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The Relationship between Cardiometabolic Disorders and Schizophrenia:  
From Early-Life Origins to the Development of a Cardiometabolic Risk Prediction Algorithm 
for Young People with Psychosis 

Benjamin Ian Perry 

Thesis Summary 

My thesis considers the theme of comorbidity between cardiometabolic disorders and schizophrenia 

by focussing on three key aspects: the nature of association between cardiometabolic disorders and 

schizophrenia; the potential for common underlying biological mechanisms for the comorbidity; and 

the prediction of cardiometabolic risk in young adults with psychosis.  

On the nature of association between cardiometabolic disorders and schizophrenia, using longitudinal 

repeat measure data from a large birth cohort, I found that disruption to glucose-insulin homeostasis 

through childhood/adolescence is associated with increased risk of psychosis in early-adulthood; may 

not be fully explained by common sociodemographic and lifestyle factors; and may be specific to it.  

On the mechanisms of association between cardiometabolic disorders and schizophrenia, I used a 

range of genetic and observational epidemiological methods to examine whether inflammation and 

shared genetic liability may be common underlying biological mechanisms for the comorbidity. 

Using birth cohort data, I show that genetic risk for type 2 diabetes is associated with psychosis-risk 

in adulthood, and vice versa. I also show that genetic risk for type 2 diabetes may influence psychosis 

risk by increasing systemic inflammation. Using summary data from large genome-wide association 

studies (GWAS), I show a thread of evidence for shared genetic overlap between schizophrenia, 

cardiometabolic and inflammatory traits. Finally, using Mendelian randomization, I show evidence 

supporting that inflammation may be a common cause for insulin resistance and schizophrenia. 

On the prediction of cardiometabolic risk in young adults with psychosis, I performed a systematic 

review of cardiometabolic risk prediction algorithms and explored their predictive performance in a 

sample of young people at risk of developing psychosis. In doing so, I show that none are likely to 

be suitable for this population. Then, using patient data, I developed and externally validated the 

Psychosis Metabolic Risk Calculator (PsyMetRiC), the first cardiometabolic risk prediction 

algorithm specifically tailored for young people with psychosis.  

Together, my work suggests that cardiometabolic disorders and schizophrenia share aetiologic 

mechanisms, namely inflammation and shared genetic liability. I have shown that it is possible to 

accurately predict cardiometabolic risk in young people with psychosis using a tool tailored for the 

population. Such tools can in future become valuable resources for clinicians to reduce the risk of 

long-term cardiometabolic morbidity and mortality in people with schizophrenia.
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During my PhD, I have addressed the theme of comorbidity between cardiometabolic disorders and 

schizophrenia-spectrum disorders by focussing on three key aspects, which I have presented in three 

sections of this thesis. First, I have examined the nature of association between cardiometabolic 

disorders and schizophrenia-spectrum disorders, addressing the key limitations of existing research. 

Second, I have examined the potential for common mechanisms, namely shared genetic influences 

and inflammation, which could at least in part explain the comorbidity between cardiometabolic 

disorders and schizophrenia. Third, I have considered approaches to improving the clinical 

identification of cardiometabolic risk in young people with psychosis, focussing on the role of 

prognosis research. 

In the proceeding introduction section, I will first briefly introduce schizophrenia-spectrum and 

cardiometabolic disorders and then summarise the comorbidity between them. I will outline different 

mechanisms for the comorbidity, beginning with the traditional attributions of sociodemographic, 

lifestyle and clinical factors, and ending with evidence from historical studies and studies of young 

adults, which may call into question the traditional attributions as sole explanations for the 

comorbidity. I will then describe how existing evidence may indicate the possibility of common 

biological mechanisms for comorbid cardiometabolic disorders and schizophrenia, focussing on the 

role of inflammation and shared genetic liability. Finally, I will introduce prognosis research, describe 

efforts to predict cardiometabolic risk in the general population, and consider the usefulness of 

cardiometabolic risk prediction in young people with psychosis. 
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1.1 Evidence for the Comorbidity between Cardiometabolic Disorders and 

Schizophrenia 

1.1.1 A Brief Introduction to Schizophrenia-Spectrum and Cardiometabolic Disorders 

1.1.1.1 Schizophrenia-Spectrum Disorders: Definitions, Epidemiology and Mechanisms 

Psychotic disorders are a group of psychiatric syndromes characterised by combinations of positive, 

negative, and cognitive symptoms. Positive symptoms include hallucinations, delusions, and 

disorganised behaviour and speech. Negative symptoms involve disruptions to motivational and 

emotional function. Cognitive symptoms can affect numerous cognitive domains, including attention, 

working memory, verbal learning and memory, and executive function (Kahn et al., 2015). However, 

psychotic disorders may differ in severity, chronicity, pathophysiology, and treatment (Lieberman 

and First, 2018). The psychotic disorder group includes schizoaffective disorder, schizophreniform 

disorder, delusional disorder, and substance-induced psychotic disorder, but the cardinal member of 

the group is schizophrenia (Lieberman and First, 2018).  

Schizophrenia is a complex neuropsychiatric illness first classified in the late 19th century as dementia 

praecox, with the term schizophrenia coined later in 1908 by Eugen Bleuler (Jablensky, 2010). 

Schizophrenia usually takes the form of a chronic course of episodic acute illness episodes, termed 

psychosis, followed by periods of either partial to complete recovery or gradual deterioration in social 

and occupational function over time (see Figure 1) (Thara, 2004). Frank symptoms of schizophrenia 

usually precipitate between the second and third decades of life, with the peak age of incidence in 

males, age 22 years, slightly earlier than the peak age of onset in females, age 26 years (Eranti et al., 

2013, Castle et al., 1998).  In the UK, schizophrenia accounts for around 30% of all spending on adult 

mental health care in the NHS. More broadly, mental illness costs the UK economy around £77 billion 

per year, around 4% of gross domestic product (Department of Health., 2014). 

At the first clinical presentation of psychosis (first-episode psychosis; FEP), it may not be possible to 

pinpoint an accurate classification beyond the broad psychotic disorder group owing to, for example, 

an incomplete history, pathophysiological uncertainty, and aspects of diagnostic criteria such as 

symptom chronicity which may require more extended clinical observation (Lieberman and First, 

2018). Furthermore, there are no diagnostic laboratory tests for schizophrenia; and so, the diagnosis 

relies on clinical observation and self-report (See Table 1). 
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Adapted from Ciompi et al (Ciompi, 1980) and Shepherd et al (Shepherd et al., 1989) 
 

Table 1: ICD-10 Diagnostic Criteria for Schizophrenia 

 

 

 

 

 

 

 

 

 

 

 

 

A prodromal phase consisting of a more subtle decline in cognitive and social functioning commonly 

precedes the first psychotic episode and can begin years before the onset of frank psychotic symptoms 

(Compton, 2004). A duration of untreated psychosis (DUP) may also precede the first clinical 

diagnosis of FEP (McGlashan, 1999), whose length is associated with time to symptom remission 

(Loebel et al., 1992), response to antipsychotics (Karson et al., 2016), symptom severity, and 

functional outcomes (Marshall et al., 2005). Meta-analytic evidence suggests that the length of DUP 

At least one of 

Thought insertion/withdrawal/broadcast/echo 
Delusions of control, influence, or passivity 
Delusional perception 
Third-person auditory hallucinations giving a running commentary 
Persistent bizarre delusions 

Or at least two of 

Persistent hallucinations in any modality 
Thought disorder 
Catatonic behaviour 
Negative symptoms 
Significant behaviour change 

Duration 

Symptoms present for one month 
Exclusions 

Symptoms not attributable to a mood disorder, an organic brain disorder or a substance use 
disorder 

Prevalence Description Illness Course

22%

One Episode  

No Functional 
Impairment

35%

Multiple Episodes

Minimal or No 
Functional  
Impairment

8%

Multiple Episodes

Functional Impairment 
After First Episode 
Which Does Not 
Progressively Worsen

38%

Multiple Episodes

Progressive Functional 
Impairment After Each 
Episode

Figure 1: Types of Longitudinal Illness Course in Schizophrenia 
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could explain between 2-13% of the variance of outcome in schizophrenia (Penttila et al., 2014). A 

core aim of psychosis early intervention services (EIS) is to identify psychosis in its early stages and 

reduce the length of DUP (McGorry et al., 2008). While some associate a long DUP with a prolonged 

neurotoxic environment (McGorry et al., 2008) or have hypothesised that it may reflect a more severe 

subtype of schizophrenia (Morgan et al., 2006), more recent research suggests that lead-time bias may 

confound the association between prolonged DUP and poor outcomes (Jonas et al., 2020). Therefore, 

the apparent poor outcomes associated with a prolonged DUP may instead relate to a more advanced 

stage of psychotic illness that is already associated with poorer functioning. 

Schizophrenia has a global prevalence that is relatively heterogeneous in its reporting. Meta-analytic 

evidence suggests estimates of 0.33% and 0.40-0.47% for period and lifetime prevalence respectively 

(Saha et al., 2005, Simeone et al., 2015), whereas estimates derived from single samples can be 

slightly higher. For example, one general population survey reported a lifetime prevalence of 0.87% 

for schizophrenia, and over 3% for broader categories of psychotic disorders (Perala et al., 2007). 

Along with differences in study methodology, the heterogeneity in prevalence estimates suggests the 

importance of both individual- and population-level factors which may influence schizophrenia risk. 

For example, schizophrenia is more common amongst first- and second-generation migrant groups 

than people who do not have a personal or family history of migration (Cantor-Graae and Selten, 

2005). Schizophrenia is also more common in people who live in disadvantaged areas of inner cities 

(Kirkbride et al., 2007), and areas with low social cohesion (Boydell et al., 2001).  

Additionally, the influential neurodevelopmental hypothesis of schizophrenia posits that early-life 

environmental disruption can lead to neuronal circuits primed to generate psychotic symptoms in later 

life, often in the context of heightened biological or psychological stress (Nour and Howes, 2015, 

Fatemi and Folsom, 2009). For example, babies born in late winter and spring are slightly over-

represented among patients with schizophrenia, possibly due to an increased risk of intrauterine 

infection or maternal vitamin D deficiency during the winter months (see Section 1.2.3). A range of 

childhood adversities including physical abuse, sexual abuse, maltreatment and bullying, are also 

associated with an increased risk of developing schizophrenia in adulthood (Stilo and Murray, 2010).  

The pathophysiology of schizophrenia is not yet fully understood, but is traditionally considered to 

result from a final common pathway involving disruption to brain dopaminergic signalling pathways 

(Howes and Kapur, 2009). The dopamine hypothesis of schizophrenia originated after the discovery 

of antipsychotics in the 1950s, when animal model studies confirmed that the medications altered 

dopamine metabolism (Carlsson and Lindqvist, 1963). Research then showed that amphetamine, 

which increases synaptic dopamine levels, can induce psychotic symptoms (Lieberman et al., 1987). 

Since those early findings, a wealth of molecular imaging (McGowan et al., 2004, Breier et al., 1997), 
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post-mortem (Mackay et al., 1982, Howes et al., 2013) and experimental animal model evidence 

(Featherstone et al., 2007, Moore et al., 2006, Lapiz et al., 2003) has accumulated, indicating 

abnormal dopamine signalling in areas such as the mesocortical, mesolimbic, and nigrostriatal 

pathways in schizophrenia. However, more recently, with an understanding that not all patients 

respond to antipsychotic medications which aim to target the dopamine-D2 receptor, there is a 

growing understanding that not all patients with schizophrenia show abnormalities in dopamine 

signalling (Demjaha et al., 2012). Instead, schizophrenia may consist of hyperdopaminergic and 

normodopaminergic subtypes, with the latter subtype characterised by abnormalities in other 

neurotransmitter pathways (Howes and Kapur, 2014). 

Indeed, a range of other neurotransmitter pathways are associated with schizophrenia, such as 

glutamate (Hui et al., 2009), acetylcholine (Tani et al., 2015) and gamma-aminobutyric acid (GABA) 

(Blum and Mann, 2002). Disruption to these pathways may occur in combination and relate to 

different aspects of symptomatology and illness course (Howes and Kapur, 2009). 

Schizophrenia risk has a strong genetic component. The genetic underpinnings of schizophrenia 

gained prominence initially from early studies showing familial clustering of schizophrenia (Rudin, 

1916). Studies of monozygotic twins show concordance rates for a schizophrenia diagnosis are 

around 30% (Hilker et al., 2018). Studies have shown that the risk of a schizophrenia diagnosis in the 

offspring of affected and non-affected monozygotic twins is similar, suggesting that even unaffected 

twins carry a heritable component for schizophrenia without expressing the disease (Kringlen and 

Cramer, 1989). Such findings suggest that psychosis may lie on a continuum in the population (van 

Os et al., 2009), with a diagnosis of schizophrenia corresponding to the most extreme end of the 

spectrum.  

Adoption studies, which permit the dissection of genetic from environmental disease risk, help to 

confirm the importance of genetic risk in schizophrenia. For example, the risk of schizophrenia in 

offspring of mothers who had the illness was similar whether the biological or an adoptive parent 

raised them (Tienari et al., 1994, Heston, 1966). Additionally, the offspring of mothers without 

schizophrenia did not have an increased risk for the illness when raised by parents who had 

schizophrenia (Wender et al., 1974).  

Schizophrenia has a heritability (the amount of phenotypic variance that genetic factors could explain) 

of up to 80% (Sullivan et al., 2003, Hilker et al., 2018). However, the pattern of genetic influence in 

schizophrenia, like many complex diseases, is thought to be polygenic rather than Mendelian. 

Relatively recent genomic advances have helped to illustrate this. For example, over the past 20 years 

and owing to the breakthroughs of the Human Genome Project (Lander et al., 2001), genome-wide 
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association studies (GWAS), which involve scanning large sets of genetic variants (single nucleotide 

polymorphisms; SNPs) across complete sets of deoxyribonucleic acid (DNA), have transformed our 

understanding of the polygenic component of many complex diseases. The first GWAS of 

schizophrenia was published in 2007 and, with a sample size of n=322, did not report any genome-

wide significant findings (Lencz et al., 2007). Contrastingly, a more recently published GWAS for 

schizophrenia, which included n=105,318 participants, reported 145 genetic variants significantly 

associated with schizophrenia (Pardinas et al., 2018).  

However, only around 23% of the current variance of schizophrenia risk can be explained by 

identified genetic variation, with only 3% arising from GWAS significant SNPs (Woo et al., 2017). 

Therefore, a large proportion of the genetic contribution to schizophrenia risk is still unknown. One 

reason for this is that GWAS measure only common genetic variation, and recent evidence from 

whole-phenome studies suggests that individuals with schizophrenia carry a significant burden of 

rare, damaging variants that go undetected with standard GWAS methods (Singh et al., 2017). 

 

1.1.1.2 Cardiometabolic Disorders: Definitions, Epidemiology and Mechanisms 

Cardiometabolic disorders encompass a constellation of related traits, including cardiovascular 

diseases (CVD) such as hypertension, atherosclerosis and coronary heart disease, alongside metabolic 

traits such as type 2 diabetes (T2D) and its predeterminants (insulin resistance and impaired glucose 

tolerance), dyslipidaemia and obesity. Symptoms of cardiometabolic disorders are broad and range 

from being subtle or imperceptible, particularly in the earliest stages (e.g., isolated 

hypercholesterolaemia, insulin resistance or mild hypertension), through to severe pain and loss of 

consciousness (as in the case of acute myocardial infarction), permanent loss of cognitive or physical 

function (as in the case of cerebrovascular events) and, at their most severe endpoint, death. Together, 

cardiometabolic disorders are the number one causes of death worldwide, accounting for 17.9 million 

lives each year (World Health Organization, 2018). Around 6.8 million adults live with CVD in the 

UK, costing the NHS around £7.4 billion per year, and the broader economy an estimated £15.8 

billion per year (Waterall, 2019).  

The traits and features encompassing cardiometabolic disorders are interrelated, interdependent and 

progressively additive. In the earliest stages, subtle changes to biochemistry may be detectable, e.g., 

compensated disruption to glucose-insulin homeostasis or disruption to lipid storage (Cohn et al., 

2001, Savage et al., 2007). These subtle biochemical changes both predispose to and are predisposed 

by weight gain and hypertension via mechanisms including inflammation and other intracellular 

signalling mechanisms, such as the mitogen-activated protein kinase (MAPK) and 
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Phosphatidylinositol 3-kinase/protein kinase B pathways (PI3/AKT) (de Luca and Olefsky, 2008, 

Kumphune et al., 2013, Fujishiro et al., 2003).  

Over time and left unchecked, these changes can progress to the clustering of components that make 

up the metabolic syndrome (Gehart et al., 2010). The metabolic syndrome was first coined in 1988 

as ‘syndrome X’ due to an increasing understanding of the links between glucose-insulin homeostasis, 

blood pressure, lipid storage and adiposity (Reaven, 2001). In the ensuing decades, there was debate 

about the characterisation and definition of the syndrome (Reaven, 2006, Oda, 2012), and it was 

renamed metabolic syndrome in 2001 (World Health Organization, 2006). Since that time, there have 

been numerous diagnostic criteria to define metabolic syndrome (see Table 2). Some have placed 

precedence on disruption to glucose-insulin homeostasis, others on adiposity, and the most recent 

harmonised definition taking an agnostic stance and also recognising the importance of ethnic 

differences in weight deposition.  

Regardless of the diagnostic criteria used to define it, the metabolic syndrome has consistently shown 

a high risk of progression to more distal and chronic phenotypes such as T2D (Shin et al., 2013) and 

CVD (Wilson et al., 2005), alongside severe disease endpoints such as myocardial infarction (Younis 

et al., 2016), cerebrovascular events (Boden-Albala et al., 2008) and death (Hildrum et al., 2009). 

Therefore, the metabolic syndrome is an important marker of past, present, and future 

cardiometabolic risk. 

The global prevalence of cardiometabolic disorders is increasing universally, and they are now a 

critical global health concern (Saklayen, 2018). For example, in the USA between 1988-2010, 

average body mass index (BMI) in adults increased by around 0.5% a year (National Center for Health 

Statistics, 2012). The prevalence of obesity in US adults has now surpassed 40%, and over one in 

three US adults meets the criteria for metabolic syndrome (National Center for Health Statistics, 

2012).  

Similarly, in China, the prevalence of adult overweight and obesity has increased from 14.6% to 29% 

since 1992, and the prevalence of metabolic syndrome is 16% (Delavari et al., 2009). A national 

survey in Iran reported a metabolic syndrome prevalence in adults of around 35% (Delavari et al., 

2009). Further, the global survey of obesity found that the prevalence of overweight and obesity has 

doubled since 1980 in over half of the 195 countries surveyed, with the most significant increases in 

nations with a lower socioeconomic index (Afshin et al., 2017). Additionally, the International 

Diabetes Federation expects the global prevalence of T2D to increase to 10.4% by 2040, with over 

half of all those diagnosed living in Southeast Asia and the Western Pacific region (Ogurtsova et al., 

2017).  
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Table 2: Diagnostic Criteria for Metabolic Syndrome 

 

Cardiometabolic disorders have a common set of malleable and non-malleable risk factors. Non-

malleable risk factors include sex, ethnicity, and age. For example, there are well-known sex 

differences in the epidemiology, aetiology, biology and clinical expression of cardiometabolic 

disorders (Pradhan, 2014). Before the menopause, increased adiposity is more commonly precipitated 

in females than males (Kuk and Ardern, 2010), whereas hypertension and disrupted biochemical 

indices are more common in males (Kim and Reaven, 2013), possibly due to a metabolically-active 

effect of oestrogen (Gupte et al., 2015). Longer-term cardiovascular outcomes such as CVD affect 

both sexes but also show differences in presentation and clinical course (Beale et al., 2018).  

Ethnicity is also an important cardiometabolic risk factor, and non-White ethnicity is an important 

risk factor for cardiometabolic disorders (Deboer, 2011). For example, a UK population-based study 

reported that South Asian ethnicity carried the highest risk for cardiometabolic disorders, followed 

by Black/African-Caribbean ethnicity, followed by White European ethnicity (Tillin et al., 2005). 

East Asian ethnicity has also shown to confer a significant risk for the development of 

cardiometabolic disorders (Nestel et al., 2007).  

Age is an important cardiometabolic risk factor, and the risk of all cardiometabolic disorders increases 

with increasing age (Dhingra and Vasan, 2012). Age is also likely to interact with many non-

malleable risk factors because most contribute a cumulative risk over time (Reinikainen et al., 2015). 

Thus, age becomes increasingly relevant as one gets older.  

 WHO (1998) 
(Alberti and Zimmet, 
1998) 

EGIR (1999) 
(Balkau and 
Charles, 1999) 

IDF (2005) (Zimmet 
et al., 2005) 

NCEP ATP III 
Revised (2005) 
(Grundy et al., 
2005) 

Harmonized 
Consensus 
Definition (2009) 
(Alberti et al., 2009) 

Required IGT / IFG / T2D Plasma FI >75th 
percentile 

Central Obesity 
(Ethnicity-specific 
waist circumference) 

- - 

Criteria Above plus two 
from:  

Above plus two 
from: 

Above plus two 
from: 

At least three from: At least three from: 

Obesity WHR>0.90 (M) / 
>0.95 (F); or  
BMI>30 

WC>94cm (M) 
/ 80cm (F) 

- WC>100cm (M) /  
>88cm (F) 

Central Obesity 
(Ethnicity-specific 
waist circumference) 
or BMI >30 

Hyperglycaemia - - FPG>5.6mmol/L FPG >5.6mmol/L;  
or Rx 

FPG>5.6mmol/L;  
or Rx 

Dyslipidaemia TG>1.7mmol/L; 
or 
HDL<0.9mmol/L(M) 
/ <1.0mmol/L (F) 

TG>2mmol/L; 
or 
HDL<1mmol/L 

TG>1.7mmol/L;  
or 
HDL<1.0mmol/L(M) 
/ <1.3mmol/L(F);  
or Rx 

TG>1.7mmol/L;  
or 
HDL<1.0mmol/L(M) 
/ <1.3mmol/L(F);  
or Rx 

TG>1.7mmol/L;  
or 
HDL<1.0mmol/L(M) 
/ <1.3mmol/L (F);  
or Rx 

Hypertension >140/90mmHg >140/90mmHg; 
or Rx 

>130mmHg systolic; 
or >85mmHg 
diastolic 

>130mmHg systolic; 
or >85mmHg 
diastolic;  
or Rx  

>130mmHg systolic; 
or >85mmHg 
diastolic 
or Rx 

Other Microalbuminuria - - - - 
WHO=World Health Organization; EGIR=European Group for the Study of Insulin Resistance; IDF=International Diabetes Federation; 
NCEP=National Cholesterol Education Program; ATP III=Adult Treatment Panel III;  IGT=Impaired Glucose Tolerance; IFG=Impaired 
Fasting Glucose; T2D=Type 2 Diabetes; FI=Fasting Insulin; WHR=Waist: Hip Ratio; M=Male; F=Female; WC=Waist Circumference;  
BMI=Body Mass Index; FPG=Fasting Plasma Glucose; Rx=Prescribed Treatment; TG=Triglycerides; HDL=High Density Lipoprotein. 
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In the general population, the most important malleable cardiometabolic risk factors include smoking, 

physical inactivity, sedentariness, and an unhealthy diet. All are thought to be dose-dependent, 

conveying greater risk with increased length and amount of exposure.  

Smoking is strongly associated with adverse cardiometabolic and cardiovascular outcomes (Banks et 

al., 2019) and remains the leading cause of death in developed nations (Lariscy, 2019). However, 

whilst a prolonged smoking history increases cardiometabolic risk compared with ‘never smoked’ 

(Duncan et al., 2019), some research suggests that smoking cessation in young people can reduce this 

risk to baseline in as little as five years (Lloyd-Jones et al., 2017).  

Physical inactivity is the next most important cause of death in developed nations (McGinnis and 

Foege, 1993). Findings from the UK analysis of the Global Burden of Diseases Injuries and Risk 

Factors Study suggest that physical inactivity contributed to 10% of premature deaths from coronary 

heart disease and 35% of all-cause deaths (Allender et al., 2007). Sedentariness has a global impact 

on mortality comparable with smoking (Lee et al., 2012) and is distinct from physical inactivity 

(Salman et al., 2019). For example, high volumes of high-intensity physical activity only partly 

attenuate the cardiometabolic risk associated with sedentariness (Ekelund et al., 2016). Replacing 

sedentariness with even light physical activity leads to improvements in insulin sensitivity and lipid 

profiles not replicated by combining intensive physical activity and a sedentary lifestyle (Duvivier et 

al., 2018). In increasing recognition of the importance of physical inactivity and sedentariness on 

cardiometabolic risk, in 2019, the UK Chief Medical Officer published combined guidelines on 

increasing physical activity levels and reducing sedentariness (Department of Health and Social 

Care., 2019).  

Diet is an important cardiometabolic risk factor, and dietary habits have changed considerably in 

recent decades, imparting considerable cardiometabolic risk (Anand et al., 2015). For example, 

snacking and snack foods have risen to prominence (Popkin and Duffey, 2010), eating frequency has 

increased (Monteiro et al., 2010), and a dietary increase in fried, processed and sugary foods is a 

global phenomenon (Monteiro et al., 2013). Data from meta-analyses and large cohort studies suggest 

that such diets are intricately related to cardiometabolic disorders such as T2D (Schwingshackl et al., 

2017), obesity (Askari et al., 2020), and CVD (Srour et al., 2019).  

Genetic variation conveys a key influence on cardiometabolic risk. Similarly to schizophrenia, family 

studies have shown clustering of cardiometabolic disorders within families (Slack and Evans, 1966), 

and twin (Zdravkovic et al., 2002) and adoption (Sundquist et al., 2011) studies have confirmed the 

genetic contribution to cardiometabolic disorders. More recently, while there has been success in 

elucidating monogenic causes of rare cardiometabolic disorders such as familial 
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hypercholesterolaemia via loss-of-function mutations in the low-density lipoprotein (LDL) receptor 

gene LDLR (Goldstein and Brown, 1974), rare forms of cardiometabolic disorders do not significantly 

impact population-level prevalence (Cambien and Tiret, 2007). Conversely, discoveries of mutations 

in other genes such as apolipoprotein E are much more common in the general population. While 

they contribute a weak effect on individual-level disease risk, their common frequency results in a 

more significant impact at the population level (Cambien and Tiret, 2007).  

Recent GWAS of cardiometabolic traits such as BMI have been conducted on samples of close to 

700,000 adults, identifying over 300 significant variants (Pulit et al., 2019). Similarly, GWAS of 

cardiometabolic disorders such as T2D have been conducted in over 400,000 adults, identifying over 

150 significant variants (Mahajan et al., 2018). However, while the heritability of most 

cardiometabolic is predicted to be high, the variance explained by identified genetic variants is but a 

fraction of this (Elks et al., 2012). Therefore, rarer variants may together play a significant polygenic 

role in the genetic influence of cardiometabolic risk. 

 

1.1.2 The Burden of Cardiometabolic Comorbidity of Schizophrenia  

Schizophrenia is a life-shortening illness (McGrath et al., 2008), and people with schizophrenia live 

on average 10-15 years less than the general population (Plana-Ripoll et al., 2019). Moreover, while 

mortality rates in the general population are decreasing, the same reductions in mortality rates have 

not been observed to the same extent in people with schizophrenia, so the mortality gap is widening 

(Hayes et al., 2017). Mortality rates for people with schizophrenia are now over 2.5 times higher than 

the general population, irrespective of sex and socioeconomic status (Saha et al., 2007).  

Unnatural causes such as accidents and suicide account for only a small portion of the increased 

mortality, with more than two-thirds explained by physical illnesses such as a significantly higher 

prevalence of cardiometabolic disorders (Saha et al., 2007). For example, the prevalence of obesity 

in older adults with chronic schizophrenia is twice as high as in the general population at 55%, the 

prevalence of dyslipidaemia is five times as high as in the general population at 70%, and the 

prevalence of hypertension is three times as high as in the general population at 60% (De Hert et al., 

2011). These cardiometabolic phenotypes result in a higher prevalence of metabolic syndrome, which 

is five times as common as in the general population, and T2D, which is twice as common as in the 

general population (De Hert et al., 2011). Together, the higher prevalence of cardiometabolic 

disorders in people with schizophrenia contributes to a three-fold higher risk of death from 

myocardial infarction and cerebrovascular events than the general population, even after adjusting 

for factors such as sex, ethnicity, and social class (Correll et al., 2017). 
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The significant burden of comorbid schizophrenia and cardiometabolic disorders is not just felt by 

the individual but by the whole of society. Comorbid schizophrenia and cardiometabolic disorders 

lead to increased health service use through emergency hospital admissions, GP consultations, and 

prolonged lengths of hospital stay (Hochlehnert et al., 2011). In already stretched healthcare systems, 

this can contribute toward increased waiting times and poorer care standards universally. Increased 

use of health services translates into substantial additional healthcare costs. For example, studies have 

shown that comorbid schizophrenia and cardiometabolic disorders can increase direct healthcare costs 

by up to 45-75%, even after controlling for severity of physical illness and not including the costs 

associated with the treatment of schizophrenia (Naylor, 2012).  

Together, comorbid physical and psychiatric disorders account for up to 18% of all expenditure on 

long-term health conditions in the UK (Naylor, 2012). Moreover, in addition to increasing health 

service costs, comorbid schizophrenia and cardiometabolic disorders can have broader economic 

implications, such as higher levels of unemployment (Hutter et al., 2010), higher workplace absence 

due to sickness (Von Korff et al., 2005), and increased use of the benefits system (Naylor, 2012). In 

the UK, the yearly total societal costs of comorbid schizophrenia and cardiometabolic disorders are 

£700m higher than the costs of treating schizophrenia and cardiometabolic disorders separately 

(McDaid, 2015).  

 

1.1.3. Traditional Attributions for the Cardiometabolic Comorbidity of Schizophrenia 

1.1.3.1 The Adverse Effects of Antipsychotic Medication 

In 1952, the accidental discovery that chlorpromazine, an anaesthetic medication, may be effective 

as a calming agent (Laborit et al., 1952) led to its first investigation as a psychiatric treatment (Delay 

et al., 1952), and later its widespread introduction as the first licensed antipsychotic medication (Ban, 

2007). Chlorpromazine catalysed the fledging period of ‘deinstitutionalisation’, involving the large-

scale transfer of psychiatric patients from inpatient units to community care. The introduction of 

chlorpromazine coincided with the culmination of a wider socio-political movement to provide 

improved freedoms to psychiatric patients (Niles, 2013). This medication transformed our 

understanding of schizophrenia pathophysiology (Howes and Kapur, 2009), helped to instil patients 

with civil liberties, and stimulated the field of psychopharmacology toward the discovery of an array 

of antipsychotic medications commonly used in modern psychiatry. Whilst none could doubt the 

transformational improvements these pharmacological developments instigated, they have 

nonetheless added complexity in examining associations between cardiometabolic disorders and 

schizophrenia due to an increased risk of confounding. 
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But a few years after the introduction of chlorpromazine into clinical psychiatric practice, studies 

began to be published highlighting the potential adverse effects of the medication on cardiometabolic 

indices. For example, early meta-analytic evidence reported that the more recent ‘second-generation’ 

antipsychotics, developed initially to combat the common adverse effects of movement disorders in 

earlier antipsychotics, exerted more influence on cardiometabolic indices than the earlier ‘first-

generation’ antipsychotics (Bergman and Ader, 2005, Smith et al., 2008).  

However, more recently, the consideration that newer ‘second-generation’ or ‘atypical’ 

antipsychotics have greater adverse cardiometabolic effects than older ‘first-generation’ or ‘typical’ 

antipsychotics has been called into question. Newer meta-analyses have shown that the differential 

cardiometabolic effects of antipsychotics do not necessarily abide by these distinctions (Leucht et al., 

2013, Pillinger et al., 2020). For example, aripiprazole conveys relatively little adverse 

cardiometabolic risk, yet olanzapine conveys significant adverse cardiometabolic risk, and both are 

second-generation antipsychotics. Similarly, chlorpromazine conveys significant cardiometabolic 

risk, yet haloperidol does not, and both are typical antipsychotics. It is now generally understood that 

the metabolically-active nature of different antipsychotics lies on a continuum rather than across a 

dichotomy (See Figure 2), and the cardiometabolic impact of such medications can precipitate 

relatively quickly after initiation (Spertus et al., 2018).   

                            Adapted from Leucht et al (2013) (Leucht et al., 2013) and Pillinger et al (2020) (Pillinger et al., 2020) 

 

There is biological plausibility for the cardiometabolic impact of antipsychotic medications. While 

all antipsychotic medications target the dopamine D2 receptor, none are specific to it and have 

differing affinities for a wide array of other receptors in the central nervous system and the periphery. 

For example, antipsychotics bind to histamine-1 (H1), serotonin-2c (5-HT2c) and adrenergic 

receptors (a2 and b3) in the brain (Starrenburg and Bogers, 2009). Each is important in regulating 

food intake, and animal model studies have shown that knockouts of the genes coding these receptors 

cause rats to become obese (Kroeze et al., 2003, Jackson et al., 1997, Leibowitz, 1984).  

Figure 2: Comparative Cardiometabolic Impact of Different Commonly Prescribed Antipsychotic Medications 

Quetiapine

Clozapine

Olanzapine

Chlorpromazine

Risperidone

Lurasidone

Amisulpiride

Haloperidol

Aripiprazole

More Cardiometabolically ActiveLess Cardiometabolically Active
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Additionally, antipsychotics may disrupt glucose-insulin homeostasis at the level of the pancreatic 

beta-cell in the periphery through a decrease in insulin sensitivity and a resultant increase in insulin 

secretion (Starrenburg and Bogers, 2009). More metabolically-active antipsychotics such as 

clozapine, olanzapine, and quetiapine also show relatively high affinities for serotonin-1a (5HT-1a), 

muscarinic-3 (m3), and a2 receptors, which are expressed on pancreatic beta-cells (DeFronzo and 

Ferrannini, 1991, Reaven, 1988, Shulman, 2000). Conversely, less metabolically-active 

antipsychotics such as aripiprazole and ziprasidone show considerably less affinity to these receptors 

(Leucht et al., 2013).  

 

1.1.3.2 The Effects of Lifestyle Factors 

Schizophrenia exerts substantial impacts upon all aspects of the lives of people who are diagnosed 

with it. Whilst frank positive psychotic symptoms are perhaps the most instantly recognisable features 

of the illness, they are also the features of the illness that respond the most quickly with antipsychotic 

treatment. Negative and cognitive symptoms of schizophrenia can be harder to identify due to their 

subtle and insidious nature and typically respond less actively to antipsychotic treatment (Harvey et 

al., 2016). Negative and cognitive symptoms are common in schizophrenia and account for much of 

the long-term morbidity and poor functional outcome associated with it (Austin et al., 2013). Negative 

symptoms such as amotivation, decreased sociability and decreased spontaneity can be pervasive. 

Such changes can have wide-ranging impacts upon the health of the sufferer (Kirkpatrick et al., 2001) 

and may predispose to lifestyle factors that could increase cardiometabolic risk. 

 

1.1.3.2.1 Diet 

Multiple studies (McCreadie et al., 1998, McCreadie and Scottish Schizophrenia Lifestyle, 2003, 

Heald et al., 2017) have shown that the diets of people with schizophrenia may be less healthy than 

the general population. A recent systematic review of observational and interventional studies on diet 

in schizophrenia found consistent associations between having the illness and consuming a diet higher 

in refined sugars and saturated fats and lower in fibre (Aucoin et al., 2020). Such a pattern is typical 

of the ‘Western diet’ and is associated with adverse cardiometabolic outcomes (Fung et al., 2001). 

Furthermore, cross-sectional studies have shown that people with schizophrenia, on average, may 

consume lower than recommended levels of ω-3 polyunsaturated fatty acids (PUFAs) (Aucoin et al., 

2020). Similarly, a large prospective cohort study of women also found that lower consumption of ω-

3 PUFAs was associated with an increased risk of psychotic symptoms (Hedelin et al., 2010). ω-3 



 

32 
 

69 

PUFAs are associated with a favourable cardiometabolic profile of lower cholesterol levels, lower 

blood pressure and lower levels of systemic inflammation (Natto et al., 2019, Cabo et al., 2012).  

 

1.1.3.2.2 Smoking 

People with schizophrenia are over three times more likely to smoke than the general population (de 

Leon and Diaz, 2005). While the prevalence of smoking in the general population has declined over 

the past two decades (Windsor-Shellard, 2020), the prevalence of smoking in schizophrenia remains 

high (Ziaaddini et al., 2009). Some attribute the higher prevalence of smoking in schizophrenia to 

symptom amelioration since nicotine may have short-term cognitive-enhancing effects (Freedman, 

2014). Also, smoking may ameliorate perturbations in dopaminergic, glutamatergic and GABAergic 

pathways observed in schizophrenia (Lucatch et al., 2018).  

However, more recent research is beginning to call the symptom-amelioration hypothesis into 

question, finding that cigarette smoking in schizophrenia was associated with impairments in memory 

(Stramecki et al., 2018) and even increased suicidality (Dickerson, 2019). A systematic review of 

longitudinal studies also found that adolescent exposure to smoking was associated with a higher risk 

of developing schizophrenia (Gurillo et al., 2015), and recent evidence suggests a potential bi-

directional association of smoking with risk of schizophrenia (Wootton et al., 2020). 

 

1.1.3.2.3 Physical Inactivity and Sedentariness 

A meta-analysis of 69 case-control studies reported that, compared with the general population, 

people with schizophrenia on average spend more time sedentary and are less likely to meet 

recommended physical activity guidelines (Vancampfort et al., 2017). In addition, people with 

schizophrenia may overestimate their physical activity levels. For example, a large-scale population-

based cohort study found that while people with schizophrenia self-reported similar physical activity 

levels to the general population, objective accelerometer data suggested that they engaged in much 

less physical activity than the general population, and so over-estimated their activity levels (Firth et 

al., 2018). 

 

1.1.3.2.4 Alcohol  

While some studies have found that light alcohol consumption with meals is associated with a lower 

risk of incident cardiometabolic disorders (Zhang et al., 2014), possibly due to beneficial effects on 

inflammation (Piano, 2017),  an abundance of research suggests that heavy alcohol use is associated 
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with increased risk of metabolic syndrome (Vieira et al., 2016), hypertension (Bermudez et al., 2015), 

T2D and CVD (Roerecke and Rehm, 2014). These associations may be explained by the effects of 

alcohol itself on endothelial function and myocardial function (Goncalves et al., 2015), apoptosis 

(Fernandez-Sola et al., 2011), oxidative stress (Piano and Phillips, 2014) and haemostatic factors 

(Salem and Laposata, 2005), or mediated via comorbid poor diet or smoking (Sluik et al., 2016). 

People with schizophrenia have up to a three-times higher prevalence of alcohol use disorders than 

the general population (Hartz et al., 2014). A recent meta-analysis found that over one in four patients 

with schizophrenia would meet the criteria for an alcohol use disorder (Hunt et al., 2018), and alcohol 

use disorders could be present before the onset of psychosis in young adults (Brunette et al., 2018). 

A combination of genetic and environmental factors could explain the comorbidity between alcohol 

use disorders and schizophrenia. Regarding genetic factors, alcohol use disorders and schizophrenia 

may share genetic liability and genetic overlap (Walters et al., 2018). For example, genetic variants 

associated with brain-derived neurotrophic factor (BDNF) correlate with comorbid schizophrenia and 

alcohol use disorders but not with alcohol use disorders alone (Cheah et al., 2014). Regarding 

environmental factors, alcohol use in schizophrenia may lead to symptom reduction (Hjorthoj et al., 

2015) or decrease antipsychotic side effects (Khantzian, 1997). Alcohol use disorders in 

schizophrenia are associated with poor adherence to treatment, an increased frequency of psychosis 

relapse, longer duration of inpatient stays, and poor functional outcomes (Kerner, 2015, Archibald et 

al., 2019).  

 

1.1.3.2.5 Sleep 

Inadequate sleep quantity and quality is associated with adverse cardiometabolic outcomes. In both 

children and adults, short sleep duration is associated with an increased risk of obesity in meta-

analyses of cross-sectional and longitudinal studies (Miller et al., 2018). Poor sleep quality and 

quantity are also longitudinally associated with the development of hypertension (Knutson et al., 

2009), T2D (Cappuccio et al., 2010), coronary heart disease (Cappuccio et al., 2011) and 

cerebrovascular events (Leng et al., 2015). Proposed mechanisms include alterations to circadian 

rhythms involving cortisol which may disrupt glucose-insulin homeostasis; increases in appetite-

increasing grehlins; increases in systemic inflammation; and hypothalamic-pituitary-adrenal (HPA) 

axis alterations leading to weight gain (Cappuccio and Miller, 2017).  

Disturbed sleep is common in schizophrenia and is self-reported in 30-80% of patients, depending on 

the severity of symptomatology (Yang and Winkelman, 2006, Royuela, 2002, Kato et al., 1999). 

Meta-analyses of studies examining objective measures of sleep such as polysomnography have 
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shown changes in sleep latency, sleep efficiency, awake time, slow-wave sleep and random eye 

movement (REM) sleep in schizophrenia (Yang and Winkelman, 2006, Chouinard et al., 2004, 

Krystal et al., 2008). Antipsychotics may also affect sleep, depending on the level of histamine-1 

receptor (H1) antagonism (Kane and Sharif, 2008). Histamine receptors may be involved in regulating 

circadian rhythms and the sleep-wake cycle, and H1-receptor blockade can lead to an increase in 

somnolence and sedation as well as changes in sleep architecture (Monti and Monti, 2004). 

Metabolically-active antipsychotics such as clozapine and quetiapine show a high affinity to the H1 

receptor and have pronounced effects on sleep induction and total sleep time. Comparatively, less 

metabolically-active antipsychotics such as aripiprazole and risperidone show low affinity to the H1 

receptor (Monti and Monti, 2004). Additionally, antipsychotics differ in affinities to adrenergic, 5HT-

2 and cholinergic receptors, which all have roles in sedation (Cohrs, 2008). 

 

1.1.3.3 Healthcare Inequalities 

Healthcare inequalities are another important cause for the increased risk of cardiometabolic disorders 

in schizophrenia. Research has shown that people with schizophrenia may be less likely to attend 

their general practitioner for physical health concerns than the general population (Goldman, 1999, 

Brown et al., 2000). When they do attend, they may be less likely to be diagnosed with physical health 

problems than the general population (Goldman, 1999, Jeste et al., 1996). Research from whole-

population studies suggests that following a first hospital admission for CVD, people with 

schizophrenia are more likely to die and die sooner than the general population (Westman et al., 

2018).  

Other research has found that amongst hospital admission for ischemic heart disease, people with 

schizophrenia were half as likely to be recommended for surgical intervention (Lawrence and Kisely, 

2010), twice as likely to suffer from hospital-acquired infections, and have a longer length of stay 

than the general population (Daumit et al., 2006). Among people with a diagnosis of T2D, people 

with comorbid schizophrenia were half as likely to be offered a referral for specialist care (Jones et 

al., 2008).  

One potential contributor to the discrepancies in healthcare access for people with schizophrenia may 

be ‘diagnostic overshadowing’, which is defined as the attribution of clinical symptoms and 

behaviours by clinicians to the mental disorder rather than a physical illness, leading to inadequate 

assessment and delayed treatment (Jones et al., 2008). Surveys of liaison psychiatrists have cited 

concerns about stigmatising attitudes by general healthcare staff toward people with schizophrenia 

and a lack of understanding of complex presentations and challenging behaviours. Similarly, 
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qualitative research of patients with mental disorders, including schizophrenia, has reported common 

themes such as feeling stigmatised against by healthcare staff, and barriers to healthcare access due 

to perceived social isolation (Kemp, 2014). 

Furthermore, fragmentation of physical healthcare across primary and secondary mental health 

services may contribute to healthcare inequalities in schizophrenia (Crawford et al., 2014). For 

example, primary care staff may not always be confident working with patients with mental disorders, 

including schizophrenia (Blythe and White, 2012), and reciprocally, secondary mental health staff 

report low confidence in identifying and managing physical health problems (Happell et al., 2012).  

 

1.1.4 Evidence That the Association between Cardiometabolic Disorders and Schizophrenia 

May Not Be Fully Explained By Lifestyle Factors and Adverse Treatment Effects 

Antipsychotic medications, lifestyle factors and healthcare inequalities are key contributors to the 

comorbidity between cardiometabolic disorders and schizophrenia. However, a growing body of 

observational evidence is beginning to question the notion that the aforementioned traditional 

attributions are likely to be the full explanation for the comorbidity. This observational research can 

be divided into historical research that predates antipsychotic medication; research conducted on 

young adults with FEP; and research conducted on adolescents/young adults who are at risk of 

developing psychosis.  

 

1.1.4.1 Historical Evidence Predating The Use of Antipsychotic Medication  

The scientific literature has recognised the cardiometabolic comorbidity of schizophrenia since the 

beginning of the 20th century (Kohen, 2004), long before the discovery of antipsychotic medication. 

Indeed, Henry Maudsley once referred to T2D as “a disease which often shows itself in families in 

which insanity prevails” (Maudsley, 1895). The first observational research in the field was published 

in 1919 and consisted of a small cross-sectional study of 10 participants showing the commonality of 

hyperglycaemia in schizophrenia (Kooy, 1919). Two years later, a cross-sectional study of 22 

participants with schizophrenia found common abnormalities in glucose tolerance, using an early 

form of the oral glucose tolerance test (Lorenz, 1922). In 1944, the first case-control study was 

published examining for differences in glucose tolerance between returning war-time soldiers with 

psychiatric diagnoses and healthy controls, finding higher rates of impaired glucose tolerance in the 

case compared with the control group (Drury, 1921).  
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While these historical studies had some methodological shortcomings, for example, small sample 

sizes and an inability to consider the direction of association, they demonstrate a thread of consistent 

evidence for the association of disrupted glucose-insulin homeostasis in schizophrenia in 

antipsychotic-naïve individuals. Therefore, this suggests that confounding by antipsychotic 

medication may not fully explain the cardiometabolic comorbidity of schizophrenia. 

Additionally, other important features of historical studies suggest that confounding by chronic 

lifestyle factors may not fully explain the cardiometabolic comorbidity of schizophrenia. While the 

average UK life expectancy has increased from 50 to 80 years since 1910 (Raleigh, 2020), several 

negative influences on population health have increased over the last century to offset those gains. 

For example, participants recruited into historical studies may have been less affected by the adverse 

impacts of the modern ‘Western diet’ as outlined in Section 1.1.1.2, including food over-supply and 

over-consumption, along with consumption of higher proportions of high-calorie and nutrient-

deficient foods. For example, McDonalds opened its first restaurant in 1937, the first KFC franchise 

opened in 1952, and the first Burger King franchise opened in 1954. Moreover, the menu offerings 

of such establishments are becoming increasingly unhealthy over time (McCrory et al., 2019).  

Sedentary behaviour is also increasing over time (Yang et al., 2019). Contributors to this trend include 

an increasing amount of time spent across childhood, adolescence and adulthood watching television, 

and technological advances leading to increasing amounts of leisure time spent on computers (Yang 

et al., 2019). Furthermore, work roles have become increasingly sedentary over recent decades. 

Research in the US has shown average decreases in occupation-related energy expenditure of over 

100 calories per day in both men and women since the 1960s (Church et al., 2011). 

Together, this pattern of change in population health suggests that historical research on the 

associations between cardiometabolic disorders and schizophrenia may be less affected than modern 

research by some of the traditional attributions for the cardiometabolic comorbidity of schizophrenia. 

Therefore, historical findings imply that factors such as metabolically-active antipsychotic 

medications, a poor diet, and sedentariness may more likely exacerbate rather than cause the 

cardiometabolic comorbidity of schizophrenia. Nevertheless, there are limitations in interpreting the 

findings of historical studies in the field. For example, the majority featured small sample sizes, were 

cross-sectional, included dated definitions and assessment techniques for schizophrenia and 

cardiometabolic disorders, and may be rated at high risk of bias by modern standards.  
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1.1.4.2 Evidence of Cardiometabolic Dysfunction in Young Adults with FEP 

Modern studies conducted on samples of young adults with FEP provide further evidence that 

traditional attributions may not fully explain the cardiometabolic comorbidity of schizophrenia. Such 

studies are essential because most cardiometabolic risk factors such as smoking, diet, and physical 

activity confer cumulative risk over time (Reinikainen et al., 2015). Therefore, studies conducted on 

young adults can lessen the confounding impact of these traditional attributions.  

Studies conducted in participants presenting with FEP can also help to address the confounder of 

antipsychotic medication at least partly, since participants enrolled in such studies are likely to have 

had minimal, if any, prior antipsychotic exposure. Modern studies are also able to address 

methodological and measurement-related shortcomings of historical studies. 

 

1.1.4.2.1 Evidence for Disruption to Glucose-Insulin Homeostasis in FEP 

Consistent findings from recent meta-analyses of case-control studies (Perry et al., 2016, Pillinger et 

al., 2017a, Greenhalgh et al., 2017) suggest that subtle aberrations in glucose-insulin homeostasis are 

detectable from the onset of psychosis in young antipsychotic naïve adults compared with healthy 

controls matched on age, sex, ethnicity and body mass index. For example, compared with controls, 

FEP cases had a higher prevalence of insulin resistance measured using the updated and computerised 

homeostatic model assessment (HOMA2) method (Levy et al., 1998); and a higher prevalence of 

impaired glucose tolerance.  

Insulin resistance and impaired glucose tolerance are early forms of disrupted glucose-insulin 

homeostasis and relate to decreased sensitivity of peripheral cells to insulin (O'Rahilly et al., 1994). 

This decreased insulin sensitivity results in lower glucose transport into cells. In turn, this leads to a 

negative feedback loop involving increased insulin secretion to maintain stable plasma glucose levels. 

Therefore, insulin resistance corresponds to a physiological state where higher circulating insulin 

levels are required to maintain steady plasma glucose levels (Samuel and Shulman, 2016).  

Impaired glucose tolerance represents a state of reduced peripheral insulin sensitivity, progressive 

loss of beta-cell function, and reduced secretion of glucose-dependent insulinotropic polypeptide 

(Faerch et al., 2009). This state of disrupted glucose-insulin homeostasis accentuates following oral 

consumption of a glucose-rich bolus. In impaired glucose tolerance, plasma glucose levels take longer 

to stabilise secondary to a) decreased sensitivity of cells to insulin; and b) an attenuated response 

range for insulin to correct plasma glucose imbalance. Therefore, both insulin resistance and impaired 

glucose tolerance represent states of early glucose-insulin dyshomeostasis (Tabak et al., 2012).  
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Recent studies have reported consistent findings regarding the higher risk of insulin resistance in FEP, 

extending upon previous meta-analytic results. For example, cross-sectional research suggests that 

insulin resistance at FEP may be more strongly associated with negative rather than positive 

schizophrenia symptomatology (Misiak et al., 2019), may be associated with childhood stressful life 

events (Tosato et al., 2020), and may not be explained by chronic stress (Steiner et al., 2017). 

Longitudinal research also suggests that insulin resistance in FEP may be a baseline risk factor for 

weight gain during the first year after FEP (Keinanen et al., 2015).  

Studies of glucose-insulin homeostasis in FEP have not found evidence for abnormalities in fasting 

plasma glucose or glycated haemoglobin (Perry et al., 2016, Pillinger et al., 2017a), which is 

unsurprising since such alterations represent more chronic, pronounced and potentially irreversible 

phenotypes within the realms of a T2D diagnosis. Therefore, insulin resistance is an early marker of 

a more chronic phenotype in T2D, just as FEP could be considered an early marker of a more chronic 

phenotype of schizophrenia. Since these early phenotypes appear to precipitate during the same 

period in the life course, even after accounting for several relevant confounders, shared biological 

processes may link both phenotypes, in at least a subset of individuals with FEP. 

 

1.1.4.2.2 Evidence for Disruption to Lipid Homeostasis in FEP 

Recent meta-analyses of case-control studies have also shown that alterations in lipid homeostasis, 

such as hypertriglyceridaemia and reduced total and low-density lipoprotein (LDL) cholesterol levels, 

are also detectable from FEP in young adults (Pillinger et al., 2017b, Misiak et al., 2017). One meta-

analysis also reported lower high-density lipoprotein (HDL) levels in FEP cases compared with 

controls (Misiak et al., 2017). Additionally, findings from subsequent studies have extended upon the 

meta-analytic results. For example, longitudinal research indicates that triglycerides may be 

associated with worse psychiatric outcomes at both one and two years (Osimo et al., 2021) after FEP. 

Together, this pattern of lipid alteration suggests that the primary cardiometabolic risk-increasing 

phenotype in early psychosis relates to disruption to glucose-insulin homeostasis rather than lipid 

dysfunction for two reasons. First, a pattern of low total and LDL cholesterol represents lower 

cardiometabolic risk. For example, large-scale observational studies have consistently found that 

LDL and total cholesterol are positively associated with a higher risk of coronary heart disease 

(Ference et al., 2017, Peters et al., 2016). Second, a pattern of raised triglycerides and low HDL is a 

hallmark of insulin resistance both in older (McLaughlin et al., 2005) and younger adults (Murguia-

Romero et al., 2013). A raised triglyceride:HDL ratio has been suggested as a suitable surrogate 

marker for insulin resistance when it may not be possible to measure it using the HOMA2 or gold 

standard hyperinsulinaemic-euglycaemic clamp method (Pantoja-Torres et al., 2019). 
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1.1.4.2.3 Limitations of Existing Studies of Young Adults with FEP 

While the consistency and biological plausibility from studies of cardiometabolic dysfunction at FEP 

suggest the possibility for primary disruptions to glucose-insulin homeostasis in schizophrenia, 

current studies are limited primarily for three reasons. First, existing research in the field is mostly 

either cross-sectional or has included incident cases of FEP at baseline, so it is not possible to consider 

the direction of association. For example, the first clinical presentation of FEP may not accurately 

correspond with the actual onset of psychotic symptoms, and a duration of untreated psychosis may 

precede the first clinical presentation by months or even years (Compton, 2004).  

Second, existing studies have primarily included one-off measures of cardiometabolic markers, 

overlooking the potential for dynamic temporal changes in these markers. Cardiometabolic indices, 

including measures of glucose-insulin homeostasis (Moebus et al., 2011) are subject to normal 

fluctuation, which cannot be addressed with a one-off measurement. Alternatively, repeated 

measurements of glucose-insulin homeostasis over time could provide a more reliable measure of 

potential underlying biological mechanisms.  

Third, whilst meta-analyses have included case-control studies that matched participants for relevant 

potential confounders, residual confounding remains a possible explanation, as is the case with all 

observational research. For example, existing studies have mostly not adjusted for alcohol use, 

smoking, physical activity levels, dietary intake, or sleep problems. As described in Section 1.1.3, 

these lifestyle factors are associated with schizophrenia and cardiometabolic disorders and are likely 

to be relevant potential confounders.  

 

1.1.4.3 Evidence for Cardiometabolic Dysfunction in Adolescents/Young Adults at Risk of 

Developing Psychosis 

Studies of cardiometabolic indices in adolescents/young adults who are at risk of developing 

psychosis provide further evidence for the potential of a primary disruption to cardiometabolic 

function in schizophrenia. Evidence from such studies potentially casts backwards further in the life-

course the cardiometabolic associations of schizophrenia and may point to the suggestion that 

cardiometabolic dysfunction may precede the onset of psychosis in at least some individuals. 

Evidence from such studies can also further address the potential for confounding since participants 

may be even less likely to have been prescribed antipsychotic medications than cases of FEP. 

Additionally, since participants are generally younger, the risk of confounding by chronic lifestyle 

factors is further reduced. 
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A 2016 meta-analysis of 47 studies, which examined the association of cardiometabolic risk factors 

with ultra-high risk for psychosis (UHR) in young adults, found that none included indices of glucose-

insulin or lipid homeostasis (Carney et al., 2016). The review also found no significant difference in 

BMI between cases of UHR with matched controls (Carney et al., 2016). However, since that time, a 

consistent thread of evidence has emerged showing an association between insulin resistance and 

UHR status, for example, in case-control studies matched by factors such as age, sex, ethnicity and 

BMI levels (Petruzzelli et al., 2018, Cadenhead et al., 2019); and cross-sectional studies (Scott et al., 

2019, Perry et al., 2018) including one which adjusted for a range of potential confounders including 

sex, ethnicity, BMI, social class, smoking and alcohol use (Perry et al., 2018). One longitudinal study 

found no evidence between childhood insulin levels and psychotic symptoms at age 18 years, 

although the sample size was relatively small (Perry et al., 2018).  

Lipid alterations have also been detected in at-risk mental states in the findings from case-control 

studies and may be helpful to predict transition to psychosis (Lamichhane et al., 2021, Dickens et al., 

2021). One longitudinal study found an association between childhood alteration in lipid profiles with 

psychotic symptoms at age 18 years (Madrid-Gambin et al., 2019). Paradoxically, longitudinal 

research suggests that lower BMI in childhood and adolescence (Zammit et al., 2007, Weiser et al., 

2004, Sorensen et al., 2006) is associated with a higher risk for developing schizophrenia in 

adulthood. 

 

1.1.4.3.1 Limitations of Existing Studies of Adolescents/Young Adults at Risk of Developing 

Psychosis 

Together, existing evidence suggests that alterations to cardiometabolic indices may occur before the 

development of psychosis. However, the primary limitation of existing research on younger 

participants at risk of developing psychosis is the heterogeneity of at-risk mental states. At present, 

there are no accurate means to distinguish who will and who won’t develop psychosis from a baseline 

of being at risk of developing it. For example, psychotic symptoms in adolescence are also strongly 

associated with other mental disorders, including anxiety and depression (Varghese et al., 2011), and 

only around 30% of people classified as at risk for psychosis develop FEP within three years (Fusar-

Poli et al., 2012). Other limitations of existing research mirror those of research in FEP (See Section 

1.1.4.2.3), for example, the paucity of adequately powered longitudinal studies, the lack of 

appropriate confounding adjustment, and the inclusion of single point-measures of cardiometabolic 

indices. 
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1.2 Existing Evidence for Common Biological Mechanisms for Comorbid 

Cardiometabolic Disorders and Schizophrenia  

1.2.1 Evidence for Disruption to Glucose-Insulin Homeostasis as a Potential Cause for 

Comorbid Cardiometabolic Disorders and Schizophrenia 

Recently developed epidemiological approaches can examine for evidence of potential causality 

between an exposure and an outcome. For example, Mendelian randomisation (MR) is an 

epidemiological approach that uses genetic variants (single nucleotide polymorphisms or SNPs) as 

proxies for a putative risk factor to untangle the problems of reverse causation and unmeasured 

confounding. This is because genetic variants are fixed at conception; hence genetically-predicted 

levels of risk factors must precede any event, and genetic variants are often specific in their 

associations with risk factors (Smith and Ebrahim, 2003).  

MR studies examining the associations between genetically-predicted levels of cardiometabolic 

indices and schizophrenia are relatively scarce, have included a limited set of cardiometabolic 

exposures, and have reported mixed findings. For example, one previous MR study reported only 

weak evidence of an association between genetically-predicted insulin resistance schizophrenia 

(Polimanti et al., 2017). Another reported an association between genetically-predicted fasting insulin 

and schizophrenia, which attenuated to the null after adjusting for BMI (Li et al., 2018). Furthermore, 

previous MR studies have included ethnically heterogeneous samples, which increases the risk of 

population stratification bias (Brumpton et al., 2020). Finally, since the previous MR studies were 

published, larger GWAS have been conducted, which could increase the statistical power of MR 

research. 

There is biological plausibility for the potential causal association between disruption to glucose-

insulin homeostasis and schizophrenia. For example, CNS insulin can regulate striatal dopamine and 

glutamate levels (Nash, 2017, Caravaggio et al., 2015), and, reciprocally, both CNS insulin and 

striatal dopamine can regulate peripheral glucose-insulin homeostasis (Berndt et al., 2013). Peripheral 

insulin can also cross into the CNS via cannabinoid and N-methyl-D-aspartate (NMDA) receptors, 

and is actively transported into the CNS via the blood-brain barrier (Dodd and Tiganis, 2017). Insulin 

receptors are widely expressed in the brain, with notable concentrations in regions of the brain known 

to be associated with schizophrenia, such as the hypothalamus, midbrain and dopaminergic neurons 

(Figlewicz et al., 2003), striatum, prefrontal cortex, amygdala, and hippocampus (Unger et al., 1991). 

Brain insulin is associated with the regulation of neuronal growth and neuronal plasticity 

(Schulingkamp et al., 2000, Ferrario and Reagan, 2018), and is associated with memory and cognition 

(Grillo et al., 2015). 
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1.2.2 Evidence for Genetic Liability as a Common Biological Mechanism for Comorbid 

Cardiometabolic Disorders and Schizophrenia 

Shared genetic liability may also be a common biological mechanism for the cardiometabolic 

comorbidity of schizophrenia, as first mooted in perspectives articles in the early 2000s (Lin and 

Shuldiner, 2010, Gough and O'Donovan, 2005). Since that time, due to improving analysis methods 

and larger genetic samples, evidence has begun to accumulate to suggest that shared genetic liability 

may at least partly explain the common comorbidity between schizophrenia and cardiometabolic 

disorders. This evidence can be divided into prospective observational research; and secondary 

analyses of large-scale GWAS datasets. 

Regarding prospective observational research, studies conducted in relatively small samples have 

shown that the prevalence of insulin resistance (Chouinard et al., 2019) and impaired glucose 

tolerance (Ferentinos and Dikeos, 2012) is higher in unaffected relatives of patients with 

schizophrenia compared with matched controls. These findings suggest that genetic influences on 

glucose-insulin signalling may co-occur with genetic influences for psychosis, independent of disease 

expression and treatment effects. Additionally, a prospective GWAS from a relatively small sample 

has shown that people with comorbid schizophrenia and T2D have a higher genetic predisposition 

for both disorders than controls (Hackinger et al., 2018). Also, a small study of people with 

schizophrenia found an association between genetic predisposition for schizophrenia, insulin 

resistance and antipsychotic treatment response (Tomasik et al., 2019). Conversely, another relatively 

small study found no evidence of an association between genetic risk for T2D and schizophrenia 

(Padmanabhan et al., 2016). The main limitations of existing evidence are that studies remain 

relatively scarce and are likely underpowered owing to relatively small sample sizes.  

Regarding the secondary analysis of GWAS data, genomic methods have been developed to examine 

for genetic similarity between traits. The most well-known and commonly used method is linkage-

disequilibrium (LD) score regression (LDSC) (Bulik-Sullivan et al., 2015a), which examines for 

genetic correlation between traits by comparing the association between test statistics of genetic 

variants of each trait on their LD scores. Where LD is defined as the non-random association of alleles 

at different loci, the LD score of a genetic variant is the sum of LD r2 measured with all other SNPs, 

and can be calculated in a reference sample of the same ethnicity when individual genotype data are 

not available for the GWAS sample (Ni et al., 2018). Previous studies have predominantly used LDSC 

to estimate whole-genome correlation between schizophrenia and cardiometabolic traits, with one 

recent study reporting evidence of partial genetic similarity between schizophrenia and BMI 

(Bahrami et al., 2020). However, there is limited evidence for other cardiometabolic traits (Bulik-

Sullivan et al., 2015a). 
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Nevertheless, the LDSC approach may have limitations. First, LDSC could be susceptible to the 

‘missing heritability’ problem, where subtle population stratification may bias the effects of relatively 

lower-frequency variants towards the null (Mathieson and McVean, 2012). Therefore, genetic 

correlation analysis which considers the relative frequency of variants is required. Second, LDSC 

estimates may be biased towards the null when opposing mechanisms exist (e.g., regions of positive 

and negative correlation nullifying each other when averaged (Shi et al., 2017)). Opposing 

mechanisms are likely to be relevant for a relatively heterogeneous condition like schizophrenia 

(Wolfers et al., 2018). Therefore, more fine-grained locus level genetic correlation analysis is required 

to identify genomic regions of interest.  Third, while LDSC can provide evidence of overall genomic 

similarity between traits, it cannot provide information to consider biological plausibility, or infer 

potential causality. Therefore, methods that can distinguish between correlation and potential 

causation, and consider biological plausibility, are required. 

 

1.2.3 Evidence for Inflammation as a Common Biological Mechanism for Comorbid 

Cardiometabolic Disorders and Schizophrenia 

Emerging evidence indicates that inflammation could be relevant for the pathogenesis of 

cardiometabolic disorders and schizophrenia. Higher levels of circulating inflammatory markers are 

associated with schizophrenia and cardiometabolic disorders (Dandona et al., 2004, Upthegrove et 

al., 2014, Khandaker et al., 2014). Particularly, schizophrenia and cardiometabolic disorders share 

similar patterns of association with elevated concentrations of circulating inflammatory markers such 

as C-reactive protein (CRP) and interleukin-6 (IL-6), both cross-sectionally (Upthegrove et al., 2014, 

Wang et al., 2013) and longitudinally (Bowker et al., 2020, Khandaker et al., 2014).  

Longitudinal research has also reported that inflammation may interact with disruption to glucose-

insulin homeostasis to increase the risk of psychotic symptoms in young adults (Perry et al., 2018). 

Additionally, two independent longitudinal studies of clinical samples have shown that a combination 

of adverse inflammatory and cardiometabolic indices at baseline, including CRP and triglycerides, 

were associated with psychosis symptom severity and worse outcomes (Nettis et al., 2019, Osimo et 

al., 2021).  

Longitudinal research conducted on clinical samples has also shown that FEP patients with higher 

CRP levels at baseline were more likely to develop hypertriglyceridaemia at three-month follow-up 

(Russell et al., 2015). Finally, MR studies have provided similar evidence suggesting that genetically-

predicted levels of IL-6 and CRP could be causally related to cardiometabolic disorders (Georgakis 

et al., 2020) and schizophrenia (Hartwig et al., 2017) separately.  
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A potential shared role of inflammation in the pathogenesis of cardiometabolic disorders and 

schizophrenia is biologically plausible. For example, animal model studies have shown that 

neuroinflammation in the hypothalamus is associated with impaired peripheral insulin sensitivity 

(Zhang et al., 2008); and central infusion of tumour necrosis factor can impair the peripheral function 

of the insulin receptor (Arruda et al., 2011). Finally, MAPK pathways are associated with 

inflammatory regulation, particularly regarding inflammatory pathways involving IL-6 and CRP 

(Thalhamer et al., 2008). Activation of c-Jun-N-terminal Kinase, one of the MAPKs, phosphorylates 

the insulin receptor substrate, thus inhibiting insulin action at the cell membrane (Aguirre et al., 2000) 

and has been associated with the development of insulin resistance (Aguirre et al., 2002).  

Post-mortem brain studies have found abnormal activity of the MAPK pathways in schizophrenia, 

(Kyosseva et al., 1999) and genetic modelling studies have found that genes implicated in MAPK 

pathways are associated with schizophrenia (Perez-Santiago et al., 2012). Additionally, animal 

models of schizophrenia have shown that maternal inflammation is associated with dose-dependent 

increases in MAPK phosphorylation in the striatum (Deng et al., 2011), and that treatment with 

antipsychotics can reverse these changes (Farrelly et al., 2015). 

Early life factors may contribute to changes in the immune system and inflammatory pathways 

leading simultaneously to increased risk of cardiometabolic disorders and schizophrenia. This idea is 

consistent with the developmental programming hypothesis first proposed by British epidemiologist 

David Barker. This hypothesis posits that the early developmental environment can have implications 

far-ranging and far-reaching on the life-course (Barker et al., 1993).  

Barker’s early studies (Barker et al., 1993, Barker and Osmond, 1987, Barker et al., 1989) involved 

ecological comparisons of infant mortality rates in the early 20th century and mortality rates from 

adult CVD in the latter part of the 20th century in local authority regions of England and Wales. Barker 

discovered that the most impoverished, polluted, and crowded regions in the early 20th century had 

the highest infant mortality rates and adult CVD mortality rates decades later despite improvements 

to living conditions and pollution levels in the intervening period. Barker surmised that the surviving 

infants in the early 20th century were likely to have been exposed to similar environmental conditions 

to those who died, and this could help to explain the excess adult mortality decades later. Barker 

proposed that there may be a critical developmental period in early life that, if disrupted, could 

predispose to adult disease.  

This early work has paved the way for discoveries that disruptions to prenatal and early life conditions 

are strongly associated with risks of developing obesity (Entringer et al., 2012), hypertension (Ojeda 

et al., 2008), metabolic syndrome (Rinaudo and Wang, 2012), T2D  (Yajnik, 2010) and CVD 
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(Alexander et al., 2015) in adulthood. These findings have been extended to include various 

neurodevelopmental conditions, including schizophrenia (Knuesel et al., 2014).  

Disruption to the early-life environment may permanently alter the function of the immune system, 

and this may be a putative mechanism that could link cardiometabolic disorders and schizophrenia. 

For example, poor intrauterine nutrition such as vitamin D deficiency is associated with a higher risk 

of schizophrenia (Eyles et al., 2018) and CVD in later life (Sauder et al., 2019). Vitamin D holds 

important roles in the development and regulation of the immune system, and intrauterine vitamin D 

deficiency is associated with alterations in immune function in adulthood (Harvey et al., 2010).  

Additionally, prenatal infection is associated with an increased risk of schizophrenia and CVD in the 

offspring (Mazumder et al., 2010, Khandaker et al., 2012, Khandaker et al., 2013), either through 

direct effects of the pathogen on the foetus after crossing the placenta or indirectly via activation of 

the maternal immune system (Hsiao and Patterson, 2011). Prenatal infection is also associated with 

lasting changes to offspring immune function (Pedersen et al., 2019).   

Furthermore, prenatal and early-life stressful life events (SLEs) are also associated with an increased 

risk of developing schizophrenia and CVD in adulthood (Kershaw et al., 2014, Malaspina et al., 

2008). Prenatal SLEs are also associated with lasting alterations to the immune system in the offspring 

(Merlot et al., 2008). 

Genetic influences may also lead to permanent alterations of the immune system and an increased 

risk of cardiometabolic disorders and schizophrenia. For example, genetic variation in the IL-6R gene 

is associated with changes to CRP levels and a higher risk of heart disease in later life (Swerdlow et 

al., 2012, Georgakis et al., 2020). The same genetic variation can influence the risk of schizophrenia 

in adulthood (Hartwig et al., 2017). Genetic correlation studies have shown evidence for an overlap 

between cardiometabolic and inflammatory traits (Wu et al., 2014) . They have also identified 

common-causal risk genes for immune changes and increased risk of cardiometabolic disorders in 

adulthood (Nath et al., 2019). Genetic studies have also identified the potential for common genetic 

variants, which could simultaneously increase the risk for schizophrenia and cardiometabolic 

disorders. Several are related to the immune system (So et al., 2019).  

However, large-scale genetic studies examining the role of inflammation on the simultaneous risk of 

comorbid cardiometabolic disorders and schizophrenia remain relatively scarce. Therefore, putative 

mechanisms must at present be extrapolated largely from studies examining either the genetic overlap 

of inflammation and cardiometabolic disorders, or inflammation and schizophrenia. 

In summary, there is evidence from observational, genetic, and animal model studies suggesting a 

biologically plausible association of inflammation as a potential biological mechanism for comorbid 
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cardiometabolic disorders and schizophrenia. However, observational studies are limited by the risk 

of residual confounding, and a scarcity of longitudinal research has prevented an examination of the 

temporal role that inflammation might play in the comorbidity between cardiometabolic disorders 

and schizophrenia. Furthermore, while genetic studies involving methods such as MR or LDSC can 

help to show evidence of potential causality or genetic overlap, current studies have not examined 

schizophrenia with cardiometabolic and inflammatory traits simultaneously. 



 

47 

 

1.3 Approaches to Improving The Prediction of Cardiometabolic Comorbidity 

of Schizophrenia 

1.3.1 An Introduction to Prognostic Research  

Having discussed the links between cardiometabolic and schizophrenia spectrum disorders, including 

the potential for commmon biological mechanisms, I now turn to the clinical prediction of 

cardiometabolic disorders in young people with psychosis.  

At its essence, prognostic research can be distinguished from traditional observational research in that 

it analyses at the individual rather than the group level (Breiman, 2001). Prognostic research deals in 

estimating the accuracy with which a prediction model, usually a regression equation consisting of 

weighted sums of predictors, can estimate the probability of an outcome occurring (Moons et al., 

2009). Preferably, these estimations are achieved by first fitting the regression equation in a model 

development sample and then testing the equation in similar unobserved individuals separated by 

geography, time, or clinical setting (Altman et al., 2009). This external validation step is fundamental 

for prognostic research since risk prediction models can only be useful if they are generalisable 

(Altman et al., 2009).  

Replication is also central to observational research, since observational studies are usually conducted 

on population sub-samples. Therefore, replication in observational findings helps to account for 

inaccuracies due to sampling variability and helps to show consistency (Casella, 2002). However, in 

prognostic research, the bar for generalisation is raised since it goes beyond replication that amounts 

to testing the same association twice (Bzdok et al., 2021). For example, showing that an exposure is 

associated with a disease in a second patient sample does not mean that this same exposure can tell 

health and disease apart at the individual level (Bzdok and Ioannidis, 2019).  

Prognostic research is increasingly relevant for a diverse range of disease states to improve outcomes 

for those affected (Riley, 2019). For example, more people live with one or more disease or health-

impairing conditions than ever before, putting strain on already stretched resources. Consequently, 

there is increasing interest in prognostic research at the level of the clinician, who is interested in the 

long-term interests of the patient; the commissioner who is interested in future service planning; and 

the politician who is interested in international health comparisons (Riley, 2019). 

In the UK general population, risk prediction algorithms are commonly used to identify high-risk 

individuals for tailored interventions from baseline demographic, lifestyle, and clinical information. 

The UK National Institute for Health and Care Excellence (NICE) first published guidance on the use 

of risk prediction algorithms for cardiometabolic and cardiovascular risk assessment in March 2003 
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(National Institute for Health and Care Excellence., 2003). In 2010 the guidance was updated to 

specify that the QRISK algorithm (Hippisley-Cox et al., 2007), developed to predict the 10-year risk 

of CVD, should be used preferentially (National Institute for Health and Care Excellence., 2010).  

The QRISK family of cardiometabolic risk prediction algorithms are therefore good examples of 

prognosis research that are integrated into routine clinical practice. However, the positive example 

set by the QRISK family of algorithms is seemingly rarely replicated. A systematic review of 

cardiometabolic risk prediction algorithms in 2016 found that the literature is “overwhelmed with 

models for predicting the risk of cardiovascular outcomes in the general population” (Damen et al., 

2016). The review concluded that the reporting quality of most algorithms was poor, very few 

algorithms were externally validated, and almost none were assessed for their impact or uptake in 

clinical practice (Damen et al., 2016). 

 

1.3.2 Cardiometabolic Risk Prediction in Young People with Psychosis 

As outlined in detail throughout this introduction, young people who have psychosis are at high risk 

for developing cardiometabolic disorders. Therefore, there is a clear and crucial need for accurate 

clinical tools to predict cardiometabolic risk in this population, to optimise care and improve long-

term outcomes. However, due to antipsychotic medications (see Section 1.1.3.1), a higher prevalence 

of most traditionally attributed lifestyle factors compared with the general population (see Section 

1.1.3.2), and the possibility of intrinsic biological or genetic links (see Section 1.2), there are likely 

to be tangible differences in the type, balance, and sum of cardiometabolic risk factors which affect 

young people who have psychosis compared with the general population.  

Such differences are likely to result in differences in baseline cardiometabolic risk, the ideal balancing 

of predictor weights, and in the choice of predictors. For example, the prescription of cardiometabolic 

risk-increasing antipsychotic medications is likely to be of prime importance in predicting 

cardiometabolic risk in young people with psychosis, but is unlikely to be important in the general 

population since such medications are rarely prescribed in that setting. 

Therefore, it is unclear whether existing cardiometabolic risk prediction algorithms developed for the 

general population are likely to be suitable for use in young people who have psychosis. A recent 

study of a small sample of people with chronic schizophrenia found that commonly used general 

population cardiometabolic risk prediction algorithms, including QRISK, returned significantly 

different risk scores when tested on the same participants (Berry et al., 2018). This calls into question 

the reliability and suitability of such algorithms for relatively older people with chronic 

schizophrenia, let alone young people with psychosis. Indeed, no studies have sought to examine the 
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predictive accuracy of existing cardiometabolic risk prediction algorithms in young people who have 

psychosis, even though current guidance recommends the routine use of the QRISK algorithm in this 

population (Royal College of Psychiatrists., 2020).  
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1.4 Aims of the Analytic Work Presented in this Thesis 

1.4.1 Section B – Examining the Nature of Association between Cardiometabolic Disorders 

and Schizophrenia 

In Section B of this thesis, I have aimed to establish a more detailed understanding of the nature of 

association between cardiometabolic disorders and schizophrenia. Specifically, I have sought to test 

whether cardiometabolic dysfunction could be a cause or consequence of schizophrenia. A more 

detailed understanding of the nature of association between cardiometabolic disorders and 

schizophrenia could lead to improvements in the treatment of the cardiometabolic comorbidity of 

schizophrenia and could contribute toward closing the mortality gap of 10-15 years faced by people 

who have the illness (Plana-Ripoll et al., 2020).  

To summarise, existing research to date has shown that: a) chronic schizophrenia is strongly 

associated with a range of cardiometabolic disorders including T2D, obesity and CVD, and this leads 

to a shortened life expectancy; b) FEP is associated more strongly with measures of aberrant glucose-

insulin homeostasis than other cardiometabolic traits; c) limited research has shown that at-risk 

mental states are associated with altered cardiometabolic indices, particularly relating to glucose-

insulin homeostasis.  

However, existing research is limited for three key reasons. First, current studies have predominantly 

been cross-sectional or have included prevalent cases of schizophrenia spectrum disorders. Therefore, 

existing research cannot appropriately test the direction of association between cardiometabolic and 

psychiatric traits. Second, most existing research in the field has not appropriately addressed the risk 

of confounding by sociodemographic, lifestyle or treatment factors. Third, current studies have 

primarily included one-off measurements of cardiometabolic indices, overlooking the potential for 

dynamic temporal changes in these markers. Longitudinal repeated measurements could provide a 

more reliable measure of underlying biological mechanisms and could identify population sub-

groups.  

I have aimed to address each of these limitations using data from the Avon Longitudinal Study of 

Parents and Children (ALSPAC), a population-representative UK birth cohort. Using ALSPAC data, 

I aimed to (1) delineate longitudinal trajectories of fasting insulin and BMI from repeated 

measurements of these indices between ages 1-24 years in the total ALSPAC sample; (2) examine 

the clinical and biochemical characteristics of the identified trajectories; (3) test associations of 

cardiometabolic developmental trajectories with psychosis at age 24 years, before and after adjusting 

for a set of key potential sociodemographic and lifestyle confounders. I chose fasting insulin and BMI 

since they are markers of distinct pathways and have shown the strongest associations with early 
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schizophrenia-spectrum phenotypes in young adults (Perry et al., 2018, Zammit et al., 2007). To test 

the specificity of association, To test specificity of association, I also included depression as an 

outcome at age 24 years since depression has also shown strong associations with cardiometabolic 

traits such as T2D (Kan et al., 2016), obesity (Gibson-Smith et al., 2020) and CVD (Khandaker et al., 

2019). 

 

1.4.2 Section C – Testing Potential Mechanisms of Association between Cardiometabolic 

Disorders and Schizophrenia 

In Section C of the thesis, I have aimed to examine potential mechanisms by which cardiometabolic 

traits could be associated with schizophrenia, over and above the traditional attributions of 

sociodemographic, lifestyle and clinical factors. I have focused on the potential roles of shared genetic 

liability and inflammation. A more detailed understanding of the mechanisms of association between 

cardiometabolic disorders and schizophrenia could lead to pathophysiological insights into the 

cardiometabolic comorbidity of schizophrenia and possibly schizophrenia itself. A more detailed 

mechanistic understanding could help identify novel therapeutic targets for schizophrenia and its 

associated cardiometabolic comorbidity.  

To summarise, existing research to date has: a) shown some evidence that shared genetic liability 

may be responsible for the development of comorbid cardiometabolic disorders and schizophrenia; 

b) reported consistently on the potential biological role of inflammation in the pathogenesis of 

cardiometabolic disorders and schizophrenia separately; c) reported heterogeneously regarding the 

potential causal role of genetically-predicted cardiometabolic traits with schizophrenia.  

However, existing research on the mechanisms of association between cardiometabolic disorders and 

schizophrenia is limited for three key reasons. First, existing prospective research examining for 

genetic overlap between cardiometabolic traits and schizophrenia has included small sample sizes 

and so may be limited in statistical power. Second, existing secondary studies of GWAS datasets may 

be limited due to methodological shortcomings and in its consideration of biological plausibility. 

Third, while a wealth of research has accumulated on the possible pathophysiological role of 

inflammation in both cardiometabolic disorders and schizophrenia, most studies have not included 

schizophrenia, cardiometabolic and inflammatory traits simultaneously to test this hypothesis.  

I have aimed to address each of these limitations across three studies. In the first study, I aimed to use 

data from the relatively large ALSPAC birth cohort to examine whether (1) genetic predisposition 

for schizophrenia was associated with insulin resistance at age 18 years, before and after adjusting 

for relevant confounders; (2) genetic predisposition for T2D was associated with risk of psychosis at 
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age 18 years, before and after adjusting for relevant confounders; (3) these associations may be 

mediated by genetic influences on childhood inflammatory markers. In the second study, I performed 

an analysis of summary data from large-scale GWAS to rigorously examine for the potential of a 

common genetic basis for schizophrenia, cardiometabolic and inflammatory traits, using a range of 

complementary genomic approaches which can address the key methodological shortcomings of 

previous research. In the third study, I performed bidirectional and multi-variable two-sample MR 

analysis of summary GWAS data to examine whether: (1) insulin resistance-related cardiometabolic 

traits could have a potentially causal role in schizophrenia pathogenesis or vice versa; (2) 

inflammation could be a common mechanism linking insulin resistance and schizophrenia. 

 

1.4.3 Section D: Improving the Prediction of Cardiometabolic Risk in Schizophrenia 

In Section D of the thesis, I turned to the clinical significance central to Sections A&B, which is the 

prediction of cardiometabolic risk in young people with psychosis. Accurate prediction of 

cardiometabolic risk in young people with psychosis is a fundamental step toward reducing its 

significant short, medium, and long-term impact upon the lives of people who have schizophrenia.  

To summarise existing research in the field, it is long established that the best way to address 

cardiometabolic disorders is with primary prevention and intervening early to slow or prevent 

progression to more distal, chronic and deadly disease endpoints (Chrysant, 2011). Given the 

cardiometabolic associations of schizophrenia that I have described in the introduction and have 

tested in Sections B & C of this thesis, this means intervening at the earliest possible opportunity in 

young people at the onset of psychotic illness. In the general population, risk prediction algorithms 

have been developed to predict an individual’s probability of developing an adverse cardiometabolic 

outcome years in advance. Healthcare professionals can then use the risk estimates to tailor 

interventions in the intervening period to reduce the probability of adverse cardiometabolic outcomes 

occurring. 

Given the tangible differences in baseline cardiometabolic risk and the differences in lifestyle and 

treatment factors between people who have schizophrenia and the general population, it is unlikely 

that tools developed for the general population will be suitable for the schizophrenia population. 

Indeed, research has shown that existing tools developed for the general population return extremely 

variable risk estimates when tested on older adults with chronic schizophrenia (Berry et al., 2018), 

let alone young people at the onset of their psychotic illness.  

Therefore, I first aimed to gain a comprehensive understanding of the current field of prognostic 

research for cardiometabolic disorders. I have done this by performing a systematic review of existing 
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cardiometabolic risk prediction algorithms developed either for the general or psychiatric populations 

and assessing whether any existing algorithm is likely to be suitable for young people who have 

psychosis. Furthermore, I aimed to quantify the predictive performance of potentially suitable 

algorithms identified from the systematic review by testing their predictive performance in a sample 

of young people with or at risk of developing psychosis, using ALSPAC data.  

Next, using patient data from three psychosis early intervention services (EIS), I aimed to develop 

and externally validate The Psychosis Metabolic Risk Calculator (PsyMetRiC), a cardiometabolic 

risk prediction algorithm developed and tailored specifically for young people with psychosis.
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Section B Summary 

This section addresses the temporality of association between cardiometabolic disorders and 

schizophrenia by analysing prospective data from the ALSPAC birth cohort (Chapter 2). This study 

examined: a) whether disrupted cardiometabolic indices could be a cause or consequence of the 

mental disorder by testing the direction of association between disrupted cardiometabolic indices and 

psychosis; b) the specificity of association between disrupted cardiometabolic indices and psychosis; 

c) whether confounding by sociodemographic or lifestyle factors could explain any associations. 

I used a growth mixture modelling approach to delineate developmental trajectories of fasting insulin 

and BMI from 5,790 and 10,463 ALSPAC participants, respectively. Fasting insulin was measured 

at four time-points (ages 9, 15, 18, and 24 years), and BMI was measured at twelve (ages 1, 2, 3, 4, 

7, 9, 10, 11, 12, 15, 18 and 24 years). I used regression analyses to examine the sociodemographic, 

biochemical, and clinical characteristics of the identified trajectories. Next, I tested longitudinal 

associations between the identified trajectories and the risk of schizophrenia-spectrum and depression 

phenotypes at age 24 years. I included depression as an outcome to test the specificity of association 

because depression shows strong genetic (Anttila et al., 2018) and phenotypic (Buckley et al., 2009) 

overlap with schizophrenia and has similar associations with cardiometabolic disorders (Firth et al., 

2019). I adjusted for a detailed range of potential confounders, including sex, ethnicity, social class, 

childhood emotional and behavioural problems, and cumulative scores of sleep problems, average 

calorie intake, physical activity, smoking, alcohol, and substance use in childhood/adolescence. 

To the best of my knowledge, this is the first longitudinal study that is sufficiently able to examine 

the direction of association between cardiometabolic traits and psychosis and the first study to model 

the cardiometabolic exposures as repeated measurements through childhood/adolescence. 

This study presents evidence that disruptions to glucose-insulin homeostasis may predate the onset 

of psychosis. The study also presents evidence suggesting that disrupted glucose-insulin homeostasis 

may be specific to psychosis. The associations persisted after adjusting for a detailed range of 

potential confounders, suggesting that disrupted glucose-insulin homeostasis could be a risk factor 

for psychosis. 

Findings from this study have been published in JAMA Psychiatry (Perry et al., 2021b). See Appendix 

B for the published manuscript.
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Chapter 2 
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Longitudinal Trends in Insulin Levels and BMI From Childhood 
and Their Associations with Risks of Psychosis and Depression in 
Young Adults in the ALSPAC Birth Cohort 

 



 

57 

 

2.1 Introduction 

Cardiometabolic disorders commonly co-occur with depression and schizophrenia (Firth et al., 2019), 

leading to a reduced quality of life, increased healthcare costs (Naylor, 2012) and a shortened life 

expectancy (Laursen et al., 2019, Plana-Ripoll et al., 2019). This comorbidity is usually attributed to 

chronic lifestyle factors (e.g. physical inactivity or smoking) or the adverse effects of psychotropic 

medications (Leucht et al., 2013). However, meta-analyses report altered glucose-insulin homeostasis 

in relatively young drug-naïve first-episode psychosis patients (Perry et al., 2016, Pillinger et al., 

2017a). Similarly, reports from population-based longitudinal studies suggest a bidirectional 

association between depression and CVD (Penninx et al., 2001, van Melle et al., 2004). Together, 

this evidence indicates that cardiometabolic and psychiatric conditions may share pathophysiologic 

mechanisms. However, three key issues remain. 

First, existing studies have predominantly included prevalent depression or psychosis cases, so cannot 

appropriately test the direction of association between cardiometabolic and psychiatric phenotypes. 

Second, most existing research in the field has not appropriately addressed the risk of confounding 

by sociodemographic, lifestyle or treatment factors. Third, studies have primarily included one-off 

measures of cardiometabolic indices, overlooking dynamic temporal changes in these markers. 

Longitudinal repeated measurements could provide a more reliable assessment of underlying 

homeostatic mechanisms and could identify population sub-groups. For example, aberrant trajectories 

of childhood BMI are associated with adult cardiometabolic disorders (Buscot et al., 2018). While 

cardiometabolic function encompasses a broad range of parameters, two pathways, insulin sensitivity 

and adiposity, are of particular interest regarding psychosis and depression. Previous genetic studies 

indicate distinct associations of BMI with depression (Tyrrell et al., 2019) and fasting insulin with 

schizophrenia (Li et al., 2018). However, to the best of my knowledge, no studies have examined 

whether fasting insulin and BMI trajectories from childhood are associated with adult psychosis and 

depression.  

 

2.2 Aims and Objectives 

Using data from ALSPAC, I aimed to: (1) delineate longitudinal trajectories of fasting insulin and 

BMI from repeated measurements between 1-24y; (2) examine the characteristics of identified 

trajectories; (3) test associations with risks of psychosis and depression at age 24 years, in the total 

sample and two sexes separately. I hypothesised that altered cardiometabolic development from 

childhood would be associated with increased risks for depression and psychosis in adulthood. 
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2.3 Methods 

2.3.1 Description of cohort and sample  

ALSPAC initially recruited 14,541 pregnant women resident in southwest England, with expected 

delivery dates between 1.4.1991-31.12.1992, resulting in 14,062 live births (Boyd et al., 2013b, 

Fraser et al., 2013, Northstone et al., 2019). An additional 913 participants were recruited 

subsequently. See www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/ for a fully 

searchable data dictionary. Data were collected and managed using REDCap (University of Bristol 

(Harris et al., 2019, Harris et al., 2009)). ALSPAC Ethics and Law Committee and Local Research 

Ethics Committees provided ethical approval for the study. All participants provided informed 

consent. Modelling of fasting insulin and BMI trajectories were based on 5,790 and 10,463 

participants, respectively. See Figure 1 of Appendix B for a flow-chart of participants in the study. 

Missing exposure data was handled using full-information maximum likelihood (FIML) estimation, 

as FIML estimates parameters directly using all the information that is already contained in the 

incomplete data set (Dong and Peng, 2013). FIML has demonstrated to produce unbiased estimates 

(Enders, 2001b) and valid model fit information (Enders, 2001a). 

  

2.3.2 Measurement of Exposures 

2.3.2.1 Fasting insulin 

Fasting insulin was measured at ages 9 (n=894), 15 (n=3484); 18 (n=3286); and 24 (n=3253) years 

using the ultrasensitive ELISA (Mercodia, Uppsala, Sweden) automated microparticle enzyme 

immunoassay, that does not cross-react with proinsulin. Its sensitivity was 0.07 mU/L, and inter- and 

intra-assay coefficients of variation were <6%. Fasting blood samples were drawn at 0900 after a 10-

hour fast, then spun and stored at -80°C. There was no evidence of freeze-thaw cycles during storage. 

 

2.3.2.2 BMI 

BMI was measured at ages 1 (n=1236); 2 (n=1036); 3 (n=1050); 4 (n=1018); 7 (n=8200); 9 

(n=7633); 10 (n=7465); 11 (n=7100); 12 (n=6704); 15 (n=5415); 18 (n=5061) and 24 (n=3975) 

years. 
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2.3.3 Measurement of Psychiatric Outcomes at Age 24 

2.3.3.1 Schizophrenia Spectrum Outcomes 

2.3.3.1.1 Psychotic Experiences (PEs) 

PEs were identified through the semi-structured Psychosis-Like Symptom Interview (PLIKSi) 

conducted by trained psychology graduates and coded per the definitions in the Schedules for Clinical 

Assessment in Neuropsychiatry, V2.0. The PLIKSi had good interrater (Intraclass correlation: 0.81; 

95% CI, 0.68-0.89) and test-retest (0.9; 95% CI 0.83-0.95) reliability (Sullivan et al., 2020). PEs, 

occurring in the last six months, covered the three main positive symptom domains: hallucinations, 

delusions, and thought interference. After cross-questioning, interviewers rated PEs as absent, 

suspected, or definite. I included cases of definite PEs; the comparator group was suspected/absent 

PEs.  

 

2.3.3.1.2 Psychosis At Risk Mental State (ARMS) 

Cases of ARMS were identified by mapping PLIKSi data to Comprehensive Assessment of At-Risk 

Mental State (CAARMS) criteria (Yung et al., 2005). Cases were defined as participants meeting 

CAARMS criteria for attenuated psychosis (symptoms not reaching the psychosis threshold due to 

intensity or frequency) or brief limited intermittent psychosis (frank psychotic symptoms that 

resolved spontaneously within one week). 

