitations of this study are as follows: GWAS power might have affected the results. For
example, some correlation estimates for MAF-stratified analysis did not reach the Bonferroni-
corrected evidential threshold. Therefore, the results should be interpreted with caution and require
replication when better powered GWAS are available. I considered traits for further analysis based
upon a nominal threshold since correlation estimates, which are either (i) averaged across the whole
genome (LDSC); or (i1) averaged across MAF quartiles (GNOVA), may have been biased toward the
null where opposing mechanisms exist, and results from the locus-level correlation analyses
suggested this was the case for all analysed trait pairs. Differences in GWAS statistical power
between traits may also be partly responsible for the different numbers of regions of local correlation
identified in the HESS analyses. In future, better-powered GWAS may identify more regions of locus-
level correlation between trait pairs. For the MAF-stratified analysis, due to limitations in current
GWAS power, I could only include SNPs with MAF >5% in the lowest MAF-quartile, a limitation
common to genetic correlation methods. Such variants are therefore best described as a lower-
frequency tranche of common genetic variation. As GWAS methods and sample sizes improve,

sufficient power may be achieved to consider variants on the rare end of the MAF spectrum.

Secondly, HyPrColoc assumes the presence of at most one causal SNP in the region, a limitation
common to colocalisation methods. Yet, HyPrColoc estimates may only become unreliable when the
secondary causal variants explain a similar amount of trait variation as the primary shared variant

(Foley, 2019).

Thirdly, I could only include one inflammatory marker, CRP, since large-scale GWAS of other
inflammatory biomarkers are scarce. Despite CRP being a generalized marker of inflammation, future
replication of the work with a more extensive set of upstream inflammatory markers may help test
specific inflammatory pathways. Future research may also consider other mental disorders, for
example, depression, which is genetically correlated with schizophrenia (Anttila et al., 2018) and is
also observationally associated with cardiometabolic disorders (Lamers et al., 2018). Finally, some
level of similarity in genetic architecture might be expected between any set of complex disease traits;
however, the results of this study show a consistent pattern across a number of independent analytic

methods, suggesting that chance associations are unlikely to fully explain the results.
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In conclusion, I present evidence indicating a shared genetic basis for schizophrenia, cardiometabolic
and inflammatory traits. The results suggest that the commonly observed comorbidity between these
conditions may be at least partly heritable. The results indicate that the shared genetic aetiology may
be confined to relatively lower-frequency common genetic variants. The majority of loci showing
evidence for colocalization are biologically plausible, with several implicating pathways involved in
regulating BDNF and glucose transport. Together, the results highlight putative pathophysiological
mechanisms that could underly the comorbidity, which may form the basis for future basic and

therapeutics research, both for schizophrenia and its associated cardiometabolic comorbidity.
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Chapter 5

The Potential Shared Role of Inflammation in Insulin Resistance and
Schizophrenia: A Bi-Directional Two-Sample Mendelian

Randomization Study
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5.1 Introduction

Most existing research examining the cardiometabolic comorbidity of schizophrenia is cross-
sectional. Therefore, existing studies cannot confirm whether cardiometabolic disorders are a cause
or consequence of illness (i.e., reverse causality). Additionally, whilst previous studies have adjusted
for potential confounders, residual confounding, which is a limitation of both cross-sectional and
longitudinal research, could still be relevant. MR analysis can address these limitations by using
genetic variants inherited randomly at conception as unconfounded proxies of a modifiable exposure
to examine whether the exposure may have a causal effect on a disease outcome (Smith, 2010). MR
studies of cardiometabolic traits and schizophrenia are scarce, have focused on a limited set of
cardiometabolic exposures, and have reported mixed findings (Li et al., 2018, Polimanti et al., 2017).
To the best of my knowledge, MR studies examining associations between a wide range of
cardiometabolic traits and schizophrenia are lacking. Such studies may help identify common
potentially causal risk factors and pathophysiologic mechanisms for these physical and psychiatric

illnesses.

Inflammation could be pathophysiologically related to cardiometabolic disorders and schizophrenia.
Higher levels of circulating inflammatory markers have been associated with both psychosis and
cardiometabolic disorders, both cross-sectionally and longitudinally (Dandona et al., 2004,
Khandaker et al., 2014, Upthegrove et al., 2014). MR studies have reported potential causal
associations between inflammation, particularly CRP and IL-6, and schizophrenia (Hartwig et al.,
2017, Khandaker et al., 2017). CRP and IL-6 are also implicated in the pathogenesis of insulin
resistance (Kim et al., 2009) and may exaggerate the effects of insulin resistance on psychosis-risk in
young adults (Perry et al., 2018). However, to the best of my knowledge, no MR studies have
examined whether inflammation could be pathophysiologically related to insulin resistance and

schizophrenia, for example, via mediating or common-causal mechanisms.

Therefore, I have conducted a study to examine evidence in support of four scenarios regarding the
potential relationships between inflammation, insulin resistance and schizophrenia: a) inflammation
is a common cause (confounder) between insulin resistance and schizophrenia; b) insulin resistance
mediates an association between inflammation and schizophrenia; c) inflammation is a common
cause (confounder) between schizophrenia and insulin resistance; d) schizophrenia mediates an
association between inflammation and insulin resistance. See Figure 13 for directed acyclic graphs

(DAGs) illustrating the proposed mechanisms.
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Figure 13: Directed Acyclic Graphs Outlining Potential Mechanisms of Association between

Inflammation, Insulin Resistance and Schizophrenia
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5.2 Aims and Objectives

First, I carried out MR analyses to test whether ten cardiometabolic traits related to insulin resistance
(fasting insulin; triglycerides, HDL; LDL; FPG; BMI; glucose tolerance; leptin, glycated HbA1C;
T2D) could be causally associated with schizophrenia. To test the direction of association, I used
genetically predicted levels of cardiometabolic traits as exposures and schizophrenia as the outcome,
and vice versa. Next, I examined whether inflammation could be a shared mechanism linking insulin
resistance and schizophrenia by including genetic variants for each cardiometabolic trait that were
also associated with a marker of inflammation. Finally, I used multi-variable MR (MVMR) analysis
to control for genetic associations of cardiometabolic traits with CRP, an archetypal general

inflammatory marker that [ used as a general measure for systemic inflammation.
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5.3 Methods

5.3.1 Selection of Genetic Variants Related to Cardiometabolic Traits and Schizophrenia

For fasting insulin, triglycerides, and HDL, I used a set of 53 SNPs reported to be associated with
insulin resistance from a recent meta GWAS of 188,577 European adults which adjusted for BMI
(Lotta et al., 2017a). In this study, I included SNPs reaching genome-wide significance for the
corresponding trait. Summary statistics for genome-wide significant SNPs were also obtained for six
related continuous (FPG, HbA1C, LDL, BMI, leptin, glucose tolerance) and one binary (T2D)
cardiometabolic traits from recent large GWAS (Table 24). See Appendix C Tables 4-11 for the SNPs
included for each exposure. I obtained summary statistics for schizophrenia from a recent GWAS
from the PGC (Pardinas et al., 2018) based on 40,675 cases and 64,643 European controls. The degree
of sample overlap between exposure and outcome samples was likely to be low since the data were
obtained from different consortia (Shi et al., 2017). The study was a secondary analysis of the above
publicly-available data. Informed consent was sought for all participants per the original GWAS
protocols, and all ethical approvals for the GWAS were obtained by original GWAS authors.
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Table 24: GWAS used for SNP Selection in MR Analysis

Cardiometabolic | Consortia | Ethnic Sample Setting® GWAS- Inflammati
Exposure Origin significant | on-related
SNPs, No. SNPs, No."
Fasting Insulin MAGIC European 108,557 Meta-GWAS of 19 53 5
(Lotta et al., (101,393 adults | European Cohort
2017) and 7,164 Studies, participants
adolescents) with diabetes excluded
Triglycerides EPIC- European 188,577 adults Meta-GWAS of 45 53 5
(Lotta et al., InterAct, population-based cohort
2017) FPLDI1 studies and case-control
studies.
HDL (Lotta et al., | EPIC- European 188,577 adults Meta-GWAS of 45 53 4
2017) InterAct, population-based cohort
FPLDI1 studies and case-control
studies.
LDL (Willer et GLGC European, 173,082 adults Meta-GWAS of 45 79 13
al., 2013) East Asian, population-based cohort
South studies and case-control
Asian, studies.
African
Fasting Plasma MAGIC European 58,074 adults Meta-GWAS of 29 22 2
Glucose European population-
(Manning et al., based cohort studies.
2012) participants with
diabetes excluded.
T2D (Mahajan et DIAGRA | European, 435,387 adults; Meta-GWAS of two 152 7
al., 2018) M East Asian, | (81,412 with large prospective
South T2DM and European cohort studies
Asian, 370,832
Mexican, controls)
Mexican
American
BMI (Locke et al., | GIANT European, 339,224 adults Meta-GWAS of 125 97 6
2015) African, European cohort
Asian studies, adjusted for age
HbA1C (Wheeler | MAGIC European, 159,940 adults Meta-GWAS of 82 60 7
et al., 2017) African population-based cohort
American, studies. Participants
East Asian, with diabetes excluded.
South Asian
Glucose MAGIC European 15,234 adults Meta-GWAS of 9 7 0
Tolerance population-based cohort
(Saxena et al., studies. Participants
2010) with diabetes excluded.
Leptin - European 82,315 adults Meta-GWAS of 32 5 0
(Kilpeldinen et al., population-based cohort
2016) studies adjusted for age
and sex.

SNP=Single Nucleotide Polymorphism; GWAS=Genome-Wide Association Study; HDL=High-Density Lipoprotein;
LDL=Low-Density Lipoprotein; T2D=Type 2 Diabetes Mellitus; BMI=Body Mass Index; HbA1C=Glycated
Haemoglobin; MAGIC=Meta-Analysis of Glucose and Insulin Related traits Consortium; GLGC=Global Lipids
Genetics Consortium; DIAGRAM=Diabetes Genetics Replication and Meta-Analysis; GIANT=Genetic Investigation of
Anthropometric Traits

aSee original GWAS publication for detailed demographic and setting information for studies included in meta-GWAS.
"Number of SNPs with pleiotropy for inflammation at genome-wide significance
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5.3.2 Statistical Analysis

I obtained summary-level data (SNP rs number; B-coefficient or log OR; standard errors or 95%
confidence intervals; effect allele; other allele; p-value; effect allele frequency; sample size; number
of cases/controls) from each GWAS. Where a specific instrument SNP was not available in the
outcome dataset, I located proxy SNPs using LD tagging (r>>0.8) via LDIink (Machiela and Chanock,
2015). Alleles were harmonised based on matching alleles and the resulting instruments were
clumped for LD to ensure independence (10,000kb pairs apart, r><0.001). In the event of palindromic
SNPs, the forward strand was inferred where possible using allele frequency information. I performed
bidirectional analysis (i.e., with schizophrenia as exposure and cardiometabolic traits as outcomes) to
examine direction of association. Statistical analysis was conducted using the TwoSampleMR package

(v0.5.4) (Hemani et al., 2018) for R (R Core Team, 2017).

The primary MR analysis method was inverse variance weighted (IVW) regression when at least two
exposure SNPs were available for analysis. IVW consists of a weighted linear regression of SNP-
exposure SNP-outcome effect estimates. The IVW estimate is the inverse variance weighted mean of
ratio estimates from two or more instruments (Burgess et al., 2013), and assumes that all SNPs are
valid instruments or that the sum of directional bias is zero. Since the intercept is an estimate of
average pleiotropic effects across instrumental variables, in an [VW approach the intercept is fixed

to 0. When one exposure SNP was available for analysis, I used the Wald ratio method.

I also conducted weighted median and MR-Egger regression analysis. The weighted median is the
median of the weighted empirical distribution function of individual SNP ratio estimates. This method
provides a consistent effect estimate if more than 50% of the information comes from valid SNPs
(Bowden et al., 2016a). MR-Egger regression consists of a weighted linear regression similar to IVW,
with the assumption that horizontal pleiotropic effects and SNP-exposure associations are
uncorrelated (Bowden et al., 2015), therefore the intercept is not fixed. MR Egger regression provides
a valid effect estimate even if all SNPs are invalid instruments but assumes that uncertainty in the

SNP-exposure association estimates is negligible (Bowden et al., 2017).

For the binary outcome of schizophrenia, the estimates for continuous exposures (FI, HDL,
triglycerides, LDL; FPG; BMI; HbA1C; glucose tolerance, leptin) represent log-odds ratios converted
into ORs representing the increase in risk of schizophrenia per SD of exposure, and 95% Cls. For
binary exposures (T2D), the estimates represent the OR for schizophrenia per unit increase in the log-
odds of T2D. For continuous cardiometabolic outcomes, -coefficients represent the SD increase in

exposure per unit increase in the log-odds of schizophrenia, with SEs.
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I performed several sensitivity analyses to check the validity of the results. Heterogeneity among
SNPs included in each analysis was examined using the Cochran Q test. I checked for horizontal
pleiotropy using the MR Egger regression intercept alongside a more recent and robust method to
detect horizontal pleiotropy and outliers, ‘MR pleiotropy residual sum and outlier’ (MR-PRESSO)
(Verbanck et al., 2018). MR-PRESSO relies on a regression framework where the variants’ effects
on the outcome are regressed on the same variants’ effects on exposure, with the slope of the
regression line providing an estimate of the causal effect of the exposure on the outcome (Verbanck
et al.,, 2018). The MR-PRESSO global test evaluates overall horizontal pleiotropy amongst all
instrumental variables in a single MR test by comparing the observed distance of all the variants to
the regression line (residual sum of squares) to the expected distance under the null hypothesis of no
horizontal pleiotropy (Verbanck et al., 2018). The MR-PRESSO outlier test evaluates the presence
of specific horizontal pleiotropic outlier variants by using the observed and expected distributions of
the tested variant. Finally, the MR-PRESSO distortion test evaluates the significance of the distortion
between the causal estimate before and after removal of the horizontal pleiotropic outlier variants
(detected from the outlier test of MR-PRESSO). Using MR-PRESSO, I used the global test to
examine for horizontal pleiotropy, and where evident, used the method to correct the [VW-estimate

via outlier removal.

I examined for measurement error in SNP-exposure associations using the gy statistic (Bowden et

al., 2016b).

5.3.2.1 Analysis using Inflammation-Related SNPs

Next, I repeated MR analysis using only inflammation-related SNPs for each cardiometabolic risk
factor as an instrumental variable for the outcome of schizophrenia. I did this to test the hypothesis
that these SNPs may represent a biological mechanism involving inflammation. This could be via,
for example, a common causal basis (Panel A in Figure 13) or via vertical (mediating) pleiotropy
(Hemani et al., 2018) (Panel B in Figure 13). [ used Phenoscanner v2 (Staley et al., 2016) to examine
each SNP associated with each cardiometabolic risk factor, to identify SNPs that were also associated
with a measure of inflammation, defined as blood concentration/count of cytokines (such as
chemokines, interferons, interleukins, lymphokines, or tumour necrosis factors), acute phase or
inflammatory proteins (e.g., CRP), or immune cells (e.g., neutrophils, lymphocytes). Primarily, I
considered inflammation-related SNPs at genome-wide significance (p<5x10%) to maximise
specificity. However, I also performed a sensitivity analysis by including inflammation-related SNPs

at a less-stringent nominal significance threshold (p<1x104) used previously to increase sensitivity
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toward inflammation-related SNPs (Ligthart et al., 2015). See Appendix C Tables 12-19 for
inflammation-related SNPs and associated inflammation-related pleiotropy. Using the same method,
I identified genome-wide inflammation-related schizophrenia SNPs (Appendix C Table 20) and used

them as instrumental variables in MR analysis examining cardiometabolic traits as outcomes.

5.3.2.2 Adjustment for Inflammation

As a sensitivity analysis to estimate whether any associations evident above may be explained by
inflammation, I conducted MVMR analysis (Burgess and Thompson, 2015, Sanderson et al., 2018)
using the genome-wide significant SNPs for fasting insulin, triglycerides and HDL, representative of
an insulin resistance phenotype as exposures, with schizophrenia as the outcome, after conditioning
on the associations of those SNPs with CRP. I chose CRP because it is a widely used downstream
measure of systemic inflammation, and publicly available data from large-scale GWAS for CRP are
available. Summary statistics for CRP were obtained from a recent large GWAS based on 204,402
participants (Ligthart et al., 2018). For CRP as an exposure in MVMR, I used independent SNPs
reported to be conditionally associated with CRP and located within the CRP gene coding region. See
Appendix C Table 21.

5.3.2.3 Correction for Multiple Testing

Statistical significance was estimated using the Holm-Bonferroni correction method (Holm, 1979),

correcting for the number of exposures tested at each stage of analysis.

5.4 Results

5.4.1 MR Analyses using All Genetic Variants Associated with IR and Other Cardiometabolic
Traits

There was no evidence for associations between genetically-predicted levels of cardiometabolic traits
and schizophrenia, using the primary IVW analysis method. Evidence using the weighted median
method for associations between genetically-predicted levels of triglycerides (weighted median
OR=1.26; 95% C.I., 1.06-1.50; corrected p=0.090) and HDL (weighted median OR=0.79; 95% C.1.,
0.65-0.95; corrected p=0.126) with schizophrenia did not survive correction for multiple testing

(Table 25).
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Table 25: MR Analyses of Cardiometabolic Traits and Schizophrenia using All SNPs

Risk Factor SNPs, Method Odds Ratio (95% C.1.) | p-value Corrected
N? p-value®
Fasting Insulin 9 IVW 1.13 (0.76-1.70) 0.548 1.000
Weighted Median 0.98 (0.68-1.41) 0.920 1.000
MR Egger 9.24 (1.82-46.97) 0.028 0.280
Triglycerides 9 IVW 1.16 (0.86-1.56) 0.334 1.000
Weighted Median 1.26 (1.06-1.50) 0.009 0.090
MR Egger 1.31(0.84-2.03) 0.308 1.000
HDL 14 IVW 0.94 (0.71-1.23) 0.649 1.000
Weighted Median 0.79 (0.65-0.95) 0.010 0.126
MR Egger 0.67 (0.45-0.99) 0.067 0.670
Fasting Plasma Glucose | 18 IVW 1.07 (0.87-1.31) 0.522 1.000
Weighted Median 1.01 (0.84-1.23) 0.887 1.000
MR Egger 1.13 (0.74-1.74) 0.584 1.000
Type 2 Diabetes 27 IVW 0.93 (0.78-1.12) 0.470 1.000
Weighted Median 0.93 (0.80-1.09) 0.375 1.000
MR Egger 1.03 (0.66-1.62) 0.895 1.000
Body Mass Index 81 IVW 1.05 (0.89-1.24) 0.554 1.000
Weighted Median 1.07 (0.92-1.24) 0.383 1.000
MR Egger 1.43 (0.97-2.10) 0.103 1.000
HbA1C 36 IVW 1.01 (0.76-1.32) 0.956 1.000
Weighted Median 1.12 (0.82-1.51) 0.483 1.000
MR Egger 1.33(0.79-2.23) 0.295 1.000
Glucose Tolerance 7 IVW 0.98 (0.85-1.14) 0.800 1.000
Weighted Median 1.10 (0.87-1.15) 0.993 1.000
MR Egger 1.85(0.95-3.32) 0.094 0.940
LDL 74 IVW 0.99 (0.93-1.05) 0.679 1.000
Weighted Median 0.97 (0.90-1.03) 0.322 1.000
MR Egger 0.98 (0.90-1.07) 0.692 1.000
Leptin 4 IVW 1.97 (0.90-4.31) 0.091 0.910
Weighted Median 1.18 (0.66-2.11) 0.579 1.000
MR Egger 3.29 (0.56-17.22) 0.358 1.000

HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein; IVW=inverse variance
weighted regression; SNPs=single nucleotide polymorphisms; “Number of SNPs remaining after clumping for
independence; ® Each analysis method (IVW, Weighted Median and MR Egger) corrected using the Holm-Bonferroni
method for 10 cardiometabolic markers

Estimates represent ORs for schizophrenia per SD increase in exposure (per unit-increase in log-odds of exposure for
T2DM)

5.4.2 MR Analyses using Inflammation-Related Genetic Variants for IR and Other

Cardiometabolic Traits

After testing only genome-wide significant inflammation-related variants for cardiometabolic traits,
I found evidence for associations of inflammation-related genetically-predicted fasting insulin (Wald
Ratio OR=2.95; 95% C.1., 1.38-6.34; corrected p=0.035) and HDL (Wald Ratio OR=0.55; 95% CI,
0.36-0.84; corrected p=0.035) with schizophrenia. I could not include any genome-wide significant
inflammation-related variants for triglycerides, leptin, or glucose tolerance. In the sensitivity analysis

featuring inflammatory-related cardiometabolic variants at a less stringent significance threshold,
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evidence persisted for associations of inflammation-related genetically-predicted fasting insulin
(IVW OR=1.74; 95% C.1., 1.08-2.98; corrected p=0.030) and HDL (IVW OR=0.78; 95% C.I., 0.62-
0.92; corrected p=0.036) with schizophrenia. In addition, there was evidence for an association of
genetically-predicted inflammation-related triglycerides (IVW OR=1.24; 95% C.I., 1.07-1.55;
corrected p=0.036) with schizophrenia (Table 26; Figures 14-15).

5.4.3 Adjustment for Inflammation

MVMR analysis for inflammation-related SNPs of fasting insulin, triglycerides and HDL with
schizophrenia showed that the univariable associations fully attenuated after controlling for the
genetic associations of these variants with CRP, in analyses involving both inflammation-related
SNPs at genome-wide and nominal significance levels. Controlling for CRP had negligible effect on

MR estimates based on all genetic variants (Tables 27-28; Figure 16).

5.4.4 Test for Bidirectionality using Schizophrenia as Exposure

I did not find statistically significant MR associations between schizophrenia and any cardiometabolic
trait after correction for multiple testing (Table 29). Similarly, I did not find statistically significant
MR associations of inflammation-related schizophrenia variants with cardiometabolic traits after

correction for multiple testing (Table 30).
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Table 26: MR Analyses of Inflammatory-Related Cardiometabolic SNPs and Schizophrenia

Risk Factor Method Genome-Wide Significant Inflammatory-Related SNPs Nominally Significant Inflammatory-Related SNPs
SNPs, Odds Ratio (95% C.I.) | p-value | Corrected p- | SNPs, | Odds Ratio (95% C.I.) | p-value Corrected
No. value® No. p-value?
Fasting Insulin IVW / Wald Ratio 1 2.95 (1.38-6.34) 0.005 0.035 5 1.74 (1.08-2.98) 0.003 0.030
Weighted Median 1.40 (0.83-2.34) 0.203 1.000
MR Egger 7.20 (1.03-50.54) 0.141 0.987
Triglycerides IVW / Wald Ratio | 0 * * * 4 1.24 (1.07-1.55) 0.004 0.036
Weighted Median 1.26 (1.06-1.50) 0.009 0.063
MR Egger 1.29 (1.02-1.63) 0.167 0.987
HDL IVW / Wald Ratio 1 0.55 (0.36-0.84) 0.005 0.035 7 0.78 (0.62-0.92) 0.004 0.036
Weighted Median 0.77 (0.64-0.94) 0.008 0.056
MR Egger 0.68 (0.51-0.91) 0.047 0.288
Fasting Plasma Glucose | I[IVW 2 1.53 (0.39-5.97) 0.537 1.000 4 1.04 (0.36-2.98) 0.945 1.000
Weighted Median 1.08 (0.63-1.86) 0.776 1.000
MR Egger 8.44 (0.65-120.54) 0.409 1.000
Type 2 Diabetes IVW 7 0.94 (0.59-1.48) 0.776 1.000 10 0.97 (0.71-1.33) 0.850 1.000
Weighted Median 1.05 (0.26-4.32) 0.941 1.000 1.05 (0.74-1.48) 0.781 1.000
MR Egger 1.40 (0.32-6.08) 0.668 1.000 1.42 (0.59-3.38) 0.458 1.000
HbA1C IVW 7 1.20 (0.67-2.13) 0.546 1.000 10 1.02 (0.64-1.61) 0.942 1.000
Weighted Median 0.93 (0.46-1.85) 0.832 1.000 0.95 (0.54-1.69) 0.865 1.000
MR Egger 1.68 (0.39-7.21) 0.508 1.000 1.18 (0.41-3.37) 0.767 1.000
Body Mass Index IVW 4 1.23 (0.88-1.71) 0.229 1.000 12 1.48 (0.76-2.87) 0.249 1.000
Weighted Median 1.15 (0.80-1.65) 0.451 1.000 1.16 (0.85-1.58) 0.350 1.000
MR Egger 0.77 (0.33-1.79) 0.650 1.000 3.36 (0.61-18.45) 0.399 1.000
LDL IVW 13 0.96 (0.79-1.17) 0.687 1.000 23 0.93 (0.79-1.10) 0.420 1.000
Weighted Median 0.91 (0.80-1.04) 0.181 1.000 0.91 (0.80-1.04) 0.129 0.987
MR Egger 0.81 (0.58-1.14) 0.254 1.000 0.82 (0.62-1.11) 0.220 0.987
Leptin IVW 0 * * * 2 1.56 (0.77-3.17) 0.221 0.987
Glucose Tolerance IVW 0 * * * 2 1.06 (0.82-1.56) 0.882 1.000

HDL~=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein; IVW=inverse variance weighted regression; SNPs=single nucleotide polymorphisms

*Each analysis method (IVW, Weighted Median and MR Egger) corrected using the Holm-Bonferroni method; *no identified inflammatory-related SNPs

Estimates represent ORs for schizophrenia per SD increase in exposure (or per unit-increase in log-odds of binary exposures e.g., T2D




Figure 14: MR Analyses Testing Associations of the Insulin Resistance Phenotype With
Schizophrenia and Highlighting Inflammation-Related SNPs.
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Points in plots represent the association of the genome-wide significant insulin-resistance single nucleotide
polymorphisms (SNPs) and their association with schizophrenia (Y axis) and the exposure (X axis). SNPs are denoted
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significance (red line).
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Exposure

Figure 15: MR Analyses Testing Associations between Cardiometabolic Traits and
Schizophrenia
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Forest plot presents ORs and 95% ClIs for associations between cardiometabolic traits and schizophrenia using IVW /
Wald Ratio MR analyses based on all single nucleotide polymorphisms (SNPs) associated with each risk factor (green),
inflammation-related SNPs at genome-wide significance (purple), and inflammation-related SNPs at nominal significance
(red). See Table 26 for the number of SNPs used in each analysis. HDL=High Density Lipoprotein, T2DM=Type 2
Diabetes Mellitus; BMI=Body Mass Index; FPG=Fasting Plasma Glucose; LDL=Low-Density Lipoprotein;
HbA1C=Glycated Haemoglobin; Glucose Tol= Glucose Tolerance.
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Table 27: Multivariable MR (MVMR) Results for Insulin Resistance-Phenotype Exposures
(AIl-SNP analysis) with Addition of CRP as Exposure

Risk Factor no. SNPs Odds Ratio (95% C.1.)* P-value
Fasting Insulin 10 0.96 (0.66-1.38) 0.813
CRP 2 0.88 (0.62-1.23)" 0.456
Triglycerides 10 0.98 (0.88-1.10) 0.756
CRP 2 1.00 (0.0.65-1.56) 0.987
HDL 15 1.00 (0.86-1.18) 0.937
CRP 2 0.92 (0.71-1.76)" 0.489

CRP=C-reactive protein; HDL=high-density lipoprotein; SNPs=single nucleotide polymorphisms

aResults for VW MVMR analysis; °I did not perform univariable MR analysis for CRP since this was not a goal of the
study. Univariable MR has been conducted and replicated for CRP and estimates are published elsewhere (Lin et al.,
2019, Hartwig et al., 2017)

Table 28: Multivariable MR (MVMR) Results for Insulin Resistance-Phenotype Exposures
(Inflammation-Related-SNP analysis) with Addition of CRP as Exposure

Risk Factor Genome-Wide Significant | Nominally Significant Inflammation-

Inflammation-Related SNPs Related SNPs

no. Odds Ratio (95% C.1.)* | P- no. Odds Ratio (95% CI)* | P-

SNPs value | SNPs value
Fasting Insulin 1 1.02 (0.37-2.78) 0975 | 5 1.46 (0.85-2.51) 0.307
CRP 2 0.94 (0.40-2.18)" 0.881 |2 1.27 (0.80-2.02) 0.308
Triglycerides - - - 4 1.06 (0.91-1.25) 0.447
CRP - - - 2 0.70 (0.45-1.45) 0.343
HDL 1 1.00 (0.85-1.16) 0.849 | 7 0.99 (0.81-1.21) 0.731
CRP 2 0.90 (0.72-1.12)° 0.367 |2 0.90 (0.76-1.08) 0.251

CRP=C-reactive protein; HDL=high-density lipoprotein; SNPs=single nucleotide polymorphisms

aResults for VW MVMR analysis; °I did not perform univariable MR analysis for CRP since this was not a goal of the
study. Univariable MR has been conducted and replicated for CRP and estimates are published elsewhere (Lin et al.,
2019, Hartwig et al., 2017)
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Figure 16: Multivariable MR Analysis Testing Associations between Insulin Resistance
Phenotypes and Schizophrenia After Controlling for Genetic Associations with CRP
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Forest plot presents ORs and 95% Cls for associations between insulin resistance phenotypes and schizophrenia using
IVW / Wald Ratio MR and MVMR analyses based on all single nucleotide polymorphisms (SNPs) associated with each
risk factor and unadjusted for CRP (dark green), all SNPs associated with each risk factor and adjusted for CRP (light
green), inflammation-related SNPs at genome-wide significance and unadjusted for CRP (dark purple), inflammation-
related SNPs at genome-wide significance and adjusted for CRP (light purple), inflammation-related SNPs at nominal
significance and unadjusted for CRP (dark red), and inflammation-related SNPs at nominal significance and adjusted for
CRP (light red). See Tables 27 and 28 for the number of SNPs used in each analysis. HDL=High Density Lipoprotein.

141



Table 29: Bidirectional MR Analyses Using All SNPs for Schizophrenia With Cardiometabolic
Outcomes

Outcome SNPs, | Method B (S.E) P-value | Corrected
No. p-value®
Fasting Insulin 101 IVW 0.01 (0.02) 0.496 1.000
Weighted Median 0.02 (0.02) 0.268 1.000
MR Egger -0.05 (0.08) 0.542 1.000
Triglycerides 101 IVW 0.00 (0.02) 0.970 1.000
Weighted Median 0.00 (0.03) 0.987 1.000
MR Egger 0.05 (0.11) 0.642 1.000
HDL 101 IVW -0.02 (0.03) 0.521 1.000
Weighted Median -0.01 (0.03) 0.901 1.000
MR Egger -0.04 (0.05) 0.051 0.510
Fasting Plasma Glucose 105 IVW 0.01 (0.01) 0.339 1.000
Weighted Median 0.01 (0.01) 0.454 1.000
MR Egger 0.00 (0.06) 0.994 1.000
Type 2 Diabetes 109 IVW -0.01 (0.06) 0.845 1.000
Weighted Median 0.00 (0.08) 1.000 1.000
MR Egger 0.14 (0.30) 0.645 1.000
Body Mass Index 101 IVW -0.03 (0.02) 0.220 1.000
Weighted Median -0.03 (0.02) 0.146 1.000
MR Egger 0.18 (0.10) 0.081 0.729
HbAIC 104 IVW 0.01 (0.01) 0911 1.000
Weighted Median 0.01 (0.02) 0.730 1.000
MR Egger 0.01 (0.07) 0.948 1.000
Glucose Tolerance 101 IVW 0.08 (0.07) 0.278 1.000
Weighted Median 0.12 (0.10) 0.233 1.000
MR Egger 0.24 (0.35) 0.496 1.000
LDL 101 IVW -0.06 (0.03) 0.079 0.790
Weighted Median -0.06 (0.05) 0.080 0.800
MR Egger -0.22 (0.14) 0.113 0.904
Leptin 101 IVW 0.02 (0.02) 0.239 1.000
Weighted Median 0.01 (0.03) 0.677 1.000
MR Egger -0.02 (0.09) 0.810 1.000

HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein; SNPs=single nucleotide
polymorphisms; [IVW=inverse variance weighted regression; B=beta coefficient; S.E=standard error. *Adjusted using the
Holm-Bonferroni method for multiple testing.
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Table 30: Bidirectional MR Analyses Using Inflammation-Related SNPs for Schizophrenia
With Cardiometabolic Outcomes

Outcome SNPs, | Method B (S.E) P-value Corrected P-
No. value?
Fasting Insulin 3 IVW 0.04 (0.05) 0.409 1.000
Weighted Median 0.03 (0.06) 0.666 1.000
MR Egger 0.00 (0.09) 0.976 1.000
Triglycerides 3 IVW 0.20 (0.09) 0.034 0.340
Weighted Median 0.20 (0.08) 0.009 0.090
MR Egger 0.28 (0.30) 0.306 1.000
HDL 1 Wald Ratio -0.26 (0.21) 0.202 1.000
LDL 3 IVW 0.11 (0.07) 0.953 1.000
Weighted Median 0.06 (0.07) 0.341 1.000
MR Egger -0.01 (0.10) 0.895 1.000
Body Mass Index 4 IVW -0.02 (0.09) 0.750 1.000
Weighted Median 0.00 (0.05) 0.832 1.000
MR Egger 0.05 (0.02) 0.705 1.000
Type 2 Diabetes 3 IVW -0.18 (0.34) 0.598 1.000
Weighted Median 0.10 (0.30) 0.729 1.000
MR Egger 0.24 (0.80) 0.789 1.000
Fasting Plasma Glucose 4 IVW -0.02 (0.07) 0.780 1.000
Weighted Median -0.05 (0.04) 0.317 1.000
MR Egger -0.16 (0.10) 0.258 1.000
HbAIC 3 IVW -0.07 (0.07) 0.269 1.000
Weighted Median 0.06 (0.05) 0.137 1.000
MR Egger -0.18 (0.12) 0.292 1.000
Glucose Tolerance 4 IVW 0.12 (0.26) 0.648 1.000
Weighted Median 0.10 (0.31) 0.732 1.000
MR Egger -0.09 (0.49) 0.872 1.000
Leptin 4 IVW -0.03 (0.07) 0.646 1.000
Weighted Median -0.04 (0.08) 0.619 1.000
MR Egger -0.10 (0.12) 0.526 1.000

HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein; SNPs=single nucleotide
polymorphisms; [IVW=inverse variance weighted regression; B=beta coefficient; S.E=standard error. *Adjusted using the
Holm-Bonferroni method for multiple testing.

5.4.5 Test for Horizontal Pleiotropy

Using the MR-Egger regression intercept test, | found evidence of potential horizontal pleiotropy for
BMI and HDL in the all-SNP analysis, but no evidence for horizontal pleiotropy for any
cardiometabolic exposure in the inflammation-related SNP analysis. Using MR-PRESSO however, |
found evidence that horizontal pleiotropy was likely to have affected estimates for all cardiometabolic
exposures in the all-SNP analysis (p value for global test all <0.020), and both LDL and T2D in the
inflammation-related SNP analysis. Following MR-PRESSO outlier correction, evidence
strengthened for the association of triglycerides with schizophrenia in the all-SNP analysis (MR-

PRESSO IVW $=0.23, S.E. 0.06, p=0.008), but outlier-corrected IVW estimates for other exposures
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were not significantly altered. In bidirectional analyses, both MR-PRESSO and the MR-Egger
regression intercept suggested horizontal pleiotropy affecting the outcomes of HDL, BMI, and LDL
(all p<0.05). There was evidence for a weak protective effect of schizophrenia on BMI following
outlier correction ($=-0.04, S.E. 0.02, p=0.014). MR-PRESSO additionally revealed possible
horizontal pleiotropy affecting the outcomes of fasting insulin, triglycerides and T2DM (p for MR-
PRESSO global test all <0.05), but outlier-corrected IVW estimates were not significantly altered.

See Appendix C Tables 22-29 for full horizontal pleiotropy sensitivity analysis results.

5.4.6 Test for Heterogeneity of Instruments

In the analyses based on all-SNPs, the majority of cardiometabolic traits demonstrated evidence of
heterogeneity, which was reduced in the inflammation-related SNP analysis. See Appendix C Tables

22-29 for full heterogeneity of instruments sensitivity analysis results.

5.4.7 Test for Measurement Error

Results for the Pgx tests for SNP-exposure associations revealed some evidence for potential
measurement error which may have biased MR Egger analyses in the analyses with leptin, glucose

tolerance, T2DM and schizophrenia as exposures. See Appendix C Table 30.
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5.5 Discussion

I conducted bidirectional uni- and multi-variable two-sample MR analyses using large publicly
available genomic datasets to first examine for associations that support a causal relationship between
insulin resistance/related cardiometabolic traits and schizophrenia, and second, to examine whether
there is evidence in support of the hypothesis that inflammation may be a common causal mechanism
for insulin resistance and schizophrenia. Using the primary IVW analysis method, I did not find
evidence supporting a causal association between genetically predicted cardiometabolic traits and
schizophrenia. However, 1 found weak evidence using the weighted median method to support a
causal association of genetically predicted levels of triglycerides and HDL with schizophrenia, but
these associations did not survive correction for multiple testing, and the estimates may have been

affected by horizontal pleiotropy.

I found more consistent evidence for an association of an insulin resistance phenotype of fasting
insulin, triglycerides, and HDL (Lotta et al., 2017a) with schizophrenia when I examined only genetic
variants also associated with inflammation. Using two p-value cut-offs for inflammation-related
SNPs, I found that the strength of association with schizophrenia increased as the specificity toward
inflammation-related SNPs increased. In MVMR analyses adjusting for CRP, those estimates
attenuated to the null. I found no evidence in bidirectional analyses supporting a causal relationship
of schizophrenia with insulin resistance (Panels C&D in Figure 13). Together, the results are therefore
most consistent with inflammation as a common cause for insulin resistance and schizophrenia (Panel

A in Figure 13).

Three aspects of the results point toward inflammation as a common cause for insulin resistance and
schizophrenia. First, I did not find convincing evidence for a causal relationship between insulin
resistance and schizophrenia (likely ruling out Panel B in Figure 13). Second, in the analyses of
inflammation-related variants for the cardiometabolic traits, I found more consistent evidence
supporting a potential causal relationship of fasting insulin, HDL and triglycerides with
schizophrenia, and the strength of association with schizophrenia increased as the specificity toward
inflammation-related SNPs increased. Third, I used MVMR to evidence that after controlling for
CRP, an archetypal generalized marker of inflammation, the associations between inflammation-
related genetic variants for insulin resistance and schizophrenia wholly attenuated. This result
suggests that the observed associations for the inflammation-related variants are at least in part
explained by inflammation. Together, the results are consistent with the idea that inflammation may

be a common causal mechanism for insulin resistance and schizophrenia.
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Evidence for a common-causal mechanism between insulin resistance and schizophrenia may help to
explain why schizophrenia is associated with higher rates of insulin resistance even in the early stages
of illness when the cumulative effects of medication and lifestyle factors are relatively small (Perry
etal., 2016, Pillinger et al., 2017a). Anti-inflammatory agents, of which several have shown promise
in treating the symptoms of schizophrenia (Cakici et al., 2019), should therefore be considered a
putative therapeutic target for the prevention or treatment of cardiometabolic disorders in

schizophrenia.

I used CRP, an archetypal downstream inflammatory marker, as a means of gauging the effect of
systemic inflammation in MVMR analysis, rather than hypothesizing a specific role for CRP in the
relationship between insulin resistance and schizophrenia. Nevertheless, CRP has observationally
shown in both cross-sectional (Fernandes et al., 2016) and longitudinal (Metcalf et al., 2017) research
to be associated with schizophrenia. However, such findings are limited by the potential for residual
confounding and reverse causality. Interestingly, MR findings have reported that genetically
predicted CRP may have a protective effect on schizophrenia (Hartwig et al., 2017), with authors
positing that a genetically attenuated ability to produce CRP may predispose to more insidious and
chronic infections. In MVMR analysis, attenuation of insulin resistance-schizophrenia associations
after controlling for CRP is consistent with inflammation being associated with both exposure and
outcome, albeit 'negatively' with the latter. Further research is needed to explore potential

mechanisms of association between CRP and schizophrenia.

Many of the SNPs included in the inflammation-related analysis were associated with neutrophils and
lymphocytes. A raised neutrophil to lymphocyte ratio (NLR) is a marker of systemic inflammation
and is known to be associated with schizophrenia (Karageorgiou et al., 2018) and insulin resistance
(Lou et al., 2015). However, I could not identify large GWAS studies conducted in European
populations for NLR or for other inflammatory markers, which I might have used in MVMR analyses
in place of CRP.

Based on the current results, one cannot completely rule out the possibility that insulin resistance may
mediate an inflammation-schizophrenia association (Panel B in Figure 13). There was weak evidence
that did not survive correction for multiple testing for an association of triglycerides and HDL with
schizophrenia using the weighted median method. In the MR-PRESSO sensitivity analysis, evidence
from the outlier-corrected IVW analysis suggested a possible association between triglycerides and
schizophrenia. These findings are broadly similar to one previous MR study (Polimanti et al., 2017),
which reported only weak evidence of an association between HOMA-IR and schizophrenia. Another
MR study (Li et al., 2018) reported a genetic association between fasting insulin and schizophrenia,

although the evidence attenuated after adjustment for BMI. To account for BMI, I obtained summary
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statistics for genetic variants related to insulin resistance after controlling for BMI (Lotta et al.,
2017b). The previous MR study included an ethnically heterogeneous sample, increasing the potential
for population stratification bias. I used genetic data from a more ethnically homogenous GWAS of
schizophrenia (Pardinas et al., 2018). Nevertheless, while the results in the all-SNP analysis suggested
weak evidence for triglycerides and HDL, which may reflect an insulin resistance phenotype, the
evidence did not survive correction for multiple testing and requires replication in future when larger

GWAS samples are available.

Regarding additional findings, after outlier correction, I found that schizophrenia had a weak
protective effect on BMI. This finding complements estimates from previous research, which has
reported a negative genetic correlation between schizophrenia and BMI (Bahrami et al., 2020). This
finding suggests that weight gain associated with schizophrenia is unlikely to be a feature of the
illness itself but could be attributed to iatrogenic or lifestyle effects. Moreover, the 'lean insulin
resistance' phenotype may be associated with higher levels of inflammation (Ding et al., 2016). In
addition, the 'lean' nature of the phenotype may mean that critical cardiometabolic investigations may

be overlooked, particularly in younger patients.

Strengths of this study include the use of a large set of cardiometabolic traits and large GWAS
datasets, through which I could test specific biological mechanisms. I selected SNPs reaching
genome-wide significance from large GWAS and meta-GWAS for insulin resistance and related
cardiometabolic traits. I performed a comprehensive set of sensitivity analyses to check the validity
and robustness of the findings. Furthermore, whilst weak-instrument bias may be a factor in MR
analysis, in two-sample MR this bias tends toward the null (Davies et al., 2015) so would not explain
the positive associations described in this study. I corrected for multiple testing to minimise potential

type I error.

This study has some limitations. I did not select SNPs in known coding regions for the exposures, for
example, the /RS-1 gene for insulin resistance (Carvalho et al., 1999). I took this step on the
assumption that many mechanisms at play may not yet be fully understood. For example, whilst the
heritability of cardiometabolic traits such as obesity is as high as 70%, the variance currently
explained by known genetic variants is a small fraction of this (Herrera et al., 2011). In addition,
selecting SNPs from many different GWAS studies featuring large sample sizes may increase the risk
of sample-overlap between exposure and outcome samples and can bias the results in either direction,
depending on the proportion of overlap (Hemani et al., 2018). Also, for the primary inflammation-
related SNP analysis, I chose a stringent p-value threshold to define inflammation-related SNPs. In
doing so, I may have overlooked some SNPs with genuine inflammatory associations. As a result,

only one genome-wide significant inflammation-related genetic variant was included in the analysis
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of fasting insulin and HDL, and none could be included for triglycerides. Therefore, these results
should be considered with caution. However, I attempted to address this limitation by relaxing the p-
value threshold for inflammation-related SNPs, thereby allowing a larger number of SNPs to be
included, and the results for fasting insulin, HDL and triglycerides were consistent. Yet, the inclusion
of inflammation-related genetic variants at a relaxed significance threshold may have increased the
risk of weak instrument bias for those analyses. In the future, better-powered GWAS may identify
more SNPs for analysis and at greater resolution, potentially unearthing a larger number of
inflammation-related SNPs and at greater strength of association, which would be helpful to confirm

the findings.

Additionally, the full range of gene products from the genetic variants I used as proxies for the
cardiometabolic traits is unknown. So, I cannot comment on potential biological mechanisms of
association other than inflammation, which may also be relevant. Finally, the analyses were based on
primarily European participants, so it is unclear whether the results of this study apply to other
populations. Large-scale GWAS and replication of these analyses in different populations are

required to answer this question.

In conclusion, it is well established that certain antipsychotic drugs and lifestyle factors such as
smoking, lack of exercise and poor diet are important contributors to cardiometabolic comorbidity in
people with schizophrenia. In addition, the findings from this study suggest that inflammation may
be a common cause for schizophrenia and insulin resistance, which may at least partly explain why
they so commonly co-occur in clinical practice. Lifestyle modification and careful prescription of
certain antipsychotic medications remain crucial malleable targets to reduce the significant impact of
comorbid cardiometabolic disorders on the quality and length of life in people with schizophrenia.
However, findings from this study suggest that targeting inflammation could be an important
therapeutic target for the treatment and prevention of cardiometabolic disorders in people with

schizophrenia.
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Section C: Summary of Main Findings and Conclusions

In Chapter 3, using prospective ALSPAC data, I report that genetic predisposition for disrupted
glucose-insulin homeostasis was associated with an increased risk of schizophrenia-spectrum
outcomes at age 18 years and vice versa. These findings provide evidence for shared genetic liability
for comorbid schizophrenia and disrupted glucose-insulin homeostasis. I also report evidence for a
mediating effect of childhood inflammation on the association between genetic predisposition for
disrupted glucose-insulin homeostasis and psychosis risk in adulthood. These results suggest that
genetic variation may influence biological pathways leading to inflammatory changes, which in turn

increases the risk of both disrupted glucose-insulin homeostasis and schizophrenia in adulthood.

In Chapter 4, 1 found further evidence from large samples that cardiometabolic and inflammatory
traits share genetic overlap with schizophrenia. I also found a set of biologically plausible common-
causal variants that could influence biological pathways, particularly involving BDNF and glucose
transport, which could influence inflammation, glucose-insulin homeostasis, and risk of

schizophrenia.

In Chapter 5, using MR, I found evidence supporting that inflammation-related insulin resistance may
be causally related to schizophrenia. These findings suggest that inflammation may be a common

cause of schizophrenia and comorbid cardiometabolic disorders.

Together, the results from Chapters 3-5 comprising Section C suggest that a summation of genetic
variation may influence biological pathways leading to changes in inflammation/immune function,

which in turn increases the risk of both disrupted glucose-insulin homeostasis and schizophrenia.
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SECTION D

IMPROVING THE PREDICTION OF
CARDIOMETABOLIC RISK IN SCHIZOPHRENIA
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Section D Summary

In Section D, I aimed to examine and improve the clinical prediction of cardiometabolic risk in
schizophrenia. In this section, I focussed my attention on young people at the onset of psychotic
illness since primary prevention is the best means to reduce the risk of adverse cardiometabolic

outcomes (Weintraub et al., 2011).

Therefore, in Chapter 6, I performed a systematic review of cardiometabolic risk prediction
algorithms developed either for the general or psychiatric populations and examined whether they
may be suitable for young people with psychosis. In this detailed review of over 100 studies, I found
that all existing algorithms were developed in relatively older adults; most were at high risk of bias;
most were not externally validated; and few considered relevant predictors such as antipsychotic
medication. Further, I performed a validation analysis in ALSPAC of three cardiometabolic risk
prediction algorithms commonly used in clinical practice, testing their predictive ability in a sample
of young adults who had/were at risk of developing psychosis. I found that the algorithms
substantially underpredicted cardiometabolic risk in the younger psychosis-risk population.
Therefore, I concluded no existing cardiometabolic risk prediction algorithms can be recommended
for use in young people with psychosis. Findings from this study have been published in Acta

Psychiatrica Scandinavica (Perry et al., 2020c). See Appendix D for the published manuscript.

Given the lack of an appropriate algorithm for young people with psychosis, in Chapter 7, I used
patient data from three EIS to develop and externally validate the first cardiometabolic risk prediction
algorithm tailored specifically for young people with psychosis, the Psychosis Metabolic Risk
Calculator (PsyMetRiC). I developed two versions of PsyMetRiC, one with and one without
biochemical results for clinical practicality. I developed PsyMetRiC in consultation with a young
person’s advisory group to maximise patient acceptability. I performed a detailed set of analyses to
examine the predictive performance and potential clinical usefulness of PsyMetRiC, and developed
an online data visualisation app. The findings from this study have been accepted for publication in

The Lancet Psychiatry. The manuscript is currently at the proofing stage with the journal.
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Chapter 6

Cardiometabolic Risk Prediction Algorithms for Young People with

Psychosis: A Systematic Review and Validation Analysis
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6.1 Introduction

Physical comorbidity is a leading cause of significantly higher mortality rates and reduced life
expectancy for people with schizophrenia compared with the general population (Laursen et al., 2019,
Plana-Ripoll et al., 2019, Plana-Ripoll et al., 2020). Therefore, there is a clear and crucial need for
clinical tools to identify cardiometabolic risk in this group in order to optimise care and improve long-
term outcomes. Yet, a recent report of a small sample of people with chronic schizophrenia suggests
that some commonly used cardiometabolic risk prediction algorithms return differing risk prediction
scores when tested on the same participants. This calls into question the reliability and suitability of
such algorithms for relatively older people with chronic schizophrenia, let alone young people with

psychosis (Berry et al., 2018).

Recent evidence suggests that the physical comorbidity associated with schizophrenia starts early.
Markers of developing cardiometabolic disorders are a feature that distinguish cases of first-episode
psychosis from matched general population controls (Perry et al., 2016, Pillinger et al., 2017a) and
are associated with young adults at risk of developing psychosis (Perry et al., 2018). The field of early
intervention in psychosis rests on the premise that intervening early could improve longer-term
outcomes, and this premise applies equally to the treatment of cardiometabolic disorders. Therefore,
cardiometabolic risk prediction algorithms may be a valuable tool for healthcare professionals to help
tailor treatment plans for young people with psychosis that could help to reduce both long-term
physical and psychiatric morbidity. However, such a tool could only be clinically useful if the

predictions it makes are accurate. It is unclear as to whether this may or may not be the case.

6.2 Aims and Objectives

I conducted a systematic review to identify and compare existing cardiometabolic risk prediction
algorithms developed for the general or psychiatric populations and consider their suitability for
young people with psychosis. Next, | performed an exploratory validation analysis using data from
ALSPAC to examine the predictive performance of any algorithms highlighted as potentially suitable
by the review in a sample of young adults with or at risk of developing psychosis. To explore the
impact of age on predictive performance, I reassessed model performance after artificially increasing
the age of participants to the mean age of the original algorithm development study, leaving all other

predictors unchanged.
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6.3 Methods

6.3.1 Systematic Review
6.3.1.1 Literature Search

I conducted a systematic literature search of EMBASE (1947-present), Ovid MEDLINE (1946-
present), PsychINFO (1806-present), Web of Science (from inception), and the first twenty pages of
Google Scholar (Haddaway et al., 2015) to 1% December 2019. I also searched the references of
included studies. The search strategy is presented below. MeSH headings (denoted with *) and text

terms were used:

Group 1: metabolism* (OR) metabolic* (OR) diabetes mellitus* (OR) cardiovascular diseases™

(OR) obesity* (OR) cardiometabolic
(AND)

Group 2: risk assessment™* (OR) risk* (OR) outcome assessment* (OR) patient outcome assessment™

(OR) prognosis™
(AND)

Group 3: calculator (OR) computers* (OR) algorithms* (OR) software* (OR) tool.

I applied the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-analyses)
guidelines (Moher et al., 2009). The systematic review was registered on PROSPERO
(CRD42019150377).

6.3.1.2 Study Selection
The inclusion criteria were as follows;

(1) Studies reporting the development and/or validation of cardiometabolic risk algorithms designed

for either the general or psychiatric populations;

(2) studies which: reported in combination the development and validation (internal or external) of
an original algorithm; reported the development but not validation of an algorithm; reported the first
validation of a previously developed but not validated algorithm; or reported a new recalibration of a

previously developed algorithm;
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(3) Cardiometabolic risk was defined as CVD (stroke, myocardial infarction, hypertension, unstable

angina) and its pre-determinants including T2D, prediabetes, obesity, or dyslipidaemia;
(4) Studies reported in any language;

(5) Published and unpublished research, conference proceedings and academic theses.

The exclusion criteria were as follows:

(1) algorithms designed specifically for other defined health groups (e.g., post-operative patients or

patients with any physical health diagnoses at baseline);

(2) studies reporting validation without recalibration of previously validated algorithms.

Titles and abstracts were screened independently by three researchers (Dr Benjamin Perry; Mr Owen
Crawford; Miss Soomin Jang) prior to full-text screening. Any discrepancies were resolved in
consultation with a senior researcher (Professor Golam Khandaker). Data were extracted from studies
that met the inclusion criteria. Searches were re-run immediately prior to the final analyses, and

further studies retrieved for inclusion using the processes outlined above.

6.3.1.3 Data Extraction and Synthesis

I extracted data on general characteristics (e.g., population, location, study type, type of risk
predicted), the characteristics of included participants (e.g., age, sex, ethnicity), and characteristics of
the developed/validated algorithms (e.g., included predictors, algorithm performance statistics). Risk
of bias was assessed using the 'Prediction model Risk Of Bias Assessment Tool' (PROBAST) (Wolff
etal., 2019), which aims to identify shortcomings in study design, conduct, or analysis that could lead
to systematically distorted estimates of model predictive performance. PROBAST includes four
domains for potential sources of bias in prediction model studies (participants, predictors, outcome,
and analysis) which are then summarised by an overall judgement; either low-risk, high-risk or
unclear-risk of bias (Wolff et al., 2019). I plotted the range and frequency of predictors included in
studies. I illustrated the relative weighting of different predictors in the single included study that
featured psychiatric predictors. Algorithm performance was compared using statistics relating to
model discrimination (how well an algorithm discriminates people at higher-risk from people at
lower-risk, e.g. Harrell's C Statistic, where a score of 1.0 indicates perfect discrimination, and a score

of 0.5 indicates the model is no better than chance) and model calibration (the accuracy of absolute-
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risk estimates, e.g. calibration plots) (Alba et al., 2017). I also examined the events-per-variable ratio
(EPV) (the ratio of outcome events: predictors considered in algorithm development) of each study
to assess the potential risk for model overfit (Peduzzi et al., 1996). An EPV of 10 or more had
previously been considered satisfactory (Pavlou et al., 2015), though more recently, higher EPV ratios
are often advised (Ogundimu et al., 2016). Where an EPV ratio was not reported, I calculated it where
possible from the information available in the study. Finally, I considered the likely suitability of
included algorithms for young people with psychosis. I summarized and compared studies with a

narrative synthesis (Rodgers, 2009).