 

2.3.3.1.3 Psychotic Disorder  

Cases of psychotic disorder were defined (Sullivan et al., 2020) as definite PEs that were not 

attributable to sleep/fever, had occurred >once per month over the previous six months, and were 

either (i) very distressing, (ii) negatively impactful on social/occupational functioning, (iii) led to 

professional help-seeking. I also included participants meeting the criteria for CAARMS psychotic 

disorder (threshold psychotic symptoms for >1 week). 

 

2.3.3.1.4 Negative Psychotic Symptoms Score 

Ten questions from the Community Assessment of Psychic Experiences questionnaire (Stefanis et 

al., 2002) were administered covering interest, motivation, emotional reactivity, pleasure, and 

sociability. Participants rated each item 0=never; 1=sometimes; 2=often; and 3=always. I recoded the 
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variables by coding ‘always’ and ‘often’ as 1; ‘never’ and ‘sometimes’ as 0, and then summed giving 

a total score of 0-10. 

 

2.3.3.2 Depression Outcomes 

Depression was measured using the computerised Clinical Interview Schedule–Revised (CIS-R) 

(Lewis et al., 1992). The CIS-R assesses symptoms of depression occurring in the past week and 

provides a diagnosis of depressive episode based on the International Statistical Classification of 

Diseases (ICD), 10th Revision criteria, which I used as a binary outcome (ICD-10 codes F32.0-32.2). 

I also included a CIS-R depression severity score - comprising scores for mood, thoughts, fatigue, 

concentration, and sleep - as a continuous outcome.  

 

2.3.4 Assessment of Potential Confounders 

2.3.4.1 Sociodemographic Confounders 

I included sex at birth, ethnicity, and paternal social class. Sex was recorded at birth (binary variable). 

Ethnicity was recorded from participant-completed questionnaire data and coded as White vs. non-

White. Paternal social class was recorded from participant-completed questionnaire data based on 

occupation as per the UK Office of National Statistics classification system: I, II, III non-manual, III 

manual, IV, V). 

 

2.3.4.2 Lifestyle Confounders 

I included childhood emotional and behavioural problems and cumulative scores of smoking, physical 

activity, alcohol use, substance use, sleep problems and average calorie intake. Childhood emotional 

and behavioural problems were assessed at age 7 years via the Strength and Difficulties Questionnaire 

(SDQ) (Goodman, 2001), which screens for emotional symptoms, hyperactivity/inattention and peer 

relationship problems, and summed into a ‘total difficulties score’, which I used as an adjustment 

variable. However, due to a considerable reduction in the available sample size when the SDQ ‘total 

difficulties score’ was included as an adjustment variable, I used the k-nearest neighbours (Knn) 

imputation algorithm of the VIM package (Kowarik, 2016) in R (using recommended settings) to 

replace missing data for the SDQ variable only. The Knn algorithm is sensitive and robust to different 

data types and performs comparatively well to other imputation methods such as multiple imputation 

using chained equations (Schmitt, 2015, Liao, 2014). I used Knn imputation in place of multiple 
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imputation methods since where the former produces a single imputed dataset; the latter produces 

multiple imputed datasets, which would have led to significant and prohibitive computation burden 

coupled with the three-step method of analysis. 

Smoking (on average >1 cigarette each day) was coded as a binary variable at ages 15, 18 and 24 

years from participant-completed questionnaire data and summed to create a cumulative smoking 

score between ages 15-24 years of 0-3. 

Physical activity (averaged over the past year) was recorded from participant-completed 

questionnaire data at ages 15, 18 and 24 years as 0=never, 1=less than once per month; 2=one to three 

times per month; 3=one to four times per week; 4= five or more times per week. I summed the three 

variables creating a cumulative physical activity score between ages 15-24 years of 0-12.  

Alcohol use was coded as a binary variable (>1 alcoholic beverage on average each week) at ages 12, 

15, 18 and 24 years from participant-completed questionnaire data. I summed the four variables 

creating a cumulative alcohol use score between ages 12-24 years of 0-4.  

Substance use was coded as a binary variable at ages 12, 15, 18 and 24 years. At age 12 years, the 

self-report questionnaire asked whether the participant had ever taken any illicit substance. At ages 

15 and 18 years, the self-report questionnaire asked whether the participant had taken any illicit 

substance in the past year. At age 24 years, the self-report questionnaire asked how many illicit 

substances the participant had taken in the past year. I recoded the age 24 variable as a binary variable, 

with a score of 1 if the participant recorded taking at least one illicit substance in the past year. I 

summed the four variables creating a cumulative substance use score between ages 12-24 years of 0-

4.  

Sleep problems were coded as binary variables at ages 7, 8, 9 and 14 years from questionnaire data 

completed by the primary caregiver and 15 years completed by the participant. At ages 7 and 9 years, 

the primary caregiver was asked whether the participant had difficulty sleeping in the past year, and 

at ages 8, 14 and 15 years, the same question was asked with a duration of the past month. I summed 

the five variables creating a cumulative sleeping difficulties score between ages 7-15 years of 0-5.  

Average calorie intake was assessed at ages 7, 10 and 13 years via a food frequency questionnaire, 

sent to the primary caregiver a week before the child’s clinic appointment. The primary caregiver was 

asked to record everything the child ate or drank for three days, including one weekend day. When 

they brought the child to the clinic appointment, they were interviewed by a trained member of the 

nutrition team to ensure the completeness of the record concerning the type of food/drink and the 

amount consumed. At each age, average daily calorie (kcal) intake was recorded. I standardized (z-
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scores) the three variables and summed them together, creating a cumulative average calorie intake 

score between ages 7-13 years. 

 

2.3.5 Statistical Analysis 

2.3.5.1 Delineating trajectories of fasting insulin and BMI 

I standardized (z-transformed) fasting insulin and BMI separately in males and females, then 

combined to delineate trajectories individually for fasting insulin and BMI using growth mixture 

modelling (GMM) (Ram and Grimm, 2009). I used z-scores to measure relative change in fasting 

insulin and BMI since BMI increases in all young people during early life.  

GMM was run iteratively whilst increasing the number of trajectory classes to fit. Estimates of the 

Bayesian Information Criterion (BIC), entropy, Vuong-Lo-Mendell-Rubin Likelihood Ratio Test 

(VLMR-LRT) and Parametric Bootstrap Likelihood Ratio Test (BLRT) were recorded at each 

iteration, along with a visual inspection of graphical outputs. Once achieving successful convergence, 

checks were performed to rule out local solutions by replicating the estimation using the same seed 

values and comparing model parameter estimates for replication. A successfully converged model 

with no local solutions would have the best loglikelihood values repeated (Jung, 2007). In selecting 

the optimum class solution, I aimed to choose the solution with the lowest BIC, suitable statistical 

evidence (p<0.05) in VLMR-LRT and BLRT tests (suggesting the solution with n trajectories is an 

improvement over the solution with n-1 trajectories), and high entropy values (close to 1.0). Also, I 

aimed to include no less than 1% of the total sample in a particular trajectory (Jung, 2007) to allow 

suitable statistical power in subsequent analysis.  

Since the sample size for fasting insulin at age 9 years was smaller, I repeated GMM without data 

from that time-point and compared the characteristics of the resultant trajectories. Analyses were 

conducted using MPlus Version 8 (Muthen, 2017) and R (R Core Team, 2017). P-values were 

corrected for multiple testing using the Holm-Bonferroni method (Holm, 1979) for the six psychiatric 

outcomes. I estimated how participants overlapped between fasting insulin and BMI trajectories (the 

most common and highest-risk) using the phi-coefficient. 
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2.3.5.2 Associations of Sociodemographic, Lifestyle and Clinical Factors with Trajectories 

I used the three-step method (Asparouhov, 2014) to estimate associations of sociodemographic, 

lifestyle and clinical factors with trajectory membership. The three-step method allows class 

separation unaffected by auxiliary variables, retains and includes information on class uncertainty, 

and is robust when entropy is >0.60 (Asparouhov, 2014).  

After establishing the optimum number of trajectories, the second step is to calculate classification 

uncertainty, which is computed as a natural log of the average latent class probabilities for most likely 

class membership and the number of observations per trajectory class. These logits are used in the 

third step, including regression on predictors of trajectory class membership (using trajectory class 

membership as an outcome) or regression of trajectory classes on an outcome (using trajectory class 

membership as a predictor). Detailed information on the statistical methodology underpinning the 

three-step method alongside data simulations are available elsewhere (Asparouhov, 2014).  

Multinomial regression estimated ORs and 95% confidence intervals (CI) for the associations of 

sociodemographic/lifestyle factors with fasting insulin and BMI trajectories, compared with the most 

common trajectory. I considered time-invariant (sex, ethnicity, social class at birth, family history of 

CVD, gestational age, birthweight, perinatal stressful life events) and time-variant (physical activity 

and smoking in adolescence/early adulthood) factors.  

The coding and description of sex, ethnicity, social class at birth, physical activity and smoking is 

presented in Section 2.3.4. A positive family history of cardiometabolic disorders was coded from 

self-report questionnaire data encompassing T2D, hypercholesterolaemia, or CVD. Stressful life 

events (SLEs) were based on self-report questionnaire data comprising a summed total of up to 42 

pre-specified life events affecting the mother at 18- and 36-weeks gestation and the participant at 8-

weeks and 6-months postpartum. Examples included loss of a partner or family member, loss of 

employment, moving-house or financial difficulty. A complete list of the 42 SLEs is reported 

elsewhere (Kingsbury et al., 2016). I compared the top tertile of summed SLE scores vs the bottom 

tertile. Birthweight and gestational age were coded as continuous variables derived from 

questionnaire data. ORs represent the increase in risk of trajectory membership per SD increase in 

factor.  

Next, I examined the clinical phenotype of trajectories at age 24 years, examining mean levels of 

commonly measured clinical and biochemical factors for participants, grouped by most-likely 

trajectory membership. I included measures of BMI, waist circumference (cm, assessed during 

clinical assessment), FPG, HDL, LDL (all mmol/L), fasting insulin (µIU/mL), and CRP (mg/L). All 

biochemical samples were taken at 0900 during clinic assessment from consenting participants, 
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following a 10-hour fast (water only). I present mean values for waist circumference separately for 

males and females since the reference ranges are different. 

Next, I used logistic regression to estimate the association of trajectory membership with an age-

appropriate cardiometabolic outcome, metabolic syndrome at age 24 years. Metabolic syndrome was 

defined using the most recent harmonized consensus definition (Alberti et al., 2009) (see Table 2). 

 

2.3.5.3 Associations of Cardiometabolic Trajectories with Risk of Psychiatric Outcomes 

Logistic regression was used to estimate ORs and 95% CIs for binary outcomes per trajectory 

compared with the most common trajectory via the three-step method. Linear regression for 

continuous outcomes estimated b-coefficients and 95% CIs representing the SD increase in the risk 

of outcome per trajectory. I tested associations for the total sample and then separately for males and 

females, before and after adjusting for potential confounders. Regression models for negative 

symptoms were additionally adjusted for depressive symptoms and vice versa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

65 
 

69 

2.4 Results 

2.4.1 Trajectories of Fasting Insulin from Childhood to Young Adulthood 

Based on 5,790 participants (45.9% male), the three-trajectory solution was optimum (Table 3), 

representing ‘stable average’ (Class 1; 77.8%, n=4,939), ‘minor increase’ (Class 2; 19.0%, n=693), 

and ‘persistently high’ (Class 3; 3.1%, n=158) fasting insulin trajectories between ages 9-24 years 

(Figure 3A). See Appendix B Figures 2A-C for trajectory means and individual values per 

developmental trajectory of fasting insulin. The trajectories were similar after excluding age 9 data 

(Appendix B Figure 3). 

 

Table 3:  Growth Mixture Model Fit Indices for Fasting Insulin  

 

 

 

 

 

BIC = Bayesian Information Criterion; VLMR-LRT = Vuong-Lo-Mendell-Rubin Likelihood Ratio Test; BLRT = 
Parametric Bootstrap Likelihood Ratio Test; *Contained one trajectory with <1% of sample; †Selected for further 
analysis 
 

2.4.2 Trajectories of BMI from Childhood to Young Adulthood 

Based on 10,463 participants (49.0% male), the five-trajectory solution was optimum (Table 4), 

representing ‘stable average’ (Class 1; 71.1%, n=8,383), ‘gradually decreasing’ (Class 2; 7.0%, 949), 

‘puberty-onset minor increase’ (Class 3; 14.5%, n=668), ‘puberty-onset major increase’ (Class 4; 

1.9%, n=174), and ‘persistently high’ (Class 5; 5.5%, n=289) BMI trajectories between ages 1-24 

years (Figure 3B). See Appendix B Figure 4A-E for trajectory means and individual values per 

trajectory of BMI. 

Table 4:  Growth Mixture Model Fit Indices for Body Mass Index 

 
 
 
 
 
 
 
 

BIC = Bayesian Information Criterion; VLMR-LRT = Vuong-Lo-Mendell-Rubin Likelihood Ratio Test; BLRT = 
Parametric Bootstrap Likelihood Ratio Test; *Contained one trajectory with <1% of sample; †Selected for further 
analysis 

n Trajectories BIC Entropy VLMR-LRT (p-
value) 

BLRT  
(p-value) 

1 76474 - - - 
2 69389 0.957 0.007 <0.001 
3† 66304 0.853 0.034 <0.001 
4* 67872 0.750 0.253 0.042 
5* 67688 0.836 0.319 0.114 
6* 67521 0.729 0.409 0.440 

n Trajectories BIC Entropy VLMR-LRT (p-
value) 

BLRT  
(p-value) 

1 223514 - - - 
2 224574 0.663 <0.001 <0.001 
3 222745 0.774 <0.001 <0.001 
4 222142 0.768 0.029 <0.001 
5† 221575 0.885 0.010 <0.001 
6* 221138 0.766 0.102 0.073 
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Figure 3: Fasting Insulin (Ages 9-24 years) and Body Mass Index (Ages 1-24 years) Trajectories  

 

A: Fasting Insulin  
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B: BMI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 2 ‘Gradually Decreasing’; 

7.0% 

Class 1 ‘Stable Average’; 

.

Class 3 ‘Puberty Onset – Minor Increase’; 

Class 4 ‘Puberty Onset – Major Increase’; 1.9% 

Class 5 ‘Persistently High’; 

.

Trajectories were delineated using growth mixture modelling at four time points for Fasting Insulin, and twelve time-points for body mass index. 

Nodes in the graph represent mean z-scores for fasting insulin or BMI at each time-point for each developmental trajectory 
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2.4.3 Correlation between Fasting Insulin and BMI Trajectories 

The ‘stable average’ fasting insulin and BMI trajectories were weakly but statistically significantly 

correlated (rφ=0.233, p<0.001), as were the ‘persistently high’ trajectories (rφ=0.092, p<0.001). 

 

2.4.4 Associations of Sociodemographic, Lifestyle and Clinical Factors with Trajectories 

2.4.4.1 Fasting Insulin 

Both deviating fasting insulin trajectories were associated with lower social class, family history of 

cardiometabolic disease, lower physical activity and smoking in adolescence/early adulthood. Lower 

birthweight and more perinatal stressful life events were associated with the ‘persistently high’ 

trajectory (Table 5), which also had mean fasting insulin, HDL, triglycerides, and CRP levels outside 

of UK reference ranges at age 24 years (Table 6). Deviating fasting insulin trajectories were 

associated with metabolic syndrome at age 24 years (adjusted OR for the ‘persistently high’ 

trajectory=9.21; 95% C.I., 3.77-20.15) (see Appendix B Table 1).  

 

Table 5: Odds Ratios for Multinomial Logistic Regression Analyses Examining Predictors of 
Membership of Fasting Insulin Developmental Trajectories 

aReference group 

 

 

Variable Odds Ratio (95% CI) 

Class 1a 

‘Stable Average’ 
Class 2 
‘Minor Increase’ 

Class 3 
‘Persistently High’ 

Female Sex 1.00 1.37 (1.10-2.04) 1.10 (0.89-1.23) 
Non-White British Ethnicity  1.00 1.22 (0.89-1.62) 1.21 (0.91-1.73) 
Lower Social Class  1.00 1.05 (1.00-1.09) 1.89 (1.35-2.50) 
FHx Cardiometabolic Disorders 1.00 1.10 (0.92-1.41) 1.66 (1.14-1.69) 
Gestational Age 1.00 1.10 (0.95-1.31) 1.21 (0.90-1.44) 
Birthweight 1.00 0.89 (0.60-1.10) 0.76 (0.44-0.92) 
Stressful Life Events (Top tertile) 1.00 1.21 (0.55-4.32) 2.06 (1.43-4.31) 
Low Exercise (age 15) 1.00 1.13 (1.06-1.31) 1.16 (1.02-1.41) 
Smoking (age 15) 1.00 1.45 (1.03-1.76) 1.10 (0.86-1.55) 
Low Exercise (age 18) 1.00 1.45 (1.14-1.89) 1.54 (1.06-2.22) 
Smoking (age 18) 1.00 1.39 (1.07-1.43) 1.40 (1.10-1.78) 
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Table 6: Anthropometric and Biochemical Measures for Different Fasting Insulin Trajectories 

*indicates outside of U.K. reference range: Body Mass Index=18.5-24.9kg/m2 ; Fasting Insulin=3-8µIU/mL; Waist 
Circumference (males)=<102cm; Waist Circumference (females)=<88cm; Fasting Plasma Glucose=<7mmol/L; 
HDL=>1.35mmol/L; Triglycerides=<1.70mmol/L; LDL=<3.36mmol/L; CRP<3mg/L. 

 

2.4.4.2 BMI 

Deviating BMI trajectories were associated with lower social class, family history of cardiometabolic 

disease, more perinatal stressful life-events, lower physical activity and smoking in adolescence/early 

adulthood. Higher birthweight was associated with the ‘gradually decreasing’ and ‘persistently high’ 

trajectories, whereas lower birthweight was weakly associated with both ‘puberty-onset’ increase 

trajectories (Table 7). Deviating BMI trajectories were associated with mean values of fasting insulin, 

waist circumference, HDL, and CRP outside of UK reference ranges at age 24 years (Table 8). All 

deviating BMI trajectories were associated with metabolic syndrome at age 24 years (adjusted OR 

for the ‘persistently high’ trajectory=10.62; 95% C.I., 5.89-19.13) (see Appendix B Table 1).  

 

 

 

 

 

 

 

 

 

Measure, Mean (SD) Trajectory   
Class 1 (Stable 
Average) 

Class 2 (Minor 
Increase) 

Class 3 
(Persistently High) 

Fasting Insulin (µIU/mL) 6.93 (2.70) 8.57 (1.21)* 13.65 (4.32)* 
Body Mass Index (kg/m2) 22.12 (3.76) 26.18 (4.23)* 24.76 (7.74) 
Waist Circumference, Males (cm) 84.58 (8.79) 99.56 (15.34) 94.45 (16.72) 
Waist Circumference, Females (cm) 75.62 (9.44) 91.41 (14.14)* 89.20 (18.14)* 
Fasting Plasma Glucose (mmol/L) 5.24 (0.67) 5.49 (0.65) 5.78 (0.78) 
HDL Cholesterol (mmol/L) 1.60 (0.41) 1.32 (0.38)* 1.31 (0.46)* 
Triglycerides (mmol/L) 0.89 (0.38) 1.31 (0.88) 1.75 (1.01)* 
LDL Cholesterol (mmol/mL) 2.39 (0.73) 2.71 (0.80) 2.73 (0.89) 
C-Reactive Protein (mg/L) 1.85 (3.98) 2.19 (3.24) 3.40 (4.21)* 
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Table 7: Odds Ratios for Multinomial Regression Analyses Examining Predictors of 
Membership of BMI Developmental Trajectories 

areference group 

 

Table 8: Anthropometric and Biochemical Characteristics of Participants included in BMI 
Trajectories 

*indicates outside of U.K. reference range: Body Mass Index=18.5-24.9kg/m2 ; Fasting Insulin=3-8µIU/mL; Waist 
Circumference (males)=<102cm; Waist Circumference (females)=<88cm; Fasting Plasma Glucose=<7mmol/L; 
HDL=>1.35mmol/L; Triglycerides=<1.70mmol/L; LDL=<3.36mmol/L; CRP<3mg/L;  

 

 

 

Variable Odds Ratio (95% CI) 

Class 1a 

‘Stable 
Average’ 

Class 2 
‘Gradually 
Decreasing’ 

Class 3 
‘Puberty Onset – 
Minor Increase’ 

Class 4 
‘Puberty Onset – 
Major Increase’ 

Class 5 
‘Persistently 
High’ 

Female Sex 1.00 1.10 (0.90-1.21) 1.35 (1.12-1.56) 1.10 (0.91-1.26) 0.89 (0.70-1.13) 
Non-White British Ethnicity  1.00 1.76 (1.16-2.65) 1.09 (0.61-1.93) 1.12 (0.35-3.56) 0.62 (0.20-1.96) 
Lower Social Class  1.00 1.08 (0.99-1.17) 1.11 (1.01-1.21) 1.13 (1.05-1.22) 1.26 (1.11-1.44) 
FHx Cardiometabolic Disorders 1.00 1.19 (0.92-1.55) 1.48 (1.20-1.84) 2.43 (1.35-4.37) 2.69 (1.82-3.98) 
Gestational Age 1.00 0.98 (0.92-1.05) 1.00 (0.94-1.07) 1.12 (0.43-2.95) 1.12 (0.87-1.32) 
Birthweight 1.00 1.30 (1.18-1.43) 0.99 (0.93-1.07) 0.90 (0.83-1.15) 1.44 (1.25-1.65) 
Stressful Life Events  1.00 0.84 (0.68-1.04) 1.11 (0.96-1.30) 1.44 (1.01-2.07) 1.89 (1.44-3.21) 
Low Exercise (age 15) 1.00 1.06 (0.84-1.32 1.38 (1.13-1.69) 1.90 (1.08-3.35) 1.36 (0.87-2.12) 
Smoking (age 15) 1.00 1.22 (0.75-2.03) 1.62 (1.17-2.25) 1.14 (0.57-3.67) 1.20 (0.72-2.01) 
Low Exercise (age 18) 1.00 0.78 (0.56-0.95) 1.31 (1.04-1.65) 1.50 (1.01-2.90) 0.94 (0.65-1.36) 
Smoking (age 18) 1.00 1.15 (0.71-1.86) 1.63 (1.12-2.38) 2.37 (0.99-5.72) 1.44 (0.73-2.84) 

Measure, Mean (SD) Trajectory 
Class 1 
(Stable 
Average) 

Class 2 
(Gradually 
Decreasing) 

Class 3  
(Puberty Onset – 
Minor Increase) 

Class 4 
(Puberty Onset – 
Major Increase) 

Class 5 
(Persistently 
High) 

Body Mass Index 23.60 (3.46) 25.32 (3.85)* 27.25 (4.47)* 33.67 (8.68)* 31.55 (5.66)* 
Fasting Insulin (µIU/mL) 6.42 (2.12) 6.45 (3.39) 7.32 (4.44) 8.44 (5.43)* 8.21 (3.19)* 

Waist Circumference Males (cm) 83.50 (8.45) 86.40 (10.36) 100.67 (11.60) 121.46 (6.70)* 111.77 (12.29)* 
Waist Circumference Females (cm) 75.62 (9.12) 78.80 (10.15) 87.12 (11.71) 99.76 (19.17)* 94.97 (14.26)* 
Fasting Plasma Glucose (mmol/L) 5.28 (0.70) 5.24 (0.49) 5.44 (0.59) 5.36 (0.51) 5.49 (0.97) 
HDL Cholesterol, (mmol/L) 1.57 (0.42) 1.54 (0.42) 1.45 (0.32)* 1.32 (0.21)* 1.35 (0.46)* 
Triglycerides (mmol/L) 0.94 (0.50) 0.93 (0.47) 1.34 (0.82) 1.44 (0.61) 1.29 (0.77) 
LDL Cholesterol (mmol/mL) 2.41 (0.75) 2.37 (0.73) 2.48 (0.80) 2.77 (0.62) 2.79 (0.87) 
C-Reactive Protein (mg/L) 2.08 (6.93) 2.11 (3.99) 3.01 (4.49)* 4.76 (3.76)* 4.03 (4.20)* 
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2.4.5 Associations of Cardiometabolic Trajectories with Psychiatric Outcomes at Age 24 

2.4.5.1 Fasting Insulin 

The ‘persistently high’ fasting insulin trajectory was associated with psychosis ARMS (adjusted 

OR=5.01; 95% C.I., 1.76-13.19), psychotic disorder (adjusted OR=3.22; 95% C.I., 1.29-8.02), and 

weakly associated with negative symptoms (adjusted b=0.07; 95% C.I., 0.01-0.13) at age 24 years. 

Fasting insulin trajectories were not associated with depression (Figure 4; Table 9 & Table 10). 

 

Figure 4: Associations of Fasting Insulin Trajectories with Binary Psychiatric Outcomes at Age 
24 Years  

Forest plots denote adjusted odds ratios (points) and 95% CIs (whiskers) showing associations of fasting insulin 
trajectories with risk of binary psychosis and depression outcomes at age 24, after adjusting for sex, ethnicity, social class, 
childhood emotional and behavioural problems, cumulative smoking, physical activity, alcohol and substance use, sleep 
problems and calorie intake. 
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Table 9: Odds Ratios (95% CIs) for Associations of Fasting Insulin Trajectories with Binary 
Psychiatric Outcomes at Age 24 Years 

ap-values adjusted for multiple testing using Holm-Bonferroni method 

 

 

 

 

 

 

 

Trajectory/Outcome Sample     Odds Ratio (95% C.I.) 
 

P-
valuea 

Unadjusted Adjusted for sex, ethnicity, social class, 
SDQ (7y), cumulative smoking, 
physical activity, alcohol and substance 
use, sleep problems and calorie intake 

Definite PEs at Age 24 

Class 1 – ‘Stable Average’ 4,939 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Minor Increase’ 693 1.48 (0.98-2.24) 1.31 (0.56-3.35) >0.999 

Class 3 – ‘Persistently High’ 158 1.88 (1.05-3.60) 1.50 (0.98-2.41) 0.329 

Psychosis ‘At Risk Mental State’ at Age 24 

Class 1 – ‘Stable Average’ 4,939 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Minor Increase’ 693 1.59 (0.20-8.02) 1.36 (0.32-5.76) >0.999 

Class 3 – ‘Persistently High’ 158 6.33 (1.97-20.30) 5.01 (1.76-13.19) 0.006 

Psychotic Disorder at Age 24 

Class 1 – ‘Stable Average’ 4,939 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Minor Increase’ 693 1.85 (0.70-4.88) 1.23 (0.55-2.74) >0.999 

Class 3 – ‘Persistently High’ 158 4.74 (1.67-13.42) 3.22 (1.29-8.02) 0.048 

Depressive Episode at Age 24 

Class 1 – ‘Stable Average’ 4,939 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Minor Increase’ 693 1.26 (0.73-2.67) 1.36 (0.57-2.81) 0.883 

Class 3 – ‘Persistently High’ 158 1.31 (0.81-4.32) 1.38 (0.75-2.54) 0.686 
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Table 10: Beta Coefficients (95% CIs) for Associations of Fasting Insulin Trajectories with 
Continuous Psychiatric Outcomes At Age 24 Years 

ap-values adjusted for multiple testing using Holm-Bonferroni method 

 

 

2.4.5.2 BMI 

The ‘puberty-onset major increase’ trajectory was associated with higher risk of depressive episode 

(adjusted OR=4.46; 95% C.I., 2.38-9.87) and depressive symptoms (adjusted b=0.08; 95% C.I., 0.03-

0.14) at age 24 years. The ‘puberty-onset minor increase’ trajectory was weakly associated with 

depressive symptoms at 24y (adjusted b=0.06; 95% C.I., 0.01-0.11). BMI trajectories were not 

associated with psychosis outcomes (Figure 5; Table 11 & Table 12). 

  

 

 

 

 

Trajectory  Sample    Beta Coefficient (95% C.I.) 
 

p-
valuea 

Unadjusted Adjusted for sex, ethnicity, social class, 
SDQ (7y), cumulative smoking, physical 
activity, alcohol and substance use, sleep, 
calorie intake, negative/depressive 
symptoms 

 

Depressive Symptom Score at Age 24 

Class 1 – ‘Stable Average’ 4,939 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Minor Increase’ 693 0.03 (-0.02, 0.08) 0.02 (-0.04. 0.08) >0.999 

Class 3 – ‘Persistently High’ 158 0.08 (0.04, 0.13) 0.05 (-0.03,0.13) 0.669 

Negative Psychotic Symptom Score at Age 24 

Class 1 – ‘Stable Average’ 4,939 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Minor Increase’ 693 0.08 (-0.01,0.16) 0.05 (0.01,0.09) 0.192 

Class 3 – ‘Persistently High’ 158 0.18 (0.10,0.26) 0.07 (0.01, 0.13) 0.049 
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Figure 5: Associations of BMI Trajectories with Binary Psychiatric Outcomes At Age 24 Years  

Forest plots denote adjusted odds ratios (points) and 95% CIs (whiskers) showing associations of BMI trajectories with 
risk of binary psychosis and depression outcomes at age 24, after adjusting for sex, ethnicity, social class, childhood 
emotional and behavioural problems, cumulative smoking, physical activity, alcohol and substance use, sleep problems 
and calorie intake. 
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Table 11: Odds Ratios (95% CIs) for Associations of BMI Trajectories with Binary Psychiatric 
Outcomes at Age 24 Years 

ap-values adjusted for multiple testing using Holm-Bonferroni method 

Trajectory/ Outcome Sample    Odds Ratio (95% C.I.) 
 

P-
valuea 

Unadjusted Adjusted for sex, ethnicity, 
social class, SDQ (7y), 
cumulative smoking, physical 
activity, alcohol and substance 
use, sleep problems and calorie 
intake 

Definite PEs at Age 24 

Class 1 – ‘Stable Average’ 8,383 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 949 1.43 (0.82-1.96) 1.26 (0.79-1.99) >0.999 

Class 3 – ‘Puberty Onset – Minor Increase’ 668 1.66 (0.87-2.55) 1.22 (0.79-1.89) >0.999 

Class 4 – ‘Puberty Onset – Major Increase’ 174 3.56 (0.87-11.54) 1.97 (0.56-6.92) >0.999 

Class 5 – ‘Persistently High 289 3.21 (1.01-9.11) 2.44 (1.00-5.65) 0.367 

Psychosis ‘At Risk Mental State’ 

Class 1 – ‘Stable Average’ 8,383 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 949 0.49 (0.10-3.21) 0.71 (0.19-2.89) >0.999 

Class 3 – ‘Puberty Onset – Minor Increase’ 668 1.12 (0.23-5.43) 1.09 (0.26-4.58) >0.999 

Class 4 – ‘Puberty Onset – Major Increase’ 174 1.32 (0.10-13.11) 1.14 (0.15-12.22) >0.999 

Class 5 – ‘Persistently High 289 1.55 (0.44-3.21) 1.29 (0.18-10.29) >0.999 

Psychotic Disorder at Age 24 

Class 1 – ‘Stable Average’ 8,383 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 949 0.44 (0.21-2.03) 0.52 (0.11-2.46) >0.999 

Class 3 – ‘Puberty Onset – Minor Increase’ 668 1.97 (0.60-3.46) 1.57 (0.64-3.85) >0.999 

Class 4 – ‘Puberty Onset – Major Increase’ 174 2.14 (0.65-6.21) 1.98 (0.56-7.79) >0.999 

Class 5 – ‘Persistently High 289 3.11 (0.53-13.22) 1.87 (0.44-8.06) >0.999 

Depressive Episode at Age 24 

Class 1 – ‘Stable Average’ 8,383 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 949 1.33 (0.77-1.88) 1.18 (0.75-1.92) >0.999 

Class 3 – ‘Puberty Onset – Minor Increase’ 668 1.69 (0.90-3.21) 1.40 (0.81-2.55) >0.999 

Class 4 – ‘Puberty Onset – Major Increase’ 174 8.91 (4.21-17.12) 4.46 (2.38-9.87) 0.006 

Class 5 – ‘Persistently High 289 3.01 (0.91-7.59) 2.07 (0.64-6.62) >0.999 
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Table 12: Beta Coefficients (95% CIs) for Associations of Body Mass Index Trajectories with 
Continuous Psychiatric Outcomes at Age 24 Years 

ap-values adjusted for multiple testing using Holm-Bonferroni method 

 

 

2.4.6 Sex Stratified Associations of Fasting Insulin and BMI Trajectories with Risks for 

Psychosis and Depression 

For fasting insulin, the pattern of association with risks for psychiatric outcomes in sex stratified 

analysis was similar to the primary analysis (Figure 6; Table 13; Appendix B Table 2). For BMI, 

point estimates for depression for both ‘puberty-onset’ increase trajectories were larger in females. 

There was no significant association of BMI trajectories with psychosis outcomes (Figure 7; Table 

14; Appendix B Table 3). 

 

Trajectory  Sample Beta Coefficient (95% C.I.) p-valuea 

Unadjusted Adjusted for sex, ethnicity, social 
class, SDQ (7y), cumulative 
smoking, physical activity, 
alcohol and substance use, sleep, 
calorie intake 
negative/depressive symptoms 

Depressive Symptom Score at Age 24 

Class 1 – ‘Stable Average’ 8,383 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 949 0.02 (-0.06, 0.10) 0.01 (-0.05, 0.08) >0.999 

Class 3 – ‘Puberty Onset – Minor Increase’ 668 0.14 (0.08, 0.20) 0.06 (0.01, 0.11) 0.124 

Class 4 – ‘Puberty Onset – Major Increase’ 174 0.20 (0.10, 0.31) 0.08 (0.03, 0.14) 0.033 

Class 5 – ‘Persistently High 289 0.10 (-0.09, 0.21) 0.02 (-0.08, 0.13) >0.999 

Negative Psychotic Symptom Score at Age 24 

Class 1 – ‘Stable Average’ 8,383 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 949 0.07 (-0.03, 0.16) 0.04 (-0.05, 0.13) >0.999 

Class 3 – ‘Puberty Onset – Minor Increase’ 668 0.11 (0.05, 0.17) 0.03 (-0.05, 0.11) 0.796 

Class 4 – ‘Puberty Onset – Major Increase’ 174 0.18 (0.11, 0.24) 0.06 (-0.03, 0.16) 0.514 

Class 5 – ‘Persistently High 289 0.13 (0.02, 0.24) 0.09 (-0.04, 0.23) >0.999 
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Figure 6: Sex-Stratified Associations of Fasting Insulin Trajectories with Binary Psychiatric 

Outcomes at Age 24 Years  

Forest plots denote adjusted odds ratios (points) and 95% CIs (whiskers) showing associations of fasting insulin 
trajectories with risk of binary psychosis and depression outcomes at age 24 years in males and females separately, after 
adjusting for sex, ethnicity, social class, childhood emotional and behavioural problems, cumulative smoking, physical 
activity, alcohol and substance use, sleep problems and calorie intake. 
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Table 13: Odds Ratios for Sex-Stratified Associations of Fasting Insulin Trajectories with 
Binary Psychiatric Outcomes at Age 24 Years 

ap-values adjusted for multiple testing using Holm-Bonferroni method 

Trajectory Sample    Odds Ratio (95% C.I.) 
 

p-
valuea 

Unadjusted Adjusted for sex, ethnicity, 
social class, SDQ (7y), 
cumulative smoking, 
physical activity, alcohol and 
substance use, sleep, and 
calorie intake 

 
Definite PEs at Age 24 (Males) 
Class 1 – ‘Stable Average’ 2,319 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Minor Increase’ 278 1.51 (0.91-2.54) 1.01 (0.55-1.83) >0.999 
Class 3 – ‘Persistently High’ 66 1.91 (1.02-5.03) 1.82 (0.67-4.82) 0.472 
 
Definite PEs at Age 24 (Females) 
Class 1 – ‘Stable Average’ 2,620 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Minor Increase’ 415 1.32 (1.11-1.89) 1.19 (0.66-2.10) >0.999 
Class 3 – ‘Persistently High’ 92 1.65 (1.12-2.01) 1.22 (0.70-2.15) >0.999 
 
Psychosis At Risk Mental State at Age 24 (Males) 
Class 1 – ‘Stable Average’ 2,319 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Minor Increase’ 278 1.65 (0.42-5.30) 1.44 (0.15-13.92) >0.999 
Class 3 – ‘Persistently High’ 66 8.32 (3.13-16.49) 4.48 (1.84-10.91) 0.006 
 
Psychosis At Risk Mental State at Age 24 (Females) 
Class 1 – ‘Stable Average’ 2,620 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Minor Increase’ 415 1.39 (0.29-5.57) 1.06 (0.22-5.11) >0.999 
Class 3 – ‘Persistently High’ 92 4.84 (0.47-31.18) 2.99 (0.46-18.37) 0.842 
 
Psychotic Disorder at Age 24 (Males) 
Class 1 – ‘Stable Average’ 2,319 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Minor Increase’ 278 1.55 (0.61-4.31) 1.26 (0.49-3.04) >0.999 
Class 3 – ‘Persistently High’ 66 5.79 (1.24-27.09) 3.94 (1.37-11.34) 0.046 
 
Psychotic Disorder at Age 24 (Females) 
Class 1 – ‘Stable Average’ 2,620 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Minor Increase’ 415 1.45 (0.63-3.35) 1.42 (0.60-3.31) >0.999 
Class 3 – ‘Persistently High’ 92 3.29 (0.53-9.86) 2.50 (0.57-11.09) >0.999 
 
Depressive Episode at Age 24 (Males) 
Class 1 – ‘Stable Average’ 2,319 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Minor Increase’ 278 1.80 (1.04-3.11) 1.33 (0.82-2.24) >0.999 
Class 3 – ‘Persistently High’ 66 0.97 (0.23-4.13) 0.95 (0.22-4.12) >0.999 
 
Depressive Episode at Age 24 (Females) 
Class 1 – ‘Stable Average’ 2,620 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Minor Increase’ 415 1.23 (0.88-1.73) 1.17 (0.83-1.66) >0.999 
Class 3 – ‘Persistently High’ 92 1.61 (0.82-3.14) 1.50 (0.76-2.96) >0.999 
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Figure 7: Sex-Stratified Associations of BMI Trajectories with Binary Psychiatric Outcomes at 
Age 24 Years  

 

 

 

 

 

 

 

 

 

 

 
 
Forest plots denote adjusted odds ratios (points) and 95% CIs (whiskers) showing associations of BMI trajectories with 
risk of binary psychosis and depression outcomes at age 24 years in males and females separately, after adjusting for sex, 
ethnicity, social class, childhood emotional and behavioural problems, cumulative smoking, physical activity, alcohol and 
substance use, sleep problems and calorie intake. 
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Table 14: Odds Ratios for Sex-Stratified Associations of Body Mass Index Trajectories with 
Binary Psychiatric Outcomes at Age 24 Years 

Trajectory Sample    Odds Ratio (95% C.I.) 
 

p-valuea 

 
Unadjusted Adjusted for sex, ethnicity, social class, 

SDQ (7y), cumulative smoking, 
physical activity, alcohol and substance 
use, sleep, and calorie intake 

 
Definite PEs at Age 24 (Males) 
Class 1 – ‘Stable Average’ 4,164 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Gradually Decreasing’ 443 1.22 (0.46-1.87) 0.76 (0.37-1.55) >0.999 
Class 3 – ‘Puberty Onset – Minor Increase’ 311 1.22 (0.63-2.36) 0.62 (0.19-1.98) >0.999 
Class 4 – ‘Puberty Onset – Major Increase’ 105 5.87 (0.53-9.21) 3.22 (0.74-12.55) >0.999 
Class 5 – ‘Persistently High 107 1.47 (0.43-4.98) 1.28 (0.65-2.44) >0.999 
 
Definite PEs at Age 24 (Females) 
Class 1 – ‘Stable Average’ 4,219 1.00  [reference] 1.00 [reference] - 
Class 2 – ‘Gradually Decreasing’ 506 1.14 (0.74-1.75) 1.48 (0.92-2.38) 0.501 
Class 3 – ‘Puberty Onset – Minor Increase’ 357 1.90 (1.11-3.26) 1.65 (0.99-2.62) 0.328 
Class 4 – ‘Puberty Onset – Major Increase’ 184 1.54 (0.65-3.66) 0.81 (0.24-2.77) 1.000 
Class 5 – ‘Persistently High 67 2.32 (0.88-6.13) 1.79 (0.90-3.49) 0.182 
 
Psychosis At Risk Mental State at Age 24 (Males) 
Class 1 – ‘Stable Average’ 4,164 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Gradually Decreasing’ 443 0.60 (0.44-2.12) 0.73 (0.31-1.84) >0.999 
Class 3 – ‘Puberty Onset – Minor Increase’ 311 1.51 (0.55-4.64) 1.22 (0.61-2.39) >0.999 
Class 4 – ‘Puberty Onset – Major Increase’ 105 3.13 (1.01-5.12) 2.21 (0.81-5.65) >0.999 
Class 5 – ‘Persistently High 107 1.69 (0.60-2.01) 1.31 (0.39-4.87) >0.999 
 
Psychosis At Risk Mental State at Age 24 (Females) 
Class 1 – ‘Stable Average’ 4,219 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Gradually Decreasing’ 506 0.61 (0.14-2.14) 0.68 (0.19-2.89) >0.999 
Class 3 – ‘Puberty Onset – Minor Increase’ 357 0.76 (0.76-3.21) 0.86 (0.32-2.62) >0.999 
Class 4 – ‘Puberty Onset – Major Increase’ 184 1.81 (0.25-6.43) 1.41 (0.28-5.43) >0.999 
Class 5 – ‘Persistently High 67 1.21 (0.77-3.21) 1.09 (0.31-4.88) >0.999 
 
Psychotic Disorder at Age 24 (Male) 
Class 1 – ‘Stable Average’ 4,164 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Gradually Decreasing’ 443 0.76 (0.54-2.01) 1.08 (0.23-5.01) >0.999 
Class 3 – ‘Puberty Onset – Minor Increase’ 311 1.02 (0.65-1.43) 0.92 (0.21-4.76) >0.999 
Class 4 – ‘Puberty Onset – Major Increase’ 105 2.12 (0.91-4.12) 1.62 (0.71-3.98) >0.999 
Class 5 – ‘Persistently High 107 3.52 (0.44-15.09) 2.25 (0.62-10.12) >0.999 
 
Psychotic Disorder at Age 24 (Female) 
Class 1 – ‘Stable Average’ 4,219 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Gradually Decreasing’ 506 0.40 (0.09-1.21) 0.60 (0.10-3.87) >0.999 
Class 3 – ‘Puberty Onset – Minor Increase’ 357 3.16 (1.29-5.12) 1.88 (0.70-5.06) >0.999 
Class 4 – ‘Puberty Onset – Major Increase’ 184 1.31 (0.65-3.21) 2.60 (0.66-8.21) >0.999 
Class 5 – ‘Persistently High 67 1.21 (0.40-6.21) 2.74 (0.62-12.22) >0.999 
 
Depressive Episode at Age 24 (Males) 
Class 1 – ‘Stable Average’ 4,164 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Gradually Decreasing’ 443 1.31 (0.71-2.44) 1.31 (0.67-2.55) >0.999 
Class 3 – ‘Puberty Onset – Minor Increase’ 311 1.62 (0.83-3.17) 1.60 (0.76-3.36) >0.999 
Class 4 – ‘Puberty Onset – Major Increase’ 105 3.21 (0.67-8.21) 2.23 (0.41-12.72) >0.999 
Class 5 – ‘Persistently High 107 1.31 (0.30-5.67) 1.77 (0.65-4.39) >0.999 
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ap-values adjusted for multiple testing using Holm-Bonferroni method 

 
Depressive Episode at Age 24 (Females) 
Class 1 – ‘Stable Average’ 4,219 1.00 [reference] 1.00 [reference] - 
Class 2 – ‘Gradually Decreasing’ 506 1.20 (0.82-1.85) 1.35 (0.90-2.01) >0.999 
Class 3 – ‘Puberty Onset – Minor Increase’ 357 1.91 (1.15-2.91) 1.52 (1.08-2.29) 0.047 
Class 4 – ‘Puberty Onset – Major Increase’ 184 5.21 (2.09-8.21) 6.28 (2.14-18.44) 0.006 
Class 5 – ‘Persistently High 67 1.73 (0.86-3.51) 1.94 (0.83-4.67) >0.999 
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2.5 Discussion 

I delineated fasting insulin and BMI trajectories from early life using prospective repeated 

measurements in a large population-representative birth cohort and report distinct associations with 

adult schizophrenia-spectrum and depression outcomes. After adjusting for several relevant 

confounders, I found that persistently high fasting insulin from mid-childhood was associated with 

increased risk of schizophrenia-spectrum outcomes at 24 years, while BMI increases around the age 

of puberty onset were associated with depression at 24 years. Associations of fasting insulin and BMI 

trajectories with cardiometabolic risk factors such as social class, ethnicity, smoking and physical 

activity alongside adult metabolic syndrome provides face validity to the identified trajectories. 

Although the last data point for fasting insulin/BMI overlapped with outcome assessment, trajectories 

were differentiated by mid-childhood, suggesting a temporal relationship between exposure and 

outcome. Evidence for the association of ‘puberty-onset’ BMI increase and adult depression remained 

after adjusting for childhood emotional and behavioural problems, suggesting that reverse causality 

may not fully explain this finding. Whilst the same adjustment may be less capable of ruling out 

reverse causality for associations involving schizophrenia-spectrum outcomes; it is improbable that 

many participants had experienced psychosis before age 9 years since the prevalence of pre-pubertal 

psychosis is rare (McClellan and Werry, 1997). Therefore, reverse causality for associations with 

schizophrenia-spectrum outcomes is rare. 

I found consistent evidence for an association between fasting insulin trajectories and schizophrenia-

spectrum outcomes. Effect sizes were largest in the ‘persistently high’ trajectory, consistent with a 

dose-response relationship, and point estimates were larger in more clinically relevant outcomes. The 

findings complement meta-analyses reporting altered glucose-insulin homeostasis in FEP (Perry et 

al., 2016, Pillinger et al., 2017a). Moreover, I show that disruptions to glucose-insulin homeostasis 

detectable at FEP may begin much earlier in life. The point estimates partly attenuated after 

adjustment for confounders, so malleable lifestyle factors such as smoking, physical activity and diet 

must remain crucial targets for reducing the risk of incident cardiometabolic disorders in young 

people with psychosis. I also found that participants classified into the ‘persistently high’ fasting 

insulin trajectory, who had the highest risk of schizophrenia-spectrum outcomes, had mean BMI and 

FPG values within the reference range at age 24 years. Therefore, these individuals may be ‘hiding 

in plain sight’ in EIS since commonly measured physical indices may not identify them. 

Consequently, careful assessment and clinical considerations are needed to minimise the risk of 

cardiometabolic disorders in these individuals. 
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The findings suggest that altered glucose-insulin homeostasis could be a shared mechanism for 

schizophrenia and T2D, which could be genetic and/or environmental in origin. People with comorbid 

schizophrenia and T2D have a higher genetic predisposition to both disorders than controls 

(Hackinger et al., 2018), and genetic predisposition for schizophrenia is associated with insulin 

resistance in schizophrenia patients (Tomasik et al., 2019). Additionally, I found that the highest risks 

for schizophrenia-spectrum outcomes were found in the fasting insulin trajectory associated with 

lower birth weight and more perinatal stressful life events. I found similar patterns of association in 

BMI trajectories which were associated with depression. These findings are consistent with the 

developmental programming hypothesis (Barker et al., 1993), positing that disruption to early-life 

development can have wide-ranging and far-reaching impacts on adult health.  

The findings regarding BMI trajectories with depression at age 24 years are in line with meta-analyses 

(Gariepy et al., 2010, Luppino et al., 2010) suggesting an association between BMI and risk of 

depression. Similar trajectories of BMI have previously been linked with adult T2D (Zhang et al., 

2019), obesity (Rolland-Cachera and Peneau, 2013) and CVD (Barker et al., 2005). The character 

and composition of BMI trajectories I identified are consistent with previous studies, although the 

length of follow-up was longer than most previous studies (Mattsson et al., 2019).  

The findings provide further insights into the link between BMI and depression (Luppino et al., 2010), 

showing that puberty-onset increases in BMI specifically are associated with risk of adult depression. 

This finding, together with the lack of evidence for an association between persistently high BMI and 

depression, indicates that BMI might be a risk indicator for depression rather than a risk factor. This 

is because individuals in the ‘persistently-high’ BMI trajectory would likely have been exposed to 

the “largest dose” of BMI. Therefore, if BMI were the risk factor, one would have expected the largest 

effect size for depression in that trajectory. Consequently, environmental and/or genetic factors 

influencing BMI during puberty are likely to be important risk factors for depression. For instance, 

social stressors such as bullying may predispose to altered eating behaviours and increased risk of 

depression in adolescents (Lee and Vaillancourt, 2018). Additionally, deviating childhood BMI 

trajectories have previously been associated with a greater risk of adolescent/adult eating disorders 

(Yilmaz et al., 2019), which are highly comorbid with depression (Welch et al., 2016).  

Also, effects of the female sex hormone oestrogen may be relevant since the associations of puberty-

onset BMI increases and depression appeared stronger in females. Changes in oestrogen levels are 

associated with depressive symptoms throughout the life course, including pregnancy (Schiller et al., 

2015), menopause (Dalal and Agarwal, 2015) and puberty (Soares and Zitek, 2008). Oestrogen is 

associated with obesity (Li et al., 2017a) and may explain the genetic correlation of age at menarche 

with adult obesity (Bell et al., 2018) and depression (Lewis et al., 2018). Further research is needed 
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to identify factors influencing pubertal BMI increases, as they may represent critical preventative 

targets for depression. 

I did not find consistent evidence for associations of fasting insulin trajectories with depression or of 

BMI trajectories with schizophrenia-spectrum outcomes. Previous research has reported mixed 

findings regarding the association between insulin resistance and depression in young adults 

(Timonen et al., 2006, Perry et al., 2020b). However, some estimates for the associations of BMI 

trajectories with schizophrenia-spectrum outcomes in the analyses had wide confidence intervals, 

possibly due to sample size. These particular findings require replication in larger samples of people 

with psychosis. 

Strengths of the study include a longitudinal design with repeated measurements of fasting insulin 

and BMI between ages 1-24 years in a relatively large sample, enabling a detailed examination of 

dynamic cardiometabolic change from childhood to early adulthood. I included several relevant 

schizophrenia-spectrum and depression outcomes, which allowed me to examine for specificity and 

a biological gradient of evidence.  

Limitations of the study include missing data. Whilst I used a robust method to handle missing data, 

FIML may be biased in instances where data are ‘missing not at random’ (Cham et al., 2017). 

However, the risk of bias in FIML is no greater than the bias associated with traditional complete-

case methods (Little et al., 2014), and FIML permitted a larger sample size and therefore increased 

statistical power. Nevertheless, missing psychiatric outcome data may have affected the results. 

Furthermore, residual confounding could still be an issue. For example, I could not account for 

psychological stress since data on cortisol levels were available only at age 9 years, in a small sub-

section of the cohort. In addition, the confidence intervals were relatively wide for the sex-stratified 

analysis, likely due to reduced statistical power. Therefore, replication of the work in larger samples 

is required. Finally, the ALSPAC dataset does not include an ICD diagnosis of schizophrenia as an 

outcome. However, the psychotic disorder outcome would likely meet the threshold for clinical 

intervention, and all the psychosis outcomes I included lie on the schizophrenia continuum.  

In summary, I report that the cardiometabolic comorbidity of psychosis and depression may have 

distinct early-life origins. Disrupted glucose-insulin homeostasis from mid-childhood is associated 

with adult psychosis, and BMI increases starting around the time of puberty onset are associated with 

adult depression. Whilst residual confounding may still be an issue; the results suggest that these 

cardiometabolic markers could be among shared risk factors/indicators for adult cardiometabolic and 

psychiatric disorders and may represent novel targets for treatment/prevention of cardiometabolic 

disorders in people with psychosis and depression. 
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Section B: Summary of Main Findings and Conclusions 

Three aspects of the findings from Section B enrich our understanding of the nature of association 

between cardiometabolic disorders and schizophrenia. First, the results suggest that disruptions to 

glucose-insulin homeostasis may predate the onset of psychosis. Reverse causality is unlikely to 

explain this finding since psychosis is rare in prepubertal children (McClellan and Werry, 1997). 

Therefore, these findings counter the traditionally attributed notion that the high prevalence of 

cardiometabolic disorders in schizophrenia can be explained fully by lifestyle and clinical factors 

such as diet, exercise, and antipsychotic medications (i.e., cardiometabolic disorders are a 

consequence of the illness).   

Second, the associations persisted after adjusting for a detailed range of potential sociodemographic 

and lifestyle confounders, suggesting that disrupted glucose-insulin homeostasis could be a risk factor 

for psychosis. This argument is also strengthened given that the study was conducted in a relatively 

young sample who would have been less affected by chronic lifestyle factors than studies of older 

adults. In addition, given the relatively young age of the sample, it is unlikely that the results could 

be explained by antipsychotic medications, which are not recommended (National Institute for Health 

and Care Excellence., 2013) and rarely prescribed (Olfson, 2009) in childhood. 

Third, while depression shows strong genetic (Anttila et al., 2018) and phenotypic (Buckley et al., 

2009) overlap with schizophrenia, and has similar associations with cardiometabolic disorders (Firth 

et al., 2019), my results suggest the cardiometabolic origins of the two psychiatric disorders are 

distinct. The results indicate that primary glucose-insulin homeostasis may be specific to psychotic 

disorders such as schizophrenia, further strengthening the idea that disruption to glucose-insulin 

homeostasis may be a risk factor for psychosis.
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Section C Summary 

Having established evidence for the direction and specificity of association between glucose-insulin 

homeostasis and psychosis in Section B, in Section C I have examined for potential shared 

mechanisms for cardiometabolic disorders and schizophrenia, focussing on a shared genetic basis and 

inflammation. 

In Chapter 3, I used prospective ALSPAC data from up to 7,977 participants to examine whether 

genetic predisposition to T2D is associated with risk of schizophrenia-spectrum outcomes in early 

adulthood and vice versa. I also examined whether genetic predisposition to T2D or schizophrenia 

influences childhood inflammation, and whether this mediates the associations with risk of psychosis 

or T2D, respectively. Findings from this study have been published in Schizophrenia Research (Perry 

et al., 2020a). See Appendix C Manuscript 1 for the published manuscript.  

In Chapter 4, I have used summary data from large-scale GWAS to rigorously examine, using 

multiple complementary genomic methods, for shared genetic overlap between schizophrenia, 

cardiometabolic and inflammatory traits. I also examined for a biologically plausible genetic 

common-causal basis for the physical and psychiatric traits. 

In Chapter 5, I have conducted two-sample, uni- and multivariable MR analysis of summary data 

from large-scale GWAS to explore whether there is likely to be an unconfounded association between 

disruption to glucose-insulin homeostasis and schizophrenia; to further explore the direction of 

association between cardiometabolic traits and schizophrenia; and, to examine whether inflammation 

may be a common biological mechanism for comorbid cardiometabolic disorders and schizophrenia. 

Findings from this study have been published in PLOS Medicine (Perry et al., 2021a).  See Appendix 

C Manuscript 2 for the published manuscript. 

Together, these studies build a consistent body of evidence that indicates that a summation of genetic 

variation may influence biological pathways leading to changes in inflammatory pathways/immune 

function, which in turn simultaneously increases the risk of both disrupted glucose-insulin 

homeostasis and schizophrenia. The findings from these studies can help to explain why disruption 

to cardiometabolic indices can be detected from the onset of psychosis in young adults in the absence 

of chronic lifestyle or treatment factors, and in light of the results of Section B, may be detectable 

from childhood/adolescence, years before the onset of psychosis.
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Chapter 3 

: 

 

Associations of Genetic Liability for Type 2 Diabetes and 

Schizophrenia with Schizophrenia-Spectrum Outcomes, Insulin 

Resistance, and Inflammation in the ALSPAC Birth Cohort 
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3.1 Introduction 

Shared genetic liability may contribute to the comorbidity between cardiometabolic disorders and 

schizophrenia (Lin and Shuldiner, 2010). For example, the risks of insulin resistance (Chouinard et 

al., 2019) and impaired glucose tolerance (Ferentinos and Dikeos, 2012), two key precursors of T2D, 

are higher in unaffected relatives of patients with psychosis compared with controls. People with 

comorbid schizophrenia and T2D have a higher genetic predisposition for both disorders than controls 

(Hackinger et al., 2018), and an association between genetic predisposition for schizophrenia and 

insulin resistance has been reported in a clinical sample (Tomasik et al., 2019). However, each of 

these studies is limited by small sample sizes and thus limited statistical power. 

Another limiting feature of existing studies is that they have included adult cases of established 

schizophrenia or T2D or have relied on blood measurements taken in adulthood. Therefore, 

confounding by cumulative effects of lifestyle and other factors is possible (Reinikainen et al., 2015). 

Population-based prospective studies have identified early markers of disease risk associated with 

T2D and schizophrenia. For instance, PEs in adolescence or young adulthood are associated with risk 

of schizophrenia in adulthood (Zammit et al., 2013, Poulton et al., 2000), and insulin resistance is a 

precursor of T2D (Martin et al., 1992). To the best of my knowledge, no studies have examined 

whether genetic predisposition for T2D or schizophrenia are associated with, respectively, PEs or 

insulin resistance in young adulthood. Demonstrating such associations with early markers of illness 

in young adults with lessened effects of cumulative lifestyle confounding would be consistent with 

the idea that shared genetic variation is a common mechanism for comorbid T2D and schizophrenia. 

Although existing studies provide some evidence for a shared genetic basis for T2D and 

schizophrenia, underlying pathophysiologic mechanisms remain unclear. Low-grade inflammation 

may be one such mechanism, which is associated with insulin resistance (Bowker et al., 2020), T2D 

(Pradhan et al., 2001) and psychosis (Upthegrove et al., 2014). Population-based longitudinal studies 

have reported that higher levels of circulating inflammatory markers at baseline are associated with 

risks of psychosis and disrupted glucose-insulin homeostasis subsequently at follow-up (Khandaker 

et al., 2014, Perry et al., 2018). MR studies have reported associations of genetic variants regulating 

inflammatory biomarkers such as IL-6 and CRP with schizophrenia (Hartwig et al., 2017) and T2D 

(Bowker et al., 2020), suggesting that inflammation may be associated with schizophrenia and 

disrupted glucose-insulin homeostasis beyond any effects of confounding.  
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3.2 Aims and Objectives 

I examined whether shared genetic variation and inflammation could be common mechanisms for 

T2D and psychosis using prospective, population-based data from the ALSPAC birth cohort. I tested 

whether: (i) genetic predisposition for T2D is associated with risk of schizophrenia-spectrum 

outcomes at age 18 years; (ii) genetic predisposition for schizophrenia is associated with insulin 

resistance at age 18 years; (iii) these associations may be mediated by childhood CRP or IL-6 levels 

measured at age 9 years.  

 

3.3 Methods 

3.3.1 Description of Cohort and Sample Selection 

See Section 2.3.1 for a full description of the ALSPAC cohort. This study received ethics approval 

from the ALSPAC Ethics and Law Committee and local research ethics committees. All participants 

provided written or implied informed consent. In total, 7,977 participants had genotyping data, 3,768 

participants had data on both genotyping and psychosis outcomes, and 2,344 participants had data on 

genotyping and insulin resistance as outcome. See Appendix C Figure 1 for a flow-chart of 

participants in the study. The analysis was conducted on participants without missing data for the 

covariates or outcomes of interest. 

 

3.3.2 Assessment of Schizophrenia-Spectrum Outcomes at Age 18 Years 

3.3.2.1 Psychotic Experiences 

PEs were identified through the face-to-face, semi-structured PLIKSi conducted by trained 

psychology graduates. The PLIKSi comprised of an introductory set of questions on unusual 

experiences, and then 12 ‘ core’ questions eliciting key symptoms covering the three main domains 

of positive psychotic symptoms: hallucinations (visual and auditory); delusions (delusions of being 

spied on, persecution, thoughts being read, reference, control, grandiose ability and other unspecified 

delusions); and symptoms of thought interference (thought broadcasting, insertion and withdrawal). 

For these 12 core items, 7 stem questions were derived from the Diagnostic Interview Schedule for 

Children–IV (DISC–IV) and 5 stems from section 17-19 of the Schedules for Clinical Assessment in 

Neuropsychiatry version 2.0 (SCAN 2.0). After cross-questioning, interviewers rated PEs as not 

present, suspected, or definitely present. Interviewers rated down (i.e., suspected rather than definite, 

or none rather than suspected) if unsure. For suspected or definite PEs, interviewers also recorded the 
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frequency; effects on social/educational/ occupational function; help seeking; and attributions 

including fever, hypnopompic/ hypnogogic state, or illicit drugs. For interrater reliability, the 

interviewers recorded audio interviews at three time points, approximately 6 months apart, across the 

clinic duration (75 interviews in total). The average kappa value of PEs was 0.83, with no evidence 

of differences across time. Test-retest reliability was assessed using 162 individuals reinterviewed 

after approximately 47 days (kappa=0.76, SE=0.078), 46 of whom were reinterviewed by the same 

interviewer (kappa=0.86, SE=0.136). The primary outcome was presence of definite PEs, referring 

to at least one definite PE since age 12 years; the comparator group was suspected/no PEs. The 

outcome is therefore reflective of a six-year period prevalence of definite PEs. From the total number 

of participants with definite PEs at age 18 years (230, 4.9%), 80 participants (45.3%) had suffered 

definite PEs at least once in the month preceding assessment. From the total sample of participants 

reporting definite PEs, 146 participants (63.5%) reported auditory hallucinations, 63 participants 

(28.2%) reported any delusion, and 22 participants (9.9%) reported thought disturbance. See the main 

reporting study for further information (Zammit et al., 2013). 

 

3.3.2.2 Psychotic Disorder 

Psychotic disorder was defined (Zammit et al., 2013) as the presence of PEs when symptoms were 

not attributable to fever/sleep/drugs, had occurred at least once per month over the previous six 

months, and caused significant distress resulting in either help-seeking from a professional source 

(general practitioner, counsellor, mental health team), or significantly disrupted social/occupational 

function. From the total ALSPAC sample who underwent the PLIKSi, 46 participants (1.0%) met 

criteria for psychotic disorder. Psychotic disorder was included as a secondary outcome due to its 

lower prevalence in the study sample. 

 

3.3.3 Assessment of Insulin Resistance at Age 18 Years 

Insulin resistance was calculated as a binary variable from fasting plasma glucose and fasting insulin 

levels at age 18 years, using the validated HOMA-IR equation (Levy et al., 1998). There is no 

consensus-agreed cut-off for insulin resistance based on HOMA-IR in the literature since levels vary 

between populations (Wallace et al., 2004). Therefore, I used the 75th centile of the study population 

to define insulin resistance. The 75th centile cut-off has been used in previous research (Hedblad et 

al., 2000, Marques-Vidal et al., 2002, Geloneze et al., 2006, Cediel et al., 2016). In the ALSPAC 

sample, The 75th centile for HOMA-IR was 2.15. 
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3.3.4 Assessment of Polygenic Risk Scores for T2D and Schizophrenia 

From the ALSPAC cohort, 8,812 participants were genotyped using the Illumina HumanHap550 quad 

genome-wide SNP genotyping platform by 23andMe subcontracted to the Wellcome Trust Sanger 

Institute, Cambridge, UK and the Laboratory Corporation of America, Burlington, NC, USA. 

Individuals were excluded from further analysis by ALSPAC based on gender mismatches, minimal 

or excessive heterozygosity, disproportionate levels of individual missingness (>3%), evidence of 

cryptic relatedness (>10% of alleles identical by descent) and being of non-European ancestry 

(assessed by multidimensional scaling analysis including HapMap 2 individuals). Imputation of the 

target data was performed using Impute V2.2.2 against the 1000 genomes reference panel (Phase 1, 

Version 3; all polymorphic SNPs excluding singletons), using 2186 reference haplotypes (including 

non-Europeans), by ALSPAC. Following quality control assessment, imputation, and restricting to 1 

young person per family, genetic data was available for 7,977 ALSPAC participants. 

Polygenic risk scores (PRS) for schizophrenia and T2D were constructed for all 7,977 participants 

with genotype data, using training sets based on the second Psychiatric Genomics Consortium (PGC) 

Schizophrenia GWAS (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014) and a large T2D GWAS (Mahajan et al., 2014), respectively. Both GWAS analyses adjusted 

for principal components to reduce the impact of population stratification (Price et al., 2006). PRS 

were calculated using the PLINK (v1.9) (Chang et al., 2015, Purcell et al., 2007) ‘score’ command 

following the methodology described by the International Schizophrenia Consortium (Purcell et al., 

2009). Prior to construction of scores, SNPs were removed from the analysis if they had a minor allele 

frequency (MAF) less than 0.01, an imputation quality less than 0.8 or if there was allelic mismatch 

between samples. Due to the presence of strand differences between ALSPAC and the T2D GWAS, 

and lack of allele frequency information in the T2D summary statistics, palindromic SNPs were also 

removed prior to construction of the T2D PRS. Because of the high linkage disequilibrium (LD) 

within the extended major histocompatibility complex (MHC; chromosome 6: 25-34Mb) only a 

single SNP was included to represent this region. SNPs were pruned for LD using the PLINK ‘clump’ 

command to remove SNPs in LD (r2 > 0.25) with a more significant SNP in the training set. Windows 

of 500kb were used to assess inter-SNP LD for pruning.   

For the primary analysis, PRS were constructed using a list of SNPs with the optimal p-value 

thresholds to capture phenotypic variance defined by both GWAS individually (p≤10-5 for T2D 

(Mahajan et al., 2014) and p≤0.05 for schizophrenia (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014)). Scores were weighted by the logarithm of the odds ratio 

(OR) for schizophrenia or T2D reported by the GWAS training sets, for the schizophrenia and T2D 

PRS respectively. Ten principal components (PCs) were generated using unrelated individuals (IBS 
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< 0.05) and independent SNPs (with long range LD regions removed) using the `-- pca` command in 

PLINK v1.9. All PRS analyses were adjusted for the 10 PCs to reduce the risk of population 

stratification. Two PRS measures were calculated for T2D; the first including all SNPs associated 

with T2D, and the second after excluding a SNP located in the FTO gene region, which is understood 

to be associated with T2D only through its influence on BMI variation (Frayling et al., 2007); the 

latter was used in sensitivity analysis. Additionally, since the optimal p-value thresholds of both PRS 

scores differed, sensitivity analyses were conducted to examine PRS-outcome associations using a 

range of p-value thresholds from p=0.50 to genome-wide significance (p<5x10-8).  

 

3.3.5 Measurement of IL-6 and CRP at Age 9 Years 

Data on IL-6 and CRP were available from 5,076 and 5,086 participants respectively. Blood samples 

were collected at non-fasting state, frozen at −80°C, and assayed in 2008 after a median of 7.5 years 

in storage. There was no evidence of freeze-thaw cycles during storage period. IL-6 was measured 

by ELISA (R&D systems, Abingdon, UK), and CRP was measured by automated particle-enhanced 

immunoturbidimetric assay (Roche UK, Welwyn Garden City, UK). All assay coefficients of 

variation were <5%. The minimum detection limit for IL-6 was 0.1pg/mL. This represents the lowest 

measurable analytic level that can be distinguished from zero. Those below this limit were assigned 

a value of zero (0.4% of the sample) and were also included in the analysis. The minimum detection 

limit for CRP was 0.03mg/L. Twenty-nine participants (0.6% of the sample) were below this limit 

and were assigned values of 0.01 (n=16) and 0.02 (n=13); they were also included in the analysis. 32 

subjects had CRP levels >10mg/L and were excluded from analysis due to the risk of acute 

inflammatory state such as infection, which may have confounded results. 

 

3.3.6 Assessment of Potential Confounders  

I included sex (categorical), ethnicity (binary caucasian / non-caucasian due to the predominantly 

caucasian sample), social class (categorical) and BMI at age 18 years (continuous). 

 

3.3.7 Statistical Analysis 

I examined the distribution of PRS-T2D and PRS-schizophrenia using the Shapiro-Wilk test for 

normality, and from visual inspection of Q-Q plots. The distributions were p>0.05 and appeared 

normally distributed. PRS variables were standardized (Z-transformed).  
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3.3.7.1 Association between PRS and Outcomes at Age 18 Years 

I conducted logistic regression analyses to examine the association between PRS-T2D and risks for 

schizophrenia-spectrum outcomes, and PRS-schizophrenia and insulin resistance at age 18 years. 

ORs indicate the increase in risk of outcome per SD increase in PRS. P-values for adjusted regression 

models in the primary analysis were corrected for multiple testing per the three outcomes included 

(definite PEs, psychotic disorder and insulin resistance) using the Holm-Bonferroni method (Holland, 

1987). To test for linearity of associations, I included a quadratic term (PRS2) in the logistic regression 

models.  

 

3.3.7.2 Association between PRS scores and Childhood Inflammatory Markers at Age 9 Years 

I used linear regression analyses to test associations of PRS for T2D or schizophrenia, separately, 

with IL-6 and CRP levels at age 9 years (Z-transformed values), before and after adjustments for 

potential confounders listed above. 

 

3.3.7.3 Mediation by Childhood Inflammatory Markers at Age 9 Years 

I performed mediation analyses to examine whether any evident associations may be mediated by 

any childhood inflammatory markers that also showed evidence for associations with PRS. I 

calculated direct and indirect effects between exposure (PRS-T2D or PRS-schizophrenia) and 

outcome (e.g., PEs or insulin resistance) taking into account the mediator variable (e.g., CRP). 

Evidence of an indirect effect is consistent with mediation. The indirect effect was bootstrapped using 

5000 iterations to determine the 95% CIs.  

 

3.3.8 Missing Data 

I assessed the potential impact of missing data by comparing mean PRS score between the analytic 

sample and participants with missing data for psychosis and insulin resistance outcomes, using 

separate variance t-tests. I also performed logistic regression analysis to determine sociodemographic 

and other predictors (sex, ethnicity, BMI, and social class) of missing data. 
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3.4 Results 

3.4.1 Baseline Characteristics of The Analytic Sample 

Of the 3,768 participants with data on PRS-T2D and schizophrenia-spectrum outcomes, 283 met the 

criteria for suspected/definite PEs (7.5%), 183 for definite PEs (5.1%), 29 (0.7%) for psychotic 

disorder at age 18 (Table 15). Of the 2,344 participants with data on PRS-schizophrenia and insulin 

resistance, 173 met the criteria for insulin resistance at age 18 (7.3%). 

Table 15: Baseline Characteristics of the Analytic Sample 

Characteristic,  
n (%) unless otherwise stated 

All Sample Definite PEs  Psychotic Disorder No/Suspected 
PEs 

Male Sex 1846 (49) 71 (38) 7 (15) 1775 (49) 
White British Ethnicity 3692 (98) 179 (98) 39 (95) 3513 (98) 
Social Class 
I & II 
III - non manual & manual 
IV & V 

 
1,582 (42) 
1,616 (43) 
565 (15) 

 
62 (35) 
75 (43) 
 
38 (22) 

 
5 (16) 
15 (48) 
11 (36) 

 
1,456 (40) 
1,630 (44) 
 
583 (16) 

BMI (kg/m2) at 18 years, mean (SD) 22.71 (3.76) 23.37 (4.49) 22.73 (4.26) 22.60 (3.71) 
HOMA at 18 years, mean (SD) 0.92 (0.73) 1.03 (0.75) 1.28 (1.00) 0.92 (0.73) 
Insulin Resistance 251 (8)  25 (17)  7 (20)  209 (7) 
Current Smoking 220 (7) 22 (15) 5 (18) 188 (7) 
CRP (mg/L) at 9 years, mean (SD) 0.68 (2.52) 0.72 (2.61) 0.75 (1.33) 0.67 (2.49) 

BMI=body mass index; HOMA=homeostatic model assessment for insulin resistance; CRP=C-reactive protein; 
PE=psychotic experiences 

 

3.4.2 The Association of Genetic Predisposition for T2D with Schizophrenia-Spectrum 

Outcomes at Age 18 Years  

The prevalence of schizophrenia-spectrum outcomes at age 18 years was higher for participants in 

the top third of PRS-T2D distribution compared with those in the bottom third (Figure 8). PRS-T2D 

was associated with definite PEs (adjusted OR=1.21; 95% CI, 1.01-1.45 per SD increase in PRS-

T2D) and psychotic disorder (adjusted OR=1.51; 95% CI, 1.04-2.05 per SD increase in PRS-T2D) at 

age 18 years after controlling for sex, ethnicity, social class, and BMI (Table 16). Quadratic terms for 

PRS-T2D in these regression models were non-significant suggesting no evidence for departure from 

linearity (all p>0.05). The results for sensitivity analyses using PRS-T2D score excluding a SNP in 

the FTO gene region were similar (Table 17). 
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3.4.3 Association between Genetic Predisposition for Schizophrenia and Insulin Resistance at 

Age 18 

There was weaker evidence for an association between PRS-schizophrenia and insulin resistance at 

age 18 (adjusted OR=1.10; 95% CI, 0.99-1.22 per SD increase in PRS-schizophrenia) after 

controlling for sex, ethnicity, social class, and BMI. The quadratic term for PRS-schizophrenia was 

non-significant suggesting no evidence for departure from linearity (p>0.05). 

 

 

Figure 8: The Prevalence of Schizophrenia-Spectrum Outcomes at Age 18 Years Per Tertile of 
Genetic Risk for Type 2 Diabetes 

   A=Prevalence of psychotic experiences per tertile of genetic risk for type 2 diabetes; B=Prevalence of psychotic 
disorder per tertile of genetic risk for type 2 diabetes 
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Table 16: Odds Ratios (95% CIs) for Outcomes at Age 18 Years Per SD Increase in Genetic 
Risk for Type 2 Diabetes or Schizophrenia 

Outcome /  
Risk Factor 

Sample OR (95% C.I.) 
 

 
p-value 

Corrected 
p-valuec 

Unadjusteda Adjusted for sex, 
ethnicity, social class 
and BMIb 

 
Definite PEs 

 

PRS-T2D 3,768 1.15 (0.99-1.34) 1.21 (1.01-1.45) 0.020 0.049 
 
Psychotic Disorder 

 

PRS-T2D 3,768 1.42 (1.00-1.96) 1.51 (1.04-2.05) 0.016 0.042* 
 
Insulin Resistance 

 

PRS-SCZ 2,344 1.16 (1.04-1.32) 1.10 (0.99-1.22) 0.089 0.089 
PRS-T2D=polygenic risk for type 2 diabetes; PRS-SCZ=polygenic risk for schizophrenia; a The unadjusted analysis 
was adjusted for 10 principal components only; b Samples for adjusted analysis included 3,070 participants for 
psychosis outcomes and 1,970 participants for insulin resistance outcome; cp-value corrected from adjusted analysis 
using Holm-Bonferroni method; *evidence surpasses Holm-Bonferroni threshold 
 

Table 17: Odds Ratios (95% CIs) for Schizophrenia-Spectrum Outcomes at Age 18 Years Per 
SD Increase in Genetic Risk for Type 2 Diabetes Excluding FTO Associated SNP 

PRS-T2D=polygenic risk for type 2 diabetes; a The unadjusted analysis was adjusted for 10 principal components only 
b Samples for adjusted analysis included 3,070 participants; cp-value corrected from adjusted analysis using Holm-
Bonferroni method; *evidence surpasses Holm-Bonferroni threshold 
 

3.4.4 Associations of PRS Scores with Inflammatory Markers at Age 9 Years 

Data on both PRS scores and serum IL-6 and CRP levels were available for 2,180 and 2,176 

participants, respectively. After adjustments for sex, ethnicity, social class, and BMI, PRS-T2D was 

associated with CRP (β=0.03; 95% CI, 0.01-0.08, p=0.040), but not with IL-6 (β=0.01; 95% CI, -0.02 

– 0.05, p=0.082). There was also trend level evidence for an association between PRS-schizophrenia 

and CRP (β=0.05; 95% CI, -0.01 – 0.10, p=0.061) but not with IL-6 (β=0.01; 95% CI, -0.04-0.09, 

p=0.670). 

 

Risk Factor/outcome Sample OR (95% C.I.) 
 

p-value Corrected 
p-valuec 

Unadjusteda Adjusted for sex, 
ethnicity, social class 
and BMIb 

  

Definite PEs  

PRS-T2D without FTO 3,768 1.15 (0.99-1.34) 1.21 (1.02-1.46) 0.025 0.051 

Psychotic Disorder  

PRS-T2D without FTO 3,768 1.42 (1.01-1.96) 1.50 (1.04-2.03) 0.016 0.048* 
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3.4.5 The Mediating Effect of Childhood CRP Levels on the Associations of PRS scores with 

Schizophrenia-Spectrum Outcomes or Insulin Resistance 

Based on 1,955 participants with data on PRS-T2D, CRP levels at age 9 and PEs at age 18 years, 

CRP at age 9 years partially mediated the association between PRS-T2D and definite PEs at age 18 

years. There was evidence of an indirect effect indicative of mediation; the coefficients were 0.28; 

95% CI, 0.07-0.45, p=0.044 for direct effect; co-efficient=0.05; 95% CI 0.02-0.12, p=0.040 for 

indirect effect. Due to the low number of participants meeting the criteria for psychotic disorder I 

could not reliably test the mediation model with psychotic disorder as outcome. Since IL-6 levels at 

age 9 years were not associated with PRS-T2D, I did not perform mediation analysis using IL-6. 

There was no evidence for a mediating effect of CRP on the association between PRS-schizophrenia 

and insulin resistance at age 18; the coefficients were 0.14; 95% CI, -0.06-0.34, p=0.756 for direct 

effect; co-efficient=0.01; 95% CI, -0.01-0.03, p=0.180 for indirect effect. 

 

3.4.6 Results for Sensitivity Analysis Using Different P-Value Thresholds for PRS 

Figure 9 presents the associations between PRS-T2D and PEs alongside the associations between 

PRS-schizophrenia and insulin resistance, at different PRS p-value thresholds. The point estimates 

for the PRS-T2D-PEs associations were >1 for all p-value thresholds, though the strength of 

association weakened at more stringent p-value thresholds. A similar pattern was observed for the 

PRS-schizophrenia-insulin resistance association, where the evidence for a positive association 

attenuated at p-value thresholds more stringent than 1.00x10-4. 

 

3.4.7 Missing Data 

Fifty-three percent of participants with data on PRS-T2D had psychotic outcomes data missing, and 

71% of participants with PRS-schizophrenia had insulin resistance outcome data missing (Appendix 

C Figure 1). Compared with the analytic sample, the missing sample had higher mean PRS-

schizophrenia but lower PRS-T2D scores (Table 18). Male sex, lower social class and higher BMI 

predicted missing data for psychotic outcomes, and non-white ethnicity was associated with having 

missing data for insulin resistance (Table 19). 

 

 



 

99 
 

69 

Figure 9: The Association of PRS Score and Outcome at Age 18 Years Across a Range of PRS 

p-value Thresholds 

                               

 

 

 

 

 

 

 

 

 

 

Point estimate highlighted in red box represents association at GWAS-defined optimum p-value threshold for the 
exposure. PRS-SCZ = Polygenic Risk Score for Schizophrenia; PRS-T2D = Polygenic Risk Score for Type 2 Diabetes; 
PEs = Psychotic Experiences 
 
 

 

Table 18: Mean PRS-T2D and PRS-Schizophrenia in the Analytic and Missing Samples 
Compared Using Separate Variance T-Test  

Outcome n Mean Z-transformed 
PRS Score 

Test Statistic, p-value 

 
PRS-T2D with Missing Psychosis-Risk Data 
Analytic sample 3,768 0.033  

Missing sample 4,209 -0.252 t=3.2, p=0.002 

 
PRS-Schizophrenia with Missing Insulin Resistance Data 
Analytic sample 2,344 -0.083  

Missing sample 5,633 0.334 t=-4.7, p<0.001 

 

 

A = PRS-T2D and PEs 

B = PRS-SCZ and Insulin 
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Table 19: Predictors of Missing Outcome Data at Age 18 Years for Participants with Data on 
PRS  

Predictor/Outcome n (%) with data1 OR (95% C.I.) 
 

p-value 

 
Psychosis outcomes 
Sex2 

 
7,870 (99) 1.69 (1.55-1.84) <0.001 

Ethnicity3  
 

7,876 (89) 0.62 (0.11-3.40) 0.583 

Social Class4 

 
7,060 (89) 1.11 (1.08-1.13) <0.001 

BMI 
 

5,062 (63) 1.05 (1.02-1.07) 0.001 

 
Insulin Resistance 
Sex2 

 
7,870 (99) 1.00 (0.92-1.03) 0.203 

Ethnicity3 

 
7,876 (89) 0.51 (0.42-0.60) <0.001 

Social Class4 

 
7,060 (89) 1.01 (0.98-1.04) 0.827 

BMI 
 

5,062 (63) 1.06 (0.91-1.17) 0.547 

1n with predictor from risk set of all participants with data on PRS (n=8,812); 2Female sex is reference 
3White-British is reference; 4Social Class I is reference 
 

 

3.5 Discussion 

Using prospective birth cohort data, I found that genetic predisposition for T2D is associated with 

schizophrenia-spectrum outcomes at age 18 years in a linear fashion. The PRS-T2D findings were 

consistent using two genetic scores, one with and one without a SNP at the FTO locus, which is 

related to BMI (Frayling et al., 2007). Additionally, there was evidence for a dose-response pattern 

in the association between PRS-T2D and schizophrenia-spectrum outcomes; the effect size was 

largest for psychotic disorder, which is a more clinically relevant outcome than PEs. I also found 

some evidence, albeit slightly weaker, for an association between genetic predisposition for 

schizophrenia and insulin resistance at age 18 years. However, the sample of participants with missing 

data had higher mean PRS-schizophrenia scores than included participants, thus missing data may 

help explain the weaker evidence. Nonetheless, the findings provide evidence that the comorbidity 

between disrupted glucose-insulin homeostasis and schizophrenia arises partly due to shared genetic 

factors. 
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The point estimates across various p-value thresholds were similar in both combinations of genotype-

phenotype analysis. However, in both cases, at more stringent p-value thresholds, the evidence of 

association weakened. This weakening effect is consistent with a previous study examining the 

association between PRS-schizophrenia and adolescent psychopathology (Jones et al., 2016), which 

also reported that PRS-schizophrenia was associated with attrition. Therefore, type II statistical error 

may contribute to the weaker associations between PRS-schizophrenia and insulin resistance at age 

18 years. 

The results of this study are in line with previous research, which found that people with comorbid 

schizophrenia and T2D have a higher genetic predisposition to both disorders compared to controls 

(Hackinger et al., 2018). The findings also align with a report of an association between PRS for 

schizophrenia and insulin resistance in a clinical sample of people with schizophrenia (Tomasik et 

al., 2019). Another study found evidence for a genetic overlap of schizophrenia with triglycerides and 

HDL (Andreassen et al., 2013), which are associated with insulin resistance (Laws and Reaven, 

1992). However, one previous study found no evidence for an association between PRS-T2D and 

schizophrenia (Padmanabhan et al., 2016), though it featured a much smaller sample size than the 

present study and may have been underpowered to detect a difference.  

Genetic liability for T2D or schizophrenia may increase the risk of both disorders via pleiotropic 

mechanisms. For example, genetic liability for schizophrenia may influence inflammatory pathways 

(Slopen et al., 2013), leading to disrupted glucose-insulin homeostasis. I found some evidence for the 

association of childhood CRP levels with both PRS-T2D and PRS-schizophrenia. However, I did not 

find an association with IL-6. This is perhaps unexpected since IL-6 stimulates the production of CRP 

(Calabro et al., 2003) and is associated with psychosis (Khandaker et al., 2014) and insulin resistance 

(Bowker et al., 2020).  

However, it is also possible that genetic predisposition for T2D or schizophrenia influences CRP via 

mechanisms other than the IL-6 pathway. CRP plays an active role in hepatic insulin resistance, partly 

through impairment in insulin signalling independent of IL-6 (Xi et al., 2011). Interestingly, CRP has 

shown to be protective of schizophrenia in MR studies (Hartwig et al., 2017). However, the GWAS 

studies included in previous MR research measured phenotypic markers in adults. I used CRP 

measured in childhood, which may be reflective of a distinct biological environment. 

I found evidence that genetic predisposition for T2D may influence risk of psychosis in early 

adulthood by increasing inflammation in childhood. Still, the magnitude of this mediating effect was 

small, suggesting that other mechanisms are likely to be involved. On the other hand, I found no 

evidence that childhood IL-6/CRP mediated the association between genetic predisposition for 
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schizophrenia and insulin resistance. The mediating effect of inflammation for the outcome of PEs is 

consistent with previous research reporting an association between genetic risk for schizophrenia and 

immune-related disorders (Stringer et al., 2014, Tylee et al., 2018).  

Due to the relatively small number of participants with psychotic disorder in the sample and 

associated lack of power, I did not consider testing psychotic disorder in mediation analyses. Future 

longitudinal research conducted on larger samples may seek to perform a mediation analysis of CRP 

between PRS-T2D and more clinically relevant schizophrenia-spectrum outcomes. Other mediators 

for PRS-T2D and schizophrenia-spectrum outcomes may include non-immune mechanisms such as 

pleiotropic genes affecting distinct biological pathways. For example, a study examining the genetic 

overlap between T2D and schizophrenia highlighted, among others, PROX1 as a potentially 

pleiotropic locus (Hackinger et al., 2018). PROX1 acts both as a transcriptional activator and repressor 

and is implicated in human pancreatic beta-cell development and neurogenesis (Holzmann et al., 

2015).   

Strengths of this study include a larger sample compared with previous research in the field; 

considering different genetic scores for T2D to address the potential pleiotropic effect of PRS-T2D 

on BMI, and in using childhood inflammatory markers in a mediation model to test a hypothesis that 

inflammation may be a biological mechanism of association. Since the exposures in the study were 

genetic risk, the potential for confounding by environmental and lifestyle factors is limited. In 

addition, I was able to control for potential confounding effects of sex, BMI, social class, and 

inflammatory disease. Regarding ethnicity, participants of non-European genetic ancestry were 

removed at the stage of genotyping analysis. I also adjusted regression analyses for ethnicity since 

ethnicity is significantly associated with T2D-risk (Oldroyd et al., 2005). I adjusted for PCs (Price et 

al., 2006) in PRS analyses to further reduce the risk of population stratification bias.  

An important limitation is missing data. Over half of the risk set with data on PRS had outcome data 

missing at follow-up. The missing sample had a higher mean score for PRS-schizophrenia but a lower 

mean score for PRS-T2D. Thus, the analyses may underestimate the true association between genetic 

predisposition for schizophrenia and insulin resistance. In contrast, the opposite might be the case for 

the association between PRS-T2D and schizophrenia-spectrum outcomes.  

Furthermore, whilst PEs have been shown to reflect an increased risk for psychotic disorders (Zammit 

et al., 2013, Sullivan et al., 2020), and PEs lie on a continuum with clinical psychosis in the general 

population (van Os et al., 2009), the transition from PEs to clinical psychosis is low (Kaymaz et al., 

2012) and PEs are also associated with other psychiatric phenotypes such as depression and anxiety 

disorders. Additionally, since the schizophrenia-spectrum outcomes were measured before the peak 
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age of psychosis onset (Eranti et al., 2013), some participants may not have yet developed psychotic 

symptoms. This point also applies to the sample of participants meeting the criteria for insulin 

resistance at age 18 years. Whilst I attempted to address these limitations by reversing the genotype 

and phenotype to more accurately capture schizophrenia/T2D liability, replication of the methods in 

a clinical sample is necessary. In addition, certain antipsychotic medications can have adverse effects 

on glycaemic indices (Leucht et al., 2013). At present, ALSPAC does not have treatment record 

linkage, so I could not adjust for antipsychotic treatment. This may have impacted the analyses 

examining PRS-schizophrenia and insulin resistance since a higher genetic predisposition for 

schizophrenia may be associated with antipsychotic use. Finally, one-off measurements of 

inflammatory markers in childhood may not reflect lifelong levels of inflammation. However, if non-

differential, measurement error introduces a bias towards the null, so the results may underestimate 

the true association between PRS-T2D and IL-6 and CRP.  

In conclusion, this study provides evidence that a summation of minor genetic variation, set at 

conception, representing lifetime risk for T2D or schizophrenia, may contribute a portion of the 

variance of the comorbidity of these disorders in adulthood. This genetic variation may influence 

inflammatory pathways to increase the risk of comorbidity. In future, similar research may seek to 

examine the associations between PRS for T2D and other mental disorders, including depression or 

bipolar disorder, both of which are known to have higher rates of cardiometabolic disorders than the 

general population (Martin et al., 2016). Such research may also help to test the specificity of the 

findings in this study.
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Evidence for Shared Genetic Aetiology between Schizophrenia, 

Cardiometabolic and Inflammatory Traits: Genetic Correlation 

and Colocalization Analyses 
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4.1 Introduction 

The cardiometabolic comorbidity of schizophrenia is traditionally attributed to lifestyle factors, such 

as smoking and physical inactivity, and the adverse effects of antipsychotic medication (Leucht et al., 

2013). However, cardiometabolic dysfunction is detectable in antipsychotic-naïve young adults with 

FEP, suggesting that lifestyle factors/medication may not be the full explanation (Perry et al., 2016).  

For example, schizophrenia and cardiometabolic disorders share similar associations with elevated 

concentrations of circulating inflammatory markers such as CRP and IL-6, both cross-sectionally 

(Upthegrove et al., 2014, Wang et al., 2013) and longitudinally (Khandaker et al., 2014, Bowker et 

al., 2020). MR studies have similarly shown that genetically predicted levels of IL-6 and CRP could 

be causally linked with cardiometabolic disorders (Georgakis et al., 2020) and schizophrenia 

(Hartwig et al., 2017).  

Therefore, schizophrenia, cardiometabolic and inflammatory traits could share pathophysiologic 

mechanisms, including a common genetic basis. An improved understanding of the mechanisms 

underlying the comorbidity between schizophrenia, cardiometabolic and inflammatory traits is 

pivotal to inform novel approaches to treatment and prevention.  

Previous studies have predominantly used LDSC (Bulik-Sullivan et al., 2015a) to estimate the whole-

genome correlation between schizophrenia and cardiometabolic traits, with one recent study reporting 

evidence of partial genetic similarity between schizophrenia and BMI (Bahrami et al., 2020). There 

is limited evidence for other cardiometabolic and inflammatory traits (Bulik-Sullivan et al., 2015a). 

However, the LDSC approach may have limitations. First, LDSC could be susceptible to the 'missing 

heritability' problem, where subtle population stratification downwardly bias the effects of lower-

frequency variants (Mathieson and McVean, 2012). Therefore, genetic correlation analysis which 

considers the relative frequency of variants is required. Second, LDSC estimates may be biased 

towards the null when opposing mechanisms exist (e.g., regions of positive and negative correlation 

nullifying each other when averaged (Shi et al., 2017)). This may be expected in a relatively 

heterogeneous condition like schizophrenia (Wolfers et al., 2018). Therefore, more fine-grained locus 

level genetic correlation analysis is required to identify genomic regions of interest.  Third, while 

LDSC can provide evidence of overall genomic similarity between traits, it cannot provide 

information with which to consider biological plausibility or infer potential causality.  
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4.2 Aims and Objectives 

I aimed to use a range of complementary genomic approaches in a stepwise manner to rigorously 

examine the potential for a common genomic basis for schizophrenia and a range of cardiometabolic 

and inflammatory traits previously reported to be associated with it (Vancampfort et al., 2015, Miller 

et al., 2014). I aimed to identify specific putative biological pathways underpinning the comorbidity 

and address limitations of previous approaches. First, in addition to LDSC to estimate the genome-

wide correlation between traits, I used genetic covariance analyser (GNOVA (Lu et al., 2017)), a 

recent methodological extension of LDSC, to estimate genetic correlation after stratifying variants by 

MAF. Second, I used Heritability Estimation from Summary Statistics (ρ-HESS (Shi et al., 2017)) to 

identify positive or negative regions of locus-level genetic correlation that otherwise may be masked 

by LDSC. Finally, to estimate colocalization between clusters of traits and to identify putative 

common-causal variants amongst locally correlated genomic regions, I used hypothesis prioritization 

multi-trait colocalization (HyPrColoc (Foley et al., 2021)), a novel type of multi-trait colocalization 

analysis (Giambartolomei et al., 2018).  