6.3.2 Exploratory Validation Analysis
6.3.2.1 Data Source

See Section 2.3.1 for a full description of the ALSPAC cohort. Ethical approval for the study was
obtained from the ALSPAC Ethics and Law Committee and Local Research Ethics Committees. All

participants provided informed consent.

6.3.2.2 Study Sample

I included participants who at either age 18 or 24 years were identified as experiencing PEs or
psychotic disorder. See Section 2.3.3 and Section 3.3.2 for detail on assessment of PEs and psychotic
disorder at age 18 and 24 years. I excluded participants who already met the outcome criteria at age
18 years, and participants who had missing data on all included variables. Additionally, I conducted
a post-hoc sensitivity analysis to examine the potential impact of sample size; I reperformed the
analysis including all participants from the total ALSPAC sample at age 18 years who did not meet
the criteria for the outcome at age 18 years, and who did not have missing data on all included
variables. In total, after exclusions, I included 505 participants. See Appendix D Figures 1-2 for flow-

charts of included participants.

6.3.2.3 Outcome

I used the harmonized definition (Alberti et al., 2009) of the metabolic syndrome measured at age
24y as the outcome, which it is an established precursor of T2D (Shin et al., 2013) and CVD (Wilson
et al., 2005), and is an appropriate cardiometabolic outcome for young adults. See Table 2 for the

diagnostic criteria. For blood-based predictors (FPG, HDL and triglycerides), fasting samples were
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taken at 0900 after a 10-hour fast (water only) at age 18 years. Samples were immediately spun,
frozen and stored at —80°C and measurements were assayed within 3 to 9 months of the samples being
taken with no previous freeze-thaw cycles. FPG was measured by an ultrasensitive ELISA (Mercodia,
Uppsala, Sweden) automated microparticle enzyme immunoassay. Its sensitivity was 0.07 mU/L, and
inter- and intra-assay coefficients of variation were <6%. Plasma lipid concentrations were measured
by modification of the standard Lipid Research Clinics Protocol by using enzymatic reagents for lipid

determination.

6.3.2.4 Predictors

I included all available predictors from QRISK3 (Hippisley-Cox et al., 2017), QDiabetes (Hippisley-
Cox and Coupland, 2017) and PRIMROSE (Osborn et al., 2015), which were the three algorithms
highlighted as being potentially the most suitable for young people with psychosis. These included
age, Townsend deprivation score, body mass index (BMI), ethnicity, smoking, antipsychotic
medication use, antidepressant use, corticosteroid use, psychosis, depression, family history of
cardiovascular disease or type 2 diabetes, hypertension, FPG, cholesterol:HDL ratio, systolic blood
pressure, total cholesterol, HDL, alcohol intake, and year of assessment. See Appendix D Methods &

Appendix D Table 1 for a detailed description of the coding and assessment of predictors.

6.3.2.5 Missing Data

To address the impact of missing data, I used multiple imputation using chained equations (MICE)
(Buuren, 2011) for variables which: 1) had <40% missing data (Lee, 2011) from the sample of
participants with data on the outcome; 2) had suitable auxiliary variables available to use as
‘indicators of missingness’, to reduce the impact of bias attributed by the risk of data being ‘missing
not at random’ (Dong and Peng, 2013). Auxiliary variables were selected based upon contributing to
reducing the fraction of missing information (Madley-Dowd et al., 2019). Multiple imputation of 10
datasets was used to replace missing continuous predictor data, using the M/CE package (Buuren,
2011) in R (R Core Team, 2017). Equivalent biochemical and questionnaire data taken at age 15 years
were included as auxiliary predictor variables in MICE. Box-and-Whisker and Density plots were

used to check similarities of observed and imputed data. Rubin’s rules were used to pool analyses.
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6.3.2.6 Statistical Analysis

Estimated six-year risk estimates for metabolic syndrome were calculated for QDiabetes (Hippisley-
Cox and Coupland, 2017), QRISK3 (Hippisley-Cox et al., 2017) and PRIMROSE (Osborn et al.,
2015), by applying the published fully-specified algorithms to the sample. QDiabetes and
PRIMROSE comprise different models depending on the availability of blood test results. Therefore,
I used the model which performed best in the original model development studies (Hippisley-Cox
and Coupland, 2017, Osborn et al., 2015). For QDiabetes, the best performing model included FPG;
for PRIMROSE, the best performing model included lipids. QDiabetes and QRISK3 estimate risk
separately for males and females. Algorithm performance was assessed using measures of
discrimination (Harrell’s C-statistic and R?); and a measure of calibration (calibration plots).
Calibration plots included grouped observations, which were split at each 0.2 of predicted risk. First,
I calculated model performance using actual participant age (18y). To assess the impact of age on
model performance, I artificially substituted every participants’ age in ALSPAC to the mean age from
the original algorithm development study (QDiabetes=44.9y; QRISK3=42.9y; PRIMROSE=49.5y),
leaving all other predictors unchanged. I re-ran each algorithm and compared the model performance

statistics described above. Statistical analysis was carried out in R version 3.6.0 (R Core Team, 2017).

6.4 Results

6.4.1 Systematic Review
6.4.1.1 Study Selection and Quality Assessment

The literature search returned 7,744 results after removing duplicates. I reviewed 362 full texts, of
which 110 studies met inclusion criteria. See Appendix D Results for a full list of studies included in
the systematic review. See Figure 17 for the PRISMA diagram. Three studies were not published in
peer-reviewed journals but were published either as conference proceedings (Hossain, 2018), a thesis
(Boucher, 2019) or a pre-print (Gupta, 2019). Reporting quality was relatively poor across the
majority of studies, with 108 studies (98%) either at unclear or high-risk of bias following assessment

with the PROBAST tool (Wolff et al., 2019). See Appendix D Table 2 for full PROBAST results.
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Figure 17: Systematic Review PRISMA Diagram
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6.4.1.2 Study Characteristics

Appendix D Table 3 reports in detail the characteristics of included studies. To summarise, all studies
were conducted on general population samples of healthy adults, except one which was conducted on
patients with severe mental illness, defined as either schizophrenia, other psychotic disorder, or
bipolar disorder (Osborn et al., 2015). The majority of included studies were conducted in high-
income or upper-middle-income countries, with the UK, USA and China best represented. Eleven
studies were conducted in lower- or middle-income countries. Sample sizes were highly variable in
both development (from n=100 participants (Park et al., 2009) to »n==8,136,705 participants
(Hippisley-Cox and Coupland, 2017)) and validation cohorts (from #=90 participants (Friedland et
al., 2009) to n=2,671,298 participants (Hippisley-Cox et al., 2017)). Sixty-one studies (55%) assessed
the risk of fatal or non-fatal CVD; 31 studies (28%) assessed the risk of T2D; five studies (5%)
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assessed the risk of either prediabetes or T2D; three studies (3%) assessed the risk of metabolic

syndrome or obesity; and three studies (3%) assessed the risk of stroke or transient ischaemic attack.

Lengths of predicted risks ranged from one (Noda et al., 2010) to 30 (Wickramasinghe et al., 2014,
Pencina et al., 2009) years. The most common risk prediction timeframes were either ten-year risk
(38 studies, 35%) or five-year risk (14 studies, 13%). Thirty-nine studies (35%) performed external
validation of an original algorithm. Fourty studies (36%) performed internal validation by sub-setting
the initial cohort or bootstrap methods. All algorithms were designed using either Cox Proportional
Hazards or derivations of logistic regression analysis. Most studies selected variables for inclusion
from previous research or clinical importance (50 studies, 45%) or using statistical methods, i.e.,
forward, or backward selection (31 studies, 28%). Seventeen studies (15%) used simple univariable
analysis of each considered predictor, which is the least preferable since it cannot assess interactions
between two or more variables. Eleven studies (10%) used machine learning techniques for variable

selection.

6.4.1.3 Participant Characteristics

All studies were conducted in adults. The mean age of participants based on the 76 studies that
reported mean age was 50.50 (SD 9.31) years. No studies included a mean age of participants below
35 years. Eighty-nine studies (81%) reported the sex distribution of the derivation cohort (mean
55.29% male (SD 17.27)), and 42 studies (38%) reported for the validation cohort (mean 52.25%
male (SD 14.44)). The majority of studies included roughly equal sex distribution, apart from nine
studies which included only (Paynter et al., 2009, Ridker et al., 2007) or mostly females (Yatsuya et
al., 2016, Yatsuya et al., 2013, Abd ElI-Wahab et al., 2019, Choe et al., 2018, Park et al., 2009, Paynter
et al., 2011, Ayala Solares et al., 2019), and 12 studies which included only (Ridker et al., 2008,
Assmann et al., 2002, Brand, 1976, Dunder et al., 2004, Ferrario et al., 2005, L'Italien et al., 2000,
Noda et al., 2010, Voss et al., 2002, Zhang et al., 2005) or mostly males (Wong et al., 2016, Nanri et
al., 2015, Wickramasinghe et al., 2014). Thirty-three studies (30%) reported the ethnic makeup of
their sample, where samples ranged from being ethnically completely homogenous in 18 studies
(16%) to relatively heterogeneous, with less than 66% of participants falling into the most common
ethnic group (Anderson et al., 2015, Robinson et al., 2011, Ha et al., 2018, Pylypchuk et al., 2018).
See Appendix D Table 3 for detailed results on participant characteristics of included studies.
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6.4.1.4 Algorithm Characteristics
6.4.1.4.1 Predictors Included in Existing Algorithms

Figure 18 shows the frequency of different predictors included in studies. The most common
predictors were age (98 studies, 89%), smoking (83 studies, 75%) and systolic blood pressure (55
studies, 50%). The number of predictors considered for each algorithm varied between four (Gao et
al., 2010, Gao et al., 2009, Chen et al., 2009, Wen et al., 2017) to 473 predictors (Alaa et al., 2019).
EPV varied between 2.1 (Griffin et al., 2000) and 5,075.4 (Hippisley-Cox et al., 2017). Twenty
studies featured EPV ratios that were likely <10. See Appendix D Table 4 for a detailed description

of algorithm characteristics of included studies.

6.4.1.4.2 Performance of Existing Algorithms

Discrimination statistics were presented in 93 studies (85%), and calibration statistics were presented
in 62 studies (56%). From the 80 studies that included both model development and validation
analysis, 35 (44%) reported performance statistics from both development and validation cohorts, 27
(34%) reported only validation cohort statistics, and ten (13%) reported development only statistics.
Most commonly overall, studies reported both discrimination and calibration statistics (35 studies,
32%). Next most commonly, studies reported measures for discrimination, calibration, and
sensitivity/specificity (23 studies, 21%). Eleven studies (10%) reported no model performance
statistics. Discrimination was primarily assessed with the area under the curve (AUC / C-statistic).
Reported C statistics ranged between 0.61 (Davies et al., 2010) to 0.97 (Park et al., 2009) though
notably, the latter was at risk of model overfit, with a sample size of =100 and an EPV ratio of 3.1.
The mean C statistic across all included studies was 0.77, with 54 studies (49%) scoring above 0.70,
suggesting 'good' discrimination. The majority of studies that reported calibration statistics used the
Hosmer-Lemeshow goodness-of-fit chi? test. Seventeen studies (15%) used the preferred (Collins et
al., 2015) method of calibration plots. See Appendix D Table 5 for a detailed description of algorithm

performance of included studies.
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91

Figure 18: Range and Frequency of Predictors Used In Algorithms Included In The Systematic Review
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6.4.1.5 Potential Applicability of Existing Cardiometabolic Risk Algorithms for Young People
with Psychosis

Psychiatric disorders and treatment were taken into account in three studies (Osborn et al., 2015,
Hippisley-Cox and Coupland, 2017, Hippisley-Cox et al., 2017) predicting risk of CVD (Hippisley-
Cox et al., 2017, Osborn et al., 2015) or T2D (Hippisley-Cox and Coupland, 2017). Two of these
studies (QRISK3 and QDiabetes) were conducted on large general-population samples, and one
(PRIMROSE) was conducted in people with severe mental illness. QRISK3 and QDiabetes included
a diagnosis of severe mental illness as a single predictor, whereas PRIMROSE included separate
predictors for bipolar disorder and psychosis. QRISK3 and QDiabetes included the presence of any
atypical antipsychotic as a predictor; PRIMOSE included first- or second-generation antipsychotics
as separate predictors, along with antidepressants as another predictor. All three studies were
conducted on middle- to older-aged adults (mean ages QDiabetes: 42.9 years QRISK3: 44.9 years,
PRIMROSE: 49.5 years). In PRIMROSE, age was applied as a non-linear term with a log
transformation and was weighted heavily compared with other risk factors. See Figure 19. In QRISK3
and QDiabetes, age was applied as a fractional polynomial, implying a non-linear impact on risk.
QRISK3 and QDiabetes included interactions between age and other predictors, further amplifying

the relative importance of age in the algorithms.

Figure 19: The Relative Weighting of Age vs Other Predictors in The PRIMROSE Algorithm
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Figure illustrates the coefficients of predictors stacked upon one another cumulatively to show the relative weighting of
age (presented at the bottom-left) compared with other predictors in the algorithm; QRISK3, QDiabetes and PRIMROSE
were taken forward for the exploratory validation analysis, on the basis of: large samples used in development and
validation; strong performance statistics; low risk of bias in three domains; and inclusion of psychiatric predictors /
development in a psychiatric sample.
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6.4.2 Exploratory Validation Analysis

6.4.2.1 Baseline Characteristics

The six-year observed risk of metabolic syndrome at age 24 years in the sample of participants with,

or at risk of developing psychosis was 14.21% in males and 11.88% in females. In the sensitivity

analysis (all available ALSPAC participants), the six-year observed risk was 7.54% for females and

5.76% for males. In the primary analysis, I included 3,030 person-years of observation. In the

sensitivity analysis, I included 19,020 person-years of observation. Characteristics of included

participants for both the primary and sensitivity analyses are presented in Table 31.

Table 31: Characteristics of Participants Included in Exploratory Validation Analysis

Characteristic (N, % unless stated)

Psychosis Risk Sample

Whole Sample Sensitivity

Analysis

Females Males Females Males
Number of Participants 323 (63.9) 182 (36.1) 1,909 (55.0) 1,561 (45.0)
Total person-years of observation 1,938 1,092 11,454 7,566
Ethnicity — White / Not-recorded 315(97.5) 176 (96.7) 1,861 (97.5) 1,519 (97.3)
Systolic BP (mmHG), Mean (SD) 109.88 (8.28) 118.90 (9.67) 109.98 (7.98) 119.99 (9.09)
HDL (mmol/L), Mean (SD) 1.29 (0.36) 1.18 (0.33) 1.34 (0.31) 1.21(0.24)
FPG (mmol/L), Mean (SD) 4.88 (0.36) 5.19 (0.66) 4.92 (0.49) 4.16 (0.24)
Total Cholesterol (mmol/L), Mean (SD) 3.86 (0.68) 3.55(0.63) 3.94 (0.69) 3.56 (0.62)
Chol:HDL Ratio, Ratio SD 3.04 (0.85) 3.08 (0.85) 3.07 (1.01) 3.16 (0.96)
BMI (kg/m?), Mean (SD) 23.75 (3.55) 23.62 (4.50) 23.06 (4.48) 22.14 (3.87)
FHx Cardiometabolic/Cardiovascular Disorders | 194 (60.1) 117 (64.3) 603 (31.6) 448 (28.7)
Smoking (>1 cigarette daily) 173 (53.6) 100 (54.9) 840 (44) 704 (45.1)
Depression 90 (27.9) 28 (15.4) 270 (14.1) 90 (5.7)
Alcohol Use 47 (15.4) 31(16.7) 477 (6.5) 534 (6.9)
Antidepressant Medication 45 (14.7) 16 (8.6) 186 (2.5) 57 (0.7)
Antipsychotic Medication 48 (14.8) 29 (15.9) 13 (0.2) 6 (0.1)

BP=blood pressure; HDL=high-density lipoprotein; FPG=fasting plasma glucose; Chol=cholesterol; BMI=body mass

index; FHx=family history

6.4.2.2 Primary Analysis — Psychosis Risk Sample

6.4.2.2.1 Discrimination

Discrimination C Statistics were: QDiabetes males C=0.75 (95% C.1., 0.72-0.78) and females C=0.78
(95% C.1., 0.73-0.84); QRISK3 males C=0.58 (95% C.I., 0.52-0.65) and females C=0.61 (95% C.I.,
0.55-0.66); PRIMROSE C=0.73 (95% C.I., 0.70-0.78). After substituting participant ages to the mean
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age of the original studies, C statistics mildly improved for each algorithm. Similarly, at age 18y, R?

statistics were marginally higher in females than males in QDiabetes and QRISK3 and improved

mildly after substituting participant ages to the mean age of the original studies. See Table 32.

Table 32: Discrimination Statistics for Algorithms Tested on ALSPAC Psychosis-Risk Sample

at Age 18 Years and Mean Age of Original Study

Algorithm

C Statistic (95% CI); R? Statistic

Age 18 Years

Mean Age Original Study

Male

Female

Male

Female

QDiabetes FPG

C=0.70 (0.65-0.74)
R2=0.13 (0.09-0.19)

C=0.78 (0.73-0.84)
R2=0.16 (0.10-0.24)

C=0.78 (0.75-0.80)
R2=0.21 (0.14-0.27)

C=0.83 (0.80-0.87)
R2=0.25 (0.19-0.31)

QRISK3

C=0.58 (0.52-0.65)
R2=0.09 (0.05-0.16)

C=0.61 (0.55-0.66)
R2=0.10 (0.03-0.18)

C=0.63 (0.58-0.69)
R2=0.11 (0.07-0.16)

C=0.66 (0.59-0.72)
R2=0.13 (0.05-0.20)

PRIMROSE Lipid

0.73 (0.70-0.78)
R2=0.13 (0.10-0.0.17)

0.75 (0.69-0.79)
R2=0.16 (0.12-0.22)

FPG=fasting plasma glucose

6.4.2.2.2 Calibration

Calibration was poor across all three algorithms, with observed risk estimates consistently higher than
predicted risk estimates, indicating a significant underprediction of risk. After substituting participant
ages to the mean age of the original studies, calibration improved markedly in all three algorithms.

See Figure 20.
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Figure 20: Calibration Plots of Algorithms Tested on ALSPAC Psychosis-Risk Sample at Age
18 Years and at The Mean Age of Original Study
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Perfect calibration (dark grey) would follow the diagonal (light grey) line, indicating perfect agreement between
observed/expected risk. Grouped observations were split at each 0.2 of predicted risk.
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6.4.2.3 Sensitivity Analysis — ALSPAC Whole Sample
6.4.2.3.1 Discrimination

QDiabetes and QRISK3 performed better in the whole sample than the psychosis-risk sample.
PRIMROSE performed better in the psychosis-risk sample. Harrell’s C Statistics were: QDiabetes
males C=0.72 (95% C.I., 0.70-0.73) and females C=0.82 (95% C.I., 0.79-0.84); QRISK3 males
C=0.64 (95% C.1., 0.62-0.66) and females C=0.62 (95% C.I., 0.59-0.65); PRIMROSE C=0.68 (95%
C.1., 0.67-0.70) . Similarly, at age 18y, R? statistics were marginally higher in females than males in
QDiabetes, but marginally higher in males in QRISK3. After substituting age to the mean age of the

original studies, Harrell’s C statistics and R? improved in all three algorithms. See Table 33.

Table 33: Discrimination Statistics for Algorithms Tested on ALSPAC Whole Sample at Age
18 Years and Mean Age of Original Study

Algorithm C Statistic (95% CI); R? Statistic

Age 18 Years
Male

Mean Age Original Study
Male

Female Female

QDiabetes FPG

C=0.72 (0.70-0.73)
R2=0.14 (0.09-0.20)

C=0.82 (0.79-0.84)
R2=0.17 (0.10-0.26)

C=0.74 (0.72-0.77)
R2=0.19 (0.13-0.26)

C=0.81 (0.78-0.83)
R2=0.23 (0.17-0.28)

QRISK3

C=0.64 (0.62-0.65)
R2=0.11 (0.06-0.16)

C=0.62 (0.59-0.65)
R2=0.10 (0.06-0.15)

C=0.65 (0.64-0.67)
R2=0.11 (0.06-0.17)

C=0.72 (0.69-0.75)
R2=0.12 (0.07-0.18)

PRIMROSE Lipid

0.68 (0.67-0.70)
R2=0.11 (0.05-0.17)

0.68 (0.66-0.69)
R2=0.13 (0.07-0.19)

FPG=fasting plasma glucose

6.4.2.3.2 Calibration

In a similar pattern to the psychosis sample, calibration was poor across all three algorithms with
observed risk estimates consistently higher than predicted risk estimates, indicating a significant
underprediction of risk. After substituting participant ages to the mean age of the original studies,

calibration improved markedly in all three algorithms. See Figure 21.
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Figure 21: Calibration Plots of Algorithms Tested on ALSPAC Whole Sample at Age 18 years

and at Mean Age

of Original Study
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Perfect calibration (dark grey) would follow the diagonal (light grey) line, indicating perfect agreement between

observed/expected risk. Grouped observations were split at each 0.2 of predicted risk.
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6.5 Discussion

I performed a systematic review of cardiometabolic risk prediction algorithms developed either for
the general or psychiatric populations and considered their potential suitability for young people with
psychosis. I also used data from a sample of relatively young adults to first explore whether existing
cardiometabolic risk prediction algorithms may be suitable for young people with or at risk of
psychosis, and secondly to examine the impact of how age is weighted in existing cardiometabolic

risk prediction algorithms.

Regarding the systematic review, I identified a substantial number of cardiometabolic risk prediction
algorithms, yet most have not been integrated into clinical practice. Only one included algorithm
(PRIMROSE) was developed in a population of people with severe mental illness (Osborn et al.,
2015). Two (QRISK3, QDiabetes) were developed in the general population and included psychiatric
predictors (Hippisley-Cox et al., 2017, Hippisley-Cox and Coupland, 2017).

All included algorithms were developed in samples of middle- to older-age adults. One might
traditionally consider this proportionate since cardiometabolic disorders are traditionally regarded as
diseases of advancing age. Yet, cardiometabolic risk still exists in the absence of advancing age. Even
in the general population, there is an increasing prevalence of early-onset T2D (Wilmot and Idris,
2014) and childhood obesity (Skinner et al., 2016), likely related to the shift toward a more sedentary
lifestyle and unhealthy diet in recent decades. The absence of an algorithm developed for younger
populations is an important finding since early intervention may reduce the risk of young people
forming part of a future generation of patients with chronic CVD (Chrysant, 2011). This finding
suggests the need for either new or recalibrated versions of cardiometabolic risk algorithms tailored

for younger generations.

Primary prevention is the best means to address the personal and societal burden attributed to T2D,
CVD and its associated morbidity and mortality (Weintraub et al., 2011). While this message is
important for the general population, it is crucial for young people with psychosis who are at a
substantially higher risk of precipitant cardiometabolic disorders. This population may be more likely
to smoke (Sagud et al., 2018), exercise less (Heald et al., 2017), and eat a more unhealthy diet (Heald
et al., 2017) than their peers, and yet may also be prescribed medication that in itself can adversely
and severely impact cardiometabolic indices (Leucht et al., 2013). Further, they may be faced with
inappropriate barriers to accessing healthcare (Lawrence and Kisely, 2010), diagnostic
overshadowing (Jones et al., 2008), and may have an intrinsic biological propensity for altered
cardiometabolic function (Perry et al., 2018). Meta-analyses featuring mostly antipsychotic-naive

young people with first-episode psychosis have consistently reported an increased incidence of
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insulin resistance, impaired glucose tolerance (Perry et al., 2016, Pillinger et al., 2017a) and
dyslipidaemia (Pillinger et al., 2017b, Perry et al., 2016, Misiak et al., 2017) compared with matched
controls from the general population, after adjusting for anthropometric and sociodemographic
factors. Each are predeterminants of cardiometabolic disorders such as T2D and obesity. Existing
algorithms may not adequately capture these factors. Additionally, meta-analyses of cross-sectional
studies suggest that psychosis is associated with higher levels of circulating inflammatory markers
(Upthegrove et al., 2014, Miller et al., 2011, Miller et al., 2014, Fernandes et al., 2016). Evidence
from longitudinal studies suggests an association between inflammatory markers at baseline and
psychosis at follow-up (Khandaker et al., 2014, Metcalf et al., 2017, Goldsmith et al., 2019).
Inflammatory states are also associated with cardiometabolic disorders (Rethorst et al., 2014,
Monteiro and Azevedo, 2010, Hermsdorff et al., 2011, Calabro and Yeh, 2008). While 15 relatively
newer algorithms from the systematic review did include inflammatory predictors, none also included

psychiatric predictors.

Each of the three algorithms that did include psychiatric factors featured an antipsychotic-related
predictor. Antipsychotic associated weight gain can occur relatively quickly after initiation (Spertus
et al., 2018) and is associated with altered eating behaviours (Sentissi et al., 2009) and sedentariness
(Vancampfort et al., 2017). However, whilst there are some efficacy differences between
antipsychotics, these are gradual rather than discrete (Huhn et al., 2019). Differences in side-effects
are more marked, and each has an inherently different impact upon cardiometabolic risk
(Vancampfort et al., 2015). This may be explained by differing affinities to receptors other than the
dopamine-2 (D2) receptor, for example, the histamine-1 (H1) receptor, serotonin-2¢ (5-HT2c) and
adrenergic receptors (a2 and b3) (Starrenburg and Bogers, 2009), which may have a role in the
regulation of food intake (Kroeze et al., 2003). The varied impact upon cardiometabolic risk by
different antipsychotics does not abide by the traditional distinctions of either typical/atypical or
first/second generation, which were the binary distinctions of the included algorithms. A more
appropriate antipsychotic predictor may instead model antipsychotics based on their relative

cardiometabolic risk.

I used the PROBAST tool (Wolff et al., 2019) to examine the risk of bias of included studies in the
systematic review. Only two studies were rated as low risk of bias, with all others rated as either
unclear or high risk of bias. This may reflect the relatively recent introduction of the TRIPOD
guidelines for prediction model studies (Collins et al., 2015). Nevertheless, the results suggest that

the results and therefore clinical validity of most included studies should be accepted with caution.

The EPV ratio also varied widely between studies. A low EPV ratio can be an indicator of model-

overfit (Pavlou et al., 2015), which can bias results. I identified 20 studies with an EPV ratio of likely
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<10, and therefore the performance reported in those studies should be interpreted with caution.
Finally, it is striking that whilst many included studies promoted the use of their algorithms in clinical
practice, there appears to have been relatively little follow-up to assess either clinical or economic
impact. A notable exception was PRIMROSE (Osborn et al., 2015), which was the only algorithm
developed and validated on a sample of people with mental illness. A cost-effectiveness analysis
(Zomer et al., 2017) found it improved quality of life and reduced healthcare-related costs compared

to using no algorithm.