 

4.3 Methods  

4.3.1 Summary Statistics for Schizophrenia, Cardiometabolic and Inflammatory Traits 

For schizophrenia, I used publicly available summary data from the Psychiatric Genomics 

Consortium (PGC) (40,675 cases, 64,643 controls (Pardinas et al., 2018)). I used publicly available 

summary GWAS data for twelve cardiometabolic and inflammatory traits (fasting insulin, HOMA-

IR, T2D, FPG, glucose tolerance, HbA1C, LDL, HDL, triglycerides, BMI, CAD, and CRP) from 

large-scale consortia (Table 20). All GWAS were conducted in mostly European samples and 

adjusted for population stratification, age, and sex. Ethical approval was obtained by the original 

GWAS authors as per each individual GWAS protocol. 
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Table 20: Summary GWAS Data Used For Cardiometabolic and Inflammatory Traits 
Trait Consortium (Author, Year) Sample 

Size 
Cases/Controlsa Participant 

Description 
PMID 

Schizophrenia  PGC (Pardinas et al., 2018) 105,318 40,675 / 64,643 European Adults 29483656 

Fasting 
Insulin 

MAGIC (Lagou, 2019) 140,595 - European Adults - 

FPG MAGIC (Scott et al., 2012) 133,010 - European Adults 22885924 

HOMA-IR MAGIC (Dupuis et al., 2010) 46,186 - European Adults 20081858 

Glucose 
Tolerance 

MAGIC (Scott et al., 2012) 42,854 - European Adults 22885924 

HbA1C MAGIC (Wheeler et al., 2017) 123,665 - European Adults 28898252 

T2D Mahajan et al, 2017 (DIAGRAM) 
(Mahajan et al., 2018) 

898,130 74,124 / 824,006 European Adults 30297969 

LDL  GLGC (Liu et al., 2017)  237,050 - European Adults 29083408 

HDL GLGC (Liu et al., 2017) 237,050 - European Adults 29083408 

Triglycerides GLGC (Liu et al., 2017) 237,050 - European Adults 29083408 

BMI GIANT and UK Biobank (Pulit et al., 
2019) 

 694,649 - European Adults 30239722 

CAD  CARDIoGRAM C4D (van der Harst et 
al, 2017) and UK Biobank (van der Harst 
and Verweij, 2018) 

547,261 122,733 / 424,528 European Adults 29212778 

CRP  CHARGE (Ligthart et al., 2018) 204,402 - European Adults 30388399 

FPG=fasting plasma glucose; HOMA-IR=homeostatic model assessment for insulin resistance; HbA1C=glycated 
haemoglobin; T2D=type 2 diabetes; LDL=low-density lipoprotein; HDL=high-density lipoprotein; BMI=body mass 
index; CAD=coronary artery disease; CRP=C-reactive protein; PGC=Psychiatric genomics consortium; MAGIC=Meta-
analyses of glucose and insulin-related traits consortium; DIAGRAM=Diabetes genetics replication and meta-analyses; 
GLGC=Global lipids genetics consortium; GIANT=Genetic investigation of anthropometric traits; 
CARDIoGRAM=Coronary artery disease genome wide replication and meta-analysis; C4D=Coronary artery disease 
genetics consortia; CHARGE=Cohorts for heart and aging research in genomic epidemiology. 
aCase/Control numbers supplied for binary traits 

 

4.3.2 Statistical Analysis 

4.3.2.1 LDSC for Genome-wide Correlations 

Genome-wide SNP-heritability estimates (h2), standard errors (SEs), and genome-wide genetic 

correlation estimates (rg) between all trait-pairs were estimated using LDSC (Bulik-Sullivan et al., 

2015b) and an LD reference panel from the 1000 Genomes Project’s Phase 3 European (1kG CEU) 

sample. Quality control (QC) steps on each GWAS dataset prior to analysis were: 1) filtering SNPs 

that were not included within the HapMap3 reference panel or had MAF <5% within the 1kG CEU 

reference sample; 2) filtering SNPs within the major histocompatibility complex (MHC) due to the 

complex LD structure within the region (Miretti et al., 2005). I used a Bonferroni-adjusted threshold 

of p<0.004 to define strong evidence of genome-wide genetic correlation. 
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4.3.2.2 MAF-Stratified Genetic Correlation 

MAF-stratified genetic correlations between schizophrenia and other traits were estimated using 

GNOVA (Lu et al., 2017). GNOVA is an extension to classical LDSC, allowing estimates of genetic 

correlation across continuous annotations (e.g., MAF). QC methods were the same as above. MAF 

quartiles were defined by the GNOVA authors (Lu et al., 2017) and calculated using genotyping data 

from the 1kG CEU reference sample. MAF cut-offs for each quartile were as follows: Q1=0.05-0.11; 

Q2=0.11-0.22; Q3=0.22-0.35; Q4=0.35-0.50. I used a Bonferroni-adjusted threshold of p<0.004 to 

define significant evidence of MAF-stratified genetic correlation. 

 

4.3.2.3 Locus-Level Genetic Correlation 

Next, I explored locus level correlation between schizophrenia and traits with at least nominal 

evidence of either whole-genome or MAF-stratified genetic correlation. I accepted a less-stringent 

significance threshold to select traits for locus level correlation analysis to allow for an examination 

of opposing mechanisms (Shi et al., 2017), which may have biased ‘averaged’ correlation estimates 

(e.g., from LDSC or GNOVA) toward the null. I used ρ-HESS (Shi et al., 2017) to estimate partitioned 

heritability and genetic correlations within pre-defined genomic LD-blocks based on European 

participants (Berisa and Pickrell, 2016), allowing for greater resolution of the correlation within each 

LD block. No sample overlap between data from different consortia was assumed, as recommended, 

due to the heterogeneity of analysed trait-pairs (i.e., a psychiatric trait with a 

cardiometabolic/inflammatory trait) (Shi et al., 2017). Where no SNPs were available for analysis 

within a particular LD block, that LD block was removed from analysis of that trait pair. I used a 

Bonferroni-adjusted threshold dependent on the number of LD blocks tested between pairs of traits 

to determine significant evidence of locus-level correlation (between p<3.14x10-5 and p<2.7x10-5). 

 

4.3.2.4 Multi-trait Colocalization 

To provide greater resolution and allow for a consideration of biological plausibility in genomic 

regions with evidence of local correlation, I used HyPrColoc (Foley et al., 2021). HyPrColoc 

estimates the posterior probability of colocalization across multiple traits at a single causal variant by 

enumerating putative causal configurations. In doing so, HyPrColoc can identify distinct clusters of 

traits which colocalize at independent putative causal variants within the genomic region of interest. 

To conduct this stage of analysis, I identified the lead SNP for schizophrenia within each LD-block 

showing Bonferroni-significant evidence of locus-level correlation with cardiometabolic and 
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inflammatory traits. For each trait, I included all SNPs located 500kb either side of the schizophrenia 

lead SNP. I did not consider regions within the MHC. The primary analysis used the recommended 

variant-specific prior configuration (prior 1=1x10-4; prior 2=0.02) and regional and alignment 

threshold settings (0.5 for both). Assistance with the codes for the colocalization analysis was 

provided by Dr Nick Bowker (University of Cambridge).  

 

4.3.2.5 Colocalization Sensitivity Analysis 

To test the strength of evidence for colocalization and also cluster stability, I repeated colocalization 

analysis over: a) increasingly stringent prior settings, (0.02, 0.01, 0.001); and b) increasingly stringent 

regional and alignment threshold settings (0.5, 0.6, 0.7, 0.8, 0.9). To visualise cluster stability across 

the permutations, heatmaps were drawn based on a similarity matrix between clusters. Where there 

was evidence for potential colocalization, stacked regional association plots were drawn to visually 

inspect putative candidate SNPs, their strength of association within each putative colocalized trait, 

and the LD structure in the genomic region. 

 

4.4 Results 

4.4.1 Genome-wide Correlation between Schizophrenia and Cardiometabolic/Inflammatory 

Traits 

Using LDSC, I found Bonferroni-significant evidence of correlation of schizophrenia with BMI (rg=-

0.09; 95% C.I., -0.06, -0.12; p=1.83x10-5; h2=0.21; SE=0.007) and T2D (rg=-0.07; 95% C.I., -0.03- -

0.12; p=0.002; h2=0.04; SE=0.002). In hierarchical clustering, two clusters were formed: 

schizophrenia in the first, and all other included traits in the second (Figure 10). See Appendix C 

Table 1 for complete LDSC results for all trait pairs. 
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Figure 10: Whole Genome Correlations between Schizophrenia, Cardiometabolic and 
Inflammatory Traits 

 
X indicates correlations that did not meet Bonferroni-corrected evidential threshold (p=0.004). Hierarchical clusters 
are indicated with red boxes. SCZ=schizophrenia; LDL=low-density lipoprotein; CAD=coronary artery disease; 
glucose.tol=two-hour glucose; FPG=fasting plasma glucose; HbA1C=glycated haemoglobin; CRP=C-reactive 
protein; TG=triglycerides; HDL=high-density lipoprotein; T2D=type 2 diabetes mellitus; BMI=body mass index; 
INS=fasting insulin; HOMA.IR=homeostatic model assessment for insulin resistance. 
 

 

4.4.2 MAF-Stratified Genetic Correlation between Schizophrenia and Cardiometabolic / 

Inflammatory Traits 

I found a trend of nominal evidence for correlation in the lowest MAF-quartile between schizophrenia 

and a range of cardiometabolic and inflammatory traits (fasting insulin (rg=0.22; p=0.029); 

triglycerides (rg=0.14; p=0.020); CAD (rg=0.24; p=0.025); HDL (rg=-0.11; p=0.053); T2D (rg=0.06; 

p=0.076); CRP (rg=0.18; p=0.088)); in the second-lowest MAF-quartile between schizophrenia and 

LDL (rg=0.06; p=0.037); and in the highest MAF-quartile between schizophrenia and both BMI (rg=-

0.13; p=0.006) and T2D (rg=-0.12; p=0.012) (Table 21). 
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Table 21: MAF Stratified Genetic Correlations between Schizophrenia, Cardiometabolic and 
Inflammatory Traits 

HDL=high-density lipoprotein; LDL=low-density lipoprotein; FPG=fasting plasma glucose; BMI=body mass index; 
T2D=type 2 diabetes mellitus; HOMA-IR=homeostatic model assessment of insulin resistance; HbA1C=glycated 
haemoglobin; CAD=coronary artery disease; CRP=C-reactive protein; rg=genetic correlation estimate.; 1MAF split into 
quartiles; Q1=lowest to Q4=highest; †indicates traits taken to next stage of analysis based upon nominal evidence of 
whole or stratified genetic correlation 
 
 
4.4.3 Locus-Level Genetic Correlation Between Schizophrenia and Cardiometabolic / 

Inflammatory Traits 

All included cardiometabolic and inflammatory traits showed Bonferroni-significant evidence of at 

least one region of local genetic correlation with schizophrenia. BMI exhibited 78 regions of 

Bonferroni-significant local genetic correlation with schizophrenia, the most of any trait. All traits 

showed evidence of opposing mechanisms with schizophrenia (Table 22). See Figure 11 for 

Manhattan Plots of locus-level correlation between schizophrenia, cardiometabolic and inflammatory 

traits. See Appendix C Table 2 for the full numerical results from locus-level correlation analysis for 

all trait pairs. 

Table 22: Summary of Local Genetic Correlation Analyses between Schizophrenia, 
Cardiometabolic and Inflammatory Traits 

Trait LD Blocks, 
No. 

Bonferroni p-value 
Threshold 

Regions of local correlationa with 
schizophrenia, No. 

BMI 1,684 2.70x10-5 78 
Fasting Insulin 1,676 2.98x10-5 30 
T2D 1,591 3.14x10-5 8 
CRP 1,684 2.70x10-5 5 
Triglycerides 1,684 2.70x10-5 5 
HDL 1,684 2.70x10-5 4 
Coronary Artery Disease  1,676 2.98x10-5 4 
LDL 1,684 2.70x10-5 2 

BMI = body mass index; T2D = type 2 diabetes mellitus; CRP = C-reactive protein;  HDL = high-density lipoprotein; 
LDL = low-density lipoprotein; aregions with evidence of local correlation surpassing Bonferroni significance threshold 

Trait MAF1 

Q1 Q2 Q3 Q4 
rg p rg p rg p rg p 

T2D† 0.062 0.076 0.045 0.585 -0.056 0.433 -0.120 0.012 
FPG 0.078 0.296 0.052 0.971 0.143 0.345 -0.127 0.173 
Fasting Insulin† 0.223 0.029 0.110 0.266 0.095 0.174 -0.050 0.790 
HOMA-IR -0.122 0.507 -0.147 0.284 0.056 0.652 -0.067 0.570 
Glucose Tolerance 0.030 0.220 -0.112 0.670 -0.063 0.691 0.023 0.842 
HbA1C 0.013 0.459 0.032 0.844 -0.097 0.350 0.044 0.414 
HDL† -0.114 0.053 -0.070 0.280 0.043 0.105 0.051 0.572 
LDL† 0.053 0.371 0.063 0.037 0.036 0.291 0.039 0.231 
Triglycerides† 0.136 0.020 0.025 0.106 -0.003 0.188 0.031 0.201 
BMI† -0.109 0.219 -0.086 0.187 -0.078 0.143 -0.127 0.006 
CAD † 0.235 0.025 -0.025 0.761 0.054 0.484 -0.041 0.446 
CRP† 0.181 0.088 0.018 0.859 0.091 0.196 -0.049 0.358 



  

Figure 11: Manhattan Plots Showing Regions of Local Genetic Correlation between Schizophrenia and Cardiometabolic/Inflammatory Traits 

A. Body Mass Index 

 

B. Fasting Insulin 
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C. Type 2 Diabetes 

 

D. C-Reactive Protein 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22-1.0

0.0

1.0
locDl genetic correlDtion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

-0.0002

-0.0001

0.0000

0.0001

0.0002

6&
Z 

&
 7

2D

locDl genetic covDriDnce

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 220.000
0.001
0.002

6&
Z

locDl 613-heritDbility

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 220
0.001
0.002

72
D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22-1.0

0.0

1.0
lRcal genetic cRrrelatiRn

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

-0.0004

-0.0002

0.0000

0.0002

0.0004

6&
Z 

&
 &

53

lRcal genetic cRvariance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 220.000
0.001
0.002

6&
Z

lRcal 613-heritability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 220
0.001
0.002

&5
3

113 



 

 

69 

E. Triglycerides 

 

 

F. High-Density Lipoprotein 
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G. Coronary Artery Disease 

 
 
H. Low-Density Lipoprotein 

Manhattan plots showing local genetic correlation estimates (top panel); local covariance estimates (second panel); and local SNP heritability estimates (bottom two panels), at LD 
blocks across chromosomes 1-22. Areas coloured red/blue in top two panels correspond to LD-blocks surpassing Bonferroni significance threshold. 
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4.4.4 Multi-Trait Colocalization between Schizophrenia and Cardiometabolic / Inflammatory 
Traits 

I found the strongest evidence for colocalization (posterior probability for colocalization (PPcoloc) 

>0.80) between schizophrenia, cardiometabolic and inflammatory traits at seven loci, which included 

missense (rs13107325; rs6265), intronic (rs17514846; rs8192675; rs3800229) and synonymous 

(rs3814883) variants, and one intergenic variant (rs12782894) (Table 23). See Figure 12 for stacked 

regional association plots for four colocalized variants with strong evidence for colocalization 

(rs8192675/SLC2A2, rs13107325/SLC39A8, rs6265/BDNF, rs17514846/FURIN).  I found additional 

evidence for colocalization (PPcoloc=0.54-0.79) at five loci, including intronic (rs11191514; 

rs2108349; rs6031855; rs340874) and synonymous (rs2239647) variants (Table 23). See Appendix 

C Figure 2 for stacked regional association plots of the remaining variants with evidence for 

colocalization.  

 

Table 23: Results from Colocalization Analysis between Schizophrenia, Cardiometabolic and 
Inflammatory Traits  

SCZ=schizophrenia; BMI=body mass index; CAD=coronary artery disease; HDL=high-density lipoprotein; 
TG=triglycerides; LDL=low-density lipoprotein; T2D=type 2 diabetes; CRP=C-reactive protein; FI=fasting insulin 
aPPcoloc indicates posterior probability of single shared causal SNP at default prior and threshold settings 
bPPexplained indicates the amount of shared trait variance explained by the candidate SNP 
cCorresponds to the number of SNPs present in all datasets; *Intergenic 

 

 

 

Candidate 
SNP 

Gene 
Implicated 

Variant Type Colocalized Traits PPcoloca PPexplainedb N SNPsc 

rs17514846 FURIN Intron SCZ, CAD 1.00 1.00 1071 
rs3814883 TAOK2 Synonymous SCZ, BMI 0.99 0.99 193 
rs8192675 SLC2A2 Intron SCZ, BMI, CRP, T2D 0.93 0.50 919 
rs3800229 FOXO3 Intron SCZ, BMI 0.89 0.96 872 
rs12782894 * * SCZ, BMI 0.88 0.68 1255 
rs13107325 SLC39A8 Missense SCZ, HDL, TG, BMI, T2D 0.86 1.00 936 
rs6265 BDNF Missense SCZ, BMI, CRP, CAD 0.86 0.75 925 
rs2239647 AKAP6 Synonymous SCZ, BMI, T2D 0.79 0.66 1584 
rs11191514 CNNM2 Intron SCZ, BMI, CAD 0.77 0.30 710 
rs2108349 GRB10 Intron SCZ, FI 0.60 0.88 1272 
rs6031855 YWHAB Intron SCZ, BMI 0.59 0.28 990 
rs340874 PROX1 Intron SCZ, T2D 0.54 0.66 1324 
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Figure 12: Examples of Regional Genetic Association Plots for Four Loci Returning Strong 
Evidence for Colocalization between Schizophrenia, Cardiometabolic and Inflammatory Traits 
 

A. rs8192675 – SLC2A2 
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B. rs13107325 – SLC39A8 
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C. rs6265 – BDNF 
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D. rs17514846 - FURIN 

Regional association plots denote chromosomal location (x axis) and strength of association with listed trait (-log10(p)) (y 
axis). SNP r2 was estimated from the EPIC-Norfolk cohort. See Appendix C Figure 2 for regional association plots of the 
remaining colocalized variants described in Table 23. scz=schizophrenia; bmi=body mass index; tg=triglycerides; 
hdl=high-density lipoprotein; t2ds=type 2 diabetes; crp=c-reactive protein 
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4.4.5 Colocalization Sensitivity Analysis 

Trait clusters for all loci were stable in sensitivity analysis, returning in all instances the same 

candidate colocalized variant over increasingly stringent prior and threshold configurations. See 

Appendix C Table 3 and Appendix C Figure 3 for full sensitivity analysis results and heatmap 

sensitivity analysis plots. To summarise the sensitivity analysis results, clusters at rs17514846 and 

rs3814883 were stable across all permutations of priors. Clusters at two loci (rs12782894; rs3800229) 

were stable till prior settings surpassed the most stringent level of 0.99.  Clusters at three loci 

(rs8192675; rs13107325; rs2239647) were stable till regional/alignment thresholds surpassed a 

stringent level of 0.8, and then T2D was dropped from the clusters and the PPcoloc increased for the 

remaining traits. Clusters at rs6265 were stable till regional/alignment thresholds surpassed 0.7, then 

CRP was dropped and the PPcoloc increased for the remaining traits. Clusters at rs2108439 were stable 

till regional/alignment thresholds surpassed 0.6. Clusters at the remaining three variants (rs340874; 

rs11191514; rs6031855) were stable only at the recommended prior settings and regional/alignment 

thresholds. 

 

 

4.5 Discussion 

Using a complementary set of approaches leveraging GWAS summary data, I tested whether 

schizophrenia, cardiometabolic and inflammatory traits may share common genetic aetiology. First, 

I report evidence for partial genome-wide genetic correlation of schizophrenia with T2D and BMI. 

Second, I report that a 'cardiometabolic risk increasing' pattern of partial genetic correlation between 

schizophrenia, cardiometabolic and inflammatory traits may be confined to relatively lower-

frequency genetic variants. Yet, a 'cardiometabolic risk lowering' pattern of partial genetic correlation 

may be present amongst the highest-frequency common genetic variants. I identified numerous 

regions of Bonferroni-significant locus-level genetic correlation between schizophrenia, 

cardiometabolic and inflammatory traits, which I interrogated using colocalization analysis. In doing 

so, I found robust and biologically plausible evidence for 12 colocalized SNPs that may at least in 

part contribute toward the comorbidity between schizophrenia, inflammation and cardiometabolic 

disorders. Together, the results suggest that the comorbidity between schizophrenia, inflammation 

and cardiometabolic disorders could be partly attributable to shared genes rather than being fully 

explained by lifestyle factors and medication side-effects.  

Findings from the LDSC analysis are in line with previous research. For example, a similar negative 

correlation between schizophrenia and BMI was recently reported (Bahrami et al., 2020), and a large 
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genotyping meta-analysis has shown an inverse association between polygenic risk for schizophrenia 

and obesity (Zheutlin et al., 2019). Additionally, observational evidence indicates that low 

birthweight (Wahlbeck et al., 2001, Abel et al., 2010, Nielsen et al., 2013) and thinness in childhood 

(Zammit et al., 2007, Weiser et al., 2004, Sorensen et al., 2006) are associated with a higher risk for 

developing schizophrenia in adulthood. However, the LDSC SNP-heritability estimate suggests that 

only a modest fraction of phenotypic variance could be explained by the additive effects of shared 

genetic variants. This can be interpreted in one of two ways; either shared genetic architecture is only 

likely to explain a small fraction of the variance of phenotypic comorbidity, or LDSC estimates have 

been downwardly biased due to the limitations described in Section 4.2. 

I also found a weak Bonferroni-significant overall negative genetic correlation between schizophrenia 

and T2D, which was not found in a previous LDSC study that used data from a smaller T2D GWAS 

(Bulik-Sullivan et al., 2015a). This finding is inconsistent with observational studies suggesting 

increased T2D risk in psychosis (Ward and Druss, 2015, Perry et al., 2016). The observed partial 

negative correlation between schizophrenia and BMI could explain this since T2D and BMI are 

highly genetically correlated (Zhang et al., 2017). This finding could also highlight the importance of 

environmental influences upon cardiometabolic risk in schizophrenia, given the small amount of 

phenotypic explained variance from LDSC. Alternatively, the finding could be explained by both the 

missing heritability phenomenon and presence of opposing mechanisms, and findings from the MAF-

stratified and locus-level correlation analyses support the relevance of the latter interpretation.  

Stratifying LDSC by MAF helps address the limitation of missing heritability and suggests that 

similar risk-increasing genetic architecture between schizophrenia and cardiometabolic disorders is 

likely to be confined to relatively lower-frequency GWAS-detectable variants. I identified a 

consistent pattern at nominal significance of 'cardiometabolic risk-increasing' partial correlation in 

the lowest MAF-quartile of schizophrenia with fasting insulin, triglycerides, CAD, HDL, T2D and 

CRP, and in the second-lowest MAF quartile of schizophrenia with LDL, which aligns with 

observational findings (Vancampfort et al., 2015, Miller et al., 2014). These findings also align with 

previous GWAS research, which leveraged pleiotropy with cardiovascular traits to improve detection 

of schizophrenia risk variants to reduce the impact of missing heritability (Andreassen et al., 2013). 

However, I also identified a pattern of 'cardioprotective' partial correlation in the highest MAF-

quartile of schizophrenia with BMI and T2D, in line with whole-genome correlation estimates. These 

results suggest the presence of opposing mechanisms, which may be related to the heterogeneity of 

schizophrenia. Nevertheless, the Bonferroni significance threshold was not met for most traits in 

MAF stratified analysis. So, future replication of my work with better-powered GWAS is necessary 

to confirm these findings. 
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I found numerous regions of Bonferroni-significant locus-level correlation between included trait-

pairs. Across all trait pairs, I found evidence of multiple regions of positive and negative correlation 

with schizophrenia, indicating opposing mechanisms. This may help explain the weaker evidence 

found in LDSC and GNOVA and the results of previous LDSC research (Bulik-Sullivan et al., 

2015a), which found limited evidence for genetic correlation between schizophrenia and 

cardiometabolic traits. This is because the combination of regions of positive and negative correlation 

may have biased estimates toward the null (Shi et al., 2017).  

I found twelve loci indicating evidence of colocalization between traits at the default prior 

configuration. Many of these were stable over increasingly stringent settings in sensitivity analysis, 

suggesting robust evidence for colocalisation. Several loci exhibited stronger evidence for 

colocalization after one weaker trait was dropped at more stringent thresholds. Of the seven loci 

returning the strongest evidence of colocalization (PPcoloc>0.80), four (rs6265; rs8192675; rs3800229; 

rs17514846) relate to pathways involving BDNF. BDNF is an important member of the neurotrophin 

family and is associated with a range of clinical features of schizophrenia (Notaras et al., 2015); is 

involved in the regulation of cardiometabolic function (Tasci et al., 2012); and is associated with 

cardiometabolic function in schizophrenia (Nurjono et al., 2014). 

First, rs6265 (Val66Met) is a missense SNP in the BDNF gene. Val66Met reduces intracellular 

trafficking and activity-dependent secretion of BDNF (Egan et al., 2003). Interestingly, meta-analytic 

evidence suggests lower BDNF levels in people with schizophrenia (Cui et al., 2012), which may 

contribute to disease-specific changes of neuronal synaptic plasticity and the immune system 

(Zakharyan and Boyajyan, 2014). The Val66Met polymorphism may additionally influence food 

intake and body weight (Hong et al., 2012) in humans.  

Second, rs8192675 is located in an intronic region of SLC2A2, which encodes the facilitated glucose 

transporter GLUT2. GLUT2 regulates the entry of glucose into the pancreatic β-cell, thus initiating 

the cascade of events leading to insulin secretion. GLUT2 is also highly expressed in both the liver, 

where it regulates both glucose uptake and output and the hypothalamus, where it regulates synaptic 

activity and neurotransmitter release (Jurcovicova, 2014). Variants in SLC2A2 impair GLUT2 

expression and are strongly associated with T2D (Sansbury et al., 2012). Rs8192675 is associated 

with increased diabetic symptomatology but may also be related to favourable T2D treatment 

response (Rathmann et al., 2019). Impaired GLUT2 expression is associated with lower levels of 

BDNF (Maekawa et al., 2013), and conversely, higher levels of BDNF are associated with a 

protective effect on GLUT2 in pancreatic β-cells, reducing T2D risk (Bathina and Das, 2019).  
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Third, rs3800229 lies in an intron of FOXO3, which regulates diverse cellular processes, for example, 

adult stem cell homeostasis (Eijkelenboom and Burgering, 2013) and immuno-metabolic processes 

(Lundell et al., 2019). FOXO3 is associated with brain development and intracranial volume (Renault 

et al., 2009) and is associated with poor cognition in schizophrenia (Smeland et al., 2017). 

Interestingly, FOXO3 is implicated as a potential therapeutic target for obesity (Deng et al., 2018) 

and mediates the inhibitory actions of insulin in diverse pathways, including cell metabolism and 

survival (Lee and Dong, 2017). FOXO3 signalling can be disrupted by BDNF, mediated by the 

phosphatidylinositol 3-kinase (PI3K)/Akt pathway (Zhu et al., 2004). The PI3K/AKT pathway has 

roles in insulin sensitivity, neuronal development, dopamine regulation, and the immune system 

(Hers et al., 2011) and is implicated as a putative mechanism linking schizophrenia and T2D (Liu et 

al., 2013). 

Fourth, the rs17514846 variant lies in an intron of FURIN, which encodes a protease that processes 

latent precursor proteins into their biologically active products. FURIN is expressed in 

neuroendocrine, liver, gut, and brain tissues. A recent GWAS found a significant association between 

rs17514846 and CAD (Webb et al., 2017), and rs17514846 regulates FURIN expression in 

monocytes, which modulates their migration and proliferation in atherosclerotic plaques (Turpeinen 

et al., 2011). Furthermore, rs17514846 is in high-LD with rs4702, a genome-wide significant variant 

for schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics, 2014) which lies in 

the 3' untranslated region of FURIN, leading to reduced gene expression and impaired BDNF 

secretion (Hou et al., 2018).   

Outside of BDNF-related pathways, there is biological plausibility for additional colocalized variants. 

One of these is rs13107325, a missense SNP in SLC39A8, which encodes a protein responsible for 

metal ion transport and homeostasis. Rs13107325 has been associated with weight gain (Pulit et al., 

2019), lipid dysfunction (Willer et al., 2013), changes in brain volume (Luo et al., 2019) and brain 

metal homeostasis, the latter of which may influence schizophrenia risk (Carrera et al., 2012). 

Rs340874 is a genome-wide significant variant for T2D (Mahajan et al., 2014) and lies in an intron 

of PROX1. PROX1 has been proposed as a possible genetic mechanism for comorbid schizophrenia 

and T2D (Hackinger et al., 2018) and is associated with pancreatic beta-cell development and 

neurogenesis (Holzmann et al., 2015). Rs2108349 lies in an intron of GRB10, which encodes an 

inhibitor of insulin receptor signalling (Morrione, 2000). The variant is in high-LD with rs2237457, 

which is associated with schizophrenia treatment resistance (Li and Meltzer, 2014). Finally, two 

variants, rs3814883 in TAOK2 and rs11191514 in CNNM2, are each associated with schizophrenia 

(Guan et al., 2016, Li et al., 2017b), and both are associated with increased risks of cardiometabolic 

and cardiovascular disorders (Lv et al., 2017, Zhang et al., 2017). 
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The main strengths of this study include the use of several complementary genomic analysis methods 

that refine genetic correlation estimates to putative common-causal SNPs. This can inform future 

basic research and highlight potential pathways that might be investigated for therapeutic potential 

for schizophrenia and its associated cardiometabolic comorbidity. The findings represent a consistent 

pattern of evidence across complementary methods, which can address the limitations of previous 

research.  

The main limitations of this study are as follows: GWAS power might have affected the results. For 

example, some correlation estimates for MAF-stratified analysis did not reach the Bonferroni-

corrected evidential threshold. Therefore, the results should be interpreted with caution and require 

replication when better powered GWAS are available. I considered traits for further analysis based 

upon a nominal threshold since correlation estimates, which are either (i) averaged across the whole 

genome (LDSC); or (ii) averaged across MAF quartiles (GNOVA), may have been biased toward the 

null where opposing mechanisms exist, and results from the locus-level correlation analyses 

suggested this was the case for all analysed trait pairs. Differences in GWAS statistical power 

between traits may also be partly responsible for the different numbers of regions of local correlation 

identified in the HESS analyses. In future, better-powered GWAS may identify more regions of locus-

level correlation between trait pairs. For the MAF-stratified analysis, due to limitations in current 

GWAS power, I could only include SNPs with MAF >5% in the lowest MAF-quartile, a limitation 

common to genetic correlation methods. Such variants are therefore best described as a lower-

frequency tranche of common genetic variation. As GWAS methods and sample sizes improve, 

sufficient power may be achieved to consider variants on the rare end of the MAF spectrum. 

Secondly, HyPrColoc assumes the presence of at most one causal SNP in the region, a limitation 

common to colocalisation methods. Yet, HyPrColoc estimates may only become unreliable when the 

secondary causal variants explain a similar amount of trait variation as the primary shared variant 

(Foley, 2019).  

Thirdly, I could only include one inflammatory marker, CRP, since large-scale GWAS of other 

inflammatory biomarkers are scarce. Despite CRP being a generalized marker of inflammation, future 

replication of the work with a more extensive set of upstream inflammatory markers may help test 

specific inflammatory pathways. Future research may also consider other mental disorders, for 

example, depression, which is genetically correlated with schizophrenia (Anttila et al., 2018) and is 

also observationally associated with cardiometabolic disorders (Lamers et al., 2018). Finally, some 

level of similarity in genetic architecture might be expected between any set of complex disease traits; 

however, the results of this study show a consistent pattern across a number of independent analytic 

methods, suggesting that chance associations are unlikely to fully explain the results. 



 

126 
 

69 

In conclusion, I present evidence indicating a shared genetic basis for schizophrenia, cardiometabolic 

and inflammatory traits. The results suggest that the commonly observed comorbidity between these 

conditions may be at least partly heritable. The results indicate that the shared genetic aetiology may 

be confined to relatively lower-frequency common genetic variants. The majority of loci showing 

evidence for colocalization are biologically plausible, with several implicating pathways involved in 

regulating BDNF and glucose transport. Together, the results highlight putative pathophysiological 

mechanisms that could underly the comorbidity, which may form the basis for future basic and 

therapeutics research, both for schizophrenia and its associated cardiometabolic comorbidity. 
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Chapter 5 
: 
 
The Potential Shared Role of Inflammation in Insulin Resistance and 
Schizophrenia: A Bi-Directional Two-Sample Mendelian 
Randomization Study  
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5.1 Introduction 

Most existing research examining the cardiometabolic comorbidity of schizophrenia is cross-

sectional. Therefore, existing studies cannot confirm whether cardiometabolic disorders are a cause 

or consequence of illness (i.e., reverse causality). Additionally, whilst previous studies have adjusted 

for potential confounders, residual confounding, which is a limitation of both cross-sectional and 

longitudinal research, could still be relevant. MR analysis can address these limitations by using 

genetic variants inherited randomly at conception as unconfounded proxies of a modifiable exposure 

to examine whether the exposure may have a causal effect on a disease outcome (Smith, 2010). MR 

studies of cardiometabolic traits and schizophrenia are scarce, have focused on a limited set of 

cardiometabolic exposures, and have reported mixed findings (Li et al., 2018, Polimanti et al., 2017). 

To the best of my knowledge, MR studies examining associations between a wide range of 

cardiometabolic traits and schizophrenia are lacking. Such studies may help identify common 

potentially causal risk factors and pathophysiologic mechanisms for these physical and psychiatric 

illnesses.  

Inflammation could be pathophysiologically related to cardiometabolic disorders and schizophrenia. 

Higher levels of circulating inflammatory markers have been associated with both psychosis and 

cardiometabolic disorders, both cross-sectionally and longitudinally (Dandona et al., 2004, 

Khandaker et al., 2014, Upthegrove et al., 2014). MR studies have reported potential causal 

associations between inflammation, particularly CRP and IL-6, and schizophrenia (Hartwig et al., 

2017, Khandaker et al., 2017). CRP and IL-6 are also implicated in the pathogenesis of insulin 

resistance (Kim et al., 2009) and may exaggerate the effects of insulin resistance on psychosis-risk in 

young adults (Perry et al., 2018). However, to the best of my knowledge, no MR studies have 

examined whether inflammation could be pathophysiologically related to insulin resistance and 

schizophrenia, for example, via mediating or common-causal mechanisms. 

Therefore, I have conducted a study to examine evidence in support of four scenarios regarding the 

potential relationships between inflammation, insulin resistance and schizophrenia: a) inflammation 

is a common cause (confounder) between insulin resistance and schizophrenia; b) insulin resistance 

mediates an association between inflammation and schizophrenia; c) inflammation is a common 

cause (confounder) between schizophrenia and insulin resistance; d) schizophrenia mediates an 

association between inflammation and insulin resistance. See Figure 13 for directed acyclic graphs 

(DAGs) illustrating the proposed mechanisms. 
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Figure 13: Directed Acyclic Graphs Outlining Potential Mechanisms of Association between 

Inflammation, Insulin Resistance and Schizophrenia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Aims and Objectives 

First, I carried out MR analyses to test whether ten cardiometabolic traits related to insulin resistance 

(fasting insulin; triglycerides, HDL; LDL; FPG; BMI; glucose tolerance; leptin, glycated HbA1C; 

T2D) could be causally associated with schizophrenia. To test the direction of association, I used 

genetically predicted levels of cardiometabolic traits as exposures and schizophrenia as the outcome, 

and vice versa. Next, I examined whether inflammation could be a shared mechanism linking insulin 

resistance and schizophrenia by including genetic variants for each cardiometabolic trait that were 

also associated with a marker of inflammation. Finally, I used multi-variable MR (MVMR) analysis 

to control for genetic associations of cardiometabolic traits with CRP, an archetypal general 

inflammatory marker that I used as a general measure for systemic inflammation. 
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5.3 Methods 

5.3.1 Selection of Genetic Variants Related to Cardiometabolic Traits and Schizophrenia 

For fasting insulin, triglycerides, and HDL, I used a set of 53 SNPs reported to be associated with 

insulin resistance from a recent meta GWAS of 188,577 European adults which adjusted for BMI 

(Lotta et al., 2017a). In this study, I included SNPs reaching genome-wide significance for the 

corresponding trait. Summary statistics for genome-wide significant SNPs were also obtained for six 

related continuous (FPG, HbA1C, LDL, BMI, leptin, glucose tolerance) and one binary (T2D) 

cardiometabolic traits from recent large GWAS (Table 24). See Appendix C Tables 4-11 for the SNPs 

included for each exposure. I obtained summary statistics for schizophrenia from a recent GWAS 

from the PGC (Pardinas et al., 2018) based on 40,675 cases and 64,643 European controls. The degree 

of sample overlap between exposure and outcome samples was likely to be low since the data were 

obtained from different consortia (Shi et al., 2017).  The study was a secondary analysis of the above 

publicly-available data. Informed consent was sought for all participants per the original GWAS 

protocols, and all ethical approvals for the GWAS were obtained by original GWAS authors.  
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Table 24: GWAS used for SNP Selection in MR Analysis 

Cardiometabolic 
Exposure 

Consortia Ethnic 
Origin 

Sample  Settinga GWAS-
significant 
SNPs, No. 

Inflammati
on-related 
SNPs, No.b 

Fasting Insulin 
(Lotta et al., 
2017) 

MAGIC European 108,557 
(101,393 adults 
and 7,164 
adolescents) 

Meta-GWAS of 19 
European Cohort 
Studies, participants 
with diabetes excluded 

53 5 

Triglycerides 
(Lotta et al., 
2017) 

EPIC-
InterAct, 
FPLD1 

European 188,577 adults Meta-GWAS of 45 
population-based cohort 
studies and case-control 
studies. 

53 5 

HDL (Lotta et al., 
2017) 

EPIC-
InterAct, 
FPLD1 

European 188,577 adults Meta-GWAS of 45 
population-based cohort 
studies and case-control 
studies. 

53 4 

LDL  (Willer et 
al., 2013) 

GLGC 
 
 

European, 
East Asian, 
South 
Asian, 
African 

173,082 adults Meta-GWAS of 45 
population-based cohort 
studies and case-control 
studies. 

79 13 

Fasting Plasma 
Glucose 
(Manning et al., 
2012) 

MAGIC European 58,074 adults Meta-GWAS of 29 
European population-
based cohort studies. 
participants with 
diabetes excluded. 

22 2 

T2D (Mahajan et 
al., 2018) 

DIAGRA
M 

European, 
East Asian, 
South 
Asian, 
Mexican, 
Mexican 
American 

435,387 adults; 
(81,412 with 
T2DM and 
370,832 
controls) 

Meta-GWAS of two 
large prospective 
European cohort studies 

152 7 

BMI (Locke et al., 
2015) 

GIANT European, 
African, 
Asian 

339,224 adults Meta-GWAS of 125 
European cohort 
studies, adjusted for age 

97 6 

HbA1C (Wheeler 
et al., 2017) 

MAGIC European, 
African 
American, 
East Asian, 
South Asian 
 

159,940 adults Meta-GWAS of 82 
population-based cohort 
studies. Participants 
with diabetes excluded. 

60 7 

Glucose 
Tolerance 
(Saxena et al., 
2010) 

MAGIC European 
 

15,234 adults Meta-GWAS of 9 
population-based cohort 
studies. Participants 
with diabetes excluded. 

7 0 

Leptin 
(Kilpeläinen et al., 
2016) 

- European 
 

82,315 adults Meta-GWAS of 32 
population-based cohort 
studies adjusted for age 
and sex. 

5 0 

SNP=Single Nucleotide Polymorphism; GWAS=Genome-Wide Association Study; HDL=High-Density Lipoprotein; 
LDL=Low-Density Lipoprotein; T2D=Type 2 Diabetes Mellitus; BMI=Body Mass Index; HbA1C=Glycated 
Haemoglobin; MAGIC=Meta-Analysis of Glucose and Insulin Related traits Consortium; GLGC=Global Lipids 
Genetics Consortium; DIAGRAM=Diabetes Genetics Replication and Meta-Analysis; GIANT=Genetic Investigation of 
Anthropometric Traits  
aSee original GWAS publication for detailed demographic and setting information for studies included in meta-GWAS.  
bNumber of SNPs with pleiotropy for inflammation at genome-wide significance 
 

 



 

132 
 

69 

5.3.2 Statistical Analysis 

I obtained summary-level data (SNP rs number; b-coefficient or log OR; standard errors or 95% 

confidence intervals; effect allele; other allele; p-value; effect allele frequency; sample size; number 

of cases/controls) from each GWAS. Where a specific instrument SNP was not available in the 

outcome dataset, I located proxy SNPs using LD tagging (r2>0.8) via LDlink (Machiela and Chanock, 

2015). Alleles were harmonised based on matching alleles and the resulting instruments were 

clumped for LD to ensure independence (10,000kb pairs apart, r2<0.001). In the event of palindromic 

SNPs, the forward strand was inferred where possible using allele frequency information. I performed 

bidirectional analysis (i.e., with schizophrenia as exposure and cardiometabolic traits as outcomes) to 

examine direction of association. Statistical analysis was conducted using the TwoSampleMR package 

(v0.5.4) (Hemani et al., 2018) for R (R Core Team, 2017).  

The primary MR analysis method was inverse variance weighted (IVW) regression when at least two 

exposure SNPs were available for analysis. IVW consists of a weighted linear regression of SNP-

exposure SNP-outcome effect estimates. The IVW estimate is the inverse variance weighted mean of 

ratio estimates from two or more instruments (Burgess et al., 2013), and assumes that all SNPs are 

valid instruments or that the sum of directional bias is zero. Since the intercept is an estimate of 

average pleiotropic effects across instrumental variables, in an IVW approach the intercept is fixed 

to 0. When one exposure SNP was available for analysis, I used the Wald ratio method.  

I also conducted weighted median and MR-Egger regression analysis. The weighted median is the 

median of the weighted empirical distribution function of individual SNP ratio estimates. This method 

provides a consistent effect estimate if more than 50% of the information comes from valid SNPs 

(Bowden et al., 2016a). MR-Egger regression consists of a weighted linear regression similar to IVW, 

with the assumption that horizontal pleiotropic effects and SNP-exposure associations are 

uncorrelated (Bowden et al., 2015), therefore the intercept is not fixed. MR Egger regression provides 

a valid effect estimate even if all SNPs are invalid instruments but assumes that uncertainty in the 

SNP-exposure association estimates is negligible (Bowden et al., 2017).  

For the binary outcome of schizophrenia, the estimates for continuous exposures (FI, HDL, 

triglycerides, LDL; FPG; BMI; HbA1C; glucose tolerance, leptin) represent log-odds ratios converted 

into ORs representing the increase in risk of schizophrenia per SD of exposure, and 95% CIs. For 

binary exposures (T2D), the estimates represent the OR for schizophrenia per unit increase in the log-

odds of T2D. For continuous cardiometabolic outcomes, b-coefficients represent the SD increase in 

exposure per unit increase in the log-odds of schizophrenia, with SEs.  
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I performed several sensitivity analyses to check the validity of the results. Heterogeneity among 

SNPs included in each analysis was examined using the Cochran Q test. I checked for horizontal 

pleiotropy using the MR Egger regression intercept alongside a more recent and robust method to 

detect horizontal pleiotropy and outliers, ‘MR pleiotropy residual sum and outlier’ (MR-PRESSO) 

(Verbanck et al., 2018). MR-PRESSO relies on a regression framework where the variants’ effects 

on the outcome are regressed on the same variants’ effects on exposure, with the slope of the 

regression line providing an estimate of the causal effect of the exposure on the outcome (Verbanck 

et al., 2018). The MR-PRESSO global test evaluates overall horizontal pleiotropy amongst all 

instrumental variables in a single MR test by comparing the observed distance of all the variants to 

the regression line (residual sum of squares) to the expected distance under the null hypothesis of no 

horizontal pleiotropy (Verbanck et al., 2018). The MR-PRESSO outlier test evaluates the presence 

of specific horizontal pleiotropic outlier variants by using the observed and expected distributions of 

the tested variant. Finally, the MR-PRESSO distortion test evaluates the significance of the distortion 

between the causal estimate before and after removal of the horizontal pleiotropic outlier variants 

(detected from the outlier test of MR-PRESSO). Using MR-PRESSO, I used the global test to 

examine for horizontal pleiotropy, and where evident, used the method to correct the IVW-estimate 

via outlier removal.  

I examined for measurement error in SNP-exposure associations using the I2GX statistic (Bowden et 

al., 2016b).  

 

5.3.2.1 Analysis using Inflammation-Related SNPs 

Next, I repeated MR analysis using only inflammation-related SNPs for each cardiometabolic risk 

factor as an instrumental variable for the outcome of schizophrenia. I did this to test the hypothesis 

that these SNPs may represent a biological mechanism involving inflammation. This could be via, 

for example, a common causal basis (Panel A in Figure 13) or via vertical (mediating) pleiotropy 

(Hemani et al., 2018) (Panel B in Figure 13). I used Phenoscanner v2 (Staley et al., 2016) to examine 

each SNP associated with each cardiometabolic risk factor, to identify SNPs that were also associated 

with a measure of inflammation, defined as blood concentration/count of cytokines (such as 

chemokines, interferons, interleukins, lymphokines, or tumour necrosis factors), acute phase or 

inflammatory proteins (e.g., CRP), or immune cells (e.g., neutrophils, lymphocytes). Primarily, I 

considered inflammation-related SNPs at genome-wide significance (p<5×10-8) to maximise 

specificity. However, I also performed a sensitivity analysis by including inflammation-related SNPs 

at a less-stringent nominal significance threshold (p<1x10-4) used previously to increase sensitivity 
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toward inflammation-related SNPs (Ligthart et al., 2015). See Appendix C Tables 12-19 for 

inflammation-related SNPs and associated inflammation-related pleiotropy. Using the same method, 

I identified genome-wide inflammation-related schizophrenia SNPs (Appendix C Table 20) and used 

them as instrumental variables in MR analysis examining cardiometabolic traits as outcomes.  

 

5.3.2.2 Adjustment for Inflammation  

As a sensitivity analysis to estimate whether any associations evident above may be explained by 

inflammation, I conducted MVMR analysis (Burgess and Thompson, 2015, Sanderson et al., 2018) 

using the genome-wide significant SNPs for fasting insulin, triglycerides and HDL, representative of 

an insulin resistance phenotype as exposures, with schizophrenia as the outcome, after conditioning 

on the associations of those SNPs with CRP. I chose CRP because it is a widely used downstream 

measure of systemic inflammation, and publicly available data from large-scale GWAS for CRP are 

available. Summary statistics for CRP were obtained from a recent large GWAS based on 204,402 

participants (Ligthart et al., 2018). For CRP as an exposure in MVMR, I used independent SNPs 

reported to be conditionally associated with CRP and located within the CRP gene coding region. See 

Appendix C Table 21. 

 

5.3.2.3 Correction for Multiple Testing 

Statistical significance was estimated using the Holm-Bonferroni correction method (Holm, 1979), 

correcting for the number of exposures tested at each stage of analysis. 

 

5.4 Results 

5.4.1 MR Analyses using All Genetic Variants Associated with IR and Other Cardiometabolic 

Traits 

There was no evidence for associations between genetically-predicted levels of cardiometabolic traits 

and schizophrenia, using the primary IVW analysis method. Evidence using the weighted median 

method for associations between genetically-predicted levels of triglycerides (weighted median 

OR=1.26; 95% C.I., 1.06-1.50; corrected p=0.090) and HDL (weighted median OR=0.79; 95% C.I., 

0.65-0.95; corrected p=0.126) with schizophrenia did not survive correction for multiple testing 

(Table 25). 
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Table 25: MR Analyses of Cardiometabolic Traits and Schizophrenia using All SNPs 

HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein; IVW=inverse variance 
weighted regression; SNPs=single nucleotide polymorphisms; aNumber of SNPs remaining after clumping for 
independence; b Each analysis method (IVW, Weighted Median and MR Egger) corrected using the Holm-Bonferroni 
method for 10 cardiometabolic markers 
Estimates represent ORs for schizophrenia per SD increase in exposure (per unit-increase in log-odds of exposure for 
T2DM) 
 

5.4.2 MR Analyses using Inflammation-Related Genetic Variants for IR and Other 

Cardiometabolic Traits 

After testing only genome-wide significant inflammation-related variants for cardiometabolic traits, 

I found evidence for associations of inflammation-related genetically-predicted fasting insulin (Wald 

Ratio OR=2.95; 95% C.I., 1.38-6.34; corrected p=0.035) and HDL (Wald Ratio OR=0.55; 95% CI, 

0.36-0.84; corrected p=0.035) with schizophrenia. I could not include any genome-wide significant 

inflammation-related variants for triglycerides, leptin, or glucose tolerance. In the sensitivity analysis 

featuring inflammatory-related cardiometabolic variants at a less stringent significance threshold, 

Risk Factor SNPs, 
Na 

Method Odds Ratio (95% C.I.) p-value Corrected 
p-valueb 

Fasting Insulin 9 IVW 1.13 (0.76-1.70) 0.548 1.000 
  Weighted Median 0.98 (0.68-1.41) 0.920 1.000 
  MR Egger 9.24 (1.82-46.97) 0.028 0.280 
Triglycerides 9 IVW 1.16 (0.86-1.56) 0.334 1.000 
  Weighted Median 1.26 (1.06-1.50) 0.009 0.090 
  MR Egger 1.31 (0.84-2.03) 0.308 1.000 
HDL 14 IVW 0.94 (0.71-1.23) 0.649 1.000 
  Weighted Median 0.79 (0.65-0.95) 0.010 0.126 
  MR Egger 0.67 (0.45-0.99) 0.067 0.670 
Fasting Plasma Glucose 18 IVW 1.07 (0.87-1.31) 0.522 1.000 
  Weighted Median 1.01 (0.84-1.23) 0.887 1.000 
  MR Egger 1.13 (0.74-1.74) 0.584 1.000 
Type 2 Diabetes  27 IVW 0.93 (0.78-1.12) 0.470 1.000 
  Weighted Median 0.93 (0.80-1.09) 0.375 1.000 
  MR Egger 1.03 (0.66-1.62) 0.895 1.000 
Body Mass Index 81 IVW 1.05 (0.89-1.24) 0.554 1.000 
  Weighted Median 1.07 (0.92-1.24) 0.383 1.000 
  MR Egger 1.43 (0.97-2.10) 0.103 1.000 
HbA1C 36 IVW 1.01 (0.76-1.32) 0.956 1.000 
  Weighted Median 1.12 (0.82-1.51) 0.483 1.000 
  MR Egger 1.33 (0.79-2.23) 0.295 1.000 
Glucose Tolerance 7 IVW 0.98 (0.85-1.14) 0.800 1.000 
  Weighted Median 1.10 (0.87-1.15) 0.993 1.000 
  MR Egger 1.85 (0.95-3.32) 0.094 0.940 
LDL 74 IVW 0.99 (0.93-1.05) 0.679 1.000 
  Weighted Median 0.97 (0.90-1.03) 0.322 1.000 
  MR Egger 0.98 (0.90-1.07) 0.692 1.000 
Leptin 4 IVW 1.97 (0.90-4.31) 0.091 0.910 
  Weighted Median 1.18 (0.66-2.11) 0.579 1.000 
  MR Egger 3.29 (0.56-17.22) 0.358 1.000 
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evidence persisted for associations of inflammation-related genetically-predicted fasting insulin 

(IVW OR=1.74; 95% C.I., 1.08-2.98; corrected p=0.030) and HDL (IVW OR=0.78; 95% C.I., 0.62-

0.92; corrected p=0.036) with schizophrenia. In addition, there was evidence for an association of 

genetically-predicted inflammation-related triglycerides (IVW OR=1.24; 95% C.I., 1.07-1.55; 

corrected p=0.036) with schizophrenia (Table 26; Figures 14-15).  

 

5.4.3 Adjustment for Inflammation 

MVMR analysis for inflammation-related SNPs of fasting insulin, triglycerides and HDL with 

schizophrenia showed that the univariable associations fully attenuated after controlling for the 

genetic associations of these variants with CRP, in analyses involving both inflammation-related 

SNPs at genome-wide and nominal significance levels. Controlling for CRP had negligible effect on 

MR estimates based on all genetic variants (Tables 27-28; Figure 16). 

 

5.4.4 Test for Bidirectionality using Schizophrenia as Exposure 

I did not find statistically significant MR associations between schizophrenia and any cardiometabolic 

trait after correction for multiple testing (Table 29). Similarly, I did not find statistically significant 

MR associations of inflammation-related schizophrenia variants with cardiometabolic traits after 

correction for multiple testing (Table 30).  

 

 



  

Table 26: MR Analyses of Inflammatory-Related Cardiometabolic SNPs and Schizophrenia 

HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein; IVW=inverse variance weighted regression; SNPs=single nucleotide polymorphisms 
aEach analysis method (IVW, Weighted Median and MR Egger) corrected using the Holm-Bonferroni method; *no identified inflammatory-related SNPs  
Estimates represent ORs for schizophrenia per SD increase in exposure (or per unit-increase in log-odds of binary exposures e.g., T2D 
 

Risk Factor Method Genome-Wide Significant Inflammatory-Related SNPs Nominally Significant Inflammatory-Related SNPs 
SNPs, 
No. 

Odds Ratio (95% C.I.) p-value Corrected p-
valuea 

SNPs, 
No. 

Odds Ratio (95% C.I.) p-value Corrected 
p-valuea 

Fasting Insulin  IVW / Wald Ratio 1 2.95 (1.38-6.34) 0.005 0.035 5 1.74 (1.08-2.98) 0.003 0.030 
 Weighted Median      1.40 (0.83-2.34) 0.203 1.000 
 MR Egger      7.20 (1.03-50.54) 0.141 0.987 
Triglycerides IVW / Wald Ratio 0 * * * 4 1.24 (1.07-1.55) 0.004 0.036 
 Weighted Median      1.26 (1.06-1.50) 0.009 0.063 
 MR Egger      1.29 (1.02-1.63) 0.167 0.987 
HDL  IVW / Wald Ratio 1 0.55 (0.36-0.84) 0.005 0.035 7 0.78 (0.62-0.92) 0.004 0.036 
 Weighted Median      0.77 (0.64-0.94) 0.008 0.056 

 MR Egger      0.68 (0.51-0.91) 0.047 0.288 
Fasting Plasma Glucose IVW 2 1.53 (0.39-5.97) 0.537 1.000 4 1.04 (0.36-2.98) 0.945 1.000 
 Weighted Median      1.08 (0.63-1.86) 0.776 1.000 

 MR Egger      8.44 (0.65-120.54) 0.409 1.000 

Type 2 Diabetes  IVW 7 0.94 (0.59-1.48) 0.776 1.000 10 0.97 (0.71-1.33) 0.850 1.000 
 Weighted Median  1.05 (0.26-4.32) 0.941 1.000  1.05 (0.74-1.48) 0.781 1.000 
 MR Egger  1.40 (0.32-6.08) 0.668 1.000  1.42 (0.59-3.38) 0.458 1.000 
HbA1C IVW 7 1.20 (0.67-2.13) 0.546 1.000 10 1.02 (0.64-1.61) 0.942 1.000 
 Weighted Median  0.93 (0.46-1.85) 0.832 1.000  0.95 (0.54-1.69) 0.865 1.000 
 MR Egger  1.68 (0.39-7.21) 0.508 1.000  1.18 (0.41-3.37) 0.767 1.000 
Body Mass Index IVW 4 1.23 (0.88-1.71) 0.229 1.000 12 1.48 (0.76-2.87) 0.249 1.000 
 Weighted Median  1.15 (0.80-1.65) 0.451 1.000  1.16 (0.85-1.58) 0.350 1.000 
 MR Egger  0.77 (0.33-1.79) 0.650 1.000  3.36 (0.61-18.45) 0.399 1.000 
LDL IVW 13 0.96 (0.79-1.17) 0.687 1.000 23 0.93 (0.79-1.10) 0.420 1.000 
 Weighted Median  0.91 (0.80-1.04) 0.181 1.000  0.91 (0.80-1.04) 0.129 0.987 

 MR Egger  0.81 (0.58-1.14) 0.254 1.000  0.82 (0.62-1.11) 0.220 0.987 
Leptin IVW 0 * * * 2 1.56 (0.77-3.17) 0.221 0.987 
Glucose Tolerance IVW 0 * * * 2 1.06 (0.82-1.56) 0.882 1.000 
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Figure 14: MR Analyses Testing Associations of the Insulin Resistance Phenotype With 
Schizophrenia and Highlighting Inflammation-Related SNPs. 

 

Points in plots represent the association of the genome-wide significant insulin-resistance single nucleotide 

polymorphisms (SNPs) and their association with schizophrenia (Y axis) and the exposure (X axis). SNPs are denoted 

by green points in the plot. Inflammation-related SNPs at genome-wide significance are denoted by a purple border. 

Inflammation-related SNPs at nominal significance are denoted by a red border. Whiskers represent SNP standard 

errors. Lines on the plot represent inverse-variance weighted (>1 SNP) or linear regression (1 SNP) of all-SNPs (green 

line), inflammation-related SNPs at genome-wide significance (purple line) and inflammation-related SNPs at nominal 

significance (red line).  
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Figure 15: MR Analyses Testing Associations between Cardiometabolic Traits and 
Schizophrenia 

 

Forest plot presents ORs and 95% CIs for associations between cardiometabolic traits and schizophrenia using IVW / 

Wald Ratio MR analyses based on all single nucleotide polymorphisms (SNPs) associated with each risk factor (green), 

inflammation-related SNPs at genome-wide significance (purple), and inflammation-related SNPs at nominal significance 

(red). See Table 26 for the number of SNPs used in each analysis. HDL=High Density Lipoprotein; T2DM=Type 2 

Diabetes Mellitus; BMI=Body Mass Index; FPG=Fasting Plasma Glucose; LDL=Low-Density Lipoprotein; 

HbA1C=Glycated Haemoglobin; Glucose Tol= Glucose Tolerance. 
 

 



 

140 

 

69 

Table 27: Multivariable MR (MVMR) Results for Insulin Resistance-Phenotype Exposures 
(All-SNP analysis) with Addition of CRP as Exposure 

 

 

 

 
 

CRP=C-reactive protein; HDL=high-density lipoprotein; SNPs=single nucleotide polymorphisms 
aResults for IVW MVMR analysis; bI did not perform univariable MR analysis for CRP since this was not a goal of the 

study. Univariable MR has been conducted and replicated for CRP and estimates are published elsewhere (Lin et al., 

2019, Hartwig et al., 2017) 

 
 

 

Table 28: Multivariable MR (MVMR) Results for Insulin Resistance-Phenotype Exposures 
(Inflammation-Related-SNP analysis) with Addition of CRP as Exposure 

CRP=C-reactive protein; HDL=high-density lipoprotein; SNPs=single nucleotide polymorphisms 
aResults for IVW MVMR analysis; bI did not perform univariable MR analysis for CRP since this was not a goal of the 

study. Univariable MR has been conducted and replicated for CRP and estimates are published elsewhere (Lin et al., 

2019, Hartwig et al., 2017) 

 

 

 

 

 

 

 

 

 

Risk Factor no. SNPs Odds Ratio (95% C.I.)a P-value 

Fasting Insulin 10 0.96 (0.66-1.38) 0.813 

CRP 2 0.88 (0.62-1.23)b 0.456 
Triglycerides 10 0.98 (0.88-1.10) 0.756 

CRP 2 1.00 (0.0.65-1.56)b 0.987 
HDL 15 1.00 (0.86-1.18) 0.937 

CRP 2 0.92 (0.71-1.76)b 0.489 

Risk Factor Genome-Wide Significant 
Inflammation-Related SNPs 

Nominally Significant Inflammation-
Related SNPs 

no. 
SNPs 

Odds Ratio (95% C.I.)a P-
value 

no. 
SNPs 

Odds Ratio (95% CI)a P-
value 

Fasting Insulin 1 1.02 (0.37-2.78) 0.975 5 1.46 (0.85-2.51) 0.307 

CRP 2 0.94 (0.40-2.18)b 0.881 2 1.27 (0.80-2.02) 0.308 

Triglycerides - - - 4 1.06 (0.91-1.25) 0.447 

CRP - - - 2 0.70 (0.45-1.45) 0.343 

HDL 1 1.00 (0.85-1.16) 0.849 7 0.99 (0.81-1.21) 0.731 

CRP 2 0.90 (0.72-1.12)b 0.367 2 0.90 (0.76-1.08) 0.251 
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Figure 16: Multivariable MR Analysis Testing Associations between Insulin Resistance 
Phenotypes and Schizophrenia After Controlling for Genetic Associations with CRP 

 

 

Forest plot presents ORs and 95% CIs for associations between insulin resistance phenotypes and schizophrenia using 

IVW / Wald Ratio MR and MVMR analyses based on all single nucleotide polymorphisms (SNPs) associated with each 

risk factor and unadjusted for CRP (dark green), all SNPs associated with each risk factor and adjusted for CRP (light 

green), inflammation-related SNPs at genome-wide significance and unadjusted for CRP (dark purple), inflammation-

related SNPs at genome-wide significance and adjusted for CRP (light purple), inflammation-related SNPs at nominal 

significance and unadjusted for CRP (dark red), and inflammation-related SNPs at nominal significance and adjusted for 

CRP (light red). See Tables 27 and 28 for the number of SNPs used in each analysis. HDL=High Density Lipoprotein. 
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Table 29: Bidirectional MR Analyses Using All SNPs for Schizophrenia With Cardiometabolic 
Outcomes 

HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein; SNPs=single nucleotide 

polymorphisms; IVW=inverse variance weighted regression; b=beta coefficient; S.E=standard error. aAdjusted using the 

Holm-Bonferroni method for multiple testing. 

 

 

 

 

 

 

 

Outcome SNPs, 
No. 

Method b (S.E) P-value Corrected 
p-valuea 

Fasting Insulin 101 IVW 0.01 (0.02) 0.496 1.000 

  Weighted Median 0.02 (0.02) 0.268 1.000 

  MR Egger -0.05 (0.08) 0.542 1.000 

Triglycerides 101 IVW 0.00 (0.02) 0.970 1.000 

  Weighted Median 0.00 (0.03) 0.987 1.000 

  MR Egger 0.05 (0.11) 0.642 1.000 

HDL 101 IVW -0.02 (0.03) 0.521 1.000 

  Weighted Median -0.01 (0.03) 0.901 1.000 

  MR Egger -0.04 (0.05) 0.051 0.510 

Fasting Plasma Glucose 105 IVW 0.01 (0.01) 0.339 1.000 

  Weighted Median 0.01 (0.01) 0.454 1.000 

  MR Egger 0.00 (0.06) 0.994 1.000 

Type 2 Diabetes 109 IVW -0.01 (0.06) 0.845 1.000 

  Weighted Median 0.00 (0.08) 1.000 1.000 

  MR Egger 0.14 (0.30) 0.645 1.000 

Body Mass Index 101 IVW -0.03 (0.02) 0.220 1.000 

  Weighted Median -0.03 (0.02) 0.146 1.000 

  MR Egger 0.18 (0.10) 0.081 0.729 

HbA1C 104 IVW 0.01 (0.01) 0.911 1.000 

  Weighted Median 0.01 (0.02) 0.730 1.000 

  MR Egger 0.01 (0.07) 0.948 1.000 

Glucose Tolerance 101 IVW 0.08 (0.07) 0.278 1.000 

  Weighted Median 0.12 (0.10) 0.233 1.000 

  MR Egger 0.24 (0.35) 0.496 1.000 

LDL 101 IVW -0.06 (0.03) 0.079 0.790 

  Weighted Median -0.06 (0.05) 0.080 0.800 

  MR Egger -0.22 (0.14) 0.113 0.904 

Leptin 101 IVW 0.02 (0.02) 0.239 1.000 

  Weighted Median 0.01 (0.03) 0.677 1.000 

  MR Egger -0.02 (0.09) 0.810 1.000 
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Table 30: Bidirectional MR Analyses Using Inflammation-Related SNPs for Schizophrenia 
With Cardiometabolic Outcomes 

HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein; SNPs=single nucleotide 

polymorphisms; IVW=inverse variance weighted regression; b=beta coefficient; S.E=standard error. aAdjusted using the 

Holm-Bonferroni method for multiple testing. 

 

5.4.5 Test for Horizontal Pleiotropy  

Using the MR-Egger regression intercept test, I found evidence of potential horizontal pleiotropy for 

BMI and HDL in the all-SNP analysis, but no evidence for horizontal pleiotropy for any 

cardiometabolic exposure in the inflammation-related SNP analysis. Using MR-PRESSO however, I 

found evidence that horizontal pleiotropy was likely to have affected estimates for all cardiometabolic 

exposures in the all-SNP analysis (p value for global test all ≤0.020), and both LDL and T2D in the 

inflammation-related SNP analysis. Following MR-PRESSO outlier correction, evidence 

strengthened for the association of triglycerides with schizophrenia in the all-SNP analysis (MR-

PRESSO IVW b=0.23, S.E. 0.06, p=0.008), but outlier-corrected IVW estimates for other exposures 

Outcome SNPs, 
No. 

Method b (S.E) P-value Corrected P-
valuea 

 
Fasting Insulin 3 IVW 0.04 (0.05) 0.409 1.000 

  Weighted Median 0.03 (0.06) 0.666 1.000 

  MR Egger 0.00 (0.09) 0.976 1.000 

Triglycerides 3 IVW 0.20 (0.09) 0.034 0.340 

  Weighted Median 0.20 (0.08) 0.009 0.090 

  MR Egger 0.28 (0.30) 0.306 1.000 

HDL 1 Wald Ratio -0.26 (0.21) 0.202 1.000 

LDL 3 IVW 0.11 (0.07) 0.953 1.000 

  Weighted Median 0.06 (0.07) 0.341 1.000 

  MR Egger -0.01 (0.10) 0.895 1.000 

Body Mass Index 4 IVW -0.02 (0.09) 0.750 1.000 

  Weighted Median 0.00 (0.05) 0.832 1.000 

  MR Egger 0.05 (0.02) 0.705 1.000 

Type 2 Diabetes  3 IVW -0.18 (0.34) 0.598 1.000 

  Weighted Median 0.10 (0.30) 0.729 1.000 

  MR Egger 0.24 (0.80) 0.789 1.000 

Fasting Plasma Glucose 4 IVW -0.02 (0.07) 0.780 1.000 

  Weighted Median -0.05 (0.04) 0.317 1.000 

  MR Egger -0.16 (0.10) 0.258 1.000 

HbA1C 3 IVW -0.07 (0.07) 0.269 1.000 

  Weighted Median 0.06 (0.05) 0.137 1.000 

  MR Egger -0.18 (0.12) 0.292 1.000 

Glucose Tolerance 4 IVW 0.12 (0.26) 0.648 1.000 

  Weighted Median 0.10 (0.31) 0.732 1.000 

  MR Egger -0.09 (0.49) 0.872 1.000 

Leptin 4 IVW -0.03 (0.07) 0.646 1.000 

  Weighted Median -0.04 (0.08) 0.619 1.000 

  MR Egger -0.10 (0.12) 0.526 1.000 
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were not significantly altered. In bidirectional analyses, both MR-PRESSO and the MR-Egger 

regression intercept suggested horizontal pleiotropy affecting the outcomes of HDL, BMI, and LDL 

(all p<0.05). There was evidence for a weak protective effect of schizophrenia on BMI following 

outlier correction (b=-0.04, S.E. 0.02, p=0.014). MR-PRESSO additionally revealed possible 

horizontal pleiotropy affecting the outcomes of fasting insulin, triglycerides and T2DM (p for MR-

PRESSO global test all <0.05), but outlier-corrected IVW estimates were not significantly altered. 

See Appendix C Tables 22-29 for full horizontal pleiotropy sensitivity analysis results. 

 

5.4.6 Test for Heterogeneity of Instruments 

In the analyses based on all-SNPs, the majority of cardiometabolic traits demonstrated evidence of 

heterogeneity, which was reduced in the inflammation-related SNP analysis. See Appendix C Tables 

22-29 for full heterogeneity of instruments sensitivity analysis results. 

 

5.4.7 Test for Measurement Error 

Results for the I2GX  tests for SNP-exposure associations revealed some evidence for potential 

measurement error which may have biased MR Egger analyses in the analyses with leptin, glucose 

tolerance, T2DM and schizophrenia as exposures. See Appendix C Table 30.
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5.5 Discussion 

I conducted bidirectional uni- and multi-variable two-sample MR analyses using large publicly 

available genomic datasets to first examine for associations that support a causal relationship between 

insulin resistance/related cardiometabolic traits and schizophrenia, and second, to examine whether 

there is evidence in support of the hypothesis that inflammation may be a common causal mechanism 

for insulin resistance and schizophrenia. Using the primary IVW analysis method, I did not find 

evidence supporting a causal association between genetically predicted cardiometabolic traits and 

schizophrenia. However, I found weak evidence using the weighted median method to support a 

causal association of genetically predicted levels of triglycerides and HDL with schizophrenia, but 

these associations did not survive correction for multiple testing, and the estimates may have been 

affected by horizontal pleiotropy.  

I found more consistent evidence for an association of an insulin resistance phenotype of fasting 

insulin, triglycerides, and HDL (Lotta et al., 2017a) with schizophrenia when I examined only genetic 

variants also associated with inflammation. Using two p-value cut-offs for inflammation-related 

SNPs, I found that the strength of association with schizophrenia increased as the specificity toward 

inflammation-related SNPs increased. In MVMR analyses adjusting for CRP, those estimates 

attenuated to the null. I found no evidence in bidirectional analyses supporting a causal relationship 

of schizophrenia with insulin resistance (Panels C&D in Figure 13). Together, the results are therefore 

most consistent with inflammation as a common cause for insulin resistance and schizophrenia (Panel 

A in Figure 13). 

Three aspects of the results point toward inflammation as a common cause for insulin resistance and 

schizophrenia. First, I did not find convincing evidence for a causal relationship between insulin 

resistance and schizophrenia (likely ruling out Panel B in Figure 13). Second, in the analyses of 

inflammation-related variants for the cardiometabolic traits, I found more consistent evidence 

supporting a potential causal relationship of fasting insulin, HDL and triglycerides with 

schizophrenia, and the strength of association with schizophrenia increased as the specificity toward 

inflammation-related SNPs increased. Third, I used MVMR to evidence that after controlling for 

CRP, an archetypal generalized marker of inflammation, the associations between inflammation-

related genetic variants for insulin resistance and schizophrenia wholly attenuated. This result 

suggests that the observed associations for the inflammation-related variants are at least in part 

explained by inflammation. Together, the results are consistent with the idea that inflammation may 

be a common causal mechanism for insulin resistance and schizophrenia.  
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Evidence for a common-causal mechanism between insulin resistance and schizophrenia may help to 

explain why schizophrenia is associated with higher rates of insulin resistance even in the early stages 

of illness when the cumulative effects of medication and lifestyle factors are relatively small (Perry 

et al., 2016, Pillinger et al., 2017a). Anti-inflammatory agents, of which several have shown promise 

in treating the symptoms of schizophrenia (Cakici et al., 2019), should therefore be considered a 

putative therapeutic target for the prevention or treatment of cardiometabolic disorders in 

schizophrenia. 

I used CRP, an archetypal downstream inflammatory marker, as a means of gauging the effect of 

systemic inflammation in MVMR analysis, rather than hypothesizing a specific role for CRP in the 

relationship between insulin resistance and schizophrenia. Nevertheless, CRP has observationally 

shown in both cross-sectional (Fernandes et al., 2016) and longitudinal (Metcalf et al., 2017) research 

to be associated with schizophrenia. However, such findings are limited by the potential for residual 

confounding and reverse causality. Interestingly, MR findings have reported that genetically 

predicted CRP may have a protective effect on schizophrenia (Hartwig et al., 2017), with authors 

positing that a genetically attenuated ability to produce CRP may predispose to more insidious and 

chronic infections. In MVMR analysis, attenuation of insulin resistance-schizophrenia associations 

after controlling for CRP is consistent with inflammation being associated with both exposure and 

outcome, albeit 'negatively' with the latter. Further research is needed to explore potential 

mechanisms of association between CRP and schizophrenia.  

Many of the SNPs included in the inflammation-related analysis were associated with neutrophils and 

lymphocytes. A raised neutrophil to lymphocyte ratio (NLR) is a marker of systemic inflammation 

and is known to be associated with schizophrenia (Karageorgiou et al., 2018) and insulin resistance 

(Lou et al., 2015). However, I could not identify large GWAS studies conducted in European 

populations for NLR or for other inflammatory markers, which I might have used in MVMR analyses 

in place of CRP.  

Based on the current results, one cannot completely rule out the possibility that insulin resistance may 

mediate an inflammation-schizophrenia association (Panel B in Figure 13). There was weak evidence 

that did not survive correction for multiple testing for an association of triglycerides and HDL with 

schizophrenia using the weighted median method. In the MR-PRESSO sensitivity analysis, evidence 

from the outlier-corrected IVW analysis suggested a possible association between triglycerides and 

schizophrenia. These findings are broadly similar to one previous MR study (Polimanti et al., 2017), 

which reported only weak evidence of an association between HOMA-IR and schizophrenia. Another 

MR study (Li et al., 2018) reported a genetic association between fasting insulin and schizophrenia, 

although the evidence attenuated after adjustment for BMI. To account for BMI, I obtained summary 
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statistics for genetic variants related to insulin resistance after controlling for BMI (Lotta et al., 

2017b). The previous MR study included an ethnically heterogeneous sample, increasing the potential 

for population stratification bias. I used genetic data from a more ethnically homogenous GWAS of 

schizophrenia (Pardinas et al., 2018). Nevertheless, while the results in the all-SNP analysis suggested 

weak evidence for triglycerides and HDL, which may reflect an insulin resistance phenotype, the 

evidence did not survive correction for multiple testing and requires replication in future when larger 

GWAS samples are available. 

Regarding additional findings, after outlier correction, I found that schizophrenia had a weak 

protective effect on BMI. This finding complements estimates from previous research, which has 

reported a negative genetic correlation between schizophrenia and BMI (Bahrami et al., 2020). This 

finding suggests that weight gain associated with schizophrenia is unlikely to be a feature of the 

illness itself but could be attributed to iatrogenic or lifestyle effects. Moreover, the 'lean insulin 

resistance' phenotype may be associated with higher levels of inflammation (Ding et al., 2016). In 

addition, the 'lean' nature of the phenotype may mean that critical cardiometabolic investigations may 

be overlooked, particularly in younger patients. 

Strengths of this study include the use of a large set of cardiometabolic traits and large GWAS 

datasets, through which I could test specific biological mechanisms. I selected SNPs reaching 

genome-wide significance from large GWAS and meta-GWAS for insulin resistance and related 

cardiometabolic traits. I performed a comprehensive set of sensitivity analyses to check the validity 

and robustness of the findings. Furthermore, whilst weak-instrument bias may be a factor in MR 

analysis, in two-sample MR this bias tends toward the null (Davies et al., 2015) so would not explain 

the positive associations described in this study. I corrected for multiple testing to minimise potential 

type I error. 

This study has some limitations. I did not select SNPs in known coding regions for the exposures, for 

example, the IRS-1 gene for insulin resistance (Carvalho et al., 1999). I took this step on the 

assumption that many mechanisms at play may not yet be fully understood. For example, whilst the 

heritability of cardiometabolic traits such as obesity is as high as 70%, the variance currently 

explained by known genetic variants is a small fraction of this (Herrera et al., 2011). In addition, 

selecting SNPs from many different GWAS studies featuring large sample sizes may increase the risk 

of sample-overlap between exposure and outcome samples and can bias the results in either direction, 

depending on the proportion of overlap (Hemani et al., 2018). Also, for the primary inflammation-

related SNP analysis, I chose a stringent p-value threshold to define inflammation-related SNPs. In 

doing so, I may have overlooked some SNPs with genuine inflammatory associations. As a result, 

only one genome-wide significant inflammation-related genetic variant was included in the analysis 
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of fasting insulin and HDL, and none could be included for triglycerides. Therefore, these results 

should be considered with caution. However, I attempted to address this limitation by relaxing the p-

value threshold for inflammation-related SNPs, thereby allowing a larger number of SNPs to be 

included, and the results for fasting insulin, HDL and triglycerides were consistent. Yet, the inclusion 

of inflammation-related genetic variants at a relaxed significance threshold may have increased the 

risk of weak instrument bias for those analyses. In the future, better-powered GWAS may identify 

more SNPs for analysis and at greater resolution, potentially unearthing a larger number of 

inflammation-related SNPs and at greater strength of association, which would be helpful to confirm 

the findings.  

Additionally, the full range of gene products from the genetic variants I used as proxies for the 

cardiometabolic traits is unknown. So, I cannot comment on potential biological mechanisms of 

association other than inflammation, which may also be relevant. Finally, the analyses were based on 

primarily European participants, so it is unclear whether the results of this study apply to other 

populations. Large-scale GWAS and replication of these analyses in different populations are 

required to answer this question. 

In conclusion, it is well established that certain antipsychotic drugs and lifestyle factors such as 

smoking, lack of exercise and poor diet are important contributors to cardiometabolic comorbidity in 

people with schizophrenia. In addition, the findings from this study suggest that inflammation may 

be a common cause for schizophrenia and insulin resistance, which may at least partly explain why 

they so commonly co-occur in clinical practice. Lifestyle modification and careful prescription of 

certain antipsychotic medications remain crucial malleable targets to reduce the significant impact of 

comorbid cardiometabolic disorders on the quality and length of life in people with schizophrenia. 

However, findings from this study suggest that targeting inflammation could be an important 

therapeutic target for the treatment and prevention of cardiometabolic disorders in people with 

schizophrenia. 
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Section C: Summary of Main Findings and Conclusions 

In Chapter 3, using prospective ALSPAC data, I report that genetic predisposition for disrupted 

glucose-insulin homeostasis was associated with an increased risk of schizophrenia-spectrum 

outcomes at age 18 years and vice versa. These findings provide evidence for shared genetic liability 

for comorbid schizophrenia and disrupted glucose-insulin homeostasis. I also report evidence for a 

mediating effect of childhood inflammation on the association between genetic predisposition for 

disrupted glucose-insulin homeostasis and psychosis risk in adulthood. These results suggest that 

genetic variation may influence biological pathways leading to inflammatory changes, which in turn 

increases the risk of both disrupted glucose-insulin homeostasis and schizophrenia in adulthood.  

In Chapter 4, I found further evidence from large samples that cardiometabolic and inflammatory 

traits share genetic overlap with schizophrenia. I also found a set of biologically plausible common-

causal variants that could influence biological pathways, particularly involving BDNF and glucose 

transport, which could influence inflammation, glucose-insulin homeostasis, and risk of 

schizophrenia.  

In Chapter 5, using MR, I found evidence supporting that inflammation-related insulin resistance may 

be causally related to schizophrenia. These findings suggest that inflammation may be a common 

cause of schizophrenia and comorbid cardiometabolic disorders. 

Together, the results from Chapters 3-5 comprising Section C suggest that a summation of genetic 

variation may influence biological pathways leading to changes in inflammation/immune function, 

which in turn increases the risk of both disrupted glucose-insulin homeostasis and schizophrenia. 
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IMPROVING THE PREDICTION OF 

CARDIOMETABOLIC RISK IN SCHIZOPHRENIA 
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Section D Summary 

In Section D, I aimed to examine and improve the clinical prediction of cardiometabolic risk in 

schizophrenia. In this section, I focussed my attention on young people at the onset of psychotic 

illness since primary prevention is the best means to reduce the risk of adverse cardiometabolic 

outcomes (Weintraub et al., 2011).  

Therefore, in Chapter 6, I performed a systematic review of cardiometabolic risk prediction 

algorithms developed either for the general or psychiatric populations and examined whether they 

may be suitable for young people with psychosis. In this detailed review of over 100 studies, I found 

that all existing algorithms were developed in relatively older adults; most were at high risk of bias; 

most were not externally validated; and few considered relevant predictors such as antipsychotic 

medication. Further, I performed a validation analysis in ALSPAC of three cardiometabolic risk 

prediction algorithms commonly used in clinical practice, testing their predictive ability in a sample 

of young adults who had/were at risk of developing psychosis. I found that the algorithms 

substantially underpredicted cardiometabolic risk in the younger psychosis-risk population. 

Therefore, I concluded no existing cardiometabolic risk prediction algorithms can be recommended 

for use in young people with psychosis. Findings from this study have been published in Acta 

Psychiatrica Scandinavica (Perry et al., 2020c). See Appendix D for the published manuscript. 

Given the lack of an appropriate algorithm for young people with psychosis, in Chapter 7, I used 

patient data from three EIS to develop and externally validate the first cardiometabolic risk prediction 

algorithm tailored specifically for young people with psychosis, the Psychosis Metabolic Risk 

Calculator (PsyMetRiC). I developed two versions of PsyMetRiC, one with and one without 

biochemical results for clinical practicality. I developed PsyMetRiC in consultation with a young 

person’s advisory group to maximise patient acceptability. I performed a detailed set of analyses to 

examine the predictive performance and potential clinical usefulness of PsyMetRiC, and developed 

an online data visualisation app. The findings from this study have been accepted for publication in 

The Lancet Psychiatry. The manuscript is currently at the proofing stage with the journal. 
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Chapter 6 
: 
 
Cardiometabolic Risk Prediction Algorithms for Young People with 
Psychosis: A Systematic Review and Validation Analysis 
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6.1 Introduction 

Physical comorbidity is a leading cause of significantly higher mortality rates and reduced life 

expectancy for people with schizophrenia compared with the general population (Laursen et al., 2019, 

Plana-Ripoll et al., 2019, Plana-Ripoll et al., 2020). Therefore, there is a clear and crucial need for 

clinical tools to identify cardiometabolic risk in this group in order to optimise care and improve long-

term outcomes. Yet, a recent report of a small sample of people with chronic schizophrenia suggests 

that some commonly used cardiometabolic risk prediction algorithms return differing risk prediction 

scores when tested on the same participants. This calls into question the reliability and suitability of 

such algorithms for relatively older people with chronic schizophrenia, let alone young people with 

psychosis (Berry et al., 2018). 

Recent evidence suggests that the physical comorbidity associated with schizophrenia starts early. 

Markers of developing cardiometabolic disorders are a feature that distinguish cases of first-episode 

psychosis from matched general population controls (Perry et al., 2016, Pillinger et al., 2017a) and 

are associated with young adults at risk of developing psychosis (Perry et al., 2018). The field of early 

intervention in psychosis rests on the premise that intervening early could improve longer-term 

outcomes, and this premise applies equally to the treatment of cardiometabolic disorders. Therefore, 

cardiometabolic risk prediction algorithms may be a valuable tool for healthcare professionals to help 

tailor treatment plans for young people with psychosis that could help to reduce both long-term 

physical and psychiatric morbidity. However, such a tool could only be clinically useful if the 

predictions it makes are accurate. It is unclear as to whether this may or may not be the case.  

 

6.2 Aims and Objectives 

I conducted a systematic review to identify and compare existing cardiometabolic risk prediction 

algorithms developed for the general or psychiatric populations and consider their suitability for 

young people with psychosis. Next, I performed an exploratory validation analysis using data from 

ALSPAC to examine the predictive performance of any algorithms highlighted as potentially suitable 

by the review in a sample of young adults with or at risk of developing psychosis. To explore the 

impact of age on predictive performance, I reassessed model performance after artificially increasing 

the age of participants to the mean age of the original algorithm development study, leaving all other 

predictors unchanged.  
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6.3 Methods 

6.3.1 Systematic Review 

6.3.1.1 Literature Search 

I conducted a systematic literature search of EMBASE (1947-present), Ovid MEDLINE (1946-

present), PsychINFO (1806-present), Web of Science (from inception), and the first twenty pages of 

Google Scholar (Haddaway et al., 2015) to 1st December 2019. I also searched the references of 

included studies. The search strategy is presented below. MeSH headings (denoted with *) and text 

terms were used: 

 

Group 1: metabolism* (OR) metabolic* (OR) diabetes mellitus* (OR) cardiovascular diseases* 

(OR) obesity* (OR) cardiometabolic 

(AND) 

Group 2: risk assessment* (OR) risk* (OR) outcome assessment* (OR) patient outcome assessment* 

(OR) prognosis* 

(AND) 

Group 3: calculator (OR) computers* (OR) algorithms* (OR) software* (OR) tool. 

 

I applied the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-analyses) 

guidelines (Moher et al., 2009). The systematic review was registered on PROSPERO 

(CRD42019150377). 

 

6.3.1.2 Study Selection 

The inclusion criteria were as follows;  

(1) Studies reporting the development and/or validation of cardiometabolic risk algorithms designed 

for either the general or psychiatric populations;  

(2) studies which: reported in combination the development and validation (internal or external) of 

an original algorithm; reported the development but not validation of an algorithm; reported the first 

validation of a previously developed but not validated algorithm; or reported a new recalibration of a 

previously developed algorithm;  
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(3) Cardiometabolic risk was defined as CVD (stroke, myocardial infarction, hypertension, unstable 

angina) and its pre-determinants including T2D, prediabetes, obesity, or dyslipidaemia;  

(4) Studies reported in any language;  

(5) Published and unpublished research, conference proceedings and academic theses.  

 

The exclusion criteria were as follows:  

(1) algorithms designed specifically for other defined health groups (e.g., post-operative patients or 

patients with any physical health diagnoses at baseline);  

(2) studies reporting validation without recalibration of previously validated algorithms. 

 

Titles and abstracts were screened independently by three researchers (Dr Benjamin Perry; Mr Owen 

Crawford; Miss Soomin Jang) prior to full-text screening. Any discrepancies were resolved in 

consultation with a senior researcher (Professor Golam Khandaker). Data were extracted from studies 

that met the inclusion criteria. Searches were re-run immediately prior to the final analyses, and 

further studies retrieved for inclusion using the processes outlined above. 

 

6.3.1.3 Data Extraction and Synthesis 

I extracted data on general characteristics (e.g., population, location, study type, type of risk 

predicted), the characteristics of included participants (e.g., age, sex, ethnicity), and characteristics of 

the developed/validated algorithms (e.g., included predictors, algorithm performance statistics). Risk 

of bias was assessed using the 'Prediction model Risk Of Bias Assessment Tool' (PROBAST) (Wolff 

et al., 2019), which aims to identify shortcomings in study design, conduct, or analysis that could lead 

to systematically distorted estimates of model predictive performance. PROBAST includes four 

domains for potential sources of bias in prediction model studies (participants, predictors, outcome, 

and analysis) which are then summarised by an overall judgement; either low-risk, high-risk or 

unclear-risk of bias (Wolff et al., 2019). I plotted the range and frequency of predictors included in 

studies. I illustrated the relative weighting of different predictors in the single included study that 

featured psychiatric predictors. Algorithm performance was compared using statistics relating to 

model discrimination (how well an algorithm discriminates people at higher-risk from people at 

lower-risk, e.g. Harrell's C Statistic, where a score of 1.0 indicates perfect discrimination, and a score 

of 0.5 indicates the model is no better than chance) and model calibration (the accuracy of absolute-
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risk estimates, e.g. calibration plots) (Alba et al., 2017). I also examined the events-per-variable ratio 

(EPV) (the ratio of outcome events: predictors considered in algorithm development) of each study 

to assess the potential risk for model overfit (Peduzzi et al., 1996). An EPV of 10 or more had 

previously been considered satisfactory (Pavlou et al., 2015), though more recently, higher EPV ratios 

are often advised (Ogundimu et al., 2016). Where an EPV ratio was not reported, I calculated it where 

possible from the information available in the study. Finally, I considered the likely suitability of 

included algorithms for young people with psychosis. I summarized and compared studies with a 

narrative synthesis (Rodgers, 2009).  

 

6.3.2 Exploratory Validation Analysis 

6.3.2.1 Data Source 

See Section 2.3.1 for a full description of the ALSPAC cohort. Ethical approval for the study was 

obtained from the ALSPAC Ethics and Law Committee and Local Research Ethics Committees. All 

participants provided informed consent.  

 

6.3.2.2 Study Sample 

I included participants who at either age 18 or 24 years were identified as experiencing PEs or 

psychotic disorder. See Section 2.3.3 and Section 3.3.2 for detail on assessment of PEs and psychotic 

disorder at age 18 and 24 years. I excluded participants who already met the outcome criteria at age 

18 years, and participants who had missing data on all included variables. Additionally, I conducted 

a post-hoc sensitivity analysis to examine the potential impact of sample size; I reperformed the 

analysis including all participants from the total ALSPAC sample at age 18 years who did not meet 

the criteria for the outcome at age 18 years, and who did not have missing data on all included 

variables. In total, after exclusions, I included 505 participants. See Appendix D Figures 1-2 for flow-

charts of included participants. 

 

6.3.2.3 Outcome 

I used the harmonized definition (Alberti et al., 2009) of the metabolic syndrome measured at age 

24y as the outcome, which it is an established precursor of T2D (Shin et al., 2013) and CVD (Wilson 

et al., 2005), and is an appropriate cardiometabolic outcome for young adults. See Table 2 for the 

diagnostic criteria. For blood-based predictors (FPG, HDL and triglycerides), fasting samples were 
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taken at 0900 after a 10-hour fast (water only) at age 18 years.  Samples were immediately spun, 

frozen and stored at –80oC and measurements were assayed within 3 to 9 months of the samples being 

taken with no previous freeze-thaw cycles. FPG was measured by an ultrasensitive ELISA (Mercodia, 

Uppsala, Sweden) automated microparticle enzyme immunoassay. Its sensitivity was 0.07 mU/L, and 

inter- and intra-assay coefficients of variation were <6%. Plasma lipid concentrations were measured 

by modification of the standard Lipid Research Clinics Protocol by using enzymatic reagents for lipid 

determination.  

 

6.3.2.4 Predictors 

I included all available predictors from QRISK3 (Hippisley-Cox et al., 2017), QDiabetes (Hippisley-

Cox and Coupland, 2017) and PRIMROSE (Osborn et al., 2015), which were the three algorithms 

highlighted as being potentially the most suitable for young people with psychosis. These included 

age, Townsend deprivation score, body mass index (BMI), ethnicity, smoking, antipsychotic 

medication use, antidepressant use, corticosteroid use, psychosis, depression, family history of 

cardiovascular disease or type 2 diabetes, hypertension, FPG, cholesterol:HDL ratio, systolic blood 

pressure, total cholesterol, HDL, alcohol intake, and year of assessment. See Appendix D Methods & 

Appendix D Table 1 for a detailed description of the coding and assessment of predictors. 

 

6.3.2.5 Missing Data 

To address the impact of missing data, I used multiple imputation using chained equations (MICE) 

(Buuren, 2011) for variables which: 1) had <40% missing data (Lee, 2011) from the sample of 

participants with data on the outcome; 2) had suitable auxiliary variables available to use as 

‘indicators of missingness’, to reduce the impact of bias attributed by the risk of data being ‘missing 

not at random’ (Dong and Peng, 2013). Auxiliary variables were selected based upon contributing to 

reducing the fraction of missing information (Madley-Dowd et al., 2019). Multiple imputation of 10 

datasets was used to replace missing continuous predictor data, using the MICE package (Buuren, 

2011) in R (R Core Team, 2017). Equivalent biochemical and questionnaire data taken at age 15 years 

were included as auxiliary predictor variables in MICE. Box-and-Whisker and Density plots were 

used to check similarities of observed and imputed data. Rubin’s rules were used to pool analyses. 
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6.3.2.6 Statistical Analysis 

Estimated six-year risk estimates for metabolic syndrome were calculated for QDiabetes (Hippisley-

Cox and Coupland, 2017), QRISK3 (Hippisley-Cox et al., 2017) and PRIMROSE (Osborn et al., 

2015), by applying the published fully-specified algorithms to the sample. QDiabetes and 

PRIMROSE comprise different models depending on the availability of blood test results. Therefore, 

I used the model which performed best in the original model development studies (Hippisley-Cox 

and Coupland, 2017, Osborn et al., 2015). For QDiabetes, the best performing model included FPG; 

for PRIMROSE, the best performing model included lipids. QDiabetes and QRISK3 estimate risk 

separately for males and females. Algorithm performance was assessed using measures of 

discrimination (Harrell’s C-statistic and R2); and a measure of calibration (calibration plots). 

Calibration plots included grouped observations, which were split at each 0.2 of predicted risk. First, 

I calculated model performance using actual participant age (18y). To assess the impact of age on 

model performance, I artificially substituted every participants’ age in ALSPAC to the mean age from 

the original algorithm development study (QDiabetes=44.9y; QRISK3=42.9y; PRIMROSE=49.5y), 

leaving all other predictors unchanged. I re-ran each algorithm and compared the model performance 

statistics described above. Statistical analysis was carried out in R version 3.6.0 (R Core Team, 2017). 

 

6.4 Results 

6.4.1 Systematic Review 

6.4.1.1 Study Selection and Quality Assessment 

The literature search returned 7,744 results after removing duplicates. I reviewed 362 full texts, of 

which 110 studies met inclusion criteria. See Appendix D Results for a full list of studies included in 

the systematic review. See Figure 17 for the PRISMA diagram. Three studies were not published in 

peer-reviewed journals but were published either as conference proceedings (Hossain, 2018), a thesis 

(Boucher, 2019) or a pre-print (Gupta, 2019). Reporting quality was relatively poor across the 

majority of studies, with 108 studies (98%) either at unclear or high-risk of bias following assessment 

with the PROBAST tool (Wolff et al., 2019). See Appendix D Table 2 for full PROBAST results. 
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Figure 17: Systematic Review PRISMA Diagram 

 

 

6.4.1.2 Study Characteristics 

Appendix D Table 3 reports in detail the characteristics of included studies. To summarise, all studies 

were conducted on general population samples of healthy adults, except one which was conducted on 

patients with severe mental illness, defined as either schizophrenia, other psychotic disorder, or 

bipolar disorder (Osborn et al., 2015). The majority of included studies were conducted in high-

income or upper-middle-income countries, with the UK, USA and China best represented. Eleven 

studies were conducted in lower- or middle-income countries. Sample sizes were highly variable in 

both development (from n=100 participants (Park et al., 2009)  to n=8,136,705 participants 

(Hippisley-Cox and Coupland, 2017)) and validation cohorts (from n=90 participants (Friedland et 

al., 2009) to n=2,671,298 participants (Hippisley-Cox et al., 2017)). Sixty-one studies (55%) assessed 

the risk of fatal or non-fatal CVD; 31 studies (28%) assessed the risk of T2D; five studies (5%) 
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assessed the risk of either prediabetes or T2D; three studies (3%) assessed the risk of metabolic 

syndrome or obesity; and three studies (3%) assessed the risk of stroke or transient ischaemic attack. 

Lengths of predicted risks ranged from one (Noda et al., 2010) to 30 (Wickramasinghe et al., 2014, 

Pencina et al., 2009) years. The most common risk prediction timeframes were either ten-year risk 

(38 studies, 35%) or five-year risk (14 studies, 13%). Thirty-nine studies (35%) performed external 

validation of an original algorithm. Fourty studies (36%) performed internal validation by sub-setting 

the initial cohort or bootstrap methods. All algorithms were designed using either Cox Proportional 

Hazards or derivations of logistic regression analysis. Most studies selected variables for inclusion 

from previous research or clinical importance (50 studies, 45%) or using statistical methods, i.e., 

forward, or backward selection (31 studies, 28%). Seventeen studies (15%) used simple univariable 

analysis of each considered predictor, which is the least preferable since it cannot assess interactions 

between two or more variables. Eleven studies (10%) used machine learning techniques for variable 

selection. 

 

6.4.1.3 Participant Characteristics  

All studies were conducted in adults. The mean age of participants based on the 76 studies that 

reported mean age was 50.50 (SD 9.31) years. No studies included a mean age of participants below 

35 years. Eighty-nine studies (81%) reported the sex distribution of the derivation cohort (mean 

55.29% male (SD 17.27)), and 42 studies (38%) reported for the validation cohort (mean 52.25% 

male (SD 14.44)). The majority of studies included roughly equal sex distribution, apart from nine 

studies which included only (Paynter et al., 2009, Ridker et al., 2007) or mostly females (Yatsuya et 

al., 2016, Yatsuya et al., 2013, Abd El-Wahab et al., 2019, Choe et al., 2018, Park et al., 2009, Paynter 

et al., 2011, Ayala Solares et al., 2019), and 12 studies which included only (Ridker et al., 2008, 

Assmann et al., 2002, Brand, 1976, Dunder et al., 2004, Ferrario et al., 2005, L'Italien et al., 2000, 

Noda et al., 2010, Voss et al., 2002, Zhang et al., 2005) or mostly males (Wong et al., 2016, Nanri et 

al., 2015, Wickramasinghe et al., 2014).  Thirty-three studies (30%)  reported the ethnic makeup of 

their sample, where samples ranged from being ethnically completely homogenous in 18 studies 

(16%) to relatively heterogeneous, with less than 66% of participants falling into the most common 

ethnic group (Anderson et al., 2015, Robinson et al., 2011, Ha et al., 2018, Pylypchuk et al., 2018). 

See Appendix D Table 3 for detailed results on participant characteristics of included studies. 
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6.4.1.4 Algorithm Characteristics 

6.4.1.4.1 Predictors Included in Existing Algorithms 

Figure 18 shows the frequency of different predictors included in studies. The most common 

predictors were age (98 studies, 89%), smoking (83 studies, 75%) and systolic blood pressure (55 

studies, 50%). The number of predictors considered for each algorithm varied between four (Gao et 

al., 2010, Gao et al., 2009, Chen et al., 2009, Wen et al., 2017) to 473 predictors (Alaa et al., 2019). 

EPV varied between 2.1 (Griffin et al., 2000) and 5,075.4 (Hippisley-Cox et al., 2017). Twenty 

studies featured EPV ratios that were likely <10. See Appendix D Table 4 for a detailed description 

of algorithm characteristics of included studies. 

 

6.4.1.4.2 Performance of Existing Algorithms  

Discrimination statistics were presented in 93 studies (85%), and calibration statistics were presented 

in 62 studies (56%). From the 80 studies that included both model development and validation 

analysis, 35 (44%) reported performance statistics from both development and validation cohorts, 27 

(34%) reported only validation cohort statistics, and ten (13%) reported development only statistics. 

Most commonly overall, studies reported both discrimination and calibration statistics (35 studies, 

32%). Next most commonly, studies reported measures for discrimination, calibration, and 

sensitivity/specificity (23 studies, 21%). Eleven studies (10%) reported no model performance 

statistics. Discrimination was primarily assessed with the area under the curve (AUC / C-statistic). 

Reported C statistics ranged between 0.61 (Davies et al., 2010) to 0.97 (Park et al., 2009) though 

notably, the latter was at risk of model overfit, with a sample size of n=100 and an EPV ratio of 3.1. 

The mean C statistic across all included studies was 0.77, with 54 studies (49%) scoring above 0.70, 

suggesting 'good' discrimination. The majority of studies that reported calibration statistics used the 

Hosmer-Lemeshow goodness-of-fit chi2 test. Seventeen studies (15%) used the preferred (Collins et 

al., 2015) method of calibration plots. See Appendix D Table 5 for a detailed description of algorithm 

performance of included studies. 

 

 



   

Figure 18: Range and Frequency of Predictors Used In Algorithms Included In The Systematic Review 

SysBP = Systolic Blood Pressure; T2DM = Type 2 Diabetes Mellitus; Tot Chol = Total Cholesterol; HTN = Diagnosis of Hypertension; HDL = High-Density Lipoprotein; FHx 
T2DM = Family history of Type 2 Diabetes; BP Meds = Prescribed Antihypertensive Medication; WC = Waist Circumference; FHx CVD = Family History Cardiovascular 
Diseases; Phys Act = Physical Activity; FPG = Fasting Plasma Glucose; Tri = Triglycerides; Chol:HDL = Cholesterol:HDL Ratio; LDL = Low-Density Lipoprotein; ETOH = 
Alcohol Use; ECG = Electrocardiogram Findings; CVD Event = Personal History of Cardiovascular Diseases; HbA1C = Glycated Haemoglobin; WHR = Waist:Hip Ratio; Genetic = 
Genotype Data; DBP = Diastolic Blood Pressure; Gest DM = Gestational Diabetes Mellitus; RA = Rheumatoid Arthritis; Renal Dis = Renal Disorders; HR = Heart Rate; SMI = 
Diagnosis of Serious Mental Illness; eGFR = Glomerular Filtration Rate; IFG = Impaired Fasting Glucose; ALT = Alanine Aminotransferase; Atyp Antipsych = Prescribed 
Antipsychotic Medication; T1DM = Type 1 Diabetes Mellitus; WCC = White Cell Count; Chron Dis = Personal History of Chronic Disease; ApoA/ApoB = Apolipoprotein A/B 
Levels; *not counted as a predictor in studies that developed sex-specific algorithms 
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6.4.1.5 Potential Applicability of Existing Cardiometabolic Risk Algorithms for Young People 
with Psychosis 

Psychiatric disorders and treatment were taken into account in three studies (Osborn et al., 2015, 

Hippisley-Cox and Coupland, 2017, Hippisley-Cox et al., 2017) predicting risk of CVD (Hippisley-

Cox et al., 2017, Osborn et al., 2015) or T2D (Hippisley-Cox and Coupland, 2017). Two of these 

studies (QRISK3 and QDiabetes) were conducted on large general-population samples, and one 

(PRIMROSE) was conducted in people with severe mental illness. QRISK3 and QDiabetes included 

a diagnosis of severe mental illness as a single predictor, whereas PRIMROSE included separate 

predictors for bipolar disorder and psychosis. QRISK3 and QDiabetes included the presence of any 

atypical antipsychotic as a predictor; PRIMOSE included first- or second-generation antipsychotics 

as separate predictors, along with antidepressants as another predictor. All three studies were 

conducted on middle- to older-aged adults (mean ages QDiabetes: 42.9 years QRISK3: 44.9 years, 

PRIMROSE: 49.5 years). In PRIMROSE, age was applied as a non-linear term with a log 

transformation and was weighted heavily compared with other risk factors. See Figure 19. In QRISK3 

and QDiabetes, age was applied as a fractional polynomial, implying a non-linear impact on risk. 

QRISK3 and QDiabetes included interactions between age and other predictors, further amplifying 

the relative importance of age in the algorithms. 

Figure 19: The Relative Weighting of Age vs Other Predictors in The PRIMROSE Algorithm 

Figure illustrates the coefficients of predictors stacked upon one another cumulatively to show the relative weighting of 
age (presented at the bottom-left) compared with other predictors in the algorithm; QRISK3, QDiabetes and PRIMROSE 
were taken forward for the exploratory validation analysis, on the basis of: large samples used in development and 
validation; strong performance statistics; low risk of bias in three domains; and inclusion of psychiatric predictors / 
development in a psychiatric sample. 



 

164 

 

69 

6.4.2 Exploratory Validation Analysis 

6.4.2.1 Baseline Characteristics 

The six-year observed risk of metabolic syndrome at age 24 years in the sample of participants with, 

or at risk of developing psychosis was 14.21% in males and 11.88% in females. In the sensitivity 

analysis (all available ALSPAC participants), the six-year observed risk was 7.54% for females and 

5.76% for males. In the primary analysis, I included 3,030 person-years of observation. In the 

sensitivity analysis, I included 19,020 person-years of observation. Characteristics of included 

participants for both the primary and sensitivity analyses are presented in Table 31.  

 

Table 31: Characteristics of Participants Included in Exploratory Validation Analysis 

Characteristic (N, % unless stated) Psychosis Risk Sample Whole Sample Sensitivity 
Analysis 

Females Males Females Males 

Number of Participants 323 (63.9) 182 (36.1) 1,909 (55.0) 1,561 (45.0) 
Total person-years of observation 1,938 1,092 11,454 7,566 
Ethnicity – White / Not-recorded 315 (97.5) 176 (96.7) 1,861 (97.5) 1,519 (97.3) 
Systolic BP (mmHG), Mean (SD) 109.88 (8.28) 118.90 (9.67) 109.98 (7.98) 119.99 (9.09) 
HDL (mmol/L), Mean (SD) 1.29 (0.36) 1.18 (0.33) 1.34 (0.31) 1.21 (0.24) 
FPG (mmol/L), Mean (SD) 4.88 (0.36) 5.19 (0.66) 4.92 (0.49) 4.16 (0.24) 
Total Cholesterol (mmol/L), Mean (SD) 3.86 (0.68) 3.55 (0.63) 3.94 (0.69) 3.56 (0.62) 
Chol:HDL Ratio, Ratio SD 3.04 (0.85) 3.08 (0.85) 3.07 (1.01) 3.16 (0.96) 
BMI (kg/m2), Mean (SD) 23.75 (3.55) 23.62 (4.50) 23.06 (4.48) 22.14 (3.87) 
FHx Cardiometabolic/Cardiovascular Disorders 194 (60.1) 117 (64.3) 603 (31.6) 448 (28.7) 
Smoking (≥1 cigarette daily) 173 (53.6) 100 (54.9) 840 (44) 704 (45.1) 
Depression 90 (27.9) 28 (15.4) 270 (14.1) 90 (5.7) 
Alcohol Use 47 (15.4) 31 (16.7) 477 (6.5) 534 (6.9) 
Antidepressant Medication 45 (14.7) 16 (8.6) 186 (2.5) 57 (0.7) 
Antipsychotic Medication 48 (14.8) 29 (15.9) 13 (0.2) 6 (0.1) 
BP=blood pressure; HDL=high-density lipoprotein; FPG=fasting plasma glucose; Chol=cholesterol; BMI=body mass 
index; FHx=family history  
 

 

6.4.2.2 Primary Analysis – Psychosis Risk Sample 

6.4.2.2.1 Discrimination 

Discrimination C Statistics were: QDiabetes males C=0.75 (95% C.I., 0.72-0.78) and females C=0.78 

(95% C.I., 0.73-0.84); QRISK3 males C=0.58 (95% C.I., 0.52-0.65) and females C=0.61 (95% C.I., 

0.55-0.66); PRIMROSE C=0.73 (95% C.I., 0.70-0.78). After substituting participant ages to the mean 
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age of the original studies, C statistics mildly improved for each algorithm. Similarly, at age 18y, R2 

statistics were marginally higher in females than males in QDiabetes and QRISK3 and improved 

mildly after substituting participant ages to the mean age of the original studies. See Table 32.  

 

Table 32: Discrimination Statistics for Algorithms Tested on ALSPAC Psychosis-Risk Sample 
at Age 18 Years and Mean Age of Original Study 

Algorithm C Statistic (95% CI); R2 Statistic 
 
Age 18 Years Mean Age Original Study 
Male Female Male Female 

QDiabetes FPG C=0.70 (0.65-0.74) 
R2=0.13 (0.09-0.19) 

C=0.78 (0.73-0.84) 
R2=0.16 (0.10-0.24) 

C=0.78 (0.75-0.80) 
R2=0.21 (0.14-0.27) 

C=0.83 (0.80-0.87) 
R2=0.25 (0.19-0.31) 

QRISK3 C=0.58 (0.52-0.65) 
R2=0.09 (0.05-0.16) 

C=0.61 (0.55-0.66) 
R2=0.10 (0.03-0.18) 

C=0.63 (0.58-0.69) 
R2=0.11 (0.07-0.16) 

C=0.66 (0.59-0.72) 
R2=0.13 (0.05-0.20) 

PRIMROSE Lipid 0.73 (0.70-0.78) 
R2=0.13 (0.10-0.0.17) 

0.75 (0.69-0.79) 
R2=0.16 (0.12-0.22) 

FPG=fasting plasma glucose 
 

6.4.2.2.2 Calibration 

Calibration was poor across all three algorithms, with observed risk estimates consistently higher than 

predicted risk estimates, indicating a significant underprediction of risk. After substituting participant 

ages to the mean age of the original studies, calibration improved markedly in all three algorithms. 

See Figure 20. 
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Figure 20: Calibration Plots of Algorithms Tested on ALSPAC Psychosis-Risk Sample at Age 

18 Years and at The Mean Age of Original Study 

  
 

 

 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 

  

Perfect calibration (dark grey) would follow the diagonal (light grey) line, indicating perfect agreement between 
observed/expected risk. Grouped observations were split at each 0.2 of predicted risk. 
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6.4.2.3 Sensitivity Analysis – ALSPAC Whole Sample 

6.4.2.3.1 Discrimination 

QDiabetes and QRISK3 performed better in the whole sample than the psychosis-risk sample. 

PRIMROSE performed better in the psychosis-risk sample. Harrell’s C Statistics were: QDiabetes 

males C=0.72 (95% C.I., 0.70-0.73) and females C=0.82 (95% C.I., 0.79-0.84); QRISK3 males 

C=0.64 (95% C.I., 0.62-0.66) and females C=0.62 (95% C.I., 0.59-0.65); PRIMROSE C=0.68 (95% 

C.I., 0.67-0.70) . Similarly, at age 18y, R2 statistics were marginally higher in females than males in 

QDiabetes, but marginally higher in males in QRISK3.  After substituting age to the mean age of the 

original studies, Harrell’s C statistics and R2 improved in all three algorithms. See Table 33. 

 

Table 33: Discrimination Statistics for Algorithms Tested on ALSPAC Whole Sample at Age 
18 Years and Mean Age of Original Study 

FPG=fasting plasma glucose 

 

6.4.2.3.2 Calibration 

In a similar pattern to the psychosis sample, calibration was poor across all three algorithms with 

observed risk estimates consistently higher than predicted risk estimates, indicating a significant 

underprediction of risk. After substituting participant ages to the mean age of the original studies, 

calibration improved markedly in all three algorithms. See Figure 21. 

Algorithm C Statistic (95% CI); R2 Statistic 
 
Age 18 Years Mean Age Original Study 
Male Female Male Female 

QDiabetes FPG C=0.72 (0.70-0.73) 
R2=0.14 (0.09-0.20) 

C=0.82 (0.79-0.84) 
R2=0.17 (0.10-0.26) 

C=0.74 (0.72-0.77) 
R2=0.19 (0.13-0.26) 

C=0.81 (0.78-0.83) 
R2=0.23 (0.17-0.28) 

QRISK3 C=0.64 (0.62-0.65) 
R2=0.11 (0.06-0.16) 

C=0.62 (0.59-0.65) 
R2=0.10 (0.06-0.15) 

C=0.65 (0.64-0.67) 
R2=0.11 (0.06-0.17) 

C=0.72 (0.69-0.75) 
R2=0.12 (0.07-0.18) 

PRIMROSE Lipid 0.68 (0.67-0.70) 
R2=0.11 (0.05-0.17) 

0.68 (0.66-0.69) 
R2=0.13 (0.07-0.19) 
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Figure 21: Calibration Plots of Algorithms Tested on ALSPAC Whole Sample at Age 18 years 
and at Mean Age of Original Study 

  
 

 

 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 

 

 
Perfect calibration (dark grey) would follow the diagonal (light grey) line, indicating perfect agreement between 
observed/expected risk. Grouped observations were split at each 0.2 of predicted risk. 
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6.5 Discussion 

I performed a systematic review of cardiometabolic risk prediction algorithms developed either for 

the general or psychiatric populations and considered their potential suitability for young people with 

psychosis. I also used data from a sample of relatively young adults to first explore whether existing 

cardiometabolic risk prediction algorithms may be suitable for young people with or at risk of 

psychosis, and secondly to examine the impact of how age is weighted in existing cardiometabolic 

risk prediction algorithms.  

Regarding the systematic review, I identified a substantial number of cardiometabolic risk prediction 

algorithms, yet most have not been integrated into clinical practice. Only one included algorithm 

(PRIMROSE) was developed in a population of people with severe mental illness (Osborn et al., 

2015). Two (QRISK3, QDiabetes) were developed in the general population and included psychiatric 

predictors (Hippisley-Cox et al., 2017, Hippisley-Cox and Coupland, 2017).  

All included algorithms were developed in samples of middle- to older-age adults. One might 

traditionally consider this proportionate since cardiometabolic disorders are traditionally regarded as 

diseases of advancing age. Yet, cardiometabolic risk still exists in the absence of advancing age. Even 

in the general population, there is an increasing prevalence of early-onset T2D (Wilmot and Idris, 

2014) and childhood obesity (Skinner et al., 2016), likely related to the shift toward a more sedentary 

lifestyle and unhealthy diet in recent decades. The absence of an algorithm developed for younger 

populations is an important finding since early intervention may reduce the risk of young people 

forming part of a future generation of patients with chronic CVD (Chrysant, 2011). This finding 

suggests the need for either new or recalibrated versions of cardiometabolic risk algorithms tailored 

for younger generations. 

Primary prevention is the best means to address the personal and societal burden attributed to T2D, 

CVD and its associated morbidity and mortality (Weintraub et al., 2011). While this message is 

important for the general population, it is crucial for young people with psychosis who are at a 

substantially higher risk of precipitant cardiometabolic disorders. This population may be more likely 

to smoke (Sagud et al., 2018), exercise less (Heald et al., 2017), and eat a more unhealthy diet (Heald 

et al., 2017) than their peers, and yet may also be prescribed medication that in itself can adversely 

and severely impact cardiometabolic indices (Leucht et al., 2013). Further, they may be faced with 

inappropriate barriers to accessing healthcare (Lawrence and Kisely, 2010), diagnostic 

overshadowing (Jones et al., 2008), and may have an intrinsic biological propensity for altered 

cardiometabolic function (Perry et al., 2018). Meta-analyses featuring mostly antipsychotic-naïve 

young people with first-episode psychosis have consistently reported an increased incidence of 
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insulin resistance, impaired glucose tolerance (Perry et al., 2016, Pillinger et al., 2017a) and 

dyslipidaemia (Pillinger et al., 2017b, Perry et al., 2016, Misiak et al., 2017) compared with matched 

controls from the general population, after adjusting for anthropometric and sociodemographic 

factors. Each are predeterminants of cardiometabolic disorders such as T2D and obesity. Existing 

algorithms may not adequately capture these factors. Additionally, meta-analyses of cross-sectional 

studies suggest that psychosis is associated with higher levels of circulating inflammatory markers 

(Upthegrove et al., 2014, Miller et al., 2011, Miller et al., 2014, Fernandes et al., 2016). Evidence 

from longitudinal studies suggests an association between inflammatory markers at baseline and 

psychosis at follow-up (Khandaker et al., 2014, Metcalf et al., 2017, Goldsmith et al., 2019). 

Inflammatory states are also associated with cardiometabolic disorders (Rethorst et al., 2014, 

Monteiro and Azevedo, 2010, Hermsdorff et al., 2011, Calabro and Yeh, 2008). While 15 relatively 

newer algorithms from the systematic review did include inflammatory predictors, none also included 

psychiatric predictors.  

Each of the three algorithms that did include psychiatric factors featured an antipsychotic-related 

predictor. Antipsychotic associated weight gain can occur relatively quickly after initiation (Spertus 

et al., 2018) and is associated with altered eating behaviours (Sentissi et al., 2009) and sedentariness 

(Vancampfort et al., 2017). However, whilst there are some efficacy differences between 

antipsychotics, these are gradual rather than discrete (Huhn et al., 2019). Differences in side-effects 

are more marked, and each has an inherently different impact upon cardiometabolic risk 

(Vancampfort et al., 2015). This may be explained by differing affinities to receptors other than the 

dopamine-2 (D2) receptor, for example, the histamine-1 (H1) receptor, serotonin-2c (5-HT2c) and 

adrenergic receptors (a2 and b3) (Starrenburg and Bogers, 2009), which may have a role in the 

regulation of food intake (Kroeze et al., 2003). The varied impact upon cardiometabolic risk by 

different antipsychotics does not abide by the traditional distinctions of either typical/atypical or 

first/second generation, which were the binary distinctions of the included algorithms. A more 

appropriate antipsychotic predictor may instead model antipsychotics based on their relative 

cardiometabolic risk.  

I used the PROBAST tool (Wolff et al., 2019) to examine the risk of bias of included studies in the 

systematic review. Only two studies were rated as low risk of bias, with all others rated as either 

unclear or high risk of bias. This may reflect the relatively recent introduction of the TRIPOD 

guidelines for prediction model studies (Collins et al., 2015). Nevertheless, the results suggest that 

the results and therefore clinical validity of most included studies should be accepted with caution.  

The EPV ratio also varied widely between studies. A low EPV ratio can be an indicator of model-

overfit (Pavlou et al., 2015), which can bias results. I identified 20 studies with an EPV ratio of likely 
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<10, and therefore the performance reported in those studies should be interpreted with caution. 

Finally, it is striking that whilst many included studies promoted the use of their algorithms in clinical 

practice, there appears to have been relatively little follow-up to assess either clinical or economic 

impact. A notable exception was PRIMROSE (Osborn et al., 2015), which was the only algorithm 

developed and validated on a sample of people with mental illness. A cost-effectiveness analysis 

(Zomer et al., 2017) found it improved quality of life and reduced healthcare-related costs compared 

to using no algorithm.  

A previously published systematic review (Damen et al., 2016) examining cardiovascular risk 

prediction algorithms in the general population also identified an abundance of studies. The review 

similarly concluded the methodological shortcomings of most risk prediction algorithms likely limit 

their suitability for clinical practice. The previous review differs from this review since it aimed to 

identify algorithms and assess their suitability for young people with psychosis. Therefore, I did not 

include studies reporting new validations in a similar population to already validated algorithms. The 

previous review also presented sex-stratified algorithms as distinct entities, increasing the apparent 

number of algorithms they reported. For simplicity and in consideration of the overarching research 

question, I did not take this step. Finally, many new algorithms have been developed since the 

previous review, which I was able to include in this review. 

Regarding the exploratory validation analysis, I considered three algorithms for this step; QRISK3, 

QDiabetes and PRIMROSE. These were selected due to the large sample sizes in model development 

and validation, favourable model performance statistics, relatively low risk of bias, and the inclusion 

of psychiatric predictors/development in a psychiatric population.  

I found that discrimination statistics were relatively good at age 18 years for QDiabetes and 

PRIMROSE and improved further when substituting to the mean age of original studies. This means 

that QDiabetes and PRIMROSE could predict higher risks in 'cases' than 'non-cases', even in 

relatively young adults. This did not apply to QRISK3, particularly in males, where the algorithm 

was little better than chance at discriminating higher and lower cardiometabolic risk in young adults 

with or at risk of developing psychosis.  

For all three algorithms included in the validation analysis, the discriminative ability was attenuated 

compared with the original published studies (Hippisley-Cox and Coupland, 2017, Hippisley-Cox et 

al., 2017, Osborn et al., 2015). This may be because the present analysis included younger participants 

than the original studies. For example, both QRISK3 and QDiabetes were developed and validated in 

participants aged 25 and over, and PRIMROSE was developed and validated in participants aged 30 

and over. QRISK3 and QDiabetes define a minimum age of 25 when using their online calculators, 



 

172 

 

69 

although PRIMROSE sets a minimum of age 18 years. Additionally, in the primary analysis, I tested 

a sample of participants with or at risk of developing psychosis, whereas QDiabetes and QRISK3 

were designed for use in the general population.  

Furthermore, I tested a different outcome compared with the original algorithms. I tested metabolic 

syndrome since it is an established precursor of both T2D and CVD (Wilson et al., 2005, Shin et al., 

2013) and is a more suitable outcome for younger populations. Nevertheless, the improvement in 

discrimination statistics after substituting age provides some face validity to the choice of outcome. 

However, discriminative ability is only half the story regarding predictive performance since 

discrimination statistics cannot assess the accuracy of the amount of risk apportioned by a model; this 

represents a test of absolute risk estimates and is examined with a measure of calibration. The 

calibration plots showed that observed risk was systematically greater than predicted risk in all 

models, indicating substantial underprediction of risk in younger participants. Calibration plots 

improved markedly in all algorithms when age was artificially increased to the mean age of the 

original studies. This suggests that the manner with which age is modelled in current algorithms is a 

major limiting factor in applying them to younger populations. This is likely because many 

cardiometabolic risk factors are cumulative over time (Reinikainen et al., 2015), thus, age becomes 

an increasingly important contributor to cardiometabolic risk as one gets older. This notion is 

elegantly painted by all three algorithms, which modelled age as either a non-linear function, included 

interactions between age and other predictors, or both.  

Strengths of this systematic review include following PRISMA reporting guidelines (Moher et al., 

2009) and the ability to complement the findings with an exploratory validation analysis using data 

from a large birth cohort of young adults. I was able to test three validated cardiometabolic risk 

prediction algorithms which are commonly used in clinical practice in the UK, on a different 

population who are in clear and crucial need of a suitable tool.  

Limitations of the study first and foremost relate to the exploratory validation analysis. The three 

algorithms I tested were not designed for use in young adults, though this in itself should not be a 

barrier to explore potential suitability in a different population. Nevertheless, the results should not 

be seen to cast doubt on the predictive ability of such algorithms when applied to the populations they 

were developed for.  I could not include every predictor from the algorithms I tested, which may have 

impacted performance statistics. That said, the impact of this limitation on the results is unlikely to 

have been uniform for each predictor I could not include. For example, even if data were available, it 

is doubtful that many participants in the relatively young cohort would have diagnosed CVD or 

chronic kidney disease,  a history of gestational diabetes, or be prescribed statins. Also, the measured 
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outcome differed from the outcome of the algorithms I tested. While three algorithms included in the 

systematic review did aim to predict risk of metabolic syndrome, I did not consider them for the 

exploratory validation analysis. This is because they did not include psychiatric predictors; were at 

relatively high risk of bias; and study authors did not publish their fully specified algorithm equations. 

Nevertheless, metabolic syndrome is a precursor of T2D (Shin et al., 2013) and CVD (Wilson et al., 

2005), and the relatively good performance of the algorithm when I artificially substituted age to the 

mean age of the original study suggests face validity of the metabolic syndrome outcome.  

Other limitations relate to the systematic review. I was unable to follow a meta-analytic approach to 

the synthesis of results due to study heterogeneity. The lack of a meta-analytic approach meant I could 

not examine the risk of publication bias, which may have played a part in the configuration of studies 

included since only three studies were not published in peer-reviewed journals. 

In conclusion, young people with psychosis are at higher risk of developing cardiometabolic disorders 

than the general population. A suitable cardiometabolic risk prediction algorithm for this population 

would be highly beneficial for healthcare professionals to help them tailor treatment plans to reduce 

long-term physical and psychiatric morbidity. Existing cardiometabolic risk algorithms cannot be 

recommended for this purpose since they likely underestimate the cardiometabolic risk of all young 

people, let alone a group already at significantly higher risk than the general population. Existing 

algorithms require recalibration to suit younger populations, and, better still, a new cardiometabolic 

risk prediction algorithm is required which is specifically developed for young people with psychosis. 

A well-designed algorithm may include a more appropriate distinction of metabolically-active 

antipsychotics; should more appropriately weight the predictors for the specific characteristics of 

young people with psychosis; and may include a more age-appropriate outcome, such as metabolic 

syndrome. Further, particular attention should be paid to patient acceptability to ensure the algorithm 

is used in clinical practice rather than simply buried in a research database.
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Chapter 7 

: 

 

Development and External Validation of The Psychosis Metabolic 

Risk Calculator (PsyMetRiC): A Cardiometabolic Risk Prediction 

Algorithm for Young People with Psychosis 



   

175 

7.1 Introduction 

Young people with psychosis are at significantly higher cardiometabolic risk than the general 

population. Insulin resistance and dyslipidaemia are detectable from the onset of psychosis in 

relatively young patients (Perry et al., 2016, Pillinger et al., 2017b) and, left unchecked, contribute to 

a higher risk of more chronic conditions such as T2D and CVD (Firth et al., 2019), and a shortened 

life expectancy of up to 15 years (Plana-Ripoll et al., 2019). Since some treatments for psychosis can 

exacerbate cardiometabolic risk (e.g., certain antipsychotic medications), young patients who are 

most at risk of adverse cardiometabolic outcomes must be identified at the outset. Then, interventions 

can be tailored to reduce the risk of longer-term cardiovascular morbidity/mortality. 

Prognostic risk prediction algorithms are a valuable means to encourage personalised, informed 

healthcare decisions. In the general population, cardiometabolic risk prediction algorithms such as 

QRISK3 (Hippisley-Cox et al., 2017) are commonly used to predict CVD risk from baseline 

demographic, lifestyle, and clinical information to identify higher-risk individuals for tailored 

interventions. In Chapter 6, I performed a systematic review of cardiometabolic risk prediction 

algorithms developed in for the general or psychiatric populations. I found that all algorithms were 

developed in samples of comparatively older adults and most didn't include relevant predictors such 

as antipsychotic medication. In the accompanying exploratory validation analysis, I found that 

existing algorithms significantly underpredict cardiometabolic risk in young people with or at risk of 

developing psychosis. Therefore, I concluded that no existing algorithm is likely to be suitable for 

young people with psychosis. See Chapter 6. 

 

7.2 Aims and Objectives 

Therefore, I aimed to develop and externally validate the Psychosis Metabolic Risk Calculator 

(PsyMetRiC) to predict up to six-year risk of metabolic syndrome, an age-appropriate precursor of 

CVD and early mortality, in young people with psychosis. I aimed to prioritise clinical usefulness 

and patient acceptability via input from a young person's advisory group and by developing two 

PsyMetRiC versions, one with and one without biochemical results. I followed TRIPOD reporting 

guidelines (Collins et al., 2015). See Appendix D Table 6 for the completed reporting guidelines. 
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7.3 Methods 

7.3.1 Data Sources 

7.3.1.1  Algorithm Development in an EIS Patient Sample 

I developed PsyMetRiC in pooled retrospective data from patients aged 16-35 years enrolled in 

Birmingham EIS (sample frame n=391) or Cambridgeshire and Peterborough NHS Foundation Trust 

EIS (CAMEO) (sample frame n=1,113). Anonymised Birmingham data were collected between 

2014-2018 as part of the National Clinical Audit of Psychosis Quality Improvement program, 

enhanced locally with medication data, conforming to HRA definition of Service Evaluation, 

confirmed by Birmingham Women's and Children's Hospital NHS Foundation Trust. CAMEO data 

were collected by conducting an anonymised search of EIS patients enrolled since 2013 using the 

Clinical Records Anonymisation and Text Extraction (CRATE) tool (Cardinal, 2017) (NHS National 

Research Ethics Service references 12/EE/0407; 17/EE/0442). Assistance in accessing and 

processing the data was provided by Professor Rachel Upthegrove (University of Birmingham) and 

Dr Emanuele Osimo (Imperial College London). Predictors were assessed at the closest point (+/- 

100 days) to EIS enrolment, and outcomes were assessed up to six years later. I excluded patients 

who: had <1 year follow-up; had the outcome at baseline; or had missing data on all predictor or 

outcome variables, resulting in a final sample of n=651. See Table 34.  See Appendix D Table 8 for 

a missing sample analysis for the pooled development sample. 

 

7.3.1.2 External Validation in in EIS Patient Sample 

I used the Clinical Records Interactive Search (CRIS) resource to capture anonymised data from 

South London and Maudsley NHS Foundation Trust EIS (SLaM) (NIHR Biomedical Research Centre 

CRIS Oversight Committee reference: 20-005)). The sample frame included 2,985 EIS patients aged 

16-35 years enrolled since 2012. Assistance in accessing and processing this data was provided by 

Dr Emanuele Osimo (Imperial College London). Predictors and outcomes were assessed in the same 

manner as described above. I excluded participants as described above, resulting in a final sample of 

n=510. See Table 34. Please see Appendix D Table 9 for a detailed analysis of the missing sample 

for the validation sample. 

 

7.3.1.3 External Validation Sensitivity Analysis in a General Population Sample  

I examined the performance of PsyMetRiC in young adults who had or were at risk of developing 

psychosis using ALSPAC data. See Section 2.3.1 for a full description of the ALSPAC cohort. The 
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sample frame included 527 participants identified as having experienced definite psychotic symptoms 

at either age 18 or 24 years, assessed via the semi-structured Psychosis-Like Symptom Interview. See 

Section 2.3.3 and Section 3.3.2 for detail on assessment of PEs and psychotic disorder at age 18 and 

24 years. Predictors were assessed at age 18 years, and the outcome was assessed at age 24 years. I 

excluded participants as described above, resulting in a final sample of n=505. See Table 34. 

ALSPAC Ethics and Law Committee and Local Research Ethics Committees provided ethical 

approval. Informed consent was obtained from participants following the recommendations of the 

ALSPAC Ethics and Law Committee at the time. 

Table 34: Predictor Comparisons between Samples Used in Algorithm Development and 
Internal/External Validation 

Predictor  
 

Sample 
Development 
 

External Validation / 
Sensitivity Analysis 

Birmingham 
EIS 

CAMEO EIS Pooled 
Development 
Sample 

SLaM EIS 
Validation 
Sample 

ALSPAC Risk 
of Psychosis 

Final Included Sample size, 
N. 

352 299 651 510 505 

Age in Years, mean (SD) 23.76 (4.90) 25.42 (4.77) 24.52 (4.91) 24.45 (4.75) 17.81 (0.43) 
White/NA Ethnicity, N. (%) 110 (31.25) 250 (83.61) 360 (55.30) 154 (30.20) 491 (97.2) 
Black/African-Caribbean 
Ethnicity, N. (%) 

94 (26.70) 15 (5.01) 109 (16.74) 250 (49.02) <5 (<1.00)a 

Asian Ethnicity, N. (%) 147 (41.76) 34 (11.37) 181 (27.80) 106 (20.78) <5 (<1.00)a 
Male Sex, N. (%) 232 (65.90) 208 (69.57) 440 (67.59) 351 (68.82) 182 (36.1) 
HDL, mmol/L, mean (SD) 1.76 (0.35) 2.08 (0.49) 1.88 (0.57) 1.57 (0.37) 1.21 (0.31) 
Triglycerides, mmol/L, mean 
(SD) 

1.46 (1.18) 1.30 (0.89) 1.39 (1.06) 1.23 (0.71) 1.06 (0.77) 

BMI, kg/m2, mean (SD) 22.06 (5.13) 24.01 (5.73) 23.63 (5.43) 22.96 (6.94) 23.68 (3.55) 
FPG (mmol/L), mean (SD) 5.20 (1.02) 5.17 (1.45) 5.19 (1.28) 5.03 (1.10) 5.01 (0.49) 
Systolic BP (mmHg), mean 
(SD) 

121.18 
(11.04) 

119.88 (12.25) 120.65 
(11.68) 

119.96 
(13.70) 

115.10 (11.88) 

Metabolically-Active 
Antipsychoticsb, N. (%) 

239 (67.90) 216 (72.24) 455 (69.89) 472 (92.55) 58 (11.26) 

Smoking, N. (%) 182 (51.70) 133 (44.48) 315 (48.39) 469 (91.96) 273 (54.05) 
Follow-up time, years, mean 
(SD) 

2.44 (1.54) 1.43 (1.03) 1.86 (1.32) 2.73 (1.76) 5.18 (0.39) 

Mean time of predictor 
assessment from EIS 
enrolment, mean days (SD) 

23.55 (25.44) 21.93 (29.84) 16.71 (26.38) 3.05 (36.01) * 

Metabolic Syndrome at 
baseline, N. (%c) 

31 (7.90) 18 (5.11) 49 (6.58) 30 (5.64) 19 (4.17) 

Metabolic Syndrome at 
Follow-up, N. (%) 

74 (21.04) 35 (11.71) 109 (16.74) 86 (16.86) 76 (14.75) 

HDL=high-density lipoprotein; BMI=body mass index; FPG=fasting plasma glucose; BP=blood pressure; ALSPAC=Avon 
Longitudinal Study of Parents and Children; SLaM=South London and Maudsley NHS Foundation Trust; EIS=Early Intervention 
Service; CAMEO=Cambridgeshire and Peterborough Foundation NHS Trust; aReported as <5 due to ALSPAC reporting guidelines; 
bMetabolically-active antipsychotics are listed in Table 36; cCorresponds to percentage of sample before exclusion; *Health record / 
service use data is not currently available in ALSPAC 
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7.3.2 Outcome 

I used the harmonized definition (Alberti et al., 2009) of the metabolic syndrome as a binary outcome. 

See Table 2.  

 

7.3.3 Predictor Variables 

7.3.3.1 Method of Predictor Selection 

Predictors were included on a balance of clinical knowledge, prior research, and likely clinical 

usefulness/patient acceptability after discussion of the work with the McPin Foundation Young 

Persons Advisory Group (YPAG), comprising volunteers aged <24years with lived experience of 

mental health difficulties. I attended three meetings of the YPAG to discuss and shape the work as it 

progressed. Please see Table 35 for quotes and comments from the YPAG regarding PsyMetRiC. 

 

7.3.3.2 Rationale and Coding of Predictors Selected for Inclusion In PsyMetRiC  

7.3.3.2.1 Age 

Age is frequently included in existing cardiometabolic risk prediction algorithms (see Chapter 6), and 

I also included it in PsyMetRiC as a continuous variable. Whilst some previous large-scale general 

population risk-prediction algorithms have considered age either as a non-linear term or as an 

interaction term with other predictors (see Chapter 6), I did not take this step to limit potential model 

complexity and thus reduce the risk of model-overfit given the available sample size. Considering 

age as an interaction term with other predictors would have added the requirement for a variable 

selection technique such as backward selection or more automatic penalized methods such as lasso 

regression with nested cross-validation. Given the sample size available, I chose not to proceed with 

such methods since they increase the risk of model overfit in smaller samples compared with forced-

entry (Subramanian and Simon, 2013, Harrell, 2001, Steyerberg et al., 2000), and thus may have 

hampered external validation performance (Lever, 2016). 
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Table 35: Comments From McPin Young Person’s Advisory Group (YPAG) 

aThe phrase diabetes/obesity was used in place of metabolic syndrome at YPAG meetings since the former terms are more 
commonly used in common parlance, and thus more widely understood by non-healthcare professionals. 
 

7.3.3.2.2 Ethnicity  

Ethnicity is one of the most frequently included predictors in existing cardiometabolic risk prediction 

algorithms (see Chapter 6), and I included it in PsyMetRiC. Non-White ethnicity is an important risk 

factor for metabolic syndrome (Deboer, 2011) and predicts antipsychotic-induced metabolic 

dysfunction (Pillinger et al., 2020). In the development and validation samples, ethnicity was recorded 

inconsistently, with the majority of included records classified in relatively simple terms, for example 

“White” or “Asian”. However, these simplified classifications do not recognise the heterogeneity 

within these groupings, therefore potentially incorrectly inferring that the populations are 

homogeneous (Lear and Gasevic, 2019). Nevertheless, to strike an appropriate balance between the 

Question Asked To The YPAG Responses From The YPAG 
“Does it surprise you that despite many calculators for 
diabetes/obesitya have been made, none of them have 
been made for younger people? What do you think about 
that?” 

It is quite worrying because there is strong research 
evidence that these conditions can develop in young 
people who have emerging mental health problems. 
Could be prevented if such a scale was made to lower 
risk of health issues in later life. 
The calculator could help bring awareness to doctors 
and young people about the risk. 
Because of the link found with mental health issues 
which affect all ages, it is important that this 
calculator is being made. 

“On a scale of 1 (not important at all) to 10 (really 
important), how important do you think it is to know 
your chance of getting diabetes /obesitya in the next 6 
years? Why/why not?” 

9 - Because it could help people to make changes to 
their lifestyle that would prevent them from getting 
these diseases in the future which would help them to 
live a longer life. The only reason I didn’t put 10 is 
that some people may not want to know if they are 
destined to get a disease, even if this is not true, it 
may not be helpful to some people. 
5 - It’s useful because some people will want to make 
changes such as exercise more or sleep more to 
prevent getting these conditions. However, some may 
find these pointless and counterproductive as the 
calculator works only by chance. 
9 – more likely to make those changes if they receive 
this information 

From the information that is asked by the calculator, 
how happy do you think a young person would be to give 
that information to a doctor today? 

Most people won’t have a problem with sharing their 
height however a lot of people might be 
uncomfortable sharing their weight because they are 
unhappy with it 
I don’t think that anyone would have a problem 
sharing this information [smoking] unless they are 
ashamed of how much they smoke 
If there was an option not to have a blood test, it’s 
likely that not many people would opt out 
Weight & sex are quite sensitive subjects 
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available sample size, the case-mix of the development and validation samples, and with a 

consideration to maximise coding harmonisation between datasets, I proceeded with a categorical 

nominal variable with as much granularity as the data permitted, and so the variable consisted of 

White European/not stated (reference category), Black/African-Caribbean ethnicity, and Asian/Other 

ethnicity.  

 

7.3.3.2.3 Sex 

Sex is frequently considered in cardiometabolic risk prediction algorithms, either as a predictor or a 

stratification variable (see Chapter 6). There are notable sex differences in the epidemiology, 

aetiology, biology and clinical expression of metabolic syndrome (Pradhan, 2014). For example, 

before the menopause, increased adiposity is more commonly precipitated in females than males (Kuk 

and Ardern, 2010), whereas hypertension and disrupted biochemical indices are more common in 

males (Kim and Reaven, 2013), possibly due to a metabolically-active effect of oestrogen (Gupte et 

al., 2015). Longer-term cardiovascular outcomes such as CVD affect both sexes but show differences 

in presentation and clinical course (Beale et al., 2018). Recent meta-analytic reports have suggested 

that male sex is an important risk factor for antipsychotic-induced biochemical disruption (Pillinger 

et al., 2020). Considering the available sample size, I did not consider separate algorithms for males 

and females and chose to model sex as a binary variable. 

 

7.3.3.2.4 Body Mass Index 

BMI is frequently included in cardiometabolic risk prediction algorithms (see Chapter 6), and 

overweight/obesity is a reliable predictor of adverse cardiometabolic and cardiovascular outcomes 

(Van Gaal et al., 2006). Weight gain is also a common side-effect of certain antipsychotic medications 

(Leucht et al., 2013) and can precipitate relatively quickly after initiation (Spertus et al., 2018). While 

BMI may be less accurate at classifying adiposity than laboratory or research-based measures such 

as dual-energy x-ray absorptiometry or bio-impedance analysis (Shah and Braverman, 2012), it is 

commonly recorded in clinical practice and correlates well with other measures of obesity (Barreira 

et al., 2011). Therefore, I included BMI as a continuous variable. I did not consider interactions of 

BMI with other predictors (including but not limited to, for example, antipsychotic medication) to 

limit model complexity and thus reduce the risk of model overfit in the available sample. 
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7.3.3.2.5 Smoking 

Smoking is frequently included in cardiometabolic risk prediction algorithms (see Chapter 6) and is 

strongly associated with adverse cardiometabolic and cardiovascular outcomes (Banks et al., 2019). 

The impact of smoking on cardiometabolic and cardiovascular risk is dose-dependent, yet, in previous 

large-scale general population algorithms developed for older adult populations, smoking is usually 

classified as a categorical variable including ‘current smoker’, ‘ex-smoker’ and ‘never-smoked’. The 

lack of consideration of dosage in previous algorithms (i.e., the number of cigarettes smoked per day 

and for how long) is likely due to the highly variable reporting of smoking history in electronic health 

record datasets (Polubriaginof et al., 2017). However, whilst a prolonged smoking history increases 

cardiometabolic and cardiovascular risk compared with ‘never smoked’ (Duncan et al., 2019), 

particularly in older adults (Mons et al., 2015), some research suggests that smoking cessation in 

young people can reduce cardiometabolic and cardiovascular risk to baseline in as little as five years 

(Lloyd-Jones et al., 2017). This is relevant since PsyMetRiC was developed for younger populations. 

Therefore, for this reason, and to assist in harmonisation across the development and validation 

datasets, I included smoking as a binary variable (yes/no). For the SLaM external validation sample, 

smoking status was derived using the ‘CRIS-IE-Smoking’ application, which sits within the General 

Architecture for Text Engineering (GATE) natural language processing software to extract smoking 

status information from open-text fields (Wu et al., 2013). For all other samples, smoking was 

captured as current smoking status from clinical interview. 

 

7.3.3.2.6 Prescription of a Metabolically-Active Antipsychotic 

Antipsychotic medication is an important contributor to cardiometabolic risk in young people with 

psychosis, and so it was crucial to include in PsyMetRiC. Antipsychotic medications are rarely 

included in existing cardiometabolic risk prediction algorithms. Three more recent algorithms 

(QRISK3, QDiabetes, PRIMROSE) have included antipsychotics as predictors, grouped as binary 

variables based on the traditional distinctions of typical/atypical or first/second-generation. See 

Chapter 6. However, the differential cardiometabolic effects of antipsychotics do not necessarily 

abide by these distinctions.  

Therefore, I instead grouped antipsychotics based on existing evidence (Leucht et al., 2013, Pillinger 

et al., 2020) as ‘metabolically-active’ or not (Table 36). This is a notable advance over previous risk 

prediction algorithms. Therefore, I classified all individuals prescribed a metabolically-active 

antipsychotic as “1” and all participants who were not prescribed a metabolically-active antipsychotic 

(including participants who were not prescribed any antipsychotic) as “0”. However, I could not 

consider dosage or a more granular categorical antipsychotic medication variable for several reasons. 
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First, interactions of dosage with antipsychotic choice would have added significant complexity to 

the model and may have increased the risk of overfit, given the available sample size. It would also 

have been challenging to capture the effect of dosage change on cardiometabolic risk from a single 

baseline measure of predictor assessment. This is important because antipsychotics are usually 

commenced at a low dose and upwardly titrated over time, depending on treatment response. Second, 

with increasing numbers of risk-distinguishing categories comes increased subjectivity of group 

classification for some antipsychotics. In future, when development and validation samples of young 

people with psychosis are large enough, it would be most appropriate to model the cardiometabolic 

risk associated with each antipsychotic medication individually. 

 

Table 36: Classification of Metabolically-Active Antipsychotics 

This table comprises all antipsychotics prescribed for participants/patients in all samples; *indicates the five most 
commonly prescribed antipsychotics across all samples; †indicates antipsychotics rarely prescribed (<3 
participants/patients in total across all samples) 
 
 
7.3.3.2.7 Blood-based Predictors: HDL and Triglycerides 

Blood-based predictors feature less often in cardiometabolic risk prediction algorithms (see Chapter 

6). However, meta-analytic evidence suggests abnormal triglyceride and HDL levels are detectable 

at FEP (Misiak et al., 2017), even in individuals with limited exposure to antipsychotic medication. 

More Metabolically Active Antipsychotics Less Metabolically Active Antipsychotics 
Olanzapine  
(Leucht et al., 2013)* 

Aripiprazole 
 (Leucht et al., 2013)* 

Quetiapine  
(Leucht et al., 2013)* 

Amisulpiride  
(Leucht et al., 2013)* 

Risperidone  
(Leucht et al., 2013)* 

Haloperidol  
(Leucht et al., 2013) 

Paliperidone  
(Leucht et al., 2013) 

Sulpiride  
(Bak et al., 2014) 

Clozapine  
(Leucht et al., 2013) 

Periciazine  
(Matar et al., 2014)† 

Chlorpromazine  
(Leucht et al., 2013) 

Lurasidone  
(Leucht et al., 2013)† 

Asenapine  
(Pillinger et al., 2020)† 

Ziprasidone 
(Leucht et al., 2013)† 

Pimozide  
(Bak et al., 2014)† 

Flupentixol  
(Pillinger et al., 2020)† 

Levomepromazine  
(Bak et al., 2014)† 

Fluphenazine  
(Pillinger et al., 2020)† 

Prochlorperazine  
(Leucht et al., 2013)† 

Zuclopenthixol  
(Bak et al., 2014)† 

Trifluoperazine  
(Alonso-Pedrero et al., 2019)† 

 

Pipotiazine  
(Alonso-Pedrero et al., 2019)† 
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A raised triglyceride:HDL ratio is a hall-mark of insulin resistance (Murguia-Romero et al., 2013), 

which is also associated with antipsychotic-naïve FEP (Perry et al., 2016), whereas meta-analytic 

evidence suggests that other measures of glucose-insulin homeostasis (e.g. FPG, HbA1C) are not 

associated with antipsychotic-naïve FEP (Perry et al., 2016). Abnormal HDL (Rader and Hovingh, 

2014) and triglycerides (Nordestgaard and Varbo, 2014) are longitudinally associated with 

cardiometabolic outcomes. Therefore, I chose to include HDL and triglycerides as continuous 

variables because they are associated with dyslipidaemia in FEP, are associated with long term 

cardiometabolic outcomes, and are also a useful risk-marker for insulin resistance considering that 

gold-standard measures for insulin resistance (e.g. HOMA-IR (Levy et al., 1998)) are rarely carried 

out in current psychiatric clinical practice.  I also developed a PsyMetRiC ‘partial-model’ (without 

HDL and triglycerides) to cover eventualities where biochemical results are not available.  

 

7.3.4 Statistical Analysis 

7.3.4.1 Algorithm Development and Internal Validation  

I developed PsyMetRiC using the forced entry method, after ruling out predictor multi-collinearity, 

to minimize risk of overfitting and as recommended for smaller datasets (Steyerberg et al., 2000). I 

performed a formal sample size calculation. See Section 7.3.4.2 below. I did not consider non-linear 

terms or interactions to reduce risk of overfitting. I used MICE for missing data and estimates were 

pooled using Rubin’s rules. See Section 7.3.4.3 below. An initial internal validation step (500 

bootstraps) was performed, and coefficients were shrunk for optimism using the pooled corrected C-

slope as a shrinkage factor. After this step, predictive performance was assessed.  

 

7.3.4.2 Sample Size Calculation 

Riley and colleagues (Riley et al., 2019) proposed a set of criteria that sample size should meet for 

development of a prediction algorithm with a binary outcome, in order to minimise the risk of 

overfitting and to ensure precise estimation of key parameters in the prediction algorithm. The sample 

size calculation requires the user-specified anticipated R2 of the algorithm, and the average outcome 

value and standard deviation of outcome values in the population of interest. The three criteria are: a) 

small overfitting defined by an expected shrinkage of predictor effects by 10% or less; b) small 

absolute difference of 0.05 in the algorithm's apparent and adjusted Nagelkerke's R-squared value; c) 

precise estimation (within +/- 0.05) of the average outcome risk in the population. 
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Three calculations of sample size are made based upon these criteria. The final recommended sample 

size is taken as the largest of the three individual calculations (Riley et al., 2019). The above criteria 

have been developed into a statistical package, pmsampsize (Ensor, 2019) for R (R Core Team, 2017), 

which I used for sample size calculation. The user-specified arguments were:  

1) Outcome prevalence = 20% based on meta-analytic prevalence estimates of unmedicated 

psychosis patients (Mitchell et al., 2013b). 

2) R2 = 0.15, selected as a conservative estimate since there is no equivalent risk prediction 

algorithm developed in the same population with which to base the calculation. I did not 

consider using the one previous cardiovascular risk prediction algorithm developed for people 

with serious mental illness (PRIMROSE) (Osborn et al., 2015) to derive the calculation since 

PRIMROSE was developed in an older population, and with a different outcome. Should I 

have used that estimate (C=0.80, converted using Table 2 from Riley and colleagues (Riley et 

al., 2019) to R2=0.47), the sample size requirement would have been significantly smaller. 

3) Shrinkage = 0.9 (as recommended (Ensor, 2019)). 

After applying the above criteria, the minimum required sample size based on the number of included 

predictors was n=494 for the full-model, and n=384 for the partial-model. See Table 37. 

 

Table 37: Results of Sample Size Calculations for PsyMetRiC  

 

 

 

 

 

 

EPV=events per variable 

 

7.3.4.3 Missing Data 

I used MICE (Buuren, 2011) for missing data in all samples for predictors which were <40% missing 

(Lee, 2011) and had suitable auxiliary variables available for use as ‘indicators of missingness’ to 

Criteria Sample Size Shrinkage Parameters R2 EPV Ratio 
 
Full-Model 
Criteria 1 494 0.90 9 0.15 10.98 
Criteria 2 259 0.83 9 0.15 5.76 
Criteria 3 246 0.90 9 0.15 5.47 
Final 494 0.90 9 0.15 10.98 
 
Partial-Model 
Criteria 1 384 0.90 7 0.15 10.97 
Criteria 2 201 0.83 7 0.15 5.74 
Criteria 3 246 0.90 7 0.15 7.03 
Final 384 0.90 7 0.15 10.97 
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reduce the impact of ‘missing not at random’ bias (Dong and Peng, 2013). I imputed 100 datasets. 

Auxiliary variables were selected based upon minimizing the fraction of missing information 

(Madley-Dowd et al., 2019). Box-and-Whisker and Density plots were used to check similarities of 

observed and imputed data. Estimates were pooled using Rubin’s rules. See Table  

 

Table 38: Proportion of Missing Data per Variable for Model Development and External 
Validation 

 

 

 

 

 

 

 

 
SBP=systolic blood pressure; BMI=body mass index; HDL=high-density lipoprotein 
 

7.3.4.4 External Validation and Tests of Algorithm Performance 

The algorithms were applied to the external validation sample. The distribution of predicted outcome 

probabilities was inspected using histograms. Algorithm performance was primarily assessed with 

measures of discrimination (concordance (c-) statistic), and calibration (calibration plots). The C-

statistic is derived from the area under the curve and estimates the probability that a randomly selected 

‘case’ will have a higher predicted probability for incident metabolic syndrome than a randomly 

selected non-case. Scores of 1.0 indicate perfect discrimination; scores of 0.5 indicate that the 

algorithm is no better than chance; scores of >0.7 are generally considered acceptable (Fukuma et al., 

2018). Calibration plots estimate the accuracy of absolute-risk estimates (i.e., agreement between 

observed and predicted risk). I also recorded the Nagelkerke-Cox-Snell-Maddala-Magee R2 index, 

the calibration intercept (ideally close to 0), C-slope (ideally close to 1), and the Brier score which is 

an overall measure of algorithm performance (ideally close to 0, with scores >0.25 indicating a poor 

model). 

 

Predictor Model Development 
Sample 

External 
Validation Sample 

Sex 0 0 
Ethnicity 0 0 
Smoking Status 0 0 
Age 0 0 
Antipsychotic Prescription 0 0 
SBP – Baseline 0.11 0.09 
SBP – Follow-up 0.38 0.09 
BMI – Baseline 0.32 0.17 
BMI – Follow-up 0.31 0.13 
Triglycerides – Baseline 0.33 0.16 
Triglycerides – Follow-up 0.37 0.20 
HDL – Baseline 0.33 0.16 
HDL – Follow-up 0.37 0.20 
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7.3.4.5 Clinical Usefulness and Potential Cut-offs  

Decision curve analysis (Vickers and Elkin, 2006) was used to assess the clinical usefulness of 

PsyMetRiC by estimating net benefit. Net benefit is a metric of true positives minus false positives, 

and is calculated as: 

sensitivity × prevalence – (1 – specificity) × (1 – prevalence) × w 

where w is the outcome odds at a given risk threshold (Vickers et al., 2019). The risk threshold is the 

amount of tolerable risk before an intervention is deemed necessary. Net benefit incorporates the 

consequences of the decisions made on the basis of an algorithm, and is therefore preferable to related 

measures such as sensitivity and specificity alone (Vickers et al., 2019). I also reported the 

standardized net benefit (net benefit / outcome prevalence) and related metrics (sensitivity and 

specificity) across a range of reasonable risk thresholds. I drew a decision curve plot which visualised 

the net benefit of both PsyMetRiC versions over varying risk-thresholds compared with intervening 

in all or intervening in none. Classical decision theory proposes that at a chosen risk-threshold, the 

choice with the greatest net-benefit should be preferred (Vickers et al., 2019).  

 

7.3.5 Visual Representation of PsyMetRiC 

I simulated two case histories applying the PsyMetRiC algorithms. Additionally, I developed an 

online data-visualisation app using shiny (Chang, 2020) for R (R Core Team, 2017), which allows an 

interactive exploration of the impact of modifiable and non-modifiable risk factors and their 

combinations on cardiometabolic risk in young people with psychosis, based on PsyMetRiC scores.  
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7.4 Results 

7.4.1 Model Development and Coefficient Shrinkage 

After 500 bootstraps, the pooled corrected C-slopes were: full-model: 0.90; partial-model: 0.93, 

which were used as shrinkage factors. Final PsyMetRiC coefficients are presented in Table 39. See 

Figure 22 for histograms showing the distribution of predicted outcome probabilities in the model 

development sample.  

 

Table 39: Final Coefficients for PsyMetRiC Algorithms After Shrinkage  

 

 

 

 

 

 

aVariable not included in model 

 

Figure 22: Histograms of Predicted Outcome Probabilities in PsyMetRiC Development Sample 
after Coefficient Shrinkage 
 

A=Full-Model; B=Partial-Model 
 
 

Predictor Full-Model Partial-Model 
Intercept -6.439813 -6.973829 
Age 0.006233226 0.00633115 
Black/African-Caribbean Ethnicity 0.004258861 0.07548129 
Asian / Other Ethnicity 0.211217746 0.29285950 
Male Sex 0.222300765 0.31460036 
Body Mass Index  0.141186241 0.16912161 
Smoking 0.153691193 0.24751854 
Prescribed Metabolically-Active Antipsychotic 0.497552758 0.60013558 
High-Density Lipoprotein (mmol/L) -0.399013329 a 

Triglycerides (mmol/L) 0.343528440 a 
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7.4.2 Results of the Internal Validation Analysis 

At internal validation, the pooled performance statistics were: full-model: C=0.80 (95% C.I., 0.74-

0.86); r2=0.25 (95% CI 0.22-0.28); Brier score=0.07 (95% C.I., 0.05-0.09); intercept=-0.05 (95% C.I., 

-0.08, -0.02); partial-model: C=0.79 (95% C.I., 0.73-0.84); r2=0.19 (95% C.I., 0.14-0.24); Brier 

score=0.10 (95% C.I., 0.07-0.13); intercept=-0.07 (95% C.I., -0.10, -0.04). Calibration plots showed 

good agreement between observed and expected risk at most predicted probabilities, although in both 

PsyMetRiC versions there was evidence of slight over-prediction of risk at higher predicted 

probabilities. See Figure 23.  

 

Figure 23: Internal Validation Calibration Plots for PsyMetRiC in Development Sample 

 
A=Full-Model;  B=Partial-Model 
Calibration plots illustrate agreement between observed risk (y axis) and expected risk (x axis). Perfect agreement 
would trace the dotted “ideal” line. Algorithm calibration is illustrated by the dotted (Apparent) and solid (Bias 
Corrected) lines. 
 

7.4.3 Results of the External Validation 

See Figure 24 for histograms of predicted outcome probabilities for the PsyMetRiC algorithms when 

applied to the SLaM EIS sample. Performance statistics were: full-model: C=0.75 (95% C.I., 0.69-

0.80; r2=0.21 (95% CI., 0.18-0.25); Brier score=0.07 (95% C.I., 0.04-0.10); intercept=-0.05 (95% 

C.I., -0.08, -0.02); partial-model: C=0.74 (95% C.I., 0.67-0.79); r2=0.17 (95% C.I., 0.14-0.20); Brier 

score=0.08 (95% C.I., 0.05-0.11); intercept=-0.07 (95% C.I., -0.11, -0.03). Calibration plots (Figure 

25) show good agreement between observed and expected risk in the full-model; but in the partial 

model there was evidence of slight miscalibration (under-prediction of risk at lower predicted 

probabilities, and over-prediction of risk at higher predicted probabilities). In both models, confidence 

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Predicted Risk

O
bs

er
ve

d 
R

is
k

Mean absolute error=0 012 n=651B= 500 repetitions boot

Apparent

Bias-corrected

Ideal

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Predicted Risk

O
bs

er
ve

d 
R

is
k

Mean absolute error=0 013 n=651B= 100 repetitions boot

Apparent

Bias-corrected

Ideal

A B 



 

189 

 

69 

intervals widened as predicted probabilities became more extreme due to lower numbers of 

participants with more extreme predicted probabilities.  

 

Figure 24: Histograms of Predicted Outcome Probabilities in External Validation Sample 

                       A=Full-Model;  B=Partial-Model 

 

Figure 25: External Validation Calibration Plots for PsyMetRiC 

 
Calibration plots illustrate agreement between observed risk (y axis) and predicted risk (x axis). Perfect agreement 
would trace the red line. Algorithm calibration is illustrated by the black line. Triangles denote grouped observations for 
participants at deciles of predicted risk, with 95% C.I.’s indicated by the vertical black lines. Axes range between 0-0.8 
since very few individuals received predicted probabilities greater than 0.8 
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7.4.4 Results of the External Validation Sensitivity Analysis 

In the ALSPAC sample, performance statistics were: full-model: C=0·73 (95% C.I., 0·66-0·79; 

r2=0·20 (95% CI., 0·17-0·23); Brier score=0·08 (95% C.I., 0·04-0·11); intercept=-0·03 (95% C.I., -

0·07, 0·01); partial-model: C=0·71 (95% C.I., 0·64-0·77); r2=0·17 (95% C.I., 0·13-0·22); Brier 

score=0·09 (95% C.I., 0·05-0·13); intercept=-0·03 (95% C.I., -0·07, 0·00). Calibration plots (Figure 

26) show relatively good agreement between observed and expected risk in the full-model albeit with 

some minor evidence of miscalibration (slight under-prediction of risk at lower predicted 

probabilities, and over-prediction of risk at higher predicted probabilities). The same pattern of slight 

miscalibration was marginally more pronounced in the partial-model. 

 

Figure 26: Calibration Plots in ALSPAC Sensitivity Analysis Sample 

A=Full-Model; B=Partial-Model. 
Calibration plots illustrate agreement between observed risk (y axis) and predicted risk (x axis). Perfect agreement 
would trace the red line. Algorithm calibration is illustrated by the black line. Triangles denote grouped observations for 
participants at deciles of predicted risk, with 95% C.I.’s indicated by the vertical black lines. 
 

 

7.4.5 Results of The Decision Curve Analysis 

Decision curve analysis (Figure 27) suggested that at predicted probability cut-offs >0.05, both 

PsyMetRiC algorithms provided greater net benefit than intervening in all or none. At most risk 

thresholds >0.05, the full-model provided slight improvement in net benefit compared with the partial 

model. See Tables 40-41 for numerical decision curve analysis results for both PsyMetRiC versions 

(net benefit, standardized net benefit, sensitivity, specificity) across a range of reasonable risk 
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thresholds. For example, if an intervention were considered necessary above a risk score of 0.18, the 

full-model would provide a net benefit of 7.95% (95% C.I., 5.37-10.82%) with a sensitivity and 

specificity of 0.75 (95% C.I., 0.66-0.82) and 0.74 (95% C.I., 0.71-0.78) respectively, meaning that an 

additional 47% of metabolic syndrome cases could be prevented. At the same risk-threshold, the 

partial-model would provide a net benefit of 7.74% (95% C.I., 4.79-10.36%) with a sensitivity and 

specificity of 0.75 (95% C.I., 0.65-0.81) and 0.74 (95% C.I., 0.70-0.77) respectively, meaning that an 

additional 46% of metabolic syndrome cases could be prevented. For both models this equates to 

around an additional eight cases of metabolic syndrome that could be prevented per 100 individuals, 

without any increase in false positives. 

 

Figure 27: Decision Curve Analysis Plot for PsyMetRiC Full- and Partial-Models 

The plot reports net benefit (y axis) of PsyMetRiC full- (red line) and partial- (blue line) models across a range of risk 
thresholds (x axis) compared with intervening in all (grey line) or intervening in none (black line). In decision curve 
analysis, it is customary to consider only the range of risk-thresholds that may reasonably be considered in clinical 
practice. The upper bound of 0.35 represents a greater than one in three chance of developing metabolic syndrome should 
nothing change, and it is unlikely that risk thresholds greater than this would be tolerated. Net harm (i.e., more false 
positives than true positives exposed to an intervention at a selected risk threshold) is indicated when a proposed 
intervention is plotted at y<0. 
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Table 40: Decision Curve Analysis Results at Different Thresholds – PsyMetRiC Full-Model 
Net Benefit Performance Measure (95% C.I.) 
Risk 
Thresholda Sensitivity Specificity Net Benefit 

Standardized 
Net Benefitb 

0.02 1.00 (1.00-1.00) 0.01 (0.00-0.02) 0.15 (0.13-0.18) 0.90 (0.88-0.92) 
0.04 0.99 (0.97-1.00) 0.04 (0.03-0.06) 0.13 (0.11-0.16) 0.80 (0.75-0.83) 
0.06 0.99 (0.97-1.00) 0.16 (0.12-0.19) 0.12 (0.09-0.15) 0.73 (0.67-0.77) 
0.08 0.96 (0.92-1.00) 0.30 (0.26-0.34) 0.11 (0.09-0.14) 0.66 (0.58-0.72) 
0.10 0.94 (0.88-0.98) 0.41 (0.37-0.46) 0.10 (0.08-0.13) 0.62 (0.52-0.69) 
0.12 0.92 (0.86-0.97) 0.52 (0.47-0.57) 0.10 (0.07-0.13) 0.60 (0.50-0.68) 
0.14 0.85 (0.77-0.91) 0.61 (0.57-0.65) 0.09 (0.06-0.12) 0.53 (0.44-0.62) 
0.16 0.76 (0.69-0.83) 0.70 (0.66-0.74) 0.08 (0.06-0.11) 0.48 (0.38-0.59) 
0.18 0.75 (0.66-0.82) 0.74 (0.71-0.78) 0.08 (0.05-0.11) 0.47 (0.37-0.58) 
0.20 0.68 (0.59-0.77) 0.79 (0.75-0.83) 0.07 (0.05-0.10) 0.42 (0.31-0.53) 
0.22 0.62 (0.52-0.70) 0.83 (0.80-0.87) 0.07 (0.04-0.09) 0.39 (0.27-0.49) 
0.24 0.56 (0.47-0.65) 0.86 (0.83-0.89) 0.06 (0.04-0.08) 0.35 (0.22-0.49) 
0.26 0.52 (0.43-0.62) 0.88 (0.85-0.91) 0.05 (0.03-0.07) 0.31 (0.19-0.43) 
0.28 0.45 (0.37-0.54) 0.90 (0.87-0.92) 0.04 (0.02-0.07) 0.26 (0.15-0.38) 
0.30 0.40 (0.31-0.50) 0.92 (0.89-0.94) 0.04 (0.02-0.06) 0.23 (0.12-0.36) 
0.32 0.37 (0.28-0.47) 0.93 (0.90-0.95) 0.03 (0.02-0.06) 0.20 (0.10-0.32) 
0.34 0.34 (0.24-0.43) 0.94 (0.92-0.96) 0.03 (0.01-0.05) 0.19 (0.08-0.30) 
0.36 0.27 (0.19-0.36) 0.95 (0.94-0.97) 0.02 (0.01-0.04) 0.14 (0.04-0.26) 

aDifferent risk thresholds may be selected depending on the proposed intervention, as well as patient or clinician 
preference; bStandardized net benefit is calculated as the net benefit / outcome prevalence, showing the proportion of 
improvement in net benefit at the selected risk threshold. 
 

Table 41: Decision Curve Analysis Results at Different Thresholds – PsyMetRiC Partial-Model 
Net Benefit Performance Measure (95% C.I.) 
Risk 
Thresholda Sensitivity Specificity Net Benefit 

Standardized 
Net Benefitb 

0.02 1.00 (1.00-1.00) 0.01 (0.00-0.01) 0.15 (0.12-0.18) 0.90 (0.88-0.92) 
0.04 1.00 (1.00-1.00) 0.03 (0.02-0.05) 0.14 (0.11-0.16) 0.80 (0.75-0.83) 
0.06 0.99 (0.96-1.00) 0.13 (0.10-0.15) 0.12 (0.09-0.15) 0.72 (0.64-0.77) 
0.08 0.99 (0.96-1.00) 0.24 (0.21-0.28) 0.11 (0.08-0.14) 0.67 (0.58-0.73) 
0.10 0.95 (0.91-0.99) 0.38 (0.34-0.43) 0.10 (0.07-0.13) 0.62 (0.53-0.69) 
0.12 0.91 (0.86-0.96) 0.50 (0.46-0.54) 0.10 (0.07-0.12) 0.57 (0.47-0.65) 
0.14 0.85 (0.78-0.91) 0.58 (0.53-0.62) 0.09 (0.06-0.11) 0.51 (0.38-0.59) 
0.16 0.78 (0.71-0.86) 0.66 (0.62-0.70) 0.08 (0.05-0.11) 0.46 (0.33-0.55) 
0.18 0.75 (0.65-0.83) 0.74 (0.70-0.77) 0.08 (0.05-0.10) 0.46 (0.33-0.56) 
0.20 0.67 (0.60-0.75) 0.79 (0.76-0.83) 0.07 (0.04-0.09) 0.42 (0.30-0.51) 
0.22 0.65 (0.56-0.72) 0.82 (0.79-0.86) 0.07 (0.04-0.09) 0.40 (0.27-0.50) 
0.24 0.59 (0.50-0.67) 0.86 (0.83-0.90) 0.06 (0.04-0.08) 0.37 (0.25-0.48) 
0.26 0.56 (0.47-0.65) 0.87 (0.85-0.91) 0.06 (0.03-0.08) 0.34 (0.23-0.44) 
0.28 0.48 (0.40-0.57) 0.89 (0.86-0.92) 0.04 (0.02-0.07) 0.26 (0.13-0.37) 
0.30 0.41 (0.34-0.50) 0.91 (0.89-0.94) 0.04 (0.02-0.06) 0.23 (0.11-0.33) 
0.32 0.35 (0.28-0.44) 0.92 (0.90-0.94) 0.03 (0.01-0.05) 0.17 (0.06-0.27) 
0.34 0.29 (0.21-0.38) 0.94 (0.92-0.96) 0.02 (0.00-0.04) 0.13 (0.02-0.24) 
0.36 0.28 (0.20-0.36) 0.94 (0.92-0.96) 0.02 (0.00-0.04) 0.12 (0.01-0.22) 

aDifferent risk thresholds may be selected depending on the proposed intervention, as well as patient or clinician 
preference; bStandardized net benefit is calculated as the net benefit / outcome prevalence, showing the proportion of 
improvement in net benefit at the selected risk threshold. 
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7.4.6 Visual Representation of PsyMetRiC 

Figure 28 shows decision trees outlining two simulated case scenarios to visualise the impact of 

modifiable and non-modifiable risk factors in young people with psychosis, as calculated from 

PsyMetRiC full- and partial-models. Visit http://psymetric.shinyapps.io/psymetric/ for an online data 

visualisation app for both PsyMetRiC versions, which allows the user to interactively explore the 

impact of modifiable and non-modifiable risk factors and their combinations on cardiometabolic risk 

in young people with psychosis, based on PsyMetRiC scores.   

 
Figure 28: Simulated Case Scenarios to Visualize Impact of Modifiable and Non-Modifiable 
Risk Factors on Cardiometabolic Risk in Young People with Psychosis as Calculated from 
PsyMetRiC Full- and Partial Models 
 

A. PsyMetRiC Full-Model 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 24-year-old South Asian male is admitted to a psychiatric inpatient unit in the UK and diagnosed with psychosis. His BMI is 
toward the upper limit of the recommended range (24.7). He does not smoke. His blood test results for cholesterol are abnormal 
and suggest the possibility of insulin resistancea (triglycerides = 2.51 mmol/L; HDL=1.03 mmol/L).  

Initial PsyMetRiC Score = 0.13 

He is commenced on olanzapine. 

New PsyMetRiC Score = 0.19  
46% increase in risk of metabolic 

syndrome 

He is commenced on aripiprazole. 

New PsyMetRiC Score = 0.13 
no change in risk of metabolic 

syndrome 

In time, he recovers from the acute psychotic episode but shows residual symptoms and so opts to remain on antipsychotic 
medication. He also accepts referral to a dietician to address his cholesterol levels. One year later (age 25y), a repeat blood test 

shows improvement: triglycerides=1.54mmol/L; HDL=1.33mmol/L and his BMI has decreased to 23.3. Due to residual 
symptoms of psychosis, his doctor talks with him about a possible change in medication. 

 

He switches to olanzapine. 

New PsyMetRiC Score = 0.11 

15% decrease in risk of metabolic syndrome 

He continues on aripiprazole. 

New PsyMetRiC Score = 0.07 

46% decrease in risk of metabolic 
syndrome  
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B.  PsyMetRiC Partial-Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PsyMetRiC scores presented as predicted probabilities, which can be converted to %chance of incident metabolic 
syndrome by multiplying by 100.  aA raised triglyceride:HDL ratio is indicative of insulin resistance 
EIS=psychosis early intervention service; BMI=body mass index; HDL=high-density lipoprotein. 
 
 

A 27-year-old White European female is diagnosed with psychosis in the community and enrolled in the local NHS EIS. 
She accepts basic physical assessment only (BMI=26.2, in the ‘overweight’ range). She smokes 15 cigarettes per day.  

Initial PsyMetRiC Score = 0.11 

She is commenced on risperidone. 

New PsyMetRiC Score = 0.20  

81% increase in risk of metabolic 
syndrome 

After she begins to recover from her psychotic symptoms, she is offered and commits to smoking cessation therapy and is 
successful in her efforts. She also talks to her doctor about a change in medication due to mild adverse effects. 

 

She continues on risperidone. 

New PsyMetRiC Score = 0.16  
20% decrease in risk of metabolic syndrome 

She switches to amisulpride. 

New PsyMetRiC Score = 0.08 
60% decrease in risk of metabolic syndrome 

Along with some friends, she also joins a local sports club, and over the course of 1 year, her BMI has decreased to 24.3. 

She is prescribed risperidone. 

New PsyMetRiC Score = 0.12  

25% decrease in risk of metabolic syndrome 

She is prescribed amisulpride. 

New PsyMetRiC Score = 0.06 

25% decrease in risk of metabolic 
syndrome 
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7.5 Discussion 

I have developed and externally validated PsyMetRiC, which is, to the best of my knowledge, the 

first cardiometabolic risk prediction algorithm specifically tailored for young people with psychosis. 

PsyMetRiC can predict up to six-year risk of incident metabolic syndrome from commonly recorded 

clinical information, highlighting modifiable risk factors that could be addressed to reduce risk. 

Metabolic syndrome is a precursor to CVD and early mortality (Isomaa et al., 2001) and is a suitable 

outcome for younger populations. Both PsyMetRiC versions externally validated well, with C-

statistics >0·70. Calibration of the full-model was good, but there was evidence of slight 

miscalibration of the partial-model. Therefore, the partial model may benefit from recalibration in 

larger samples. Both PsyMetRiC versions displayed greater net benefit than alternative strategies 

across a range of feasible risk thresholds. However, at most risk thresholds, the results show that the 

full-model should be used preferentially.  

The data visualisations in Section 7.4.5 help to illustrate three things: First, antipsychotic medication 

choice imparts a substantial influence on cardiometabolic risk; second, addressing lifestyle factors 

can effectively reduce cardiometabolic risk even in the presence of antipsychotic medication; third; 

advancing age in relatively-young adults does not substantially influence cardiometabolic risk 

relative to other risk factors. While PsyMetRiC will benefit from future validation in larger samples, 

it has the potential to become a valuable resource to promote better management of physical health 

in young people with psychosis. PsyMetRiC could be used to highlight malleable risk factors and 

encourage clinicians to make more personalized, informed decisions such as with the choice of 

antipsychotic medication and lifestyle interventions.  

Over 100 studies were included in my systematic review that explored the suitability of existing 

cardiometabolic risk prediction algorithms for young people with psychosis (see Chapter 6). Yet, few 

algorithms were externally validated; only one was developed in a sample of people with mental 

illness; none were conducted in younger populations; and most were rated as being high-risk of bias.  

Ethnicity, smoking, and BMI are amongst the most commonly included predictors in existing 

algorithms (see Chapter 6) and are well-known contributors to cardiometabolic risk (Pillinger et al., 

2020), so I included them in PsyMetRiC. Sex is also frequently considered in existing algorithms, 

and I included it in PsyMetRiC. I found that male sex was a risk factor for incident metabolic 

syndrome, which aligns with meta-analytic reports that male sex is a risk factor for antipsychotic-

induced metabolic dysfunction (Pillinger et al., 2020). Due to the available sample size, I could not 

consider separate versions of PsyMetRiC for males and females. When larger samples might be 
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available in future, sex-stratified versions might be studied since existing algorithms developed for 

the general population commonly take this step. 

Age is frequently included in existing algorithms (see Chapter 6), and I included it in PsyMetRiC. 

However, existing cardiometabolic risk prediction algorithms developed for relatively older-aged 

adults have weighted age to a much greater extent than other predictors (see Chapter 6). This is likely 

because most cardiometabolic risk factors contribute cumulative risk over time (Reinikainen et al., 

2015), and so age becomes increasingly important as one gets older. In Chapter 6, the accompanying 

exploratory validation analysis, which examined the predictive performance of existing general 

population cardiometabolic risk prediction algorithms (QRISK3, QDiabetes and PRIMROSE) in 

young people who were at risk of developing psychosis, found that each significantly underpredicted 

risk in the younger population. This is possibly due to the way existing algorithms have modelled 

age. With PsyMetRiC, age is weighted to a much lesser extent than other predictors, and I achieved 

favourable calibration in younger populations. While QRISK3, QDiabetes and PRIMROSE are good 

examples of well-designed algorithms from enormous samples, my results suggest that PsyMetRiC 

is more appropriate for young people with psychosis.  

Blood-based predictors such as HDL and triglycerides feature less often in cardiometabolic risk 

prediction algorithms (see Chapter 6). Meta-analytic evidence suggests abnormal triglyceride and 

HDL levels are detectable at FEP (Misiak et al., 2017), and a raised triglyceride:HDL ratio is a 

hallmark of insulin resistance (Murguia-Romero et al., 2013), which is also associated with FEP 

(Perry et al., 2016). Guideline recommendations encourage blood-based monitoring pre- and post- 

antipsychotic exposure (Barnes et al., 2020), and so biochemical data should be available. I found 

that the inclusion of blood-based predictors improved all predictive performance metrics. However, 

blood-based monitoring may not always be possible, and I found that the partial-model still provided 

relatively reliable performance estimates, although it would benefit from recalibration. 

Antipsychotic medication is an important contributor to cardiometabolic risk in young people with 

psychosis yet has rarely been included in existing algorithms. Some more recent algorithms have 

included antipsychotics as predictors, grouped by the traditional distinctions of typical/atypical or 

first/second-generation (see Chapter 6). However, the differential cardiometabolic effects of 

antipsychotics do not abide by these distinctions. Therefore, I instead modelled antipsychotics based 

on previous research. This is an advance over previous algorithms.  

PsyMetRiC cannot yet be recommended for clinical use and requires prospective validation in larger 

samples, health technology assessment, and regulatory approval. However, PsyMetRiC can become 

a valuable resource for the better management of physical health in young people with psychosis in 
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the future. For example, in the presence of a low PsyMetRiC risk score, gentle encouragement to 

maintain good physical health may be sufficient. For instance, this might include dietary advice, 

promoting daily physical activity and smoking cessation, if necessary. There is little harm yet much 

to gain in offering gentle encouragement to live a healthier life, and such conversations need to 

become part and parcel of psychiatric consultation.  

Patients and clinicians might prefer to tolerate a slightly higher risk threshold when the proposed 

intervention could be deemed more burdensome or may increase the risk of other adverse effects. For 

example, prescribed lifestyle interventions have shown promise in lowering cardiometabolic risk in 

young people with psychosis (Fernandez-Abascal et al., 2021), however they may be perceived as 

burdensome, involving regular appointments that may be difficult to maintain around work or other 

commitments.  

Yet, dietary interventions (Curtis et al., 2016) have shown promise when offered to young people 

with psychosis but may be less effective in older adults with more chronic illness and ingrained 

behaviours (Speyer et al., 2016).  

Regarding smoking cessation, a systematic review and meta-analysis found relatively strong evidence 

for pharmacological interventions such as varenicline, a selective nicotine receptor partial agonist, 

and bupropion, a selective catecholamine reuptake inhibitor. The review found limited evidence for 

behavioural interventions (Pearsall et al., 2019). A systematic review on the psychosocial barriers to 

smoking cessation in schizophrenia found that cravings were the main barrier to smoking cessation, 

followed by a perception that negative symptoms worsened when attempting to quit (Lum et al., 

2018).  

Regarding physical activity interventions, a Cochrane review of randomized controlled trials (RCTs) 

found that despite study heterogeneity and small sample sizes, exercise interventions led to an 

improvement in negative symptoms and quality of life scores as well as weight loss (Gorczynski and 

Faulkner, 2010). A mixed-methods study found that people with schizophrenia who engaged in 

regular exercise reported beneficial effects on mood and cognitive symptoms, with improvements in 

well-being measures and reductions in negative and cognitive symptoms, following an exercise 

intervention (Ho et al., 2018). Similarly, other qualitative research has shown that people with 

schizophrenia who regularly engage in exercise reported improved symptom alleviation, improved 

confidence, and a sense of achievement (Firth et al., 2016).  

Other interventions may increase the risk of other adverse effects. For example, my results show that 

switching from metabolically-active antipsychotics or not prescribing them in the first place is a 

highly effective means to reduce cardiometabolic risk. This finding is in line with a recent clinical 
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trial which found that switching to a less metabolically-active antipsychotic significantly reduced 

BMI in young people with psychosis (Correll et al., 2020). However, the risk of psychosis relapse or 

other adverse effects may reasonably be worrisome for patient and clinician alike. Moreover, meta-

analyses suggest that metabolically-active antipsychotics could be associated with favourable 

psychosis treatment response (Pillinger et al., 2020), though this may be an artefact of treatment 

adherence. Nevertheless, antipsychotic selection must strike an intricate balance between caring for 

psychiatric and physical health. Finally, trials of treatments such as metformin and statins are scarce 

in young people with psychosis, but evidence suggests that such medications might benefit both 

cardiometabolic and psychiatric outcomes (Hayes et al., 2019, Correll et al., 2020, de Silva et al., 

2016). 

Regarding the strengths of the study, I have developed, to the best of my knowledge, the first 

cardiometabolic risk prediction algorithm for young people with psychosis, harnessing data from 

three geographically distinct patient samples and a population-based cohort. PsyMetRiC was 

developed in consultation with The McPin Foundation YPAG to ensure a balance between clinical 

practicality and patient acceptability, and I received encouraging comments from the YPAG about 

PsyMetRiC. I developed an online interactive app permitting a visualization of the impact of different 

cardiometabolic risk factors in young people with psychosis. I have reported the fully specified 

algorithm coefficients to encourage future validation and model updating. I developed two versions 

of PsyMetRiC to maximise clinical utility and both validated well, suggesting that PsyMetRiC is 

likely to be suitable for use in patients aged 16-35 years from a UK EIS population. From the 

sensitivity analysis results, PsyMetRiC may also be generalizable to young adults at risk of 

developing psychosis. 

Limitations of the study include missing data. I excluded participants who had the outcome at 

baseline, as recommended (Wolff et al., 2019). However, because the predictors were measured a 

short time frame after EIS enrolment, some ‘metabolically-sensitive’ individuals, i.e., inidivduals 

who developed metabolic syndrome quickly, might have been inadvertently excluded from the 

analysis. I also excluded participants with data missing on either all exposure or all outcome variables, 

which may have introduced selection bias. The missing sample was more likely to be older and female 

and less likely to be prescribed metabolically-active antipsychotics. This may have affected some 

PsyMetRiC predictor coefficients. Nevertheless, I felt this exclusion step was more appropriate than 

imputing complete participant data.  

Multiple imputation may be biased in instances where data are ‘missing not at random’. However, I 

included auxiliary variables to reduce the fraction of missing information and limit the impact of this. 

External validation of PsyMetRiC in larger samples is required since simulation studies have 
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suggested a minimum of 100 outcome events for an accurate validation analysis (Collins et al., 2016). 

Larger prospectively collected samples in future may also allow for updating the algorithm with 

interactions, non-linear terms, and sex-stratification. In addition, larger prospectively collected 

samples may allow the consideration of other potentially important predictors such as other 

metabolically-active medications, physical activity, and diet. Prospectively collected data may also 

allow prediction of longer-term risk since the mean follow-up time in the primary analysis was shorter 

than the maximum included time frame of six years. While the data-driven classification of 

metabolically-active antipsychotics is an advance over existing algorithms, the metabolically-active 

nature of different antipsychotics lies on a continuum rather than across a dichotomy. Larger samples 

may permit the modelling of antipsychotics individually. Prescriber bias may have downwardly 

biased the coefficients for antipsychotics since metabolically-active medications may have been 

withheld from patients considered to be at higher cardiometabolic risk.  

In conclusion, I have developed and externally validated PsyMetRiC, an algorithm that can reliably 

predict the risk of incident metabolic syndrome in young people with psychosis. PsyMetRiC has the 

potential to become a valuable resource for healthcare professionals working in EIS. PsyMetRiC can 

aid the informed choice of psychotropic and non-psychotropic medications and non-pharmacological 

interventions, including lifestyle adjustments, to prevent the future development of cardiometabolic 

comorbidity and consequent years of life lost. 
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Section D: Summary of Main Findings and Conclusions 

Section D concerned the clinical prediction of cardiometabolic risk in young people with psychosis, 

consisting of a systematic review (Chapter 6) followed by the development of PsyMetRiC, a 

cardiometabolic risk prediction algorithm for young people with psychosis (Chapter 7). The 

systematic review (Chapter 6) identified a considerable number of cardiometabolic risk prediction 

algorithms developed for the middle- to older-aged general population. One algorithm was developed 

for a non-specific psychiatric population and was also developed in relatively older-aged adults. I 

also found that most algorithms were not externally validated, thus calling their potential 

generalizability into question, and most were rated as high risk of bias. Three identified algorithms 

(QRISK3, QDiabetes, PRIMROSE) included psychiatric predictors such as antipsychotic 

medications and were assessed for their predictive performance in a younger psychosis-risk 

population. All three substantially underpredicted cardiometabolic risk in the younger population. 

Based on the systematic review and exploratory validation analysis, I concluded that currently, no 

algorithm can be recommended for young people with psychosis, despite this population being at 

significantly higher cardiometabolic risk than the general population.  

In Chapter 7, I developed the first cardiometabolic risk prediction algorithm tailored for young people 

with psychosis, the Psychosis Metabolic Risk Calculator (PsyMetRiC). I designed PsyMetRiC to be 

age-appropriate, clinically useful, and acceptable to patients. I developed PsyMetRiC using patient 

data from two UK EIS and externally validated it in a geographically distinct UK EIS and a 

population-based cohort. I developed and validated two versions of this tool, one with and one without 

blood-based biomarkers, to maximise usefulness in day-to-day clinical practice. Predictive 

performance for PsyMetRiC was universally good, suggesting that the algorithm is suitable for the 

UK EIS population. PsyMetRiC represents a valuable future tool for clinical practice, which now 

requires further testing in clinical settings through prospective validation and updating. 

Together, results from Section D show that the prediction of cardiometabolic risk in young people 

with psychosis has been widely overlooked. Nevertheless, with PsyMetRiC, I have shown that it is 

possible to predict cardiometabolic risk in this population accurately. Whilst future refinements to 

PsyMetRiC are required to improve predictive performance further, PsyMetRiC is a valuable step 

toward improved physical healthcare for young people with psychosis.
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8.1 Summary of the Main Findings in This Thesis 

In this thesis, using a number of complementary methodological approaches relating to genetic and 

observational epidemiology along with prognosis research, I present evidence that cardiometabolic 

dysfunction may predate the onset of psychosis and may be inherent to it. I found that this may be 

explained, at least in part, by common biological mechanisms such as shared genetic liability and 

inflammation. I also found that it is possible to accurately predict cardiometabolic risk in young 

people with psychosis from commonly recorded information. Together, these findings can help to 

explain why young people with psychosis present with cardiometabolic dysfunction even in the 

earliest stages of illness. The findings can also pave the way for novel therapeutic and preventative 

approaches for schizophrenia and its associated cardiometabolic comorbidity. 

First, to address the issue of direction of association, I used longitudinal data from the ALSPAC birth 

cohort to delineate developmental trajectories of cardiometabolic indices from early childhood to 

early adulthood and then tested associations with adult schizophrenia-spectrum and depression 

outcomes. I found that persistently high fasting insulin levels from mid-childhood were associated in 

a dose-response manner with schizophrenia-spectrum phenotypes measured in adulthood. Evidence 

for the associations remained after adjustment for a range of potential confounders, including sex, 

ethnicity, social class, smoking, physical activity, calorie intake, alcohol, and substance use. This 

suggests that the traditional attributions of sociodemographic and lifestyle factors are unlikely to fully 

explain the comorbidity. The associations of disrupted glucose-insulin homeostasis were not 

identified with depression, a genetically and clinically similar mental disorder with well-known 

cardiometabolic comorbidity. Together, these findings suggest that disruptions to glucose-insulin 

homeostasis may be a specific primary pathophysiological hallmark of schizophrenia and may be 

detectable decades before the first clinical psychotic episode. Therefore, disrupted glucose-insulin 

homeostasis could be a cause rather than simply a consequence of psychotic illness or share common 

pathophysiologic mechanisms. 

Second, I examined whether genetic predisposition for T2D and schizophrenia were associated with 

risk of psychosis and disrupted glucose-insulin homeostasis, respectively, and explored whether 

genetic influences on childhood inflammation could mediate any evident associations. I found that 

genetic predisposition to schizophrenia was associated with disrupted glucose-insulin homeostasis in 

early adulthood and vice versa, genetic predisposition to T2D was associated with increased risk of 

schizophrenia-spectrum phenotypes in early adulthood. I found that this risk was partly mediated by 

childhood inflammation.  
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Third, I used a set of complementary genomic methods to rigorously examine for evidence of shared 

genetic liability for schizophrenia, cardiometabolic and inflammatory traits, using summary data from 

large-scale GWAS. I found evidence for genetic overlap between schizophrenia, cardiometabolic and 

inflammatory traits that was confined to relatively lower-frequency genetic variants, was 

heterogeneous in nature, and could be pinpointed to biologically plausible pathways, for example, 

BDNF and glucose transport.  