A previously published systematic review (Damen et al., 2016) examining cardiovascular risk
prediction algorithms in the general population also identified an abundance of studies. The review
similarly concluded the methodological shortcomings of most risk prediction algorithms likely limit
their suitability for clinical practice. The previous review differs from this review since it aimed to
identify algorithms and assess their suitability for young people with psychosis. Therefore, I did not
include studies reporting new validations in a similar population to already validated algorithms. The
previous review also presented sex-stratified algorithms as distinct entities, increasing the apparent
number of algorithms they reported. For simplicity and in consideration of the overarching research
question, I did not take this step. Finally, many new algorithms have been developed since the

previous review, which I was able to include in this review.

Regarding the exploratory validation analysis, I considered three algorithms for this step; QRISK3,
QDiabetes and PRIMROSE. These were selected due to the large sample sizes in model development
and validation, favourable model performance statistics, relatively low risk of bias, and the inclusion

of psychiatric predictors/development in a psychiatric population.

I found that discrimination statistics were relatively good at age 18 years for QDiabetes and
PRIMROSE and improved further when substituting to the mean age of original studies. This means
that QDiabetes and PRIMROSE could predict higher risks in 'cases' than 'non-cases', even in
relatively young adults. This did not apply to QRISK3, particularly in males, where the algorithm
was little better than chance at discriminating higher and lower cardiometabolic risk in young adults

with or at risk of developing psychosis.

For all three algorithms included in the validation analysis, the discriminative ability was attenuated
compared with the original published studies (Hippisley-Cox and Coupland, 2017, Hippisley-Cox et
al.,2017, Osborn et al., 2015). This may be because the present analysis included younger participants
than the original studies. For example, both QRISK3 and QD1iabetes were developed and validated in
participants aged 25 and over, and PRIMROSE was developed and validated in participants aged 30

and over. QRISK3 and QDiabetes define a minimum age of 25 when using their online calculators,
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although PRIMROSE sets a minimum of age 18 years. Additionally, in the primary analysis, I tested
a sample of participants with or at risk of developing psychosis, whereas QDiabetes and QRISK3

were designed for use in the general population.

Furthermore, I tested a different outcome compared with the original algorithms. I tested metabolic
syndrome since it is an established precursor of both T2D and CVD (Wilson et al., 2005, Shin et al.,
2013) and is a more suitable outcome for younger populations. Nevertheless, the improvement in

discrimination statistics after substituting age provides some face validity to the choice of outcome.

However, discriminative ability is only half the story regarding predictive performance since
discrimination statistics cannot assess the accuracy of the amount of risk apportioned by a model; this
represents a test of absolute risk estimates and is examined with a measure of calibration. The
calibration plots showed that observed risk was systematically greater than predicted risk in all
models, indicating substantial underprediction of risk in younger participants. Calibration plots
improved markedly in all algorithms when age was artificially increased to the mean age of the
original studies. This suggests that the manner with which age is modelled in current algorithms is a
major limiting factor in applying them to younger populations. This is likely because many
cardiometabolic risk factors are cumulative over time (Reinikainen et al., 2015), thus, age becomes
an increasingly important contributor to cardiometabolic risk as one gets older. This notion is
elegantly painted by all three algorithms, which modelled age as either a non-linear function, included

interactions between age and other predictors, or both.

Strengths of this systematic review include following PRISMA reporting guidelines (Moher et al.,
2009) and the ability to complement the findings with an exploratory validation analysis using data
from a large birth cohort of young adults. I was able to test three validated cardiometabolic risk
prediction algorithms which are commonly used in clinical practice in the UK, on a different

population who are in clear and crucial need of a suitable tool.

Limitations of the study first and foremost relate to the exploratory validation analysis. The three
algorithms I tested were not designed for use in young adults, though this in itself should not be a
barrier to explore potential suitability in a different population. Nevertheless, the results should not
be seen to cast doubt on the predictive ability of such algorithms when applied to the populations they
were developed for. I could not include every predictor from the algorithms I tested, which may have
impacted performance statistics. That said, the impact of this limitation on the results is unlikely to
have been uniform for each predictor I could not include. For example, even if data were available, it
is doubtful that many participants in the relatively young cohort would have diagnosed CVD or

chronic kidney disease, a history of gestational diabetes, or be prescribed statins. Also, the measured
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outcome differed from the outcome of the algorithms I tested. While three algorithms included in the
systematic review did aim to predict risk of metabolic syndrome, I did not consider them for the
exploratory validation analysis. This is because they did not include psychiatric predictors; were at
relatively high risk of bias; and study authors did not publish their fully specified algorithm equations.
Nevertheless, metabolic syndrome is a precursor of T2D (Shin et al., 2013) and CVD (Wilson et al.,
2005), and the relatively good performance of the algorithm when I artificially substituted age to the

mean age of the original study suggests face validity of the metabolic syndrome outcome.

Other limitations relate to the systematic review. I was unable to follow a meta-analytic approach to
the synthesis of results due to study heterogeneity. The lack of a meta-analytic approach meant I could
not examine the risk of publication bias, which may have played a part in the configuration of studies

included since only three studies were not published in peer-reviewed journals.

In conclusion, young people with psychosis are at higher risk of developing cardiometabolic disorders
than the general population. A suitable cardiometabolic risk prediction algorithm for this population
would be highly beneficial for healthcare professionals to help them tailor treatment plans to reduce
long-term physical and psychiatric morbidity. Existing cardiometabolic risk algorithms cannot be
recommended for this purpose since they likely underestimate the cardiometabolic risk of all young
people, let alone a group already at significantly higher risk than the general population. Existing
algorithms require recalibration to suit younger populations, and, better still, a new cardiometabolic
risk prediction algorithm is required which is specifically developed for young people with psychosis.
A well-designed algorithm may include a more appropriate distinction of metabolically-active
antipsychotics; should more appropriately weight the predictors for the specific characteristics of
young people with psychosis; and may include a more age-appropriate outcome, such as metabolic
syndrome. Further, particular attention should be paid to patient acceptability to ensure the algorithm

1s used in clinical practice rather than simply buried in a research database.
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Chapter 7

Development and External Validation of The Psychosis Metabolic
Risk Calculator (PsyMetRiC): A Cardiometabolic Risk Prediction
Algorithm for Young People with Psychosis
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7.1 Introduction

Young people with psychosis are at significantly higher cardiometabolic risk than the general
population. Insulin resistance and dyslipidaemia are detectable from the onset of psychosis in
relatively young patients (Perry et al., 2016, Pillinger et al., 2017b) and, left unchecked, contribute to
a higher risk of more chronic conditions such as T2D and CVD (Firth et al., 2019), and a shortened
life expectancy of up to 15 years (Plana-Ripoll et al., 2019). Since some treatments for psychosis can
exacerbate cardiometabolic risk (e.g., certain antipsychotic medications), young patients who are
most at risk of adverse cardiometabolic outcomes must be identified at the outset. Then, interventions

can be tailored to reduce the risk of longer-term cardiovascular morbidity/mortality.

Prognostic risk prediction algorithms are a valuable means to encourage personalised, informed
healthcare decisions. In the general population, cardiometabolic risk prediction algorithms such as
QRISK3 (Hippisley-Cox et al., 2017) are commonly used to predict CVD risk from baseline
demographic, lifestyle, and clinical information to identify higher-risk individuals for tailored
interventions. In Chapter 6, I performed a systematic review of cardiometabolic risk prediction
algorithms developed in for the general or psychiatric populations. I found that all algorithms were
developed in samples of comparatively older adults and most didn't include relevant predictors such
as antipsychotic medication. In the accompanying exploratory validation analysis, I found that
existing algorithms significantly underpredict cardiometabolic risk in young people with or at risk of
developing psychosis. Therefore, I concluded that no existing algorithm is likely to be suitable for

young people with psychosis. See Chapter 6.

7.2 Aims and Objectives

Therefore, I aimed to develop and externally validate the Psychosis Metabolic Risk Calculator
(PsyMetRiC) to predict up to six-year risk of metabolic syndrome, an age-appropriate precursor of
CVD and early mortality, in young people with psychosis. I aimed to prioritise clinical usefulness
and patient acceptability via input from a young person's advisory group and by developing two
PsyMetRiC versions, one with and one without biochemical results. I followed TRIPOD reporting
guidelines (Collins et al., 2015). See Appendix D Table 6 for the completed reporting guidelines.
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7.3 Methods

7.3.1 Data Sources

7.3.1.1 Algorithm Development in an EIS Patient Sample

I developed PsyMetRiC in pooled retrospective data from patients aged 16-35 years enrolled in
Birmingham EIS (sample frame n=391) or Cambridgeshire and Peterborough NHS Foundation Trust
EIS (CAMEO) (sample frame n=1,113). Anonymised Birmingham data were collected between
2014-2018 as part of the National Clinical Audit of Psychosis Quality Improvement program,
enhanced locally with medication data, conforming to HRA definition of Service Evaluation,
confirmed by Birmingham Women's and Children's Hospital NHS Foundation Trust. CAMEQO data
were collected by conducting an anonymised search of EIS patients enrolled since 2013 using the
Clinical Records Anonymisation and Text Extraction (CRATE) tool (Cardinal, 2017) (NHS National
Research Ethics Service references 12/EE/0407; 17/EE/0442). Assistance in accessing and
processing the data was provided by Professor Rachel Upthegrove (University of Birmingham) and
Dr Emanuele Osimo (Imperial College London). Predictors were assessed at the closest point (+/-
100 days) to EIS enrolment, and outcomes were assessed up to six years later. I excluded patients
who: had <1 year follow-up; had the outcome at baseline; or had missing data on all predictor or
outcome variables, resulting in a final sample of n=651. See Table 34. See Appendix D Table 8 for

a missing sample analysis for the pooled development sample.

7.3.1.2 External Validation in in EIS Patient Sample

I used the Clinical Records Interactive Search (CRIS) resource to capture anonymised data from
South London and Maudsley NHS Foundation Trust EIS (SLaM) (NIHR Biomedical Research Centre
CRIS Oversight Committee reference: 20-005)). The sample frame included 2,985 EIS patients aged
16-35 years enrolled since 2012. Assistance in accessing and processing this data was provided by
Dr Emanuele Osimo (Imperial College London). Predictors and outcomes were assessed in the same
manner as described above. I excluded participants as described above, resulting in a final sample of
n=510. See Table 34. Please see Appendix D Table 9 for a detailed analysis of the missing sample

for the validation sample.

7.3.1.3 External Validation Sensitivity Analysis in a General Population Sample

I examined the performance of PsyMetRiC in young adults who had or were at risk of developing

psychosis using ALSPAC data. See Section 2.3.1 for a full description of the ALSPAC cohort. The
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sample frame included 527 participants identified as having experienced definite psychotic symptoms
at either age 18 or 24 years, assessed via the semi-structured Psychosis-Like Symptom Interview. See
Section 2.3.3 and Section 3.3.2 for detail on assessment of PEs and psychotic disorder at age 18 and
24 years. Predictors were assessed at age 18 years, and the outcome was assessed at age 24 years. |
excluded participants as described above, resulting in a final sample of n=505. See Table 34.
ALSPAC Ethics and Law Committee and Local Research Ethics Committees provided ethical
approval. Informed consent was obtained from participants following the recommendations of the

ALSPAC Ethics and Law Committee at the time.

Table 34: Predictor Comparisons between Samples Used in Algorithm Development and

Internal/External Validation

Predictor Sample
Development External Validation /
Sensitivity Analysis
Birmingham | CAMEO EIS Pooled SLaM EIS ALSPAC Risk
EIS Development | Validation of Psychosis
Sample Sample
Final Included Sample size, 352 299 651 510 505
N.
Age in Years, mean (SD) 23.76 (4.90) | 25.42 (4.77) 24.52 (4.91) | 24.45(4.75) | 17.81(0.43)
White/NA Ethnicity, N. (%) | 110 (31.25) 250 (83.61) 360 (55.30) 154 (30.20) | 491 (97.2)
Black/African-Caribbean 94 (26.70) 15 (5.01) 109 (16.74) 250 (49.02) | <5 (<1.00)*
Ethnicity, N. (%)
Asian Ethnicity, N. (%) 147 (41.76) 34 (11.37) 181 (27.80) 106 (20.78) | <5 (<1.00)*
Male Sex, N. (%) 232 (65.90) 208 (69.57) 440 (67.59) 351 (68.82) | 182 (36.1)
HDL, mmol/L, mean (SD) 1.76 (0.35) 2.08 (0.49) 1.88 (0.57) 1.57 (0.37) 1.21 (0.31)
Triglycerides, mmol/L, mean | 1.46 (1.18) 1.30 (0.89) 1.39 (1.06) 1.23 (0.71) 1.06 (0.77)
(SD)
BMI, kg/m?, mean (SD) 22.06 (5.13) | 24.01 (5.73) 23.63 (5.43) | 22.96 (6.94) | 23.68 (3.55)
FPG (mmol/L), mean (SD) 5.20(1.02) 5.17 (1.45) 5.19 (1.28) 5.03 (1.10) 5.01 (0.49)
Systolic BP (mmHg), mean 121.18 119.88 (12.25) 120.65 119.96 115.10 (11.88)
(SD) (11.04) (11.68) (13.70)
Metabolically-Active 239 (67.90) 216 (72.24) 455 (69.89) 472 (92.55) | 58(11.26)
Antipsychotics®, N. (%)
Smoking, N. (%) 182 (51.70) 133 (44.48) 315 (48.39) 469 (91.96) | 273 (54.05)
Follow-up time, years, mean | 2.44 (1.54) 1.43 (1.03) 1.86 (1.32) 2.73 (1.76) 5.18 (0.39)
(SD)
Mean time of predictor 23.55(25.44) | 21.93 (29.84) 16.71 (26.38) | 3.05(36.01) | *
assessment from EIS
enrolment, mean days (SD)
Metabolic Syndrome at 31 (7.90) 18 (5.11) 49 (6.58) 30 (5.64) 19 (4.17)
baseline, N. (%°)
Metabolic Syndrome at 74 (21.04) 35(11.71) 109 (16.74) 86 (16.86) 76 (14.75)
Follow-up, N. (%)

HDL=high-density lipoprotein; BMI=body mass index; FPG=fasting plasma glucose; BP=blood pressure; ALSPAC=Avon
Longitudinal Study of Parents and Children; SLaM=South London and Maudsley NHS Foundation Trust; EIS=Early Intervention
Service; CAMEO=Cambridgeshire and Peterborough Foundation NHS Trust; “Reported as <5 due to ALSPAC reporting guidelines;
"Metabolically-active antipsychotics are listed in Table 36; “Corresponds to percentage of sample before exclusion; *Health record /
service use data is not currently available in ALSPAC
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7.3.2 Outcome

I used the harmonized definition (Alberti et al., 2009) of the metabolic syndrome as a binary outcome.

See Table 2.

7.3.3 Predictor Variables
7.3.3.1 Method of Predictor Selection

Predictors were included on a balance of clinical knowledge, prior research, and likely clinical
usefulness/patient acceptability after discussion of the work with the McPin Foundation Young
Persons Advisory Group (YPAG), comprising volunteers aged <24years with lived experience of
mental health difficulties. I attended three meetings of the YPAG to discuss and shape the work as it
progressed. Please see Table 35 for quotes and comments from the YPAG regarding PsyMetRiC.

7.3.3.2 Rationale and Coding of Predictors Selected for Inclusion In PsyMetRiC
7.3.3.2.1 Age

Age is frequently included in existing cardiometabolic risk prediction algorithms (see Chapter 6), and
I also included it in PsyMetRiC as a continuous variable. Whilst some previous large-scale general
population risk-prediction algorithms have considered age either as a non-linear term or as an
interaction term with other predictors (see Chapter 6), I did not take this step to limit potential model
complexity and thus reduce the risk of model-overfit given the available sample size. Considering
age as an interaction term with other predictors would have added the requirement for a variable
selection technique such as backward selection or more automatic penalized methods such as lasso
regression with nested cross-validation. Given the sample size available, I chose not to proceed with
such methods since they increase the risk of model overfit in smaller samples compared with forced-
entry (Subramanian and Simon, 2013, Harrell, 2001, Steyerberg et al., 2000), and thus may have

hampered external validation performance (Lever, 2016).
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Table 35: Comments From McPin Young Person’s Advisory Group (YPAG)

Question Asked To The YPAG

Responses From The YPAG

diabetes/obesity* have been made, none of them have

that?”

“Does it surprise you that despite many calculators for

been made for younger people? What do you think about

It is quite worrying because there is strong research
evidence that these conditions can develop in young
people who have emerging mental health problems.
Could be prevented if such a scale was made to lower
risk of health issues in later life.

The calculator could help bring awareness to doctors
and young people about the risk.

Because of the link found with mental health issues
which affect all ages, it is important that this
calculator is being made.

“On a scale of 1 (not important at all) to 10 (really
important), how important do you think it is to know
your chance of getting diabetes /obesity” in the next 6
years? Why/why not?”

9 - Because it could help people to make changes to
their lifestyle that would prevent them from getting
these diseases in the future which would help them to
live a longer life. The only reason I didn’t put 10 is

that some people may not want to know if they are
destined to get a disease, even if this is not true, it
may not be helpful to some people.

5 - It’s useful because some people will want to make
changes such as exercise more or sleep more to
prevent getting these conditions. However, some may
find these pointless and counterproductive as the
calculator works only by chance.

9 — more likely to make those changes if they receive
this information

From the information that is asked by the calculator, Most people won’t have a problem with sharing their
how happy do you think a young person would be to give | height however a lot of people might be
that information to a doctor today? uncomfortable sharing their weight because they are

unhappy with it

I don’t think that anyone would have a problem
sharing this information /smoking] unless they are
ashamed of how much they smoke

If there was an option not to have a blood test, it’s
likely that not many people would opt out
Weight & sex are quite sensitive subjects

*The phrase diabetes/obesity was used in place of metabolic syndrome at YPAG meetings since the former terms are more
commonly used in common parlance, and thus more widely understood by non-healthcare professionals.

7.3.3.2.2 Ethnicity

Ethnicity is one of the most frequently included predictors in existing cardiometabolic risk prediction
algorithms (see Chapter 6), and I included it in PsyMetRiC. Non-White ethnicity is an important risk
factor for metabolic syndrome (Deboer, 2011) and predicts antipsychotic-induced metabolic
dysfunction (Pillinger et al., 2020). In the development and validation samples, ethnicity was recorded
inconsistently, with the majority of included records classified in relatively simple terms, for example
“White” or “Asian”. However, these simplified classifications do not recognise the heterogeneity
within these groupings, therefore potentially incorrectly inferring that the populations are

homogeneous (Lear and Gasevic, 2019). Nevertheless, to strike an appropriate balance between the
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available sample size, the case-mix of the development and validation samples, and with a
consideration to maximise coding harmonisation between datasets, | proceeded with a categorical
nominal variable with as much granularity as the data permitted, and so the variable consisted of
White European/not stated (reference category), Black/African-Caribbean ethnicity, and Asian/Other
ethnicity.

7.3.3.2.3 Sex

Sex is frequently considered in cardiometabolic risk prediction algorithms, either as a predictor or a
stratification variable (see Chapter 6). There are notable sex differences in the epidemiology,
aetiology, biology and clinical expression of metabolic syndrome (Pradhan, 2014). For example,
before the menopause, increased adiposity is more commonly precipitated in females than males (Kuk
and Ardern, 2010), whereas hypertension and disrupted biochemical indices are more common in
males (Kim and Reaven, 2013), possibly due to a metabolically-active effect of oestrogen (Gupte et
al., 2015). Longer-term cardiovascular outcomes such as CVD affect both sexes but show differences
in presentation and clinical course (Beale et al., 2018). Recent meta-analytic reports have suggested
that male sex is an important risk factor for antipsychotic-induced biochemical disruption (Pillinger
et al., 2020). Considering the available sample size, I did not consider separate algorithms for males

and females and chose to model sex as a binary variable.

7.3.3.2.4 Body Mass Index

BMI is frequently included in cardiometabolic risk prediction algorithms (see Chapter 6), and
overweight/obesity is a reliable predictor of adverse cardiometabolic and cardiovascular outcomes
(Van Gaal et al., 2006). Weight gain is also a common side-effect of certain antipsychotic medications
(Leucht et al., 2013) and can precipitate relatively quickly after initiation (Spertus et al., 2018). While
BMI may be less accurate at classifying adiposity than laboratory or research-based measures such
as dual-energy x-ray absorptiometry or bio-impedance analysis (Shah and Braverman, 2012), it is
commonly recorded in clinical practice and correlates well with other measures of obesity (Barreira
et al., 2011). Therefore, I included BMI as a continuous variable. I did not consider interactions of
BMI with other predictors (including but not limited to, for example, antipsychotic medication) to

limit model complexity and thus reduce the risk of model overfit in the available sample.
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7.3.3.2.5 Smoking

Smoking is frequently included in cardiometabolic risk prediction algorithms (see Chapter 6) and is
strongly associated with adverse cardiometabolic and cardiovascular outcomes (Banks et al., 2019).
The impact of smoking on cardiometabolic and cardiovascular risk is dose-dependent, yet, in previous
large-scale general population algorithms developed for older adult populations, smoking is usually
classified as a categorical variable including ‘current smoker’, ‘ex-smoker’ and ‘never-smoked’. The
lack of consideration of dosage in previous algorithms (i.e., the number of cigarettes smoked per day
and for how long) is likely due to the highly variable reporting of smoking history in electronic health
record datasets (Polubriaginof et al., 2017). However, whilst a prolonged smoking history increases
cardiometabolic and cardiovascular risk compared with ‘never smoked’ (Duncan et al., 2019),
particularly in older adults (Mons et al., 2015), some research suggests that smoking cessation in
young people can reduce cardiometabolic and cardiovascular risk to baseline in as little as five years
(Lloyd-Jones et al., 2017). This is relevant since PsyMetRiC was developed for younger populations.
Therefore, for this reason, and to assist in harmonisation across the development and validation
datasets, I included smoking as a binary variable (yes/no). For the SLaM external validation sample,
smoking status was derived using the ‘CRIS-IE-Smoking’ application, which sits within the General
Architecture for Text Engineering (GATE) natural language processing software to extract smoking
status information from open-text fields (Wu et al., 2013). For all other samples, smoking was

captured as current smoking status from clinical interview.

7.3.3.2.6 Prescription of a Metabolically-Active Antipsychotic

Antipsychotic medication is an important contributor to cardiometabolic risk in young people with
psychosis, and so it was crucial to include in PsyMetRiC. Antipsychotic medications are rarely
included in existing cardiometabolic risk prediction algorithms. Three more recent algorithms
(QRISK3, QDiabetes, PRIMROSE) have included antipsychotics as predictors, grouped as binary
variables based on the traditional distinctions of typical/atypical or first/second-generation. See
Chapter 6. However, the differential cardiometabolic effects of antipsychotics do not necessarily

abide by these distinctions.

Therefore, I instead grouped antipsychotics based on existing evidence (Leucht et al., 2013, Pillinger
et al., 2020) as ‘metabolically-active’ or not (Table 36). This is a notable advance over previous risk
prediction algorithms. Therefore, I classified all individuals prescribed a metabolically-active
antipsychotic as “1” and all participants who were not prescribed a metabolically-active antipsychotic
(including participants who were not prescribed any antipsychotic) as “0”. However, I could not

consider dosage or a more granular categorical antipsychotic medication variable for several reasons.
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First, interactions of dosage with antipsychotic choice would have added significant complexity to
the model and may have increased the risk of overfit, given the available sample size. It would also
have been challenging to capture the effect of dosage change on cardiometabolic risk from a single
baseline measure of predictor assessment. This is important because antipsychotics are usually
commenced at a low dose and upwardly titrated over time, depending on treatment response. Second,
with increasing numbers of risk-distinguishing categories comes increased subjectivity of group
classification for some antipsychotics. In future, when development and validation samples of young
people with psychosis are large enough, it would be most appropriate to model the cardiometabolic

risk associated with each antipsychotic medication individually.

Table 36: Classification of Metabolically-Active Antipsychotics

More Metabolically Active Antipsychotics Less Metabolically Active Antipsychotics
Olanzapine Aripiprazole

(Leucht et al., 2013)* (Leucht et al., 2013)*
Quetiapine Amisulpiride

(Leucht et al., 2013)* (Leucht et al., 2013)*
Risperidone Haloperidol

(Leucht et al., 2013)* (Leucht et al., 2013)
Paliperidone Sulpiride

(Leucht et al., 2013) (Bak et al., 2014)
Clozapine Periciazine

(Leucht et al., 2013) (Matar et al., 2014)F
Chlorpromazine Lurasidone

(Leucht et al., 2013) (Leucht et al., 2013)*
Asenapine Ziprasidone

(Pillinger et al., 2020)" (Leucht et al., 2013)*
Pimozide Flupentixol

(Bak et al., 2014)f (Pillinger et al., 2020)"
Levomepromazine Fluphenazine

(Bak et al., 2014)f (Pillinger et al., 2020)"
Prochlorperazine Zuclopenthixol
(Leucht et al., 2013)* (Bak et al., 2014)f
Trifluoperazine

(Alonso-Pedrero et al., 2019)f

Pipotiazine

(Alonso-Pedrero et al., 2019)f

This table comprises all antipsychotics prescribed for participants/patients in all samples; *indicates the five most
commonly prescribed antipsychotics across all samples; findicates antipsychotics rarely prescribed (<3
participants/patients in total across all samples)

7.3.3.2.7 Blood-based Predictors: HDL and Triglycerides
Blood-based predictors feature less often in cardiometabolic risk prediction algorithms (see Chapter
6). However, meta-analytic evidence suggests abnormal triglyceride and HDL levels are detectable

at FEP (Misiak et al., 2017), even in individuals with limited exposure to antipsychotic medication.
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A raised triglyceride:HDL ratio is a hall-mark of insulin resistance (Murguia-Romero et al., 2013),
which is also associated with antipsychotic-naive FEP (Perry et al., 2016), whereas meta-analytic
evidence suggests that other measures of glucose-insulin homeostasis (e.g. FPG, HbA1C) are not
associated with antipsychotic-naive FEP (Perry et al., 2016). Abnormal HDL (Rader and Hovingh,
2014) and triglycerides (Nordestgaard and Varbo, 2014) are longitudinally associated with
cardiometabolic outcomes. Therefore, I chose to include HDL and triglycerides as continuous
variables because they are associated with dyslipidaemia in FEP, are associated with long term
cardiometabolic outcomes, and are also a useful risk-marker for insulin resistance considering that
gold-standard measures for insulin resistance (e.g. HOMA-IR (Levy et al., 1998)) are rarely carried
out in current psychiatric clinical practice. I also developed a PsyMetRiC ‘partial-model’ (without

HDL and triglycerides) to cover eventualities where biochemical results are not available.

7.3.4 Statistical Analysis
7.3.4.1 Algorithm Development and Internal Validation

I developed PsyMetRiC using the forced entry method, after ruling out predictor multi-collinearity,
to minimize risk of overfitting and as recommended for smaller datasets (Steyerberg et al., 2000). I
performed a formal sample size calculation. See Section 7.3.4.2 below. I did not consider non-linear
terms or interactions to reduce risk of overfitting. I used MICE for missing data and estimates were
pooled using Rubin’s rules. See Section 7.3.4.3 below. An initial internal validation step (500
bootstraps) was performed, and coefficients were shrunk for optimism using the pooled corrected C-

slope as a shrinkage factor. After this step, predictive performance was assessed.