Fourth, I used summary GWAS data to examine whether insulin resistance and related 

cardiometabolic traits may be causally related to schizophrenia or whether inflammation may be a 

common biological mechanism for the comorbidity. I found consistent evidence supporting that 

inflammation could be a common cause for comorbid insulin resistance and schizophrenia. Together, 

these findings suggest that shared genetic liability and inflammation may be putative biological 

mechanisms that underly the associations between cardiometabolic disorders and schizophrenia, over 

and above the common attributions of sociodemographic, lifestyle and clinical factors. 

Fifth, turning to the clinical relevance of the cardiometabolic comorbidity of schizophrenia, I 

performed a systematic review of cardiometabolic risk prediction algorithms to examine whether any 

might be suitable for young people with psychosis. Despite identifying a large number of algorithms, 

most had significant methodological shortcomings, and none were developed for younger 

populations. Using ALSPAC data, I found that existing algorithms substantially underpredicted 

cardiometabolic risk in a younger psychosis-risk sample. Therefore, I concluded that no existing 

cardiometabolic risk prediction algorithm is likely suitable for young people with psychosis.  

Finally, using patient data from three UK EIS, I developed and validated PsyMetRiC, the first 

cardiometabolic risk prediction algorithm developed especially for young people with psychosis. The 

predictive performance of PsyMetRiC was good in both the development and external validation 

samples, suggesting that PsyMetRiC is likely to be suitable for use in the UK EIS population. 
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8.2 Interpretation and Context of the Main Findings in This Thesis 

8.2.1 Examining The Nature of Association between Cardiometabolic Disorders and 

Schizophrenia 

The finding that disruption to glucose-insulin homeostasis may predate psychosis (Chapter 2) could 

represent a considerable advance in our understanding of the nature of association between 

cardiometabolic traits and schizophrenia. Given the known cardiometabolic risk-increasing 

associations between schizophrenia and a host of lifestyle and clinical factors (as detailed in Section 

1.1.3), it was previously assumed that the cardiometabolic comorbidity so prevalent in schizophrenia 

was simply a consequence of the psychiatric disorder. This assumption was bolstered by the findings 

of early systematic reviews and meta-analyses, which reported an unremarkable prevalence of 

cardiometabolic disorders like T2D and metabolic syndrome in antipsychotic naïve FEP (Mitchell et 

al., 2013a). The authors concluded that the cardiometabolic comorbidity of schizophrenia most likely 

arises after the onset of the psychiatric disorder and so must be a consequence of it.  

However, just as psychotic symptoms may be distributed over a spectrum in the general population 

(van Os et al., 2009), neither is cardiometabolic dysfunction a binary distinction. Rather, subtle forms 

of cardiometabolic dysfunction may be present in the absence of clinical T2D or metabolic syndrome. 

Early systematic reviews failed to consider that the absence of relatively mature cardiometabolic 

phenotypes such as T2D and metabolic syndrome does not necessarily equate to the absence of 

cardiometabolic dysfunction. Indeed, more recent meta-analyses have consistently shown that subtle 

forms of disrupted glucose-insulin homeostasis, such as insulin resistance and impaired glucose 

tolerance, are detectable in FEP (Perry et al., 2016, Pillinger et al., 2017a, Greenhalgh et al., 2017). 

Findings from these meta-analyses, therefore, called into question the traditional understanding of the 

direction of association between cardiometabolic dysfunction and schizophrenia. This is because 

participants included in the studies were antipsychotic naïve and relatively young, and so less affected 

by commonly attributed lifestyle and clinical factors. Nevertheless, since all studies included in meta-

analyses were either cross-sectional or featured existing cases of FEP, further elucidation on the 

direction of association could not be ascertained.  

In Chapter 2, I present evidence that disruption to glucose-insulin homeostasis predates FEP and may 

be detectable from childhood in at least some individuals. While the commonly attributed lifestyle 

and clinical factors are not to be devalued and remain crucial therapeutic targets for the 

cardiometabolic comorbidity in schizophrenia, my findings suggest that these factors are more likely 

to exacerbate rather than cause the comorbidity. This argument is strengthened in light of the findings 

in Chapter 2, where associations between persistently high fasting insulin and schizophrenia-
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spectrum phenotypes endured even after adjusting for a detailed set of sociodemographic and lifestyle 

confounders. One previous study sought to examine longitudinal associations between a single point-

measure of fasting insulin levels measured at age 9 years and risk of psychosis at age 18 years in the 

ALSPAC cohort and found no evidence for an association (Perry et al., 2018). This discrepancy in 

findings from the same cohort underscores the importance of taking into account dynamic temporal 

changes and fluctuations in cardiometabolic markers, which are captured more effectively across 

repeated measures. In addition, the incidence of psychosis at age 18 years is relatively low. Therefore, 

the previous study may have included too few cases of outcome to detect an association.  

In Chapter 2, I also present evidence for specificity of association between cardiometabolic 

dysfunction and schizophrenia-spectrum phenotypes. In addition to disrupted glucose-insulin 

homeostasis, recent meta-analyses have also consistently reported evidence of dyslipidaemia 

detectable in antipsychotic naïve FEP (Pillinger et al., 2017b, Misiak et al., 2017). However, the 

pattern of dyslipidaemia in FEP could be further evidence for a primary disruption to glucose-insulin 

homeostasis in schizophrenia, rather than more wide-ranging primary cardiometabolic dysfunction, 

as I have explained in Section 1.1.4.2.2. Interestingly, I found that the ALSPAC participants grouped 

into the ‘persistently-high’ fasting insulin developmental trajectory also had mean levels of 

triglycerides and HDL outside of reference ranges at age 24 years, providing further consistency to 

the results.  

I did not find that ALSPAC participants grouped into the ‘persistently-high’ fasting insulin 

developmental trajectory had mean BMI levels or other forms of cholesterol outside of reference 

ranges. Also, I did not find evidence for associations of BMI developmental trajectories with 

schizophrenia-spectrum phenotypes at age 24 years. In fact, I found striking differences between the 

longitudinal cardiometabolic associations of schizophrenia-spectrum outcomes compared with 

depression, where the latter did show strong associations with puberty-onset BMI increases but no 

associations with glucose-insulin homeostasis. This provides evidence of specificity for primary 

disruption to glucose-insulin homeostasis, but not adiposity, with increased risk of psychosis. These 

findings are in line with meta-analyses of both individuals with FEP (Perry et al., 2016) and younger 

individuals at risk of developing psychosis (Carney et al., 2016) which did not find differences in 

BMI between cases and controls. Conversely, longitudinal studies conducted in large samples have 

found associations of lower BMI in childhood and adolescence with increased risk of schizophrenia 

in adulthood (Zammit et al., 2007, Weiser et al., 2004, Sorensen et al., 2006).  

While these longitudinal studies are limited by only including single point-measures for BMI, the 

large population-representative samples permit significant statistical power to detect a difference. 

Therefore, additional subtle trajectories of BMI may exist in the population that could not be 
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accurately delineated in my analysis. For example, I found that over 70% of included participants 

were grouped into the ‘stable average’ BMI trajectory, whose BMI remained close to the sample 

mean over time. Replication of my work in larger samples may uncover additional BMI trajectories 

subtly distinct from the ‘stable average’ trajectory I identified. Some of these may be associated with 

lower childhood BMI and may, in turn, be associated with an increased risk of schizophrenia.  

At first glance, it may appear contradictory that abnormalities in glucose-insulin homeostasis could 

be detectable in the absence of adiposity and other cardiometabolic phenotypes. However, there is 

increasing recognition that in the early stages of cardiometabolic disruption in young adults, insulin 

resistance can occur in isolation and in advance of changes to adiposity (Wiebe et al., 2021). This has 

been coined the ‘lean insulin resistant’ phenotype (Penesova et al., 2011, Townsend et al., 2018, 

George et al., 2015, Gonzalez-Cantero et al., 2018). Interestingly, the ‘lean insulin resistant’ 

phenotype is also associated with higher levels of inflammation (Ding et al., 2016), and I will discuss 

the potential mechanistic involvement of inflammation below (Section 8.2.2). 

 

8.2.2 Testing Potential Mechanisms of Association between Cardiometabolic Disorders and 

Schizophrenia 

In Chapter 3, using ALSPAC data, I found that genetic predisposition to T2D was associated with 

increased risk of psychosis in early adulthood and vice versa, genetic predisposition to schizophrenia 

was associated with insulin resistance in early adulthood. These findings indicate the possibility of 

gene similarity between schizophrenia and disrupted glucose-insulin homeostasis. These findings 

align with other observational genetics studies (Chouinard et al., 2019, Tomasik et al., 2019, 

Hackinger et al., 2018) as described in Section 3.5, and extend upon them since existing studies are 

limited by relatively small sample sizes compared with the analysis I present in Chapter 3. 

Furthermore, I can extend upon the findings of previous studies since I tested a potential mechanism 

for the genotype-phenotype associations. I found that the association between genetic predisposition 

for T2D and risk of psychosis was partly mediated by childhood inflammation. Whilst the effect size 

for mediation was small, and those analyses may have been limited by statistical power, the findings 

suggest that the genotype-phenotype associations of T2D and schizophrenia align at least in part due 

to genetic influences on inflammatory and immune pathways, which could increase the risk of both 

disorders simultaneously. Indeed, there is biological plausibility for this mechanism; longitudinal 

associations between childhood inflammatory markers and subsequent risk of psychosis have been 

reported in the same (Khandaker et al., 2014) and other cohorts (Kappelmann et al., 2019, Goldsmith 

et al., 2019, Metcalf et al., 2017, Osimo et al., 2021). Similarly, longitudinal associations of 
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inflammatory markers with disrupted glucose-insulin homeostasis have been reported in meta-

analyses (Bowker et al., 2020). 

In Chapter 4, I took a different approach to examine for shared genetic liability between 

schizophrenia, cardiometabolic and inflammatory traits, using genomic methods that leverage 

summary data from large-scale GWAS. The findings were consistent with those reported in Chapter 

3, thus strengthening the argument that shared genetic liability may at least in part explain phenotypic 

associations between schizophrenia, cardiometabolic and inflammatory traits. Limited previous 

research has sought to examine for shared genetic architecture between schizophrenia and 

cardiometabolic traits. For example, one recent study reported a negative genetic correlation between 

schizophrenia and BMI (Bahrami et al., 2020). Another older study that featured smaller GWAS 

reported limited evidence for genetic correlation between schizophrenia and cardiometabolic traits 

(Bulik-Sullivan et al., 2015a).  

However, as described in Section 4.1, the LDSC approach may have limitations that I was able to 

address with the use of novel complementary analytic methods. In line with previous research, I found 

evidence for a negative genetic correlation between schizophrenia, BMI, and T2D, confined to 

relatively common genetic variants. This cardiometabolic risk-decreasing pattern of correlation with 

schizophrenia differed from the pattern I identified in relatively less-common genetic variants, where 

I found consistent evidence of a cardiometabolic risk-increasing pattern of correlation with 

schizophrenia. The heterogeneity of these findings requires further investigation but may help to 

explain why lower BMI in childhood is longitudinally associated with schizophrenia in adulthood 

(Zammit et al., 2007, Weiser et al., 2004, Sorensen et al., 2006), and may help to explain how a ‘lean 

insulin resistant’ phenotype may be associated with schizophrenia, as discussed in Section 8.2.1. 

These findings together suggest that obesity, which is commonly observed in chronic schizophrenia 

(Mitchell et al., 2013b), may occur due to lifestyle and iatrogenic factors (see Section 1.1.3) or may 

occur over time secondary to intrinsically disrupted glucose-insulin homeostasis in schizophrenia.   

In addition to addressing limitations of the LDSC approach, findings from Chapter 4 also provide 

further granularity around potential mechanisms that may link schizophrenia, inflammation and 

cardiometabolic traits. The colocalization analysis returned robust evidence for several genetic loci 

that may underly the shared genetic liability between schizophrenia, cardiometabolic and 

inflammatory traits. Several loci are related to pathways involving BDNF, which has biologically 

plausible roles in the development and maintenance of the immune and central nervous systems, and 

in the regulation of cardiometabolic function (See Section 4.5).  
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The research methods employed in Chapter 4, including genetic correlation and colocalization 

analyses, cannot test the direction of association. However, in Chapter 5, I used MR to first examine 

for evidence that insulin resistance and related cardiometabolic traits may be causally related to 

schizophrenia, and second, for evidence that inflammation may be a common mechanism for 

schizophrenia and insulin resistance. Crucially, MR can examine the direction of association and can 

address problems of residual confounding. My findings indicate that inflammation may be a novel 

therapeutic target for both schizophrenia and its cardiometabolic comorbidity. Existing MR studies 

have reported evidence that inflammation may be causally related to schizophrenia (Hartwig et al., 

2017) and T2D (Yuan and Larsson, 2020, Bowker et al., 2020) separately. Therefore, my findings 

are consistent with previous research.  

Where the findings from Chapters 3 & 4 showed how shared genetic liability might lead to 

inflammatory changes, disruption to glucose-insulin homeostasis, and increased risk of 

schizophrenia, findings from Chapter 5 show that genetic predisposition may not be the only 

mechanism for inflammation to exert a simultaneous influence on risk of schizophrenia and comorbid 

cardiometabolic disorders. In MR, while genetically predicted levels of the exposure are modelled, 

these are considered proxies for lifelong levels of environmental exposures free from measurement 

error or short-term environment-related fluctuations in the exposure (Davey Smith and Ebrahim, 

2005). Therefore, findings from Chapter 5 indicate that increases in inflammation from any cause, 

whether genetic or environmental, could be potentially causally linked with schizophrenia and 

cardiometabolic disorders simultaneously.  

Environmental adversity in early life through infection, stressful life events or malnutrition may 

permanently alter the immune system (Merlot et al., 2008, Harvey et al., 2010). This idea is consistent 

with Barker’s developmental programming hypothesis (Barker et al., 1993), as described in Section 

1.2.3. Indeed, in Chapter 2, I found that participants grouped into the ‘persistently high’ fasting insulin 

trajectory had significantly greater exposure to perinatal stressful life events and significantly lower 

birthweight compared with participants grouped into the ‘stable average’ trajectory. These 

associations may reflect an adverse early developmental environment, providing further evidence of 

the potential role of the developmental programming hypothesis in simultaneously increasing the risk 

of schizophrenia and cardiometabolic disorders. 

The findings from Chapters 2-5, alongside existing research, can be framed together to delineate the 

most likely direction of association between genetically predisposed schizophrenia, cardiometabolic 

and inflammatory traits. For example, in Chapter 2, I found that disrupted glucose-insulin 

homeostasis may predate the onset of psychosis. In Chapter 3, I found that genetic predisposition may 

increase the risk of comorbid psychosis and disrupted glucose-insulin homeostasis, at least in part 
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due to a mediating influence of inflammation. Existing longitudinal research has shown that 

inflammation is likely to predate disrupted glucose-insulin homeostasis (Bowker et al., 2020) and 

psychosis (Khandaker et al., 2014).  In Chapter 4, I found that the cardiometabolic traits colocalized 

with inflammation and schizophrenia were broader than those solely related to disrupted glucose-

insulin homeostasis, for example, involving distal cardiometabolic endpoints such as CAD. Given 

that disruption to glucose-insulin homeostasis predisposes to CAD (Aronson and Edelman, 2014), 

CAD is likely to be a downstream colocalized trait from inflammation and disrupted glucose-insulin 

homeostasis. In Chapter 5, I found that lifelong levels of inflammation, either genetic or 

environmental, may be a common cause for comorbid insulin resistance and schizophrenia. 

Therefore, the most likely direction of association between schizophrenia, cardiometabolic and 

inflammatory traits is shown in Figure 29. 

 

Figure 29: Schematic Outlining the Most Likely Direction of Association between 
Inflammation, Cardiometabolic Disorders and Schizophrenia Based Upon Findings of This 
Thesis 

aTraditional attributions include sociodemographic, lifestyle and iatrogenic factors and are described in further detail in 
Section 1.1.3 

 

8.2.3 Improving the Prediction of Cardiometabolic Risk in Young People with Psychosis 

Chapters 2-6 show a consistent thread of evidence showing that schizophrenia is likely to carry 

inherent cardiometabolic risk, which may be first detectable before the onset of FEP. The findings 

suggest that the commonly attributed lifestyle and clinical factors (as described in Section 1.1.3) are 

likely to be exacerbating rather than causal factors for the comorbidity. Therefore, there is a clear and 

crucial need for tools that can accurately quantify this combined inherent and exacerbated 
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cardiometabolic risk at the soonest possible opportunity in the schizophrenia illness course. Such 

tools can assist healthcare professionals in preparing personalized treatment plans by accurately 

considering present and future cardiometabolic risk. This can help to attenuate the risk of more distal 

adverse cardiometabolic outcomes and close the substantial mortality gap faced by people with 

schizophrenia. 

I identified an extensive array of existing cardiometabolic risk prediction algorithms in my systematic 

review (Chapter 6). However, the majority have not been externally validated, and most were rated 

as being at high risk of bias. Prediction algorithms that cannot evidence potential generalizability and 

have been reported so poorly cannot be clinically useful and so are arguably no more than contributors 

to research waste. This opinion is not new; an older systematic review of cardiometabolic risk 

prediction algorithms came to a similar conclusion (Damen et al., 2016). It is disheartening that 

despite the introduction of reporting standards (Collins et al., 2015) and risk of bias assessment tools 

(Wolff et al., 2019) for risk prediction algorithms, improvements in the literature are yet to 

materialize. 

However, I did identify a few excellent examples of cardiometabolic risk prediction algorithms. 

QRISK3, QDiabetes and PRIMROSE were developed in extensive samples and were rated as 

relatively low risk of bias. Each was validated in large samples and so have evidenced 

generalizability; QRISK3 has been successfully integrated into clinical practice in the UK, a step 

most health outcome prediction algorithms fail to reach (Riley, 2019); and, PRIMROSE was the only 

identified algorithm to have a published economic analysis (Zomer et al., 2017).  

Despite these positives, I identified several reasons why all three algorithms are unlikely to be suitable 

for young people with psychosis. These included the older populations the algorithms were developed 

for, the balance of predictor weightings, and the character and coding of included predictors. In the 

exploratory validation analysis, I found that all three algorithms substantially underpredicted 

cardiometabolic risk in young people who had or were at risk of developing psychosis. 

Therefore, I developed and externally validated PsyMetRiC in real EIS samples of young adults 

(Chapter 7), following TRIPOD reporting guidelines (Collins et al., 2015). I found that PsyMetRiC 

showed good predictive performance in the development, external validation and sensitivity analysis 

samples, suggesting the algorithm is likely to be suitable for use in the UK EIS population. By 

involving a young person’s advisory group in the design of PsyMetRiC, I ensured that the algorithm 

is likely to be acceptable for patients. By developing two PsyMetRiC versions, one with- and one 

without biochemical measures, I ensured that the algorithm is likely to be clinically useful. 
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While not yet bedside ready, I see PsyMetRiC as a useful starting point that can be taken forward 

towards routine clinical practice after further validation and fine-tuning. An important consideration 

that I purposely did not broach with PsyMetRiC is with prescribed risk score ‘cut-offs’ and associated 

treatment recommendations. Primarily, this is because I do not believe that algorithms could, or 

should, entirely dictate clinical decisions, which are complex assimilations of individual patient 

factors that are unlikely to be fully captured by any algorithm. Rather, I believe that prediction 

algorithms should more appropriately be placed in the context helping to inform the decision-making 

process. Nevertheless, while cut-offs are often helpful in healthcare settings, deciding upon them in 

the context of PsyMetRiC will require a separate body of multi-disciplinary and patient-centred work. 

 

8.3 Strengths and Weaknesses of the Methodological Approaches Used in This 

Thesis 

In this thesis, I have used a number of complementary approaches to examine the nature and 

mechanisms of the cardiometabolic comorbidity of schizophrenia and consider the prediction of 

cardiometabolic risk in young people with psychosis. Each method was selected for its potential 

strengths in being able to address the research questions posed and for its ability to address the 

limitations of previous research. However, each analysis I have conducted may have weaknesses that 

must be taken into consideration. I will now address the strengths and weaknesses of each analysis I 

have conducted in order of their presentation in this thesis. 

 

8.3.1 Strengths and Weaknesses of the Methodological Approaches Used in Section B 

The availability in ALSPAC of repeat measures of cardiometabolic indices to delineate trajectories 

of cardiometabolic development and test associations with schizophrenia-spectrum outcomes 

(Chapter 2) is a key strength. ALSPAC is a relatively large population-representative birth cohort and 

features a highly diverse range of collected data spanning biochemical, sociodemographic, 

anthropometric, genetic, psychiatric, and lifestyle data. Such a detailed set of available data permitted 

a thorough analysis of two important features of cardiometabolic development through childhood and 

adolescence. In my study, I included 12 measures of BMI between ages 1-24 years and four measures 

of fasting insulin between ages 9-24 years. Comparing my study with those included in a relatively 

recent systematic review of BMI developmental trajectories (Mattsson et al., 2019), my study features 

the longest temporal analysis period and the most extensive set of repeat measurements. To the best 

of my knowledge, my study also includes the first analysis of developmental trajectories of fasting 
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insulin through childhood and adolescence. In addition, given the richness of the ALSPAC dataset, I 

performed a detailed analysis of the identified trajectories. This included examining 

sociodemographic and lifestyle predictors of trajectory membership, clinical characteristics of the 

identified trajectories at age 24 years, and associations with schizophrenia-spectrum and depression 

outcomes at age 24 years. For the latter analysis, I adjusted for a detailed set of potential confounders, 

including sex, ethnicity, paternal social class, childhood emotional and behavioural problems, and 

cumulative scores of smoking, physical activity, alcohol use, substance use, sleep problems and 

average calorie intake. Such detailed confounding adjustment is rare for existing studies in the field 

and provides some confidence that the associations are unlikely to be fully explained by 

sociodemographic and lifestyle factors.  

The data available in the ALSPAC cohort permitted a detailed consideration of several key aspects 

of the Bradford Hill criteria (Hill, 1965), which has thus far eluded existing studies in the field. First, 

I could examine the direction of association, where most existing research has been either cross-

sectional or has included incident cases of psychosis. Evidence of longitudinal associations is key to 

unravelling pathophysiology and identifying genuine risk factors. Second, by including several 

related schizophrenia-spectrum outcomes, I could test for evidence of consistency and robustness of 

the results. Third, by including depression as an outcome, I could test for evidence of specificity of 

association. Fourth, I could examine a biological gradient related to both the exposure and outcomes. 

For example, my analysis delineated two adverse fasting insulin trajectories, but the strongest 

evidence of association was found for the most adverse fasting insulin trajectory. I also found the 

strongest evidence for an association with the most clinically relevant schizophrenia-spectrum 

outcomes, namely ARMS and psychotic disorder.  

The use of repeat measure data also allowed me to overcome another key limitation of previous 

studies, which have typically included one-off measurements of cardiometabolic indices and so are 

blind to fluctuations over time. Cardiometabolic indices, including measures of glucose-insulin 

homeostasis (Moebus et al., 2011) and BMI (Turicchi et al., 2020), are subject to normal fluctuation. 

This variability cannot be appropriately considered with single-point measures. Repeated measures 

over time permitted a more granular and detailed examination of underlying biological mechanisms 

taking into account dynamic temporal changes in these indices.  

The use of GMM as an analytical approach for the repeat measure data permitted the capture of 

information about interindividual differences in intraindividual change, taking into account 

unobserved heterogeneity within a larger population (Jung, 2007). On the other hand, regression-

based modelling assumes that the growth trajectories of all individuals in a population could be 

adequately described using a single estimate of growth parameters; i.e., all individuals are drawn from 
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a homogenous population without discernible differences (Jung, 2007). This is most likely an 

oversimplification. Since GMM relaxes these assumptions and allows differences in growth 

parameters across unobserved subpopulations, I could delineate subgroups of the population likely to 

be plausibly different from one another in their trajectories of fasting insulin or BMI levels. Therefore, 

GMM is likely to be a more biologically plausible framework to consider cardiometabolic 

development than more standard regression-based methods. 

Weaknesses of the ALSPAC data-based studies (Chapters 2 & 3) include missing data. As is common 

in most, if not all cohort studies, attrition has also affected ALSPAC, with males and those from more 

disadvantaged backgrounds more likely to have been lost to follow-up (Boyd et al., 2013a). 

Systematic differences in attrition can lead to selection bias in the analytic sample, which can bias 

results in either direction with a magnitude of impact that can be difficult to ascertain (Odgaard-

Jensen et al., 2011). In addition, selective sampling can increase the risk of collider bias when the 

selected and missing samples differ on a variable which may be on the putative causal pathway 

analysed (Cole et al., 2010). Given that most psychiatric and cardiometabolic disorders are strongly 

associated with social class and that participants from lower social classes were disproportionately 

lost to follow-up in ALSPAC (Boyd et al., 2013a), collider bias may have affected the results.  

While the GMM approach could address missing data in the delineation of cardiometabolic 

developmental trajectories using FIML, analyses involving psychiatric outcome data would have 

been most susceptible to missing data bias. For example, the analytic sample following confounding 

adjustment featured as low as 28% of the total sample for BMI-psychiatric outcome analyses and as 

low as 47% for fasting insulin-psychiatric outcome analyses.  

Methods of addressing missing data do exist, such as multiple imputation, and when used carefully, 

are effective at reducing the impact of bias from missing data (White et al., 2011). However, I could 

not use multiple imputation in this study since I analysed trajectory-psychiatric outcome associations 

using the three-step GMM method (see Section 2.3.5.2). While the three-step method was 

methodologically appropriate since it considers classification uncertainty, adding multiple imputation 

to this process would have caused prohibitive computational burden. The field has yet to feasibly 

combine multiple imputation with the three-step method (Asparouhov, 2014). Therefore, given the 

risk of selection bias in my analyses, it cannot be concluded that the results I have obtained are 

generalizable to the whole population of young people with psychosis, and so replication of my 

findings is crucial. 

Since my study was observational, I cannot confirm that residual confounding has not affected my 

findings. This issue was addressed in a separate study using MR (Chapter 5). Residual confounding 
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is a limitation of all observational research. Whilst detailed confounding adjustment is helpful to 

reduce the impact of confounding on the results, addressing the impact of any potential confounder 

relies on the assumption that the confounder has been accurately measured. This may not have been 

the case with ALSPAC data in some instances.  

For example, socioeconomic inequality is a powerful predictor of health outcomes (Kivimaki et al., 

2020), but measuring it is complex (Darin-Mattsson et al., 2017). Inequality is not static and temporal 

changes in socioeconomic factors can lead to measurable differences in health outcomes over time 

(McKenzie et al., 2014). I chose paternal social class at birth to represent socioeconomic status since 

it a good predictor of childhood outcomes (Erola, 2016). However, since my exposures were 

measured longitudinally through childhood and adolescence, I could not capture the potential impact 

of social mobility over time (Tiikkaja et al., 2013).  

In addition, a number of the confounders I adjusted for were based on self-report data collected from 

questionnaires. Self-report health data is at notoriously high risk of measurement error (Butler, 1987). 

For example, I adjusted for calorie intake based upon data collected from food frequency 

questionnaires, but such data is at high risk of recall bias (Natarajan et al., 2010, Freedman et al., 

2011). Furthermore, I adjusted for physical activity based upon self-reported questionnaire data, but 

past physical activity levels are commonly misreported in the general population (Lim et al., 2015) 

and even more so in people with psychosis (Firth et al., 2018). Whilst accelerometer data may be a 

more accurate objective measure of physical activity (Dyrstad et al., 2014), the sample size with 

available accelerometer data in ALSPAC was relatively small. Therefore, I used the self-report 

variable to maximise the available sample size.  

Residual confounding may also have affected my results. This could have occurred due to known 

confounders I could not include or confounders that are unknown. For example, I could not adjust for 

psychological stress and the associated impacts upon the HPA axis (Smith and Vale, 2006) since 

cortisol data were available only for a small sub-section of the cohort at a single time-point. Unknown 

confounders by definition cannot be adjusted for but can still impact the results of observational 

analyses.  

Another limitation is the possibility of reverse causality, which I also addressed by using MR in 

Chapter 5. Longitudinal research can only demonstrate the direction of association if it can be 

confirmed that the outcome did not occur before the exposure. Simply, it cannot be proven that the 

exposure occurred before the outcome just because the variables were measured in that order. In my 

study, the earliest point of assessment of fasting insulin was age 9 years, and there was no 

corresponding data on schizophrenia-spectrum outcomes at, or before this age. Therefore, the risk of 
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reverse causality cannot be discounted entirely. Despite that, psychosis in pre-pubertal children is rare 

(McClellan and Werry, 1997), and so the risk of reverse causality in this instance is small. 

Other limitations relate to the statistical approaches I used in the study. First, the identified trajectories 

are a statistical phenomenon and not necessarily a biological one. Therefore, care must be taken in 

the interpretation of the results and extrapolation to external populations. Replication of my work in 

larger samples will increase confidence in the biological plausibility of the identified trajectories. 

Second, the statistical approach I used to examine associations of identified trajectories with 

psychiatric outcomes is grounded in examining average group-level differences. Therefore, the 

findings from my study cannot be extrapolated to the individual. For example, whether a raised fasting 

insulin level in childhood could predict adult psychosis cannot be determined from my results. Given 

that there is growing interest in developing prediction algorithms for transition to psychosis 

(Montemagni et al., 2020), my results suggest that fasting insulin levels in childhood could be a 

suitable candidate predictor. Nevertheless, this must be explored formally using appropriate 

prognosis research methods, such as those I employed in Chapter 7. 

Finally, another important limitation that was unavoidable in my study was in the measurement of 

schizophrenia-spectrum outcomes. ALSPAC does not yet have health-record linkage and does not 

have data on whether participants met the criteria for an ICD or DSM diagnosis of schizophrenia or 

related psychoses. For example, PEs do not exclusively represent psychosis-risk and are associated 

with other mental disorders, including anxiety and depression (Varghese et al., 2011). Nevertheless, 

my chosen outcomes are likely to lie along the continuum of the schizophrenia spectrum, and the 

psychotic disorder outcome would likely meet a clinical threshold for the consideration of monitoring 

and treatment, and so is clinically relevant. 

 

8.3.2 Strengths and Weaknesses of the Methodological Approaches Used in Section C 

In Chapter 3, where I examined associations of genetic predisposition for T2D and risk of 

schizophrenia-spectrum outcomes in early adulthood, and vice versa, a primary strength of the study 

relates to the relatively large sample size and richness of the ALSPAC dataset. This is discussed above 

in Section 8.3.1.  

In addition, in Chapter 3, I was also able to address several important features of the Bradford-Hill 

criteria (Hill, 1965). First, I used genotype as an exposure, and this is set at conception. Therefore, a 

clear direction of association is evidenced without the possibility of reverse causality. Second, by 

including several schizophrenia-spectrum outcomes, I was able to evidence consistency in findings 

both internally within the study and externally with previous research (Chouinard et al., 2019, 
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Hackinger et al., 2018, Ferentinos and Dikeos, 2012). Third, I found the strongest evidence for 

associations of genetic risk for T2D in the most clinically relevant schizophrenia-spectrum outcome, 

psychotic disorder. Therefore, my results provide evidence of a dose-response relationship toward a 

clinically relevant schizophrenia-spectrum outcome. Fourth, where previous research was unable to 

consider potential mechanisms for genotype-phenotype associations, I was able to test a hypothetical 

mechanism that genetic influences on inflammation may mediate associations between genetic 

predisposition for T2D and schizophrenia-spectrum outcomes and vice versa. I also performed a 

sensitivity analysis by removing a BMI-related T2D SNP and thus a potentially pleiotropic 

mechanism involving adiposity. In completing these steps, I was able to provide evidence of 

biological plausibility, which is an important criterion of the Bradford-Hill criteria. 

In addition, findings presented in Chapter 3 are at low risk of residual confounding since confounding 

of genotype-phenotype is unlikely. However, there is evidence that GWAS can be affected by factors 

such as ethnicity (Huang et al., 2015), social class (Morris et al., 2020) and even voluntary study 

participation (Tyrrell et al., 2021). These factors relate to population stratification and can bias GWAS 

results (Hellwege et al., 2017). In ALSPAC, quality control measures included filtering participants 

of non-European ancestry to reduce the impact of confounding by ethnicity (see Section 3.3.4). In 

addition, I also adjusted all regression analyses for the first ten principal components, which reduces 

the risk of population stratification bias (see Section 3.3.4), and adjusted for ethnicity and social class 

(see Section 3.3.6). Therefore, while the risk of confounding by population stratification is possible 

in my analyses, I took appropriate steps to minimize it. 

Regarding the weaknesses of the genotype-phenotype analysis (Chapter 3), as described above in 

Section 8.3.1, a primary unavoidable limitation of ALSPAC data is attrition. I performed a missing 

sample analysis and found that the missing sample were more likely to be male and from a lower 

social class. I also found that the missing sample had a higher mean score for PRS-schizophrenia but 

a lower mean score for PRS-T2D. Whilst attrition is common to cohort studies, it presents a challenge 

to analyses of GWAS data since it may introduce population stratification bias. Thus, my analyses 

may underestimate a true association of genetic predisposition for schizophrenia with insulin 

resistance. In contrast, the opposite might be the case for the association of genetic predisposition for 

T2D with schizophrenia-spectrum outcomes.   

In addition, whilst I was able to address several key features of the Bradford-Hill criteria (Hill, 1965), 

some of the associations from my analyses were relatively weak and unlikely to meet the effect size 

criterion. For example, I only found weak evidence for an association of genetic risk for schizophrenia 

with insulin resistance. Also, I found partial mediation by inflammation for the association of genetic 

risk for T2D with PEs at age 18 years but not vice versa. Statistical power may be one potential 
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contributor. While my sample was larger than samples used in previous research (Chouinard et al., 

2019, Hackinger et al., 2018, Ferentinos and Dikeos, 2012), mediation analyses typically require 

relatively large sample sizes, and studies employing tests of mediation are commonly underpowered 

(Fritz and Mackinnon, 2007). In addition, prospective analyses of genetic data are also commonly 

underpowered (Chanock et al., 2007), predisposing to an increased risk of type II statistical error 

(Hong and Park, 2012). In future, replication of my work in a larger sample will help to clarify the 

findings. 

Further, I used psychotic experiences and operationally defined psychotic disorder rather than 

diagnoses of schizophrenia according to ICD or DSM as outcomes. I have described this limitation, 

including the relevance of these outcomes for schizophrenia in further detail in Section 8.3.1. This 

issue is particularly pertinent to analyses in Chapter 3. Since outcomes in this study were assessed at 

age 18 years, before the peak age of incidence of schizophrenia (Eranti et al., 2013, Castle et al., 

1998), some genuine cases of psychosis may have been missed.  

A limitation common to most analyses of existing GWAS data is that most GWAS have been 

conducted in either solely or mostly European samples. Therefore, it cannot be known whether the 

findings are relevant for non-European populations. This is a significant limitation of analyses of 

genetic data and their real-world relevance because non-Europeans contribute a substantial proportion 

of the global burden of schizophrenia and cardiometabolic disorders. While GWAS of non-European 

populations are growing in size and breadth, there remains much to do to achieve parity (Sirugo et 

al., 2019, Popejoy and Fullerton, 2016). 

Finally, another limitation common to GWAS is that they typically only measure common genetic 

variation. For example, current GWAS efforts can explain only a fraction of the heritability of 

schizophrenia (Lee et al., 2013) and T2D (Billings and Florez, 2010). This suggests that a notable 

proportion of genetic liability remains undiscovered, possibly through large numbers of rare variants 

which individually contribute a small effect (Manolio et al., 2009). Therefore, this limits the power 

of analyses of GWAS data to detect genetic effects, and this ‘selection bias’ of more common genetic 

variants may increase the risk of both type I and type II error in secondary analyses. Encouragingly, 

studies such as the UK Biobank are soon to release data from the whole-genome sequencing of 

exceptionally large samples. This may lead to an improvement in the proportion of the heritability of 

human disease explained by genetic variation and may lead to improved PRS. Replication of my 

analysis in future, when more accurate and complete genetic data are available, will be helpful. 

Regarding Chapter 4, where I used summary GWAS data to examine for potential genetic overlap 

between schizophrenia, cardiometabolic and inflammatory traits, a key strength of the study is in the 
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sample sizes available for analysis, which also helps to at least in part to address the potential power 

limitation of Chapter 3. While in Chapter 3 I could include less than 4,000 participants in total, the 

sample sizes of the GWAS included in analyses in Chapter 4 were between 42,854 and 898,130, 

providing a considerable increase in statistical power.  

In addition, previous studies which have sought to examine for genetic overlap between schizophrenia 

and cardiometabolic traits from summary GWAS data have used the LDSC approach, yet the LDSC 

approach may have limitations, including a) downward bias of the effects of lower-frequency 

variants; b) opposing mechanisms; c) a lack of context with which one might consider biological 

plausibility, or indeed, distinguish potential causality from correlation. These limitations of previous 

research are described in further detail in Section 4.1. In Chapter 4, I sought to address these 

limitations by using a complementary set of independent methods which are better suited to 

examining genetic overlap between traits after considering the limitations of the LDSC approach. I 

was also able to include both cardiometabolic and inflammatory traits in the analysis to further test 

the hypothesis that inflammation may be mechanistically implicated in the associations of 

schizophrenia and cardiometabolic disorders. The convergent thread of evidence from the 

independent methods and consistency with the results from Chapter 3 helps to provide confidence in 

the study conclusions. Finally, I included several cardiometabolic traits at different ends of the 

spectrum of chronicity. For example, biochemical measures such as fasting insulin, HDL and 

triglycerides are likely to be adversely affected long before distal traits such as T2D or CAD are 

diagnosed. I found that clusters of cardiometabolic and inflammatory traits at varying levels of 

chronicity were correlated and colocalized with schizophrenia. Specifically for colocalization 

analysis, the greater the number of colocalized traits at a specific locus, the stronger the evidence for 

colocalization (Foley et al., 2021). 

Weaknesses of the analysis presented in Chapter 4 can be divided into those arising from the GWAS 

samples analysed and those arising from the statistical methods and results. Regarding the weaknesses 

of the GWAS samples, there is a risk that as sample sizes increase, specificity toward the trait intended 

to be measured decreases. This phenomenon has been elegantly demonstrated in GWAS analyses of 

depression (Cai et al., 2020) and may also apply to schizophrenia. For example, I used the largest 

published GWAS for schizophrenia (Pardinas et al., 2018) to maximise statistical power. However, 

the predominant contributor to the larger sample of that GWAS, compared with previous 

schizophrenia GWAS, was clozapine treated patients. This is likely a result of convenience sampling 

since clozapine-treated patients receive regular blood tests, which might be readily analysed for 

genotype. Nevertheless, treatment resistance is a primary requirement for clozapine treatment. Some 

have hypothesized that non-response to antipsychotics may be a marker of a distinct subtype of 
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schizophrenia (Farooq et al., 2013, Gillespie et al., 2017), which might have distinct polygenicity 

compared with treatment-responsive schizophrenia (Vita et al., 2019, Pisanu and Squassina, 2019). 

Therefore, the larger GWAS sample size may have come at the cost of increased heterogeneity, which 

could impede research aiming to examine potential disease mechanisms (Cai et al., 2020).  

Related to this, as GWAS samples increase, the granularity of the measured trait often decreases. For 

example, in the analysis of prospective ALSPAC data (Chapter 2), I examined associations of positive 

and negative psychotic symptoms separately. Yet, such granularity is not possible in secondary 

analyses of GWAS datasets. In addition, the GWAS of biochemical/anthropometric traits were mostly 

conducted based on a single point measurement of the trait. Yet, as described in more detail in Section 

8.3.1, cardiometabolic and inflammatory traits are subject to normal fluctuations, which may not be 

adequately addressed from a single point measurement. Therefore, since the original GWAS methods 

of analysing the biochemical/anthropometric cardiometabolic and inflammatory phenotypes may be 

subject to measurement error, the GWAS summary estimates derived from these studies may also be 

affected.  

Relatedly, all included GWAS featured adult participants. Yet, adverse cardiometabolic function is 

more common with increasing age due to the chronicity of most lifestyle factors (See Section 1.1.1.2). 

Therefore, measurement of cardiometabolic traits in adulthood may be subject to confounding. For 

example, it may not be possible to distinguish between the effect of a genetic variant on BMI directly 

from the effect of that genetic variant on smoking behaviour, which could in turn influence BMI. In 

addition, it is also not possible to determine whether the results apply outside of adult populations. 

This has been clearly demonstrated in the case of BMI, where genetic variants associated with 

childhood obesity show only partial overlap with those associated with obesity in adulthood 

(Vogelezang et al., 2020).  

Further, summary data from GWAS is relatively inflexible, and prospective adjustment for factors 

such as social class, which I adjusted for in the prospective genetic analysis (Chapter 3), is not 

possible. Finally, limitations of GWAS discussed above in relation to Chapter 3 are also likely to 

apply to summary data from GWAS studies. For example, GWAS currently measure only common 

genetic variation, and the findings are only likely to be relevant for European populations. 

Other limitations of Chapter 4 relate to the analytic methods of the summary data and the study results, 

which may limit firm conclusions from the analyses. First, the analytic methods used in Chapter 4 

cannot elucidate the direction of association. This can only be inferred from research using other 

methods, both genetic and observational, that I have used elsewhere in this thesis.  
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Second, secondary analysis of GWAS data may be biased when there is sample overlap between 

analysed traits. It is commonly assumed that when data are derived from different GWAS consortia, 

the risk of sample overlap is small (Shi et al., 2017). However, a finite pool of individuals have 

consented to genotyping. As GWAS sample sizes increase, one might argue that even between 

different GWAS consortia, some level of sample overlap is possible. This may be particularly relevant 

for GWAS of binary traits such as T2D or schizophrenia, which require samples of healthy 

participants to act as controls. 

Third, while LDSC provides estimates of shared genetic heritability between trait pairs with which 

one could infer the real-life relevance of potential genetic overlap, many of the complementary 

methods I used in Chapter 4 do not provide these estimates. One could argue that some level of genetic 

overlap may be expected by chance between complex phenotypes, and so the clinical relevance of 

my findings cannot be ascertained. Nevertheless, I found convergent and consistent evidence from a 

range of independent statistical methods in Chapters 3 and 4, fostering confidence that the results are 

unlikely to have occurred by chance and are therefore likely to have clinical relevance.  

Fourth, despite the considerable increase in power when using summary data from GWAS, some of 

the results described in Chapter 4 were relatively weak. For example, a few findings in the MAF-

stratified analysis did not reach the Bonferroni-corrected evidential threshold, although this could be 

explained by the presence of opposing mechanisms (Shi et al., 2017), which is described in more 

detail in Section 4.1.  In future, further refinement of analytic methods coupled with better powered 

GWAS (and whole-genome sequenced datasets) will help to clarify the results I have presented.  

Fifth, at present, there is a relative dearth of large-scale publicly available GWAS data for 

inflammatory markers beyond CRP. This meant CRP was the sole inflammatory trait that I could 

include in my analyses. Since CRP is a downstream and relatively generalized inflammatory marker, 

my analyses are limited in being able to elucidate a deeper mechanistic understanding of the broader 

constellation of inflammatory changes underlying the genetic correlation and colocalization findings 

involving CRP. 

In Chapter 5, I used MR as a methodological approach, which uses as input large-scale GWAS 

datasets, imparting significant statistical power to the analysis. In addition, MR has several key 

methodological strengths. When the assumptions for valid instrumental variables are met, MR can 

evidence direction of association free of residual confounding. These are two key criteria for 

establishing genuine risk factors of a disease outcome, and the ability to address residual confounding 

is not possible with observational research. MR can achieve these aims because it analyses genetic 

variants inherited randomly at conception as unconfounded proxies of a modifiable exposure, to 
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examine whether that exposure may have a causal effect on a disease outcome (Smith, 2010). Whilst 

MR findings in isolation cannot prove causality, they can be assimilated with a coherent body of 

observational and experimental evidence, which can together imply likely causality. 

As well as bi-directional two-sample MR, in Chapter 5 I employed a number of extensions to the 

method, and each has its own inherent strengths. Firstly, from a hypothesis that inflammation may be 

a shared mechanism for schizophrenia and its cardiometabolic comorbidity, I considered that genetic 

variants which influence levels of both cardiometabolic and inflammatory indices could represent a 

specific biological mechanism that could be associated with schizophrenia. While pleiotropy could 

invalidate MR results between an exposure and an outcome depending on whether it is horizontal 

(confounding) or vertical (mediating) (Verbanck et al., 2018), I tested associations of ‘inflammation-

related’ cardiometabolic variants with schizophrenia to show that inflammation-related pleiotropy is 

likely to affect MR associations between cardiometabolic traits and schizophrenia. These findings 

implicate inflammation as a common causal mechanism for the comorbidity.  

Second, I used a detailed set of sensitivity analyses that can help to test the assumptions of MR. These 

included the Cochran Q test for SNP heterogeneity, the MR Egger regression intercept test and MR-

PRESSO for horizontal pleiotropy, and the I2GX statistic for measurement error. In conducting these 

sensitivity analyses, I found decreased levels of heterogeneity and horizontal pleiotropy in 

inflammation-related genetic variants, compared with all related cardiometabolic variants. This 

suggests that inflammation-related cardiometabolic variants are likely to be closer to a specific 

biological mechanism, further supporting my hypothesis. Third, I used MVMR, a methodological 

extension to MR that tests associations of genetically predicted levels of an exposure on an outcome, 

after conditioning on the genetic associations with another exposure(s). Put simply, MVMR can 

examine pleiotropic mechanisms that could explain a univariable association, much like including 

covariates in observational study regression models. I leveraged the MVMR approach to further 

evidence that inflammation could be a common mechanism for comorbid insulin resistance and 

schizophrenia.  

However, there are a number of potential limitations of the MR approach. First and foremost, as 

mentioned above, MR can provide evidence of the direction of association free of residual 

confounding if the assumptions for valid instrumental variables are met. I used a varied set of MR 

methods to help probe the assumptions for MR. These included IVW (which assumes all genetic 

variants satisfy MR assumptions); weighted median (which can produce accurate results so long as 

50% of the selected genetic variants satisfy MR assumptions), and MR Egger (which can produce 

accurate results even if all genetic variants are subject to pleiotropy, as long as the size of the 

pleiotropic effect is independent of the size of the genetic variants’ effects on the exposure (Bowden 
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et al., 2015)). I also used a detailed set of sensitivity analyses as described above to help test the MR 

assumptions. Despite taking these steps, proving that the assumptions for valid MR analysis have 

been met is near-impossible.  

For example, one fundamental assumption is that the selected genetic variants must be associated 

with the exposure. This is perhaps the assumption with which one can have the most confidence in 

my study since the genetic variants were selected as being strongly associated (at the genome-wide 

level) with the exposures from large-scale GWAS. Nevertheless, as I have described above in Section 

8.3.2, the secondary use of GWAS data presents its own challenges, including confidence in gene-

exposure associations due to the risk of population stratification; the risk of confounding by chronic 

lifestyle factors for cardiometabolic indices measured in adulthood; heterogeneity of the analysed 

trait which may not be captured in GWAS; and, the applicability of GWAS results to non-European 

samples.  

Another key assumption is that the selected genetic variants must influence levels of the exposure 

directly and not via an alternate mechanism. In most instances, this is extremely difficult to prove. 

Previous MR studies have attempted to address this challenge by restricting selected genetic variants 

to those located close to known gene coding regions (for example, the IL6R and CRP genes for IL-6 

and CRP, respectively (Hartwig et al., 2017)). This is because genetic variation in the coding region 

of the exposure is more likely to affect the exposure directly rather than through alternate 

mechanisms. Nevertheless, this methodological step is not a panacea and can only prove the 

assumption is met if a complete biological understanding of how the genetic variant influences the 

exposure is known. This is often not the case.  

The final key MR assumption is that genetic variants must only influence the outcome through effects 

on the exposure of interest, and not via any other mechanism. This is perhaps the most challenging 

assumption to prove in MR studies, particularly when a complete biological understanding of how an 

exposure influences an outcome is not known. In future, evidence from MR studies will require 

detailed examination in experimental and animal model research to help add to our mechanistic 

understanding of how an exposure influences an outcome. This can in turn help to evidence whether 

the assumptions for valid MR analysis had been met. Nevertheless, it was the violation of this 

assumption that I aimed to leverage to test the hypothesis that inflammation may be a common 

mechanism for comorbid cardiometabolic disorders and schizophrenia. The evidence I present in 

Chapter 5 suggests that this assumption is likely to be violated in MR studies examining 

cardiometabolic traits and schizophrenia due to a common biological mechanism involving 

inflammation.  
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Another potential limitation of MR is that the exposures modelled in MR studies represent lifetime 

changes in the level of the exposure rather than, for example, short-term changes in the exposure 

during a critical developmental period, as per Barker’s developmental programming hypothesis. 

While MR evidence could be consistent with the developmental programming hypothesis since early-

life disruption could permanently alter biological mechanisms, it is also possible that changes in the 

levels of certain exposures may only be strong risk factors for a disease in a specific developmental 

period. MR may not be able to capture this ‘critical period’ effect. In addition, that MR approximates 

lifetime changes in the level of an exposure has been cited as a possible reason why MR studies of 

potential therapeutic targets often overestimate the experimental treatment effect observed in clinical 

trials. This is because treatments are generally not prescribed over a lifetime (Gill et al., 2021). Whilst 

this limitation does not directly affect the conclusions I have made in Chapter 5, it is important to 

consider that the interpretation of MR findings is not straightforward, and evidence from MR studies 

requires triangulation with experimental, observational and animal model evidence in order to be 

most impactful. 

 

8.3.3 Strengths and Weaknesses of the Methodological Approaches Used in Section D 

There are several strengths to the systematic review I performed in Chapter 6, where I sought to 

establish whether existing cardiometabolic risk prediction algorithms could be suitable for young 

people with psychosis. First, while only meta-analyses of RCTs feature at the top of the evidence 

hierarchy, any well-designed systematic review can provide a valuable summary of current research. 

An earlier systematic review of cardiometabolic risk prediction algorithms was conducted in 2016 

but did not consider suitability for young people with psychosis (Damen et al., 2016). My study 

updates the findings of the previous review because many additional algorithms have been published 

since 2016, and also considers the suitability of existing algorithms for a different population. 

Second, I designed my search strategy to be as inclusive as possible, incorporating algorithms 

developed for the general and psychiatric populations. I also limited the risk of publication bias in my 

review by including conference abstracts, theses, and pre-prints. Together, this meant that I could 

include over 100 algorithms in my review, allowing a rich examination of potential suitability for 

young people with psychosis. 

Third, I followed the state-of-the-art for risk of bias and quality appraisal via the relatively new 

PROBAST tool (Wolff et al., 2019), and followed the PRISMA guidelines for the conduct and 

reporting of a systematic review (Moher et al., 2009). These guidelines are validated, expert-

consensus driven and form the basis of a high-quality review. 
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Fourth, while I was unable to follow a meta-analytic approach in my review, I substituted this 

important quantitative component with an exploratory validation analysis of three favourable 

algorithms from the systematic review. In doing so, I was able to present a consistent message across 

both the findings of the narrative results synthesis and the quantitative validation analysis, showing 

that existing cardiometabolic risk prediction algorithms are unlikely to be suitable for young people 

with psychosis. 

The systematic review also has some weaknesses. First, as mentioned above, the research question 

posed and the heterogeneity of included studies prevented a meta-analytic synthesis. Narrative 

synthesis can increase the risk of reporting bias and can limit the validity of conclusions (Campbell 

et al., 2020). I addressed this by performing a quantitative analysis using ALSPAC data, which meant 

that my conclusions were formed from both narrative and quantitative results. Nevertheless, my 

quantitative analysis, which consisted of three separate validation analyses, cannot be equated with a 

formal meta-analytic quantitative analysis. 

Second, since I did not follow a meta-analytic approach, I could not quantitatively assess the risk of 

publication bias. While I did include conference abstracts, theses and pre-prints in my review, these 

were few in number compared with peer-reviewed research papers. Therefore, publication bias is 

likely to have affected the mix of studies included in my review. For example, relatively few 

externally validated algorithms were included in my review. This may be because external validation 

requires data from a second distinct population, which is often not possible. However, it could also 

be because external validation performance estimates are usually less favourable than internal 

validation performance estimates. Therefore, some externally validated algorithms may have been 

deemed a lower priority for publication by journal editors.  

Third, there is growing interest in risk prediction algorithms for health outcomes (Riley, 2019). 

Indeed, a large proportion of studies included in my review were published in the last few years. 

Therefore, it is likely that further cardiometabolic risk prediction algorithms have been published 

since the date my search concluded. This is a limitation of most systematic reviews. Interestingly, 

The BMJ currently features a ‘living’ systematic review of coronavirus risk prediction algorithms, 

which is updated regularly with newly identified studies (Wynants et al., 2020). The review already 

includes over 200 studies, and this is highly likely to increase further. The ‘living’ nature of that 

review is a notable feat but is not feasible for a PhD conducted over a finite period. 

In Chapter 7 I developed PsyMetRiC, the first cardiometabolic risk prediction algorithm tailored for 

young people with psychosis, and the work has several strengths. First, a significant strength relates 

to the robust external validation analysis, where I showed that PsyMetRiC performed well in a 
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geographically distinct UK EIS sample. External validation is a crucial step in demonstrating that a 

risk prediction algorithm is likely to be generalizable to the intended population (Riley, 2019), and is 

essential for demonstrating clinical usefulness. However, as I showed in my systematic review 

(Chapter 6), most existing cardiometabolic risk prediction algorithms have not been externally 

validated, and this problem extends to psychosis research. A recent systematic review of algorithms 

predicting risk of transition to psychosis found an alarming lack of studies that included an external 

validation step (Montemagni et al., 2020).  

Second, I leveraged recent advances in prognosis research by formally conducting a sample size 

analysis before developing PsyMetRiC. In doing so, I was able to reduce the risk of overfit, which 

might lead to biased predictive performance estimates. I further reduced the risk of bias from overfit 

by shrinking PsyMetRiC regression coefficients for optimism. I believe that these steps are likely to 

have been fundamental to the favourable external validation performance of PsyMetRiC.  

Third, I included a detailed set of predictive performance analyses, including measures of 

discrimination, calibration and a decision curve analysis, in line with recommendations (Steyerberg 

and Vergouwe, 2014, Collins et al., 2015). As I showed in my systematic review (Chapter 6), most 

existing cardiometabolic risk prediction algorithms have not reported measures of algorithm 

calibration. Poor reporting of algorithm calibration in published research is a problem that 

unfortunately applies to the entire field of prognosis research (Van Calster et al., 2019). Without an 

assessment of algorithm calibration, it cannot be concluded that risk estimates are reliable. Therefore, 

such studies may be misleading and could lead to potentially incorrect and even harmful clinical 

decisions (Van Calster et al., 2019). 

Fourth, in the development of PsyMetRiC I considered two important barriers to potential future 

clinical use: patient acceptability and clinical practicality. I engaged actively with the McPin 

Foundation YPAG to help ensure that PsyMetRiC, and the information requested by it, was likely to 

be acceptable for young people. I also developed two versions of PsyMetRiC, one with and one 

without biochemical information, so that PsyMetRiC can still be useful in instances where blood tests 

have been refused or are not available.  

Finally, with PsyMetRiC I aimed to develop an algorithm that balanced usefulness, acceptability, and 

generalizability with statistical methods carefully selected to suit the available data. Given that I had 

access to a relatively limited sample, I did not consider more complex modelling strategies such as 

interactions and non-linear terms and did not proceed with a variable selection method. Variable 

selection may have included traditional methods such as backward selection, or more complex 

automated machine-learning approaches. Whilst this meant PsyMetRiC was relatively ‘simple’ 
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compared with some risk prediction algorithms, I believe these considerations are likely to have been 

fundamental to the favourable external validation performance. For example, a substantial body of 

work, including meta-analyses, has shown no performance benefit of complex machine learning 

approaches over simple logistic regression for clinical prediction models (Christodoulou et al., 2019, 

van der Ploeg et al., 2016, Takada et al., 2021). Indeed, leading experts in prognosis research have 

recently called for more attention to be paid to sound methodology rather than an over-reliance on 

machine learning algorithmic complexity, arguing that the latter contributes to nothing more than 

“extensive research waste” (Wilkinson et al., 2020). Nevertheless, in future, when larger samples 

might be available, more complex modelling approaches could be carefully considered. 

Despite the strengths of PsyMetRiC, there are some weaknesses and limitations which must be taken 

into consideration. First and foremost, the field of prognosis research must be contextualized 

alongside ideas first mooted by the British epidemiologist Geoffrey Rose. Rose considered two 

distinct strategies for disease prevention: the high-risk vs the population approach. Rose surmised 

that risk factors follow a normal distribution at a population level, and therefore proposed the 

“prevention paradox” (Khaw, 2008). He theorised, using cholesterol and CVD as an example, that a 

high-risk prevention strategy would target individuals at the extreme upper end of population 

cholesterol distribution to prevent cases of CVD. Rose posited that this would be less effective than 

targeting the whole population to shift the population distribution of cholesterol to the left. He argued 

that by focusing on only the small number of cases at the upper extreme of cholesterol distribution, a 

large number of CVD cases would be missed because the majority of cases arise from closer to the 

centre of the normal distribution curve, as a function of the sample size distribution (Khaw, 2008).  

However, most risk prediction algorithms developed for health outcomes, including PsyMetRiC, are 

multivariable and aim to capture as much outcome variance as possible. Therefore, while a single risk 

factor may be a poor predictor for a health outcome because alone it may not capture sufficient 

outcome variance, a multivariable approach may be a preferable method with which to consider a 

high-risk strategy of disease prevention.  

Nevertheless, Rose’s principle is relevant, particularly given the work I have presented in Chapters 

2-5, which show evidence for a potentially inherent cardiometabolic risk in schizophrenia. One could 

therefore posit that a population prevention approach would be preferable in this population. While I 

agree that there is more to be done to promote healthy lifestyle behaviours for all young patients with 

psychosis, I do not agree that certain PsyMetRiC-related interventions are likely to be suitable for a 

population prevention strategy. For example, such a strategy may conclude that metabolically-active 

antipsychotics should never be prescribed, yet metabolically-active antipsychotics can greatly 

improve the lives of people with psychosis, and may reduce the risk of other disabling side-effects 
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such as movement disorders (Leucht et al., 2013). Therefore, I believe that in future, the real art of 

cardiometabolic risk reduction in young people with psychosis will lie somewhere between the 

extremes of Rose’s population and high-risk prevention strategies. Healthy lifestyle promotion is 

likely to be suitable for all young people with psychosis, but for certain interventions like 

antipsychotic selection, tools such as PsyMetRiC can be a helpful aid toward informed, personalized 

treatment decisions, balancing clinical knowledge with the preferences and beliefs of the young 

person. 

Second, I could not include some predictors in PsyMetRiC that may be biologically relevant. Given 

the results of Chapter 2, fasting insulin is likely to be a relevant predictor of adverse cardiometabolic 

outcomes in young people with psychosis. I could not include the marker because it is not yet 

routinely measured in clinical practice. I addressed this by including triglycerides and HDL, whose 

ratio may be a suitable surrogate marker for insulin resistance (Murguia-Romero et al., 2013, 

McLaughlin et al., 2005). Also, I could not include an inflammatory marker in PsyMetRiC, for 

example, CRP. While CRP is frequently measured in clinical practice, predominantly it is measured 

when there is suspicion of infection. Therefore, the distribution of CRP in the available sample is 

likely to be skewed. In addition, there are significant discrepancies between laboratories in the 

reporting of CRP, with some reporting the exact result and others the exact result only after an 

arbitrary cut-off. This heterogeneity also prevented the inclusion of CRP as a predictor. 

Third, the risk estimates generated from a prediction algorithm such as PsyMetRiC are never in reality 

static. PsyMetRiC was developed using retrospective data, as is common in modern risk prediction 

algorithms developed using electronic health records. Yet, the performance of algorithms when 

assessed prospectively may vary, precisely because they have been used and risk estimates observed. 

For example, either a very-high or very-low PsyMetRiC score may alter the behaviour of either the 

clinician or patient, which may affect the risk estimate in either direction over time in a manner that 

cannot be captured in a retrospective analysis. Therefore, a prospective assessment of PsyMetRiC in 

a sufficient sample is required. This is particularly pertinent given that the predicted outcome in 

PsyMetRiC, metabolic syndrome, is a cardiometabolic ‘intermediate’ with few immediate 

consequences. While a clinician should be sufficiently motivated to act in response to their patient 

returning a high PsyMetRiC score, it may be more challenging to persuade young people, who may 

be inherently more risk-tolerant than older adults (Albert and Duffy, 2012), to change their present 

behaviour to prevent outcomes which are more insidious and long-term. 

Fourth, another limitation common to prognosis research is that algorithms can only be confirmed to 

be suited for the population they were validated in when the data was collected. PsyMetRiC was 

developed and validated in the UK, yet different global populations are likely to vary in population 
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health, social norms, culture, and legislation. These factors may impact the baseline risk, or the 

amount of risk apportioned by any individual risk factor. PsyMetRiC will therefore require 

international validation to assess transportability and may require recalibration to apply to global 

populations. In addition, period and cohort effects may impact the baseline risk or the amount of risk 

apportioned by any individual risk factor (Holford, 1991). This means even well-designed externally 

validated risk prediction algorithms require periodic updating over time. For example, the QRISK 

cardiovascular risk prediction algorithm is now on its third iteration (Hippisley-Cox et al., 2017), and 

the recent QCOVID risk prediction algorithm (Clift et al., 2020), which aims to predict risk of 

hospitalization and mortality from coronavirus disease, states that it will require updating over time 

to reflect changes in baseline risk due to the fast-moving global pandemic of 2020/2021. PsyMetRiC 

in future will require periodic recalibration of either the intercept, predictor weights, or both, to 

remain accurate and generalizable. 

Fifth, most healthcare risk prediction algorithms are developed to predict a binary health outcome. 

This is likely to aid the interpretability of risk estimates in a clinical setting. However, the underlying 

biology of such outcomes often does not represent a binary distinction between ‘health’ and ‘disease’. 

Rather, diagnostic criteria aim to capture individuals at the more extreme end of a health continuum. 

The binarization of health presents a challenge for prognosis research, and categorization of 

continuous data is generally discouraged in statistical modelling (Altman and Royston, 2006). For 

example, the absence of a metabolic syndrome diagnosis does not equate to the absence of 

cardiometabolic risk. In reality, there could be very little of substance to distinguish a case of 

metabolic syndrome from a non-case, even as little as 1mmHg of systolic blood pressure. A future 

iteration of PsyMetRiC may instead consider a continuous cardiometabolic risk score as an outcome 

since this may more accurately align with the underlying biology.  

Sixth, missing data may also have affected PsyMetRiC. All the samples used for either development 

or validation featured varying amounts of missing data both for the predictors and outcome. I have 

discussed this limitation in more detail above in Section 8.3.1 and Section 8.3.2. I also found 

differences in the missing compared with the included samples, which might have affected 

PsyMetRiC coefficients. While I used multiple imputation to reduce the impact of bias from missing 

data, PsyMetRiC will require validation in larger samples and prospective assessment before it can 

be considered suitable for clinical use. 

Finally, the clinical translation of risk prediction algorithms in healthcare presents a substantial 

stumbling block almost universally. For example, in my systematic review, less than 1% of the 

included algorithms are used regularly in the clinic in the general population. A substantial body of 

work stands in the way of regular clinical use of an externally validated risk prediction algorithm. 
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This involves health technology assessment, prospective validation, stakeholder involvement, 

regulatory approval, and even convincing clinicians to adopt the algorithm into their clinical practice. 

These are all barriers that must be overcome in future to prevent PsyMetRiC from contributing to 

little more than research waste. 
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8.4 Future Directions and Implications 

In Section B, I found that disruption to glucose-insulin homeostasis is likely to predate the onset of 

psychosis; may not be fully explained by sociodemographic, lifestyle and iatrogenic effects; and may 

be psychosis specific. Studies examining longitudinal associations of trajectories of childhood 

cardiometabolic markers and psychiatric outcomes are scarce, and so this finding ideally requires 

replication in an external prospective sample. A replication analysis may also help to address the 

limitations listed in Section 8.3.1.  

Nevertheless, if replicated, this finding could have significant implications for our understanding of 

the cardiometabolic comorbidity of schizophrenia. Rather than solely caused by the traditional 

attributions of sociodemographic, lifestyle and iatrogenic factors, the cardiometabolic comorbidity of 

schizophrenia may have early-life beginnings and may be inherent to it. Therefore, 

sociodemographic, lifestyle and iatrogenic factors may be exacerbating rather than causal features of 

the comorbidity (see Figure 29).  

This finding renews and reinforces the critical impetus that all young people presenting with 

psychosis must receive a comprehensive physical health assessment at the soonest available 

opportunity. Subtle disruption to glucose-insulin homeostasis may not in its early forms present with 

abnormalities to FPG or HbA1C, so these broader and less-sensitive measures must not be relied upon 

to confirm normal glucose-insulin homeostasis. Since detailed measurement of glucose-insulin 

homeostasis is often not yet possible in most current psychiatric services in the UK (for example, use 

of the hyperinsulinaemic-euglycaemic clamp to assess insulin sensitivity, or even a blood 

measurement of fasting insulin which one could combine with FPG to calculate HOMA-IR), a 

suitable surrogate may be the triglyceride:HDL ratio (Murguia-Romero et al., 2013, McLaughlin et 

al., 2005). Improved education of healthcare professionals working in psychiatry to use this marker 

and recognise its implications for young people with psychosis is vital. In addition, improved funding 

for EIS may in future permit the introduction of more sensitive tests for disrupted glucose-insulin 

homeostasis for all young patients presenting with psychosis. 

In Section C, I found that shared genetic liability and inflammation could be potential common 

mechanisms underlying the associations of disrupted glucose-insulin homeostasis and schizophrenia. 

My findings imply that genes, the environment, or likely both, could play a role in increasing systemic 

inflammation, which may in turn increase the risk of both disruptions to glucose-insulin homeostasis 

and schizophrenia simultaneously.  

Findings from the genetic correlation and colocalization study in Chapter 4 highlight a number of 

potential biological pathways that could simultaneously increase systemic inflammation, the risk of 
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cardiometabolic disorders, and schizophrenia. These findings, and the pathways implicated, now 

require analysis using complementary research methods, which may first involve genomics and 

observational research, and could then extend to animal model and experimental research.  

Regarding methods related to genomics, the implicated genes and pathways can be further 

interrogated using methods that harness expression quantitative trait loci (eQTL) data. eQTL analysis 

aims to identify allelic variants associated with gene expression on the basis that a proportion of 

transcripts are under genetic control. A transcript that is correlated with a risk variant in a relevant 

tissue or cell type represents a strong candidate susceptibility gene (Lawrenson et al., 2015). 

Therefore, eQTL analysis would be an important confirmatory step for my findings because several 

of the colocalized loci are located within non-coding regions of the genome, and so they may play a 

more indirect regulatory role in the expression of gene products. While there are a growing number 

of publicly available eQTL datasets which can be used for analysis, in the past, such analysis has 

been hampered by prohibitive heterogeneity between datasets (Kerimov et al., 2020). However, 

efforts are underway to harmonize these datasets, so in future, eQTL analysis with sufficiently 

powered sample sizes is likely to be possible (Kerimov et al., 2020). 

Cohort studies that seek to examine the antecedents of schizophrenia should in future more frequently 

measure cardiometabolic and inflammatory indices, and in much greater granularity. Such studies 

may also seek to include biochemical measurements of BDNF and related pathways. Then, these 

studies could help to confirm the longitudinal findings from Chapter 2 and can triangulate evidence 

that BDNF-related pathways may be implicated as a common mechanism for schizophrenia, 

cardiometabolic and inflammatory traits. 

Next, should observational and eQTL analysis provide further weight to the colocalization findings, 

knockouts for the genes implicated in the colocalization analysis could be studied in animal models. 

In such studies, gene knockout animals could be tested for levels of inflammation, cardiometabolic 

indices and behavioural outcomes simultaneously. Such findings could provide a richer 

pathophysiological understanding of both schizophrenia and its associated cardiometabolic 

comorbidity. A convergence of results may also provide compelling evidence of potential novel 

therapeutic or preventative targets for schizophrenia and its associated cardiometabolic comorbidity, 

which could be leveraged in experimental clinical trials.  

Findings from my MR study in Chapter 5 suggest that targeting inflammation may be a putative 

therapeutic or preventative target for schizophrenia and its associated cardiometabolic comorbidity. 

Yet, the most recent meta-analyses of RCTs of anti-inflammatory agents for schizophrenia have 

shown relatively heterogenous evidence for their efficacy in schizophrenia (Jeppesen et al., 2020, 
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Cakici et al., 2019) and trials of anti-inflammatory agents for their efficacy on cardiometabolic indices 

of people with schizophrenia are scarce. There could be two explanations for the heterogeneous 

efficacy in schizophrenia. First, the heterogeneity may be due to trial inclusion criteria since 

participants with baseline evidence of inflammation may be better candidates for immunotherapy 

(Raison et al., 2013). Second, there may be a difference between a therapeutic and a preventative 

target; anti-inflammatory medications might be more effective when trialled before the onset of 

psychosis, or at FEP. Indeed, a recent meta-analysis found stronger evidence for efficacy in trials 

conducted on younger individuals with FEP (Cakici et al., 2019). Future RCTs conducted on young 

individuals at the onset of psychosis should consider examining cardiometabolic markers at baseline 

and follow-up in addition to psychiatric indices. For example, cardiometabolic markers might be used 

to help select participants for trial inclusion but may also be considered as outcome measures.  

In Section D, in lieu of a suitable cardiometabolic risk prediction algorithm for young people with 

psychosis, I developed PsyMetRiC. I do not see PsyMetRiC, as it currently exists, as the final 

algorithm that should be used in clinical practice. Rather, it is a useful starting point and shows the 

potential that such a tool could have for young people with psychosis. In future, recalibration and 

updating of PsyMetRiC in larger retrospective samples will allow for the refinement of the algorithm, 

which might further improve the accuracy of risk estimates. Next, prospective validation of 

PsyMetRiC will be necessary to test the ‘real-world’ performance of PsyMetRiC and the clinical 

usefulness and acceptability of the algorithm. Concomitantly, international validations could assess 

the transportability of PsyMetRiC to different global populations, with local recalibrations conducted 

such that PsyMetRiC could be used across the world. Subsequently, a body of multidisciplinary work 

could be conducted, featuring clinicians, allied health professionals and young people with experience 

of psychosis, to determine the most appropriate PsyMetRiC score cut-offs and associated therapeutic 

options. Finally, regulatory approval must be sought. After meeting these considerable but necessary 

hurdles, PsyMetRiC might then be considered ready for implementation in clinical practice and could 

be included in guidelines for the management of FEP, both in the UK and internationally.  
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8.5 Concluding Remarks 

In this thesis, I present evidence that furthers our understanding of the nature and mechanisms of 

association of cardiometabolic disorders and schizophrenia, and makes the first steps toward 

improving the prediction of cardiometabolic risk in young people with psychosis. On the nature of 

association between cardiometabolic disorders and schizophrenia, I found that disruption to glucose-

insulin homeostasis may be inherent to schizophrenia and may be detectable from early life, long 

before the onset of psychosis. This finding is important, and some might argue that it relieves some 

of the blame frequently placed on the shoulders of people who have schizophrenia for their 

cardiometabolic comorbidity, since my findings suggest that factors such as an unhealthy diet and 

physical inactivity are likely to exacerbate rather than cause the comorbidity. On the mechanisms of 

association between cardiometabolic disorders and schizophrenia, I found a thread of consistent 

evidence across independent genetic and prospective studies suggesting that shared genetic liability 

and inflammation could be common biological mechanisms for schizophrenia and its cardiometabolic 

comorbidity. In addition, results from these studies implicate biologically plausible targets that could 

be further investigated for their therapeutic or preventative potential for schizophrenia and its 

associated cardiometabolic comorbidity, and for their potential insights into the pathophysiology of 

schizophrenia itself. On the prediction of cardiometabolic risk in young people with psychosis, 

PsyMetRiC is an encouraging first step on the journey toward a valuable future tool in the arsenal of 

EIS healthcare professionals, to factor physical health more appropriately into treatment decisions in 

a personalized and informed manner. The general population has benefited from clinic-ready 

cardiometabolic risk prediction algorithms for decades. It is surely time that such benefits can be 

extended to young people with psychosis, who are in crucial need of strategies to help close the 

mortality gap they may sadly be faced with. 
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Appendix B Table 1: Odds Ratios for Associations of Fasting Insulin and Body Mass Index 
Trajectories with Metabolic Syndrome at Age 24   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trajectory  Sample    Odds Ratio (95% C.I.) 
 

p-value 

Unadjusted Adjusted for sex, 
ethnicity, social class, 
SDQ (7y), cumulative 
smoking, physical 
activity, alcohol and 
substance use, sleep and 
calorie intake 

Fasting Insulin 

Class 1 – ‘Stable Average’ 4,939 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Minor Increase’ 693 5.14 (3.01-8.09) 4.24 (2.34-8.21) <0.001 

Class 3 – ‘Persistently High’ 158 10.51 (4.82-22.18) 9.21 (3.77-20.15) <0.001 

BMI 

Class 1 – ‘Stable Average’ 8,383 1.00 [reference] 1.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 949 0.91 (0.57-1.48) 0.90 (0.55-1.46) 0.684 

Class 3 – ‘Puberty Onset – Minor Increase’ 668 6.02 (4.32-8.38) 5.64 (3.31-9.01) <0.001 

Class 4 – ‘Puberty Onset – Major Increase’ 174 7.80 (3.67-13.54) 6.91 (3.20-12.87) <0.001 

Class 5 – ‘Persistently High 289 11.65 (7.45-15.45) 10.62 (5.89-19.13) <0.001 



Appendix B Table 2: Odds Ratios for Sex-Stratified Associations of Fasting Insulin 
Trajectories with Continuous Psychosis and Depression Outcomes at Age 24 Years 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ap-values adjusted for multiple testing using Holm-Bonferroni method 

 

 

 

 

 

 

 

 

Trajectory Sample    Beta Coefficient (95% C.I.) 
 

p-valuea 

Unadjusted Adjusted for sex, ethnicity, 
social class, SDQ (7y), 
cumulative smoking, physical 
activity, alcohol and substance 
use, sleep and calorie intake, 
negative/depressive symptoms 

Depressive Symptom Score at Age 24 (Males) 

Class 1 – ‘Stable Average’ 2,319 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Minor Increase’ 278 0.03 (-0.05, 0.08) 0.01 (-0.09, 0.10) >0.999 

Class 3 – ‘Persistently 
High’ 

66 0.10 (-0.12, 0.23) 0.03 (-0.04, 0.10) >0.999 

Depressive Symptom Score at Age 24 (Females) 

Class 1 – ‘Stable Average’ 2,620 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Minor Increase’ 415 0.05 (-0.04, 0.09) 0.00 (-0.05, 0.06) >0.999 

Class 3 – ‘Persistently 
High’ 

92 0.06 (-0.08, 0.15) 0.02 (-0.09, 0.14) >0.999 

Negative Psychotic Symptom Score at Age 24 (Males) 

Class 1 – ‘Stable Average’ 2,319 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Minor Increase’ 278 0.11 (0.02, 0.24) 0.08 (0.02, 0.15) 0.036 

Class 3 – ‘Persistently 
High’ 

66 0.23 (0.08, 0.38) 0.12 (0.03, 0.21) 0.021 

Negative Psychotic Symptom Score at Age 24 (Females) 

Class 1 – ‘Stable Average’ 2,620 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Minor Increase’ 415 0.08 (0.03, 0.14) 0.04 (0.00, 0.07) 0.253 

Class 3 – ‘Persistently 
High’ 

92 0.15 (-0.03, 0.32) 0.03 (-0.04, 0.10) 0.59 



Appendix B Table 3: Odds Ratios for Sex-Stratified Associations of Body Mass Index 
Trajectories with Continuous Psychosis and Depression Outcomes at Age 24 Years 

ap-values adjusted for multiple testing using Holm-Bonferroni method 

 

Trajectory Sample    Beta Coefficient (95% C.I.) 
 

p-valuea 

Unadjusted Adjusted for sex, ethnicity, 
social class, SDQ (7y), 
cumulative smoking, physical 
activity, alcohol and substance 
use, sleep and calorie intake, 
negative/depressive symptoms 

Depressive Symptom Score at Age 24 (Males) 

Class 1 – ‘Stable Average’ 4,164 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 443 0.05 (-0.11, 0.21) 0.01 (-0.19, 0.22) >0.999 

Class 3 – ‘Puberty Onset – Minor 
Increase’ 

311 -0.05 (-0.15, 
0.20) 

-0.02 (-0.10, 0.12) >0.999 

Class 4 – ‘Puberty Onset – Major Increase’ 105 0.08 (-0.16, 0.23) 0.03 (-0.08, 0.12) >0.999 

Class 5 – ‘Persistently High 107 0.11 (-0.09, 0.21) 0.03 (-0.07, 0.11) >0.999 

Depressive Symptom Score at Age 24 (Females) 

Class 1 – ‘Stable Average’ 4,219 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 506 0.02 (-0.06, 0.11) 0.01 (-0.10, 0.12) >0.999 

Class 3 – ‘Puberty Onset – Minor 
Increase’ 

357 0.09 (0.02, 0.19) 0.06 (0.03, 0.09) 0.048 

Class 4 – ‘Puberty Onset – Major Increase’ 184 0.15 (0.04, 0.26) 0.09 (0.04, 0.15) 0.046 

Class 5 – ‘Persistently High 67 0.18 (-0.08, 0.44) 0.03 (-0.07, 0.17) >0.999 

Negative Symptom Score at Age 24 (Males) 

Class 1 – ‘Stable Average’ 4,164 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 443 0.10 (-0.12, 0.33) 0.05 (-0.12, 0.31) >0.999 

Class 3 – ‘Puberty Onset – Minor 
Increase’ 

311 0.13 (0.08, 0.19) 0.04 (-0.03, 0.11) >0.999 

Class 4 – ‘Puberty Onset – Major Increase’ 105 0.21 (-0.12, 0.54) 0.12 (-0.13, 0.36) >0.999 

Class 5 – ‘Persistently High 107 0.17 (-0.07, 0.42) 0.04 (-0.06, 0.15) >0.999 

Negative Symptom Score at Age 24 (Females) 

Class 1 – ‘Stable Average’ 4,219 0.00 [reference] 0.00 [reference] - 

Class 2 – ‘Gradually Decreasing’ 506 -0.03 (-0.10, 
0.16) 

0.01 (-0.09, 0.11) >0.999 

Class 3 – ‘Puberty Onset – Minor 
Increase’ 

357 0.07 (0.00, 0.13) 0.03 (-0.07, 0.13) >0.999 

Class 4 – ‘Puberty Onset – Major Increase’ 184 0.16 (0.02, 0.30) 0.04 (-0.09, 0.18) >0.999 

Class 5 – ‘Persistently High 67 0.11 (-0.05, 0.27) 0.04 (-0.09, 0.17) >0.999 
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Appendix B Figure 1: Flow Chart of Included Participants Figure 1: Flowchart of Available Sample for Primary Analyses 
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Appendix B Figure 2: Trajectory Means and Individual Values per Developmental Trajectory of Fasting Insulin 
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Appendix B Figure 3: Sensitivity Analysis Examining Trajectories of Fasting Insulin Between Ages 15-24 
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Appendix B Figure 4: Trajectory Means and Individual Values per Developmental Trajectory of Body Mass Index 
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D. Class 4: Puberty Onset – Major Increase (1.9% of Sample) 
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Longitudinal Trends in Childhood Insulin Levels and Body Mass Index
and Associations With Risks of Psychosis and Depression in Young Adults
Benjamin I. Perry, MRCPsych; Jan Stochl, PhD; Rachel Upthegrove, PhD; Stan Zammit, PhD; Nick Wareham, PhD;
Claudia Langenberg, PhD; Eleanor Winpenny, PhD; David Dunger, PhD; Peter B. Jones, PhD; Golam M. Khandaker, PhD

IMPORTANCE Cardiometabolic disorders often occur concomitantly with psychosis and
depression, contribute to high mortality rates, and are detectable from the onset of the
psychiatric disorders. However, it is unclear whether longitudinal trends in cardiometabolic
traits from childhood are associated with risks for adult psychosis and depression.

OBJECTIVE To examine whether specific developmental trajectories of fasting insulin (FI)
levels and body mass index (BMI) from early childhood were longitudinally associated with
psychosis and depression in young adults.

DESIGN, SETTING, AND PARTICIPANTS A cohort study from the Avon Longitudinal Study of
Parents and Children, a prospective study including a population-representative British
cohort of 14 975 individuals, was conducted using data from participants aged 1 to 24 years.
Body mass index and FI level data were used for growth mixture modeling to delineate
developmental trajectories, and associations with psychosis and depression were assessed.
The study was conducted between July 15, 2019, and March 24, 2020.

EXPOSURES Fasting insulin levels were measured at 9, 15, 18, and 24 years, and BMI was
measured at 1, 2, 3, 4, 7, 9, 10, 11, 12, 15, 18, and 24 years. Data on sex, race/ethnicity, paternal
social class, childhood emotional and behavioral problems, and cumulative scores of sleep
problems, average calorie intake, physical activity, smoking, and alcohol and substance use
in childhood and adolescence were examined as potential confounders.

MAIN OUTCOMES AND MEASURES Psychosis risk (definite psychotic experiences, psychotic
disorder, at-risk mental state status, and negative symptom score) depression risk (measured
using the computerized Clinical Interview Schedule–Revised) were assessed at 24 years.

RESULTS From data available on 5790 participants (3132 [54.1%] female) for FI levels and data
available on 10 463 participants (5336 [51.0%] female) for BMI, 3 distinct trajectories for FI
levels and 5 distinct trajectories for BMI were noted, all of which were differentiated by
mid-childhood. The persistently high FI level trajectory was associated with a psychosis
at-risk mental state (adjusted odds ratio [aOR], 5.01; 95% CI, 1.76-13.19) and psychotic
disorder (aOR, 3.22; 95% CI, 1.29-8.02) but not depression (aOR, 1.38; 95% CI, 0.75-2.54).
A puberty-onset major increase in BMI was associated with depression (aOR, 4.46; 95% CI,
2.38-9.87) but not psychosis (aOR, 1.98; 95% CI, 0.56-7.79).

CONCLUSIONS AND RELEVANCE The cardiometabolic comorbidity of psychosis and depression
may have distinct, disorder-specific early-life origins. Disrupted insulin sensitivity could be a
shared risk factor for comorbid cardiometabolic disorders and psychosis. A puberty-onset
major increase in BMI could be a risk factor or risk indicator for adult depression. These
markers may represent targets for prevention and treatment of cardiometabolic disorders
in individuals with psychosis and depression.
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C ardiometabolic disorders often occur concomitantly
with depression and schizophrenia,1 leading to a re-
duced quality of life, increased health care costs,2 and

a shortened life expectancy.3,4 Traditionally, this comorbid-
ity has been attributed to chronic lifestyle factors (eg, physi-
cal inactivity or smoking) or the adverse effects of psychotro-
pic medications.5 However, meta-analyses report altered
glucose-insulin homeostasis in relatively young, drug-naive
patients with first-episode psychosis.6,7 Similarly, reports
from population-based longitudinal studies suggest a bidirec-
tional association between depression and cardiovascular
disease.8,9 Together, this evidence suggests that cardiometa-
bolic and psychiatric conditions may share pathophysiologic
mechanisms. However, 2 key issues remain.

First, existing studies have predominantly included preva-
lent depression or psychosis cases and so cannot appropri-
ately test the direction of association between cardiometa-
bolic and psychiatric phenotypes.10 Second, most longitudinal
studies have included one-off measures of cardiometabolic
indices, overlooking dynamic temporal changes in these
markers.11,12 Longitudinal repeated measurements could pro-
vide a more reliable measure of underlying homeostatic mecha-
nisms and could identify population subgroups. For ex-
ample, aberrant trajectories of childhood body mass index
(BMI) are associated with adult cardiometabolic disorders.13

Although cardiometabolic function encompasses a broad range
of parameters, 2 pathways—insulin sensitivity and adiposity—
are of particular interest regarding psychosis and depression.
Genetic studies have indicated associations of BMI with
depression14 and fasting insulin (FI) levels with schizophrenia.15

However, to our knowledge, no studies have examined whether
FI level and BMI trajectories from childhood are associated with
adult psychosis and depression.

Using data from the Avon Longitudinal Study of Parents
and Children (ALSPAC) birth cohort, we aimed to (1) delineate
longitudinal trajectories of FI level and BMI based on re-
peated measurements in individuals between ages 1 and 24
years, (2) examine the characteristics of identified trajecto-
ries, and (3) test associations with risks of psychosis and de-
pression at 24 years in the total sample and by sex. We hy-
pothesized that altered cardiometabolic development from
childhood would be associated with increased risks for de-
pression and psychosis in adulthood.

Methods
Cohort and Sample
The ALSPAC initially recruited 14 541 pregnant residents in
southwest England, with expected delivery dates between April
1, 1991, and December 31, 1992, resulting in 14 062 live
births.16-18 An additional 913 participants were recruited sub-
sequently. Participants received financial compensation. Data
were collected and managed using REDCap (University of
Bristol19,20). Modeling of the trajectories was performed using
5790 participants for FI levels and 10 463 participants for BMI
(eFigure 1 in the Supplement). Missing exposure data were
handled using full-information maximum likelihood estima-

tion (eMethods in the Supplement). Data were deidentified.
The ALSPAC Ethics and Law Committee and local research
ethics committees provided ethical approval for the ALSPAC
cohort study. Ethical approval for the present study was ob-
tained via the ALSPAC Executive Committee. Consent for bio-
logical samples was collected in accordance with the Human
Tissue Act of 2004 covering England, Wales and Northern Ire-
land. Informed consent for all collected data was obtained from
participants following the recommendations of the ALSPAC
Ethics and Law Committee at the time. This study followed the
Strengthening the Reporting of Observational Studies in Epi-
demiology (STROBE) reporting guideline for cohort study.

Measurement of Exposures
Fasting insulin levels were measured at ages 9 (n = 894), 15
(n = 3484), 18 (n = 3286), and 24 (n = 3253) years, using an ul-
trasensitive automated microparticle enzyme immunoassay
(Mercodia), which does not cross-react with proinsulin. Sen-
sitivity of the immunoassay was 0.07 mU/L, and interassay and
intraassay coefficients of variation were less than 6%. Fasting
blood samples were drawn at 9 AM after a 10-hour fast, then
spun and stored at −80 °C. There was no evidence of freeze-
thaw cycles during storage.

Body mass index, calculated as weight in kilograms di-
vided by height in meters squared, was measured at 1
(n = 1236), 2 (n = 1036), 3 (n = 1050), 4 (n = 1018), 7 (n = 8200),
9 (n = 7633), 10 (n = 7465), 11 (n = 7100), 12 (n = 6704), 15
(n = 5415), 18 (n = 5061), and 24 (n = 3975) years.

Psychiatric Outcomes at Age 24 Years
Psychotic experiences (PEs) were identified through the semi-
structured Psychosis-Like Symptom Interview21 conducted by
trained psychology graduates and coded per the definitions in
the Schedules for Clinical Assessment in Neuropsychiatry, ver-
sion 2.0.22 The Psychosis-Like Symptom Interview had good
interrater (intraclass correlation: 0.81; 95% CI, 0.68-0.89) and
test-retest (0.9; 95% CI, 0.83-0.95) reliability. Psychotic expe-
riences occurring in the past 6 months covered the 3 main posi-
tive symptom domains: hallucinations, delusions, and thought
interference. After cross-questioning, interviewers rated PEs

Key Points
Question Are longitudinal trends in insulin levels and body mass
index from childhood associated with adult depression and
psychosis?

Findings This cohort study of repeated-measure data from age 1
to 24 years in up to 10 463 individuals identified trajectories of
fasting insulin levels and body mass index. Persistently high fasting
insulin levels from age 9 years were associated with psychosis at
24 years, and puberty-onset body mass index increase was
associated with depression at 24 years.

Meaning This study’s findings suggest that changes in insulin
sensitivity and adiposity starting from childhood may have
disorder-specific associations with psychosis and depression and
represent targets for prevention and treatment of cardiometabolic
disorders in people with psychosis and depression.
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as absent, suspected, or definite. We included cases of defi-
nite PEs; the comparator group comprised individuals with
suspected or absent PEs.

Cases of at-risk mental state were identified by mapping
Psychosis-Like Symptom Interview data to Comprehensive
Assessment of At-Risk Mental State (CAARMS) criteria.23 Cases
were defined as participants meeting CAARMS criteria for at-
tenuated psychosis (symptoms not reaching the psychosis
threshold owing to levels of intensity or frequency) or brief
limited intermittent psychosis (frank psychotic symptoms that
resolved spontaneously within 1 week).

Cases of psychotic disorder were defined21 as definite PEs
that were not attributable to sleep or fever, had occurred more
than once per month during the previous 6 months, and
were very distressing or negatively impactful on social/
occupational functioning, and led to seeking of professional
help. We also included participants meeting the criteria for
CAARMS psychotic disorder (threshold psychotic symptoms
occurring for >1 week).

Ten questions from the Community Assessment of Psy-
chic Experiences questionnaire24 were administered cover-
ing interest, motivation, emotional reactivity, pleasure, and so-
ciability. Participants rated each item as 0 (never), 1
(sometimes), 2 (often), and 3 (always). We recoded the variables
by scoring always and often as 1 and never and sometimes as
0, and then summed the values to result in a possible total
score of 0 to 10.

Depression was measured using the computerized Clini-
cal Interview Schedule–Revised.25 The interview assesses
symptoms of depression occurring in the past week and pro-
vides a diagnosis of depressive episode based on the Interna-
tional Statistical Classification of Diseases, Tenth Revision cri-
teria, which we used as a binary outcome (codes F32.0-32.2).
We also included a Clinical Interview Schedule–Revised de-
pression severity score, comprising scores for mood, thoughts,
fatigue, concentration, and sleep, as a continuous outcome.

For assessment of potential confounders, we included
sex at birth, race/ethnicity, paternal social class, childhood emo-
tional and behavioral problems (measured using the Strength
and Difficulties Questionnaire26 at age 7 years), and cumula-
tive scores of smoking, physical activity, alcohol use, sub-
stance use, sleep problems, and average calorie intake be-
tween ages 7 and 24 years (eMethods in the Supplement).

Statistical Analysis
We standardized (z transformed) FI levels and BMI separately
in males and females and then combined the sex-stratified
z scores for each variable at each time point to delineate tra-
jectories using curvilinear growth mixture modeling27

(eMethods in the Supplement). We used z scores to measure
the relative change in FI levels and BMI because BMI in-
creases in all young people during early life. Because the sample
size for FI levels at age 9 years was smaller, we repeated growth
mixture modeling without age-9-years data and compared the
characteristics of the resultant trajectories. Analyses were
conducted using MPlus, version 8 (Muthén & Muthén), and R,
version 3.6.0 (R Project for Statistical Computing). Two-
tailed P values were corrected for multiple testing using

the Holm-Bonferroni method28 for the 6 psychiatric out-
comes. A corrected P value <.05 was used as the threshold for
significance. We estimated how participants overlapped be-
tween BMI and FI level trajectories (the most common and
highest risk) using the φ correlation coefficient.

We used the 3-step method29 to estimate associations of
sociodemographic, lifestyle, and clinical factors with trajec-
tory membership (eMethods in the Supplement). The 3-step
method allows class separation unaffected by auxiliary vari-
ables, retains and includes information on class uncertainty,
and is robust when entropy is greater than 0.60. Multinomial
regression was used to estimate odds ratios (ORs) and 95% CIs
for the associations of sociodemographic and lifestyle factors
with FI level and BMI trajectories compared with the most com-
mon trajectory. We considered time-invariant (sex, ethnicity,
social class at birth, family history of cardiovascular disease,
gestational age, birth weight, and perinatal stressful life events)
and time-variant (physical activity and smoking in adoles-
cence and early adulthood) factors. Odds ratios represent the
increase in the risk of membership of a particular trajectory
category per SD increase in factor. Next, we examined the clini-
cal phenotype of trajectories at 24 years, examining mean lev-
els of commonly measured clinical and biochemical factors
for participants grouped by most-likely trajectory member-
ship (eMethods in the Supplement). Next, we used logistic
regression to estimate the association of trajectory member-
ship with an age-appropriate cardiometabolic outcome: meta-
bolic syndrome at 24 years (eMethods in the Supplement).