7.3.4.2 Sample Size Calculation

Riley and colleagues (Riley et al., 2019) proposed a set of criteria that sample size should meet for
development of a prediction algorithm with a binary outcome, in order to minimise the risk of
overfitting and to ensure precise estimation of key parameters in the prediction algorithm. The sample
size calculation requires the user-specified anticipated R? of the algorithm, and the average outcome
value and standard deviation of outcome values in the population of interest. The three criteria are: a)
small overfitting defined by an expected shrinkage of predictor effects by 10% or less; b) small
absolute difference of 0.05 in the algorithm's apparent and adjusted Nagelkerke's R-squared value; c)

precise estimation (within +/- 0.05) of the average outcome risk in the population.
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Three calculations of sample size are made based upon these criteria. The final recommended sample
size is taken as the largest of the three individual calculations (Riley et al., 2019). The above criteria
have been developed into a statistical package, pmsampsize (Ensor, 2019) for R (R Core Team, 2017),

which I used for sample size calculation. The user-specified arguments were:

1) Outcome prevalence = 20% based on meta-analytic prevalence estimates of unmedicated

psychosis patients (Mitchell et al., 2013Db).

2) R? = 0.15, selected as a conservative estimate since there is no equivalent risk prediction
algorithm developed in the same population with which to base the calculation. I did not
consider using the one previous cardiovascular risk prediction algorithm developed for people
with serious mental illness (PRIMROSE) (Osborn et al., 2015) to derive the calculation since
PRIMROSE was developed in an older population, and with a different outcome. Should I
have used that estimate (C=0.80, converted using Table 2 from Riley and colleagues (Riley et

al., 2019) to R?=0.47), the sample size requirement would have been significantly smaller.
3) Shrinkage = 0.9 (as recommended (Ensor, 2019)).

After applying the above criteria, the minimum required sample size based on the number of included

predictors was n=494 for the full-model, and n=384 for the partial-model. See Table 37.

Table 37: Results of Sample Size Calculations for PsyMetRiC

Criteria | Sample Size | Shrinkage | Parameters | R? | EPV Ratio
Full-Model

Criteria 1 494 0.90 9 0.15 10.98
Criteria 2 259 0.83 9 0.15 5.76
Criteria 3 246 0.90 9 0.15 5.47

Final 494 0.90 9 0.15 10.98

Partial-Model

Criteria 1 384 0.90 7 0.15 10.97
Criteria 2 201 0.83 7 0.15 5.74
Criteria 3 246 0.90 7 0.15 7.03
Final 384 0.90 7 0.15 10.97

EPV=events per variable

7.3.4.3 Missing Data

[ used MICE (Buuren, 2011) for missing data in all samples for predictors which were <40% missing

(Lee, 2011) and had suitable auxiliary variables available for use as ‘indicators of missingness’ to
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reduce the impact of ‘missing not at random’ bias (Dong and Peng, 2013). I imputed 100 datasets.
Auxiliary variables were selected based upon minimizing the fraction of missing information
(Madley-Dowd et al., 2019). Box-and-Whisker and Density plots were used to check similarities of

observed and imputed data. Estimates were pooled using Rubin’s rules. See Table

Table 38: Proportion of Missing Data per Variable for Model Development and External
Validation

Predictor Model Development External
Sample Validation Sample

Sex 0 0
Ethnicity 0 0
Smoking Status 0 0

Age 0 0
Antipsychotic Prescription 0 0

SBP — Baseline 0.11 0.09
SBP — Follow-up 0.38 0.09
BMI — Baseline 0.32 0.17
BMI — Follow-up 0.31 0.13
Triglycerides — Baseline 0.33 0.16
Triglycerides — Follow-up 0.37 0.20
HDL — Baseline 0.33 0.16
HDL - Follow-up 0.37 0.20

SBP=systolic blood pressure; BMI=body mass index; HDL=high-density lipoprotein

7.3.4.4 External Validation and Tests of Algorithm Performance

The algorithms were applied to the external validation sample. The distribution of predicted outcome
probabilities was inspected using histograms. Algorithm performance was primarily assessed with
measures of discrimination (concordance (c-) statistic), and calibration (calibration plots). The C-
statistic is derived from the area under the curve and estimates the probability that a randomly selected
‘case’ will have a higher predicted probability for incident metabolic syndrome than a randomly
selected non-case. Scores of 1.0 indicate perfect discrimination; scores of 0.5 indicate that the
algorithm is no better than chance; scores of >0.7 are generally considered acceptable (Fukuma et al.,
2018). Calibration plots estimate the accuracy of absolute-risk estimates (i.e., agreement between
observed and predicted risk). I also recorded the Nagelkerke-Cox-Snell-Maddala-Magee R? index,
the calibration intercept (ideally close to 0), C-slope (ideally close to 1), and the Brier score which is
an overall measure of algorithm performance (ideally close to 0, with scores >0.25 indicating a poor

model).
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7.3.4.5 Clinical Usefulness and Potential Cut-offs

Decision curve analysis (Vickers and Elkin, 2006) was used to assess the clinical usefulness of
PsyMetRiC by estimating net benefit. Net benefit is a metric of true positives minus false positives,

and is calculated as:
sensitivity x prevalence — (1 — specificity) x (1 — prevalence) x w

where w 1s the outcome odds at a given risk threshold (Vickers et al., 2019). The risk threshold is the
amount of tolerable risk before an intervention is deemed necessary. Net benefit incorporates the
consequences of the decisions made on the basis of an algorithm, and is therefore preferable to related
measures such as sensitivity and specificity alone (Vickers et al., 2019). I also reported the
standardized net benefit (net benefit / outcome prevalence) and related metrics (sensitivity and
specificity) across a range of reasonable risk thresholds. I drew a decision curve plot which visualised
the net benefit of both PsyMetRiC versions over varying risk-thresholds compared with intervening
in all or intervening in none. Classical decision theory proposes that at a chosen risk-threshold, the

choice with the greatest net-benefit should be preferred (Vickers et al., 2019).

7.3.5 Visual Representation of PsyMetRiC

I simulated two case histories applying the PsyMetRiC algorithms. Additionally, I developed an
online data-visualisation app using shiny (Chang, 2020) for R (R Core Team, 2017), which allows an
interactive exploration of the impact of modifiable and non-modifiable risk factors and their

combinations on cardiometabolic risk in young people with psychosis, based on PsyMetRiC scores.
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7.4 Results

7.4.1 Model Development and Coefficient Shrinkage

After 500 bootstraps, the pooled corrected C-slopes were: full-model: 0.90; partial-model: 0.93,

which were used as shrinkage factors. Final PsyMetRiC coefficients are presented in Table 39. See

Figure 22 for histograms showing the distribution of predicted outcome probabilities in the model

development sample.

Table 39: Final Coefficients for PsyMetRiC Algorithms After Shrinkage

Predictor Full-Model Partial-Model
Intercept -6.439813 -6.973829
Age 0.006233226 0.00633115
Black/African-Caribbean Ethnicity 0.004258861 0.07548129
Asian / Other Ethnicity 0.211217746 0.29285950
Male Sex 0.222300765 0.31460036
Body Mass Index 0.141186241 0.16912161
Smoking 0.153691193 0.24751854
Prescribed Metabolically-Active Antipsychotic | 0.497552758 0.60013558
High-Density Lipoprotein (mmol/L) -0.399013329 2
Triglycerides (mmol/L) 0.343528440 2

#Variable not included in model

Figure 22: Histograms of Predicted Outcome Probabilities in PsyMetRiC Development Sample

after Coefficient Shrinkage
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7.4.2 Results of the Internal Validation Analysis

At internal validation, the pooled performance statistics were: full-model: C=0.80 (95% C.1., 0.74-
0.86); r>=0.25 (95% C1 0.22-0.28); Brier score=0.07 (95% C.1., 0.05-0.09); intercept=-0.05 (95% C.1.,
-0.08, -0.02); partial-model: C=0.79 (95% C.I., 0.73-0.84); r>=0.19 (95% C.1., 0.14-0.24); Brier
score=0.10 (95% C.I., 0.07-0.13); intercept=-0.07 (95% C.1., -0.10, -0.04). Calibration plots showed
good agreement between observed and expected risk at most predicted probabilities, although in both
PsyMetRiC versions there was evidence of slight over-prediction of risk at higher predicted

probabilities. See Figure 23.

Figure 23: Internal Validation Calibration Plots for PsyMetRiC in Development Sample

A B e

A=Full-Model; B=Partial-Model

Calibration plots illustrate agreement between observed risk (y axis) and expected risk (x axis). Perfect agreement
would trace the dotted “ideal” line. Algorithm calibration is illustrated by the dotted (Apparent) and solid (Bias
Corrected) lines.

7.4.3 Results of the External Validation

See Figure 24 for histograms of predicted outcome probabilities for the PsyMetRiC algorithms when
applied to the SLaM EIS sample. Performance statistics were: full-model: C=0.75 (95% C.1., 0.69-
0.80; r>=0.21 (95% CI., 0.18-0.25); Brier score=0.07 (95% C.1., 0.04-0.10); intercept=-0.05 (95%
C.L., -0.08, -0.02); partial-model: C=0.74 (95% C.I., 0.67-0.79); 1>=0.17 (95% C.1., 0.14-0.20); Brier
score=0.08 (95% C.1., 0.05-0.11); intercept=-0.07 (95% C.1., -0.11, -0.03). Calibration plots (Figure
25) show good agreement between observed and expected risk in the full-model; but in the partial
model there was evidence of slight miscalibration (under-prediction of risk at lower predicted

probabilities, and over-prediction of risk at higher predicted probabilities). In both models, confidence
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intervals widened as predicted probabilities became more extreme due to lower numbers of

participants with more extreme predicted probabilities.

Figure 24: Histograms of Predicted Outcome Probabilities in External Validation Sample
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Figure 25: External Validation Calibration Plots for PsyMetRiC
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Calibration plots illustrate agreement between observed risk (y axis) and predicted risk (x axis). Perfect agreement
would trace the red line. Algorithm calibration is illustrated by the black line. Triangles denote grouped observations for
participants at deciles of predicted risk, with 95% C.1.’s indicated by the vertical black lines. Axes range between 0-0.8
since very few individuals received predicted probabilities greater than 0.8
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7.4.4 Results of the External Validation Sensitivity Analysis

In the ALSPAC sample, performance statistics were: full-model: C=0-73 (95% C.I., 0-66-0-79;
1?=0-20 (95% CI., 0-17-0-23); Brier score=0-08 (95% C.1., 0-04-0-11); intercept=-0-03 (95% C.1, -
0-07, 0-01); partial-model: C=0-71 (95% C.1., 0-64-0-77); 1>=0-17 (95% C.I., 0-13-0-22); Brier
score=0-09 (95% C.1., 0-05-0-13); intercept=-0-03 (95% C.I., -0-07, 0-00). Calibration plots (Figure
26) show relatively good agreement between observed and expected risk in the full-model albeit with
some minor evidence of miscalibration (slight under-prediction of risk at lower predicted
probabilities, and over-prediction of risk at higher predicted probabilities). The same pattern of slight

miscalibration was marginally more pronounced in the partial-model.

Figure 26: Calibration Plots in ALSPAC Sensitivity Analysis Sample
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Calibration plots illustrate agreement between observed risk (y axis) and predicted risk (x axis). Perfect agreement
would trace the red line. Algorithm calibration is illustrated by the black line. Triangles denote grouped observations for
participants at deciles of predicted risk, with 95% C.1.’s indicated by the vertical black lines.

7.4.5 Results of The Decision Curve Analysis

Decision curve analysis (Figure 27) suggested that at predicted probability cut-offs >0.05, both
PsyMetRiC algorithms provided greater net benefit than intervening in all or none. At most risk
thresholds >0.05, the full-model provided slight improvement in net benefit compared with the partial
model. See Tables 40-41 for numerical decision curve analysis results for both PsyMetRiC versions

(net benefit, standardized net benefit, sensitivity, specificity) across a range of reasonable risk
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thresholds. For example, if an intervention were considered necessary above a risk score of 0.18, the
full-model would provide a net benefit of 7.95% (95% C.1., 5.37-10.82%) with a sensitivity and
specificity of 0.75 (95% C.1., 0.66-0.82) and 0.74 (95% C.1., 0.71-0.78) respectively, meaning that an
additional 47% of metabolic syndrome cases could be prevented. At the same risk-threshold, the
partial-model would provide a net benefit of 7.74% (95% C.1., 4.79-10.36%) with a sensitivity and
specificity of 0.75 (95% C.1., 0.65-0.81) and 0.74 (95% C.1., 0.70-0.77) respectively, meaning that an
additional 46% of metabolic syndrome cases could be prevented. For both models this equates to
around an additional eight cases of metabolic syndrome that could be prevented per 100 individuals,

without any increase in false positives.

Figure 27: Decision Curve Analysis Plot for PsyMetRiC Full- and Partial-Models
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The plot reports net benefit (y axis) of PsyMetRiC full- (red line) and partial- (blue line) models across a range of risk
thresholds (x axis) compared with intervening in all (grey line) or intervening in none (black line). In decision curve
analysis, it is customary to consider only the range of risk-thresholds that may reasonably be considered in clinical
practice. The upper bound of 0.35 represents a greater than one in three chance of developing metabolic syndrome should
nothing change, and it is unlikely that risk thresholds greater than this would be tolerated. Net harm (i.e., more false
positives than true positives exposed to an intervention at a selected risk threshold) is indicated when a proposed
intervention is plotted at y<O0.
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Table 40: Decision Curve Analysis Results at Different Thresholds — PsyMetRiC Full-Model

Net Benefit Performance Measure (95% C.1.)

Risk
Threshold?

Sensitivity

Specificity

Net Benefit

Standardized
Net Benefit”

0.02

1.00 (1.00-1.00)

0.01 (0.00-0.02)

0.15 (0.13-0.18)

0.90 (0.88-0.92)

0.04

0.99 (0.97-1.00)

0.04 (0.03-0.06)

0.13 (0.11-0.16)

0.80 (0.75-0.83)

0.06

0.99 (0.97-1.00)

0.16 (0.12-0.19)

0.12 (0.09-0.15)

0.73 (0.67-0.77)

0.08

0.96 (0.92-1.00)

0.30 (0.26-0.34)

0.11 (0.09-0.14)

0.66 (0.58-0.72)

0.10

0.94 (0.88-0.98)

0.41 (0.37-0.46)

0.10 (0.08-0.13)

0.62 (0.52-0.69)

0.12

0.92 (0.86-0.97)

0.52 (0.47-0.57)

0.10 (0.07-0.13)

0.60 (0.50-0.68)

0.14

0.85 (0.77-0.91)

0.61 (0.57-0.65)

0.09 (0.06-0.12)

0.53 (0.44-0.62)

0.16

0.76 (0.69-0.83)

0.70 (0.66-0.74)

0.08 (0.06-0.11)

0.48 (0.38-0.59)

0.18

0.75 (0.66-0.82)

0.74 (0.71-0.78)

0.08 (0.05-0.11)

0.47 (0.37-0.58)

0.20

0.68 (0.59-0.77)

0.79 (0.75-0.83)

0.07 (0.05-0.10)

0.42 (0.31-0.53)

0.22

0.62 (0.52-0.70)

0.83 (0.80-0.87)

0.07 (0.04-0.09)

0.39 (0.27-0.49)

0.24

0.56 (0.47-0.65)

0.86 (0.83-0.89)

0.06 (0.04-0.08)

0.35 (0.22-0.49)

0.26

0.52 (0.43-0.62)

0.88 (0.85-0.91)

0.05 (0.03-0.07)

0.31 (0.19-0.43)

0.28

0.45 (0.37-0.54)

0.90 (0.87-0.92)

0.04 (0.02-0.07)

0.26 (0.15-0.38)

0.30

0.40 (0.31-0.50)

0.92 (0.89-0.94)

0.04 (0.02-0.06)

0.23 (0.12-0.36)

0.32

0.37 (0.28-0.47)

0.93 (0.90-0.95)

0.03 (0.02-0.06)

0.20 (0.10-0.32)

0.34

0.34 (0.24-0.43)

0.94 (0.92-0.96)

0.03 (0.01-0.05)

0.19 (0.08-0.30)

0.36

0.27 (0.19-0.36)

0.95 (0.94-0.97)

0.02 (0.01-0.04)

0.14 (0.04-0.26)

*Different risk thresholds may be selected depending on the proposed intervention, as well as patient or clinician

preference; *Standardized net benefit is calculated as the net benefit / outcome prevalence, showing the proportion of

improvement in net benefit at the selected risk threshold.

Table 41: Decision Curve Analysis Results at Different Thresholds — PsyMetRiC Partial-Model

Net Benefit Performance Measure (95% C.1.)

Risk
Threshold?

Sensitivity

Specificity

Net Benefit

Standardized
Net Benefit”

0.02

1.00 (1.00-1.00)

0.01 (0.00-0.01)

0.15 (0.12-0.18)

0.90 (0.88-0.92)

0.04

1.00 (1.00-1.00)

0.03 (0.02-0.05)

0.14 (0.11-0.16)

0.80 (0.75-0.83)

0.06

0.99 (0.96-1.00)

0.13(0.10-0.15)

0.12 (0.09-0.15)

0.72 (0.64-0.77)

0.08

0.99 (0.96-1.00)

0.24 (0.21-0.28)

0.11 (0.08-0.14)

0.67 (0.58-0.73)

0.10

0.95 (0.91-0.99)

0.38 (0.34-0.43)

0.10 (0.07-0.13)

0.62 (0.53-0.69)

0.12

0.91 (0.86-0.96)

0.50 (0.46-0.54)

0.10 (0.07-0.12)

0.57 (0.47-0.65)

0.14

0.85 (0.78-0.91)

0.58 (0.53-0.62)

0.09 (0.06-0.11)

0.51 (0.38-0.59)

0.16

0.78 (0.71-0.86)

0.66 (0.62-0.70)

0.08 (0.05-0.11)

0.46 (0.33-0.55)

0.18

0.75 (0.65-0.83)

0.74 (0.70-0.77)

0.08 (0.05-0.10)

0.46 (0.33-0.56)

0.20

0.67 (0.60-0.75)

0.79 (0.76-0.83)

0.07 (0.04-0.09)

0.42 (0.30-0.51)

0.22

0.65 (0.56-0.72)

0.82 (0.79-0.86)

0.07 (0.04-0.09)

0.40 (0.27-0.50)

0.24

0.59 (0.50-0.67)

0.86 (0.83-0.90)

0.06 (0.04-0.08)

0.37 (0.25-0.48)

0.26

0.56 (0.47-0.65)

0.87 (0.85-0.91)

0.06 (0.03-0.08)

0.34 (0.23-0.44)

0.28

0.48 (0.40-0.57)

0.89 (0.86-0.92)

0.04 (0.02-0.07)

0.26 (0.13-0.37)

0.30

0.41 (0.34-0.50)

0.91 (0.89-0.94)

0.04 (0.02-0.06)

0.23(0.11-0.33)

0.32

0.35 (0.28-0.44)

0.92 (0.90-0.94)

0.03 (0.01-0.05)

0.17 (0.06-0.27)

0.34

0.29 (0.21-0.38)

0.94 (0.92-0.96)

0.02 (0.00-0.04)

0.13 (0.02-0.24)

0.36

0.28 (0.20-0.36)

0.94 (0.92-0.96)

0.02 (0.00-0.04)

0.12 (0.01-0.22)

*Different risk thresholds may be selected depending on the proposed intervention, as well as patient or clinician

preference; *Standardized net benefit is calculated as the net benefit / outcome prevalence, showing the proportion of

improvement in net benefit at the selected risk threshold.
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7.4.6 Visual Representation of PsyMetRiC

Figure 28 shows decision trees outlining two simulated case scenarios to visualise the impact of
modifiable and non-modifiable risk factors in young people with psychosis, as calculated from

PsyMetRiC full- and partial-models. Visit http://psymetric.shinyapps.io/psymetric/ for an online data

visualisation app for both PsyMetRiC versions, which allows the user to interactively explore the
impact of modifiable and non-modifiable risk factors and their combinations on cardiometabolic risk

in young people with psychosis, based on PsyMetRiC scores.

Figure 28: Simulated Case Scenarios to Visualize Impact of Modifiable and Non-Modifiable
Risk Factors on Cardiometabolic Risk in Young People with Psychosis as Calculated from
PsyMetRiC Full- and Partial Models

A. PsyMetRiC Full-Model

A 24-year-old South Asian male is admitted to a psychiatric inpatient unit in the UK and diagnosed with psychosis. His BMI is
toward the upper limit of the recommended range (24.7). He does not smoke. His blood test results for cholesterol are abnormal
and suggest the possibility of insulin resistance? (triglycerides = 2.51 mmol/L; HDL=1.03 mmol/L).

Initial PsyMetRiC Score = 0.13

He is commenced on aripiprazole. He is commenced on olanzapine.
New PsyMetRiC Score = 0.13 New PsyMetRiC Score = 0.19
no change in risk of metabolic 46% increase in risk of metabolic

syndrome syndrome

In time, he recovers from the acute psychotic episode but shows residual symptoms and so opts to remain on antipsychotic
medication. He also accepts referral to a dietician to address his cholesterol levels. One year later (age 25y), a repeat blood test
shows improvement: triglycerides=1.54mmol/L; HDL=1.33mmol/L and his BMI has decreased to 23.3. Due to residual
symptoms of psychosis, his doctor talks with him about a possible change in medication.

He continues on aripiprazole. He switches to olanzapine.
New PsyMetRiC Score = 0.07 New PsyMetRiC Score = 0.11
46% decrease in risk of metabolic 15% decrease in risk of metabolic syndrome
svndrome
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B. PsyMetRiC Partial-Model

A 27-year-old White European female is diagnosed with psychosis in the community and enrolled in the local NHS EIS.
She accepts basic physical assessment only (BMI=26.2, in the ‘overweight’ range). She smokes 15 cigarettes per day.

Initial PsyMetRiC Score =0.11

She is commenced on risperidone.

New PsyMetRiC Score = 0.20

81% increase in risk of metabolic
syndrome

After she begins to recover from her psychotic symptoms, she is offered and commits to smoking cessation therapy and is
successful in her efforts. She also talks to her doctor about a change in medication due to mild adverse effects.

She switches to amisulpride. She continues on risperidone.
New PsyMetRiC Score = 0.08 New PsyMetRiC Score = 0.16
60% decrease in risk of metabolic syndrome 20% decrease in risk of metabolic syndrome

Along with some friends, she also joins a local sports club, and over the course of 1 year, her BMI has decreased to 24.3.

She is prescribed amisulpride. She is prescribed risperidone.
New PsyMetRiC Score = 0.06 New PsyMetRiC Score = 0.12
25% decrease in risk of metabolic 25% decrease in risk of metabolic syndrome
syndrome

PsyMetRiC scores presented as predicted probabilities, which can be converted to %chance of incident metabolic
syndrome by multiplying by 100. *A raised triglyceride:HDL ratio is indicative of insulin resistance
EIS=psychosis early intervention service; BMI=body mass index; HDL=high-density lipoprotein.
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7.5 Discussion

I have developed and externally validated PsyMetRiC, which is, to the best of my knowledge, the
first cardiometabolic risk prediction algorithm specifically tailored for young people with psychosis.
PsyMetRiC can predict up to six-year risk of incident metabolic syndrome from commonly recorded
clinical information, highlighting modifiable risk factors that could be addressed to reduce risk.
Metabolic syndrome is a precursor to CVD and early mortality (Isomaa et al., 2001) and is a suitable
outcome for younger populations. Both PsyMetRiC versions externally validated well, with C-
statistics >0-70. Calibration of the full-model was good, but there was evidence of slight
miscalibration of the partial-model. Therefore, the partial model may benefit from recalibration in
larger samples. Both PsyMetRiC versions displayed greater net benefit than alternative strategies
across a range of feasible risk thresholds. However, at most risk thresholds, the results show that the

full-model should be used preferentially.

The data visualisations in Section 7.4.5 help to illustrate three things: First, antipsychotic medication
choice imparts a substantial influence on cardiometabolic risk; second, addressing lifestyle factors
can effectively reduce cardiometabolic risk even in the presence of antipsychotic medication; third;
advancing age in relatively-young adults does not substantially influence cardiometabolic risk
relative to other risk factors. While PsyMetRiC will benefit from future validation in larger samples,
it has the potential to become a valuable resource to promote better management of physical health
in young people with psychosis. PsyMetRiC could be used to highlight malleable risk factors and
encourage clinicians to make more personalized, informed decisions such as with the choice of

antipsychotic medication and lifestyle interventions.

Over 100 studies were included in my systematic review that explored the suitability of existing
cardiometabolic risk prediction algorithms for young people with psychosis (see Chapter 6). Yet, few
algorithms were externally validated; only one was developed in a sample of people with mental

illness; none were conducted in younger populations; and most were rated as being high-risk of bias.

Ethnicity, smoking, and BMI are amongst the most commonly included predictors in existing
algorithms (see Chapter 6) and are well-known contributors to cardiometabolic risk (Pillinger et al.,
2020), so I included them in PsyMetRiC. Sex is also frequently considered in existing algorithms,
and I included it in PsyMetRiC. I found that male sex was a risk factor for incident metabolic
syndrome, which aligns with meta-analytic reports that male sex is a risk factor for antipsychotic-
induced metabolic dysfunction (Pillinger et al., 2020). Due to the available sample size, I could not

consider separate versions of PsyMetRiC for males and females. When larger samples might be
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available in future, sex-stratified versions might be studied since existing algorithms developed for

the general population commonly take this step.

Age is frequently included in existing algorithms (see Chapter 6), and I included it in PsyMetRiC.
However, existing cardiometabolic risk prediction algorithms developed for relatively older-aged
adults have weighted age to a much greater extent than other predictors (see Chapter 6). This is likely
because most cardiometabolic risk factors contribute cumulative risk over time (Reinikainen et al.,
2015), and so age becomes increasingly important as one gets older. In Chapter 6, the accompanying
exploratory validation analysis, which examined the predictive performance of existing general
population cardiometabolic risk prediction algorithms (QRISK3, QDiabetes and PRIMROSE) in
young people who were at risk of developing psychosis, found that each significantly underpredicted
risk in the younger population. This is possibly due to the way existing algorithms have modelled
age. With PsyMetRiC, age is weighted to a much lesser extent than other predictors, and I achieved
favourable calibration in younger populations. While QRISK3, QDiabetes and PRIMROSE are good
examples of well-designed algorithms from enormous samples, my results suggest that PsyMetRiC

1s more appropriate for young people with psychosis.

Blood-based predictors such as HDL and triglycerides feature less often in cardiometabolic risk
prediction algorithms (see Chapter 6). Meta-analytic evidence suggests abnormal triglyceride and
HDL levels are detectable at FEP (Misiak et al., 2017), and a raised triglyceride:HDL ratio is a
hallmark of insulin resistance (Murguia-Romero et al., 2013), which is also associated with FEP
(Perry et al., 2016). Guideline recommendations encourage blood-based monitoring pre- and post-
antipsychotic exposure (Barnes et al., 2020), and so biochemical data should be available. I found
that the inclusion of blood-based predictors improved all predictive performance metrics. However,
blood-based monitoring may not always be possible, and I found that the partial-model still provided

relatively reliable performance estimates, although it would benefit from recalibration.