Using the 3-step method, logistic regression was used to
estimate ORs and 95% CIs for binary outcomes per trajec-
tory, compared with the most common trajectory. Linear
regression for continuous outcomes was used to estimate
β coefficients and 95% CIs representing the SD increase in
the risk of outcomes per trajectory. We tested associations
for the total sample and separately by sex before and after
adjusting for potential confounders. Regression models for
negative symptoms were additionally adjusted for depres-
sive symptoms, and vice versa.

Results
Trajectories of FI Levels and BMI
Based on 5790 participants (2658 [45.9%] male, 3132 [54.1%]
female), the 3-trajectory solution for FI levels was optimum,
representing stable average (class 1: 4939 [77.8%]), minor in-
crease (class 2: 693 [19.0%]), and persistently high (class 3: 158
[3.1%]) trajectories between ages 9 and 24 years (Figure 1A;
eTable 1 and eFigure 2 in the Supplement). The trajectories were
similar after excluding age-9-years data (eFigure 3 in the
Supplement).

Based on 10 463 participants (5336 [51.0%] female, 5127
[49.0%] male) included in the analysis of BMI, the
5-trajectory solution was optimum, representing stable aver-
age (class 1: 8383 [71.1%]), gradually decreasing (class 2: 949
[7.0%]), puberty-onset minor increase (class 3: 668 [14.5%]),
puberty-onset major increase (class 4: 174 [1.9%]), and per-
sistently high (class 5: 289 [5.5%]) BMI trajectories between
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ages 1 and 24 years (Figure 1B; eTable 2 and eFigure 4 in the
Supplement).

The stable average FI level and BMI trajectories were sta-
tistically significantly correlated (rφ = 0.233, P < .001), as were
the persistently high trajectories (rφ = 0.092, P < .001).

Both deviating FI level trajectories were associated with
lower social class, family history of cardiometabolic disease,
lower physical activity, and smoking in adolescence and early
adulthood. Lower birth weight and more perinatal stressful life
events were associated with the persistently high trajectory
compared with the stable average trajectory (eTable 3 in the
Supplement). The persistently high trajectory cohort also had
mean FI, high-density lipoprotein cholesterol, triglyceride, and
C-reactive protein levels outside of UK reference ranges at
24 years (eTable 4 in the Supplement). Deviating FI level tra-
jectories were associated with metabolic syndrome at 24 years
(adjusted OR [aOR] for the persistently high trajectory, 9.21;
95% CI, 3.77-20.15) (eTable 5 in the Supplement).

Deviating BMI trajectories were associated with lower so-
cial class, family history of cardiometabolic disease, more peri-
natal stressful life events, lower physical activity, and smok-
ing in adolescence and early adulthood compared with the
stable average trajectory. Higher birth weight was associated

with the gradually decreasing and persistently high trajecto-
ries, whereas lower birth weight was weakly associated with
both puberty-onset increase trajectories (eTable 6 in the
Supplement). Deviating BMI trajectories were also associ-
ated with mean values of waist circumference and FI, high-
density lipoprotein cholesterol, and C-reactive protein levels
outside of UK reference ranges at 24 years (eTable 7 in the
Supplement). All deviating BMI trajectories were associated
with metabolic syndrome at 24 years (aOR for the persis-
tently high trajectory, 10.62; 95% CI, 5.89-19.13) (eTable 5 in
the Supplement).

Associations of FI and BMI Trajectories
With Psychiatric Outcomes
The persistently high FI level trajectory was associated with
the psychosis at-risk mental state (aOR, 5.01; 95% CI, 1.76-
13.19), psychotic disorder (aOR, 3.22; 95% CI, 1.29-8.02), and
negative symptoms (adjusted β, 0.07; 95% CI, 0.01-0.13) at age
24 years. Fasting insulin level trajectories were not associ-
ated with depression (aOR, 1.38; 95% CI, 0.75-2.54) (Table 1;
Figure 2A; eTable 8 in the Supplement).

The puberty-onset major increase trajectory of BMI
was associated with a higher risk of a depressive episode

Figure 1. Fasting Insulin Levels and Body Mass Index Trajectories in the Avon Longitudinal Study of Parents and Children
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A, Fasting insulin levels measured at ages 9 to 24 years in 5790 participants. Class 1 (stable average) comprised 77.8% of the sample; class 2 (minor increase), 19.0%;
and class 3 (persistently high), 3.1%. B, Body mass index measured at ages 1 to 24 years in 10 463 participants. Class 1 (stable average) comprised 71.1% of the
sample; class 2 (gradually decreasing), 7.0%; class 3 (puberty-onset minor increase), 14.5%; class 4 (puberty-onset major increase), 1.9%; and class 5 (persistently
high), 5.5%. Trajectories were delineated using growth mixture modeling at 4 time points for fasting insulin and 12 time points for body mass index. Nodes in the
graph represent mean z scores for fasting insulin level or body mass index at each time point for each developmental trajectory.
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Figure 2. Associations of Fasting Insulin Levels and Body Mass Index Trajectories With Psychosis and Depressive Outcomes
in the Avon Longitudinal Study of Parents and Children
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Depressive episode
Class 1 1 [Reference]
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Class 5 2.07 (0.64-6.62)
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Adjusted odds ratios (ORs) and 95% CIs showing associations of fasting insulin (A) and body mass index (B) trajectories from childhood with risk of psychosis and
depression outcomes at age 24 years after adjusting for sex, ethnicity, social class, childhood emotional and behavioral problems, and cumulative scores of smoking,
physical activity, alcohol and substance use, sleep problems, and calorie intake. ARMS indicates at-risk mental state; PE, psychotic experiences.

Table 1. Psychosis and Depressive Outcomes at Age 24 Years Associated With Fasting Insulin Level Trajectories
From Age 9 to 24 Years

Trajectory and outcome at 24 y Sample, No.

Odds ratio (95% CI)

P valuebUnadjusted Adjusteda

Definite PE

Class 1: stable average 4939 1 [Reference] 1 [Reference]

Class 2: minor increase 693 1.48 (0.98-2.24) 1.31 (0.56-3.35) >.99

Class 3: persistently high 158 1.88 (1.05-3.60) 1.50 (0.98-2.41) .33

Psychosis at-risk mental state

Class 1: stable average 4939 1 [Reference] 1 [Reference]

Class 2: minor increase 693 1.59 (0.20-8.02) 1.36 (0.32-5.76) >.99

Class 3: persistently high 158 6.33 (1.97-20.30) 5.01 (1.76-13.19) .006

Psychotic disorder

Class 1: stable average 4939 1.00 [reference] 1.00 [Reference]

Class 2: minor increase 693 1.85 (0.70-4.88) 1.23 (0.55-2.74) >.99

Class 3: persistently high 158 4.74 (1.67-13.42) 3.22 (1.29-8.02) .05

Depressive episode

Class 1: stable average 4939 1 [Reference] 1 [Reference]

Class 2: minor increase 693 1.26 (0.73-2.67) 1.36 (0.57-2.81) .88

Class 3: persistently high 158 1.31 (0.81-4.32) 1.38 (0.75-2.54) .69

Abbreviation: PE, psychotic
experience.
a Adjusted for sex, ethnicity, social

class, Strength and Difficulties
Questionnaire (measured at 7 years)
findings, and cumulative scores for
smoking, physical activity, alcohol
and substance use, sleep problems,
and calorie intake.

b P values adjusted for multiple
testing using the Holm-Bonferroni
method.
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(aOR, 4.46; 95% CI, 2.38-9.87) and depressive symptoms
(adjusted β, 0.08; 95% CI, 0.03-0.14) at age 24 years. The
puberty-onset minor increase trajectory was weakly associ-
ated with depressive symptoms at 24 years (adjusted
β, 0.06; 95% CI, 0.01-0.11). Body mass index trajectories
were not associated with psychosis outcomes (aOR for
psychotic disorder in the puberty-onset major increase tra-
jectory, 1.98; 95% CI, 0.56-7.79) (Table 2 and Figure 2B;
eTable 9 in the Supplement).

Sex-Stratified Associations of Risks for Psychiatric Outcomes
For FI trajectories, the pattern of association with risks for
psychiatric outcomes in sex-stratified analysis was similar to
the primary analysis. For example, point estimates for the as-
sociation between the persistently high FI trajectory and
psychotic disorder were similar in males (aOR, 3.94; 95% CI,
1.10-11.96) compared with females (aOR, 2.50; 95% CI, 0.57-
11.09), and 95% CIs overlapped. There was no association be-
tween persistently high FI and depression in males (aOR, 0.95;
95% CI, 0.22-4.12) or females (aOR, 1.50; 95% CI, 0.76-2.96)
(Figure 3; eTable 10 and eTable 11 in the Supplement). For BMI,
point estimates for depression for both puberty-onset in-
crease trajectories were larger in females. For example, for
the puberty-onset major increase trajectory, the association for
females (aOR, 6.28; 95% CI, 2.14-18.44) was stronger than
for males (aOR, 2.23; 95% CI, 0.41-12.72). There was no sig-
nificant association of BMI trajectories with psychosis out-
comes. For example, there was no association between pu-

berty-onset major BMI increase and psychotic disorder for
males (aOR, 1.62; 95% CI, 0.71-3.98) or females (aOR, 2.60;
95% CI, 0.66-8.21) (Figure 3; eTable 12 and eTable 13 in the
Supplement).

Discussion
We delineated FI level and BMI trajectories from early life,
using prospective repeated measurements in a large
population-representative birth cohort, and report distinct
associations with psychosis and depression measured in
adulthood. After adjusting for a number of relevant con-
founders, we found that persistently high FI levels from
mid-childhood appeared to be associated with an increased
risk of psychosis outcomes at age 24 years, while BMI
increases around the age of puberty onset were associated
with depression at age 24 years. Associations of BMI and FI
level trajectories with cardiometabolic risk factors, such as
social class, ethnicity, smoking, physical activity, and adult
metabolic syndrome, suggest face validity to the identified
trajectories. Although the last data point for BMI and FI
levels overlapped with the outcome assessment, the trajec-
tories were differentiated by mid-childhood, suggesting a
temporal association between exposure and outcome.
Evidence for the association of puberty-onset BMI increase
and adult depression remained after adjusting for child-
hood emotional and behavioral problems, suggesting that

Table 2. Psychiatric Outcomes at Age 24 Years Associated With BMI Trajectories From Age 1 to 24 Years

Trajectory and outcome at 24 y Sample, No.

Odds ratio (95% CI)

P valuebUnadjusted Adjusteda

Definite PE

Class 1: stable average 8383 1 [Reference] 1 [Reference]

Class 2: gradually decreasing 949 1.43 (0.82-1.96) 1.26 (0.79-1.99) >.99

Class 3: puberty-onset minor increase 668 1.66 (0.87-2.55) 1.22 (0.79-1.89) >.99

Class 4: puberty-onset major increase 174 3.56 (0.87-11.54) 1.97 (0.56-6.92) >.99

Class 5: persistently high 289 3.21 (1.01-9.11) 2.44 (1.00-5.65) .37

Psychosis at-risk mental state

Class 1: stable average 8383 1 [Reference] 1 [Reference]

Class 2: gradually decreasing 949 0.49 (0.10-3.21) 0.71 (0.19-2.89) >.99

Class 3: puberty-onset minor increase 668 1.12 (0.23-5.43) 1.09 (0.26-4.58) >.99

Class 4: puberty-onset major increase 174 1.32 (0.10-13.11) 1.14 (0.15-12.22) >.99

Class 5: persistently high 289 1.55 (0.44-3.21) 1.29 (0.18-10.29) >.99

Psychotic disorder

Class 1: stable average 8383 1 [Reference] 1 [Reference]

Class 2: gradually decreasing 949 0.44 (0.21-2.03) 0.52 (0.11-2.46) >.99

Class 3: puberty-onset minor increase 668 1.97 (0.60-3.46) 1.57 (0.64-3.85) >.99

Class 4: puberty-onset major increase 174 2.14 (0.65-6.21) 1.98 (0.56-7.79) >.99

Class 5: persistently high 289 3.11 (0.53-13.22) 1.87 (0.44-8.06) >.99

Depressive episode

Class 1: stable average 8383 1 [Reference] 1 [Reference]

Class 2: gradually decreasing 949 1.33 (0.77-1.88) 1.18 (0.75-1.92) >.99

Class 3: puberty-onset minor increase 668 1.69 (0.90-3.21) 1.40 (0.81-2.55) >.99

Class 4: puberty-onset major increase 174 8.91 (4.21-17.12) 4.46 (2.38-9.87) .006

Class 5: persistently high 289 3.01 (0.91-7.59) 2.07 (0.64-6.62) >.99

Abbreviations: BMI, body mass index;
PE, psychotic experience.
a Adjusted for sex, ethnicity, social

class, Strength and Difficulties
Questionnaire (measured at 7
years), and cumulative scores for
smoking, physical activity, alcohol
and substance use, sleep problems,
and calorie intake.

b P values adjusted for multiple
testing using the Holm-Bonferroni
method.

Association of Childhood Insulin Levels and Body Mass Index With Mental Health Risks in Young Adults Original Investigation Research

jamapsychiatry.com (Reprinted) JAMA Psychiatry April 2021 Volume 78, Number 4 421

Downloaded From: https://jamanetwork.com/ on 05/06/2021

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.4180?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.4180
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.4180?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.4180
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.4180?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.4180
http://www.jamapsychiatry.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.4180


Figure 3. Sex-Stratified Associations of Fasting Insulin Levels and Body Mass Index Trajectories With Psychosis and Depressive Outcomes
in the Avon Longitudinal Study of Parents and Children
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Adjusted odds ratios (ORs) and 95% CIs showing associations of fasting insulin level trajectories in males (A) and females (B) and body mass index trajectories in
males (C) and females (D) from childhood with risk of psychosis and depression outcomes at age 24 years after adjusting for sex, ethnicity, social class, childhood
emotional and behavioral problems, and cumulative scores of smoking, physical activity, alcohol and substance use, sleep problems, and calorie intake. ARMS
indicates at-risk mental state; PE, psychotic experience.
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a reverse direction of association may not fully explain
this finding. Although the same adjustment may be less
capable of ruling out reverse direction of the association
between persistently high FI levels and psychosis, it is
unlikely that many participants had experienced psychosis
before age 9 years, and so a reverse direction of association
is unlikely.

We found consistent evidence for an association
between FI level trajectories and psychosis outcomes. Effect
sizes were largest in the persistently high trajectory, consis-
tent with a dose-response relationship, and point estimates
were larger in more clinically relevant outcomes. Our find-
ings complement meta-analyses reporting altered glucose-
insulin homeostasis in first-episode psychosis.6,7 Moreover,
our results suggest that disruptions to glucose-insulin
homeostasis detectable at first-episode psychosis in adults
may begin in childhood. The point estimates partly attenu-
ated after adjustment for confounders, suggesting that mal-
leable lifestyle factors, such as smoking, physical activity,
and diet, should remain targets for reducing the risk of inci-
dent cardiometabolic disorders in young people with psy-
chosis. We also found that participants classified into the
persistently high FI level trajectory, who had the highest risk
of psychosis, had mean BMI and fasting plasma glucose val-
ues within reference ranges at age 24 years. Therefore, the
risk of incident cardiometabolic disorders in these individu-
als may not be detected in psychosis early-intervention ser-
vices, since commonly measured physical indices may not
identify them. Consequently, careful assessment and clinical
considerations are needed to minimize the risk of cardio-
metabolic disorders in these individuals.

Our findings suggest that altered glucose-insulin homeo-
stasis could be a shared mechanism for psychosis and type 2
diabetes, which could be genetic and/or environmental in
origin. People with comorbid schizophrenia and type 2 dia-
betes have a higher genetic predisposition for both disorders
compared with controls,30 and genetic predisposition for
schizophrenia is associated with insulin resistance in
patients with schizophrenia.31 In addition, we found that the
persistently high FI trajectory, which had the strongest asso-
ciations with psychosis outcomes, was also associated with
lower birth weight and perinatal stressful life events. We
noted similar patterns of association in BMI trajectories that
were associated with depression. These findings are consis-
tent with the fetal programming hypothesis,32 which posits
that disruption in early-life development can have broad
influences on adult health.

Our findings regarding the association of BMI trajecto-
ries with depression at age 24 years are in line with
meta-analyses33,34 suggesting an association between BMI
and risk of depression. Similar trajectories of BMI have been
linked with adult type 2 diabetes,35 obesity,36 and coronary
heart disease.37 The character and composition of BMI trajec-
tories we identified are consistent with those of previous
studies, although our length of follow-up was longer than the
follow-up of most previous studies.38

Our findings provide further insights into the link
between BMI and depression,34 suggesting that puberty-

onset increases in BMI specifically are associated with risk of
adult depression. This finding, together with the lack of evi-
dence for an association between persistently high BMI
and depression, indicates that BMI might be a risk indicator
for depression rather than a risk factor because individuals
in the persistently high BMI trajectory would likely have
been exposed to the “largest dose” of BMI. Therefore, if
BMI were the risk factor, one would have expected the larg-
est effect size for depression in that trajectory. Conse-
quently, environmental and/or genetic factors influencing
BMI during puberty are likely to be important risk factors for
depression. For instance, social stressors, such as bullying,
may predispose to altered eating behaviors and an increased
risk of depression in adolescents.39 In addition, deviating
childhood BMI trajectories have been associated with a
greater risk of adolescent and adult eating disorders,40

which are commonly comorbid with depression.41 Also, the
effects of estrogen may be relevant, since the associations
of puberty-onset BMI increases and depression appeared to
be stronger in females than males. Changes in estrogen
levels are associated with depressive symptoms throughout
life in women, including pregnancy,42 menopause,43 and
puberty.44 Estrogen is associated with obesity45 and may
explain the genetic correlation of age at menarche with
adult obesity46 and depression.47 Further research is needed
to identify factors influencing pubertal BMI increases,
as they may represent important preventive targets for
depression.

We did not find consistent evidence for associations of FI
level trajectories with depression or of BMI trajectories with
psychosis. Previous research has reported mixed findings re-
garding the association between insulin resistance and de-
pression in young adults.48,49 However, some estimates for the
associations of BMI trajectories with psychosis outcomes in our
analyses had wide 95% CIs, possibly owing to sample size.
These particular findings require replication in larger samples
of people with psychosis.

Strengths and Limitations
Strengths of the study include a longitudinal design with
repeated measurements of BMI and FI levels between ages 1
and 24 years in a relatively large sample enabling a detailed
examination of dynamic cardiometabolic changes from
childhood to early adulthood. We included several relevant
depression and psychosis outcomes, which allowed us to
examine for specificity and for a biological gradient of evi-
dence.

Limitations of the study include missing data. Although
we used a robust method to handle missing data, full-
information maximum likelihood may be biased in instances
in which data were not missing at random.50 However, the
risk of bias in full-information maximum likelihood is no
greater than the bias associated with traditional complete-
case methods,51 and full-information maximum likelihood
permitted a larger sample size and therefore increased statis-
tical power. Nevertheless, missing psychiatric outcome data
may have affected our results. Furthermore, although we
adjusted for a number of relevant potential confounders,
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residual confounding could still be an issue. For example, we
could not account for psychological stress since data on cor-
tisol levels were available only at age 9 years in a small sub-
section of the cohort. Therefore, further research is needed,
such as mendelian randomization analysis, to examine for
potentially unconfounded associations. In addition, the
95% CIs were relatively wide for the sex-stratified analysis,
likely owing to reduced statistical power. Therefore, replica-
tion of our work in larger samples is required. In addition,
the ALSPAC data set does not include International Statisti-
cal Classification of Diseases and DSM diagnoses of schizo-
phrenia. However, our psychotic disorder outcome would
likely meet the threshold for clinical intervention, and all
our psychosis outcomes lie on the schizophrenia continuum.

Conclusions

We report that the cardiometabolic comorbidity of psychosis
and depression may have distinct early-life origins. Dis-
rupted insulin sensitivity from mid-childhood appeared to be
associated with adult psychosis, and BMI increases starting
around the time of puberty onset were associated with adult
depression. Although residual confounding may be an issue,
our results suggest that these cardiometabolic markers could
be among shared risk factors and indicators for adult cardio-
metabolic and psychiatric disorders and may represent novel
targets for prevention and treatment of cardiometabolic dis-
orders in people with psychosis and depression.
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Appendix C Table 1: Full LDSC Results for Schizophrenia, Cardiometabolic and 

Inflammatory Traits 

Trait 1 Trait 2 RG SE Z-Score H2 H2 SE p-value 
Schizophrenia Fasting Insulin -0.0285 0.038 -0.733 0.079 0.008 0.463 
Schizophrenia HDL  -0.074 0.032 1.412 0.127 0.024 0.158 
Schizophrenia Triglycerides 0.035 0.029 -0.858 0.168 0.030 0.391 
Schizophrenia LDL -0.023 0.022 -0.977 0.201 0.049 0.329 
Schizophrenia FPG -0.048 0.037 -1.311 0.075 0.015 0.190 
Schizophrenia BMI -0.091 0.015 -5.924 0.205 0.007 <0.001 
Schizophrenia T2D -0.073 0.023 -3.14 0.043 0.002 0.002 
Schizophrenia Two Hour Glucose -0.020 0.062 -0.33 0.030 0.010 0.743 
Schizophrenia HOMA-IR -0.028 0.050 -0.56 0.038 0.007 0.578 
Schizophrenia HbA1C -0.009 0.029 -0.29 0.074 0.009 0.771 
Schizophrenia CAD 0.029 0.019 1.52 0.108 0.008 0.129 
Schizophrenia CRP -0.017 0.003 -0.635 0.232 0.009 0.205 
Two Hour Glucose T2DM 0.400 0.098 4.06 0.041 0.003 0.002 
Two Hour Glucose HOMA-IR -0.094 0.179 -0.527 0.039 0.007 0.598 
Two Hour Glucose HbA1C 0.371 0.115 3.24 0.077 0.009 0.001 
Two Hour Glucose CAD 0.258 0.088 2.95 0.064 0.005 0.003 
Two Hour Glucose LDL -0.001 0.078 -0.013 0.207 0.048 0.986 
Two Hour Glucose HDL 0.101 0.104 0.968 0.112 0.020 0.333 
Two Hour Glucose Fasting Insulin 0.057 0.119 0.476 0.083 0.009 0.640 
Two Hour Glucose FPG 0.027 0.156 0.172 0.075 0.016 0.863 
Two Hour Glucose BMI -0.038 0.054 -0.711 0.203 0.006 0.477 
Two Hour Glucose CRP 0.026 0.096 0.271 0.087 0.019 0.786 
Two Hour Glucose Triglycerides 0.081 0.098 0.823 0.144 0.025 0.410 
HOMA-IR T2D 0.624 0.088 7.11 0.042 0.003 <0.001 
HOMA-IR HbA1C 0.195 0.081 2.40 0.078 0.009 0.016 
HOMA-IR CAD 0.222 0.071 3.12 0.065 0.005 0.002 
HOMA-IR LDL 0,021 0.056 0.357 0.209 0.045 0.722 
HOMA-IR HDL -0.597 0.098 -6.122 0.112 0.019 <0.001 
HOMA-IR Fasting Insulin 1.000 0.079 15.078 0.037 0.008 <0.001 
HOMA-IR FPG 0.354 0.093 3.810 0.075 0.016 <0.001 
HOMA-IR BMI 0.667 0.075 8.844 0.304 0.063 <0.001 
HOMA-IR CRP 0.447 0.124 3.603 0.088 0.018 <0.001 
HOMA-IR Triglycerides 0.527 0.100 5.266 0.141 0.024 <0.001 
T2D HbA1C 0.466 0.044 10.66 0.075 0.009 <0.001 
T2D CAD 0.389 0.034 11.58 0.065 0.005 <0.001 
T2D LDL 0.063 0.041 1.531 0.201 0.049 0.126 
T2D HDL -0.415 0.038 -11.05 0.109 0.014 <0.001 
T2D Fasting Insulin 0.556 0.056 10.00 0.041 0.003 <0.001 
T2D FPG 0.471 0.074 6.398 0.076 0.016 <0.001 
T2D BMI 0.554 0.028 19.735 0.205 0.007 <0.001 
T2D CRP 0.349 0.056 5.899 0.018 1.022 <0.001 
T2D Triglycerides 0.392 0.057 6.82 0.131 0.022 <0.001 
CAD HbA1C 0.253 0.035 7.234 0.075 0.009 <0.001 
CAD LDL 0.189 0.045 4.174 0.201 0.045 <0.001 
CAD HDL -0.316 0.033 -0.696 0.108 0.016 <0.001 



CAD Fasting Insulin 0.305 0.050 6.145 0.107 0.008 <0.001 
CAD FPG 0.121 0.042 2.892 0.076 0.016 0.004 
CAD BMI 0.307 0.021 14.675 0.205 0.007 <0.001 
CAD CRP 0.242 0.060 4.050 0.089 0.018 <0.001 
CAD Triglycerides 0.283 0.032 6.925 0.131 0.023 <0.001 
HbA1C LDL 0.152 0.057 2.682 0.199 0.044 0.0073 
HbA1C HDL -0.131 0.049 -2.670 0.105 0.018 0.0076 
HbA1C Fasting Insulin 0.182 0.068 2.647 0.076 0.009 0.008 
HbA1C FPG 0.522 0.084 6.235 0.076 0.016 <0.001 
HbA1C BMI 0.237 0.028 8.571 0.204 0.007 <0.001 
HbA1C CRP 0.225 0.056 4.064 0.087 0.019 <0.001 
HbA1C Triglycerides 0.167 0.054 3.082 0.133 0.024 0.0021 
CRP Fasting Insulin 0.353 0.087 4.085 0.088 0.019 <0.001 
CRP HDL  -0.325 0.062 -5.289 0.127 0.023 <0.001 
CRP Triglycerides 0.298 0.093 3.202 0.169 0.029 0.001 
CRP LDL 0.157 0.102 1.544 0.202 0.050 0.123 
CRP FPG 0.230 0.080 2.888 0.076 0.015 0.004 
CRP BMI 0.480 0.056 8.660 0.204 0.006 <0.001 
Triglycerides Fasting Insulin 0.415 0.099 4.211 0.138 0.025 <0.001 
Triglycerides HDL  -0.568 0.063 -9.007 0.131 0.023 <0.001 
Triglycerides LDL 0.381 0.053 7.15 0.201 0.047 <0.001 
Triglycerides FPG 0.144 0.092 1.490 0.075 0.016 0.139 
Triglycerides BMI 0.281 0.037 7.700 0.204 0.007 <0.001 
HDL LDL -0.018 0.065 -0.272 0.209 0.047 0.786 
HDL FPG -0.209 0.076 -2.759 0.075 0.016 0.006 
HDL BMI -0.396 0.036 -11.034 0.204 0.007 <0.001 
HDL Fasting Insulin -0.537 0.078 -6.908 0.104 0.021 <0.001 
Fasting Insulin LDL 0.079 0.054 1.480 0.212 0.047 0.139 
Fasting Insulin FPG 0.327 0.104 3.148 0.074 0.016 0.001 
Fasting Insulin BMI 0.587 0.043 13.690 0.204 0.007 <0.001 

HDL=high-density lipoprotein; LDL=low-density lipoprotein; FPG=fasting plasma glucose; BMI=body mass index; 
T2D=type 2 diabetes mellitus; HOMA=homeostatic model assessment of insulin resistance; HbA1C=glycated 
haemoglobin; CAD=coronary artery disease; CRP=C-reactive protein. 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C Table 2: Regions of Local Genetic Correlation Surpassing Bonferroni Evidential 

Threshold between Schizophrenia and Cardiometabolic and Inflammatory Traits 

Chromosome Start End Local Genetic 
Correlation  
(95% CI) 

p-value 

 
Fasting Insulin 
5 165642395 166847740 0.92 (0.66-0.97) 2.01E-12 
7 11299198 12635461 1.00 (0.65-1.00) 5.99E-11 
3 197075987 197946622 0.73 (0.42-0.98) 5.24E-09 
7 28360309 31137289 0.70 (0.42-0.96) 1.47E-07 
20 42680176 44839056 0.66 (0.41-0.87) 2.71E-07 
1 186810023 188759945 0.62 (0.31-0.87) 4.87E-07 
1 102898745 103914211 0.66 (0.30-0.92) 5.60E-07 
12 43984474 46024229 0.62 (0.42-0.87) 5.92E-07 
7 128778386 130422414 -0.90 (-1.00 - -0.54) 5.96E-07 
4 180122043 182066807 1.00 (0.67-1.00) 8.76E-07 
15 50008043 51677560 0.63 (0.37-0.77) 1.28E-06 
17 41772087 43056905 -0.82 (-1.00 - -0.49) 1.71E-06 
6 145319810 146665424 -0.81 (-1.00 - -0.38) 2.31E-06 
2 147277162 150210292 -0.78 (-1.00 - -0.51) 2.43E-06 
9 28224283 28811584 -0.59 (-0.85 - -0.24) 4.33E-06 
8 116096495 119685457 0.55 (0.31-1.00) 6.45E-06 
9 85440801 86938196 0.77 (0.43-1.00) 7.78E-06 
12 117087471 118135375 0.61 (0.42-0.88) 8.42E-06 
4 27965868 29762208 0.83 (0.36-1.00) 9.24E-06 
11 6322869 7436701 0.58 (0.32-1.00) 1.20E-05 
13 54682864 55817131 0.58 (0.32-0.81) 1.37E-05 
17 1172399 1928731 0.57 (0.31-0.76) 1.54E-05 
2 58297315 60292000 0.40 (0.24-0.58) 1.95E-05 
3 190226607 192343814 0.69 (0.38-1.00) 2.08E-05 
1 74326907 76728135 0.77 (0.41-1.00) 2.15E-05 
3 181511166 183769683 0.56 (0.30-0.68) 2.34E-05 
17 45876022 47517400 -0.66 (-0.96 - -0.47) 2.60E-05 
5 43983499 50163398 -0.51 (-0.75 - -0.37) 2.63E-05 
18 39892648 42922106 -0.72 (-1.00 - -0.47) 2.75E-05 
10 89127064 91013381 0.51 (0.27-0.58) 2.86E-05 
 
Type 2 Diabetes  
4 154477641 155056126 0.49 (0.29-0.76) 3.2670e-06 
5 178413464 179401244 0.45 (0.25-0.76) 5.9955e-06 
7 68234074 69085364 0.66 (0.37-0.96) 7.1611e-06 
14 72889615 76444767 0.42 (0.42-0.64) 7.8567e-06 
7 1353067 2062398 -0.42 (-0.61- -0.33) 1.3872e-05 
7 126869221 128778386 0.40 (0.22-0.72) 1.8553e-05 
18 57630483 59020751 0.51 (0.27-0.48) 2.3705e-05 
4 105305294 107501305 0.50 (0.27-0.50) 2.7390e-05 
 
High-Density Lipoprotein 
6 30798168 31571218 0.56 (0.37-0.75) 9.3891e-09 
12 122007651 124977980 -0.79 (-1.00 - -0.50) 1.4944e-07 
7 71874885 73334602 0.53 (0.32-0.75) 1.3009e-06 
6 31571218 32682664 0.39 (0.21-0.56) 1.4672e-05 
 
Low-Density Lipoprotein 
6 31571218 

 
32682664 
 

0.52 (0.32-0.72) 4.47e-07 

19 44744108 
 

46102697 
 

0.38 (0.20-0.56) 2.29e-05 



 
Triglycerides 
12 122007651 124977980 0.57 (0.37-0.78) 2.9534e-08 
15 58441366 59694116 0.350 (0.22-0.49) 8.1201e-07 
10 100668400 102949239 -0.77 (-1.00 - -0.58) 4.4472e-06 
4 103221356 105305294 -0.86 (-1.00 - -0.48) 1.1815e-05 
3 135456906 137371083 0.77 (0.42-1.12) 1.4880e-05 
 
Body Mass Index 
4 100678360 103221356 0.74 (0.58-1.00) 1.8800e-18 
8 116096495 119685457 -0.71 (-0.87- -0.64) 1.5271e-17 
16 29036613 31382943 -0.69 (-0.85- -0.42) 3.9790e-17 
11 134205993 134946452 -0.85 (-1.00 - -0.44) 7.6067e-17 
10 33707968 35109355 -0.76 (-0.95 - -0.60) 1.6559e-16 
11 27020461 28481593 0.65 (0.49-0.70) 1.3360e-15 
12 122007651 124977980 0.54 (0.41-1.00) 3.0322e-15 
1 154770403 156336133 -0.64 (-0.81 - -0.44) 2.8648e-13 
14 29972145 32383265 0.65 (0.45-1.00) 1.0969e-10 
2 40281483 43309590 -0.69 (-0.90 - -0.62) 1.5763e-10 
14 103012102 105001723 0.55 (0.38-1.00) 2.6666e-10 
14 61680424 63790015 -0.74 (-0.97- -0.68) 4.7168e-10 
22 19912358 22357325 -0.70 (-0.93 - -0.59) 7.4182e-10 
18 51554175 55213838 -0.52 (-0.68 - -0.33) 9.0991e-10 
2 144519484 146445570 -0.55 (-0.73 - -0.43)  2.0740e-09 
11 130342575 131074612 -0.68 (-0.90 - -0.59) 2.6699e-09 
4 103221356 105305294 0.48 (0.32-0.94) 8.0355e-09 
9 121321537 122260297 -0.63 (-0.85- -0.51) 2.5874e-08 
14 93132299 94325285 -0.61 (-0.83 - -0.54) 2.7201e-08 
17 1172399 1928731 -0.62 (-0.84 - -0.49) 2.8907e-08 
4 18841874 20544557 0.58 (0.38-1.00) 3.4517e-08 
2 14335308 16329735 0.80 (0.51-1.00) 4.4638e-08 
9 76973081 78900183 -1.00 (-1.00- -1.00) 4.7885e-08 
2 147277162 150210292 -0.55 (-0.75-0.43) 4.8358e-08 
5 58524622 60935907 -0.53 (-0.72 - -0.38) 5.0203e-08 
5 152867774 153773088 -0.50 (-0.68 - -0.43) 5.8424e-08 
17 72672203 74375560 0.71 (0.45-1.00) 6.5898e-08 
5 155373505 156628700 0.85 (0.54-1.00) 7.4102e-08 
6 108464380 110304247 -0.54 (-0.73 - -0.43) 9.8576e-08 
1 38731847 40200567 -0.59 (-0.81 - -0.43) 1.2270e-07 
11 12564229 13373124 -0.73 (-0.99 - -0.52) 1.2379e-07 
18 45939732 47730584 -0.78 (-1.00 - -0.60) 1.7993e-07 
4 43965045 45189157 -0.49 (-0.69 - -0.22) 2.0291e-07 
1 1892607 3582736 0.58 (0.36-1.00) 2.0822e-07 
8 143044914 144236881 -0.46 (-0.64 - -0.72) 2.1199e-07 
14 32383265 34846251 0.56 (0.34-1.00) 2.8869e-07 
10 102949239 104380410 -0.46 (-0.64- -0.40) 4.2282e-07 
19 13471127 14486347 -0.62 (-0.85 - -0.73) 4.2562e-07 
13 55817131 57554217 -0.70 (-0.97 - -0.45) 4.6785e-07 
3 30717955 32351715 -0.73 (-1.00 - -0.42) 5.0177e-07 
13 58410626 59302271 -0.45 (-0.63- -0.38) 6.9698e-07 
8 143044914 144236881 -0.46 (-0.64 - -0.32) 2.1199e-07 
14 32383265 34846251 0.56 (0.35-1.00) 2.8869e-07 
10 102949239 104380410 -0.46 (-0.64- -0.50) 4.2282e-07 
19 13471127 14486347 -0.62 (-0.85 - -0.73) 4.2562e-07 
13 55817131 57554217 -0.70 (-0.98 - -0.55) 4.6785e-07 
3 30717955 32351715 -0.73 (-1.00 - -0.54) 5.0177e-07 
13 58410626 59302271 -0.44 (-0.65 - -0.38) 6.9698e-07 
2 229370787 231843389 -0.66 (-0.93 - -0.48) 1.0193e-06 
8 9640787 10463197 0.49 (0.29-0.94) 1.3453e-06 
6 97842284 100630146 -0.54 (-0.76 - -0.31) 1.3989e-06 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

13 63971559 65200602 0.72 (0.43-1.00) 1.4903e-06 
15 76398624 78516053 -0.52 (-0.73 - -0.42) 1.5391e-06 
11 30141357 32276901 -0.44 (-0.62 - -0.38) 1.5419e-06 
17 1928731 3702312 -0.57 (-0.81 - -0.39) 1.8773e-06 
19 30727954 32746520 -0.45 (-0.64 - -0.35) 1.9589e-06 
8 4480476 5146927 0.62 (0.36-1.71) 1.9798e-06 
11 17578402 19569535 -0.68 (-0.96- -0.81) 2.8624e-06 
6 13209388 14802924 -0.59 (-0.84 – 0.43) 3.0978e-06 
1 106087842 108409665 -0.55 (-0.78 - -0.33) 3.2491e-06 
8 2573279 3392926 -0.74 (-1.00 - -0.44) 3.3313e-06 
1 97885249 99800604 -0.42 (-0.59 - -0.37) 3.4856e-06 
15 73628714 76398624 -0.47 (-0.66- -0.29) 4.1370e-06 
2 191973357 195861164 -0.59 (-0.84 - -0.44) 4.6666e-06 
18 22996651 24026191 0.69 (0.40-1.00) 4.7871e-06 
1 224938520 226810860 -0.70 (-1.00 - -0.55) 4.7961e-06 
7 128778386 130422414 0.69 (0.39-1.00) 4.8353e-06 
9 107581749 109298754 0.59 (0.34-1.00) 5.1291e-06 
11 55082657 58457495 0.55 (0.32-1.00) 5.5468e-06 
6 24852275 25684587 -0.56 (-0.81 - -0.36) 7.0368e-06 
20 13689864 15958359 -0.64 (-0.92 - -0.43) 7.3961e-06 
16 13154437 14464002 -0.60 (-0.86 - -0.48) 8.3274e-06 
9 84211233 85440801 -0.61 (-0.88 - -0.50) 8.4905e-06 
16 20150571 22448904 0.44 (0.24-0.86) 8.5474e-06 
4 58935008 60741087 0.65 (0.36-1.00) 8.8613e-06 
18 5834180 7090485 -0.60 (-0.86 - -0.40) 8.9776e-06 
9 31310383 32019368 0.66 (0.37-1.00) 9.5428e-06 
17 27334244 29786491 -0.48 (-0.69 - -0.37) 1.0430e-05 
3 131836516 133252173 -0.58 (-0.84 - -0.44) 1.0541e-05 
6 25684587 26791233 -0.33 (-0.48 - -0.22) 1.2825e-05 
8 144236881 146303867 -0.49 (-0.71 - -0.31) 1.3140e-05 
9 126971887 129059665 -0.54 (-0.78 - -0.42) 1.6506e-05 
2 209941529 212379518 -0.47 (-0.68 - -0.30) 1.6960e-05 
15 48136048 50008043 -0.71 (-1.00 - -0.59) 1.7653e-05 
7 49212278 51675322 -0.48 (-0.70 - -0.30) 1.7793e-05 
14 59448336 61680424 -0.56 (-0.82 - -0.41) 1.8802e-05 
5 165642395 166847740 -0.61 (-0.89 - -0.52) 1.9529e-05 
13 38878163 41069263 -0.52 (-0.76 - -0.43) 2.0126e-05 
4 6773043 7539692 -0.76 (-1.00 - -0.51) 2.0157e-05 
6 42038721 43756169 -0.56 (-0.81 - -0.40) 2.1629e-05 
 
Coronary Artery Disease 
10 104380410 106695048 0.47 (0.33-0.77) 1.8131e-12 
15 90475551 92164392 -0.55 (-0.72 - -0.29) 3.2537e-10 
7 128778386 130422414 0.64 (0.39-0.66) 8.4244e-07 
22 19912358 22357325 -0.39 (-0.58 - -0.25) 2.7840e-05 
 
C-Reactive Protein 
7 87825004 90661784 0.99 (0.88-1.00) 2.3160e-08 
1 153180829 154770403 -0.40 (-0.56- -0.11) 7.0758e-07 
9 130055510 132165470 -0.96 (-1.00 - -0.90) 3.8599e-06 
2 60292000 62429044 -0.87 (-1.00 - -0.66) 1.2429e-05 
4 43965045 45189157 -0.78 (-1.00 - -0.51) 2.8390e-05 



Appendix C Table 3: Sensitivity Analysis Results for Schizophrenia, Cardiometabolic and 

Inflammatory Traits: Modifying Prior Configurations and Regional/Alignment Thresholds 

Candidate 
SNP 

Colocalized Traits PPcoloc1 PPexplained2 N SNPs3 Prior 
Prob 2 

Reg/Align 
Threshold 

rs8192675 SCZ, T2D, CRP, BMI 0.9299 0.5033 919 0.95 0.5 
rs8192675 SCZ, T2D, CRP, BMI 0.9299 0.5033 919 0.95 0.6 
rs8192675 SCZ, T2D, CRP, BMI 0.9299 0.5033 919 0.95 0.7 
rs8192675 SCZ, T2D, CRP, BMI 0.9299 0.5033 919 0.95 0.8 
rs8192675 SCZ, T2D, CRP, BMI 0.9299 0.5033 919 0.95 0.9 
rs8192675 SCZ, T2D, CRP, BMI 0.8434 0.5033 919 0.98 0.5 
rs8192675 SCZ, T2D, CRP, BMI 0.8434 0.5033 919 0.98 0.6 
rs8192675 SCZ, T2D, CRP, BMI 0.8434 0.5033 919 0.98 0.7 
rs8192675 SCZ, T2D, CRP, BMI 0.8434 0.5033 919 0.98 0.8 
rs8192675 SCZ, CRP, BMI 0.9093 0.351 919 0.98 0.9 
rs8192675 SCZ, T2D, CRP, BMI 0.7261 0.5033 919 0.99 0.5 
rs8192675 SCZ, T2D, CRP, BMI 0.7261 0.5033 919 0.99 0.6 
rs8192675 SCZ, T2D, CRP, BMI 0.7261 0.5033 919 0.99 0.7 
rs8192675 SCZ, CRP, BMI 0.8326 0.351 919 0.99 0.8 
rs8192675 SCZ, BMI 0.8957 0.6095 919 0.99 0.9 
rs8192675 SCZ, BMI 0.4097 0.6095 919 0.999 0.5 
rs340874 SCZ, T2D 0.5437 0.6637 1324 0.95 0.5 
rs340874 SCZ, T2D 0.5437 0.6637 1324 0.95 0.6 
rs340874 SCZ, T2D 0.5437 0.6637 1324 0.95 0.7 
rs2108349 SCZ, FI 0.6005 0.8826 1272 0.95 0.5 
rs2108349 SCZ, FI 0.6005 0.8826 1272 0.95 0.6 
rs2108349 SCZ, FI 0.6005 0.8826 1272 0.95 0.7 
rs2108349 SCZ, FI 0.6005 0.8826 1272 0.98 0.5 
rs2108349 SCZ, FI 0.6005 0.8826 1272 0.98 0.6 
rs17514846 SCZ, CAD 0.9989 1 1071 0.95 0.5 
rs17514846 SCZ, CAD 0.9989 1 1071 0.95 0.6 
rs17514846 SCZ, CAD 0.9989 1 1071 0.95 0.7 
rs17514846 SCZ, CAD 0.9989 1 1071 0.95 0.8 
rs17514846 SCZ, CAD 0.9989 1 1071 0.95 0.9 
rs17514846 SCZ, CAD 0.9971 1 1071 0.98 0.5 
rs17514846 SCZ, CAD 0.9971 1 1071 0.98 0.6 
rs17514846 SCZ, CAD 0.9971 1 1071 0.98 0.7 
rs17514846 SCZ, CAD 0.9971 1 1071 0.98 0.8 
rs17514846 SCZ, CAD 0.9971 1 1071 0.98 0.9 
rs17514846 SCZ, CAD 0.9943 1 1071 0.99 0.5 
rs17514846 SCZ, CAD 0.9943 1 1071 0.99 0.6 
rs17514846 SCZ, CAD 0.9943 1 1071 0.99 0.7 
rs17514846 SCZ, CAD 0.9943 1 1071 0.99 0.8 
rs17514846 SCZ, CAD 0.9943 1 1071 0.99 0.9 
rs17514846 SCZ, CAD 0.9457 1 1071 0.999 0.5 
rs17514846 SCZ, CAD 0.9457 1 1071 0.999 0.6 
rs17514846 SCZ, CAD 0.9457 1 1071 0.999 0.7 
rs17514846 SCZ, CAD 0.9457 1 1071 0.999 0.8 
rs17514846 SCZ, CAD 0.9457 1 1071 0.999 0.9 
rs13107325 SCZ, TG, T2D, HDL, BMI 0.8569 1 936 0.95 0.5 
rs13107325 SCZ, TG, T2D, HDL, BMI 0.8569 1 936 0.95 0.6 
rs13107325 SCZ, TG, T2D, HDL, BMI 0.8569 1 936 0.95 0.7 
rs13107325 SCZ, TG, T2D, HDL, BMI 0.8569 1 936 0.95 0.8 
rs13107325 SCZ, TG, HDL, BMI 0.9477 1 936 0.95 0.9 
rs13107325 SCZ, TG, T2D, HDL, BMI 0.7092 1 936 0.98 0.5 
rs13107325 SCZ, TG, T2D, HDL, BMI 0.7092 1 936 0.98 0.6 



rs13107325 SCZ, TG, T2D, HDL, BMI 0.7092 1 936 0.98 0.7 
rs13107325 SCZ, TG, HDL, BMI 0.8807 1 936 0.98 0.8 
rs13107325 SCZ, TG, HDL, BMI 0.8807 1 936 0.98 0.9 
rs13107325 SCZ, TG, T2D, HDL, BMI 0.5423 1 936 0.99 0.5 
rs13107325 SCZ, TG, T2D, HDL, BMI 0.5423 1 936 0.99 0.6 
rs13107325 SCZ, TG, HDL, BMI 0.7853 1 936 0.99 0.7 
rs13107325 SCZ, TG, HDL, BMI 0.7853 1 936 0.99 0.8 
rs13107325 SCZ, HDL, BMI 1 1 936 0.99 0.9 
rs13107325 SCZ, HDL, BMI 1 1 936 0.999 0.5 
rs13107325 SCZ, HDL, BMI 1 1 936 0.999 0.6 
rs13107325 SCZ, HDL, BMI 1 1 936 0.999 0.7 
rs13107325 SCZ, HDL, BMI 1 1 936 0.999 0.8 
rs13107325 SCZ, HDL, BMI 1 1 936 0.999 0.9 
rs3814883 SCZ, BMI 0.9885 0.9964 193 0.95 0.5 
rs3814883 SCZ, BMI 0.9885 0.9964 193 0.95 0.6 
rs3814883 SCZ, BMI 0.9885 0.9964 193 0.95 0.7 
rs3814883 SCZ, BMI 0.9885 0.9964 193 0.95 0.8 
rs3814883 SCZ, BMI 0.9885 0.9964 193 0.95 0.9 
rs3814883 SCZ, BMI 0.9717 0.9964 193 0.98 0.5 
rs3814883 SCZ, BMI 0.9717 0.9964 193 0.98 0.6 
rs3814883 SCZ, BMI 0.9717 0.9964 193 0.98 0.7 
rs3814883 SCZ, BMI 0.9717 0.9964 193 0.98 0.8 
rs3814883 SCZ, BMI 0.9717 0.9964 193 0.98 0.9 
rs3814883 SCZ, BMI 0.9449 0.9964 193 0.99 0.5 
rs3814883 SCZ, BMI 0.9449 0.9964 193 0.99 0.6 
rs3814883 SCZ, BMI 0.9449 0.9964 193 0.99 0.7 
rs3814883 SCZ, BMI 0.9449 0.9964 193 0.99 0.8 
rs3814883 SCZ, BMI 0.9449 0.9964 193 0.99 0.9 
rs3814883 SCZ, BMI 0.6316 0.9964 193 0.999 0.5 
rs3814883 SCZ, BMI 0.6316 0.9964 193 0.999 0.6 
rs12782894 SCZ, BMI 0.8834 0.6847 1255 0.95 0.5 
rs12782894 SCZ, BMI 0.8834 0.6847 1255 0.95 0.6 
rs12782894 SCZ, BMI 0.8834 0.6847 1255 0.95 0.7 
rs12782894 SCZ, BMI 0.8834 0.6847 1255 0.95 0.8 
rs12782894 SCZ, BMI 0.8834 0.6847 1255 0.95 0.9 
rs12782894 SCZ, BMI 0.7447 0.6847 1255 0.98 0.5 
rs12782894 SCZ, BMI 0.7447 0.6847 1255 0.98 0.6 
rs12782894 SCZ, BMI 0.7447 0.6847 1255 0.98 0.7 
rs12782894 SCZ, BMI 0.7447 0.6847 1255 0.98 0.8 
rs12782894 SCZ, BMI 0.5787 0.6847 1255 0.99 0.5 
rs12782894 SCZ, BMI 0.5787 0.6847 1255 0.99 0.6 
rs6265 SCZ, TG, CAD, CRP, BMI 0.4796 0.8429 925 0.95 0.5 
rs6265 SCZ, TG, CAD, CRP, BMI 0.4796 0.8429 925 0.95 0.6 
rs6265 SCZ, CAD, CRP, BMI 0.8607 0.7491 925 0.95 0.7 
rs6265 SCZ, CAD, CRP, BMI 0.8607 0.7491 925 0.95 0.8 
rs6265 SCZ, CAD, BMI 0.9552 0.8067 925 0.95 0.9 
rs6265 SCZ, CAD, CRP, BMI 0.7111 0.7491 925 0.98 0.5 
rs6265 SCZ, CAD, CRP, BMI 0.7111 0.7491 925 0.98 0.6 
rs6265 SCZ, CAD, CRP, BMI 0.7111 0.7491 925 0.98 0.7 
rs6265 SCZ, CAD, BMI 0.8951 0.8067 925 0.98 0.8 
rs6265 SCZ, CAD, BMI 0.8951 0.8067 925 0.98 0.9 
rs6265 SCZ, CAD, CRP, BMI 0.5406 0.7491 925 0.99 0.5 
rs6265 SCZ, CAD, CRP, BMI 0.5406 0.7491 925 0.99 0.6 
rs6265 SCZ, CAD, BMI 0.8071 0.8067 925 0.99 0.7 
rs6265 SCZ, CAD, BMI 0.8071 0.8067 925 0.99 0.8 
rs3800229 SCZ, BMI 0.8889 0.9519 872 0.95 0.5 



rs3800229 SCZ, BMI 0.8889 0.9519 872 0.95 0.6 
rs3800229 SCZ, BMI 0.8889 0.9519 872 0.95 0.7 
rs3800229 SCZ, BMI 0.8889 0.9519 872 0.95 0.8 
rs3800229 SCZ, BMI 0.8889 0.9519 872 0.95 0.9 
rs3800229 SCZ, BMI 0.7546 0.9519 872 0.98 0.5 
rs3800229 SCZ, BMI 0.7546 0.9519 872 0.98 0.6 
rs3800229 SCZ, BMI 0.7546 0.9519 872 0.98 0.7 
rs3800229 SCZ, BMI 0.7546 0.9519 872 0.98 0.8 
rs3800229 SCZ, BMI 0.5909 0.9519 872 0.99 0.5 
rs3800229 SCZ, BMI 0.5909 0.9519 872 0.99 0.6 
rs3800229 SCZ, BMI 0.5909 0.9519 872 0.99 0.7 
rs2239647 SCZ, T2D, BMI 0.7872 0.6625 1584 0.95 0.6 
rs2239647 SCZ, T2D, BMI 0.7872 0.6625 1584 0.95 0.7 
rs2239647 SCZ, T2D, BMI 0.7872 0.6625 1584 0.95 0.8 
rs2239647 SCZ, BMI 0.9883 0.6317 1584 0.95 0.9 
rs2239647 SCZ, T2D, BMI 0.5916 0.6625 1584 0.98 0.5 
rs2239647 SCZ, T2D, BMI 0.5916 0.6625 1584 0.98 0.6 
rs2239647 SCZ, BMI 0.9712 0.6317 1584 0.98 0.7 
rs2239647 SCZ, BMI 0.9712 0.6317 1584 0.98 0.8 
rs2239647 SCZ, BMI 0.9712 0.6317 1584 0.98 0.9 
rs2239647 SCZ, BMI 0.944 0.6317 1584 0.99 0.5 
rs2239647 SCZ, BMI 0.944 0.6317 1584 0.99 0.6 
rs2239647 SCZ, BMI 0.944 0.6317 1584 0.99 0.7 
rs2239647 SCZ, BMI 0.944 0.6317 1584 0.99 0.8 
rs2239647 SCZ, BMI 0.944 0.6317 1584 0.99 0.9 
rs2239647 SCZ, BMI 0.6234 0.6317 1584 0.999 0.5 
rs2239647 SCZ, BMI 0.6234 0.6317 1584 0.999 0.6 
rs11191514 SCZ, CAD, BMI 0.7651 0.297 710 0.95 0.5 
rs11191514 SCZ, CAD, BMI 0.7651 0.297 710 0.95 0.6 
rs11191514 SCZ, CAD, BMI 0.7651 0.297 710 0.95 0.7 
rs11191514 SCZ, CAD, BMI 0.5695 0.297 710 0.98 0.5 
rs6031855 SCZ, BMI 0.5877 0.2771 990 0.95 0.5 
rs6031855 SCZ, BMI 0.5877 0.2771 990 0.95 0.6 
rs6031855 SCZ, BMI 0.5877 0.2771 990 0.95 0.7 
rs6031855 SCZ, BMI 0.3224 0.2771 990 0.98 0.5 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C Table 4: SNPs used as instruments for fasting insulin, triglycerides and high-

density lipoprotein in MR Analysis 

 

Fasting Insulin                                       Triglycerides                                        HDL 

rs10195252 

rs2126259 

rs2943645 

rs308971 

rs3822072 

rs459193 

rs4846565 

rs4865796  

rs731839 

 

 

 

 

 

 

 

Appendix C Table 5: SNPs used as instruments for fasting plasma glucose in MR Analysis 

rs10276674 
rs10830963 
rs10974438 
rs11039138 
rs11195502 

 

rs11603334 
rs11605924 
rs11708067 
rs17747324 

  rs11558471 

rs2191349 
rs2524299 
rs2908282 
rs4148804 

 

rs4869272 
rs560887 
rs6113722 
rs7173964 

 

rs7644261 
rs780093 
rs882020 
rs983309 

 

 

 

Appendix C Table 6: SNPs used as instruments for type 2 diabetes mellitus in MR Analysis 

rs1060105 
rs1127787 
rs1169288 
rs1260326 
rs13266634 
rs140386498 
rs1800437 

rs1801212 
rs1801282 
rs2032844 
rs2073721 
rs2276853 
rs2296172 
rs1800961 

rs328 
rs35169799 
rs35658696 
rs35720761 
rs3764002 
rs5219 
rs56200889 

rs60980157 
rs665268 
rs6762208 
rs72928978 
rs738409 
rs7572857 
rs58542926 

rs7607980 
rs781831 
rs9379084 
rs9891146 
rs2307111 
rs28265 

 

  

 

 

rs1011685 

rs10195252 

rs2126259 

rs2745353 

rs2943645 

rs3822072 

rs3861397 

rs459193 

rs4804311 

rs7973683 

rs4976033 

rs683135 

rs731839 

rs972283 

rs1011685 

rs10195252 

rs132985 

rs2699429 

rs3861397 

rs7973683 

rs731839 

rs4804311 

rs2943645 



Appendix C Table 7: SNPs used as instruments for body mass index in MR Analysis 

rs1000940 
rs10132280 
rs1016287 
rs10182181 
rs10733682 
rs10840100 
rs11030104 
rs11165643 
rs11663558 
rs11672660 
rs1167827 
rs11727676 
rs12286929 
rs12429545 
rs12448257 
rs12940622 
rs12986742 
rs13021737 
rs13078960               

 rs13107325 
rs13130484 
rs13191362 
rs13201877 
rs13329567 
rs1421085 
rs1441264 
rs1460676 
rs14810 
rs1516725 
rs1528435 
rs16851483 
rs17001654 
rs17066856 
rs17094222 
rs17203016 
rs17381664 
rs17724992 
rs1928295 

rs205262 
rs2060604 
rs2112347 
rs2176040 
rs2176598 
rs2183825 
rs2245368 
rs2365389 
rs2820292 
rs2890652 
rs3736485 
rs3817334 
rs3849570 
rs3888190 
rs4740619 
rs4889606 
rs492400 
rs4981693 
rs543874 

rs6091540 
rs6465468 
rs6477694 
rs6567160 
rs657452 
rs6804842 
rs7138803 
rs7144011 
rs7239883 
rs7531118 
rs7550711 
rs7599312 
rs7715256 
rs7899106 
rs7903146 
rs879620 
rs9304665 
rs9374842 
rs9400239 

rs9540493 
rs9579083 
rs977747 
rs9926784 
rs2033732 
rs943005 

 

 

Appendix C Table 8: SNPs used as instruments for glucose tolerance in MR Analysis 

rs1019503 
rs11672660 

 

rs11717195 
rs11782386 

 

rs12255372 
rs6547829 

 

rs6975024 
 

 

 

Appendix C Table 9: SNPs used as instruments for low density lipoprotein in MR Analysis 

rs10195252 
rs10490626 
rs10832962 
rs10893499 
rs10903129 
rs112201728 
rs11563251 
rs11591147 
rs1169288 
rs12066643 
rs1250229 
rs12721109 
rs12748152 
rs12916 
rs13206249 

  rs6709904 

rs13277801 
rs1367117 
rs1408272 
rs1564348 
rs16831243 
rs16891156 
rs17404153 
rs174583 
rs1800961 
rs1801689 
rs1883025 
rs2000999 
rs2030746 
rs2073547 
rs2228603 
rs2315065 

 

rs2328223 
rs2390536 
rs2419604 
rs247616 
rs2495495 
rs2587534 
rs2642438 
rs267733 
rs2710642 
rs2737252 
rs2738459 
rs2886232 
rs2954029 
rs2965157 
rs314253 
rs3184504 

 

rs364585 
rs3757354 
rs3780181 
rs4253776 
rs4530754 
rs4722551 
rs4942486 
rs4970712 
rs5763662 
rs579459 
rs6016373 
rs6065311 
rs646776 
rs6504872 
rs6511720 
rs6544713   

rs676388 
rs6818397 
rs6882076 
rs6909746 
rs7254892 
rs72902576 
rs7534572 
rs7551981 
rs75687619 
rs7640978 
rs7832643 
rs8017377 
rs964184 
rs9875338 
rs9987289 

  

 

 

 

 

 

 



Appendix C Table 10: SNPs used as instruments for glycated haemoglobin in MR Analysis 

rs1046896 
rs10774625 
rs11248914 
rs11603334 
rs11708067 
rs11964178 
rs12368284 
rs9935401 

rs12621844 
rs13134327 
rs13266634 
rs1387153 
rs1547247 
rs17509001 
rs17533903 

rs17747324 
rs1800562 
rs2246434 
rs2383208 
rs267738 
rs2979422 
rs3782123 

rs423117 
rs4607517 
rs4737009 
rs4745982 
rs560887 
rs579459 
rs592423 

rs6474359 
rs7040409 
rs7616006 
rs8192675 
rs855791 
rs9818758 
rs9914988 

 

 

Appendix C Table 11: SNPs used as instruments for leptin in MR Analysis 

 

 

 

Appendix C Table 12: Inflammation-related SNPs for fasting insulin in MR Analysis 

SNP Inflammation-Related Pleiotropy Effect Allele 
rs2126259a CRP, Neutrophil Count, Granulocyte Count, Basophil Count, Myeloid White Cell 

Count 
T 

rs731839 Lymphocyte Count, White Blood Cell Count, Neutrophil Count G 
rs10195252 Lymphocyte Count, Neutrophil % of White Cells,  T 
rs308971 T-Cell Surface Protein CD3 Epsilon Chain  G 
rs3822072 CD32, Lymphocyte Count, Neutrophil Count A 

aGenome-Wide Significance Inflammation-Related SNP; CRP=C-reactive protein 

 

 

Appendix C Table 13: Inflammation-related SNPs for triglycerides in MR Analysis 

 

 

Appendix C Table 14: Inflammation-related SNPs for high-density lipoprotein in MR 

Analysis 

aGenome-Wide Significance Inflammation-Related SNP 

rs900400 
rs6071166 

 

rs6738627 
rs780093 

 

SNP Inflammation-Related Pleiotropy Effect Allele 
rs10195252 Lymphocyte Count, Neutrophil % of White cells,  T 
rs731839 Lymphocyte Count, White Blood Cell Count, Neutrophil Count G 
rs1011685 Eosinophil Count, Granulocyte Count C 
rs3861397 Eosinophil % Granulocytes, C-X-C Motif Chemokine 14 G 

SNP Inflammation-Related Pleiotropy Effect Allele 
rs2126259a CRP, Neutrophil Count, Granulocyte Count, Basophil Count, Myeloid White Cell 

Count 
T 

rs731839 Lymphocyte Count, White Blood Cell Count, Neutrophil Count G 
rs1011685 Eosinophil % of White Cells, Neutrophil % of Granulocytes, Eosinophil Count C 
rs3822072 CD32, Lymphocyte Count, Neutrophil Count A 
rs10195252 Lymphocyte Count, Neutrophil % of White cells,  T 
rs3861397 Eosinophil % Granulocytes, C-X-C Motif Chemokine 14 G 
rs2745353 Lymphocyte Count T 



Appendix C Table 15: Inflammation-related SNPs for low-density lipoprotein in MR Analysis 

SNP Inflammation-Related Pleiotropy Effect Allele 
rs1169288a 

CRP C 
rs17404153a C-C Motif Chemokine 21 G 
rs174583a Neutrophil Count, Basophil Count, White Cell Count, Eosinophil Count C 
rs1800961a CRP, Neutrophil Count, Basophil Count C 
rs2642438 a Granulocyte% White Cells Monocyte% White Cells G 
rs2886232 a C-C Motif Chemokine 22 T 
rs2954029 a Neutrophil Count, Eosinophil Count A 
rs3184504 a Eosinophil Count, Basophil Count, Lymphocyte Count, WCC, Neutrophil Count, 

IL-2b 
C 

rs4970712 a Monocyte Count, Granulocyte Count, Lymphocyte Count C 
rs579459 a IL-3a, Neutrophil Count, Eosinophil Count, WCC, IL-6 C 
rs646776 a CRP T 
rs9875338 a Monocyte Count, Neutrophil Count G 
rs9987289 a CRP, Neutrophil Count, Basophil Count G 
rs964184 Eosinophil Count, Neutrophil% Granulocytes G 
rs75687619 CRP T 
rs4253776 Eosinophil% White Cells, Eosinophil% Granulocytes G 
rs2228603 CRP, Lymphocyte Count C 
rs1408272 Monocyte Count T 
rs10195252 Lymphocyte Count, Neutrophil Count T 
rs12748152 Basophil Count, Eosinophil Count, Eosinophil% Granulocytes, Neutrophil% 

Granulocytes 
T 

rs2000999 Granulocyte% White Cells A 
rs2737252 Monocyte Count G 
rs314253 CD4:%Act(DR+38+) T 
rs676388 Basophil Count C 
rs6882076 Lymphocyte Count, WCC C 
aGenome-Wide Significant Inflammation-Related SNP; CRP=C-reactive protein; WCC=White Cell Count; IL-
=interleukin-. 

 

Appendix C Table 16: Inflammation-related SNPs for fasting plasma glucose in MR Analysis 

SNP Inflammation-Related Pleiotropy Effect Allele 

rs780093a Monocyte Count, Basophils, Neutrophil% T 

rs983309a Neutrophil%, Granulocytes T 

rs1130391138 Lymphocyte% White Cells A 

rs2524299 
Basophil Count, Neutrophil Count, Granulocyte Count % White Cells, White 
Cell Count, Eosinophil Count, Monocyte Count A 

aGenome-Wide Significant Inflammation-Related SNPs 

 

 

 

 



Appendix C Table 17: Inflammation-related SNPs for glycated haemoglobin in MR Analysis 

aGenome-Wide Significant Inflammation-Related SNP; CRP=C-reactive protein; IL-=interleukin 
 

Appendix C Table 18: Inflammation-related SNPs for type 2 diabetes in MR Analysis 

aGenome-Wide Significant Inflammation-Related SNPs; CRP=C-reactive protein 
 

Appendix C Table 19: Inflammation-related SNPs for body mass index in MR Analysis 

aGenome-Wide Significant Inflammation-Related SNPs; CRP=C-reactive protein 

SNP Inflammation-Related Pleiotropy 
Effect 
Allele 

rs10774625a Neutrophil Count, Eosinophil Count, Monocyte Count, Lymphocyte Count, 
Basophil Count 

A 

rs11964178a Granulocyte% White Cells, Basophil Count, Neutrophil Count, White Cell 
Count, Lymphocyte Count 

A 

rs1547247 a White Cell Count, Monocyte Count, Neutrophil Count, Granulocyte% White 
Cells 

A 

rs17509001a Lymphocyte Count, Monocyte Count, Neutrophil Count C 
rs4737009a Lymphocyte Count, Neutrophil Count A 
rs579459a IL-6, Neutrophil Count, Basophil Count, CRP C 
rs6474359a Lymphocyte Count C 
rs7616006 White Cell Count, Monocyte Count, Lymphocyte Count, Neutrophil Count A 
rs1800562 Monocyte Count A 
rs2246434 Lymphocyte Count, Neutrophil Count, Lymphocyte% White Cells, Monocyte 

Count 
A 

SNP Inflammation-Related Pleiotropy 
Effect 
Allele 

rs1260326a CRP, Basophil Count, Neutrophil Count, Lymphocyte Count C 
rs2276853a Lymphocyte Count, Neutrophil Count, Granulocyte Count A 
rs2073721a Neutrophil Count, Monocyte %, Granulocyte % G 
rs1169288a CRP C 
rs1060105a Neutrophil Count, Lymphocyte Count C 
rs9891146a Neutrophil Count, Eosinophil Count, Granulocyte Count T 
rs1800961a CRP, Neutrophil Count, Granulocyte Count, Basophil Count, Myeloid Count T 
rs665268 Monocyte Count G 
rs1801282 Eosinophil% White Cells, Eosinophil Count C 
rs60980157 Basophil Count, Neutrophil Count; Myeloid White Cell Count, White Cell 

Count C 

SNP Inflammation-Related Pleiotropy 
Effect 
Allele 

rs16851483a Monocyte count G 
rs891389a Neutrophil %, Eosinophils, Basophils C 
rs1558902a CRP  A 
rs571312a CRP A 
rs1000940 Lymphocyte Count, White Cell Count G 
rs11663558 Neutrophil Count, Granulocyte Count, Basophil Count, Myeloid White Cell Count  A 
rs12448257 Basophil Count, Neutrophil Count, Granulocyte Count, Myeloid White Cell Count G 
rs13107325 Eosinophil Count, Monocyte Count C 
rs205262 Lymphocyte Count A 
rs3817334 Granulocyte% Myeloid White Cells C 
rs4889606 Lymphocyte Count G 
rs6567160 Neutrophil Count, Myeloid Count, Granulocyte Count, White Cell Count C 



Appendix C Table 20: Inflammation-related SNPs for schizophrenia in MR Analysis 

SNP Inflammation-Related Pleiotropy Effect Allele 
rs2851447 Lymphocyte%, Neutrophil% G 
rs3130820 Lymphocyte Count, Basophil Count, Monocyte count T 
rs4925114 Lymphocyte Count T 
rs12416331 Monocyte Count A 
rs7216638 White cell count, Basophil count T 

 

 

Appendix C Table 21: SNPs used for CRP in MVMR Analysis 

 
 
 

*SNPs pruned during clumping procedure 

 

 

 

Appendix C Table 22: Cochran Q Tests for Heterogeneity and MR Egger Intercept Tests for 

Horizontal Pleiotropy for the Association between all Cardiometabolic SNPs and 

Schizophrenia  

Cardiometabolic Risk 
Factor 

IVW MR Egger 
 

Cochran’s Q 
(df) 

p-value Cochran’s Q 
(df) 

p-value MR Egger 
Intercept (SE) 

Intercept 
p-value 

Fasting Insulin 19.37 (8) 0.013 11.03 (7) 0.137 -0.05 (0.02) 0.055 
Triglycerides 46.66 (9) <0.001 40.88 (8) <0.001 -0.01 (0.01) 0.319 
HDL 65.05 (14) <0.001 46.80 (13) <0.001 0.02 (0.01) 0.032 
Fasting Plasma Glucose 50.11 (21) <0.001 49.90 (20) <0.001 <0.01 (0.01) 0.773 
Type 2 Diabetes  119.81 (26) <0.001 118.68 (25) <0.001 -0.01 (0.01 0.646 
Body Mass Index 320.28 (81) <0.001 304.74 (80) <0.001 -0.01 (0.01) 0.047 
HbA1C 66.04 (34) 0.008 63.05 (33) 0.001 -0.01 (0.00) 0.219 
Glucose Tolerance 14.47 (6) 0.024 7.47 (5) 0.188 -0.06 (0.03) 0.083 
Leptin 10.45 (3) 0.015 6.75 (2) 0.034 -0.12 (0.11) 0.405 
LDL 141.44 (75) <0.001 141.39 (74) <0.001 <0.01 (0.00) 0.873 

IVW=inverse variance weighted regression; df=degrees of freedom; SE=standard error; HDL=high-density lipoprotein; 
HbA1C=glycated haemoglobin; LDL=low-density lipoprotein. 

 

 

 

 

 

 

rs1205* 
rs3093077 
rs1130864* 
rs1800947 



Appendix C Table 23: Cochran Q Tests for Heterogeneity and MR Egger Intercept Tests for 

Horizontal Pleiotropy for the Association between Inflammation-Related Cardiometabolic 

SNPs and Schizophrenia 

Cardiometabolic Risk 
Factor 

IVW MR Egger 
 

Cochran’s 
Q (df) 

p-value Cochran’s Q 
(df) 

p-value Regression 
Intercept (SE) 

Direction 
p-value 

Fasting Insulin * * * * * * 
HDL * * * * * * 
Type 2 Diabetes  34.89 (6) <0.001 32.71 (5) <0.001 -0.02 (0.03) 0.589 
Fasting Plasma Glucose 7.09 (1) 0.008 * * * * 
HbA1C 34.89 (6) <0.001 32.71 (5) <0.001 -0.01 (0.01) 0.628 
Body Mass Index 1.51 (4) 0.471 1.00 (3) 0.752 0.02 (0.02) 0.446 
LDL 37.29 (11) <0.001 32.65 (10) 0.001 0.01 (0.01) 0.261 

IVW=inverse variance weighted regression; df=degrees of freedom; SE=standard error; HDL=high-density lipoprotein; 
HbA1C=glycated haemoglobin; LDL=low-density lipoprotein. 
*insufficient n SNPs 

 

 

 

Appendix C Table 24: Cochran Q Tests for Heterogeneity and MR Egger Intercept Tests for 

Horizontal Pleiotropy for the Association between Schizophrenia SNPs and Cardiometabolic 

Outcomes 

Cardiometabolic 
Outcome 

IVW MR Egger 
 

Cochran’s 
Q (df) 

p-value Cochran’s Q 
(df) 

p-value Regression 
Intercept (SE) 

Direction 
p-value 

Fasting Insulin 129.93 (100) 0.024 128.96 (99) 0.023 0.00 (0.00) 0.442 
Triglycerides 205.86 (100) <0.001 205.37 (99) <0.001 0.00 (0.00) 0.628 
HDL 373.38 (100) <0.001 353.54 (99) <0.001 0.01 (0.00) 0.020 
Fasting Plasma Glucose 125.03 (104) 0.078 124.98 (103) 0.069 0.00 (0.00) 0.843 
Type 2 Diabetes  139.83 (108) 0.021 139.50 (107) 0.019 0.00 (0.01) 0.612 
Body Mass Index 264.27 (100) <0.001 264.80 (99) <0.001 -0.01 (0.00) 0.041 
HbA1C 131.35 (103) 0.031 131.34 (102) 0.027 0.00 (0.00) 0.966 
Glucose Tolerance 110.78 (100) 0.217 110.54 (99) 0.201 -0.01 (0.01) 0.642 
Leptin 6.76 (2) 0.034 0.388 (1) 0.533 -0.16 (0.06) 0.240 
LDL 183.06 (100) <0.001 175.38 (99) <0.001 0.01 (0.00) 0.040 

IVW=inverse variance weighted regression; df=degrees of freedom; SE=standard error; HDL=high-density lipoprotein; 
HbA1C=glycated haemoglobin; LDL=low-density lipoprotein. 

 

 

 

 

  

 

 



Appendix C Table 25: Cochran Q Tests for Heterogeneity and MR Egger Intercept Tests for 

Horizontal Pleiotropy for the Association between Inflammation-Related Schizophrenia SNPs 

and Cardiometabolic Outcomes 

IVW=inverse variance weighted regression; df=degrees of freedom; SE=standard error; HDL=high-density lipoprotein; 
HbA1C=glycated haemoglobin; LDL=low-density lipoprotein. 
*insufficient n SNPs 

 

Appendix C Table 26: MR-PRESSO Tests of Cardiometabolic All-SNP Analysis to Examine 

For and Correct Horizontal Pleiotropy 

MR PRESSO= Mendelian Randomization Pleiotropy Residual Sum and Outlier; b=beta coefficient; S.E=standard error. 
IVW=inverse variance weighted regression; df=degrees of freedom; RSS=residual sum of squares; SE=standard error; 
HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein. 
*no evidence of horizontal pleiotropy 

 

 

 

 

 

 

Cardiometabolic 
Outcome 

IVW MR Egger 
 

Cochran’s Q 
(df) 

p-value Cochran’s Q 
(df) 

p-value Regression 
Intercept (SE) 

Direction 
p-value 

Fasting Insulin 6.83 (5) 0.233 6.50 (4) 0.165 0.00 (0.00) 0.676 
Triglycerides 73.73 (5) <0.001 56.79 (4) <0.001 -0.02 (0.02) 0.336 
HDL 4.00 (1) 0.050 * * * * 
Type 2 Diabetes  13.30 (5) 0.021 11.10 (4) 0.026 0.02 (0.03) 0.421 
Fasting Plasma Glucose 6.91 (3) 0.075 2.97 (2) 0.226 0.01 (0.01) 0.245 
Body Mass Index 36.18 (5) <0.001 25.96 (4) <0.001 -0.01 (0.01) 0.278 
LDL 4.36 (2) 0.113 0.16 (1) 0.687 0.01 (0.00) 0.289 
HbA1C 6.24 (3) 0.100 4.21 (2) 0.121 0.00 (0.00) 0.430 
Glucose Tolerance 0.80 (2) 0.671 0.787 (1) 0.375 0.00 (0.03) 0.941 
Leptin 0.42 (2) 0.812 0.351 (1) 0.554 0.00 (0.00) 0.841 

Risk Factor MR-PRESSO Global Test Outlier-Corrected IVW Distortion Test 

RSS p-value b (SE) p-value Coefficient p-value 

Fasting Insulin 24.35 0.018 0.08 (0.18) 0.669 171.67 0.156 
Triglycerides 71.43 <0.001 0.23 (0.06) 0.008 -64.56 0.531 
HDL 85.02 <0.001 -0.12 (0.08) 0.169 92.64 0.666 
Fasting Plasma Glucose 53.78 <0.001 0.03 (0.05) 0.594 120.88 0.300 
Type 2 Diabetes  148.58 <0.001 -0.06 (0.06) 0.390 -54.32 0.353 
Body Mass Index 328.03 <0.001 0.02 (0.07) 0.815 187.40 0.255 
HbA1C 69.33 0.002 0.06 (0.12) 0.651 -93.64 0.828 
Glucose Tolerance 20.77 0.020 * * * * 
LDL 148.15 <0.001 -0.01 (0.03) 0.581 46.44 0.840 
Leptin 32.73 0.002 0.27 (0.25) 0.382 22.42 0.338 



Appendix C Table 27: MR-PRESSO Tests of Inflammation-Related Cardiometabolic SNPs to 

Examine For and Correct Horizontal Pleiotropy  

MR PRESSO= Mendelian Randomization Pleiotropy Residual Sum and Outlier; b=beta coefficient; S.E=standard error. 
IVW=inverse variance weighted regression; df=degrees of freedom; RSS=residual sum of squares; SE=standard error; 
HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein. 
*no evidence of horizontal pleiotropy; †no identified outliers 

 

 

 

Appendix C Table 28: MR-PRESSO Tests of Schizophrenia All-SNP Analysis to Examine For 

and Correct Horizontal Pleiotropy 

MR PRESSO= Mendelian Randomization Pleiotropy Residual Sum and Outlier; b=beta coefficient; S.E=standard error. 
IVW=inverse variance weighted regression; df=degrees of freedom; RSS=residual sum of squares; SE=standard error; 
HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein. 
*no evidence of horizontal pleiotropy; †no identified outliers 

 

 

 

 

 

 

Risk Factor MR-PRESSO Global Test Outlier-Corrected IVW Distortion Test 

RSS p-value b (SE) p-value Coefficient p-value 

Fasting Insulin † † † † † † 
HDL † † † † † † 
Fasting Plasma Glucose † † † † † † 
Type 2 Diabetes 47.76 0.001 0.11 (0.13) 0.436 -162.05 0.210 
Body Mass Index 12.93 0.124 † † † † 
HbA1C 10.24 0.409 * * * * 
LDL 50.16 0.001 0.00 (0.07) 0.968 -261.84 0.230 

Outcome MR-PRESSO Global Test Outlier-Corrected IVW Distortion Test 

RSS p-value b (SE) p-value Coefficient p-value 

Fasting Insulin 161.53 0.020 † † † † 
Triglycerides 249.82 <0.001 0.00 (0.02) 0.210 590.84 0.064 
HDL 434.93 <0.001 -0.01 (-0.02) 0.567 117.13 0.251 
Fasting Plasma Glucose 155.12 0.067 * * * * 
Type 2 Diabetes  174.18 0.012 † † † † 
Body Mass Index 372.10 <0.001 -0.04 (0.02) 0.014 1.89 0.966 
HbA1C 149.23 0.107 * * * * 
Glucose Tolerance 137.63 0.235 * * * * 
LDL 216.08 <0.001 0.00 (0.02) 0.866 -501.07 0.100 
Leptin 113.87 0.772 * * * * 



Appendix C Table 29: MR-PRESSO Tests of Inflammation-Related Schizophrenia SNP 

Analysis to Examine For and Correct Horizontal Pleiotropy 

MR 

PRESSO= Mendelian Randomization Pleiotropy Residual Sum and Outlier; b=beta coefficient; S.E=standard error. 
IVW=inverse variance weighted regression; df=degrees of freedom; RSS=residual sum of squares; SE=standard error; 
HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein. 
*no evidence of horizontal pleiotropy 

 

 

 

Appendix C Table 30: I2GX Statistics to Examine for Potential Violation of the ‘No 

Measurement Error’ Assumption for MR Egger Analyses 

Exposure I2GX of SNP-Exposure Associations 
All-SNP 
Analyses 

Inflammation-Related 
SNP Analyses 

Fasting Insulin 0.95 * 
Triglycerides 0.99 * 
HDL 0.99 * 
Fasting Plasma Glucose 0.95 0.90 
Type 2 Diabetes  0.84 0.62 
Body Mass Index 0.93 0.99 
HbA1C 0.94 0.91 
Glucose Tolerance 0.51 * 
Leptin 0.00 * 
LDL 0.99 0.98 
Schizophrenia 0.00 0.83 

HDL=high-density lipoprotein; HbA1C=glycated haemoglobin; LDL=low-density lipoprotein. 
*insufficient n SNPs 

 

 

 

 

 

Outcome MR-PRESSO Global 
Test 

Outlier-Corrected IVW Distortion Test 

RSS p-value b (SE) p-value Coefficient p-
value 

Fasting Insulin 1.08 0.883 * * * * 
Triglycerides 23.51  0.058 * * * * 
HDL 9.56 0.276 * * * * 
Fasting Plasma Glucose 15.34 0.095 * * * * 
Type 2 Diabetes  18.41 0.048 0.22 (0.09) 0.144 -182.77 <0.001 
Body Mass Index 15.11 0.128 * * * * 
HbA1C 10.81 0.182 * * * * 
Glucose Tolerance 2.54 0.729 * * * * 
LDL 14.13 0.165 * * * * 
Leptin 3.29 0.647 * * * * 



 

Appendix C Figures 

 

Appendix C Figure 1: Flowchart of Included Participants in ALSPAC Analysis 
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Appendix C Figure 2: Regional Genetic Association Plots for Additional Loci Indicating 

Evidence of Colocalization 

A. rs3814883 – TAOK2 



B. rs3800229 – FOXO3 



C. rs12782894 



D. rs2239647 – AKAP6 



E. rs1191514 – CNNM2 

 



F. rs2108349 – GRB10 

 

 



G. rs6031855 - YWHAB 



 

H. rs340874 – PROX1 

 
Regional association plots denoting chromosomal location (x axis) and strength of association with 
listed trait (-log10(p)) (y axis). SNP r2 estimated from the EPIC-Norfolk cohort. 



Appendix C Figure 3: Heatmap Sensitivity Plots for SNPs with Evidence of Colocalization 

Between Schizophrenia and Cardiometabolic and Inflammatory Traits 

 

A. rs8192675 – SLC2A2 
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B. rs340874 – PROX1 

 

 

 

 

 

 

 

 

 

 

Default Heatmap

scz

t2d

bm
i

fi crp

cad

ldl

tg hdl

scz

t2d

bmi

fi

crp

cad

ldl

tg

hdl

0

0.2

0.4

0.6

0.8

1



C. rs17514846 - FURIN 
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D. rs13107325 – SLC39A8 
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E. rs3814883 – TAOK2 
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F. rs12782894 
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G. rs6265 - BDNF 
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H. rs3800229 – FOXO3 
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I. rs2239647 – AKAP6 
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J. rs11191514 – CNNM2 
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K. rs6031855 - YWHAB 

 

 

 

Heatmaps drawn based on a similarity matrix across increasingly stringent prior and threshold 
permutations, from prior1 = 1x10-4; prior2 = 0.05; regional/alignment thresholds = 0.5, to prior2 = 
0.001; regional/alignment thresholds = 0.9). 
1 = evidence of colocalization across all permutations (dark red) and 0 = no evidence of 
colocalization at any permutation (beige). bmi=body mass index; hdl = high-density lipoprotein; 
tg=triglycerides; scz=schizophrenia; ldl=low-density lipoprotein; t2d=type 2 diabetes mellitus; 
crp=C-reactive protein; fi=fasting insulin; cad=coronary artery disease.  
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Background: Psychosis and type 2 diabetes mellitus (T2DM) are commonly comorbid andmay share pathophys-
iologicmechanisms. To investigate shared genetic variation and inflammation aspotential commonmechanisms,
we tested: (i) associations between genetic predisposition for T2DM and psychotic experiences and psychotic
disorder in young adults; (ii) the association between genetic predisposition for schizophrenia and insulin resis-
tance (IR), a precursor of T2DM; and (iii) whether these associations are mediated by childhood inflammation.
Methods: Psychotic experiences (PEs), psychotic disorder and IR were assessed at age 18. Polygenic risk scores
(PRS) for T2DM and schizophrenia were derived based on large genome-wide association studies. Associations
between PRS and psychotic/IR outcomeswere assessed using regression analysis based on 3768 ALSPACbirth co-
hort participants with complete data. Inflammatory markers C-reactive protein (CRP) and interleukin 6 (IL-6)
measured at age 9 were used in regression and mediation analyses.
Results: Genetic predisposition for T2DM was associated with PEs (adjusted OR = 1.21; 95% CI, 1.01–1.45) and
psychotic disorder (adjusted OR = 1.51; 95% CI, 1.04–2.03) at age 18 in a linear dose-response fashion. Genetic
predisposition for schizophrenia was weakly associated with IR (adjusted OR= 1.10; 95% C·I, 0.99–1.22) at age
18. The association between genetic risk for T2DM and PEs was partly mediated by childhood CRP (p = .040).
Conclusions: Comorbidity between psychosis and T2DMmay be partly underpinned by shared genes and inflam-
mation. A summation of minor genetic variation representing lifetime risk for T2DM at conception may predis-
pose individuals to psychosis in adulthood by influencing physiologic changes, such as low-grade
inflammation, detectable as early as childhood.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Reduced life-expectancy in schizophrenia is largely attributable to
physical comorbidity including cardiometabolic disorders, which are
up to 30%more prevalent in people with schizophrenia than in the gen-
eral population (Holt et al., 2004) (Lappin et al., 2018). Compared with
controls, markers of abnormal glucose-insulin homeostasis are two to
three times higher in young people with psychotic experiences (PEs)
(Perry et al., 2018), and in medication-naive first-episode psychosis

(FEP) (Perry et al., 2016; Pillinger et al., 2017) after controlling for an-
thropometric and sociodemographic factors. This suggests that in-
creased T2DM in patients with psychosis may not be fully explained
by common lifestyle factors or side-effects of antipsychotic drugs,
though may be exacerbated by them (Rajkumar et al., 2017).

One contributor to comorbidity between cardiometabolic disorders
and schizophrenia could be shared genetic susceptibility (Lin and
Shuldiner, 2010). Risk of insulin resistance (IR) (Chouinard et al.,
2019) and impaired glucose tolerance (Ferentinos and Dikeos, 2012),
two key precursors of T2DM, are higher in unaffected relatives of pa-
tients with psychosis compared with controls. People with comorbid
schizophrenia and T2DM have a higher genetic predisposition for both
disorders compared to controls (Hackinger et al., 2018), and an associa-
tion between genetic predisposition for schizophrenia and IR has been
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reported in a clinical sample (Tomasik et al., 2019). Conversely, a rela-
tively small study found no evidence of an association between genetic
risk for T2DM and psychosis (Padmanabhan et al., 2016), and previous
research using linkage-disequilibrium (LD) score regression found lim-
ited evidence for a genetic correlation between schizophrenia and
T2DM (Bulik-Sullivan et al., 2015). However, a key feature of existing
studies is that they are based on adult cases of established schizophrenia
or T2DM or rely on blood measurements taken in adulthood, so con-
founding by cumulative effects of lifestyle and other factors is possible
(Reinikainen et al., 2015). Population-based prospective studies have
identified early markers of disease risk associated with T2DM and
schizophrenia. For instance, PEs in adolescence or young adulthood
are associated with risk of schizophrenia in adulthood (Poulton et al.,
2000; Zammit et al., 2013), and IR is a precursor of T2DM (Martin
et al., 1992). To our knowledge, no studies have examined whether ge-
netic predispositions for T2DMor schizophrenia are associatedwith, re-
spectively, PEs or IR, in young adulthood. Demonstrating such
associations with early markers of illness in young adults with lessened
effects of cumulative lifestyle confoundingwould be consistentwith the
idea that shared genetic variation is a common mechanism for comor-
bid T2DM and schizophrenia.

Although existing studies provide some evidence for a shared ge-
netic basis for T2DM and schizophrenia, underlying pathophysiologic
mechanisms remain unclear. Low-grade inflammation may be one
such mechanism, which has been reported to be associated with IR
(Festa et al., 2000), T2DM (Pradhan et al., 2001) and psychosis
(Upthegrove et al., 2014). Population-based longitudinal studies report
that higher levels of circulating inflammatory markers at baseline are
associatedwith risks of psychosis and abnormal glucose-insulin homeo-
stasis subsequently at follow-up (Khandaker et al., 2014; Perry et al.,
2018). Mendelian randomisation (MR) studies have reported associa-
tions of genetic variants regulating inflammatory biomarkers such as
interleukin-6 (IL-6) with schizophrenia (Hartwig et al., 2017), suggest-
ing that inflammation may be associated with schizophrenia beyond
any effects of confounding. Inflammation has also been implicated in
the pathogenesis of IR and T2DM (Pradhan et al., 2001).

We examined whether shared genetic variation and inflammation
could be common mechanisms for T2DM and psychosis using prospec-
tive, population-based data from the ALSPAC birth cohort. We tested
whether: (i) genetic predisposition for T2DM is associated with risk of
PEs and psychotic disorder at age 18; (ii) genetic predisposition for
schizophrenia is associated with IR at age 18; (iii) whether these associa-
tions are mediated by CRP or IL-6 levels measured in childhood at age 9.

2. Methods

2.1. Description of cohort and sample selection

The ALSPAC birth cohort (Boyd et al., 2013; Fraser et al., 2013) com-
prises 14,062 live births from mothers residing in former County Avon
in Southwest England, with expected dates of delivery between April
1991 and December 1992 (http://www.bristol.ac.uk/alspac/
researchers/our-data/). The study received ethics approval from the
ALSPAC Ethics and Law Committee and local research ethics commit-
tees. All participants provided written or implied informed consent. In
total, 7977 participants had genotyping data, 3768 participants had
data onboth genotyping andpsychosis outcomes, and 2344participants
had data on genotyping and IR (Supplementary Fig. 1). Our analysis was
conducted on participants without missing data for the covariates or
outcomes of interest.

2.2. Assessment of psychotic outcomes at age 18

2.2.1. Psychotic experiences (PEs)
PEs were identified through the face-to-face, semi-structured

Psychosis-Like Symptom Interview (PLIKSi) conducted by trained

psychology graduates. The PLIKSi comprised of an introductory set of
questions on unusual experiences, and then 12 ‘core’ questions eliciting
key symptoms covering the three main domains of positive psychotic
symptoms: hallucinations (visual and auditory); delusions (delusions
of being spied on, persecution, thoughts being read, reference, control,
grandiose ability and other unspecified delusions); and symptoms of
thought interference (thought broadcasting, insertion andwithdrawal).
For these 12 core items, 7 stem questions were derived from the Diag-
nostic Interview Schedule for Children–IV (DISC–IV) and 5 stems from
section 17–19 of the Schedules for Clinical Assessment in Neuropsychi-
atry version 2.0 (SCAN 2.0). After cross-questioning, interviewers rated
PEs as not present, suspected, or definitely present. Interviewers rated
down (i.e. suspected rather than definite, or none rather than
suspected) if unsure. For suspected or definite PEs, interviewers also re-
corded the frequency; effects on social/educational/ occupational func-
tion; help seeking; and attributions including fever, hypnopompic/
hypnogogic state, or illicit drugs. For interrater reliability, the inter-
viewers recorded audio interviews at three time points, approximately
6 months apart, across the clinic duration (75 interviews in total). The
average kappa value of PEs was 0.83, with no evidence of differences
across time. Test-retest reliability was assessed using 162 individuals
reinterviewed after approximately 47 days (kappa = 0.76, SE =
0.078), 46 of whom were reinterviewed by the same interviewer
(kappa= 0.86, SE= 0.136). Our primary outcomewas presence of def-
inite PEs, referring to at least one definite PE since age 12; the compar-
ator group was suspected/no PEs. Our outcome is reflective of 6-year
period prevalence of definite PEs. From the total number of participants
with definite PEs at 18y (230, 4.9%), 80 participants (45.3%) had suffered
definite PEs at least once in the month preceding assessment. From the
total sample of participants reporting definite PEs, 146 participants
(63.5%) reported auditory hallucinations, 63 participants (28.2%) re-
ported any delusion, and 22 participants (9.9%) reported thought dis-
turbance. See Supplementary Table 1 for full frequency data,
Supplementary Table 2 for information on timing of onset of PEs, and
the main reporting study for further information (Zammit et al., 2013).

2.2.2. Psychotic disorder
Psychotic disorderwas defined (Zammit et al., 2013) as the presence

of PEs when symptoms were not attributable to fever/sleep/drugs, had
occurred at least once per month over the previous 6 months, and
caused significant distress resulting in either help-seeking from a pro-
fessional source (general practitioner, counsellor, mental health team),
or significantly disrupted social/occupational function. From the total
ALSPAC sample who underwent the PLIKSi, 46 participants (1.0%) met
criteria for psychotic disorder. We included psychotic disorder as a sec-
ondary outcome due to its lower prevalence in the study sample.

2.3. Assessment for a T2DM-risk outcome at age 18

2.3.1. Insulin resistance
IR was calculated as a binary variable based on fasting plasma glu-

cose and insulin levels at age 18, using the well-validated homeostasis
model assessment (HOMA) method (Matthews et al., 1985). There is
no consensus-agreed cut-off for clinical IR in the literature since levels
can vary between populations (Wallace et al., 2004). Therefore, we
used the 75th centiles of the study population to define IR. The 75th
centile cut-off has been used in previous research (Cediel et al., 2016;
Geloneze et al., 2006; Hedblad et al., 2000; Marques-Vidal et al.,
2002). The 75th centile in our study population was 2.15.

2.4. Assessment for polygenic risk scores for T2DM and schizophrenia

From the ALSPAC cohort, 8812 participants were genotyped using
the Illumina HumanHap550 quad genome-wide SNP genotyping plat-
formby 23andMe subcontracted to theWellcome Trust Sanger Institute,
Cambridge, UK and the Laboratory Corporation of America, Burlington,
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NC, USA. Following quality control assessment and imputation, and
restricting to 1 young person per family, genetic data was available for
7977 ALSPAC individuals. See Supplementary Methods for further
information.

Polygenic risk scores (PRS) for schizophrenia and T2DM were con-
structed for all 7977 participants with genotype data, using training
sets based on the second Psychiatric Genomics Consortium (PGC)
Schizophrenia GWAS (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014) and a large T2DM GWAS
(Mahajan et al., 2014), respectively. Both GWAS analyses adjusted for
principal components to reduce the impact of population stratification
(Price et al., 2006). PRS were calculated using the PLINK (v1.9) (Chang
et al., 2015; Purcell et al., 2007) ‘score’ command following themethod-
ology described by the International Schizophrenia Consortium (ISC)
(Purcell et al., 2009). Prior to construction of scores, single nucleotide
polymorphisms (SNPs) were removed from the analysis if they had a
minor allele frequency less than 0.01, an imputation quality less than
0.8 or if there was allelic mismatch between samples (see Supplemen-
tary methods for details). Due to the presence of strand differences be-
tween ALSPAC and the T2DM GWAS, and lack of allele frequency
information in the T2DM summary statistics, palindromic SNPs were
also removed prior to construction of the T2DM PRS. Because of the
high linkage disequilibrium (LD) within the extended major histocom-
patibility complex (MHC; chromosome 6: 25-34 Mb) only a single SNP
was included to represent this region. SNPs were pruned for LD using
the PLINK ‘clump’ command to remove SNPs in LD (r2 > 0.25) with a
more significant SNP in the training set. Windows of 500 kb were
used to assess inter-SNP LD for pruning.

For the primary analysis, PRS were constructed using a list of SNPs
with the optimal p-value thresholds to capture phenotypic variance de-
fined by both GWAS individually (p ≤ 10−5 for T2DM (Mahajan et al.,
2014) and p ≤ .05 for schizophrenia (Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2014)). Scores were weighted
by the logarithm of the odds ratio (OR) for schizophrenia or T2DM re-
ported by the GWAS training sets, for the schizophrenia and T2DM
PRS, respectively. 10 Principal components (PCs) were generated
using unrelated individuals (IBS < 0.05) and independent SNPs (with
long range LD regions removed) using the `– pca` command in
PLINK1.90. All PRS analyses were adjusted for the 10 PCs to reduce the
risk of population stratification. Two PRS measures were calculated for
T2DM; the first including all SNPs associated with T2DM, and the sec-
ond after excluding a SNP located in the FTO gene region, which is
widely understood to be associated with T2DM only through its influ-
ence on bodymass index (BMI) variation (Frayling et al., 2007); the lat-
ter was used in sensitivity analysis. Additionally, since the optimal p-
value thresholds of both PRS scores differed, we conducted sensitivity
analyses to examine PRS-outcome associations using a range of p-
value thresholds from p = .5 to genome-wide significance
(p < 5 × 10−8).

2.5. Assessment of inflammatory markers at age 9

Data on two inflammatory markers at age 9 years (IL-6 and CRP)
were available in ALSPAC, for 5076 and 5086 participants respectively.
Blood samples were collected at non-fasting state. Please see supple-
mentary methods for further information.

2.6. Assessment of potential confounders

We included sex (categorical), ethnicity (binary caucasian/non-
caucasian due to the predominantly caucasian sample), social class (cat-
egorical) and BMI at age 18 years (continuous). We excluded partici-
pants with hsCRP levels >10 mg/L to minimize potential bias from
recent/ongoing infection or chronic inflammatory disease.

2.7. Statistical analysis

We examined the distribution of PRS-T2DM and PRS-schizophrenia
using the Shapiro-Wilk test for normality, and from visual inspection of
Q-Q plots. The distributions were p > .05 and appeared normally dis-
tributed. Both PRS variables were standardized (Z-transformed).

2.7.1. Association between PRS and outcomes at age 18
We conducted logistic regression analyses to examine the associa-

tion between PRS-T2DM and risks for PEs and psychotic disorder, and
PRS-schizophrenia and IR at age 18. The odds ratios (OR) and 95% con-
fidence intervals (95% C.I.) indicate increase in risk per standard devia-
tion (SD) increase in PRS. Regression models were adjusted for sex,
ethnicity, social class, and BMI. p-values for adjusted regression models
in our primary analysis were corrected formultiple testing per the three
outcomes we included (definite PEs, psychotic disorder and IR) using
the Holm-Bonferroni method (Holland and Copenhaver, 1987). We
used the p.adjust() command in R (R Core Team, 2017) to perform ad-
justments. In results tables, we present the original unadjusted p-
values alongside Holm-Bonferroni adjusted p-values. To test for linear-
ity of associations, we included a quadratic term (PRS2) in the logistic
regression models.

2.7.2. Association between PRS scores and childhood inflammatorymarkers
at age 9 years

We used linear regression analyses to test associations of PRS for
T2DM or schizophrenia, separately, with IL-6 and CRP levels at age
9 years (Z-transformed values), before and after adjustments for poten-
tial confounders listed above.

2.7.3. Mediation by childhood CRP
We performed mediation analyses to examine whether any evident

associations may be mediated by childhood CRP levels. We calculated
direct and indirect effects between exposure (PRS-T2DM or PRS-
schizophrenia) and outcome (e.g., PEs or IR) taking into account theme-
diator variable (e.g., CRP). Evidence of an indirect effect is consistent
with mediation. The indirect effect was bootstrapped using 5000 itera-
tions to determine the 95% CIs. Mediation analysis was performed
using the PROCESS macro V3.1 for IBM SPSS 24.0 (http://www.
afhayes.com).

2.8. Missing data

We assessed the potential impact of missing data by comparing
mean PRS score between the analytic sample and participants with
missing data for psychosis and IR outcomes, using separate variance t-
tests. We also performed logistic regression analysis to determine
sociodemographic and other predictors (sex, ethnicity, BMI and social
class) of missing data.

3. Results

3.1. Baseline characteristics of sample

Of the 3768 participants with data on PRS-T2DM and psychotic out-
comes, 283 met the criteria for suspected/definite PEs (7.5%), 183 for
definite PEs (5.1%), 29 (0.7%) for psychotic disorder at age 18
(Table 1). Of the 2344 participants with data on PRS-schizophrenia
and IR, 173 met the criteria for IR at age 18 (7.3%).

3.2. Association between genetic predisposition for T2DM and psychotic
outcomes at age 18

The prevalence of psychotic outcomes at age 18 years was higher for
participants in the top third of PRS-T2DM distribution compared with
those in the bottom third (Fig. 1). PRS-T2DM was associated with
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definite PEs (adjusted OR = 1.21; 95% CI, 1.01–1.45 per SD increase in
PRS-T2DM) and psychotic disorder (adjusted OR = 1.51; 95% CI,
1.04–2.05 per SD increase in PRS-T2DM) at age 18 years after control-
ling for sex, ethnicity, social class and BMI (Table 2). Quadratic terms
for PRS-T2DM in these regressionmodels were non-significant suggest-
ing no evidence for departure from linearity (all p> .05). The results for
sensitivity analyses using PRS-T2DM score excluding a SNP in the FTO
gene region were similar (Supplementary Table 3).

3.3. Association between genetic predisposition for schizophrenia and IR at
age 18

There was weaker evidence for an association between PRS-
schizophrenia and IR at age 18 (adjusted OR = 1.10; 95% CI, 0.99–1.22
per SD increase in PRS-schizophrenia) after controlling for sex, ethnic-
ity, social class and BMI. The quadratic term for PRS-schizophrenia
was non-significant suggesting no evidence for departure from linearity
(p > .05).

3.4. Associations between PRS scores and inflammatory markers at age 9

Data on both PRS scores and serum IL-6 and CRP levels were avail-
able for 2180 and 2176 participants respectively. After adjustments for
sex, ethnicity, social class and BMI, PRS-T2DM was associated with
CRP (β = 0.03; 95% CI, 0.01–0.08, p = .040), but not with IL-6 (β =
0.01; 95%CI,−0.02–0.05, p=.082). Therewas also trend level evidence

for an association between PRS-schizophrenia and CRP (β = 0.05; 95%
CI, −0.01–0.10, p = .061) but not with IL-6 (β = 0.01; 95% CI, −0.04-
0.09, p = .670).

3.5. Mediating effect of childhood CRP levels on the associations of PRS
scores with psychotic outcomes or IR

Based on 1955 participants with data on PRS-T2DM, CRP levels at
age 9 and PEs at age 18, CRP at age 9 partially mediated the association
betweenPRS-T2DMand definite PEs at age 18. Therewas evidence of an
indirect effect indicative of mediation; the coefficients were 0.28; 95%
CI, 0.07–0.45, p = .044 for direct effect; co-efficient = 0.05; 95% CI
0.02–0.12, p = .040 for indirect effect. Since IL-6 levels at age 9 years
were not associated with PRS-T2DM, we did not perform mediation
analysis using IL-6. There was no evidence for a mediating effect of
CRP on the association between PRS-schizophrenia and IR at age 18;
the coefficients were 0.14; 95% CI, −0.06–0.34, p = .756 for direct ef-
fect; co-efficient = 0.01; 95% CI, −0.01–0.03, p = .180 for indirect
effect.

3.6. Results for sensitivity analysis using different P-value thresholds for PRS

Fig. 2 presents the associations between PRS-T2DM and PEs along-
side the associations between PRS-schizophrenia and IR, at different
PRS p-value thresholds. The point estimates for the PRS-T2DM-PEs asso-
ciations were >1 for all p-value thresholds, though the strength of

Table 1
Baseline characteristics of sample.

Characteristic, n (%) unless otherwise stated All sample Definite PEs Psychotic disorder No/suspected PEs

Male sex 1846 (49) 71 (38) 7 (15) 1775 (49)
White British ethnicity 3692 (98) 179 (98) 39 (95) 3513 (98)
Social class

I & II 1582 (42) 62 (35) 5 (16) 1456 (40)
III - non manual & manual 1616 (43) 75 (43) 15 (48) 1630 (44)
IV & V 565 (15) 38 (22) 11 (36) 583 (16)

BMI (kg/m2) at 18 years, mean (SD) 22.71 (3.76) 23.37 (4.49) 22.73 (4.26) 22.60 (3.71)
HOMA at 18 years, mean (SD) 0.92 (0.73) 1.03 (0.75) 1.28 (1.00) 0.92 (0.73)
Insulin resistance 251 (8) 25 (17) 7 (20) 209 (7)
Current smoking 220 (7) 22 (15) 5 (18) 188 (7)
CRP (mg/L) at 9 years, mean (SD) 0.68 (2.52) 0.72 (2.61) 0.75 (1.33) 0.67 (2.49)
PEs attributed to sleep/fever/drugsa N/A 31 (0.7) 7 (0.1) 27 (0.6)
Help-seeking from professional sourcea N/A 55 (24) 41 (51.9) 6 (3)

Information based on total ALSPAC sample.
a Recorded from Zammit et al. (2013).

Fig. 1. Prevalence of psychotic experiences and psychotic disorder at age 18 per tertile of PRS-T2DM.
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association weakened at more stringent p-value thresholds. A similar
pattern was observed for the PRS-schizophrenia-IR association, where
the evidence for a positive association attenuated at p-value thresholds
more stringent than 1.00 × 10−4.

3.7. Missing data

Fifty-three percent of participants with data on PRS-T2DM had psy-
chotic outcomes data missing, and 71% of participants with PRS-
schizophrenia had IR outcome data missing (Supplementary Fig. 1).
Compared with the analytic sample, the missing sample had higher
mean PRS-schizophrenia but lower PRS-T2DM scores (Supplementary
Table 4). Male sex, lower social class and higher BMI predicted missing
data for psychotic outcomes, and non-white ethnicity was associated
with having missing data for IR (Supplementary Table 5).

4. Discussion

4.1. Main findings and comparisons with the literature

Usingprospective birth cohort data,we report that genetic predispo-
sition for T2DM is associatedwith psychotic outcomes at age 18 in a lin-
ear fashion. The PRS-T2DM findings were consistent using two genetic
scores; onewith and onewithout a SNP at the FTO locus, which is under-
stood to be related to BMI (Frayling et al., 2007). Additionally, therewas
evidence for a dose-response pattern in the association between PRS-
T2DM and psychotic outcomes; the effect size was strongest for psy-
chotic disorder, which is a more clinically relevant outcome than PEs.
We also report some evidence, albeit slightly weaker, for an association

between genetic predisposition for schizophrenia and IR at age 18.
However, the sample of participants with missing data had higher
mean PRS-schizophrenia scores than included participants, thus miss-
ing data may help to at least partly explain the weaker evidence. None-
theless, our findings provide some evidence that the comorbidity
between T2DM and schizophrenia arises partly due to shared genetic
factors.

The point estimates across various p-value thresholds for T2DM and
schizophrenia were similar in both combinations of genotype-
phenotype analysis, though in both cases at more stringent p-value
thresholds, the evidence of associationweakened. Thisweakeningeffect
is consistent with a previous study examining the association between
PRS-schizophrenia and adolescent psychopathology (Jones et al.,
2016), which also reported that PRS-schizophrenia was associated
with attrition. Therefore, type II statistical error may be one explanation
for the weaker associations between PRS-schizophrenia and IR.

Our results are in line with one previous study in a relatively large
sample, which found that people with comorbid schizophrenia and
T2DM have a higher genetic predisposition to both disorders compared
to controls (Hackinger et al., 2018), and another recent report of an as-
sociation between PRS for schizophrenia and IR in a clinical sample of
people with schizophrenia (Tomasik et al., 2019). Another study found
evidence for a genetic overlap between schizophrenia and both triglyc-
erides and HDL (Andreassen et al., 2013), which are cardiometabolic in-
dices known to be tightly linked with an insulin resistance phenotype
(Laws and Reaven, 1992), alongside other cardiometabolic factors in-
cluding systolic blood pressure, BMI and waist: hip ratio. One previous
study however found no evidence for an association between PRS-
T2DM and schizophrenia (Padmanabhan et al., 2016), though the latter

Table 2
Odds ratios (95% CI) for outcomes at age 18 per SD increase in polygenic risk score for T2DM or schizophrenia.

Outcome/risk factor Sample OR (95% C.I.) p-value Corrected p-valuec

Unadjusteda Adjusted for sex, ethnicity, social class and BMIb

Definite PEs
PRS-T2DM 3768 1.15 (0.99–1.34) 1.21 (1.01–1.45) 0.027 0.054

Psychotic disorder
PRS-T2DM 3768 1.42 (1.00–1.96) 1.51 (1.04–2.05) 0.016 0.048⁎

Insulin resistance
PRS-SCZ 2344 1.16 (1.04–1.32) 1.10 (0.99–1.22) 0.089 0.089

a Unadjusted analysis adjusted for 10 principal components only.
b Samples for adjusted analysis included 3070 participants for psychotic outcomes and 1970 participants for insulin resistance outcome.
c p-value corrected from adjusted analysis using Holm-Bonferroni method.
⁎ Evidence surpasses Holm-Bonferroni threshold.

Fig. 2. Association between PRS score and outcome at age 18 years at different PRS P-value thresholds.

231B.I. Perry et al. / Schizophrenia Research 223 (2020) 227–235

Image of Fig. 2


study featured a much smaller sample size than in our study and may
therefore have been underpowered to detect a difference. Another
study using LD-score regression (Bulik-Sullivan et al., 2015) found lim-
ited evidence for a genetic correlation between schizophrenia and
T2DM, though the latter study was based on older and less-powered
GWAS for both disorders. However, the same study did find some evi-
dence for genetic correlation between schizophrenia and BMI, and, an-
other recent study provides some evidence for shared genetic loci
between BMI and mental disorders including schizophrenia (Bahrami
et al., 2020). In future, genetic studies may seek to examine the associa-
tion between PRS scores for other cardiometabolic traits in their associ-
ation with schizophrenia and other mental disorders.

It is also possible that genetic-risk for T2DMor schizophreniamay in-
crease the risk of both disorders via pleiotropic mechanisms. This may
help to explain the differences in our results compared with genetic cor-
relation analyses (Bulik-Sullivan et al., 2015). For example, it is possible
that genetic-risk for schizophrenia may predispose to adverse experi-
ences in childhood, which could in t urn influence inflammation
(Slopen et al., 2013). We found some evidence for the association of
childhood CRP levelswith both PRS-T2DMand PRS-schizophrenia. How-
ever, we did notfind an associationwith IL-6. This is perhaps unexpected
since IL-6 stimulates the production of CRP (Calabro et al., 2003), and is
associated with both psychotic outcomes (Khandaker et al., 2014) and
IR (Kim et al., 2009). However, it is also possible that genetic predisposi-
tion for T2DM or schizophrenia influences CRP via mechanisms other
than IL-6. CRP has been shown to play an active role in hepatic insulin re-
sistance, at least partly through impairment in insulin signalling, inde-
pendent of IL-6 (Xi et al., 2011). Interestingly, CRP has shown to be
protective of schizophrenia in MR studies (Hartwig et al., 2017), how-
ever, theGWAS studies included in previousMR researchmeasured phe-
notypic markers in adults. We used CRP measured in childhood, which
may be reflective of a distinct biological environment.

We report some evidence that genetic predisposition for T2DMmay
influence risk of psychosis in early-adulthood by increasing inflamma-
tion in childhood, but the magnitude of this mediating effect was
small, suggesting that other mechanisms are likely to be involved. On
theother hand,we foundnoevidence that childhood IL-6/CRPmediated
the association between genetic predisposition for schizophrenia and
IR. The mediating effect of inflammation for the outcome of PEs is con-
sistentwith previous research reporting an association between genetic
risk for schizophrenia and immune-related disorders (Stringer et al.,
2014; Tylee et al., 2018). However, due to the relatively small number
of participants with psychotic disorder in our sample and associated
lack of power, we were unable to consider testing psychotic disorder
inmediation analyses. Future longitudinal research conducted on larger
samples of participantsmay seek to performamediation analysis of CRP
between PRS-T2DM and more clinically relevant psychotic outcomes.

Othermediators for PRS-T2DMand psychotic outcomesmay include
non-immunemechanisms such as pleotropic genes affecting distinct bi-
ological pathways relevant for each condition. For example, a study ex-
amining the genetic overlap between T2DM and schizophrenia
highlighted, among others, PROX1 as a potentially pleiotropic locus
(Hackinger et al., 2018). PROX1 acts both as a transcriptional activator
and repressor. It has been implicated in murine beta-cell development
as well as in neurogenesis in humans (Holzmann et al., 2015). Due to
the relatively small number of participants with psychotic disorder in
our sample and associated lack of power, we were unable to consider
testing psychotic disorder inmediation analyses. Future longitudinal re-
search conducted on larger samples of participantsmay seek to perform
amediation analysis of CRP between PRS-T2DM andmore clinically rel-
evant psychotic outcomes.

4.2. Strengths and limitations

In this study, we have examined the influence of genetic predisposi-
tions for T2DM and schizophrenia on, respectively, psychosis-risk and

T2DM-risk using a prospective birth cohort. We provide some evidence
that a genetic basis may explain at least part of the variance of the com-
monly observed comorbidity between the two phenotypes. In addition,
we have used childhood inflammatorymarker data to test potentialme-
diating effects of inflammation for these associations. Since our expo-
sures were genetic risk, the potential for confounding by
environmental and lifestyle factors is limited. However, it is well
known that certain antipsychotic medications can have adverse effects
on glycaemic indices (Leucht et al., 2013). At present, ALSPAC does not
have treatment record linkage and we were thus unable to adjust for
antipsychotic treatment. This may have impacted our results for the
analyses examining PRS-schizophrenia and IR. We were able to control
for potential confounding effects of sex, BMI, social class and for inflam-
matory disease. Regarding ethnicity, participants of non-European ge-
netic ancestry were removed at the stage of genotyping analysis. We
also adjusted our regression analyses for ethnicity, since ethnicity is sig-
nificantly associated with T2DM-risk (Oldroyd et al., 2005). We further
adjusted for PCs (Price et al., 2006) in our PRS analyses, to further reduce
the risk of population stratification bias. By including PRS for schizo-
phrenia in our analyses, we help to address a common limitation of re-
search conducted on PEs, that they may not adequately capture
schizophrenia liability (Jones et al., 2016); the results of both sets of
analyses were consistent. A key limitation is missing data. Over half of
the risk set with data on PRS had outcome data missing at follow-up.
The missing sample had a higher mean score for PRS-schizophrenia
but a lowermean score for PRS-T2DM. Thus, our analysesmay underes-
timate the true association between genetic predisposition for schizo-
phrenia and IR, whilst the opposite might be the case for the
association between PRS-T2DM and psychotic outcomes. Furthermore,
whilst PEs and psychotic disorder have been shown to reflect an in-
creased risk for psychotic disorders (Sullivan et al., 2020; Zammit
et al., 2013), and PEs lie on a continuum with clinical psychosis in the
general population (van Os et al., 2009), our data do not allow us to de-
terminewhether peoplemeet criteria for specific psychotic disorders as
classified in DSM or ICD. The transition from PEs to clinical psychosis is
low (Kaymaz et al., 2012), PEs are also associated with other psychiatric
phenotypes such as depressive and anxiety disorders (Kelleher et al.,
2012), and previous research has found no evidence of an association
between PRS-schizophrenia and PEs (Jones et al., 2016). Additionally,
since our psychotic outcomes were measured prior to the peak age of
onset of clinical psychosis (Eranti et al., 2013), some participants may
not have yet developed psychotic symptoms or disorder. This point
also applies to our sample of participants meeting the criteria for IR at
age 18, since age 18may be relatively early for the phenotype to become
detectable. This may be a further explanation for the weaker evidence
for an association between PRS-schizophrenia and IR at age 18. Whilst
we attempted to address these limitations by reversing the genotype
and phenotype to more accurately capture schizophrenia/T2DM liabil-
ity, replication of our methods in an adequately powered clinical (and
likely older) sample of peoplewith clinically diagnosed psychotic disor-
ders such as schizophrenia, is necessary. Finally, one-off measurements
of inflammatory markers in childhood may not reflect lifelong levels of
inflammation. However, measurement error, if non-differential, intro-
duces a bias towards the null, so our results may underestimate the
true association between PRS-T2DM and IL-6 and CRP.

Future research may complement our work by employing genomic
advances which test a greater proportion of genomic information than
solely PRS scores, the latter of which are highly dependent on the
power of GWAS studies. Such methods might include colocalization
analysis (Giambartolomei et al., 2014) or locus-level genetic correlation
analysis (Shi et al., 2017). Such researchmay build on our own since re-
search conducted using PRS scores may be susceptible to type II error
due to the phenomenon of ‘missing heritability’, which is the difference
between the known heritability of a trait compared with the currently
identified risk-increasing variants (Manolio et al., 2009). It is likely
that at least some of the heritability of schizophrenia (Woo et al.,
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2017) as well as cardiometabolic disorders (Xia et al., 2016) lies in a
number of low-frequency, low-effect-size variants which are therefore
difficult to detect with current GWAS methods.

4.3. Implications

Ourwork provides some evidence that, limitations notwithstanding,
a summation of minor genetic variation representing lifetime risk for
T2DM or schizophrenia at conception, may contribute a portion of the
variance of the comorbidity of these disorders in adulthood. Further-
more, we report that genetic predisposition for T2DM may increase
risk of PEs by influencing physiologic changes, such as low-grade in-
flammation, detectable as early as childhood. It is well known that
some commonly prescribed antipsychotics can cause or worsen cardio-
metabolic indices (Leucht et al., 2013), even after a relatively short
length of exposure (Neilsen et al., 2010). Therefore, clinicians who
look after people with schizophrenia should ascribe detailed attention
to the malleable risk factors for cardiometabolic disorders, such as
with the promotion of a healthy lifestyle (Teasdale et al., 2019; Ward
et al., 2017), and with careful selection and monitoring of antipsychotic
medications. This may help to reduce the excess cardiometabolic illness
relatedmorbidity andmortality in peoplewith schizophrenia. In future,
similar research may seek to examine the associations between PRS for
T2DMand othermental disorders including T2DMand bipolar disorder,
both of which are known to have higher rates of cardiometabolic disor-
ders than the general population (Martin et al., 2016). Such research
may also help to test the specificity of the findings in this study.
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Abstract

Background

Insulin resistance predisposes to cardiometabolic disorders, which are commonly comorbid

with schizophrenia and are key contributors to the significant excess mortality in schizophre-

nia. Mechanisms for the comorbidity remain unclear, but observational studies have impli-

cated inflammation in both schizophrenia and cardiometabolic disorders separately. We

aimed to examine whether there is genetic evidence that insulin resistance and 7 related

cardiometabolic traits may be causally associated with schizophrenia, and whether evi-

dence supports inflammation as a common mechanism for cardiometabolic disorders and

schizophrenia.

Methods and findings

We used summary data from genome-wide association studies of mostly European adults

from large consortia (Meta-Analyses of Glucose and Insulin-related traits Consortium

(MAGIC) featuring up to 108,557 participants; Diabetes Genetics Replication And Meta-

analysis (DIAGRAM) featuring up to 435,387 participants; Global Lipids Genetics Consor-

tium (GLGC) featuring up to 173,082 participants; Genetic Investigation of Anthropometric

Traits (GIANT) featuring up to 339,224 participants; Psychiatric Genomics Consortium

(PGC) featuring up to 105,318 participants; and Cohorts for Heart and Aging Research in

Genomic Epidemiology (CHARGE) consortium featuring up to 204,402 participants). We

conducted two-sample uni- and multivariable mendelian randomization (MR) analysis to
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test whether (i) 10 cardiometabolic traits (fasting insulin, high-density lipoprotein and triglyc-

erides representing an insulin resistance phenotype, and 7 related cardiometabolic traits:

low-density lipoprotein, fasting plasma glucose, glycated haemoglobin, leptin, body mass

index, glucose tolerance, and type 2 diabetes) could be causally associated with schizo-

phrenia; and (ii) inflammation could be a shared mechanism for these phenotypes. We con-

ducted a detailed set of sensitivity analyses to test the assumptions for a valid MR analysis.

We did not find statistically significant evidence in support of a causal relationship between

cardiometabolic traits and schizophrenia, or vice versa. However, we report that a geneti-

cally predicted inflammation-related insulin resistance phenotype (raised fasting insulin

(raised fasting insulin (Wald ratio OR = 2.95, 95% C.I, 1.38–6.34, Holm-Bonferroni corrected

p-value (p) = 0.035) and lower high-density lipoprotein (Wald ratio OR = 0.55, 95% C.I.,

0.36–0.84; p = 0.035)) was associated with schizophrenia. Evidence for these associations

attenuated to the null in multivariable MR analyses after adjusting for C-reactive protein, an

archetypal inflammatory marker: (fasting insulin Wald ratio OR = 1.02, 95% C.I, 0.37–2.78,

p = 0.975), high-density lipoprotein (Wald ratio OR = 1.00, 95% C.I., 0.85–1.16; p = 0.849),

suggesting that the associations could be fully explained by inflammation. One potential limi-

tation of the study is that the full range of gene products from the genetic variants we used

as proxies for the exposures is unknown, and so we are unable to comment on potential bio-

logical mechanisms of association other than inflammation, which may also be relevant.

Conclusions

Our findings support a role for inflammation as a common cause for insulin resistance and

schizophrenia, which may at least partly explain why the traits commonly co-occur in clinical

practice. Inflammation and immune pathways may represent novel therapeutic targets for

the prevention or treatment of schizophrenia and comorbid insulin resistance. Future work is

needed to understand how inflammation may contribute to the risk of schizophrenia and

insulin resistance.

Author summary

Why was this study done?

• Cardiometabolic disorders such as diabetes are up to 30% more common in people with

schizophrenia than in the general population, and are among the predominant causes of

a 10- to 15-year shortened life expectancy in people with schizophrenia.

• Insulin resistance, a precursor to diabetes, is sometimes detectable in young adults suf-

fering their first episode of psychosis, which suggests that chronic lifestyle and clinical

factors, such as smoking, physical inactivity, and medication side effects may not fully

explain the comorbidity.

• Inflammation has been consistently associated with schizophrenia and cardiometabolic

disorders, and so could be a common mechanism for schizophrenia and cardiometa-

bolic disorders. This could help to at least in part explain why people who have
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1038/ng.3714). Full summary statistics for all traits

used in the primary analysis are freely and publicly

available for download at consortia/group websites.

Specifically; for fasting insulin, FPG, HbA1C and

glucose tolerance summary data, see https://www.

magicinvestigators.org/downloads/; For HDL, LDL

and triglycerides summary data, see http://csg.sph.

umich.edu/willer/public/lipids2013/; For BMI

summary data, see https://portals.broadinstitute.

org/collaboration/giant/index.php/GIANT_

consortium_data_file s; For T2DM, see https://

diagram-consortium.org/downloads.html; For

leptin summary data, see ftp://ftp.ebi.ac.uk/pub/

databases/gwas/summary_statistics/

KilpelainenTO_26833098_GCST0 03368; For

schizophrenia summary data, see https://www.

med.unc.edu/pgc/download-results/. Summary

GWAS data for CRP, which formed part of our

post-hoc sensitivity analysis, are also publicly

available from the primary GWAS study [35], and

inquiries regarding use of CRP summary data can

be sent to s.ligthart@erasmusmc.nl.
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schizophrenia also have higher rates of cardiometabolic disorders, over and above the

commonly attributed lifestyle/clinical factors.

What did the researchers do and find?

• To examine whether insulin resistance and 7 related cardiometabolic traits causally

influence schizophrenia risk or vice versa, we conducted bidirectional, two-sample, uni-

and multivariable mendelian randomizsation (MR) analyses. The MR approach uses

genetic variants as proxies for modifiable exposures to untangle the problems of reverse

causation and unmeasured confounding.

• To test a hypothesis that inflammation may be a common mechanism for schizophrenia

and cardiometabolic disorders, we also examined a subset of genetic variants which

were associated with inflammation as well as the cardiometabolic trait. We also used

multivariable MR (MVMR) as a sensitivity analysis to adjust for C-reactive protein

(CRP), an archetypal inflammatory marker, as a general downstream marker of sys-

temic inflammation.

• After correction for multiple testing, overall, there was no significant evidence in sup-

port of a causal relationship between cardiometabolic traits and schizophrenia, or vice

versa. However, we found evidence that supports a causal relationship of an inflamma-

tion-related insulin resistance phenotype with schizophrenia.

• Evidence for the association of an inflammation-related insulin resistance phenotype

with schizophrenia attenuated fully in MVMR analysis after adjusting for CRP, suggest-

ing that these associations may be underpinned by inflammation.

What do these findings mean?

• These results suggest that cardiometabolic traits are unlikely to have a causal role in the

pathogenesis of schizophrenia or vice versa. However, our results suggest that inflam-

mation is related to the risk of both schizophrenia and insulin resistance, which may at

least partly explain why they commonly occur in clinical practice.

• Treating or preventing inflammation may be a putative therapeutic option for preven-

tion and/or treatment of both schizophrenia and comorbid insulin resistance.

• In the future, more research is needed to understand the biological mechanisms under-

pinning how inflammation may increase the risk of schizophrenia and insulin

resistance.

Introduction

Schizophrenia is a complex behavioural and cognitive syndrome characterised primarily by

disruptions to perception and cognition [1]. It has a lifetime prevalence of around 0.4% [2] but

carries a significant global disease burden [3]. Cardiometabolic disorders are up to 30% more

common in schizophrenia than the general population [4] and are the leading contributors to

premature death in these patients [5]. Their increased prevalence in schizophrenia is
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commonly attributed to the adverse effects of antipsychotic medications [6] or lifestyle factors

such as physical inactivity and a poor diet [7], but this is unlikely to be the whole story. While

the aforementioned factors contribute cumulative risk over time [8], recent meta-analyses of

case–control studies suggest that a phenotype of raised fasting insulin, raised triglycerides, and

low high-density lipoprotein (HDL) cholesterol, indicative of insulin resistance [9–11], is asso-

ciated with relatively young antipsychotic-naïve patients with first-episode psychosis (FEP)

[12,13], and, cross-sectionally, with psychotic symptoms in young adults [14]. Therefore, insu-

lin resistance, which is a significant risk factor for type 2 diabetes mellitus (T2DM) and obesity,

might be causally related to, or share pathophysiologic mechanisms with schizophrenia.

The majority of existing research in the field is cross-sectional, and therefore cannot con-

firm whether cardiometabolic disorders are a cause or consequence of illness (i.e., reverse cau-

sality). For example, 1 longitudinal study found no evidence for an association between insulin

resistance in childhood and risk of psychosis in late adolescence [14]. Additionally, while pre-

vious studies have adjusted for a number of potential confounders, residual confounding,

which is a limitation of both cross-sectional and longitudinal research, could still be relevant.

Mendelian randomization (MR) analysis can address these limitations by using genetic vari-

ants inherited randomly at conception as unconfounded proxies of a modifiable exposure, to

examine whether the exposure may have a causal effect on a disease outcome [15]. MR studies

of cardiometabolic traits and schizophrenia are limited, have focused on a very limited set of

cardiometabolic exposures, and have reported mixed findings [16,17]. To our knowledge, MR

studies examining associations between a wide range of cardiometabolic traits and schizophre-

nia are lacking. Such studies may help to identify common potentially causal risk factors and

pathophysiologic mechanisms for these physical and psychiatric illnesses.

Inflammation could be pathophysiologically related to cardiometabolic disorders and

schizophrenia. Higher levels of circulating inflammatory markers have been associated with

both psychosis and cardiometabolic disorders, both cross-sectionally and longitudinally [18–

20]. MR studies have reported potential causal associations between inflammation, particularly

C-reactive protein (CRP) and interleukin-6 (IL-6), and schizophrenia [21,22]. CRP and IL-6

are also implicated in pathogenesis of insulin resistance [23] and may exaggerate the effects of

insulin resistance on psychosis risk in young adults [14]. However, to our knowledge, no MR

studies have examined whether inflammation could be pathophysiologically related to insulin

resistance and schizophrenia, for example, via mediating or common causal mechanisms.

Therefore, we have conducted a study to examine evidence in support of 4 scenarios regard-

ing the potential relationships between inflammation, insulin resistance, and schizophrenia:

(1) Inflammation is a common cause (confounder) between insulin resistance and schizophre-

nia; (2) insulin resistance mediates an association between inflammation and schizophrenia;

or vice versa; (3) inflammation is a common cause (confounder) between schizophrenia and

insulin resistance; and (4) schizophrenia mediates an association between inflammation and

insulin resistance. See S1 Methods for directed acyclic graphs (DAGs) illustrating the proposed

mechanisms.

First, we carried out MR analyses to test whether 10 cardiometabolic traits related to insulin

resistance (fasting insulin, triglycerides, HDL, low-density lipoprotein (LDL), fasting plasma

glucose (FPG), body mass index (BMI), glucose tolerance, leptin, glycated haemoglobin

(HbA1C), and T2DM) could be causally associated with schizophrenia. To test the direction of

association, we used genetically predicted levels of cardiometabolic traits as exposures and

schizophrenia as the outcome and vice versa. Next, we examined whether inflammation could

be a shared mechanism linking insulin resistance and schizophrenia using MR analyses

including genetic variants for each cardiometabolic trait that were also associated with a

marker of inflammation. Finally, we used multivariable MR (MVMR) analysis to control for
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genetic associations of cardiometabolic traits with CRP, an archetypal general inflammatory

marker, which we used as a general measure for systemic inflammation.

Methods

Selection of genetic variants related to cardiometabolic traits and

schizophrenia

For fasting insulin, triglycerides, and HDL, we used a set of 53 single nucleotide polymor-

phisms (SNPs) reported to be associated with all 3 traits, representative of an insulin resistance

phenotype, from a recent meta genome-wide association study (GWAS) of 188,577 European

adults, which adjusted for BMI [11]. In our study, we included SNPs reaching genome-wide

significance for the corresponding trait. Summary statistics for genome-wide significant SNPs

were also obtained for 6 related continuous (FPG, HbA1C, LDL, BMI, leptin, and glucose tol-

erance) and 1 binary (T2DM) cardiometabolic traits from recent large GWAS (S2–S10 Meth-

ods). We obtained summary statistics for schizophrenia from a recent GWAS from the

Psychiatric Genomics Consortium (PGC) [24] based on 40,675 cases and 64,643 European

controls. The degree of sample overlap between exposure and outcome samples was likely to

be low since exposure and outcome data were obtained from different consortia [25].

Ethics statement

Our study was a secondary analysis of the above publicly available data. Informed consent was

sought for all participants per the original GWAS protocols, and all ethical approvals for the

GWAS were obtained by original GWAS authors.

Statistical analysis

The analysis plan was prospectively conceived by the authors in 2019 but was not formally

deposited in a repository or database. All described analyses were planned a priori except for

the following: a) the analysis of inflammation-related SNPs at a less-stringent significance

threshold (see the ‘Analysis using inflammation-related SNPs’ section below); b) the MVMR

analysis including CRP (see the ‘Adjustment for Inflammation’ section below). These analyses

were conceived and conducted in light of findings from the primary analysis, to further probe

whether inflammation could explain the results. We obtained summary-level data (SNP rs

number, β-coefficient or log odds ratio (OR), standard errors or 95% confidence intervals

(CIs), effect allele, other allele, p-value, effect allele frequency, sample size, and number of

cases/controls) from each GWAS. Where a specific instrument SNP was not available in the

outcome dataset, we located proxy SNPs using linkage disequilibrium (LD) tagging (r2 > 0.8)

via LDlink [26]. Alleles were harmonised based on matching alleles, and the resulting instru-

ments were clumped for LD to ensure independence (10,000 kb pairs apart, r2 < 0.001). In the

event of palindromic SNPs, the forward strand was inferred where possible using allele fre-

quency information. We performed bidirectional analysis (i.e., with schizophrenia as exposure

and cardiometabolic traits as outcomes) to examine direction of association. Statistical analysis

was conducted using the TwoSampleMR package (v0.5.4) [27] for R (The R Foundation for

Statistical Computing, Vienna, Austria) [28]. Our primary MR analysis method was inverse

variance weighted (IVW) regression where at least two exposure SNPs were available for anal-

ysis. Where one exposure SNP was available for analysis, we used the Wald ratio method. We

also conducted weighted median and MR–Egger regression analysis (S11 Methods). For the

binary outcome of schizophrenia, the estimates for continuous exposures (fasting insulin,

HDL, triglycerides, LDL, FPG, BMI, HbA1C, glucose tolerance, and leptin) represent log-odds

PLOS MEDICINE The potential shared role of inflammation in insulin resistance and schizophrenia

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003455 March 12, 2021 5 / 21

https://doi.org/10.1371/journal.pmed.1003455


ratios converted into ORs, representing the increase in risk of schizophrenia per standard devi-

ation (SD) of exposure, and 95% CIs. For binary exposures (T2DM), the estimates represent

the OR for schizophrenia per unit increase in the log-odds of T2DM. For continuous cardio-

metabolic outcomes, β-coefficients represent the SD increase in exposure per unit increase in

the log-odds of schizophrenia, with standard errors (SEs).

We performed several sensitivity analyses to check the validity of our results. Heterogeneity

among SNPs included in each analysis was examined using the Cochran Q test. We checked

for horizontal pleiotropy using the MR–Egger regression intercept alongside a more recent

and robust method to detect horizontal pleiotropy and outliers, “MR pleiotropy residual sum

and outlier” (MR-PRESSO) [29]. Using MR-PRESSO, we used the global test to examine for

horizontal pleiotropy, and where evident, used the method to correct the IVW-estimate via

outlier removal (S11 Methods). We examined for measurement error in SNP-exposure associ-

ations using the I2GX statistic [30]. This study is reported as per the Strengthening the Report-

ing of MR studies (STROBE-MR) guideline [31] (S1 Checklist) and the Strengthening the

Reporting of Observational Studies in Epidemiology (STROBE) statement [32] (S2 Checklist).

Analysis using inflammation-related SNPs

Next, we repeated MR analysis using only inflammation-related SNPs for each cardiometabolic

risk factor as an instrumental variable for the outcome of schizophrenia. We did this to test the

hypothesis that these SNPs may represent a mechanism involving inflammation. This could be

via, for example, a common causal basis (panel A in S1 Methods) or via vertical (mediating)

pleiotropy [27] (panel B in S1 Methods). We used Phenoscanner v2 (University of Cambridge,

United Kingdom) [33] to examine each SNP associated with each cardiometabolic risk factor,

to identify SNPs that were also associated with a measure of inflammation, defined as blood

concentration/count of cytokines (such as chemokines, interferons, interleukins, lymphokines,

or tumour necrosis factors), acute phase proteins (e.g., CRP), or immune cells (e.g., neutrophils

and lymphocytes). Primarily, we considered inflammation-related SNPs at genome-wide signif-

icance (p<5×10-8) to maximise specificity. We also performed a sensitivity analysis by including

inflammation-related SNPs at a less-stringent nominal significance threshold (p<1x10-4) to

increase sensitivity to inflammation-related SNPs [34] (S12–S17 Methods).

Using the same method, we identified inflammation-related schizophrenia SNPs (S18

Methods) and used them as instrumental variables in MR analysis examining cardiometabolic

traits as outcomes.

Adjustment for inflammation

As a post hoc sensitivity analysis to estimate whether any associations evident above may be

explained by inflammation, we carried out MVMR analysis [34,35] using the 53 SNPs for fasting

insulin, triglycerides, and HDL, representative of an insulin resistance phenotype, as exposures

with schizophrenia as the outcome, after conditioning on the associations of these 53 SNPs with

CRP. We chose CRP because it is a widely used downstream measure of systemic inflammation,

and publicly available data from large-scale GWAS for CRP are available. Summary statistics for

CRP were obtained from a recent large GWAS based on 204,402 participants [36]. For CRP as an

exposure in MVMR, we used all independent (10,000 kb pairs apart, r2< 0.001) SNPs reported to

be conditionally associated with CRP and located within the CRP coding region (S19 Methods).

Correction for multiple testing

Statistical significance was estimated using the Holm–Bonferroni correction method [37], cor-

recting for the number of exposures tested at each stage of analysis.
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Results

MR analyses using all genetic variants associated with insulin resistance

and other cardiometabolic traits

We did not find significant evidence for associations between genetically-predicted levels of

cardiometabolic traits and schizophrenia, using the primary IVW analysis method. Evidence

using the weighted median method for associations between genetically-predicted levels of tri-

glycerides (weighted median OR = 1.26; 95% C.I., 1.06–1.50; corrected p = 0.090) and HDL

(weighted median OR = 0.79; 95% C.I., 0.65–0.95; corrected p = 0.126) with schizophrenia did

not survive correction for multiple testing (Table 1).

Table 1. MR analyses of cardiometabolic traits and schizophrenia using all SNPs.

Risk Factor SNPs,

No.a
Method Odds Ratio (95% C.I.) p-value Corrected p-valueb

Fasting Insulin 9 IVW 1.13 (0.76–1.70) 0.548 1.000

Weighted Median 0.98 (0.68–1.41) 0.920 1.000

MR Egger 9.24 (1.82–46.97) 0.028 0.280

Triglycerides 9 IVW 1.16 (0.86–1.56) 0.334 1.000

Weighted Median 1.26 (1.06–1.50) 0.009 0.090

MR Egger 1.31 (0.84–2.03) 0.308 1.000

HDL 14 IVW 0.94 (0.71–1.23) 0.649 1.000

Weighted Median 0.79 (0.65–0.95) 0.010 0.126

MR Egger 0.67 (0.45–0.99) 0.067 0.670

Fasting Plasma Glucose 18 IVW 1.07 (0.87–1.31) 0.522 1.000

Weighted Median 1.01 (0.84–1.23) 0.887 1.000

MR Egger 1.13 (0.74–1.74) 0.584 1.000

Type 2 Diabetes Mellitus 27 IVW 0.93 (0.78–1.12) 0.470 1.000

Weighted Median 0.93 (0.80–1.09) 0.375 1.000

MR Egger 1.03 (0.66–1.62) 0.895 1.000

Body Mass Index 81 IVW 1.05 (0.89–1.24) 0.554 1.000

Weighted Median 1.07 (0.92–1.24) 0.383 1.000

MR Egger 1.43 (0.97–2.10) 0.103 1.000

HbA1C 36 IVW 1.01 (0.76–1.32) 0.956 1.000

Weighted Median 1.12 (0.82–1.51) 0.483 1.000

MR Egger 1.33 (0.79–2.23) 0.295 1.000

Glucose Tolerance 7 IVW 0.98 (0.85–1.14) 0.800 1.000

Weighted Median 1.10 (0.87–1.15) 0.993 1.000

MR Egger 1.85 (0.95–3.32) 0.094 0.940

LDL 74 IVW 0.99 (0.93–1.05) 0.679 1.000

Weighted Median 0.97 (0.90–1.03) 0.322 1.000

MR Egger 0.98 (0.90–1.07) 0.692 1.000

Leptin 4 IVW 1.97 (0.90–4.31) 0.091 0.910

Weighted Median 1.18 (0.66–2.11) 0.579 1.000

MR Egger 3.29 (0.56–17.22) 0.358 1.000

HDL = high-density lipoprotein; HbA1C = glycated haemoglobin; LDL = low-density lipoprotein; IVW = inverse variance weighted regression; SNPs = single

nucleotide polymorphisms
aNumber of SNPs remaining after clumping for independence
b Each analysis method (IVW, Weighted Median and MR Egger) corrected using the Holm-Bonferroni method for 10 cardiometabolic markers

Estimates represent ORs for schizophrenia per SD increase in exposure (per unit-increase in log-odds of exposure for T2DM).

https://doi.org/10.1371/journal.pmed.1003455.t001
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MR analyses using inflammation-related genetic variants for insulin

resistance and other cardiometabolic traits

After testing only genome-wide significant inflammation-related SNPs for cardiometabolic traits,

we found evidence for associations of inflammation-related genetically-predicted fasting insulin

(Wald Ratio OR = 2.95; 95% C.I., 1.38–6.34; corrected p = 0.035) and HDL (Wald Ratio OR = 0.55;

95% CI, 0.36–0.84; corrected p = 0.035) with schizophrenia. We could not include any genome-

wide significant inflammation-related variants for triglycerides, leptin or glucose tolerance. In our

sensitivity analysis featuring inflammation-related cardiometabolic variants at a less stringent signif-

icance threshold, evidence persisted for associations of inflammation-related genetically-predicted

fasting insulin (IVW OR = 1.74; 95% C.I., 1.08–2.98; corrected p = 0.030) and HDL (IVW

OR = 0.78; 95% C.I., 0.62–0.92; corrected p = 0.036) with schizophrenia. In addition, we found evi-

dence for an association of genetically-predicted inflammation-related triglycerides (IVW

OR = 1.24; 95% C.I., 1.07–1.55; corrected p = 0.036) with schizophrenia (Table 2; Fig 1 & Fig 2).

Adjustment for inflammation

MVMR analysis for inflammation-related SNPs of fasting insulin, triglycerides, and HDL with

schizophrenia showed that the univariable associations fully attenuated after controlling for

the genetic associations of these variants with CRP, in analyses involving both inflammation-

related SNPs at genome-wide and nominal significance levels. Controlling for CRP had negli-

gible effect on MR estimates based on all genetic variants (Fig 3, S1 and S2 Results).

Test for bidirectionality using schizophrenia as exposure

We did not find statistically significant MR associations between schizophrenia and any cardi-

ometabolic trait after correction for multiple testing (S3 Results, S1 Fig). Similarly, we did not

find statistically significant MR associations of inflammation-related schizophrenia variants

with cardiometabolic traits after correction for multiple testing (S4 Results, S1 Fig).

Test for horizontal pleiotropy

Using the MR-Egger regression intercept test, we found evidence of potential horizontal plei-

otropy for BMI and HDL in the all-SNP analysis, but no evidence for horizontal pleiotropy for

any cardiometabolic exposure in the inflammation-related SNP analysis. Using MR-PRESSO

however, we found evidence that horizontal pleiotropy was likely to have affected estimates for

all cardiometabolic exposures in the all-SNP analysis (p value for global test all�0.020), and

both LDL and T2DM in the inflammation-related SNP analysis. Following MR-PRESSO out-

lier correction, evidence strengthened for the association of triglycerides with schizophrenia in

the all-SNP analysis (MR-PRESSO IVW β = 0.23, S.E. 0.06, p = 0.008), but outlier-corrected

IVW estimates for other exposures were not significantly altered.

In the bidirectional analyses, both MR-PRESSO and the MR-Egger regression intercept sug-

gested horizontal pleiotropy affecting the outcomes of HDL, BMI and LDL (all p<0.05). Follow-

ing outlier correction, there was evidence for a weak protective effect of schizophrenia on BMI

(β = -0.04, S.E. 0.02, p = 0.014). MR-PRESSO additionally revealed possible horizontal pleiotropy

affecting the outcomes of fasting insulin, triglycerides and T2DM (p for MR-PRESSO global test

all<0.05) (S5–S12 Results), but outlier-corrected IVW estimates were not significantly altered.

Test for heterogeneity of instruments

In the analyses based on all SNPs, the majority of cardiometabolic traits demonstrated evi-

dence of heterogeneity, which was reduced in the inflammation-related SNP analysis (S5–S8
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Results). There was limited evidence of heterogeneity in the sensitivity analyses based on

inflammation-related SNPs for T2DM, BMI, and HbA1C only.

Test for measurement error

Results for the I2GX tests for SNP-exposure associations revealed some evidence for potential

measurement error, which may have biased MR–Egger analyses in the analyses with leptin,

glucose tolerance, T2DM, and schizophrenia as exposures (S13 Results).

Table 2. MR analyses of inflammatory-related cardiometabolic SNPs and schizophrenia.

Risk Factor Method Genome-Wide Significant Inflammatory-Related

SNPs

Nominally Significant Inflammatory-Related SNPs

SNPs,

No.

Odds Ratio

(95% C.I.)

p-value Corrected p-valuea SNPs,

No.

Odds Ratio (95% C.I.) p-value Corrected p-valuea

Fasting Insulin IVW / Wald

Ratio

1 2.95 (1.38–6.34) 0.005 0.035 5 1.74 (1.08–2.98) 0.003 0.030

Weighted Median 1.40 (0.83–2.34) 0.203 1.000

MR Egger 7.20 (1.03–50.54) 0.141 0.987

Triglycerides IVW / Wald

Ratio

0 � � � 4 1.24 (1.07–1.55) 0.004 0.036

Weighted Median 1.26 (1.06–1.50) 0.009 0.063

MR Egger 1.29 (1.02–1.63) 0.167 0.987

HDL IVW / Wald

Ratio

1 0.55 (0.36–0.84) 0.005 0.035 7 0.78 (0.62–0.92) 0.004 0.036

Weighted Median 0.77 (0.64–0.94) 0.008 0.056

MR Egger 0.68 (0.51–0.91) 0.047 0.288

Fasting Plasma Glucose IVW 2 1.53 (0.39–5.97) 0.537 1.000 4 1.04 (0.36–2.98) 0.945 1.000

Weighted Median 1.08 (0.63–1.86) 0.776 1.000

MR Egger 8.44 (0.65–120.54) 0.409 1.000

Type 2 Diabetes

Mellitus

IVW 7 0.94 (0.59–1.48) 0.776 1.000 10 0.97 (0.71–1.33) 0.850 1.000

Weighted Median 1.05 (0.26–4.32) 0.941 1.000 1.05 (0.74–1.48) 0.781 1.000

MR Egger 1.40 (0.32–6.08) 0.668 1.000 1.42 (0.59–3.38) 0.458 1.000

HbA1C IVW 7 1.20 (0.67–2.13) 0.546 1.000 10 1.02 (0.64–1.61) 0.942 1.000

Weighted Median 0.93 (0.46–1.85) 0.832 1.000 0.95 (0.54–1.69) 0.865 1.000

MR Egger 1.68 (0.39–7.21) 0.508 1.000 1.18 (0.41–3.37) 0.767 1.000

Body Mass Index IVW 4 1.23 (0.88–1.71) 0.229 1.000 12 1.48 (0.76–2.87) 0.249 1.000

Weighted Median 1.15 (0.80–1.65) 0.451 1.000 1.16 (0.85–1.58) 0.350 1.000

MR Egger 0.77 (0.33–1.79) 0.650 1.000 3.36 (0.61–18.45) 0.399 1.000

LDL IVW 13 0.96 (0.79–1.17) 0.687 1.000 23 0.93 (0.79–1.10) 0.420 1.000

Weighted Median 0.91 (0.80–1.04) 0.181 1.000 0.91 (0.80–1.04) 0.129 0.987

MR Egger 0.81 (0.58–1.14) 0.254 1.000 0.82 (0.62–1.11) 0.220 0.987

Leptin IVW 0 � � � 2 1.56 (0.77–3.17) 0.221 0.987

Glucose Tolerance IVW 0 � � � 2 1.06 (0.82–1.56) 0.882 1.000

HDL = high-density lipoprotein; HbA1C = glycated haemoglobin; LDL = low-density lipoprotein; IVW = inverse variance weighted regression; SNPs = single

nucleotide polymorphisms
aEach analysis method (IVW, Weighted Median and MR Egger) corrected using the Holm-Bonferroni method

�no inflammatory-related SNPs includedEstimates represent ORs for schizophrenia per SD increase in exposure (or per unit-increase in log-odds of binary exposures

e.g. T2DM).

https://doi.org/10.1371/journal.pmed.1003455.t002
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Fig 1. MR Analyses Testing Associations between Insulin Resistance Phenotypes (Fasting Insulin (A), Triglycerides (B) and HDL (C)) and Schizophrenia,

Highlighting Inflammation-Related SNPs. Points in plots represent the association of the genome-wide significant insulin-resistance single nucleotide

polymorphisms (SNPs) and their association with schizophrenia (Y axis) and the exposure (X axis). SNPs are denoted by green points in the plot. Inflammation-
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Discussion

Main findings

We conducted bidirectional uni- and multivariable two-sample MR analyses using large pub-

licly available genomic datasets to first examine for associations that support a causal relation-

ship between insulin resistance and related cardiometabolic traits and schizophrenia, and

second, to examine whether there is evidence to support that inflammation may be a common

causal mechanism for insulin resistance and schizophrenia. Using our primary IVW analysis

method, we did not find evidence in support of a causal association between genetically-pre-

dicted cardiometabolic traits and schizophrenia. However, we found weak evidence using the

weighted median method in support of a causal association of genetically-predicted levels of

triglycerides and HDL with schizophrenia, but this association did not survive correction for

multiple testing and the estimate may have been affected by horizontal pleiotropy. We found

more consistent evidence for an association of the insulin resistance phenotype of fasting insu-

lin, triglycerides, and HDL [11] with schizophrenia when we examined only genetic variants

also associated with inflammation. Using two p-value cut-offs for inflammation-related SNPs,

we found that the strength of association with schizophrenia increased as the specificity toward

inflammation-related SNPs increased. In MVMR analyses adjusting for CRP, those estimates

attenuated fully to the null. We found no evidence in bidirectional analyses in support of a

causal relationship of schizophrenia with insulin resistance (panels C and D in S1 Methods).

Together, our results are therefore most consistent with inflammation as a common cause for

insulin resistance and schizophrenia (panel A in S1 Methods).

Inflammation as a common cause for schizophrenia and insulin resistance

Three aspects of our results point towards inflammation as a common cause for insulin resis-

tance and schizophrenia (panel A in S1 Methods). First, we did not find convincing overall evi-

dence for a causal relationship between insulin resistance and schizophrenia (likely ruling out

panel B in S1 Methods). Second, in our analyses of inflammation-related variants for the cardi-

ometabolic traits, we found strong and consistent evidence in support of a potential causal

relationship of fasting insulin, HDL and triglycerides with schizophrenia, and the strength of

association with schizophrenia increased as the specificity toward inflammation-related SNPs

increased. Third, we used MVMR to evidence that after controlling for CRP, an archetypal

general inflammatory marker, the associations between inflammation-related genetic variants

for insulin resistance and schizophrenia completely attenuated. This result suggests that the

observed associations for the inflammation-related variants are at least in part explained by

inflammation. Together, the results are consistent with the idea that inflammation may be a

common causal mechanism for insulin resistance and schizophrenia.

Evidence for a common causal mechanism between insulin resistance and schizophrenia

may help to explain why schizophrenia is associated with higher rates of insulin resistance

even in early stages of illness, when the cumulative effects of medication and lifestyle factors

are relatively small [12,38]. Anti-inflammatory agents, of which several have shown promise in

treating the symptoms of schizophrenia [39], should therefore be considered as a putative ther-

apeutic target for prevention and treatment of cardiometabolic disorders in schizophrenia.

related SNPs at genome-wide significance are denoted by a purple border. Inflammation-related SNPs at nominal significance are denoted by a red border.

Whiskers represent standard errors. Lines on the plot represent inverse-variance weighted (>1 SNP) or linear regression (1 SNP) of all-SNPs (green line),

inflammation-related SNPs at genome-wide significance (purple line) and inflammation-related SNPs at nominal significance (red line).

https://doi.org/10.1371/journal.pmed.1003455.g001

PLOS MEDICINE The potential shared role of inflammation in insulin resistance and schizophrenia

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003455 March 12, 2021 11 / 21

https://doi.org/10.1371/journal.pmed.1003455.g001
https://doi.org/10.1371/journal.pmed.1003455


Fig 2. MR analyses testing associations between cardiometabolic traits and schizophrenia. Forest plot presents ORs and 95% CIs for associations between

cardiometabolic traits and schizophrenia using IVW / Wald Ratio MR analyses based on all single nucleotide polymorphisms (SNPs) associated with each risk factor

(green), inflammation-related SNPs at genome-wide significance (purple), and inflammation-related SNPs at nominal significance (red). See Tables 1 and 2 for the

number of SNPs used in each analysis. HDL = High Density Lipoprotein; T2DM = Type 2 Diabetes Mellitus; BMI = Body Mass Index; FPG = Fasting Plasma Glucose;

LDL = Low-Density Lipoprotein; HbA1C = Glycated Haemoglobin; Glucose Tol = Glucose Tolerance.

https://doi.org/10.1371/journal.pmed.1003455.g002
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Fig 3. Multivariable MR analysis testing associations between insulin resistance phenotypes and schizophrenia after controlling for genetic associations for CRP.

Forest plot presents ORs and 95% CIs for inverse-variance weighted regression (IVW) MR associations between insulin resistance phenotypes and schizophrenia using all

single nucleotide polymorphisms (SNPs) (dark green), and after controlling for association of these SNPs with C-reactive protein (CRP) using multivariable MR (MVMR)

(light green). The forest plot also presents ORs and 95% CIs for IVW / Wald Ratio MR associations between insulin resistance phenotypes and schizophrenia using

inflammation-related SNPs (genome-wide significance = dark purple; nominal significance = red), and after controlling for association of these SNPs with CRP using

MVMR (genome-wide significance = light purple; nominal significance = light red). HDL = high-density lipoprotein.

https://doi.org/10.1371/journal.pmed.1003455.g003
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We used CRP, an archetypal downstream inflammatory marker, as a means of gauging the

effect of systemic inflammation in MVMR analysis, rather than hypothesising a specific role

for CRP in the relationship between insulin resistance and schizophrenia. Nevertheless, CRP

has observationally shown in both cross-sectional [40] and longitudinal [41] research to be

associated with schizophrenia, although such findings are limited by the potential of residual

confounding and reverse causality. Interestingly, however, MR findings have reported that

genetically predicted CRP may have a protective effect on schizophrenia [21], with authors

positing that a genetically attenuated ability to produce CRP may predispose to more insidious

and chronic infections. In our MVMR analysis, attenuation of insulin resistance schizophrenia

associations after controlling for CRP is consistent with inflammation being associated with

both exposure and outcome, albeit “negatively” with the latter. Further research is needed to

explore potential mechanisms of association between CRP and schizophrenia.

Many of the SNPs included in the inflammation-related analysis were associated with neutro-

phils and/or lymphocytes. A raised neutrophil to lymphocyte ratio (NLR) is a marker of systemic

inflammation and is known to be associated with schizophrenia [42] and insulin resistance [43].

We were unable to find large GWAS studies conducted in European populations for NLR or for

other inflammatory markers, which we might have used in MVMR analyses in place of CRP.

Based on our findings, we are unable to completely rule out the possibility that insulin resis-

tance may mediate an inflammation–schizophrenia association (panel B in S1 Methods), since

there was weak evidence that did not survive correction for multiple testing for an association

of triglycerides and HDL with schizophrenia using the weighted median method, and in our

MR-PRESSO sensitivity analysis, evidence from the outlier-corrected IVW analysis suggested

a possible association between triglycerides and schizophrenia. These findings are broadly sim-

ilar to 1 previous MR study [17], which reported only weak evidence of an association between

the homeostasis model assessment (HOMA), a measure of insulin resistance, on schizophre-

nia. Another MR study [16] reported a genetic association between fasting insulin and schizo-

phrenia, although the evidence attenuated after adjustment for BMI. To account for BMI, we

obtained summary statistics for genetic variants related to insulin resistance after controlling

for BMI [11]. The previous MR study included an ethnically heterogeneous sample, increasing

the potential for population stratification bias. We used genetic data from a more ethnically

homogenous GWAS of schizophrenia [24]. Nevertheless, while our results in the all-SNP anal-

ysis suggested weak evidence for triglycerides and HDL, which may reflect an insulin resis-

tance phenotype, the evidence did not survive correction for multiple testing and requires

replication in future when larger GWAS samples are available.

The implications of our findings with regard to shared causal mechanisms should not distract

clinicians from focusing on the assessment and management of malleable lifestyle factors related

to cardiometabolic disorders in people with schizophrenia. Factors such as poorer diet, reduced

exercise and smoking, which are associated with schizophrenia [7,44,45], may predispose to an

inflammatory state [46]. Therefore, it is possible that lifestyle factors exacerbate a feedback loop

between inflammation, insulin resistance, and schizophrenia by increasing both inflammation

and insulin resistance, eventually leading to T2DM and other cardiometabolic disorders such as

obesity and cardiovascular disease (CVD). In addition to the potential therapeutic potential of

anti-inflammatory medications, malleable lifestyle factors must continue to remain crucial targets

[47,48] for the prevention of cardiometabolic morbidity in people with schizophrenia.

Additional findings

We report that after outlier correction, schizophrenia had a weak protective effect on BMI.

This finding complements estimates from previous research [53] using LD score regression,
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though we are able to advance previous findings since genetic correlation analyses are unable

to test direction of association. This finding suggests that weight gain associated with schizo-

phrenia is unlikely to be a feature of the illness itself but could be attributed to iatrogenic or

lifestyle effects. Moreover, the “lean insulin-resistance” phenotype may be associated with

higher levels of inflammation [54] and warrants further research in the context of schizophre-

nia, particularly since in younger patients, the “lean” nature of the phenotype may mean that

important cardiometabolic investigations may be overlooked in the clinic.

Strengths and limitations

Strengths of this study include the use of a large set of cardiometabolic traits and large GWAS

datasets, through which we were able to test specific biological mechanisms. We chose SNPs

reaching genome-wide significance from large GWAS and meta-GWAS for insulin resistance

and related cardiometabolic traits. We performed a comprehensive set of sensitivity analyses

to check MR assumptions. Furthermore, while weak instrument bias may be a factor in MR

analysis, in two-sample MR, this bias tends towards the null [55], thus would not explain the

positive associations we describe. We corrected for multiple testing to minimise potential type

I error.

Our study has some limitations. We did not select SNPs in known coding regions for the

exposures, for example, the IRS-1 gene for insulin resistance [56]. We took this step on the

assumption that many mechanisms at play may not yet be fully understood. For example,

while the heritability of cardiometabolic traits such as obesity is as high as 70%, the variance

currently explained by known genetic variants is but a small fraction of this [57]. In addition,

selecting SNPs from many different GWAS studies featuring large sample sizes may increase

the risk of sample overlap between exposure and outcome variables and can bias the results in

either direction, depending on the proportion of overlap [27]. Also, for our primary inflamma-

tion-related SNP analysis, we chose a stringent p-value threshold to define inflammation-

related SNPs. In doing so, we may have overlooked some SNPs with true inflammatory associ-

ations. As a result, only one genome-wide significant inflammation-related genetic variant was

included in the analysis of fasting insulin and HDL, and none were included for triglycerides.

Therefore, these results be considered with caution. However, we attempted to address this

limitation by relaxing the p-value threshold for inflammation-related SNPs, thereby allowing a

greater number of SNPs to be included, and the results for fasting insulin, HDL and triglycer-

ides were consistent. Yet, the inclusion of inflammation-related genetic variants at a relaxed

significance threshold may have increased the risk of weak instrument bias for those analyses.

In the future, larger and better-powered GWAS may identify more SNPs for analysis and at

greater resolution, potentially unearthing a larger number of inflammation-related SNPs,

which would be helpful to confirm our findings. Additionally, the full range of gene products

from the genetic variants we used as proxies for the cardiometabolic traits is unknown, and so

we are unable to comment on potential biological mechanisms of association other than

inflammation, which may also be relevant. Finally, our analyses were based on data from

mostly European participants, so it is unclear whether our results apply to other populations.

Large-scale GWAS and replication of our analyses in other populations are required to answer

this question.

Conclusions

It is well established that certain antipsychotic drugs and lifestyle factors such as smoking, lack

of exercise, and poor diet are important contributors to cardiometabolic comorbidity in people

with schizophrenia. In addition to this, our findings suggest that inflammation may be a
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common cause for schizophrenia and cardiometabolic disorders, which may at least partly

explain why they so commonly co-occur in clinical practice. Lifestyle modification and careful

prescription of certain antipsychotic medications remain crucial malleable targets to reduce

the significant impact that comorbid cardiometabolic disorders place on the quality and length

of life in people with schizophrenia. In addition, our findings suggest that targeting inflamma-

tion could be an important therapeutic target for the treatment and prevention of cardiometa-

bolic disorders in people with schizophrenia. Future research should seek to examine the

biological mechanisms, which underpin how inflammation can simultaneously increase the

risk of both insulin resistance and schizophrenia.
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Appendix D Methods 

 

Predictors Included in Exploratory Validation Analysis of QRISK3, QDiabetes and 

PRIMROSE 

Age 

The actual age of participants at the time of attendance at the F17 clinic was between 17.21 and 

18.67 years. I chose to uniformly consider age as 18 years for all participants at the time of the 

exposure. I did this under consideration that the relatively small variation of age in the sample may 

have been disproportionately amplified by the tested algorithms.  

 

Ethnicity 

Ethnicity was recorded from questionnaire data (Missing; White; Black Caribbean; Black African; 

Other Black; Indian; Pakistani; Bangladeshi; Chinese; Other; Don’t Know) and recoded to match 

QDiabetes/QRISK3 defined categories. Ethnic categories in QRISK3 and QDiabetes differed in 

also including ‘Other Asian’, which I was unable to recode.  

 

Townsend Scores 

Townsend Scores were calculated by ALSPAC and obtained in quintiles, based upon self-report 

data.  

 

Family History of Cardiometabolic Disorders 

A positive family history of cardiometabolic disorders obtained from self-report questionnaire data 

encompassing hypertension, T2DM, hypercholesterolaemia, or cardiovascular diseases.  

 

Smoking 

Smoking status was recoded from self-report questionnaire data at age 18 years to match the 

categories denoted by QRISK3, QDdiabetes and PRIMROSE.  

 



Body Mass Index (BMI) 

BMI was calculated during clinic assessment from measurements of height (m) and weight (kg) at 

age 18 years.  

 

Systolic Blood Pressure 

Systolic blood pressure was obtained during clinic assessments in both arms, twice. I included the 

second measure of systolic blood pressure recorded in the left arm, unless only the right arm, or 

only one measurement was available.  

 

Blood-Based Predictors 

For blood-based predictors (FPG, HDL and triglycerides), fasting samples were taken at 0900 after 

a 10-hour fast (water only) at age 18 years.  Samples were immediately spun, frozen and stored at –

80oC and measurements were assayed within 3 to 9 months of the samples being taken with no 

previous freeze-thaw cycles. FPG was measured by an ultrasensitive ELISA (Mercodia, Uppsala, 

Sweden) automated microparticle enzyme immunoassay. Its sensitivity was 0.07 mU/L, and inter- 

and intra-assay coefficients of variation were <6%. Plasma lipid concentrations were measured by 

modification of the standard Lipid Research Clinics Protocol by using enzymatic reagents for lipid 

determination.  

 

Depression 

Depression was measured using the CIS-R and coded by ALSPAC to meet ICD-10 criteria. I 

considered depression to be present for participants meeting ICD-10 criteria for mild, moderate or 

severe depression.  

 

Psychosis 

Since hospital record linkage was not available in the dataset, for a measure of clinical psychosis, 

we used the presence of psychotic disorder at age 18y.  

 

 



Medication 

Medication data was coded by the authors from self-report free-text data collected from a ‘white 

space’ box in a questionnaire. There was wide variation in spellings of medications in this data. 

Participants were coded as “1” for any particular medication if spellings either matched the 

spellings in the British National Formulary, or if the medication could be easily deciphered from the 

free-text. In the event of ambiguity, participants were coded “0”. I was unable to include 

prescription of statins since ALSPAC guidelines state variables can only be coded if cell counts are 

greater than 5, to reduce the risk of participant identification. Less than 5 participants in the cohort 

self-reported a prescription for statins.  

 

Unavailable Predictors 

Due to the lack of hospital record linkage, I could not include personal history of either 

cardiovascular disease, gestational diabetes, systemic lupus erythematosus, learning disabilities, 

migraines, erectile dysfunction, atrial fibrillation, chronic kidney disease,  or polycystic ovarian 

syndrome. 
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Appendix D Tables 

 

Appendix D Table 1: Predictors included in QDiabetes, QRISK3 and PRIMROSE 

QDiabetes  QRISK3 PRIMROSE 
Age (fractional polynomial) Age (fractional polynomial) Age (Log) 
Townsend Score Townsend Score Townsend Score 
Smoking Smoking Smoking 
Atypical Antipsychotics Atypical Antipsychotics Second Generation Antipsychotics 
Hypertension Hypertension Antihypertensives 
Schizophrenia / bipolar Schizophrenia, Depression, bipolar Schizophrenia / bipolar 
BMI (fractional polynomial) BMI (fractional polynomial) Systolic Blood Pressure 
Ethnicity1 Ethnicity1 Height 
Steroids Steroids Weight 
FHx CVD FHx MI HDL Cholesterol 
FHx Type 2 Diabetes Chol:HDL Ratio Total Cholesterol 
FPG / HbA1C Type 1 / Type 2 Diabetes Type 2 Diabetes 
Age x Antipsychotics Age x Smoking Antidepressants 
Age x BMI Age x BMI Alcohol Use 
Age x Cardiovascular FHx Age x Cardiovascular FHx Current Year 
Age x HbA1C / FPG Age x Diabetes Sex 
PCOS Age x Steroids  
Gestational Diabetes Age x Hypertension  
Learning Disabilities Age x Systolic Blood Pressure  
Statins Age x Townsend score  
Age x Learning Disabilities CKD Stages 3-5  
Age x Statins Rheumatoid Arthritis  
 SLE  
 Migraines  
 Erectile Dysfunction  
 Atrial Fibrillation  
 Age x Atrial Fibrillation  
 Age x Migraine  
 Age x CKD  
 Age x SLE  

FHx=Family History; CVD=Cardiovascular Diseases; MI=Myocardial Infarction; Chol=Cholesterol; HDL=High-Density 
Lipoprotein; FPG=Fasting Plasma Glucose; HbA1C = Glycated Haemoglobin; BMI=Body Mass Index; PCOS=Polycystic Ovarian 
Syndrome; CKD=Chronic Kidney Disease; SLE=Systemic Lupus Erythematosus. 
Cells with strikethrough text indicate predictors I could not include due to data availability 
1White/NS, Indian, Pakistani, Bangladeshi, Other Asian, Black African, Black Caribbean, Chinese, Other 

 

 

 

 



Appendix D Table 2: Systematic Review Risk of Bias Assessment Using PROBAST 

Author (Year) ROB Overall 
Participants Predictors Outcome Analysis ROB 

Abd El-Wahab et al (2019) - + - - - 

Abdul-Ghani et al (2011) + + + - - 

Addoh et al (2016) ? - - ? - 

Adegbija et al (2015) + + - - - 

Aekplakorn et al (2006) + + - - - 

Alaa et al (2018) + + + - - 

Alghwiri t al (2014) - + - - - 

Alssema et al (2011) - + - - - 

Alssema et al (2012) - + - - - 

Anderson et al (2016) - + - - - 

Arima et al (2009) + + - ? - 

Artero et al (2015) + + + - - 

Artigao-Rodenas et al (2013) + + + - - 

Aslibekyan et al (2011) + - + - - 

Assmann et al (2002) + + + ? ? 

Backholer et al (2017) - + + ? ? 

Balkau et al (2004) + + + - - 

Barazzoni et al (2019) + + + - - 

Bell et al (2011) + + - - - 

Boland et al (2005) ? + ? - - 

Boucher et al (2019) + - + ? - 

Brand et al (1976) + + - - - 

Brautbar et al (2009) - + + - - 

Chambless et al (2003) + - + - - 

Chen et al (2009) - + + - - 

Chen et al (2010) + + ? - - 

Chen et al (2017) + + - - - 

Chien et al (2008) - + + - - 

Chien et al (2012) + + - - - 

Choe et al (2018) + + - ? - 

Conroy et al (2003) + ? + - - 



Cross et al (2012) + + + - - 

D’Agostino et al (2001) + + ? ? ? 

D’Agostino et al (2008) + + + ? ? 

Davies et al (2010) + + + - - 

De Bacquer et al (2010) - + + - - 

Dimopoulos et al (2018) + + + - - 

Dugee et al (2015) - + + - - 

Dunder et al (2004) - + + - - 

Ferrario et al (2012) + + + + + 

Friedland et al (2009) + + ? - - 

Gabriel et al (2015) + + + - - 

Gao et al (2009) - + + - - 

Gao et al (2010) ? ? ? - - 

Gaziano et al (2008) + + + - - 

Glumer et al (2004) ? ? ? - - 

Griffin et al (2000) - ? ? - - 

Gupta et al (2019) - + ? ? - 

Hamer et al (2019) + + + ? ? 

Hippisley-Cox & Coupland 
(2017) 

? + + + ? 

Hippisley-Cox et al (2013) ? + + + ? 

Hippisley-Cox et al (2017) ? + + + ? 

Hippisley-Cox et al (2007) ? + + + ? 

Hippisley-Cox et al (2008) ? + + + ? 

Hippisley-Cox et al (2009) ? + + + ? 

Hippisley-Cox et al (2010) ? + + + ? 

Heianza et al (2013) + + ? - - 

Heikes et al (2008) - ? - - - 

Hossain et al (2019) - + - - - 

Hwa Ha et al (2018) + + - - - 

Inouye et al (2018) + + + - - 

Kang et al (2012) ? + + ? ? 

Katulanda et al (2016) + ? ? - - 

Kniuman et al (1998) + + + ? ? 

Ko et al (2010) - ? ? - - 



L’Italien et al (2000) ? + + ? ? 

Laurier et al (1994) + + ? ? ? 

Lees et al (2019) + + + - - 

Liao et al (2019) + + - - - 

Lindstrom et al (2003) - - - - - 

Menotti et al (2005) + - + + - 

Merry et al (2011) + + + - - 

Mohammadreza et al (2012) + + + - - 

Moons et al (2002) + + + - - 

Muehlenbruch et al (2014) + - - - - 

Muehlenbruch et al (2018) + - - - - 

Nanri et al (2015) + + - - - 

Noda et al (2010) - - + - - 

Osborn et al (2015) ? + + + ? 

Panagiotakos et al (2015) + + ? - - 

Park et al (2009) + - + - - 

Paynter et al (2009) + + - ? - 

Paynter et al (2011) + + + - - 

Pencina et al (2009) + + + - - 

Pocock et al (2001) + + + - - 

Pylypchuk et al (2019) ? + + + ? 

Rana et al (2009) + + + - - 

Ridker et al (2008) + + - - - 

Ridker et al (2007) + + - - - 

Robinson et al (2011) ? + - - - 

Rosella et al (2011) - + + - - 

Sarrafzadegan et al (2017) + + + - - 

Schulze et al (2007) ? - - - - 

Selmer et al (2017) + + + ? ? 

Solares et al (2019) + + + - - 

Stern et al (2004) + + + - - 

Sun et al (2009) + + + - - 

Tabaei et al (2005) ? + + ? ? 

Tanabe et al (2010) + + - - - 



+ indicates low ROB; - indicates high risk of bias; ? indicates unclear risk of bias 

 

 

 

 

Tohidi et al (2008) + + - - - 

Voss et al (2002) + + - - - 

Wen et al (2017) - + + - - 

WHO CVD Risk Working 
Group (2019) 

+ + + + + 

Wickramsinghe et al (2014) + + + ? ? 

Wong et al (2015) ? + - - - 

Woodward et al (2007) + + + - - 

Wu et al (2006) + + + - - 

Yatsuya et al (2012) + + + - - 

Yatsuya et al (2016) + + + - - 

Ye et al (2014) + + + - - 

Zhang et al (2005) + + - - - 

Zhou et al (2013) - + + - - 



Appendix D Table 3: Participant Characteristics of Studies Included in Systematic Review 
 Derivation Cohort Validation Cohort 
First Author (Year) Country Population Sample 

Size 
Age, mean 
(SD) 

Ethnicity, % Male 
Sex, 
% 

Method Sample Size Age, mean 
(SD) 

Ethnicity, 
% 

Male 
Sex, 
% 

Abd El-Wahab et al 
(2019) 
 

Egypt General 270 42.7 (12.7) - 23.0 - - - - - 

Abdul-Ghani et al 
(2011) 

USA General 1,562 43 (1) Caucasian, 35 43.2 External 2,395 46 (1) Caucasian, 
100% 

45.9 

Addoh et al (2016) 
 

USA Validation  43,456 Range 20-
84 

Caucasian, 
100 

79 External 9,974 Range 20-
85 

- - 

Aekplakorn et al  
(2006) 

Thailand General  2,677 42.2 (4.7) Thai, 100 74.3 External 2,420 44.7 (4.8) Thai, 100 71.5 

Alaa et al (2019) 
 

UK General 423,604 56.4 (8.1) - 44.5 Internal, 10-fold 
cross validation 

- - - - 

Alghwiri et al (2014) Jordan, S.Arabia - - - - - External 538 Largest 
group 40-
44 (59%) 

Arab, 100 65.5 

Alssema et al (2011) Netherlands, 
Finland, Sweden, 
UK, Aus 

General 20,564 51.2 (12.7) - 44.4 Internal, Bootstrap - - - - 

Alssema et al (2012) Netherlands General 6,480 58.7 (8.6) Caucasian, 
100 

44.8 Internal, Bootstrap - - - - 
 

Anderson et al (2016) USA General 24,331 Largest 
group 46-60 
(30%) 

Caucasian, 61 37 External 189,082 - - - 

Arima et al (2009) Japan General 1,756 59 (12) - 43 Internal, Split 
Sample 

878 59 (12) - 40 
 

Artero et al (2015) 
 

USA General 43,356 Range 20-
84 

Caucasian, 
100 

79 - - - - - 

Artigao-Rodenas et al 
(2013) 

Spain General 759 51.1 (12.9) Spanish, 100 46.7 - - - - - 

Aslibekyan et al 
(2011) 

Costa Rica General 1,678 - - - Internal, participants 
excluded from 
development 

1,984 - - - 

Assmann et al (2002) Germany General 5,389 46.7 (7.5) - 100 Internal, Bootstrap - - - - 
 

Balkau et al (2004) European (multi-
sample) 

General M=16,506 
F=8,907 

30-74y - 65 - - - - - 

Backholer et al (2017) 
 

Australia General 54,829 55.6 (8.9) - 41 External - - - - 

Barazzoni et al (2019) Italy General 1,965 49 (13) - 46.4 Internal 263 - - - 
 



Bell et al (2011) USA General M=1,351 
F=1,484 

M=48.6 
(9.5) 
F=48.3 
(9.4) 

- - - - - - - 

Boland et al (2005) 
 

- General 280 51.1 (11.5) - 51 External 962 - - - 

Boucher et al (2019)* USA General M=3,731 
F=3,792 

- - 49.6 Internal, Split 
Sample 

- - - - 

Brand et al (1976) 
 

USA General 3,154 39-59y - 100 - - - - - 

Brautbar et al (2009) USA General 9,998 54.1 (5.7) Caucasian 
100% 

45.3 - - - - - 

Chambless et al 
(2003) 

USA General M=6,071 
F=7,983 

45-64y M=77% 
Caucasian 
F=71% 
Caucasian 

- - - - - - 

Chen et al (2009) 
 

Australia General 67,076 Range 25-
74 

- 43.5 External 1,998 49-74 - 40.4 

Chen et al (2010) Australia General 6,060 Largest 
group 45-54 
(30.7%) 

- 49.3 External 2 cohorts:  
1,993+1,465 

- - - 

Chen et al (2017) China General 26,352 57.4 (14.7) Chinese, 100 44.3 Internal, Subsample 2,015 57.4 (14.7) Chinese, 
100 

44.3 

Chien et al (2009) 
 

China General 2,960 54 (12.3) Chinese, 100 - Internal, Bootstrap - - - - 

Chien et al (2012) 
 

Taiwan General 3,430 54.5 (12.3) - 47.0 External 22,193    

Choe et al (2018) Korea General 5,251 49.3 (10.5) - 39.6 Internal, Split 
Sample 

2,251 52.1 (9.9) - 74.5 
 

Cross et al (2012) USA General 1,084 56.4 99% 
Caucasian 

- External 623 62.0 42% 
Caucasian 

- 

D’Agostino et al 
(2001) 

USA General 5,251 Range 30-
74 

Caucasian, 
100 

46.4 External 23,424 30-81 - 74.4 
 

D’Agostino et al 
(2008) 

USA General 8,491 49 - 46.7 - - - - - 
 

Davies et al  
(2010) 

Canada General 5,642 48.6 (7.2) - 75.9 External - - - - 

De Bacquer et al 
(2010) 

Belgium - - - - - External 6,212 55 (9.3) - 51.2 
 

Dimopoulos et al  
(2018) 

Greece General 2,020 46 (13) - - Internal, 10 fold 
cross-validation 

- - - - 

Dugee et al (2015) Mongolia General 1,018 46.4 (8.1) Mongolian, 
100 

38.4 Internal, Bootstrap - - - - 

Dunder et al 
 (2004) 

Sweden General 574 50 - 100.0 Internal, Subset 534 50 - 100.0 



Ferrario et al (2012) Italy General 6,865 35-69y - 100 Internal, Bootstrap - - - - 
 

Friedland et al (2009) USA General 1,168 67.5 (12.7) - 42.7 External 90 69 (range 
44-92) 

- 46.7 

Gabriel et al (2015) Spain General 11,800 57.6 (15.4) Spanish, 100 45.9 - - - - - 
 

Gao et al (2009) India General 1,544 42.2 (2.1) Mauritius 
Indian, 100 

36.9 Internal, Split 
Sample 

1,550 - - - 

Gao et al (2010) China General 1,986 53 (11.9) Chinese, 100 37.3 External 4.336 50 (10.5) Chinese, 
100 

38.9 

Gaziano et al (2008) USA General M=2,837 
F=3,349 

M=48.3 
(14.0) 
F=47.4 
(14.1) 

- - - - - - - 

Glumer et al (2004) 
 

Denmark General 3,250 46 (7.9) - 49.8 External  1,028 50.7 (7.8) - 46.0 

Griffin et al (2000) UK General 650 52.6 (7.4) Caucasian, 
100 

43.7 External 528 52.6 (7.4) Caucasian, 
100 

43.7 

Gupta et al (2019) 
 

India General - - - - Recalibration M=6,240 
F=7,568 

M=44.1 
(13.9) 
F=42.0 
(12.8) 

- 54.7 

Hamer et al (2009) Scotland General 5,994 53.6 (12.4) - 44.5 - - - - - 
 

Heianza et al (2013) Japan General 33,335 40-49 Japanese,100 71.4 External 7,477 49.7 (12.1) Japanese, 
100 

60.2 

Heikes et al (2008) USA General 7,092 - - - External - - - - 
 

Hippisley-Cox & 
Coupland (2017) 

UK General 8,136,705 44.9 (15.3) Caucasian, 
87.2 

49.6 Internal 2,629,940 45.6 (15.5) Caucasian, 
88.4 

49.7 

Hippisley-Cox et al 
(2007) 

UK General 1,283,174 48, IQR 40-
57 

- 48.6 Internal 614,553 47, IQR 
40-57 

- 49.7 

Hippisley-Cox et al 
(2008) 

UK General 1,535,583 49, IQR 41-
60 

Caucasian, 
97.4 

49.6 Internal 750,232 49, IQR 
41-59 

Caucasian, 
96.7 

49.9 

Hippisley-Cox et al 
(2009) 

UK General 2,540,753 41, IQR 31-
56 

Caucasian, 
96.7 

49.5 Internal 1,232,832 42, IQR 
32-56 

Caucasian, 
96.5 

49.5 

Hippisley-Cox et al 
(2010) 

UK General 2,343,759 48.1 (14.3) Caucasian, 
95.1 

49.2 Internal 1.267,159 48.0 (14.2) Caucasian, 
96.3 

49.1 

Hippisley-Cox et al 
(2013) 

UK General 3,549,478 45.0 (15.4) Caucasian, 
93.9 

49.2 Internal 1,897,168 44.9 (15.3) Caucasian, 
92.8 

49.3 

Hippisley-Cox et al 
(2017) 

UK General 7,889,803 42.9 (14.7) Caucasian, 
88.8 

49.0 Internal 2,671,298 42.9 (14.4) Caucasian, 
89.5 

49.1 

Hossain et al (2018) 
 

Bangladesh General 259 - - 52.9 Internal, 10-fold 
cross-validation 

- - - - 



Hwa Ha et al (2018) S. Korea General 359,349 51.9 (9.4) - 53.2 External 6,660 50.8 (8.6) Caucasian, 
47.5 

47.5 

Inouye et al (2018) UK General 482,629 
 

56.5 (8.1) - 45.6 - - - - - 

Kang et al (2012) S. Korea General M=2,257 
F=3,014 

M=46 
F=44 

- - - - - - - 

Katulanda et al (2016) 
 

Sri Lanka General 2,826 45.3 (15.1) - 39.6 External 1,450 45.1 (14.9) - 40.5 

Ko et al (2010) 
 

Hong Kong General 2,448 37.2 (8.9) - 34.7 External 3,734 38.4 (12.8) - 19.4 

Knuiman et al (1998) Australia General M=1,036 
F=1,222 

M=59.6 
(10.6) 
F=58.4 
(10.3) 

- - - - - - - 

L’Italien et al (2000) Scotland General 6,595 45-65y - 100.0 External “a subset” - - - 
 

Laurier et al (1994) France - - - - - Recalibration M=4,131 
F=1635 

43-53y - 71.2 

Lees et al (2019) 
 

UK General 440,526 37-73 - - - - - - - 

Liao et al (2019) 
 

USA General 217,254 43 (12) - 45.3 Internal, 5-fold 
cross-validation 

- - - - 

Lindstrom et al 
(2003) 
 

Finland General - - - - External 4,586 - - - 

Menotti et al (2005) Italy General M=11,039 
F=4,777 

M=51.6 
(8.7) 
F=52.8 
(10.5) 

- 69.8 - - - - - 

Merry et al (2011) Netherlands General 20,055 41.0 (10.9) - 46.8 - - - - - 
 

Mohammadreza et al 
(2012) 

Iran General M=2,778 
F=3,629 

>30 - 43.4 Internal, 
bootstrapping 

- - - - 

Moons et al  
(2002) 

European (multi-
sample) 

General 8,309 62 (7) - - - - - - - 

Muehlenbruch et al 
(2014) 

Germany General 21,846 49.3 (8.8) - 37.4 External 7,797 49.8 (8.9) - 48.9 

Muehlenbruch et al 
(2018) 

Germany General 25,392 49.6 (8.9) - 38.7 External 3,717 42.6 (25.4) - 49.1 

Nanri et al (2015) Japan General 24,950 45.5 (7.9) - 85.6 Internal, Subgroup 12,466 45.5 (7.8)  85.6 
 

Noda et al 
 (2010) 

Japan General 612 50.4 (5.5) - 100.0 - - - - - 

Osborn et al (2015) UK Psychiatric 38,824 49.5 (15.6) - 47.4 Internal - - - - 
 



Panagiotakos et al 
(2015) 

Greece General 3,042 - - - Internal, Subgroup 2,583 - - 50 

Park et al 
(2009) 

Korea General 100 58.1 (1.7) - 37.0 - - - - - 

Paynter et al (2009) USA General 22,129 53 (48-59y) - 0.0 - - - - - 
 

Paynter et al (2011) USA General M=11,280 
F=24,674 

55(50-62) - 31.0 Internal, 10-fold 
cross validation 

- - - - 

Pencina et al (2009) USA General M=2,173 
F=2,333 

M=37.3 
(9.2) 
F=26.3 
(9.3) 

- 48.2 Internal, 5-fold cross 
validation 

- - - - 

Pocock et al (2001) Europe & USA 
(multi-sample) 

General 47,088 - - - - - - - - 

Pylypchuk et al 
(2019) 

New Zealand General M=226,053 
F=175,699 

M=51.8 
(9.9) 
F=56.0 
(8.9) 

European: 
M=57% 
F=55% 

56.0 Internal validation – 
Split Sample 

- - - - 

Rana et al  
(2009) 

UK General 2,550 65 (8) - 63.6 - - - - - 

Ridker et al (2007) USA General 16,400 52 (48-58) White 95.2% 0.0 Internal – Split 
Sample 

8,158 52 (49-59) White 
95.3% 

0.0 

Ridker et al (2008) 
 

USA General 
(Male only) 

10,724 63 (IQR 57-
70) 

- 100 - - - - - 

Robinson et al (2011) Canada General 4,366 52.6 (12.5) Caucasian, 
65.7 

36.4 Internal, Subgroup 1,857 52.6 (12.5) Caucasian, 
65.7 

36.4 

Rosella et al (2011) 
 

Canada General 19.861 45 (-) Caucasian, 88 46.2 2 x External 9,899 & 
26,465 

46 (-) Caucasian, 
88.2 

46.1 

Sarrafzadegan et al 
(2017) 

Iran General 4,588 51.2 (11.9) - 48.7 Internal, Bootstrap - - - - 

Schulze et al (2007) 
 

Germany General 25,167 - - 38.6 2 x External 23,398 & 
657 

37 (-) - 28.6 

Selmer et al (2017) 
 

- General 66,712 52.0 (10.9) - 44.5 External 39,289 57.8 (12.0) - 50.8 

Solares et al (2019) 
 

UK General 64,772 50 - 29.9 Internal – Split 
Sample 

16,192 - - - 

Stern et al  
(2004) 

USA General 1,709 25-64 - - External 1,353 35-64y - - 

Sun et al (2009) 
 

Taiwan General 35,972 47.5 (9.9) - - Internal 36,989 - - - 

Tabaei et al (2005) 
 

Egypt General 516 44 (15) - 42 External 516 45 (14) - 43 

Tanabe et al (2010) Japan General 22,430 57.8 (11.1) - 40.0 - - - - - 
 

Tohidi et al (2008) Iran General 385 59 (11) - 67.0 - - - - - 



 
Voss et al  
(2002) 

Germany General 5,159 51.9 (6.7) - 100.0 Internal, 4-fold cross 
validation 

- - - - 

Wen et al (2017) China 
 

General 2,845 51 (11) - 44.4 External 1,287 51 (11) - 44.4 

WHO CVD Risk 
Chart Working Group 
(2019) 

Worldwide 
(Multi-study) 

General M=202,962 
F=173,215 

M=53 (48-
60) 
F=55 (49-
63) 

- 64.2 External 1,096,061 - - - 

Wickramsinghe et al 
(2014) 

USA General 16,533 42.2 (9.8) Caucasian, 
100 

82.4 Internal, Cross-
validation 

- - - - 

Wong et al (2015) China 
 

General 2,518 - - 92.7 External 839 - - 92.5 

Woodward et al 
(2007) 

Scotland General M=6,450 
F=6,757 

M=48.9 
(0.1) 
F=48.8 
(0.1) 

- 48.8 - - - - - 

Wu et al 
(2006) 

China General M=4,890 
F=5,013 

46 (6) - 49.3 External 17,329 - - - 

Yatsuya et al (2013) 
 

Japan General 15.672 - - 33.9 External  3,454 - - 33.9 

Yatsuya et al (2016) Japan General 15,672 57.4 
 

- 33.9 External 11,598 50.2 (5.8) - 37.0 

Ye et al (2014) China 
 

General 1,912 58.3 (5.9) - 41.9 Internal, Cross-
validation 

- - - - 

Zhang et al  
(2005) 

China General 3,000 45 (8) - 100.0 Internal, Split 
sample 

1,400 - - - 

Zhou et al (2013) China 
 

General 41,809 44 (14) Chinese, 100 39.5 2 x External 1,162 & 
1,693 

50 (10) & 
52 (11) 

Chinese, 
100 

34.9 & 
39.6 

- indicates no data available 

 

 

 

 

 

 

 



Appendix D Table 4: Algorithm Characteristics of Studies Included in Systematic Review 
Author (Year) Outcome Algorithm 

Risk Predicted Split 
by Sex 

Time-
frame of 
Risk 

Predictors in Model n Events  EPV Ratio Variable 
Selection 
Method 

Designed 
For 

Abd El-Wahab et 
al (2019) 

Metabolic 
Syndrome 

No Cross-
Sectional 

Obesity, Morbid Obesity, Employment, FHx Chronic Illness 156 7.8 Forward 
Stepwise 

Clinical 
Practice 

Abdul-Ghani et 
al (2011) 

T2DM No 8 Years Age, Sex, Ethnicity, BMI, FPG, HDL, SBP, 1hrGlucose 174 21.8 Previous 
Research 

Prediction 

Addoh et al 
(2016) 
 

CVD mortality No 11 Years Sex, Age, BMI, WC, HR, Physical Activity, Smoking 79 11.3 - Prediction 

Aekplakorn et al  
(2006) 

T2DM No 12 Years Age Sex, BMI, WC, HTN, FHx T2DM, IFG 125 27.8 Univariable Prediction 

Alaa et al (2019) CVD No 5 years 473 variables 4.801 10.2 Machine 
Learning 

Research 

Alghwiri et al 
(2014) 

T2DM No Cross-
Sectional 

Age, Sex, WC, BMI, Physical Activity, Fruit/veg intake, HTN, FPG, 
FHx T2DM, Ethnicity, Education 

- - Previous 
Research 

Screening 

Alssema et al 
(2011) 

T2DM No 5 Years Age, BMI, WC, BP meds, IFG, Sex, Smoking, FHx T2DM 844 84.4 Previous 
Research 

Prediction 

Alssema et al 
(2012) 

T2DM, CVD Yes 7 Years Age, BMI, WC, BP meds, Smoking, FHx CVD, FHx T2DM 839 69.6 Backward 
Elimination 

Prediction 

Anderson et al 
(2016) 

T2DM, 
Prediabetes 

No - T2DM, FPG, HTN, Tri, Lipid Disorder, Insurance Status, Ethnicity, 
Income 
Prediabetes = Age, Insurance, BMI, Temperature, FPG, Tri, ALT, 
CRP, HDL 

3,765 
 

8.51 Machine 
learning 

Prediction, 
Research 

Arima et al 
(2009) 

CVD No 14 years Age, Sex, SBP., T2DM, LDL, HDL, smoking 216 8.1 Previous 
Research 

Clinical 
Practice 

Artero et al 
(2015) 
 

CVD mortality No 15 Years Age, BMI, WC, HR, Physical Activity, Smoking, Sex M=577 
F=50 

M=52.4 
F=4.54 

Previous 
Research 

Prediction 

Artigao-Rodenas 
et al (2013) 

Cardiovascular 
Events 

Yes 10 Years Age, Chol, HDL, SBP, HTN, T2DM, Smoking M=26 
F=47 

M=3.7 
F=6.7 

Previous 
Research 

Prediction 

Aslibekyan et al 
(2011) 

MI No Cross-
Sectional 

Dietary trans fats, Dietary saturated fats, Dietary polyunsaturated fats, 
Dietary cholesterol, Dietary fibre, Dietary folate, “other components”, 
physical activity, smoking, alcohol, socioeconomic status, waist:hip 
ratio. 