Antipsychotic medication is an important contributor to cardiometabolic risk in young people with
psychosis yet has rarely been included in existing algorithms. Some more recent algorithms have
included antipsychotics as predictors, grouped by the traditional distinctions of typical/atypical or
first/second-generation (see Chapter 6). However, the differential cardiometabolic effects of
antipsychotics do not abide by these distinctions. Therefore, I instead modelled antipsychotics based

on previous research. This is an advance over previous algorithms.

PsyMetRiC cannot yet be recommended for clinical use and requires prospective validation in larger
samples, health technology assessment, and regulatory approval. However, PsyMetRiC can become

a valuable resource for the better management of physical health in young people with psychosis in
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the future. For example, in the presence of a low PsyMetRiC risk score, gentle encouragement to
maintain good physical health may be sufficient. For instance, this might include dietary advice,
promoting daily physical activity and smoking cessation, if necessary. There is little harm yet much
to gain in offering gentle encouragement to live a healthier life, and such conversations need to

become part and parcel of psychiatric consultation.

Patients and clinicians might prefer to tolerate a slightly higher risk threshold when the proposed
intervention could be deemed more burdensome or may increase the risk of other adverse effects. For
example, prescribed lifestyle interventions have shown promise in lowering cardiometabolic risk in
young people with psychosis (Fernandez-Abascal et al., 2021), however they may be perceived as
burdensome, involving regular appointments that may be difficult to maintain around work or other

commitments.

Yet, dietary interventions (Curtis et al., 2016) have shown promise when offered to young people
with psychosis but may be less effective in older adults with more chronic illness and ingrained

behaviours (Speyer et al., 2016).

Regarding smoking cessation, a systematic review and meta-analysis found relatively strong evidence
for pharmacological interventions such as varenicline, a selective nicotine receptor partial agonist,
and bupropion, a selective catecholamine reuptake inhibitor. The review found limited evidence for
behavioural interventions (Pearsall et al., 2019). A systematic review on the psychosocial barriers to
smoking cessation in schizophrenia found that cravings were the main barrier to smoking cessation,
followed by a perception that negative symptoms worsened when attempting to quit (Lum et al.,

2018).

Regarding physical activity interventions, a Cochrane review of randomized controlled trials (RCTs)
found that despite study heterogeneity and small sample sizes, exercise interventions led to an
improvement in negative symptoms and quality of life scores as well as weight loss (Gorczynski and
Faulkner, 2010). A mixed-methods study found that people with schizophrenia who engaged in
regular exercise reported beneficial effects on mood and cognitive symptoms, with improvements in
well-being measures and reductions in negative and cognitive symptoms, following an exercise
intervention (Ho et al., 2018). Similarly, other qualitative research has shown that people with
schizophrenia who regularly engage in exercise reported improved symptom alleviation, improved

confidence, and a sense of achievement (Firth et al., 2016).

Other interventions may increase the risk of other adverse effects. For example, my results show that
switching from metabolically-active antipsychotics or not prescribing them in the first place is a

highly effective means to reduce cardiometabolic risk. This finding is in line with a recent clinical
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trial which found that switching to a less metabolically-active antipsychotic significantly reduced
BMI in young people with psychosis (Correll et al., 2020). However, the risk of psychosis relapse or
other adverse effects may reasonably be worrisome for patient and clinician alike. Moreover, meta-
analyses suggest that metabolically-active antipsychotics could be associated with favourable
psychosis treatment response (Pillinger et al., 2020), though this may be an artefact of treatment
adherence. Nevertheless, antipsychotic selection must strike an intricate balance between caring for
psychiatric and physical health. Finally, trials of treatments such as metformin and statins are scarce
in young people with psychosis, but evidence suggests that such medications might benefit both
cardiometabolic and psychiatric outcomes (Hayes et al., 2019, Correll et al., 2020, de Silva et al.,

2016).

Regarding the strengths of the study, I have developed, to the best of my knowledge, the first
cardiometabolic risk prediction algorithm for young people with psychosis, harnessing data from
three geographically distinct patient samples and a population-based cohort. PsyMetRiC was
developed in consultation with The McPin Foundation YPAG to ensure a balance between clinical
practicality and patient acceptability, and I received encouraging comments from the YPAG about
PsyMetRiC. I developed an online interactive app permitting a visualization of the impact of different
cardiometabolic risk factors in young people with psychosis. I have reported the fully specified
algorithm coefficients to encourage future validation and model updating. I developed two versions
of PsyMetRiC to maximise clinical utility and both validated well, suggesting that PsyMetRiC is
likely to be suitable for use in patients aged 16-35 years from a UK EIS population. From the
sensitivity analysis results, PsyMetRiC may also be generalizable to young adults at risk of

developing psychosis.

Limitations of the study include missing data. I excluded participants who had the outcome at
baseline, as recommended (Wolff et al., 2019). However, because the predictors were measured a
short time frame after EIS enrolment, some ‘metabolically-sensitive’ individuals, i.e., inidivduals
who developed metabolic syndrome quickly, might have been inadvertently excluded from the
analysis. I also excluded participants with data missing on either all exposure or all outcome variables,
which may have introduced selection bias. The missing sample was more likely to be older and female
and less likely to be prescribed metabolically-active antipsychotics. This may have affected some
PsyMetRiC predictor coefficients. Nevertheless, I felt this exclusion step was more appropriate than

imputing complete participant data.

Multiple imputation may be biased in instances where data are ‘missing not at random’. However, I
included auxiliary variables to reduce the fraction of missing information and limit the impact of this.

External validation of PsyMetRiC in larger samples is required since simulation studies have
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suggested a minimum of 100 outcome events for an accurate validation analysis (Collins et al., 2016).
Larger prospectively collected samples in future may also allow for updating the algorithm with
interactions, non-linear terms, and sex-stratification. In addition, larger prospectively collected
samples may allow the consideration of other potentially important predictors such as other
metabolically-active medications, physical activity, and diet. Prospectively collected data may also
allow prediction of longer-term risk since the mean follow-up time in the primary analysis was shorter
than the maximum included time frame of six years. While the data-driven classification of
metabolically-active antipsychotics is an advance over existing algorithms, the metabolically-active
nature of different antipsychotics lies on a continuum rather than across a dichotomy. Larger samples
may permit the modelling of antipsychotics individually. Prescriber bias may have downwardly
biased the coefficients for antipsychotics since metabolically-active medications may have been

withheld from patients considered to be at higher cardiometabolic risk.

In conclusion, I have developed and externally validated PsyMetRiC, an algorithm that can reliably
predict the risk of incident metabolic syndrome in young people with psychosis. PsyMetRiC has the
potential to become a valuable resource for healthcare professionals working in EIS. PsyMetRiC can
aid the informed choice of psychotropic and non-psychotropic medications and non-pharmacological
interventions, including lifestyle adjustments, to prevent the future development of cardiometabolic

comorbidity and consequent years of life lost.
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Section D: Summary of Main Findings and Conclusions

Section D concerned the clinical prediction of cardiometabolic risk in young people with psychosis,
consisting of a systematic review (Chapter 6) followed by the development of PsyMetRiC, a
cardiometabolic risk prediction algorithm for young people with psychosis (Chapter 7). The
systematic review (Chapter 6) identified a considerable number of cardiometabolic risk prediction
algorithms developed for the middle- to older-aged general population. One algorithm was developed
for a non-specific psychiatric population and was also developed in relatively older-aged adults. 1
also found that most algorithms were not externally validated, thus calling their potential
generalizability into question, and most were rated as high risk of bias. Three identified algorithms
(QRISK3, QDiabetes, PRIMROSE) included psychiatric predictors such as antipsychotic
medications and were assessed for their predictive performance in a younger psychosis-risk
population. All three substantially underpredicted cardiometabolic risk in the younger population.
Based on the systematic review and exploratory validation analysis, I concluded that currently, no
algorithm can be recommended for young people with psychosis, despite this population being at

significantly higher cardiometabolic risk than the general population.

In Chapter 7, I developed the first cardiometabolic risk prediction algorithm tailored for young people
with psychosis, the Psychosis Metabolic Risk Calculator (PsyMetRiC). I designed PsyMetRiC to be
age-appropriate, clinically useful, and acceptable to patients. I developed PsyMetRiC using patient
data from two UK EIS and externally validated it in a geographically distinct UK EIS and a
population-based cohort. I developed and validated two versions of this tool, one with and one without
blood-based biomarkers, to maximise usefulness in day-to-day clinical practice. Predictive
performance for PsyMetRiC was universally good, suggesting that the algorithm is suitable for the
UK EIS population. PsyMetRiC represents a valuable future tool for clinical practice, which now

requires further testing in clinical settings through prospective validation and updating.

Together, results from Section D show that the prediction of cardiometabolic risk in young people
with psychosis has been widely overlooked. Nevertheless, with PsyMetRiC, I have shown that it is
possible to predict cardiometabolic risk in this population accurately. Whilst future refinements to
PsyMetRiC are required to improve predictive performance further, PsyMetRiC is a valuable step

toward improved physical healthcare for young people with psychosis.
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8.1 Summary of the Main Findings in This Thesis

In this thesis, using a number of complementary methodological approaches relating to genetic and
observational epidemiology along with prognosis research, I present evidence that cardiometabolic
dysfunction may predate the onset of psychosis and may be inherent to it. I found that this may be
explained, at least in part, by common biological mechanisms such as shared genetic liability and
inflammation. I also found that it is possible to accurately predict cardiometabolic risk in young
people with psychosis from commonly recorded information. Together, these findings can help to
explain why young people with psychosis present with cardiometabolic dysfunction even in the
earliest stages of illness. The findings can also pave the way for novel therapeutic and preventative

approaches for schizophrenia and its associated cardiometabolic comorbidity.

First, to address the issue of direction of association, I used longitudinal data from the ALSPAC birth
cohort to delineate developmental trajectories of cardiometabolic indices from early childhood to
early adulthood and then tested associations with adult schizophrenia-spectrum and depression
outcomes. I found that persistently high fasting insulin levels from mid-childhood were associated in
a dose-response manner with schizophrenia-spectrum phenotypes measured in adulthood. Evidence
for the associations remained after adjustment for a range of potential confounders, including sex,
ethnicity, social class, smoking, physical activity, calorie intake, alcohol, and substance use. This
suggests that the traditional attributions of sociodemographic and lifestyle factors are unlikely to fully
explain the comorbidity. The associations of disrupted glucose-insulin homeostasis were not
identified with depression, a genetically and clinically similar mental disorder with well-known
cardiometabolic comorbidity. Together, these findings suggest that disruptions to glucose-insulin
homeostasis may be a specific primary pathophysiological hallmark of schizophrenia and may be
detectable decades before the first clinical psychotic episode. Therefore, disrupted glucose-insulin
homeostasis could be a cause rather than simply a consequence of psychotic illness or share common

pathophysiologic mechanisms.

Second, I examined whether genetic predisposition for T2D and schizophrenia were associated with
risk of psychosis and disrupted glucose-insulin homeostasis, respectively, and explored whether
genetic influences on childhood inflammation could mediate any evident associations. I found that
genetic predisposition to schizophrenia was associated with disrupted glucose-insulin homeostasis in
early adulthood and vice versa, genetic predisposition to T2D was associated with increased risk of
schizophrenia-spectrum phenotypes in early adulthood. I found that this risk was partly mediated by

childhood inflammation.

203



Third, I used a set of complementary genomic methods to rigorously examine for evidence of shared
genetic liability for schizophrenia, cardiometabolic and inflammatory traits, using summary data from
large-scale GWAS. I found evidence for genetic overlap between schizophrenia, cardiometabolic and
inflammatory traits that was confined to relatively lower-frequency genetic variants, was
heterogeneous in nature, and could be pinpointed to biologically plausible pathways, for example,

BDNF and glucose transport.

Fourth, 1 used summary GWAS data to examine whether insulin resistance and related
cardiometabolic traits may be causally related to schizophrenia or whether inflammation may be a
common biological mechanism for the comorbidity. I found consistent evidence supporting that
inflammation could be a common cause for comorbid insulin resistance and schizophrenia. Together,
these findings suggest that shared genetic liability and inflammation may be putative biological
mechanisms that underly the associations between cardiometabolic disorders and schizophrenia, over

and above the common attributions of sociodemographic, lifestyle and clinical factors.

Fifth, turning to the clinical relevance of the cardiometabolic comorbidity of schizophrenia, I
performed a systematic review of cardiometabolic risk prediction algorithms to examine whether any
might be suitable for young people with psychosis. Despite identifying a large number of algorithms,
most had significant methodological shortcomings, and none were developed for younger
populations. Using ALSPAC data, I found that existing algorithms substantially underpredicted
cardiometabolic risk in a younger psychosis-risk sample. Therefore, I concluded that no existing

cardiometabolic risk prediction algorithm is likely suitable for young people with psychosis.

Finally, using patient data from three UK EIS, I developed and validated PsyMetRiC, the first
cardiometabolic risk prediction algorithm developed especially for young people with psychosis. The
predictive performance of PsyMetRiC was good in both the development and external validation

samples, suggesting that PsyMetRiC is likely to be suitable for use in the UK EIS population.
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8.2 Interpretation and Context of the Main Findings in This Thesis

8.2.1 Examining The Nature of Association between Cardiometabolic Disorders and

Schizophrenia

The finding that disruption to glucose-insulin homeostasis may predate psychosis (Chapter 2) could
represent a considerable advance in our understanding of the nature of association between
cardiometabolic traits and schizophrenia. Given the known cardiometabolic risk-increasing
associations between schizophrenia and a host of lifestyle and clinical factors (as detailed in Section
1.1.3), it was previously assumed that the cardiometabolic comorbidity so prevalent in schizophrenia
was simply a consequence of the psychiatric disorder. This assumption was bolstered by the findings
of early systematic reviews and meta-analyses, which reported an unremarkable prevalence of
cardiometabolic disorders like T2D and metabolic syndrome in antipsychotic naive FEP (Mitchell et
al., 2013a). The authors concluded that the cardiometabolic comorbidity of schizophrenia most likely

arises after the onset of the psychiatric disorder and so must be a consequence of it.

However, just as psychotic symptoms may be distributed over a spectrum in the general population
(van Os et al., 2009), neither is cardiometabolic dysfunction a binary distinction. Rather, subtle forms
of cardiometabolic dysfunction may be present in the absence of clinical T2D or metabolic syndrome.
Early systematic reviews failed to consider that the absence of relatively mature cardiometabolic
phenotypes such as T2D and metabolic syndrome does not necessarily equate to the absence of
cardiometabolic dysfunction. Indeed, more recent meta-analyses have consistently shown that subtle
forms of disrupted glucose-insulin homeostasis, such as insulin resistance and impaired glucose
tolerance, are detectable in FEP (Perry et al., 2016, Pillinger et al., 2017a, Greenhalgh et al., 2017).
Findings from these meta-analyses, therefore, called into question the traditional understanding of the
direction of association between cardiometabolic dysfunction and schizophrenia. This is because
participants included in the studies were antipsychotic naive and relatively young, and so less affected
by commonly attributed lifestyle and clinical factors. Nevertheless, since all studies included in meta-
analyses were either cross-sectional or featured existing cases of FEP, further elucidation on the

direction of association could not be ascertained.

In Chapter 2, I present evidence that disruption to glucose-insulin homeostasis predates FEP and may
be detectable from childhood in at least some individuals. While the commonly attributed lifestyle
and clinical factors are not to be devalued and remain crucial therapeutic targets for the
cardiometabolic comorbidity in schizophrenia, my findings suggest that these factors are more likely
to exacerbate rather than cause the comorbidity. This argument is strengthened in light of the findings

in Chapter 2, where associations between persistently high fasting insulin and schizophrenia-

205



spectrum phenotypes endured even after adjusting for a detailed set of sociodemographic and lifestyle
confounders. One previous study sought to examine longitudinal associations between a single point-
measure of fasting insulin levels measured at age 9 years and risk of psychosis at age 18 years in the
ALSPAC cohort and found no evidence for an association (Perry et al., 2018). This discrepancy in
findings from the same cohort underscores the importance of taking into account dynamic temporal
changes and fluctuations in cardiometabolic markers, which are captured more effectively across
repeated measures. In addition, the incidence of psychosis at age 18 years is relatively low. Therefore,

the previous study may have included too few cases of outcome to detect an association.

In Chapter 2, I also present evidence for specificity of association between cardiometabolic
dysfunction and schizophrenia-spectrum phenotypes. In addition to disrupted glucose-insulin
homeostasis, recent meta-analyses have also consistently reported evidence of dyslipidaemia
detectable in antipsychotic naive FEP (Pillinger et al., 2017b, Misiak et al., 2017). However, the
pattern of dyslipidaemia in FEP could be further evidence for a primary disruption to glucose-insulin
homeostasis in schizophrenia, rather than more wide-ranging primary cardiometabolic dysfunction,
as I have explained in Section 1.1.4.2.2. Interestingly, I found that the ALSPAC participants grouped
into the ‘persistently-high’ fasting insulin developmental trajectory also had mean levels of
triglycerides and HDL outside of reference ranges at age 24 years, providing further consistency to

the results.

I did not find that ALSPAC participants grouped into the ‘persistently-high’ fasting insulin
developmental trajectory had mean BMI levels or other forms of cholesterol outside of reference
ranges. Also, I did not find evidence for associations of BMI developmental trajectories with
schizophrenia-spectrum phenotypes at age 24 years. In fact, I found striking differences between the
longitudinal cardiometabolic associations of schizophrenia-spectrum outcomes compared with
depression, where the latter did show strong associations with puberty-onset BMI increases but no
associations with glucose-insulin homeostasis. This provides evidence of specificity for primary
disruption to glucose-insulin homeostasis, but not adiposity, with increased risk of psychosis. These
findings are in line with meta-analyses of both individuals with FEP (Perry et al., 2016) and younger
individuals at risk of developing psychosis (Carney et al., 2016) which did not find differences in
BMI between cases and controls. Conversely, longitudinal studies conducted in large samples have
found associations of lower BMI in childhood and adolescence with increased risk of schizophrenia

in adulthood (Zammit et al., 2007, Weiser et al., 2004, Sorensen et al., 2006).

While these longitudinal studies are limited by only including single point-measures for BMI, the
large population-representative samples permit significant statistical power to detect a difference.

Therefore, additional subtle trajectories of BMI may exist in the population that could not be
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accurately delineated in my analysis. For example, I found that over 70% of included participants
were grouped into the ‘stable average’ BMI trajectory, whose BMI remained close to the sample
mean over time. Replication of my work in larger samples may uncover additional BMI trajectories
subtly distinct from the ‘stable average’ trajectory I identified. Some of these may be associated with

lower childhood BMI and may, in turn, be associated with an increased risk of schizophrenia.

At first glance, it may appear contradictory that abnormalities in glucose-insulin homeostasis could
be detectable in the absence of adiposity and other cardiometabolic phenotypes. However, there is
increasing recognition that in the early stages of cardiometabolic disruption in young adults, insulin
resistance can occur in isolation and in advance of changes to adiposity (Wiebe et al., 2021). This has
been coined the ‘lean insulin resistant’ phenotype (Penesova et al., 2011, Townsend et al., 2018,
George et al.,, 2015, Gonzalez-Cantero et al., 2018). Interestingly, the ‘lean insulin resistant’
phenotype is also associated with higher levels of inflammation (Ding et al., 2016), and I will discuss

the potential mechanistic involvement of inflammation below (Section 8.2.2).

8.2.2 Testing Potential Mechanisms of Association between Cardiometabolic Disorders and

Schizophrenia

In Chapter 3, using ALSPAC data, I found that genetic predisposition to T2D was associated with
increased risk of psychosis in early adulthood and vice versa, genetic predisposition to schizophrenia
was associated with insulin resistance in early adulthood. These findings indicate the possibility of
gene similarity between schizophrenia and disrupted glucose-insulin homeostasis. These findings
align with other observational genetics studies (Chouinard et al., 2019, Tomasik et al., 2019,
Hackinger et al., 2018) as described in Section 3.5, and extend upon them since existing studies are

limited by relatively small sample sizes compared with the analysis I present in Chapter 3.

Furthermore, I can extend upon the findings of previous studies since I tested a potential mechanism
for the genotype-phenotype associations. I found that the association between genetic predisposition
for T2D and risk of psychosis was partly mediated by childhood inflammation. Whilst the effect size
for mediation was small, and those analyses may have been limited by statistical power, the findings
suggest that the genotype-phenotype associations of T2D and schizophrenia align at least in part due
to genetic influences on inflammatory and immune pathways, which could increase the risk of both
disorders simultaneously. Indeed, there is biological plausibility for this mechanism; longitudinal
associations between childhood inflammatory markers and subsequent risk of psychosis have been
reported in the same (Khandaker et al., 2014) and other cohorts (Kappelmann et al., 2019, Goldsmith
et al.,, 2019, Metcalf et al., 2017, Osimo et al., 2021). Similarly, longitudinal associations of
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inflammatory markers with disrupted glucose-insulin homeostasis have been reported in meta-

analyses (Bowker et al., 2020).

In Chapter 4, I took a different approach to examine for shared genetic liability between
schizophrenia, cardiometabolic and inflammatory traits, using genomic methods that leverage
summary data from large-scale GWAS. The findings were consistent with those reported in Chapter
3, thus strengthening the argument that shared genetic liability may at least in part explain phenotypic
associations between schizophrenia, cardiometabolic and inflammatory traits. Limited previous
research has sought to examine for shared genetic architecture between schizophrenia and
cardiometabolic traits. For example, one recent study reported a negative genetic correlation between
schizophrenia and BMI (Bahrami et al., 2020). Another older study that featured smaller GWAS
reported limited evidence for genetic correlation between schizophrenia and cardiometabolic traits

(Bulik-Sullivan et al., 2015a).

However, as described in Section 4.1, the LDSC approach may have limitations that I was able to
address with the use of novel complementary analytic methods. In line with previous research, I found
evidence for a negative genetic correlation between schizophrenia, BMI, and T2D, confined to
relatively common genetic variants. This cardiometabolic risk-decreasing pattern of correlation with
schizophrenia differed from the pattern I identified in relatively less-common genetic variants, where
I found consistent evidence of a cardiometabolic risk-increasing pattern of correlation with
schizophrenia. The heterogeneity of these findings requires further investigation but may help to
explain why lower BMI in childhood is longitudinally associated with schizophrenia in adulthood
(Zammit et al., 2007, Weiser et al., 2004, Sorensen et al., 2006), and may help to explain how a ‘lean
insulin resistant’ phenotype may be associated with schizophrenia, as discussed in Section 8.2.1.
These findings together suggest that obesity, which is commonly observed in chronic schizophrenia
(Mitchell et al., 2013b), may occur due to lifestyle and iatrogenic factors (see Section 1.1.3) or may

occur over time secondary to intrinsically disrupted glucose-insulin homeostasis in schizophrenia.

In addition to addressing limitations of the LDSC approach, findings from Chapter 4 also provide
further granularity around potential mechanisms that may link schizophrenia, inflammation and
cardiometabolic traits. The colocalization analysis returned robust evidence for several genetic loci
that may underly the shared genetic liability between schizophrenia, cardiometabolic and
inflammatory traits. Several loci are related to pathways involving BDNF, which has biologically
plausible roles in the development and maintenance of the immune and central nervous systems, and

in the regulation of cardiometabolic function (See Section 4.5).
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The research methods employed in Chapter 4, including genetic correlation and colocalization
analyses, cannot test the direction of association. However, in Chapter 5, [ used MR to first examine
for evidence that insulin resistance and related cardiometabolic traits may be causally related to
schizophrenia, and second, for evidence that inflammation may be a common mechanism for
schizophrenia and insulin resistance. Crucially, MR can examine the direction of association and can
address problems of residual confounding. My findings indicate that inflammation may be a novel
therapeutic target for both schizophrenia and its cardiometabolic comorbidity. Existing MR studies
have reported evidence that inflammation may be causally related to schizophrenia (Hartwig et al.,
2017) and T2D (Yuan and Larsson, 2020, Bowker et al., 2020) separately. Therefore, my findings

are consistent with previous research.

Where the findings from Chapters 3 & 4 showed how shared genetic liability might lead to
inflammatory changes, disruption to glucose-insulin homeostasis, and increased risk of
schizophrenia, findings from Chapter 5 show that genetic predisposition may not be the only
mechanism for inflammation to exert a simultaneous influence on risk of schizophrenia and comorbid
cardiometabolic disorders. In MR, while genetically predicted levels of the exposure are modelled,
these are considered proxies for lifelong levels of environmental exposures free from measurement
error or short-term environment-related fluctuations in the exposure (Davey Smith and Ebrahim,
2005). Therefore, findings from Chapter 5 indicate that increases in inflammation from any cause,
whether genetic or environmental, could be potentially causally linked with schizophrenia and

cardiometabolic disorders simultaneously.

Environmental adversity in early life through infection, stressful life events or malnutrition may
permanently alter the immune system (Merlot et al., 2008, Harvey et al., 2010). This idea is consistent
with Barker’s developmental programming hypothesis (Barker et al., 1993), as described in Section
1.2.3. Indeed, in Chapter 2, I found that participants grouped into the ‘persistently high’ fasting insulin
trajectory had significantly greater exposure to perinatal stressful life events and significantly lower
birthweight compared with participants grouped into the °‘stable average’ trajectory. These
associations may reflect an adverse early developmental environment, providing further evidence of
the potential role of the developmental programming hypothesis in simultaneously increasing the risk

of schizophrenia and cardiometabolic disorders.

The findings from Chapters 2-5, alongside existing research, can be framed together to delineate the
most likely direction of association between genetically predisposed schizophrenia, cardiometabolic
and inflammatory traits. For example, in Chapter 2, I found that disrupted glucose-insulin
homeostasis may predate the onset of psychosis. In Chapter 3, I found that genetic predisposition may

increase the risk of comorbid psychosis and disrupted glucose-insulin homeostasis, at least in part
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due to a mediating influence of inflammation. Existing longitudinal research has shown that
inflammation is likely to predate disrupted glucose-insulin homeostasis (Bowker et al., 2020) and
psychosis (Khandaker et al., 2014). In Chapter 4, I found that the cardiometabolic traits colocalized
with inflammation and schizophrenia were broader than those solely related to disrupted glucose-
insulin homeostasis, for example, involving distal cardiometabolic endpoints such as CAD. Given
that disruption to glucose-insulin homeostasis predisposes to CAD (Aronson and Edelman, 2014),
CAD is likely to be a downstream colocalized trait from inflammation and disrupted glucose-insulin
homeostasis. In Chapter 5, I found that lifelong levels of inflammation, either genetic or
environmental, may be a common cause for comorbid insulin resistance and schizophrenia.
Therefore, the most likely direction of association between schizophrenia, cardiometabolic and

inflammatory traits is shown in Figure 29.

Figure 29: Schematic Outlining the Most Likely Direction of Association between
Inflammation, Cardiometabolic Disorders and Schizophrenia Based Upon Findings of This
Thesis
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*Traditional attributions include sociodemographic, lifestyle and iatrogenic factors and are described in further detail in
Section 1.1.3

8.2.3 Improving the Prediction of Cardiometabolic Risk in Young People with Psychosis

Chapters 2-6 show a consistent thread of evidence showing that schizophrenia is likely to carry
inherent cardiometabolic risk, which may be first detectable before the onset of FEP. The findings
suggest that the commonly attributed lifestyle and clinical factors (as described in Section 1.1.3) are
likely to be exacerbating rather than causal factors for the comorbidity. Therefore, there is a clear and

crucial need for tools that can accurately quantify this combined inherent and exacerbated
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cardiometabolic risk at the soonest possible opportunity in the schizophrenia illness course. Such
tools can assist healthcare professionals in preparing personalized treatment plans by accurately
considering present and future cardiometabolic risk. This can help to attenuate the risk of more distal
adverse cardiometabolic outcomes and close the substantial mortality gap faced by people with

schizophrenia.

I identified an extensive array of existing cardiometabolic risk prediction algorithms in my systematic
review (Chapter 6). However, the majority have not been externally validated, and most were rated
as being at high risk of bias. Prediction algorithms that cannot evidence potential generalizability and
have been reported so poorly cannot be clinically useful and so are arguably no more than contributors
to research waste. This opinion is not new; an older systematic review of cardiometabolic risk
prediction algorithms came to a similar conclusion (Damen et al., 2016). It is disheartening that
despite the introduction of reporting standards (Collins et al., 2015) and risk of bias assessment tools
(Wolff et al., 2019) for risk prediction algorithms, improvements in the literature are yet to

materialize.

However, I did identify a few excellent examples of cardiometabolic risk prediction algorithms.
QRISK3, QDiabetes and PRIMROSE were developed in extensive samples and were rated as
relatively low risk of bias. Each was validated in large samples and so have evidenced
generalizability; QRISK3 has been successfully integrated into clinical practice in the UK, a step
most health outcome prediction algorithms fail to reach (Riley, 2019); and, PRIMROSE was the only

identified algorithm to have a published economic analysis (Zomer et al., 2017).

Despite these positives, | identified several reasons why all three algorithms are unlikely to be suitable
for young people with psychosis. These included the older populations the algorithms were developed
for, the balance of predictor weightings, and the character and coding of included predictors. In the
exploratory validation analysis, I found that all three algorithms substantially underpredicted

cardiometabolic risk in young people who had or were at risk of developing psychosis.

Therefore, I developed and externally validated PsyMetRiC in real EIS samples of young adults
(Chapter 7), following TRIPOD reporting guidelines (Collins et al., 2015). I found that PsyMetRiC
showed good predictive performance in the development, external validation and sensitivity analysis
samples, suggesting the algorithm is likely to be suitable for use in the UK EIS population. By
involving a young person’s advisory group in the design of PsyMetRiC, I ensured that the algorithm
is likely to be acceptable for patients. By developing two PsyMetRiC versions, one with- and one

without biochemical measures, I ensured that the algorithm is likely to be clinically useful.
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While not yet bedside ready, I see PsyMetRiC as a useful starting point that can be taken forward
towards routine clinical practice after further validation and fine-tuning. An important consideration
that I purposely did not broach with PsyMetRiC is with prescribed risk score ‘cut-offs’ and associated
treatment recommendations. Primarily, this is because I do not believe that algorithms could, or
should, entirely dictate clinical decisions, which are complex assimilations of individual patient
factors that are unlikely to be fully captured by any algorithm. Rather, I believe that prediction
algorithms should more appropriately be placed in the context helping to inform the decision-making
process. Nevertheless, while cut-offs are often helpful in healthcare settings, deciding upon them in

the context of PsyMetRiC will require a separate body of multi-disciplinary and patient-centred work.

8.3 Strengths and Weaknesses of the Methodological Approaches Used in This
Thesis

In this thesis, I have used a number of complementary approaches to examine the nature and
mechanisms of the cardiometabolic comorbidity of schizophrenia and consider the prediction of
cardiometabolic risk in young people with psychosis. Each method was selected for its potential
strengths in being able to address the research questions posed and for its ability to address the
limitations of previous research. However, each analysis I have conducted may have weaknesses that
must be taken into consideration. I will now address the strengths and weaknesses of each analysis I

have conducted in order of their presentation in this thesis.

8.3.1 Strengths and Weaknesses of the Methodological Approaches Used in Section B

The availability in ALSPAC of repeat measures of cardiometabolic indices to delineate trajectories
of cardiometabolic development and test associations with schizophrenia-spectrum outcomes
(Chapter 2) is a key strength. ALSPAC is a relatively large population-representative birth cohort and
features a highly diverse range of collected data spanning biochemical, sociodemographic,
anthropometric, genetic, psychiatric, and lifestyle data. Such a detailed set of available data permitted
a thorough analysis of two important features of cardiometabolic development through childhood and
adolescence. In my study, I included 12 measures of BMI between ages 1-24 years and four measures
of fasting insulin between ages 9-24 years. Comparing my study with those included in a relatively
recent systematic review of BMI developmental trajectories (Mattsson et al., 2019), my study features
the longest temporal analysis period and the most extensive set of repeat measurements. To the best

of my knowledge, my study also includes the first analysis of developmental trajectories of fasting
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insulin through childhood and adolescence. In addition, given the richness of the ALSPAC dataset, |
performed a detailed analysis of the identified trajectories. This included examining
sociodemographic and lifestyle predictors of trajectory membership, clinical characteristics of the
identified trajectories at age 24 years, and associations with schizophrenia-spectrum and depression
outcomes at age 24 years. For the latter analysis, I adjusted for a detailed set of potential confounders,
including sex, ethnicity, paternal social class, childhood emotional and behavioural problems, and
cumulative scores of smoking, physical activity, alcohol use, substance use, sleep problems and
average calorie intake. Such detailed confounding adjustment is rare for existing studies in the field
and provides some confidence that the associations are unlikely to be fully explained by

sociodemographic and lifestyle factors.

The data available in the ALSPAC cohort permitted a detailed consideration of several key aspects
of the Bradford Hill criteria (Hill, 1965), which has thus far eluded existing studies in the field. First,
I could examine the direction of association, where most existing research has been either cross-
sectional or has included incident cases of psychosis. Evidence of longitudinal associations is key to
unravelling pathophysiology and identifying genuine risk factors. Second, by including several
related schizophrenia-spectrum outcomes, I could test for evidence of consistency and robustness of
the results. Third, by including depression as an outcome, I could test for evidence of specificity of
association. Fourth, I could examine a biological gradient related to both the exposure and outcomes.
For example, my analysis delineated two adverse fasting insulin trajectories, but the strongest
evidence of association was found for the most adverse fasting insulin trajectory. I also found the
strongest evidence for an association with the most clinically relevant schizophrenia-spectrum

outcomes, namely ARMS and psychotic disorder.

The use of repeat measure data also allowed me to overcome another key limitation of previous
studies, which have typically included one-off measurements of cardiometabolic indices and so are
blind to fluctuations over time. Cardiometabolic indices, including measures of glucose-insulin
homeostasis (Moebus et al., 2011) and BMI (Turicchi et al., 2020), are subject to normal fluctuation.
This variability cannot be appropriately considered with single-point measures. Repeated measures
over time permitted a more granular and detailed examination of underlying biological mechanisms

taking into account dynamic temporal changes in these indices.

The use of GMM as an analytical approach for the repeat measure data permitted the capture of
information about interindividual differences in intraindividual change, taking into account
unobserved heterogeneity within a larger population (Jung, 2007). On the other hand, regression-
based modelling assumes that the growth trajectories of all individuals in a population could be

adequately described using a single estimate of growth parameters; i.e., all individuals are drawn from
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a homogenous population without discernible differences (Jung, 2007). This is most likely an
oversimplification. Since GMM relaxes these assumptions and allows differences in growth
parameters across unobserved subpopulations, I could delineate subgroups of the population likely to
be plausibly different from one another in their trajectories of fasting insulin or BMI levels. Therefore,
GMM is likely to be a more biologically plausible framework to consider cardiometabolic

development than more standard regression-based methods.

Weaknesses of the ALSPAC data-based studies (Chapters 2 & 3) include missing data. As is common
in most, if not all cohort studies, attrition has also affected ALSPAC, with males and those from more
disadvantaged backgrounds more likely to have been lost to follow-up (Boyd et al., 2013a).
Systematic differences in attrition can lead to selection bias in the analytic sample, which can bias
results in either direction with a magnitude of impact that can be difficult to ascertain (Odgaard-
Jensen et al., 2011). In addition, selective sampling can increase the risk of collider bias when the
selected and missing samples differ on a variable which may be on the putative causal pathway
analysed (Cole et al., 2010). Given that most psychiatric and cardiometabolic disorders are strongly
associated with social class and that participants from lower social classes were disproportionately

lost to follow-up in ALSPAC (Boyd et al., 2013a), collider bias may have affected the results.

While the GMM approach could address missing data in the delineation of cardiometabolic
developmental trajectories using FIML, analyses involving psychiatric outcome data would have
been most susceptible to missing data bias. For example, the analytic sample following confounding
adjustment featured as low as 28% of the total sample for BMI-psychiatric outcome analyses and as

low as 47% for fasting insulin-psychiatric outcome analyses.

Methods of addressing missing data do exist, such as multiple imputation, and when used carefully,
are effective at reducing the impact of bias from missing data (White et al., 2011). However, I could
not use multiple imputation in this study since I analysed trajectory-psychiatric outcome associations
using the three-step GMM method (see Section 2.3.5.2). While the three-step method was
methodologically appropriate since it considers classification uncertainty, adding multiple imputation
to this process would have caused prohibitive computational burden. The field has yet to feasibly
combine multiple imputation with the three-step method (Asparouhov, 2014). Therefore, given the
risk of selection bias in my analyses, it cannot be concluded that the results I have obtained are
generalizable to the whole population of young people with psychosis, and so replication of my

findings is crucial.

Since my study was observational, I cannot confirm that residual confounding has not affected my

findings. This issue was addressed in a separate study using MR (Chapter 5). Residual confounding
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is a limitation of all observational research. Whilst detailed confounding adjustment is helpful to
reduce the impact of confounding on the results, addressing the impact of any potential confounder
relies on the assumption that the confounder has been accurately measured. This may not have been

the case with ALSPAC data in some instances.

For example, socioeconomic inequality is a powerful predictor of health outcomes (Kivimaki et al.,
2020), but measuring it is complex (Darin-Mattsson et al., 2017). Inequality is not static and temporal
changes in socioeconomic factors can lead to measurable differences in health outcomes over time
(McKenzie et al., 2014). I chose paternal social class at birth to represent socioeconomic status since
it a good predictor of childhood outcomes (Erola, 2016). However, since my exposures were
measured longitudinally through childhood and adolescence, I could not capture the potential impact

of social mobility over time (Tiikkaja et al., 2013).

In addition, a number of the confounders I adjusted for were based on self-report data collected from
questionnaires. Self-report health data is at notoriously high risk of measurement error (Butler, 1987).
For example, I adjusted for calorie intake based upon data collected from food frequency
questionnaires, but such data is at high risk of recall bias (Natarajan et al., 2010, Freedman et al.,
2011). Furthermore, I adjusted for physical activity based upon self-reported questionnaire data, but
past physical activity levels are commonly misreported in the general population (Lim et al., 2015)
and even more so in people with psychosis (Firth et al., 2018). Whilst accelerometer data may be a
more accurate objective measure of physical activity (Dyrstad et al., 2014), the sample size with
available accelerometer data in ALSPAC was relatively small. Therefore, I used the self-report

variable to maximise the available sample size.

Residual confounding may also have affected my results. This could have occurred due to known
confounders I could not include or confounders that are unknown. For example, I could not adjust for
psychological stress and the associated impacts upon the HPA axis (Smith and Vale, 2006) since
cortisol data were available only for a small sub-section of the cohort at a single time-point. Unknown
confounders by definition cannot be adjusted for but can still impact the results of observational

analyses.

Another limitation is the possibility of reverse causality, which I also addressed by using MR in
Chapter 5. Longitudinal research can only demonstrate the direction of association if it can be
confirmed that the outcome did not occur before the exposure. Simply, it cannot be proven that the
exposure occurred before the outcome just because the variables were measured in that order. In my
study, the earliest point of assessment of fasting insulin was age 9 years, and there was no

corresponding data on schizophrenia-spectrum outcomes at, or before this age. Therefore, the risk of
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reverse causality cannot be discounted entirely. Despite that, psychosis in pre-pubertal children is rare

(McClellan and Werry, 1997), and so the risk of reverse causality in this instance is small.

Other limitations relate to the statistical approaches I used in the study. First, the identified trajectories
are a statistical phenomenon and not necessarily a biological one. Therefore, care must be taken in
the interpretation of the results and extrapolation to external populations. Replication of my work in
larger samples will increase confidence in the biological plausibility of the identified trajectories.
Second, the statistical approach I used to examine associations of identified trajectories with
psychiatric outcomes is grounded in examining average group-level differences. Therefore, the
findings from my study cannot be extrapolated to the individual. For example, whether a raised fasting
insulin level in childhood could predict adult psychosis cannot be determined from my results. Given
that there is growing interest in developing prediction algorithms for transition to psychosis
(Montemagni et al., 2020), my results suggest that fasting insulin levels in childhood could be a
suitable candidate predictor. Nevertheless, this must be explored formally using appropriate

prognosis research methods, such as those I employed in Chapter 7.

Finally, another important limitation that was unavoidable in my study was in the measurement of
schizophrenia-spectrum outcomes. ALSPAC does not yet have health-record linkage and does not
have data on whether participants met the criteria for an ICD or DSM diagnosis of schizophrenia or
related psychoses. For example, PEs do not exclusively represent psychosis-risk and are associated
with other mental disorders, including anxiety and depression (Varghese et al., 2011). Nevertheless,
my chosen outcomes are likely to lie along the continuum of the schizophrenia spectrum, and the
psychotic disorder outcome would likely meet a clinical threshold for the consideration of monitoring

and treatment, and so is clinically relevant.

8.3.2 Strengths and Weaknesses of the Methodological Approaches Used in Section C

In Chapter 3, where 1 examined associations of genetic predisposition for T2D and risk of
schizophrenia-spectrum outcomes in early adulthood, and vice versa, a primary strength of the study
relates to the relatively large sample size and richness of the ALSPAC dataset. This is discussed above

in Section 8.3.1.

In addition, in Chapter 3, I was also able to address several important features of the Bradford-Hill
criteria (Hill, 1965). First, I used genotype as an exposure, and this is set at conception. Therefore, a
clear direction of association is evidenced without the possibility of reverse causality. Second, by
including several schizophrenia-spectrum outcomes, I was able to evidence consistency in findings

both internally within the study and externally with previous research (Chouinard et al., 2019,
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Hackinger et al., 2018, Ferentinos and Dikeos, 2012). Third, I found the strongest evidence for
associations of genetic risk for T2D in the most clinically relevant schizophrenia-spectrum outcome,
psychotic disorder. Therefore, my results provide evidence of a dose-response relationship toward a
clinically relevant schizophrenia-spectrum outcome. Fourth, where previous research was unable to
consider potential mechanisms for genotype-phenotype associations, I was able to test a hypothetical
mechanism that genetic influences on inflammation may mediate associations between genetic
predisposition for T2D and schizophrenia-spectrum outcomes and vice versa. 1 also performed a
sensitivity analysis by removing a BMI-related T2D SNP and thus a potentially pleiotropic
mechanism involving adiposity. In completing these steps, I was able to provide evidence of

biological plausibility, which is an important criterion of the Bradford-Hill criteria.

In addition, findings presented in Chapter 3 are at low risk of residual confounding since confounding
of genotype-phenotype is unlikely. However, there is evidence that GWAS can be affected by factors
such as ethnicity (Huang et al., 2015), social class (Morris et al., 2020) and even voluntary study
participation (Tyrrell et al., 2021). These factors relate to population stratification and can bias GWAS
results (Hellwege et al., 2017). In ALSPAC, quality control measures included filtering participants
of non-European ancestry to reduce the impact of confounding by ethnicity (see Section 3.3.4). In
addition, I also adjusted all regression analyses for the first ten principal components, which reduces
the risk of population stratification bias (see Section 3.3.4), and adjusted for ethnicity and social class
(see Section 3.3.6). Therefore, while the risk of confounding by population stratification is possible

in my analyses, | took appropriate steps to minimize it.

Regarding the weaknesses of the genotype-phenotype analysis (Chapter 3), as described above in
Section 8.3.1, a primary unavoidable limitation of ALSPAC data is attrition. I performed a missing
sample analysis and found that the missing sample were more likely to be male and from a lower
social class. I also found that the missing sample had a higher mean score for PRS-schizophrenia but
a lower mean score for PRS-T2D. Whilst attrition is common to cohort studies, it presents a challenge
to analyses of GWAS data since it may introduce population stratification bias. Thus, my analyses
may underestimate a true association of genetic predisposition for schizophrenia with insulin
resistance. In contrast, the opposite might be the case for the association of genetic predisposition for

T2D with schizophrenia-spectrum outcomes.

In addition, whilst I was able to address several key features of the Bradford-Hill criteria (Hill, 1965),
some of the associations from my analyses were relatively weak and unlikely to meet the effect size
criterion. For example, I only found weak evidence for an association of genetic risk for schizophrenia
with insulin resistance. Also, I found partial mediation by inflammation for the association of genetic

risk for T2D with PEs at age 18 years but not vice versa. Statistical power may be one potential
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contributor. While my sample was larger than samples used in previous research (Chouinard et al.,
2019, Hackinger et al., 2018, Ferentinos and Dikeos, 2012), mediation analyses typically require
relatively large sample sizes, and studies employing tests of mediation are commonly underpowered
(Fritz and Mackinnon, 2007). In addition, prospective analyses of genetic data are also commonly
underpowered (Chanock et al., 2007), predisposing to an increased risk of type II statistical error
(Hong and Park, 2012). In future, replication of my work in a larger sample will help to clarify the
findings.

Further, I used psychotic experiences and operationally defined psychotic disorder rather than
diagnoses of schizophrenia according to ICD or DSM as outcomes. | have described this limitation,
including the relevance of these outcomes for schizophrenia in further detail in Section 8.3.1. This
issue is particularly pertinent to analyses in Chapter 3. Since outcomes in this study were assessed at
age 18 years, before the peak age of incidence of schizophrenia (Eranti et al., 2013, Castle et al.,

1998), some genuine cases of psychosis may have been missed.

A limitation common to most analyses of existing GWAS data is that most GWAS have been
conducted in either solely or mostly European samples. Therefore, it cannot be known whether the
findings are relevant for non-European populations. This is a significant limitation of analyses of
genetic data and their real-world relevance because non-Europeans contribute a substantial proportion
of the global burden of schizophrenia and cardiometabolic disorders. While GWAS of non-European
populations are growing in size and breadth, there remains much to do to achieve parity (Sirugo et

al., 2019, Popejoy and Fullerton, 2016).

Finally, another limitation common to GWAS is that they typically only measure common genetic
variation. For example, current GWAS efforts can explain only a fraction of the heritability of
schizophrenia (Lee et al., 2013) and T2D (Billings and Florez, 2010). This suggests that a notable
proportion of genetic liability remains undiscovered, possibly through large numbers of rare variants
which individually contribute a small effect (Manolio et al., 2009). Therefore, this limits the power
of analyses of GWAS data to detect genetic effects, and this ‘selection bias’ of more common genetic
variants may increase the risk of both type I and type Il error in secondary analyses. Encouragingly,
studies such as the UK Biobank are soon to release data from the whole-genome sequencing of
exceptionally large samples. This may lead to an improvement in the proportion of the heritability of
human disease explained by genetic variation and may lead to improved PRS. Replication of my

analysis in future, when more accurate and complete genetic data are available, will be helpful.

Regarding Chapter 4, where I used summary GWAS data to examine for potential genetic overlap

between schizophrenia, cardiometabolic and inflammatory traits, a key strength of the study is in the
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sample sizes available for analysis, which also helps to at least in part to address the potential power
limitation of Chapter 3. While in Chapter 3 I could include less than 4,000 participants in total, the
sample sizes of the GWAS included in analyses in Chapter 4 were between 42,854 and 898,130,

providing a considerable increase in statistical power.

In addition, previous studies which have sought to examine for genetic overlap between schizophrenia
and cardiometabolic traits from summary GWAS data have used the LDSC approach, yet the LDSC
approach may have limitations, including a) downward bias of the effects of lower-frequency
variants; b) opposing mechanisms; ¢) a lack of context with which one might consider biological
plausibility, or indeed, distinguish potential causality from correlation. These limitations of previous
research are described in further detail in Section 4.1. In Chapter 4, I sought to address these
limitations by using a complementary set of independent methods which are better suited to
examining genetic overlap between traits after considering the limitations of the LDSC approach. I
was also able to include both cardiometabolic and inflammatory traits in the analysis to further test
the hypothesis that inflammation may be mechanistically implicated in the associations of
schizophrenia and cardiometabolic disorders. The convergent thread of evidence from the
independent methods and consistency with the results from Chapter 3 helps to provide confidence in
the study conclusions. Finally, I included several cardiometabolic traits at different ends of the
spectrum of chronicity. For example, biochemical measures such as fasting insulin, HDL and
triglycerides are likely to be adversely affected long before distal traits such as T2D or CAD are
diagnosed. 1 found that clusters of cardiometabolic and inflammatory traits at varying levels of
chronicity were correlated and colocalized with schizophrenia. Specifically for colocalization
analysis, the greater the number of colocalized traits at a specific locus, the stronger the evidence for

colocalization (Foley et al., 2021).

Weaknesses of the analysis presented in Chapter 4 can be divided into those arising from the GWAS
samples analysed and those arising from the statistical methods and results. Regarding the weaknesses
of the GWAS samples, there is a risk that as sample sizes increase, specificity toward the trait intended
to be measured decreases. This phenomenon has been elegantly demonstrated in GWAS analyses of
depression (Cai et al., 2020) and may also apply to schizophrenia. For example, I used the largest
published GWAS for schizophrenia (Pardinas et al., 2018) to maximise statistical power. However,
the predominant contributor to the larger sample of that GWAS, compared with previous
schizophrenia GWAS, was clozapine treated patients. This is likely a result of convenience sampling
since clozapine-treated patients receive regular blood tests, which might be readily analysed for
genotype. Nevertheless, treatment resistance is a primary requirement for clozapine treatment. Some

have hypothesized that non-response to antipsychotics may be a marker of a distinct subtype of
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schizophrenia (Farooq et al., 2013, Gillespie et al., 2017), which might have distinct polygenicity
compared with treatment-responsive schizophrenia (Vita et al., 2019, Pisanu and Squassina, 2019).
Therefore, the larger GWAS sample size may have come at the cost of increased heterogeneity, which

could impede research aiming to examine potential disease mechanisms (Cai et al., 2020).

Related to this, as GWAS samples increase, the granularity of the measured trait often decreases. For
example, in the analysis of prospective ALSPAC data (Chapter 2), I examined associations of positive
and negative psychotic symptoms separately. Yet, such granularity is not possible in secondary
analyses of GWAS datasets. In addition, the GWAS of biochemical/anthropometric traits were mostly
conducted based on a single point measurement of the trait. Yet, as described in more detail in Section
8.3.1, cardiometabolic and inflammatory traits are subject to normal fluctuations, which may not be
adequately addressed from a single point measurement. Therefore, since the original GWAS methods
of analysing the biochemical/anthropometric cardiometabolic and inflammatory phenotypes may be
subject to measurement error, the GWAS summary estimates derived from these studies may also be

affected.

Relatedly, all included GWAS featured adult participants. Yet, adverse cardiometabolic function is
more common with increasing age due to the chronicity of most lifestyle factors (See Section 1.1.1.2).
Therefore, measurement of cardiometabolic traits in adulthood may be subject to confounding. For
example, it may not be possible to distinguish between the effect of a genetic variant on BMI directly
from the effect of that genetic variant on smoking behaviour, which could in turn influence BMI. In
addition, it is also not possible to determine whether the results apply outside of adult populations.
This has been clearly demonstrated in the case of BMI, where genetic variants associated with
childhood obesity show only partial overlap with those associated with obesity in adulthood

(Vogelezang et al., 2020).

Further, summary data from GWAS is relatively inflexible, and prospective adjustment for factors
such as social class, which I adjusted for in the prospective genetic analysis (Chapter 3), is not
possible. Finally, limitations of GWAS discussed above in relation to Chapter 3 are also likely to
apply to summary data from GWAS studies. For example, GWAS currently measure only common

genetic variation, and the findings are only likely to be relevant for European populations.

Other limitations of Chapter 4 relate to the analytic methods of the summary data and the study results,
which may limit firm conclusions from the analyses. First, the analytic methods used in Chapter 4
cannot elucidate the direction of association. This can only be inferred from research using other

methods, both genetic and observational, that I have used elsewhere in this thesis.

220



Second, secondary analysis of GWAS data may be biased when there is sample overlap between
analysed traits. It is commonly assumed that when data are derived from different GWAS consortia,
the risk of sample overlap is small (Shi et al., 2017). However, a finite pool of individuals have
consented to genotyping. As GWAS sample sizes increase, one might argue that even between
different GWAS consortia, some level of sample overlap is possible. This may be particularly relevant
for GWAS of binary traits such as T2D or schizophrenia, which require samples of healthy

participants to act as controls.

Third, while LDSC provides estimates of shared genetic heritability between trait pairs with which
one could infer the real-life relevance of potential genetic overlap, many of the complementary
methods [ used in Chapter 4 do not provide these estimates. One could argue that some level of genetic
overlap may be expected by chance between complex phenotypes, and so the clinical relevance of
my findings cannot be ascertained. Nevertheless, I found convergent and consistent evidence from a
range of independent statistical methods in Chapters 3 and 4, fostering confidence that the results are

unlikely to have occurred by chance and are therefore likely to have clinical relevance.

Fourth, despite the considerable increase in power when using summary data from GWAS, some of
the results described in Chapter 4 were relatively weak. For example, a few findings in the MAF-
stratified analysis did not reach the Bonferroni-corrected evidential threshold, although this could be
explained by the presence of opposing mechanisms (Shi et al., 2017), which is described in more
detail in Section 4.1. In future, further refinement of analytic methods coupled with better powered

GWAS (and whole-genome sequenced datasets) will help to clarify the results I have presented.

Fifth, at present, there is a relative dearth of large-scale publicly available GWAS data for
inflammatory markers beyond CRP. This meant CRP was the sole inflammatory trait that I could
include in my analyses. Since CRP is a downstream and relatively generalized inflammatory marker,
my analyses are limited in being able to elucidate a deeper mechanistic understanding of the broader
constellation of inflammatory changes underlying the genetic correlation and colocalization findings

involving CRP.

In Chapter 5, I used MR as a methodological approach, which uses as input large-scale GWAS
datasets, imparting significant statistical power to the analysis. In addition, MR has several key
methodological strengths. When the assumptions for valid instrumental variables are met, MR can
evidence direction of association free of residual confounding. These are two key criteria for
establishing genuine risk factors of a disease outcome, and the ability to address residual confounding
1s not possible with observational research. MR can achieve these aims because it analyses genetic

variants inherited randomly at conception as unconfounded proxies of a modifiable exposure, to
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examine whether that exposure may have a causal effect on a disease outcome (Smith, 2010). Whilst
MR findings in isolation cannot prove causality, they can be assimilated with a coherent body of

observational and experimental evidence, which can together imply likely causality.

As well as bi-directional two-sample MR, in Chapter 5 I employed a number of extensions to the
method, and each has its own inherent strengths. Firstly, from a hypothesis that inflammation may be
a shared mechanism for schizophrenia and its cardiometabolic comorbidity, I considered that genetic
variants which influence levels of both cardiometabolic and inflammatory indices could represent a
specific biological mechanism that could be associated with schizophrenia. While pleiotropy could
invalidate MR results between an exposure and an outcome depending on whether it is horizontal
(confounding) or vertical (mediating) (Verbanck et al., 2018), I tested associations of ‘inflammation-
related’ cardiometabolic variants with schizophrenia to show that inflammation-related pleiotropy is
likely to affect MR associations between cardiometabolic traits and schizophrenia. These findings

implicate inflammation as a common causal mechanism for the comorbidity.

Second, [ used a detailed set of sensitivity analyses that can help to test the assumptions of MR. These
included the Cochran Q test for SNP heterogeneity, the MR Egger regression intercept test and MR-
PRESSO for horizontal pleiotropy, and the gy statistic for measurement error. In conducting these
sensitivity analyses, 1 found decreased levels of heterogeneity and horizontal pleiotropy in
inflammation-related genetic variants, compared with all related cardiometabolic variants. This
suggests that inflammation-related cardiometabolic variants are likely to be closer to a specific
biological mechanism, further supporting my hypothesis. Third, I used MVMR, a methodological
extension to MR that tests associations of genetically predicted levels of an exposure on an outcome,
after conditioning on the genetic associations with another exposure(s). Put simply, MVMR can
examine pleiotropic mechanisms that could explain a univariable association, much like including
covariates in observational study regression models. I leveraged the MVMR approach to further
evidence that inflammation could be a common mechanism for comorbid insulin resistance and

schizophrenia.

However, there are a number of potential limitations of the MR approach. First and foremost, as
mentioned above, MR can provide evidence of the direction of association free of residual
confounding if the assumptions for valid instrumental variables are met. I used a varied set of MR
methods to help probe the assumptions for MR. These included IVW (which assumes all genetic
variants satisfy MR assumptions); weighted median (which can produce accurate results so long as
50% of the selected genetic variants satisfy MR assumptions), and MR Egger (which can produce
accurate results even if all genetic variants are subject to pleiotropy, as long as the size of the

pleiotropic effect is independent of the size of the genetic variants’ effects on the exposure (Bowden
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etal., 2015)). I also used a detailed set of sensitivity analyses as described above to help test the MR
assumptions. Despite taking these steps, proving that the assumptions for valid MR analysis have

been met is near-impossible.

For example, one fundamental assumption is that the selected genetic variants must be associated
with the exposure. This is perhaps the assumption with which one can have the most confidence in
my study since the genetic variants were selected as being strongly associated (at the genome-wide
level) with the exposures from large-scale GWAS. Nevertheless, as I have described above in Section
8.3.2, the secondary use of GWAS data presents its own challenges, including confidence in gene-
exposure associations due to the risk of population stratification; the risk of confounding by chronic
lifestyle factors for cardiometabolic indices measured in adulthood; heterogeneity of the analysed
trait which may not be captured in GWAS; and, the applicability of GWAS results to non-European

samples.

Another key assumption is that the selected genetic variants must influence levels of the exposure
directly and not via an alternate mechanism. In most instances, this is extremely difficult to prove.
Previous MR studies have attempted to address this challenge by restricting selected genetic variants
to those located close to known gene coding regions (for example, the IL6R and CRP genes for IL-6
and CRP, respectively (Hartwig et al., 2017)). This is because genetic variation in the coding region
of the exposure is more likely to affect the exposure directly rather than through alternate
mechanisms. Nevertheless, this methodological step is not a panacea and can only prove the
assumption is met if a complete biological understanding of how the genetic variant influences the

exposure is known. This is often not the case.

The final key MR assumption is that genetic variants must only influence the outcome through effects
on the exposure of interest, and not via any other mechanism. This is perhaps the most challenging
assumption to prove in MR studies, particularly when a complete biological understanding of how an
exposure influences an outcome is not known. In future, evidence from MR studies will require
detailed examination in experimental and animal model research to help add to our mechanistic
understanding of how an exposure influences an outcome. This can in turn help to evidence whether
the assumptions for valid MR analysis had been met. Nevertheless, it was the violation of this
assumption that I aimed to leverage to test the hypothesis that inflammation may be a common
mechanism for comorbid cardiometabolic disorders and schizophrenia. The evidence I present in
Chapter 5 suggests that this assumption is likely to be violated in MR studies examining
cardiometabolic traits and schizophrenia due to a common biological mechanism involving

inflammation.
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Another potential limitation of MR is that the exposures modelled in MR studies represent lifetime
changes in the level of the exposure rather than, for example, short-term changes in the exposure
during a critical developmental period, as per Barker’s developmental programming hypothesis.
While MR evidence could be consistent with the developmental programming hypothesis since early-
life disruption could permanently alter biological mechanisms, it is also possible that changes in the
levels of certain exposures may only be strong risk factors for a disease in a specific developmental
period. MR may not be able to capture this ‘critical period’ effect. In addition, that MR approximates
lifetime changes in the level of an exposure has been cited as a possible reason why MR studies of
potential therapeutic targets often overestimate the experimental treatment effect observed in clinical
trials. This is because treatments are generally not prescribed over a lifetime (Gill et al., 2021). Whilst
this limitation does not directly affect the conclusions I have made in Chapter 5, it is important to
consider that the interpretation of MR findings is not straightforward, and evidence from MR studies
requires triangulation with experimental, observational and animal model evidence in order to be

most impactful.

8.3.3 Strengths and Weaknesses of the Methodological Approaches Used in Section D

There are several strengths to the systematic review I performed in Chapter 6, where I sought to
establish whether existing cardiometabolic risk prediction algorithms could be suitable for young
people with psychosis. First, while only meta-analyses of RCTs feature at the top of the evidence
hierarchy, any well-designed systematic review can provide a valuable summary of current research.
An earlier systematic review of cardiometabolic risk prediction algorithms was conducted in 2016
but did not consider suitability for young people with psychosis (Damen et al., 2016). My study
updates the findings of the previous review because many additional algorithms have been published

since 2016, and also considers the suitability of existing algorithms for a different population.

Second, I designed my search strategy to be as inclusive as possible, incorporating algorithms
developed for the general and psychiatric populations. I also limited the risk of publication bias in my
review by including conference abstracts, theses, and pre-prints. Together, this meant that I could
include over 100 algorithms in my review, allowing a rich examination of potential suitability for

young people with psychosis.

Third, I followed the state-of-the-art for risk of bias and quality appraisal via the relatively new
PROBAST tool (Wolff et al., 2019), and followed the PRISMA guidelines for the conduct and
reporting of a systematic review (Moher et al., 2009). These guidelines are validated, expert-

consensus driven and form the basis of a high-quality review.
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Fourth, while I was unable to follow a meta-analytic approach in my review, I substituted this
important quantitative component with an exploratory validation analysis of three favourable
algorithms from the systematic review. In doing so, I was able to present a consistent message across
both the findings of the narrative results synthesis and the quantitative validation analysis, showing
that existing cardiometabolic risk prediction algorithms are unlikely to be suitable for young people

with psychosis.

The systematic review also has some weaknesses. First, as mentioned above, the research question
posed and the heterogeneity of included studies prevented a meta-analytic synthesis. Narrative
synthesis can increase the risk of reporting bias and can limit the validity of conclusions (Campbell
et al., 2020). I addressed this by performing a quantitative analysis using ALSPAC data, which meant
that my conclusions were formed from both narrative and quantitative results. Nevertheless, my
quantitative analysis, which consisted of three separate validation analyses, cannot be equated with a

formal meta-analytic quantitative analysis.

Second, since I did not follow a meta-analytic approach, I could not quantitatively assess the risk of
publication bias. While I did include conference abstracts, theses and pre-prints in my review, these
were few in number compared with peer-reviewed research papers. Therefore, publication bias is
likely to have affected the mix of studies included in my review. For example, relatively few
externally validated algorithms were included in my review. This may be because external validation
requires data from a second distinct population, which is often not possible. However, it could also
be because external validation performance estimates are usually less favourable than internal
validation performance estimates. Therefore, some externally validated algorithms may have been

deemed a lower priority for publication by journal editors.

Third, there is growing interest in risk prediction algorithms for health outcomes (Riley, 2019).
Indeed, a large proportion of studies included in my review were published in the last few years.
Therefore, it is likely that further cardiometabolic risk prediction algorithms have been published
since the date my search concluded. This is a limitation of most systematic reviews. Interestingly,
The BMJ currently features a ‘living’ systematic review of coronavirus risk prediction algorithms,
which is updated regularly with newly identified studies (Wynants et al., 2020). The review already
includes over 200 studies, and this is highly likely to increase further. The ‘living’ nature of that

review is a notable feat but is not feasible for a PhD conducted over a finite period.

In Chapter 7 I developed PsyMetRiC, the first cardiometabolic risk prediction algorithm tailored for
young people with psychosis, and the work has several strengths. First, a significant strength relates

to the robust external validation analysis, where 1 showed that PsyMetRiC performed well in a
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geographically distinct UK EIS sample. External validation is a crucial step in demonstrating that a
risk prediction algorithm is likely to be generalizable to the intended population (Riley, 2019), and is
essential for demonstrating clinical usefulness. However, as I showed in my systematic review
(Chapter 6), most existing cardiometabolic risk prediction algorithms have not been externally
validated, and this problem extends to psychosis research. A recent systematic review of algorithms
predicting risk of transition to psychosis found an alarming lack of studies that included an external

validation step (Montemagni et al., 2020).

Second, I leveraged recent advances in prognosis research by formally conducting a sample size
analysis before developing PsyMetRiC. In doing so, I was able to reduce the risk of overfit, which
might lead to biased predictive performance estimates. I further reduced the risk of bias from overfit
by shrinking PsyMetRiC regression coefficients for optimism. I believe that these steps are likely to

have been fundamental to the favourable external validation performance of PsyMetRiC.

Third, I included a detailed set of predictive performance analyses, including measures of
discrimination, calibration and a decision curve analysis, in line with recommendations (Steyerberg
and Vergouwe, 2014, Collins et al., 2015). As I showed in my systematic review (Chapter 6), most
existing cardiometabolic risk prediction algorithms have not reported measures of algorithm
calibration. Poor reporting of algorithm calibration in published research is a problem that
unfortunately applies to the entire field of prognosis research (Van Calster et al., 2019). Without an
assessment of algorithm calibration, it cannot be concluded that risk estimates are reliable. Therefore,
such studies may be misleading and could lead to potentially incorrect and even harmful clinical

decisions (Van Calster et al., 2019).

Fourth, in the development of PsyMetRiC I considered two important barriers to potential future
clinical use: patient acceptability and clinical practicality. I engaged actively with the McPin
Foundation YPAG to help ensure that PsyMetRiC, and the information requested by it, was likely to
be acceptable for young people. I also developed two versions of PsyMetRiC, one with and one
without biochemical information, so that PsyMetRiC can still be useful in instances where blood tests

have been refused or are not available.

Finally, with PsyMetRiC I aimed to develop an algorithm that balanced usefulness, acceptability, and
generalizability with statistical methods carefully selected to suit the available data. Given that I had
access to a relatively limited sample, I did not consider more complex modelling strategies such as
interactions and non-linear terms and did not proceed with a variable selection method. Variable
selection may have included traditional methods such as backward selection, or more complex

automated machine-learning approaches. Whilst this meant PsyMetRiC was relatively ‘simple’
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compared with some risk prediction algorithms, I believe these considerations are likely to have been
fundamental to the favourable external validation performance. For example, a substantial body of
work, including meta-analyses, has shown no performance benefit of complex machine learning
approaches over simple logistic regression for clinical prediction models (Christodoulou et al., 2019,
van der Ploeg et al., 2016, Takada et al., 2021). Indeed, leading experts in prognosis research have
recently called for more attention to be paid to sound methodology rather than an over-reliance on
machine learning algorithmic complexity, arguing that the latter contributes to nothing more than
“extensive research waste” (Wilkinson et al., 2020). Nevertheless, in future, when larger samples

might be available, more complex modelling approaches could be carefully considered.

Despite the strengths of PsyMetRiC, there are some weaknesses and limitations which must be taken
into consideration. First and foremost, the field of prognosis research must be contextualized
alongside ideas first mooted by the British epidemiologist Geoffrey Rose. Rose considered two
distinct strategies for disease prevention: the high-risk vs the population approach. Rose surmised
that risk factors follow a normal distribution at a population level, and therefore proposed the
“prevention paradox” (Khaw, 2008). He theorised, using cholesterol and CVD as an example, that a
high-risk prevention strategy would target individuals at the extreme upper end of population
cholesterol distribution to prevent cases of CVD. Rose posited that this would be less effective than
targeting the whole population to shift the population distribution of cholesterol to the left. He argued
that by focusing on only the small number of cases at the upper extreme of cholesterol distribution, a
large number of CVD cases would be missed because the majority of cases arise from closer to the

centre of the normal distribution curve, as a function of the sample size distribution (Khaw, 2008).

However, most risk prediction algorithms developed for health outcomes, including PsyMetRiC, are
multivariable and aim to capture as much outcome variance as possible. Therefore, while a single risk
factor may be a poor predictor for a health outcome because alone it may not capture sufficient
outcome variance, a multivariable approach may be a preferable method with which to consider a

high-risk strategy of disease prevention.

Nevertheless, Rose’s principle is relevant, particularly given the work I have presented in Chapters
2-5, which show evidence for a potentially inherent cardiometabolic risk in schizophrenia. One could
therefore posit that a population prevention approach would be preferable in this population. While I
agree that there is more to be done to promote healthy lifestyle behaviours for all young patients with
psychosis, I do not agree that certain PsyMetRiC-related interventions are likely to be suitable for a
population prevention strategy. For example, such a strategy may conclude that metabolically-active
antipsychotics should never be prescribed, yet metabolically-active antipsychotics can greatly

improve the lives of people with psychosis, and may reduce the risk of other disabling side-effects
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such as movement disorders (Leucht et al., 2013). Therefore, I believe that in future, the real art of
cardiometabolic risk reduction in young people with psychosis will lie somewhere between the
extremes of Rose’s population and high-risk prevention strategies. Healthy lifestyle promotion is
likely to be suitable for all young people with psychosis, but for certain interventions like
antipsychotic selection, tools such as PsyMetRiC can be a helpful aid toward informed, personalized
treatment decisions, balancing clinical knowledge with the preferences and beliefs of the young

person.

Second, I could not include some predictors in PsyMetRiC that may be biologically relevant. Given
the results of Chapter 2, fasting insulin is likely to be a relevant predictor of adverse cardiometabolic
outcomes in young people with psychosis. I could not include the marker because it is not yet
routinely measured in clinical practice. I addressed this by including triglycerides and HDL, whose
ratio may be a suitable surrogate marker for insulin resistance (Murguia-Romero et al., 2013,
McLaughlin et al., 2005). Also, I could not include an inflammatory marker in PsyMetRiC, for
example, CRP. While CRP is frequently measured in clinical practice, predominantly it is measured
when there is suspicion of infection. Therefore, the distribution of CRP in the available sample is
likely to be skewed. In addition, there are significant discrepancies between laboratories in the
reporting of CRP, with some reporting the exact result and others the exact result only after an

arbitrary cut-off. This heterogeneity also prevented the inclusion of CRP as a predictor.

Third, the risk estimates generated from a prediction algorithm such as PsyMetRiC are never in reality
static. PsyMetRiC was developed using retrospective data, as is common in modern risk prediction
algorithms developed using electronic health records. Yet, the performance of algorithms when
assessed prospectively may vary, precisely because they have been used and risk estimates observed.
For example, either a very-high or very-low PsyMetRiC score may alter the behaviour of either the
clinician or patient, which may affect the risk estimate in either direction over time in a manner that
cannot be captured in a retrospective analysis. Therefore, a prospective assessment of PsyMetRiC in
a sufficient sample is required. This is particularly pertinent given that the predicted outcome in
PsyMetRiC, metabolic syndrome, is a cardiometabolic ‘intermediate’ with few immediate
consequences. While a clinician should be sufficiently motivated to act in response to their patient
returning a high PsyMetRiC score, it may be more challenging to persuade young people, who may
be inherently more risk-tolerant than older adults (Albert and Duffy, 2012), to change their present

behaviour to prevent outcomes which are more insidious and long-term.

Fourth, another limitation common to prognosis research is that algorithms can only be confirmed to
be suited for the population they were validated in when the data was collected. PsyMetRiC was

developed and validated in the UK, yet different global populations are likely to vary in population
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health, social norms, culture, and legislation. These factors may impact the baseline risk, or the
amount of risk apportioned by any individual risk factor. PsyMetRiC will therefore require
international validation to assess transportability and may require recalibration to apply to global
populations. In addition, period and cohort effects may impact the baseline risk or the amount of risk
apportioned by any individual risk factor (Holford, 1991). This means even well-designed externally
validated risk prediction algorithms require periodic updating over time. For example, the QRISK
cardiovascular risk prediction algorithm is now on its third iteration (Hippisley-Cox et al., 2017), and
the recent QCOVID risk prediction algorithm (Clift et al., 2020), which aims to predict risk of
hospitalization and mortality from coronavirus disease, states that it will require updating over time
to reflect changes in baseline risk due to the fast-moving global pandemic of 2020/2021. PsyMetRiC
in future will require periodic recalibration of either the intercept, predictor weights, or both, to

remain accurate and generalizable.

Fifth, most healthcare risk prediction algorithms are developed to predict a binary health outcome.
This is likely to aid the interpretability of risk estimates in a clinical setting. However, the underlying
biology of such outcomes often does not represent a binary distinction between ‘health’ and ‘disease’.
Rather, diagnostic criteria aim to capture individuals at the more extreme end of a health continuum.
The binarization of health presents a challenge for prognosis research, and categorization of
continuous data is generally discouraged in statistical modelling (Altman and Royston, 2006). For
example, the absence of a metabolic syndrome diagnosis does not equate to the absence of
cardiometabolic risk. In reality, there could be very little of substance to distinguish a case of
metabolic syndrome from a non-case, even as little as ImmHg of systolic blood pressure. A future
iteration of PsyMetRiC may instead consider a continuous cardiometabolic risk score as an outcome

since this may more accurately align with the underlying biology.

Sixth, missing data may also have affected PsyMetRiC. All the samples used for either development
or validation featured varying amounts of missing data both for the predictors and outcome. I have
discussed this limitation in more detail above in Section 8.3.1 and Section 8.3.2. I also found
differences in the missing compared with the included samples, which might have affected
PsyMetRiC coefficients. While I used multiple imputation to reduce the impact of bias from missing
data, PsyMetRiC will require validation in larger samples and prospective assessment before it can

be considered suitable for clinical use.

Finally, the clinical translation of risk prediction algorithms in healthcare presents a substantial
stumbling block almost universally. For example, in my systematic review, less than 1% of the
included algorithms are used regularly in the clinic in the general population. A substantial body of

work stands in the way of regular clinical use of an externally validated risk prediction algorithm.
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This involves health technology assessment, prospective validation, stakeholder involvement,
regulatory approval, and even convincing clinicians to adopt the algorithm into their clinical practice.
These are all barriers that must be overcome in future to prevent PsyMetRiC from contributing to

little more than research waste.
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8.4 Future Directions and Implications

In Section B, I found that disruption to glucose-insulin homeostasis is likely to predate the onset of
psychosis; may not be fully explained by sociodemographic, lifestyle and iatrogenic effects; and may
be psychosis specific. Studies examining longitudinal associations of trajectories of childhood
cardiometabolic markers and psychiatric outcomes are scarce, and so this finding ideally requires
replication in an external prospective sample. A replication analysis may also help to address the

limitations listed in Section 8.3.1.

Nevertheless, if replicated, this finding could have significant implications for our understanding of
the cardiometabolic comorbidity of schizophrenia. Rather than solely caused by the traditional
attributions of sociodemographic, lifestyle and iatrogenic factors, the cardiometabolic comorbidity of
schizophrenia may have -early-life beginnings and may be inherent to it. Therefore,
sociodemographic, lifestyle and iatrogenic factors may be exacerbating rather than causal features of

the comorbidity (see Figure 29).

This finding renews and reinforces the critical impetus that all young people presenting with
psychosis must receive a comprehensive physical health assessment at the soonest available
opportunity. Subtle disruption to glucose-insulin homeostasis may not in its early forms present with
abnormalities to FPG or HbA1C, so these broader and less-sensitive measures must not be relied upon
to confirm normal glucose-insulin homeostasis. Since detailed measurement of glucose-insulin
homeostasis is often not yet possible in most current psychiatric services in the UK (for example, use
of the hyperinsulinaemic-euglycaemic clamp to assess insulin sensitivity, or even a blood
measurement of fasting insulin which one could combine with FPG to calculate HOMA-IR), a
suitable surrogate may be the triglyceride:HDL ratio (Murguia-Romero et al., 2013, McLaughlin et
al., 2005). Improved education of healthcare professionals working in psychiatry to use this marker
and recognise its implications for young people with psychosis is vital. In addition, improved funding
for EIS may in future permit the introduction of more sensitive tests for disrupted glucose-insulin

homeostasis for all young patients presenting with psychosis.

In Section C, I found that shared genetic liability and inflammation could be potential common
mechanisms underlying the associations of disrupted glucose-insulin homeostasis and schizophrenia.
My findings imply that genes, the environment, or likely both, could play a role in increasing systemic
inflammation, which may in turn increase the risk of both disruptions to glucose-insulin homeostasis

and schizophrenia simultaneously.

Findings from the genetic correlation and colocalization study in Chapter 4 highlight a number of

potential biological pathways that could simultaneously increase systemic inflammation, the risk of
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cardiometabolic disorders, and schizophrenia. These findings, and the pathways implicated, now
require analysis using complementary research methods, which may first involve genomics and

observational research, and could then extend to animal model and experimental research.

Regarding methods related to genomics, the implicated genes and pathways can be further
interrogated using methods that harness expression quantitative trait loci (eQTL) data. eQTL analysis
aims to identify allelic variants associated with gene expression on the basis that a proportion of
transcripts are under genetic control. A transcript that is correlated with a risk variant in a relevant
tissue or cell type represents a strong candidate susceptibility gene (Lawrenson et al., 2015).
Therefore, eQTL analysis would be an important confirmatory step for my findings because several
of the colocalized loci are located within non-coding regions of the genome, and so they may play a
more indirect regulatory role in the expression of gene products. While there are a growing number
of publicly available eQTL datasets which can be used for analysis, in the past, such analysis has
been hampered by prohibitive heterogeneity between datasets (Kerimov et al., 2020). However,
efforts are underway to harmonize these datasets, so in future, eQTL analysis with sufficiently

powered sample sizes is likely to be possible (Kerimov et al., 2020).

Cohort studies that seek to examine the antecedents of schizophrenia should in future more frequently
measure cardiometabolic and inflammatory indices, and in much greater granularity. Such studies
may also seek to include biochemical measurements of BDNF and related pathways. Then, these
studies could help to confirm the longitudinal findings from Chapter 2 and can triangulate evidence
that BDNF-related pathways may be implicated as a common mechanism for schizophrenia,

cardiometabolic and inflammatory traits.

Next, should observational and eQTL analysis provide further weight to the colocalization findings,
knockouts for the genes implicated in the colocalization analysis could be studied in animal models.
In such studies, gene knockout animals could be tested for levels of inflammation, cardiometabolic
indices and behavioural outcomes simultaneously. Such findings could provide a richer
pathophysiological understanding of both schizophrenia and its associated cardiometabolic
comorbidity. A convergence of results may also provide compelling evidence of potential novel
therapeutic or preventative targets for schizophrenia and its associated cardiometabolic comorbidity,

which could be leveraged in experimental clinical trials.

Findings from my MR study in Chapter 5 suggest that targeting inflammation may be a putative
therapeutic or preventative target for schizophrenia and its associated cardiometabolic comorbidity.
Yet, the most recent meta-analyses of RCTs of anti-inflammatory agents for schizophrenia have

shown relatively heterogenous evidence for their efficacy in schizophrenia (Jeppesen et al., 2020,
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Cakicietal., 2019) and trials of anti-inflammatory agents for their efficacy on cardiometabolic indices
of people with schizophrenia are scarce. There could be two explanations for the heterogeneous
efficacy in schizophrenia. First, the heterogeneity may be due to trial inclusion criteria since
participants with baseline evidence of inflammation may be better candidates for immunotherapy
(Raison et al., 2013). Second, there may be a difference between a therapeutic and a preventative
target; anti-inflammatory medications might be more effective when trialled before the onset of
psychosis, or at FEP. Indeed, a recent meta-analysis found stronger evidence for efficacy in trials
conducted on younger individuals with FEP (Cakici et al., 2019). Future RCTs conducted on young
individuals at the onset of psychosis should consider examining cardiometabolic markers at baseline
and follow-up in addition to psychiatric indices. For example, cardiometabolic markers might be used

to help select participants for trial inclusion but may also be considered as outcome measures.

In Section D, in lieu of a suitable cardiometabolic risk prediction algorithm for young people with
psychosis, 1 developed PsyMetRiC. I do not see PsyMetRiC, as it currently exists, as the final
algorithm that should be used in clinical practice. Rather, it is a useful starting point and shows the
potential that such a tool could have for young people with psychosis. In future, recalibration and
updating of PsyMetRiC in larger retrospective samples will allow for the refinement of the algorithm,
which might further improve the accuracy of risk estimates. Next, prospective validation of
PsyMetRiC will be necessary to test the ‘real-world’ performance of PsyMetRiC and the clinical
usefulness and acceptability of the algorithm. Concomitantly, international validations could assess
the transportability of PsyMetRiC to different global populations, with local recalibrations conducted
such that PsyMetRiC could be used across the world. Subsequently, a body of multidisciplinary work
could be conducted, featuring clinicians, allied health professionals and young people with experience
of psychosis, to determine the most appropriate PsyMetRiC score cut-offs and associated therapeutic
options. Finally, regulatory approval must be sought. After meeting these considerable but necessary
hurdles, PsyMetRiC might then be considered ready for implementation in clinical practice and could

be included in guidelines for the management of FEP, both in the UK and internationally.
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8.5 Concluding Remarks

In this thesis, I present evidence that furthers our understanding of the nature and mechanisms of
association of cardiometabolic disorders and schizophrenia, and makes the first steps toward
improving the prediction of cardiometabolic risk in young people with psychosis. On the nature of
association between cardiometabolic disorders and schizophrenia, I found that disruption to glucose-
insulin homeostasis may be inherent to schizophrenia and may be detectable from early life, long
before the onset of psychosis. This finding is important, and some might argue that it relieves some
of the blame frequently placed on the shoulders of people who have schizophrenia for their
cardiometabolic comorbidity, since my findings suggest that factors such as an unhealthy diet and
physical inactivity are likely to exacerbate rather than cause the comorbidity. On the mechanisms of
association between cardiometabolic disorders and schizophrenia, I found a thread of consistent
evidence across independent genetic and prospective studies suggesting that shared genetic liability
and inflammation could be common biological mechanisms for schizophrenia and its cardiometabolic
comorbidity. In addition, results from these studies implicate biologically plausible targets that could
be further investigated for their therapeutic or preventative potential for schizophrenia and its
associated cardiometabolic comorbidity, and for their potential insights into the pathophysiology of
schizophrenia itself. On the prediction of cardiometabolic risk in young people with psychosis,
PsyMetRiC is an encouraging first step on the journey toward a valuable future tool in the arsenal of
EIS healthcare professionals, to factor physical health more appropriately into treatment decisions in
a personalized and informed manner. The general population has benefited from clinic-ready
cardiometabolic risk prediction algorithms for decades. It is surely time that such benefits can be
extended to young people with psychosis, who are in crucial need of strategies to help close the

mortality gap they may sadly be faced with.
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