839 64.5 Previous 
Research 

Clinical 
Practice 

Assmann et al 
(2002) 

Acute Coronary 
Event 

No 10 Years Age, LDL, Smoking, HDL, SBP, FHx MI, Tri, T2DM 325 5.7 Previous 
Research 

Prediction 

Backholer et al 
(2017) 

CVD mortality No 5 Years Age, Sex, Smoking, T2DM, SBP, HDL, Social Deprivation Score, 
eGFR, Sex*T2DM, Sex*HDL, Sex*Social Deprivation, Age*SBP, 
Age*Smoking 

1,375 80.8 Univariable Prediction 

Balkau et al 
(2004) 

CVD Yes 10 years Age, study centre, FPG, smoking, SBP, cholesterol, BMI 632 27.5 Previous 
Research 

Clinical 
Practice 



Barazzoni et al 
(2019) 

Prediabetes No 5 years Age, Sex, T2DM, HTN, Cholesterol 497 24.9 Forward 
Stepwise 

Clinical 
Practice 

Bell et al (2011) CVD Yes 10 years Averaged 2 measures (SBP, Cholesterol, HDL), Smoking, T2DM, 
HTN meds, Cholesterol meds,  

M=77 
F=207 

M=11.0 
F=29.6 

Previous 
Research 

Clinical 
Practice 

Boland et al 
(2005) 

CVD No 10 Years Age, SBP, Smoking, Cholesterol, Previous CVD event, FHx CVD, 
T2DM 

77 9.6 Previous 
Research 

Clinical 
Practice 

Boucher et al 
(2019)* 

Metabolic 
Syndrome 

No Cross-
Sectional 

Mid-Upper Arm Circumference Cut-offs M=598 
F=683 

M=598 
F=683 

Machine 
Learning 

Clinical 
Practice 

Brand et al 
(1976) 

CVD No 8.5 years Age,  Cholesterol, SBP, Smoking, Weight, ECG, haematocrit 257 28.6 Previous 
Research 

Research 

Brautbar et al 
(2009) 

CVD No 15 years Age, Sex, Smoking, T2DM, SBP, HTN meds, cholesterol, HDL, 9p21 
genotype 

1,349 134.9 Previous 
Research 

Research 

Chambless et al 
(2003) 

CVD Yes 10 Years Cholesterol, HDL, SBP, BP meds, smoking, T2DM, BMI, WHR, Keys 
Score, Albumin, WCC, FEV, fibrinogen, factor VII, vWF, HR, pack-
years, exercise, creatinine 

M=599 
F=345 

M=31.5 
F=18.2 

Previous 
Research 

Research 

Chen et al (2009) CVD mortality Yes 10 Years Age, Chol, SBP, Smoking 62  12.3 Previous 
Research 

Prediction 

Chen et al (2010) T2DM No 5 Years Age, Sex, Ethnicity, FHx T2DM, Raised FPG, BP meds, Smoking, 
Physical activity, WC 

445 (33) 13.5 Stepwise 
Backward 

Prediction 

Chen et al (2017) T2DM No - Age, FHx T2DM, Diet, BMI, HTN, FPG 387 29.8 Univariable Prediction 
Chien et al 
(2009) 
 

T2DM No 10 Years Age, FPG, BMI, Tri, WCC, HDL 548 36.5 Univariable Prediction 

Chien et al 
(2012) 

CVD No 10 Years Age, Sex, BMI, SBP, FHx CVD, Smoking 171 15.5 Subset 
Stepwise 

Clinical 
Practice 

Choe et al  
(2018) 

Metabolic 
Syndrome 

No Cross-
Sectional 

Age, Sex. BMI, Smoking, Alcohol, Exercise, 10xSNPs 223 13.9 Machine 
Learning 

Clinical 
Practice 

Cross et al 
(2012) 

Non-fatal CVD No 5 Years Age, Sex, T2DM, FHx MI, CTACK, Eotaxin, Fas Ligand, HGF, IL-
16, MCP-3, sFas 

385 8.75 Forward 
Selection 

Clinical 
Practice 

D’Agostino et al 
(2001) 

CHD Yes 5 Years BP, Chol, Age, Smoking, T2DM Males 
ARIC – 
195 
PHS – 182 
HHP – 77 
PR – 107 
SHS – 46 
CHS – 71 
 
Females 
ARIC – 80 
SHS – 23 
CHS 44 
 

Males 
ARIC – 39 
PHS – 36.4 
HHP – 15.4 
PR – 21.3 
SHS – 9.2 
CHS 14.2 
 
Females 
ARIC – 9 
SHS – 4.6 
CHS – 8.8 

Previous 
Research 

Prediction 

D’Agostino et al 
(2008) 

CVD Yes 12 Years Age, Chol, HDL, SBP, BP meds, Smoking, T2DM M=718 
F=456 

M=65.3 
F=41.5 

Univariable Prediction 



Davies et al 
(2010) 

CVD No - Age, T2DM, HTN, Smoking, Cholesterol, HDL, Sex, +12 SNPs 3,323 174.9 Machine 
Learning 

Research 

De Bacquer et al 
(2010) 

CVD Mortality No 10 Years Age, Sex, Smoking, SBP, Chol 274 45.7 Previous 
Research 

Prediction 

Dimopoulos et al  
(2018) 

CVD No 10 Year Age, Sex, Smoking, School Years, Diet Score, BMR, BMI, DBP, SBP, 
Hx HTN, FPG, T2DM, Chol, TG, Hx Hyperchol, IL-6 

317 3.17 Univariable, 
Machine 
Learning 

Clinical 
Practice 

Dugee et al 
(2015) 

T2DM No Cross-
Sectional 

Sex, WC, HTN, FPG, Physical Activity, Sitting time 59 3.7 Univariable Screening 

Dunder et al 
(2004) 

CVD No 28.7 
Years 

Apo B/Apo A Ratio, Proinsulin. SBP. MI, Smoking 135 7.5 Univariable Clinical 
Practice 

Ferrario et al 
(2012) 

CVD No 10 Years Age, Cholesterol, SBP, Smoking, HDL, T2DM, BP meds, FHx CVD 312 10.8 Forward 
Selection 

Clinical 
Practice 

Friedland et al 
(2009) 

CVD No Cross-
Sectional 

Age, HTN, T2DM, Cholesterol, Smoking, Audiogram Patterns 316 28.7 Enter Clinical 
Practice 

Gabriel et al 
(2015) 

CVD Yes 10 Year Age, Smoking, T2DM, SBP, Chol 1,214 71.4 Univariable Prediction 
 

Gao et al (2009) T2DM Yes 11 Years Age, BMI, WC, FHx T2DM 511 21.3 Univariable Prediction 
 

Gao et al (2010) T2DM No Cross-
Sectional 

Age, Sex, WC, FHx T2DM 194 11.4 Stepwise 
Backward 

Screening 
 

Gaziano et al 
(2008) 

CVD Yes 21 Years Age, SBP, Smoking, Cholesterol, T2DM. BP meds 1529 191.1 Previous 
Research 

Clinical 
Practice 

Glumer et al 
(2004) 
 

T2DM No Cross-
Sectional 

Age, Sex, BMI, HTN, Physical Activity, FHx T2DM 135 9.0 Stepwise 
Backward 

Screening 

Griffin et al 
(2000) 

T2DM No Cross-
Sectional 

Age, Sex, BMI, Steroids, BP Meds, FHx T2DM, Smoking 25 2.1 Forward 
Selection 

Screening 

Gupta et al 
(2019)* 
 

CVD Yes 10 Years Age, BMI, SBP, BP Meds, Smoking, T2DM - - Previous 
Research 

Clinical 
Practice 

Hamer et al 
(2009) 

CVD No 7 Years Age, Cholesterol, HDL, SBP, BP Meds, Smoking, T2DM, CRP 308 34.2 Previous 
Research 

Research 

Heianza et al 
(2013) 

T2DM No 4 Years Age, Sex, FHx T2DM, Smoking, BMI, HTN 965 53.6 Backward 
Elimination 

Prediction 

Heikes et al 
(2008) 

T2DM or 
Prediabetes 

No Cross-
Sectional 

Age, Sex, Weight, Height, WHR, BMI, HTN, FHx T2DM 326 18.1 Machine 
Learning 

Screening 

Hippisley-Cox & 
Coupland (2017) 

T2DM Yes 10 Years Age, Ethnicity, Social Deprivation, BMI, Smoking, FHx T2DM, CVD, 
BP Meds, Steroids, Atypical Antipsychotics, Statins, SMI, LD, 
Gestational Diabetes, PCOS, HbA1C 

M=100,419 
F=77,895 

M=4,781.9 
F=2,434.2 
 

Previous 
Research; Best 
Subset 
Selection 

Prediction 

Hippisley-Cox et 
al 
(2007) 

CVD Yes 10 Years Age, Chol:HDL Ratio, SBP, BMI, FHx CVD, Smoking, Deprivation, 
BP 

M=37,843 
F=27,828 

M=3,153.6 
F=2,319.0 

Previous 
Research; Best 
Subset 
Selection 

Prediction 



Hippisley-Cox et 
al (2008) 

CVD Yes 10 Years Ethnicity, Age, BMI, Townsend Score, SBP, HDL:Chol Ratio, FHx 
CVD, Smoking, HTN, T2DM, RA, AF, Renal Disease 

M=55,667 
F=41,042 

M=1,855.6 
F=1,368.1 

Previous 
Research; Best 
Subset 
Selection 

Prediction 

Hippisley-Cox et 
al (2009) 

T2DM Yes 10 Years Age, Ethnicity, Deprivation, Smoking, FHx T2DM, CVD, BP Meds, 
Steroids, BMI 

M=43,165 
F=34,916 

M=1,541.6 
F=1,247.0 

Previous 
Research; Best 
Subset 
Selection 

Prediction 

Hippisley-Cox et 
al (2010) 

CVD Yes 10 Years BMI, SBP, HDL:Chol Ratio, Townsend Score, Smoking, Ethnic 
Group, FHx CVD, T2DM, BP Meds, RA, AF, Renal Disease 

121,623 5,288 Previous 
Research; Best 
Subset 
Selection 

Prediction 

Hippisley-Cox et 
al (2013) 

Stroke/TIA Yes 10 Years Age, BMI, Smoking, Ethnicity, SBP, Chol:HDL ratio, BMI, FHx 
CVD, Deprivation, BP Meds, RA, Renal Disease, T1DM, T2DM, AF, 
CCF, Valve Disease 

M=38,074 
F=39,504 

M=1,057.6 
F=1,039.6 

Previous 
Research; Best 
Subset 
Selection 

Prediction 

Hippisley-Cox et 
al (2017) 

CVD Yes 10 Years Deprivation, Ethnicity, Smoking, FHx CVD, T1DM, T2DM, BP 
Meds, RA, AF, CKD>3, Migraine, Steroids, SLE, Atypical 
Antipsychotics, SMI, Erectile Dysfunction, Chol:HDL ratio, SBP 

M=203,016 
F=160,549 

M=5,075.4 
F=4,013.7 

Previous 
Research; Best 
Subset 
Selection 

Prediction 

Hossain et al 
(2018) 

Obesity No Cross-
Sectional 

Age, Height, Weight, Marital Status, Healthy Lifestyle, BMI, Sleep - - Machine 
Learning 

Research 

Hwa Ha et al 
(2018) 

T2DM Yes 10 Years Age, FHx T2DM, ETOH, Smoking, Physical Activity, BP Meds, 
Statins, BMI, SBP, Chol, FPG 

37,678 1,569.9 Previous 
Research 

Prediction 

Inouye et al 
(2018) 

CVD No 6 Years Genome Score, T2DM, BMI, Smoking, HTN, FHx CVD, Chol 22,242 3,177.4 Enter Research 

Kang et al  
(2012) 

CVD Yes Cross-
Sectional 

Age, Smoking, HTN, TG, HDL, FPG, Weight M=39 
F=63 

M=5.6 
F=9.0 

Previous 
Research 

Clinical 
Practice 

Katulanda et al 
(2016) 
 

T2DM No Cross-
Sectional 

Age, WC, BMI, HTN, Balanitis/Vulvitis, FHx T2DM, Gestational 
DM, Physical Activity, Osmotic Symptoms 

128 8.5 Univariable Screening 

Knuiman et al 
(1998) 

CVD Yes 15 Years Age, SBP, BP Meds, HDL:Chol Ratio, Smoking, ECG, CVD, T2DM M=243 
F=172 

M=18.7 
F=13.2 

Univariable Clinical 
Practice 

Ko et al (2010) 
 

T2DM No Cross-
Sectional 

Age, Sex, BMI, HTN, Lipids, FHx T2DM, Gestational DM 1,270 181.4 Univariable Screening 

L’Italien et al 
(2000) 

MI No 5 Years Age DBP, HDL:Chol Ratio, Smoking, T2DM, FHx CVD, Angina, 
Statin 

- - Previous 
Research 

Clinical 
Practice 

Laurier et al 
(1994) 

CVD Yes 10 Years Age, Chol, SBP, T2DM, Smoking - - Previous 
Research  

Clinical 
Practice 

Lees et al (2019) 
 

CVD  No 8 Years Age, Sex, Ethnicity, Smoking, SBP, DBP, BP Meds, Statins, Chol, 
HDL, eGFR 

2,552 159.5 Previous 
Research 

Clinical 
Practice 

Liao et al  
(2019) 

T2DM No Cross-
Sectional 

Age, WC, BMI, TG, SBP, HDL, LDL, Chol, DBP, Sedentariness, 
Stress Score, Alcohol, Fruit & Veg, Sleep, Sex, Smoking, Education, 
Depression, Hx CVD. 

17,598 606.8 Machine 
Learning 

Research 



Lindstrom et al 
(2003) 
 

T2DM No 5 Years Age, BMI, WC, BP Meds, FPG, Physical Activity, Fruit/Veg 
Consumption 

182 18.2 Previous 
Research 

Prediction 

Menotti et al 
(2005) 

CVD Yes 15 Years Age. BP. BMI, HDL Non-HDL Chol, T2DM, Smoking, HR M=397 
F=111 

M=14.7 
F=4.1 

Previous 
Research 

Clinical 
Practice 

Merry et al  
(2011) 

CVD No 10 Years Age, Sex, Smoking, SBP, HDL:Chol ratio 783 97.9 Previous 
Research 

Clinical 
Practice 

Mohammadreza 
et al (2012) 

CVD Yes 9 Years Age, SBP, BP meds, HDL, Chol, T2DM, Smoking, VAI 534 33.38 Previous 
Research 

Clinical 
Practice 

Moons et al 
(2002) 

Stroke No 7.3 
Years 

Age, Hx Stroke, T2DM, Smoking, Hx, HTN, DBP 219 13.7 Backward 
Elimination 

Clinical 
Practice 

Muehlenbruch et 
al (2014) 

T2DM No 5 Years Age, Height, Weight, WC, HTN, ETOH, Exercise, Smoking, Ex-
Smoker, Wholegrain intake, Coffee intake, Red meat intake, FHx 
T2DM(x3) 

492 49.2 Previous 
Research 

Prediction 

Muehlenbruch et 
al (2018) 

T2DM No 5 Years Age, Height, WC, HTN, Physical Activity, Ex-Smoker x2, Smoking x 
2, Wholegrain intake, coffee intake, red meat intake, FHx T2DM x 3, 
HbA1C 

857 57.1 Previous 
Research 

Prediction 

Nanri et al 
(2015) 

T2DM No 3 Years Sex, Age, BMI, WC, Smoking, HTN, Dyslipidaemia, FPG, HbA1C 1,122 74.8 Backward 
Elimination 

Prediction 
 

Noda et al 
(2010) 

MI No 1 Year BP, LDL, HDL, TG, FPG, Smoking 204 12.8 Enter Clinical 
Practice 

Osborn et al 
(2015) 

CVD No 10 Years Sex, Age, BMI, SBP, Weight, Height, T2DM, Smoking, Year, 
Deprivation, Antidepressants, Alcohol, SMI, FGA, SGA 

2,324 154.93 Backward 
Elimination 

Prediction 

Panagiotakos et 
al (2015) 

CVD Yes 10 Years Smoking, BMI, Hypercholesterolaemia, HTN, T2DM 47 4.27 Previous 
Research 

Prediction 

Park et al 
(2009) 

MI No Cross-
Sectional 

EPA, ALA, trans-oleic acid, arachidonic acid 50 3.1 Univariable Research 

Paynter et al 
(2009) 

CVD No 10 Years Age, SBP, Chol, HDL, Smoking, BP Meds, T2DM, HbA1C, hsCRP, 
FHx MI, rs1075724 genotype AG/GG 

715 59.6 Previous 
Research 

Clinical 
Practice 

Paynter et al 
(2011) 

CVD Yes 10 Years Age, SBP, Chol, HDL, Smoking, CRP, FHx MI, HbA1C M=170 
F=125 

M=21.3 
F=15.7 

Previous 
Research 

Clinical 
Practice 

Pencina et al 
(2009) 

CVD No 30 Years Age, Sex, SBP, BP Meds, Smoking, T2DM, Chol, HDL, BMI 671 33.6 Enter Clinical 
Practice 

Pocock et al 
(2001) 

CVD mortality No 5 Years Age, Sex, SBP, Chol, Height, Creatinine, Smoking, T2DM, LVH, Hx 
Stroke, Hx MI.  

1,639 102.4 Enter Clinical 
Practice 

Pylypchuk et al 
(2019) 

CVD Yes 5 Years Deprivation, Sex, Age, Ethnicity, FHx CVD, Smoking, T2DM, SBP, 
HDL:Chol Ratio, AF, BP Meds, Chol Meds, Anti-thromotic Meds. 

M=9,736 
F=5,650 

M=463.6 
F=269.1 

Previous 
Research 

Clinical 
Practice 

Rana et al  
(2009) 

CVD No 6 Years Age, Sex, SBP, Chol, HDL, TG, CRP, MPO, Type 2 PhosA2, 
Lipoprotein Phos A2, MCP-1, Adiponectin 

921 70.8 Previous 
Research 

Clinical 
Practice 

Ridker et al 
(2007) 

CVD No 10 Years Age, HbA1C, SBP, Smoking, ApoB, hsCRP, ApoA-1, FHx MI 504 14.4 Forward 
Stepwise 

Clinical 
Practice 

Ridker et al 
(2008) 
 

CVD Yes 10 Years Age, BP, Smoking, Chol, HDL, CRP, FHx MI <60 1072 107.2 Previous 
Research 

Prediction 



Robinson et al 
(2011) 

Prediabetes/T2DM No Cross-
Sectional 

Sex, Age, BMI, WC, Physical Activity, Daily fruit/veg, HTN, FHx 
T2DM, Maternal Ethnicity, Paternal Ethnicity, Education, Self-
reported health status, Smoking, Gestational DM, Macrosomia 

852 37.1 Previous 
Research 

Screening 

Rosella et al 
(2011) 
 

T2DM 
 

Yes 9 Years Age, Height, Weight, Chronic Disease, Ethnicity, Immigration Status, 
Smoking, Educational Achievement, Household Income, Alcohol, 
Physical Activity 

M=714 
F=651 

M=47.6 
F=43.4 

Previous 
Research 

Prediction 

Sarrafzadegan et 
al (2017) 

CVD No 10 Years Age, Sex, WHR, SBP, Tri, T2DM, Smoking, FHx CVD 705 41.5 Forward 
Selection 

Prediction 

Schulze et al 
(2007) 
 

T2DM 
 

No 7 Years Age, Sex, Weight, Height, BMI, WC, HTN, Alcohol, Physical 
Activity, Occupational Activity, Education, Smoking, Food Intake, 
lgAge, lgWC, Sex*Height, Sex*WC 

849 28.3 Forward 
Selection 

Prediction 

Selmer et al 
(2017) 
 

CVD 
 

Yes 10 Year Chol, HDL, Smoking, SBP, BP meds, FHx CVD M=3,658 
F=2,459 

M=609.7 
F=409.8 

Previous 
Research 

Prediction 

Solares et al 
(2019) 

CVD No 10 Years Sex, SBP, Smoking, Deprivation, T2DM, Chol, HDL, LDL, Past SBP 3,222 161.1 Machine 
Learning 

Clinical 
Practice 

Stern et al  
(2004) 

T2DM No 5 Years Age, Sex, Ethnicity, FPG, SBP, HDL, FHx T2DM, Met Syndrome 195 21.7 Previous 
Research 

Clinical 
Practice 

Sun et al (2009) 
 

T2DM No 5 Year Sex, Age, Education, Smoking, BMI, WC, HTN, FPG, Tri, ALT, 
eGFR, HDL 

1,770 104.1 Previous 
Research 

Prediction 

Tabaei et al 
(2005) 
 

Prediabetes/T2DM No Cross-
Sectional 

Age, Sex, BMI, Post-prandial time, SBP, Glu, HDL 77 5.5 Forward 
Selection 

Screening 

Tanabe et al 
(2010) 

MI No 5 Years Sex, Age, HDL, Chol, BMI, HTN, T2DM, Smoking 104 8.0 Univariable Clinical 
Practice 

Tohidi et al 
(2008) 

CVD No 3 Years Smoking, WHR, HTN, T2DM, FHx CVD, Chol, HDL, CRP 207 25.9 Forward 
Selection 

Clinical 
Practice 

Voss et al  
(2002) 

MI No 10 Years Age, SBP, LDL, HDL, TG, Gamma-GT, BMI, Height, Smoking, 
T2DM, HTN, FHx MI, FHx HTN 

325 5.70 Machine 
Learning 

Clinical 
Practice 

Wen et al (2017) T2DM 
 

No - Age, BMI, WC, FHx T2DM 218 18.2 Forward 
Stepwise 

Prediction 

WHO CVD Risk 
Chart Working 
Group (2019) 

CVD Yes 10 Years Age, Smoking, SBP, T2DM, Chol 19,333 3,866.6 Previous 
Research 

Clinical 
Practice 

Wickramsinghe 
et al (2014) 

CVD Death No 30 Years Age, BMI, SBP, Fitness, T2DM, Chol, Smoking, Sex M=1,027 
F=96 

M=51.35 
F=4.8 

Previous 
Research 

Prediction 

Wong et al 
(2015) 

T2DM No XS Age, Sex, Smoking, BMI, FHx T2DM, Exercise, BP, WC, Tri, Chol, 
HDL, LDL 

209 13.1 Forward 
Stepwise 

Screening 

Woodward et al 
(2007) 

CVD Yes 10 Years Deprivation, Chol, HDL. SBP, Smoking, Fhx CVD, T2DM M=743 
F=422 

M=57.2 
F=32.5 

Univariable Clinical 
Practice 

Wu et al 
(2006) 

CVD Yes 10 Years Age, SBP, Chol, BMI, Smoking, T2DM M=224 
F=266 

M=17.2 
F=20.5 

Univariable Clinical 
Practice 

Yatsuya et al 
(2013) 
 

Stroke No 14 Years Age, Sex, Smoking, BMI, HTN, BP Meds, T2DM, Sex*Smoking, 
HTN*BP Meds 

790 30.4 Backward 
Selection 

Prediction 



Yatsuya et al 
(2016) 

CVD No 17 Years Age, Sex, Smoking, SBP, BP Meds, T2DM, HDL, LDL 744 16.9 Backward 
Selection 

Prediction 

Ye et al (2014) T2DM 
 

No 6 Years Sex, HTN, BMI, FPG, HbA1C, CRP 924 71.1 Backward 
Elimination 

Prediction 

Zhang et al  
(2005) 

CVD No 10 Years BP, Age, Chol, BMI, Smoking 55 3.9 Univariable Clinical 
Practice 

Zhou et al (2013) T2DM No Cross-
Sectional 

Sex, Age, BMI, WC, SBP, FHx T2DM 2,520 172.8 Forward 
Stepwise 

Screening 

- indicates no data available 

CVD = Cardiovascular Diseases; T2DM = Type 2 Diabetes Mellitus; EPV = Events Per Variable; M/F = Male or Female; SysBP = Systolic Blood Pressure; T2DM = Type 2 Diabetes Mellitus; Tot Chol 
= Total Cholesterol; HTN = Diagnosis of Hypertension; HDL = High-Density Lipoprotein; FHx T2DM = Family history of Type 2 Diabetes Mellitus; BP Meds = Prescribed Antihypertensive 
Medication; WC = Waist Circumference; FHx CVD = Family History Cardiovascular Diseases; Phys Act = Physical Activity; FPG = Fasting Plasma Glucose; Tri = Triglycerides; Chol:HDL = 
Cholesterol:HDL Ratio; LDL = Low-Density Lipoprotein; ETOH = Alcohol Use; ECG = Electrocardiogram Findings; CVD Event = Personal History of Cardiovascular Diseases; HbA1C = Glycated 
Haemoglobin; WHR = Waist:Hip Ratio; Genetic = Genotype Data; DBP = Diastolic Blood Pressure; Gest DM = Gestational Diabetes Mellitus; RA = Rheumatoid Arthritis; Renal Dis = Renal 
Disorders; HR = Heart Rate; SMI = Diagnosis of Serious Mental Illness; eGFR = Glomerular Filtration Rate; IFG = Impaired Fasting Glucose; ALT = Alanine Aminotransferase; Atyp Antipsych = 
Prescribed Antipsychotic Medication; T1DM = Type 1 Diabetes Mellitus; WCC = White Cell Count; Chron Dis = Personal History of Chronic Disease; ApoA/ApoB = Apolipoprotein A/B Levels.  

 

 

Appendix D Table 5: Algorithm Performance of Studies Included in Systematic Review 

 Model Performance (Derivation Cohort) Model Performance (Validation Cohort) Other 
Author (Year) Discrimination Calibrationa Sens Spec PPV Discrimination Calibrationa Sens Spec PPV Analysis to 

assess uptake 
Economic 
Analysis 

Abd El-Wahab et 
al (2019) 

C=0.83 (0.80-
0.89) 

- - - - - - - - - No No 

Abdul-Ghani et al 
(2011) 

- - 77.8 77.4 44.8 - - 76 72 11.9 No Discussed 

Addoh et al (2016) 
 

- - - - - - - - - - Discussed No 

Aekplakorn et al  
(2006) 

C=0.79 p>0.05 77 60 - C=0.78 (0.72-
0.79) 

p=0.88 
 

84.4 52.5 - Discussed No 

Alaa et al (2018) C=0.76 (0.76-
0.76) 

 
 

69.9% - 2.6% - - - - - No No 

Alghwiri et al 
(2014) 

- - - - - - - - - - Discussed No 

Alssema et al 
(2011) 

C=0.74 (0.73-
0.76) 

10.0, p=0.27 - - - C=0.77 (0.75-
0.78) 

10.0 p=0.27 76 63 - Questionnaire No 

Alssema et al 
(2012) 

M= C=0.80 
(0.78-0.82) 
F= C=0.82 
(0.81-0.83) 

M=6.3,p=0.62 
F=7.6, p=0.48 

M=75 
F=83 

M=66 
F=62 

- M= C=0.80 (0.78-
0.81) 
F= C=0.82 (0.80-
0.83) 

- - - - Questionnaire No 



Anderson et al 
(2016) 

T2DM 
C=0.78 
Prediabetes 
C=0.72 

- - - - T2DM 
C=0.78 
Prediabetes  
- 

- - - - No  No 

Arima et al (2009) - - - - - C=0.81 (0.77-
0.86) 

Calibration 
Plots 

- 79 - No No 
 

Artero et al (2015) 
 

C= 0.68 (0.66-
0.81) 

- - - - - - - - - No No 

Artigao-Rodenas 
et al (2013) 

M= C=0.78 
(0.71-0.85) 
F= C=0.79 
(0.72-0.86) 
 

M=10.3, p=0.25; 
F=6.58,p=0.58 

79.1 65.0 25.2 - - - - - No No 

Aslibekyan et al 
(2011) 

- - - - - C=0.63 - - - - No No 

Assmann et al 
(2002) 

C=0.82 6.5 p=0.30 - - - - - - - - Creation of 
simple points-
scoring system 

No 

Backholer et al 
(2017) 

C=0.91 (0.89-
0.93) 

p=0.42 - - - C=0.75 (0.71-
0.79) 

- - - - GUI under 
consideration 

No 

Balkau et al 
(2004) 

- - - - - - - - - - No No 
 

Barazzoni et al 
(2019) 

ROC Curves 
reported only 

- - - - - - - - - No No 

Bell et al (2011) M= C=0.78 
F=C=0.78 

M= p=0.24 
F = p=0.96 

- - - - - - - - No  No 

Boland et al 
(2005) 

- - - - - - - - - - Feasibility 
Assessment 
Included 

No 

Boucher et al 
(2019)* 

- - - - - - - 87.0 66.6 70.5 No No 

Brand et al (1976) - Calibration Slope - - - - - - - - No No 
Brautbar et al 
(2009) 

C=0.79 (0.79-
0.79) 

- - - - - - - - - No No 

Chambless et al 
(2003) 

M= C=0.71 
F= C=0.84 

- - - - - - - - - No No 

Chen et al (2009) M= C=0.76 
(0.69-0.84) 
F= C=0.71 
(0.62-0.80) 

F=7.43, p=0.11 

M=2.32,p=0.68 
- - - - - - - - Discussed No 

Chen et al (2010) C=0.79 (0.76-
0.81) 

15.1, p=0.06 74.0 67.7 12.7 C=0.66 (0.60-
0.71) &  
C=0.79 (0.72-
0.86) 

9.2 p=0.32 & 
29.4 p<0.01 
 

- - - Has been made 
into online tool 

No 

Chen et al (2017) C=0.75 p=0.43 63.1 75.9 - C=0.67 p=0.73 59.2 65.7 - Discussed Discussed 



 
Chien et al (2009) C=0.70 (0.68-

0.73) 
p=0.874 62 78 - C=0.66 - 62 78 - - - 

 
Chien et al (2012) C=0.78 (0.74-

0.82) 
Calibration Plots - - - - - 0.71 0.59 - No No 

 
Choe et al (2018) C=0.69 - 0.12 0.98 - - - 0.38 0.79 - No No 

 
Cross et al (2012) C=0.65 - - - - C=0.66 - - - - No No 

 
Davies et al (2010) C=0.61 - - - - C=0.60 - - - - No No 

 
D’Agostino et al 
(2001) 

M= C=0.79 
F= C=0.83 

- - - - M= C=0.71 
F= C=0.81 

M=10.0, p= - 
F=5.15, p= - 

- - - No No 

D’Agostino et al 
(2008) 

M= C=0.76 
(0.75-0.78) 
F= C=0.79 
(0.77-0.81) 
 

M=13.48,p=0.14 
F=7.79, p=0.56 

- - - - - - - - - - 

De Bacquer et al 
(2010) 

- - - - - C=0.86 8.31 p=0.14 77 72 - No No 

Dimopoulos et al 
(2018) 

- - - - - - - 0.83 0.24 0.87 No No 

Dugee et al (2015) 
 

C=0.76 (0.70-
0.82) 

p=0.44 - - - C=0.72 p=0.83 81 59 11 Discussed No 

Dunder et al 
(2004) 

- - - - - C=0.66 4.7, p=0.79 - - - No No 
 

Ferrario et al 
(2012) 

C=0.75 - - - - C=0.74 (0.68-
0.80) 

Intercept - - - No No 
 

Friedland et al 
(2009) 

C=0.86 (0.83-
0.88) 

- - - - C=0.84 - - - - No No 

Gabriel et al 
(2015) 

M= C=0.79 
F= C=0.82 

- - - - - - - - - No 
 

No 

Gao et al (2009) - - - - - M= C=0.71 (0.66-
0.77) 
F= C=0.71 (0.66-
0.77) 

- M=72 
F=77 

M=47 
F=50 

- Discussed No 

Gao et al (2010) - Female 
10.36 
p=0.24 
 
Male 
6.23 p=0.62 

- - - Female 
C=0.69 (0.63-
0.72) 
Male 
C=0.64 (0.59-
0.68) 

- Female 
80.1 
Male 
64.1 

Female 
47.5 
Male 
56.7 

- Discussed No 

Gaziano et al 
(2008) 

M=C=0.78 
(0.77-0.80) 

M=6.70, p=0.570 
F=6.62, p=0.579 

M=85.0 
F=76.8 

M=57.8 
F=73.4 

M=47.1 
F=44.2 

- - - - - No  No 



F=C=0.83 (0.81-
0.85) 

Glumer et al 
(2004) 
 

C=0.80 (0.77-
0.84) 

- 73.3 74.3 11.0 C=0.80 - 
 

75.9 72.2 7.3 No No 

Griffin et al (2000) - - - - - 
 

C=0.80 - 77.3 72.0 11.13 Discussed No 

Gupta et al (2019) - - - - - - - - - - No No 
 

Hamer et al (2009) C=0.78 (0.76-
0.80) 

- - - - - - - - - No No 
 

Heianza et al 
(2013) 
 

C=0.77 (0.76-
0.78) 

- 72.7 68.1 6.4 C=0.73 - 74.2 70.6 9.6 Discussed Discussed 

Heikes et al (2008) C=0.85 - 88.2 74.9 13.7 C=0.70 - 77.7 51.4 0.40 In development Discussed 
 

Hippisley-Cox & 
Coupland (2017) 

- - - - - M= C=0.86 (0.85-
0.86) 
F= C=0.88 (0.87-
0.88) 

Calibration 
Slopes 
M=0.99 
F=0.99 

45.9 90.8  Online tool 
available 

No 

Hippisley-Cox et 
al 
(2007) 

- - - - - M=C=0.77 
F=C=0.79 

Calibration 
Plots 

- - - Online tool 
available 

No 

Hippisley-Cox et 
al (2008) 

- - - - - M= C=0.79 (0.79-
0.79) 
F= C=0.82 (0.81-
0.82) 

Calibration 
Plots 

- - - Online tool 
available 

No 

Hippisley-Cox et 
al (2009) 

- - - - - M= C=0.83 (0.83-
0.84) 
F=C=0.85 (0.85-
0.86) 

Calibration 
Plots 

- - - Online tool 
available 

No 

Hippisley-Cox et 
al (2010) 

- - - - - M= C=0.83 (0.83-
0.83) 
F=C=0.84 (0.84-
0.84) 

Calibration 
Plots 

- - - Online tool 
available 

No 

Hippisley-Cox et 
al (2013) 

- - - - - M= C=0.87 (0.87-
0.87) 
F= C=0.88 (0.88-
0.89) 

Calibration 
Plots 

- - - Online tool 
available 

No 

Hippisley-Cox et 
al (2017) 

- - - - - M= C=0.86 (0.86-
0.86) 
F= C=0.88 (0.88-
0.88) 

Calibration 
Plots 

- - - Online tool 
available 

No 

Hossain et al 
(2018) 

- - - - - - - - - - No No 



 
Hwa Ha et al 
(2018) 

M= C=0.71 
(0.70-0.73) 
F= C=0.76 
(0.75-0.78) 

- - - - M= C=0.63 (0.53-
0.73) 
F= C=0.66 (0.55-
0.76) 

Calibration 
Plots 

- - - Discussed No 

Inouye et al (2018) C=0.70 (0.69-
0.70) 

- - - - - - - - - No No 
 

Kang et al (2012) M= C=0.68 
(0.54-0.71) 
F= C=0.73 
(00.67-0.80) 

- - - - - - - - - No No 

Katulanda et al 
(2016) 
 

C=0.78 - - - - C=0.74 - 77.9 63.0 9.4 Discussed No 

Knuiman et al 
(1998) 

- - - - - - - - - - No No 

Ko et al (2010) 
 

C=0.74 (0.71-
0.77) 
 

- - - 40 C=0.68 (0.66-
0.70) 
C=0.77 (0.72-
0.82) 

- - - 49.3 
& 
21.2 

Discussed No 

L’Italien et al 
(2000) 

- - - - - - - - - - No No 
 

Laurier et al 
(1994) 

- - - - - - - - - - No No 
 

Lees et al (2019) C=0.74 (0.74-
0.75) 

- - - - - - - - - No No 
 

Liao et al  
(2019) 

- - - - - C=0.82 - 0.72 0.77 - No No 

Lindstrom et al 
(2003) 

C=0.85 - 78 77 13 C=0.87 - 81 96 5 Discussed No 

Menotti et al 
(2005) 

- CITL M=10.8, 
F=2.2 

- - - - - - - - No, but 
software 
produced 

No 

Merry et al (2011) C=0.80 (0.78-
0.82) 

Calibration Plots 
 

- - - - - - - - No No 

Mohammadreza et 
al (2012) 

M= C=0.78 
(0.80-0.80) 
F= C=0.84 
(0.82-0.86) 

M=13.6, p=0.135 
F=11.1, p=0.266 

- - - - - - - - No No 

Moons et al (2002) C=0.68 (0.63-
0.73) 

p<0.50 39 84 - - - - - - No No 
 

Muehlenbruch et 
al (2014) 

C=0.82 (0.80-
0.85) 

- 74 78 7 C=0.82 Calibration 
Plots 

87 61 6 No No 

Muehlenbruch et 
al (2018) 

C=0.87 (0.81-
0.92) 

- 63 90 14 C=0.91 (0.88-
0.94) 

Calibration 
Plots 

81 84 11 Discussed No 



Nanri et al (2015) 
 

C=0.89 (0.88-
0.90) 

- 84.2 80.3 16.7 C=0.88 (0.87-
0.90) 

11.7 p=0.17 82.2 80.0 16.4 Discussed No 

Noda et al (2010) C=0.77 p=0.94 - - - - - - - - No No 
 

Osborn et al 
(2015) 

- - - - - M= C=0.80 (0.76-
0.83) 
F= C=0.79 (0.76-
0.82) 

Calibration 
Plots 

- 
 

- - Discussed Yes 

Panagiotakos et al 
(2015) 

- - - - - - Kendall’s Tau 
M=0.91 
F=0.89 

70 67 35 Discussed No 

Park et al 
(2009) 

C=0.97 - - - - - - - - - No No 

Paynter et al 
(2009) 

C=0.81 (0.79-
0.83) 

7.43 p=0.49 - - - - - - - - No No 
 

Paynter et al 
(2011) 

M= C=0.61 
F= C=0.70 

M= 6.5, p=0.011;  
F=15.9, p=0.001 

- - - - - - - - No No 

Pencina et al 
(2009) 

C=0.80 (0.79-
0.82) 

4.25, p=0.894    C=0.80 (0.77-
0.83) 

3.98, p=0.913    No, but 
software 
produced 

 

Pocock et al 
(2001) 

- - - - - - - - - - No No 
 

Pylypchuk et al 
(2019) 

M= C=0.73 
(0.72-0.73) 
F= C=0.73 
(0.72-0.73) 

Calibration Plots - - - M= C=0.72 (0.71-
0.72) 
F= C=0.72 (0.71-
0.73) 

Calibration 
Plots 

- - - No, but patient 
example 
provided 

No 

Rana et al  
(2009) 

C=0.65 (0.59-
0.64) 

p=0.009 - - - - - - - - No No 

Ridker et al (2007) - - - - - C=0.81 p=0.38 - - - No No, but 
clinical 
example 
provided 

Ridker et al (2008) 
 

C=0.71 15.6 
p=0.08 
 

- - - - - 
 

- - - Online tool Discussed 

Robinson et al 
(2011) 

- - - - - C=0.75 (0.73-
0.78) 

- 70 67 35 Discussed Discussed 

Rosella et al 
(2011) 
 

M= C=0.80 
(0.78-0.83) 
F= C=0.78 
(0.76-0.79) 

M=4.22 p>0.1 
F=5.22 p>0.1 

- - - C=0.77 to 0.80 13.04-18.27, 
p>0.1 

- - - Discussed No 

Sarrafzadegan et al 
(2017) 

C=0.74 (0.72-
0.76) 

Nam D’Agostino 
10.8, p=0.29 

- - - C=0.74 (0.70-
0.78) 

- - - - Online tool No 

Schulze et al 
(2007) 

- - - - - C=0.84 - 83.1 68.3 5.9 Online tool No 



 
Selmer et al 
(2017) 
 

M= C=0.79 
F=  C=0.84 

Calibration Plots 64 66 - M= C=0.84 (0.83-
0.85) 
F= C=0.79 (0.79-
0.90) 

Calibration 
Plots 

- - - Discussed No 

Solares et al 
(2019) 

C=0.71 (0.69-
0.75) 

Slope=0.98 (0.84-
1.14) 

- - - C=0.74 (0.73-
0.74) 

Slope=0.87 
(0.62-1.07) 

- - - No No 

Stern et al  
(2004) 

C=0.82 - 75.9 - - C=0.77 - 74.4 - - No No 

Sun et al (2009) 
 

C=0.85 (0.83-
0.87) 

- 74.9 79.9 15.4  0.57, p=0.45 72.9 80.7 14.4 Discussed Discussed 

Tabaei et al (2005) 
 

C=0.82 7.98, p=0.44 55 90 65 - - 53 89 63 Calculator 
Developed 

Discussed 

Tanabe et al 
(2010) 

C=0.82 - - - - - - - - - No No 

Tohidi et al (2008) C=0.80 (0.75-
0.85) 

- 41.8 92.8 76.5 - - - - - No No 
 

Voss et al  
(2002) 

C=0.90 (0.89-
0.91) 

- 74.5 97.0 64.0 - - - - - No No 

Wen et al (2017) C=0.72 (0.67-
0.73) 
 

- - - - C=0.70 (0.67-
0.74) 

p=0.81 74.3 58.8 9.3 Discussed No 

WHO CVD Risk 
Chart Working 
Group (2019) 

M= C=0.67 
(0.66-0.67) 
F= C=0.76 
(0.75-0.77) 

Calibration Plots - - - C=0.69 (0.63-
0.74) to C=0.83 
(0.78-0.88) 

Calibration 
Plots 

- - - No, but risk 
charts designed 

No 

Wickramsinghe et 
al (2014) 

C=0.81 (0.80-
0.82) 

Nam D’Agostino 
10.9, p=0.29 

 - - C=0.81 (0.79-
0.82) 

Nam 
D’Agostino 
6.03, p=0.74 

- - - Online tool No 

Wong et al (2015) C=0.70 (0.66-
0.73) 

p=0.053 66.2 60.2 - C=0.71 (0.65-
0.77) 

p=0.48 72.1 57.8 - Simple 
Nomogram 
Designed 

No 

Woodward et al 
(2007) 

M= C=0.73 
F= C=0.77 

 46.3 82.5 20.3      No,. but online 
calculator 
created 

No 

Wu et al 
(2006) 

M=0.80 (0.76-
0.83) 
F=0.79 (0.75-
0.83) 

    M= C=0.79 (0.76-
0.83) 
F= C=0.78 (0.74-
0.82) 

- - - - No No 

Yatsuya et al 
(2013) 
 

C=0.74 Grønnesby–
Borgan, p=0.62 

- - - C=0.69 Grønnesby–
Borgan, 
p=0.17 

- - - Discussed No 

Yatsuya et al 
(2016) 

C=0.81 (0.78-
0.84) 
 

Grønnesby–
Borgan, p=0.74 

- - - C=0.77 
 

Grønnesby–
Borgan, 
p=0.74 

- - - Discussed No 



- indicates no available data 
aHosmer-Lemeshow statistics (χ2 and p-value) presented unless otherwise stated. 
Sens = Sensitivity; Spec = Specificity; PPV = Positive Predictive Value; M/F = Indicates sex-stratified analysis (M=Male, F=Female 

 

 

Ye et al (2014) C=0.73 (0.71-
0.75) 
 

- - - - C=0.72 p=0.62 56 75 - Discussed No 

Zhang et al  
(2005) 

C=0.76 - - - - C=0.76 p=0.71 - - - No No 

Zhou et al (2013) C=0.75 (0.74-
0.76) 

7.0, p=0.54 - - - C=0.72 (0.55-
0.78) & C=0.70 
(0.68-0.72) 

Graphical 92.3 & 
86.8 

35.5 & 
38.8 

- Discussed Discussed 



Appendix D Table 6: TRIPOD Checklist: PsyMetRiC Model Development & Validation 

Section/Topic Ite  Checklist Item            Section/ 
Title and abstract Paragraph 

Title 1      D;V 
Identify the study as developing and/or validating a multivariable 
prediction model, the target population, and the outcome to be 
predicted. 

Title 

Abstract 2      D;V 
Provide a summary of objectives, study design, setting, 
participants, sample size, predictors, outcome, statistical 
analysis, results, and conclusions. 

Abstract 

Introduction 

Background 
and 
objectives 

3a     D;V 

Explain the medical context (including whether diagnostic or 
prognostic) and rationale for developing or validating the 
multivariable prediction model, including references to existing 
models. 

Introduction 
Paragraphs 1-2 

3b     D;V Specify the objectives, including whether the study describes the 
development or validation of the model or both. 

Introduction 
Paragraph 3 

Methods 

Source of 
data 

4a      D;V 
Describe the study design or source of data (e.g., randomized 
trial, cohort, or registry data), separately for the development and 
validation data sets, if applicable. 

Methods – Data 
Sources – 
Paragraph 1-3 

4b      D;V Specify the key study dates, including start of accrual; end of 
accrual; and, if applicable, end of follow-up.  

Methods – Data 
Sources – 
Paragraph 1-3 

Participants 

5a     D;V 
Specify key elements of the study setting (e.g., primary care, 
secondary care, general population) including number and 
location of centres. 

Methods – Data 
Sources – 
Paragraph 1-3 

5b     D;V Describe eligibility criteria for participants.  
Methods – Data 
Sources – 
Paragraph 1-3 

5c     D;V Give details of treatments received, if relevant.  N/A 

Outcome 
6a     D;V Clearly define the outcome that is predicted by the prediction 

model, including how and when assessed.  

Methods – 
Outcome – 
Paragraph 1 

6b     D;V Report any actions to blind assessment of the outcome to be 
predicted.  

N/A 
(retrospective 
analysis) 

Predictors 

7a     D;V 
Clearly define all predictors used in developing or validating the 
multivariable prediction model, including how and when they 
were measured. 

Methods – Data 
Sources – 
Paragraph 1-3; 
Methods – 
Predictor 
Variables – 
Paragraph 1 

7b     D;V Report any actions to blind assessment of predictors for the 
outcome and other predictors.  

N/A 
(retrospective 
analysis) 

Sample size 8     D;V Explain how the study size was arrived at. 
Methods – Data 
Sources – 
Paragraph 1-3 

Missing data 9     D;V 
Describe how missing data were handled (e.g., complete-case 
analysis, single imputation, multiple imputation) with details of 
any imputation method.  

Methods – 
Statistical 
Analysis – 
Paragraph 1 

Statistical 
analysis 
methods 

10a  D Describe how predictors were handled in the analyses.  

Methods – 
Statistical 
Analysis – 
Paragraph 1 

10b  D Specify type of model, all model-building procedures (including 
any predictor selection), and method for internal validation. 

Methods – 
Statistical 
Analysis – 
Paragraph 1 

10c  V For validation, describe how the predictions were calculated.  

Methods – 
Statistical 
Analysis – 
Paragraph 2 

10d     D;V Specify all measures used to assess model performance and, if 
relevant, to compare multiple models.  

Methods – 
Statistical 
Analysis – 
Paragraph 2 

10e  V Describe any model updating (e.g., recalibration) arising from the 
validation, if done. N/A 

Risk groups 11     D;V Provide details on how risk groups were created, if done.  N/A 
Developmen
t vs. 
validation 

12  V For validation, identify any differences from the development data 
in setting, eligibility criteria, outcome, and predictors.  Table 1 

Results 



Participants 

13a     D;V 
Describe the flow of participants through the study, including the 
number of participants with and without the outcome and, if 
applicable, a summary of the follow-up time.  

Methods – Data 
Sources – 
Paragraph 1-3; 
Table 1 

13b     D;V Describe the characteristics of the participants (basic 
demographics, clinical features, available predictors). Table 1 

13c  V 
For validation, show a comparison with the development data of 
the distribution of important variables (demographics, predictors 
and outcome).  

Table 1 

Model 
developmen
t  

14a  D Specify the number of participants and outcome events in each 
analysis.  Table 1 

14b  D If done, report the unadjusted association between each 
candidate predictor and outcome. N/A 

Model 
specification 

15a  D 
Present the full prediction model to allow predictions for 
individuals (i.e., all regression coefficients, and model intercept or 
baseline survival at a given time point). 

Table 2 

15b  D Explain how to the use the prediction model. 

Methods – 
Statistical 
Analysis – 
Paragraph 1; 
Online Data 
Visualisation 
App 

Model 
performance 16     D;V Report performance measures (with CIs) for the prediction 

model. 
Results – 
Paragraphs 2-5 

Model-
updating 17  V If done, report the results from any model updating (i.e., model 

specification, model performance). N/A 

Discussion 

Limitations 18     D;V Discuss any limitations of the study (such as nonrepresentative 
sample, few events per predictor, missing data).  

Discussion – 
Paragraph 11 

Interpretatio
n 

19a  V For validation, discuss the results with reference to performance 
in the development data, and any other validation data.  

Discussion – 
Paragraph 1 

19b     D;V 
Give an overall interpretation of the results, considering 
objectives, limitations, results from similar studies, and other 
relevant evidence.  

Discussion – 
Paragraphs 1-11 

Implications 20     D;V Discuss the potential clinical use of the model and implications 
for future research.  

Discussion – 
Paragraphs 1-11 

Other information 
Supplementa
ry 
information 21     D;V Provide information about the availability of supplementary 

resources, such as study protocol, Web calculator, and data sets.  

Results – 
Paragraph 6; 
Data Availability 
Statement 

Funding 22     D;V Give the source of funding and the role of the funders for the 
present study.  
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Appendix D Table 7: Missing Sample Analysis: Model Development Sample (CAMEO) 

Variable 
 

Included Missing Test Statistic 

Age, mean (SD) 25.42 (4.77) 28.81 (11.69) t=5.32, p=0.01 
Sex, n (%) Male 

Female 
208 (69.57) 
91 (30.43) 

490 (60) 
324 (40) 

χ2=7.81, p=0.01 

Ethnicity, n (%) White 
Black 
Asian 

250 (83.61) 
15 (5.01) 
34 (11.37) 

676 (83.05) 
34 (4.18) 
88 (10.81) 

χ2=0.19, p=0.54 

Smoking, n (%) Yes 
No 

182 (51.70) 
117 (48.30) 

443 (54.42) 
371 (45.58) 

χ2=0.15, p=0.70 

Body Mass Index, mean (SD) 20.53 (8.49) 23.4 (8.80) t=1.96, p=0.20 
Metabolically Active 
Antipsychotics, n (%) 

Yes 
No 

216 (72.24) 
83 (27.76) 

465 (57.13) 
349 (42.87) 

χ2=21.04, p=0.01 

Missing sample analysis was not conducted for the Birmingham sample since there were no participants that were 
excluded on the basis of missing data on all exposure/outcome variables; cases were excluded only on the basis of 
having the outcome at baseline. 

 

 

Appendix D Table 8: Missing Sample Analysis: External Validation Sample (SLAM) 

Variable 
 

Included Missing Test Statistic 

Age, mean (SD) 24.45 (4.75) 29.86 (10.43) t=18.35, p=0.01 
Sex, n (%) Male 440 (67.59) 1472 (59.42) χ2=15.46, p=0.01 

Female 211 (32.41) 1002 (40.58) 
Ethnicity, n (%) White 154 (30.20) 1001 (40.46) χ2=18.97, p=0.01 

Black 250 (49.02) 1016 (41.07) 
Asian 106 (20.78) 458 (18.57) 

Smoking, n (%) Yes 469 (91.96) 2029 (81.16) 
446 (18.84) 

χ2=30.81, p=0.01 
No 41 (8.04) 

Body Mass Index, mean (SD) 22.96 (6.94) 24.38 (6.72) t=157.41, p=0.01 
Metabolically Active 
Antipsychotics, n (%) 

Yes 
No 

472 (92.55) 
38 (7.45) 

1957 (79.10) 
518 (21.90) 

χ2=50.68, p=0.01 

 

 

 

 

 

 

 

 

 

 

 



Appendix D Figures 

 

Appendix D Figure 1: Flow-Diagram of Participants at Risk of Psychosis at Age 18 or 24 
Years Who Were Included in The Exploratory Validation Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix D Figure 2: Flow-Diagram of All Participants Who Were Included in The 
Exploratory Validation Sensitivity Analysis 

 

 

 

 

 

 

 

 

 

 

Cases with partial data for 
multiple imputation 

n=332 

Complete cases 

n=195 

n 
w

ith
 d

at
a 

at
 

ag
e 

24
 y

ea
rs

 to
 

de
ri

ve
 o

ut
co

m
e 

n 
ca

se
s o

f 
ou

tc
om

e 
n 

at
 a

ge
 1

8 
ye

ar
s 

Data to Derive 
Outcome 

n=505 

Complete cases removed 
prior to imputation with 
Metabolic Syndrome at 

age 18 years 

n = 19 

Metabolic Syndrome 
n=76 

Complete cases 

n=1,679 

n 
w

ith
 d

at
a 

at
 

ag
e 

24
 y

ea
rs

 to
 

de
ri

ve
 o

ut
co

m
e 

n 
ca

se
s o

f 
ou

tc
om

e 
n 

at
 a

ge
 1

8 
ye

ar
s 

Data to Derive 
Outcome 
n=3,470 

Complete cases removed 
prior to imputation with 
Metabolic Syndrome at 

age 18 years 

n = 76 

Metabolic Syndrome 
n=231 

Cases with partial data for 
multiple imputation 

n=1867 



 

 

Appendix D Published Manuscripts 



Systematic Review or Meta-Analysis

Cardiometabolic risk prediction algorithms
for young people with psychosis: a
systematic review and exploratory analysis

Perry BI, Upthegrove R, Crawford O, Jang S, Lau E, McGill I, Carver
E, Jones PB, Khandaker GM. Cardiometabolic risk prediction
algorithms for young people with psychosis: a systematic review and
exploratory analysis.

Objective: Cardiometabolic risk prediction algorithms are common in
clinical practice. Young people with psychosis are at high risk for
developing cardiometabolic disorders. We aimed to examine whether
existing cardiometabolic risk prediction algorithms are suitable for
young people with psychosis.
Methods: We conducted a systematic review and narrative synthesis of
studies reporting the development and validation of cardiometabolic
risk prediction algorithms for general or psychiatric populations.
Furthermore, we used data from 505 participants with or at risk of
psychosis at age 18 years in the ALSPAC birth cohort, to explore the
performance of three algorithms (QDiabetes, QRISK3 and
PRIMROSE) highlighted as potentially suitable. We repeated analyses
after artificially increasing participant age to the mean age of the
original algorithm studies to examine the impact of age on predictive
performance.
Results: We screened 7820 results, including 110 studies. All algorithms
were developed in relatively older participants, and most were at high
risk of bias. Three studies (QDiabetes, QRISK3 and PRIMROSE)
featured psychiatric predictors. Age was more strongly weighted than
other risk factors in each algorithm. In our exploratory analysis,
calibration plots for all three algorithms implied a consistent systematic
underprediction of cardiometabolic risk in the younger sample. After
increasing participant age, calibration plots were markedly improved.
Conclusion: Existing cardiometabolic risk prediction algorithms cannot
be recommended for young people with or at risk of psychosis. Existing
algorithms may underpredict risk in young people, even in the face of
other high-risk features. Recalibration of existing algorithms or a new
tailored algorithm for the population is required.
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Summations

• A large number of cardiometabolic risk prediction algorithms have been developed, but only three
algorithms (QRISK3, QDiabetes and PRIMROSE) included psychiatric predictors. All three algo-
rithms were developed and validated in large samples of relatively older participants.

• From our exploratory analysis, we show that all three algorithms may underpredict cardiometabolic
risk in young adults with or at risk of developing psychosis, which may be a function of the way age
is modelled in the algorithms.

• No existing cardiometabolic risk prediction algorithm can be recommended for use in young adults
with or at risk of developing psychosis, yet the population remains at higher risk of cardiometabolic
disorders than their age-matched peers.
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Limitations

• Due to study heterogeneity, we were unable to follow a meta-analytic approach to the synthesis of
systematic review results.

• Our exploratory analysis of QRISK3, QDiabetes and PRIMROSE was limited by relatively small
sample size and a related but distinct outcome definition to the original algorithms.

Introduction

Cardiometabolic disorders broadly include cardio-
vascular diseases (CVD), disorders of adiposity
such as obesity and disorders of glucose-insulin
homeostasis such as type 2 diabetes mellitus
(T2DM) (1). They impose a huge societal burden
costing an estimated £30 billion and accounting
for over 190 000 deaths each year in the UK alone
(2). A particularly high-risk group for the develop-
ment of cardiometabolic disorders are people with
psychotic disorders such as schizophrenia, who
make up around 0.8% of the population (3) and
have up to a 30% increased incidence of car-
diometabolic disorders than the general population
(4). Indeed, increased physical comorbidity is a
leading cause for significantly increased mortality
rates and reduced life expectancy for people with
schizophrenia compared with the general popula-
tion (5–7). We therefore need clinical tools to pre-
dict cardiometabolic risk in this group in order to
optimize care and improve long-term outcomes.
Yet, a recent report of a small sample of people
with chronic schizophrenia suggests that some
commonly used cardiometabolic risk prediction
algorithms return differing risk prediction scores
when tested on the same participants. This calls
into question the reliability and suitability of such
algorithms for relatively older people with chronic
schizophrenia, let alone young people with or at
risk of psychosis (8).

Recent evidence suggests that the physical comor-
bidity associated with schizophrenia starts early.
Markers of developing cardiometabolic disorders are
a feature that distinguish cases of first-episode psy-
chosis from matched general population controls (9,
10) and are associated with young adults at risk of
developing psychosis (11). The field of early interven-
tion in psychosis rests on a premise that intervening
early could improve longer-term outcomes, and this
premise applies equally to the treatment of car-
diometabolic disorders. Therefore, cardiometabolic
risk prediction algorithms may be a useful tool for
healthcare professionals to help tailor treatment
plans for young people with psychosis that could
help to reduce both long-term physical and

psychiatric morbidity. However, such a tool could
only be clinically useful if the predictions it makes
are accurate. It is unclear as to whether this may or
may not be the case.

Aims of the study

We conducted a systematic review to identify and
compare existing cardiometabolic risk prediction
algorithms developed for the general or psychiatric
populations and consider their suitability for
young people with psychosis. Next, we performed
an exploratory analysis using data from a large
UK birth cohort to examine the predictive ability
of any algorithms highlighted as potentially suit-
able by the review, in a sample of young adults
with or at risk of psychosis. To explore the impact
of age on risk estimates, we reassessed model per-
formance after artificially increasing the age of par-
ticipants to the mean age of the original algorithm
development study, leaving all other predictors
unchanged.

Method

Systematic review

Literature search. We conducted a systematic liter-
ature search of EMBASE (1947-present), Ovid
MEDLINE (1946-present), PsychINFO (1806-pre-
sent), Web of Science (from inception) and the first
twenty pages of Google Scholar (12) to 1 Decem-
ber 2019. We also searched the references of
included studies. Our search strategy is presented
below. MeSH headings (denoted with *) and text
terms were used:

Group 1: metabolism* (OR) metabolic* (OR)
diabetes mellitus* (OR) cardiovascular diseases*
(OR) obesity* (OR) cardiometabolic

(AND)
Group 2: risk assessment* (OR) risk* (OR) out-

come assessment* (OR) patient outcome assess-
ment* (OR) prognosis*

(AND)
Group 3: calculator (OR) computers* (OR)

algorithms* (OR) software* (OR) tool.
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We applied the PRISMA (Preferred Reporting
Items for Systematic reviews and Meta-analyses)
guidelines (13). The systematic review was regis-
tered on PROSPERO (CRD42019150377).

Study selection. The inclusion criteria were as fol-
lows: (i) studies reporting the development and/or
validation of cardiometabolic risk algorithms
designed for either the general or psychiatric popu-
lations; (ii) studies which reported in combination
the development and validation (internal or exter-
nal) of an original algorithm; reported the develop-
ment but not validation of an algorithm; reported
the first validation of a previously developed but
not validated algorithm; or reported a new recali-
bration of a previously developed algorithm; (iii)
cardiometabolic risk was defined as CVD (stroke,
myocardial infarction, hypertension, unstable ang-
ina) and its common predeterminants including
T2DM, prediabetes, obesity or dyslipidaemia; (iv)
studies reported in any language; (v) published and
unpublished research, conference proceedings and
academic theses. The exclusion criteria were as fol-
lows: (i) algorithms designed specifically for other
defined health groups (i.e. postoperative patients
or patients with any physical health diagnoses at
baseline) and (ii) studies reporting validation with-
out recalibration of previously validated algo-
rithms.

Titles and abstracts were screened independently
by four authors (BIP, EL, IM and EC) prior to
full-text screening. Any discrepancies were
resolved in consultation with a senior author
(GMK). Data were extracted by three authors
(BIP, OC and SJ) from studies that met the inclu-
sion criteria. Searches were re-run immediately
prior to the final analyses, and further studies
retrieved for inclusion using the processes outlined
above.

Data extraction and synthesis. We extracted data
on general characteristics (e.g. population, loca-
tion, study type, type of risk predicted), the charac-
teristics of included participants (e.g. age, sex,
ethnicity) and characteristics of the developed/vali-
dated algorithms (e.g. included predictors, algo-
rithm performance). Risk of bias was assessed
using the ‘Prediction model Risk Of Bias Assess-
ment Tool’ (PROBAST) (14), which aims to iden-
tify shortcomings in study design, conduct or
analysis that could lead to systematically distorted
estimates of model predictive performance. PRO-
BAST includes four domains for potential sources
of bias in prediction model studies (participants,
predictors, outcome and analysis) which are then
summarized by an overall judgement, either low

risk, high risk or unclear risk of bias (14). We plot-
ted the range and frequency of predictors included
in studies. We illustrated the relative weighting of
different predictors in one included study which
featured psychiatric predictors. Algorithm perfor-
mance was compared using statistics relating to
model discrimination (how well an algorithm dis-
criminates people at higher risk from people at
lower risk, e.g. Harrell’s C Statistic, where a score
of 1.0 indicates perfect discrimination, and a score
of 0.5 indicates the model is no better than chance)
and model calibration (the accuracy of absolute
risk estimates, e.g. calibration plots) (15). We also
examined the events-per-variable ratio (EPV) (the
ratio of outcome events: predictors considered in
algorithm development) of each study to assess the
potential risk of model overfitting (16). An EPV of
10 or more had previously been considered satis-
factory (17), though higher ratios have more
recently been advised (18). Where an EPV ratio
was not reported, we calculated it where possible
from the information available in the study.
Finally, we considered the likely suitability of all
included algorithms for young people with psy-
chosis. We summarized and compared studies with
a narrative synthesis (19).

Exploratory analysis

Data source. The Avon Longitudinal Study of
Parents And Children (ALSPAC) birth cohort ini-
tially recruited 14 541 pregnant women resident in
a geographically defined region in southwest of
England, with expected dates of delivery 1 April
1991 to 31 December 1992, resulting in 14 062 live
births (20–22). Following further periods of
recruitment over time, 913 additional participants
were recruited. See http://www.bris.ac.uk/alspac/
researchers/data-access/data-dictionary/ for a fully
searchable data dictionary. Study data were col-
lected and managed using REDCap electronic data
capture tools hosted at University of Bristol
(23,24). Ethical approval for the study was
obtained from the ALSPAC Ethics and Law Com-
mittee and Local Research Ethics Committees. All
participants provided informed consent.

Study sample. We included participants who at
age 18 or 24 years were identified as experiencing
definite psychotic symptoms or psychotic disorder.
In ALSPAC, psychotic symptoms were identified
through the face-to-face, semi-structured Psy-
chosis-Like Symptom Interview (PLIKS) con-
ducted by trained psychology graduates and coded
according to the definitions in the Schedules for
Clinical Assessment in Neuropsychiatry, version
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2.0. See Supplementary Data for further informa-
tion. We excluded participants who already met
the outcome criteria at age 18 years and partici-
pants who had missing data on all included vari-
ables. Additionally, we conducted a post hoc
sensitivity analysis to examine the potential impact
of sample size; we performed the analysis again
including all participants from the total ALSPAC
sample at age 18 years who did not meet the crite-
ria for the outcome at age 18 years and who did
not have missing data on all included variables.
See Figures S1–S2 for flow charts of included par-
ticipants.

Outcome. We used the harmonized definition (25)
of the metabolic syndrome measured at age 24y as
the outcome, in which it is an established precursor
of T2DM (26) and CVD (27). Metabolic syndrome
is a more appropriate outcome for a sample of rel-
atively young participants. The follow-up period
was six years. The binary outcome was coded pre-
sent for participants meeting ≥3 factors from the
following: ethnicity-specific waist circumference
(≥94 cm in males and ≥80 cm in females for Cau-
casians; ≥90 cm in males and ≥80 cm in females
for other ethnic groups (25)); elevated triglycerides
(≥1.7 mmol/L); reduced high-density lipoprotein
(HDL (<1.0 mmol/L in males and <1.3 mmol/L in
females); elevated seated blood pressure (sys-
tolic ≥ 130 mmHg); and elevated fasting plasma
glucose (FPG) (≥5.7 mmol/L). See Supplementary
Methods for further detail on biochemical mea-
surements.

Predictors. We included all available predictors
from QRISK3, QDiabetes and PRIMROSE,
which were the three algorithms highlighted as
being potentially the most suitable for young peo-
ple with psychosis. These included age, Townsend
deprivation score, body mass index (BMI), ethnic-
ity, smoking, antipsychotic medication use, antide-
pressant use, corticosteroid use, psychosis,
depression, family history of cardiovascular dis-
ease or type 2 diabetes, hypertension, FPG, choles-
terol:HDL ratio, systolic blood pressure, total
cholesterol, HDL, alcohol intake and year of
assessment. For a full list of predictors for each
algorithm and details on how they were measured,
see Table S1 and Methods S1.

Statistical analysis. Estimated six-year risk esti-
mates for metabolic syndrome were calculated for
QDiabetes (28), QRISK3 (29) and PRIMROSE
(30), by applying the published fully specified algo-
rithms to our sample. QDiabetes and PRIMROSE
comprise different models depending on the

availability of blood test results; thus, we used the
model which performed best in the original model
development studies (28, 30). For QDiabetes, the
best performing model included FPG; for PRIM-
ROSE, the best performing model included lipids.
QDiabetes and QRISK3 estimate risk separately
for males and females. We used multiple imputa-
tion using chained equations (31) to address the
impact of missing predictor data. See Methods S1
for further details. Algorithm performance was
assessed using measures of discrimination (Har-
rell’s C statistic and R2) and a measure of calibra-
tion (calibration plots). Calibration plots included
grouped observations, which were split at each 0.2
of predicted risk. First, we calculated model per-
formance using actual participant age (18 years).
To assess the impact of age on model performance,
we artificially substituted every participants’ age in
ALSPAC to the mean age from the original algo-
rithm development study (QDiabetes = 44.9 years;
QRISK3 = 42.9 years; and
PRIMROSE = 49.5 years), leaving all other pre-
dictors unchanged. We re-ran each algorithm and
compared the model performance statistics
described above. Statistical analysis was carried
out in R version 3.6.0 (32).

Results

Systematic review

Study selection and quality assessment. The litera-
ture search returned 7744 results after removing
duplicates. We reviewed 362 full texts, of which
110 studies met inclusion criteria (28-30, 33-138).
See Fig. 1 for the PRISMA diagram. Three studies
were not contained within peer-reviewed journals
and were published either as conference proceed-
ings (108), a thesis (93) or a preprint (106). Report-
ing quality was relatively poor across the majority
of studies, with 108 studies (98%) either at unclear
or high risk of bias following assessment with the
PROBAST tool (14). See Table S2.

Study characteristics. Table S3 reports the charac-
teristics of included studies. All studies were con-
ducted on general population samples of healthy
adults, except one which was conducted on
patients with severe mental illness, defined as either
schizophrenia, other psychotic disorder or bipolar
disorder (30). The majority of included studies
were conducted in high-income or upper-middle-
income countries, with the UK, USA and China
best represented. Eleven studies were conducted in
lower- or middle-income countries. Sample sizes
were highly variable in both development (n = 100
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participants (120) to n = 8 136 705 participants
(28)) and validation cohorts (n = 90 participants
(104) to n = 2 671 298 participants (29)). Sixty-
one studies (55%) assessed the risk of fatal or non-
fatal CVD; 31 studies (28%) assessed the risk of
T2DM; five studies (5%) assessed the risk of either
prediabetes or T2DM; three studies (3%) assessed
the risk of metabolic syndrome or obesity; and
three studies (3%) assessed the risk of stroke or
transient ischaemic attack.

Lengths of predicted risks ranged from one
(119) to 30 (80, 123) years. The most common risk
prediction timeframes were either ten-year risk (38
studies, 35%) or five-year risk (14 studies, 13%).
Thirty-nine studies (35%) performed external vali-
dation of an original algorithm. Forty studies
(36%) performed internal validation, either by
subsetting the initial cohort or by bootstrap

methods. All algorithms were designed using either
Cox proportional hazards or logistic regression
analysis. Most studies selected variables for inclu-
sion from previous research or clinical importance
(50 studies, 45%), or using statistical methods, that
is forward or backward selection (31 studies,
28%). Seventeen studies (15%) used simple uni-
variable analysis of each considered predictor,
which is least preferable since it cannot assess
interactions between two or more variables. Eleven
studies (10%) used machine learning techniques.

Participant characteristics. All studies were con-
ducted in adults. The mean age of participants
based on the 76 studies that reported mean age
was 50.50 years (SD 9.31). No studies included a
mean age of participants below 35 years. Eighty-
nine studies (81%) reported the sex distribution of
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• No algorithm/calculator 
derived (n = 15)

• Not cardiometabolic risk 
predicted (n = 39)

Studies included in qualita�ve 
synthesis
(n = 110)

Fig. 1. PRISMA diagram. [Colour figure can be viewed at wileyonlinelibrary.com]
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the derivation cohort (mean 55.29% male (SD
17.27)), and 42 studies (38%) reported for the vali-
dation cohort (mean 52.25% male (SD 14.44)).
The majority of studies included roughly equal sex
distribution, apart from nine studies which
included only (121, 127) or mostly females (82, 83,
85, 98, 120, 122, 128) and 12 studies which
included only (41, 71, 94, 102,103,112,119,132,136)
or mostly males (69,80,81). Thirty-three studies
(30%) reported the ethnic makeup of their sample,
where samples ranged from being ethnically com-
pletely homogenous in 18 studies (16%) to rela-
tively heterogeneous, with less than 66% of
participants falling into the most common ethnic
group (63,72,84,125). See Table S3.

Algorithm characteristics. Predictors included in
existing algorithms. Figure 2 shows the frequency
of different predictors included in studies. The
most common predictors were age (98 studies,
89%), smoking (83 studies, 75%) and systolic
blood pressure (55 studies, 50%). Inflammatory
markers such as CRP or IL-6 were included as pre-
dictors in 15 studies (14%). The number of predic-
tors considered for each algorithm varied between

four (44, 52, 53, 79) and 473 predictors (86). EPV
varied between 2.1 (55) and 5,075.4 (29). Twenty
studies featured EPV ratios that were likely < 10.
See Table S4.

Performance of existing algorithms. Discrimination
statistics were presented in 93 studies (85%), and
calibration statistics were presented in 62 studies
(56%). From the 80 studies that included both
model development and validation analysis, 35
(44%) reported performance statistics from both
development and validation cohorts, 27 (34%)
reported only validation cohort statistics, and ten
(13%) reported development only statistics. Most
commonly overall, studies reported both discrimi-
nation and calibration statistics (35 studies, 32%).
Next most commonly, studies reported measures
for discrimination, calibration and sensitivity/
specificity (23 studies, 21%). Eleven studies (10%)
reported no model performance statistics. Discrim-
ination was mostly assessed with area under the
curve (AUC/Harrell’s C statistics). AUC ranged
between 0.61 (100) and 0.97 (120) though notably
the latter was at risk of model overfit, with a sam-
ple size of n = 100 and an EPV ratio of 3.1. The

Fig. 2. Range and frequency of different predictors used in current algorithms. ALT, Alanine Aminotransferase; ApoA/ApoB,
Apolipoprotein A/B Levels; Atyp Antipsych, Prescribed Antipsychotic Medication; BP Meds, Prescribed Antihypertensive Medica-
tion; Chol:HDL, Cholesterol:HDL Ratio; Chron Dis, Personal History of Chronic Disease; CVD Event, Personal History of Car-
diovascular Diseases; DBP, Diastolic Blood Pressure; ECG, Electrocardiogram Findings; eGFR, Glomerular Filtration Rate;
ETOH, Alcohol Use; FHx CVD, Family History Cardiovascular Diseases; FHx T2DM, Family history of Type 2 Diabetes Mellitus;
FPG, Fasting Plasma Glucose; Genetic, Genotype Data; Gest DM, Gestational Diabetes Mellitus; HbA1C, Glycated Haemoglobin;
HDL, High-Density Lipoprotein; HR, Heart Rate; HTN, Diagnosis of Hypertension; IFG, Impaired Fasting Glucose; LDL, Low-
Density Lipoprotein; Phys Act, Physical Activity; RA, Rheumatoid Arthritis; Renal Dis, Renal Disorders; SMI, Diagnosis of Seri-
ous Mental Illness; SysBP, Systolic Blood Pressure; T1DM, Type 1 Diabetes Mellitus; T2DM, Type 2 Diabetes Mellitus; Tot Chol,
Total Cholesterol; Tri, Triglycerides; WC, Waist Circumference; WCC, White Cell Count; WHR, Waist:Hip Ratio. *not counted as
a predictor in studies that developed sex-specific algorithms. [Colour figure can be viewed at wileyonlinelibrary.com]
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mean AUC across all included studies was 0.77,
with 54 studies (49%) scoring above 0.75, sugges-
tive of ‘good’ discrimination. The majority of stud-
ies that reported calibration statistics used the
Hosmer–Lemeshow goodness-of-fit chi-squared
test. Seventeen studies (15%) used the preferred
(139) method of calibration plots. See Table S5.

Potential applicability of existing cardiometabolic risk
algorithms for young people with psychosis. Psychi-
atric illness and treatment were taken into account
in three studies (28–30) predicting risk of CVD (29,
30) or T2DM (28). Two of these studies (QRISK3
and QDiabetes (28, 29)) were conducted on large
general population samples, and one (PRIM-
ROSE) was conducted in people with severe men-
tal illness (30). QRISK3 and QDiabetes (28, 29)
included diagnosis of severe mental illness as a sin-
gle predictor, whereas PRIMROSE included sepa-
rate predictors for bipolar disorder and psychosis
(30). QRISK3 and QDiabetes included the pres-
ence of any atypical antipsychotic as a predictor
(28, 29); PRIMOSE included first- or second-gen-
eration antipsychotics as separate predictors, along
with antidepressants as another predictor (30). All
three studies were conducted on middle-aged
adults (mean ages QDiabetes: 42.9 years (28),
QRISK3: 44.9 years (29), PRIMROSE: 49.5 years
(30)). In PRIMROSE, age was applied as a non-
linear term with a log transformation and was
weighted heavily in comparison to other risk fac-
tors. See Figure S3. In both QRISK3 and QDia-
betes, age was applied as a fractional polynomial,
also implying a non-linear impact on risk.
QRISK3 and QDiabetes both included a number
of interactions between age and other predictors,
further amplifying the relative importance of age
in the algorithms.

QRISK3, QDiabetes and PRIMROSE were
taken forward for the exploratory analysis, on the
basis of the following: large samples used in devel-
opment and validation; strong performance statis-
tics; low risk of bias in three domains; and
inclusion of psychiatric predictors/development in
a psychiatric sample.

Exploratory analysis

Baseline characteristics. The six-year observed risk
of metabolic syndrome at age 24 years in our sam-
ple of participants with or at risk of psychosis was
14.21% in females and 11.88% in males. In our
sensitivity analysis (all available ALSPAC partici-
pants), the six-year observed risk was 7.54% for
females and 5.76% for males. In our primary anal-
ysis, we included 3030 person-years of observation.

In our sensitivity analysis, we included 19 020 per-
son-years of observation. Characteristics of
included participants for both the primary and sen-
sitivity analyses are presented in Table 1 and
Table S6 respectively. Associations between algo-
rithm predictors and outcome are reported in
Table S7.

Primary analysis – psychosis sample. Discrimina-
tion. At age 18 years, Harrell’s C Statistics were
as follows: QDiabetes males C = 0.75 (95% CI,
0.72–0.78) and females C = 0.78 (95% CI, 0.73–
0.84); QRISK3 males C = 0.58 (95% CI, 0.52–
0.65) and females C = 0.61 (95% CI, 0.55–0.66);
and PRIMROSE C = 0.73 (95% CI, 0.70–0.78).
After substituting participant ages to the mean age
of the original studies, Harrell’s C statistics mildly
improved for each algorithm. Similarly, at age
18 years, R2 statistics were marginally higher in
females than males in QDiabetes and QRISK3 and
improved mildly after substituting participant ages
to the mean age of the original studies. See
Table 2.

Calibration. At age 18 years, calibration was poor
across all three algorithms, with observed risk esti-
mates consistently higher than predicted risk esti-
mates. After substituting participant ages to the
mean age of the original studies, calibration
improved markedly in all three algorithms. See
Figure 3.

Sensitivity analysis – whole ALSPAC sample. Dis-
crimination. QDiabetes and QRISK3 performed
better in the overall sample than the psychosis
sample. PRIMROSE performed better in the psy-
chosis sample. Harrell’s C Statistics were as

Table 1. Characteristics of ALSPAC participants with or at risk of psychosis
included in exploratory analysis

Characteristic (N, % unless stated) Females Males

Number of participants 323 (63.9) 182 (36.1)
Total person-years of observation 1938 1092
Ethnicity – White/Not-recorded 315 (97.5) 176 (96.7)
Systolic BP (mmHG), Mean (SD) 109.88 (8.28) 118.90 (9.67)
HDL (mmol/L), Mean (SD) 1.29 (0.36) 1.18 (0.33)
FPG (mmol/L), Mean (SD) 4.88 (0.36) 5.19 (0.66)
Total cholesterol (mmol/L), Mean (SD) 3.86 (0.68) 3.55 (0.63)
Chol:HDL ratio, ratio SD 3.04 (0.85) 3.08 (0.85)
BMI (kg/m2), Mean (SD) 23.75 (3.55) 23.62 (4.50)
Family history cardiometabolic/Cardiovascular
disorders

194 (60.1) 117 (64.3)

Smoking (≥1 cigarette daily) 173 (53.6) 100 (54.9)
Depression 90 (27.9) 28 (15.4)
Alcohol use 47 (15.4) 31 (16.7)
Antidepressant medication 45 (14.7) 16 (8.6)
Antipsychotic medication 12 (3.7) 6 (2.1)
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follows: QDiabetes males C = 0.72 (95% C.I.,
0.70–0.73) and females C = 0.82 (95% CI, 0.79–
0.84); QRISK3 males C = 0.64 (95% CI, 0.62–
0.66) and females C = 0.62 (95% CI, 0.59–0.65);
and PRIMROSE C = 0.68 (95% CI, 0.67–0.70).
Similarly, at age 18 years, R2 statistics were mar-
ginally higher in females than males in QDiabetes,
but marginally higher in males in QRISK3. After
substituting age to the mean age of the original
studies, Harrell’s C statistics and R2 improved in
all three algorithms. See Table S8.

Calibration. In a similar pattern to the psychosis
sample, at age 18 years, calibration was poor
across all three algorithms, with observed risk esti-
mates consistently higher than predicted risk esti-
mates. After substituting participant ages to the
mean age of the original studies, calibration
improved markedly in all three algorithms. See
Figure S4.

Discussion

Main findings

We performed a systematic review of car-
diometabolic risk prediction algorithms developed
either for the general or psychiatric populations
and considered their potential suitability for young
people with psychosis. We also used data from a
sample of relatively young adults to first explore
whether existing cardiometabolic risk prediction
algorithms may be suitable for young people with
or at risk of psychosis and second to explore the
impact of the manner in which age is weighted in
existing cardiometabolic risk prediction algo-
rithms. We do not present the results of our
exploratory analysis as an external validation of
the three algorithms, since the algorithms we tested
were not developed to predict metabolic syndrome.
Rather, we present our findings as a means to
explore the likely suitability of these algorithms for
a population of individuals who may be at higher

cardiometabolic risk compared with the general
population. It should be made clear from the out-
set that the three algorithms we tested, as we show
in the results of our systematic review, were devel-
oped and validated on large samples and perform
well in the populations they were designed for.

Systematic review

We identified a substantial number of car-
diometabolic risk prediction algorithms, yet most
have not been integrated into clinical practice. Pre-
dicted outcomes ranged from prediabetes and
T2DM, CVD or transient ischaemic attack and
stroke. The five most commonly included predic-
tors across all algorithms were age, smoking, sys-
tolic blood pressure, sex and BMI. One included
algorithm (PRIMROSE) was developed in a popu-
lation of people with severe mental illness (30),
which predicted risk of CVD. Two (QRISK3 and
QDiabetes) were developed in the general popula-
tion and included psychiatric predictors (28, 29)
such as a diagnosis of schizophrenia.

All included algorithms were developed in sam-
ples of middle- to older-age adults. One might tra-
ditionally consider this proportionate, since
cardiometabolic disorders are traditionally consid-
ered diseases of advancing age. Yet, car-
diometabolic risk still exists in the absence of
advancing age; even in the general population,
there is an increasing prevalence of early-onset
T2DM (140) and childhood obesity (141), likely
related to the shift towards a more sedentary life-
style and unhealthy diet in recent decades. The
absence of an algorithm developed for younger
populations is an important finding, since early
intervention may reduce the risk of young people
forming part of a future generation of patients
with chronic cardiovascular diseases (142). This
finding suggests the need for either new or recali-
brated versions of currently existing car-
diometabolic risk algorithms tailored to the
younger generations.

Table 2. Discrimination statistics for algorithms tested on psychosis risk group at age 18 years and mean age of original study

Algorithm

Harrell’s C statistic (95% CI); R2 statistic

Age 18 years Mean age original study

Male Female Male Female

QDiabetes FPG C = 0.70 (0.65–0.74)
R2 = 0.13 (0.09–0.19)

C = 0.78 (0.73–0.84)
R2 = 0.16 (0.10–0.24)

C = 0.78 (0.75–0.80)
R2 = 0.21 (0.14–0.27)

C = 0.83 (0.80–0.87)
R2 = 0.25 (0.19–0.31)

QRISK3 C = 0.58 (0.52–0.65)
R2 = 0.09 (0.05–0.16)

C = 0.61 (0.55–0.66)
R2 = 0.10 (0.03–0.18)

C = 0.63 (0.58–0.69)
R2 = 0.11 (0.07–0.16)

C = 0.66 (0.59–0.72)
R2 = 0.13 (0.05–0.20)

PRIMROSE Lipid 0.73 (0.70–0.78)
R2 = 0.13 (0.10–0.0.17)

0.75 (0.69–0.79)
R2 = 0.16 (0.12–0.22)
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Primary prevention is the best means with which
to address the personal and societal burden attrib-
uted to T2DM, CVD and its complications (143).

Whilst this message is important for the general
population, it is particularly important for young
people with/at risk of psychosis, who are at a
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Fig. 3. Calibration plots of algorithms tested on ALSPAC psychosis risk group at age 18 years and at mean age of original study.
Perfect calibration (dark grey) would follow the diagonal (light grey) line, indicating perfect agreement between observed/expected
risk. Grouped observations were split at each 0.2 of predicted risk.
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higher risk of precipitant cardiometabolic disor-
ders. This population may be more likely to smoke
(144), exercise less (145) and eat a more unhealthy
diet (145) than their peers and yet may also be pre-
scribed medication that in itself can adversely and
severely impact cardiometabolic indices (146). Fur-
ther, they may be faced with inappropriate barriers
to accessing healthcare (147), diagnostic overshad-
owing (148) and may have an intrinsic biological
propensity for altered cardiometabolic function
(149). Meta-analyses featuring mostly antipsy-
chotic-na€ıve young people with first-episode psy-
chosis have consistently reported an increased
incidence of insulin resistance, impaired glucose
tolerance (9, 10) and dyslipidaemia (9, 150, 151)
compared with matched controls from the general
population, after adjusting for anthropometric and
sociodemographic factors. Each is predeterminants
of cardiometabolic disorders such as T2DM and
obesity. These factors may not be adequately cap-
tured by currently existing algorithms. Addition-
ally, meta-analyses of cross-sectional studies
suggest that psychosis is associated with higher
levels of circulating inflammatory markers (152–
155), and evidence from some longitudinal studies
suggests an association between inflammatory
markers at baseline and psychosis at follow-up
(156–158), although other longitudinal studies
have reported negative findings (159). Inflamma-
tory states are also associated with car-
diometabolic disorders (160–163). Whilst 15
relatively newer algorithms from our systematic
review did include inflammatory predictors, none
also included psychiatric predictors.

Each of the three algorithms that did include
psychiatric factors featured an antipsychotic-re-
lated predictor. Antipsychotic-associated weight
gain can occur relatively quickly after initiation
(164) and is associated with altered eating beha-
viours (165) and sedentariness (166). However,
whilst there are some efficacy differences between
antipsychotics, these are gradual rather than dis-
crete (167). Differences in side-effects are more
marked, and each has an inherently different
impact upon cardiometabolic risk (168). This may
be explained by differing affinities to receptors
other than the dopamine-2 (D2) receptor, for
example the histamine-1 (H1) receptor, serotonin-
2c (5-HT2c) and adrenergic receptors (a2 and b3)
(169), which may have a role in the regulation of
food intake (170). The varied impact upon car-
diometabolic risk by different antipsychotics does
not abide by the traditional distinctions of either
typical/atypical or first/second generation, which
were the binary distinctions of the included algo-
rithms. A more appropriate antipsychotic

predictor may instead model antipsychotics based
on their relative cardiometabolic risk.

We used the PROBAST tool (14) to examine the
risk of bias of included studies in our systematic
review. Only two studies were rated as low risk of
bias, with all others rated as either unclear or high
risk of bias. This may be a reflection of the rela-
tively recent introduction of the ‘Transparent
Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis’ (TRIPOD)
guidelines for prediction model studies (139). Nev-
ertheless, the results suggest that the reported per-
formance statistics and therefore clinical validity
of the majority of included studies should be
accepted with extreme caution.

The EPV ratio also varied widely between stud-
ies. A low EPV ratio can be an indicator of model
overfit (17) which can bias results. We identified 20
studies with an EPV ratio of likely < 10, and there-
fore, the performance reported in those studies
should be interpreted with caution. Finally, it is
striking that whilst many included studies pro-
moted the use of their algorithms in clinical prac-
tice, there appears to have been relatively little
follow-up to assess either clinical or economic
impact. A notable exception was PRIMROSE
(30), which was the only algorithm developed and
validated on a sample of people with mental ill-
ness. A cost-effectiveness analysis (171) found it
improved quality of life and reduced healthcare-re-
lated costs in comparison with using no algorithm.

A previously published systematic review (172)
examining cardiovascular risk prediction algorithms
in the general population also identified a very large
number of studies. The review similarly concluded
the methodological shortcomings of most risk pre-
diction algorithms likely limit their suitability for
clinical practice. The previous review differs from
our own since we were interested in identifying origi-
nal or recalibrated algorithms and assessing their
suitability for young people with psychosis. There-
fore, we did not include studies reporting new valida-
tions in a similar population to already validated
algorithms. The previous review also presented sex-
stratified algorithms as distinct entities, increasing
the apparent number of algorithms they reported.
For ease of simplicity and in consideration of our
overarching research question, we did not take this
step. Finally, a large number of new algorithms have
been developed since the previous review, which we
were able to include in our own.

Exploratory analysis

We considered three algorithms for exploratory
analysis: QRISK3, QDiabetes and PRIMROSE.
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These were selected due to the large sample sizes in
model development and validation, model perfor-
mance statistics, relatively low risk of bias and the
inclusion of psychiatric predictors/development in
a psychiatric population.

We found that discrimination statistics were rel-
atively good at age 18 years for QDiabetes and
PRIMROSE and improved further when substitut-
ing to the mean age of original studies. This means
that QDiabetes and PRIMROSE were able to pre-
dict higher risks in ‘cases’ than ‘non-cases’, even in
relatively young adults. This did not apply to
QRISK3, particularly in males, where the algo-
rithm was little better than chance at discriminat-
ing higher and lower cardiometabolic risk in young
adults with or at risk of psychosis.

For all three algorithms, however, the discrimi-
native ability in our sample was attenuated com-
pared with the original published studies (28–30).
This may be because our sample included younger
participants than the original studies. For example,
both QRISK3 and QDiabetes were developed and
validated in participants aged 25 and over, and
PRIMROSE was developed and validated in par-
ticipants aged 30 and over. QRISK3 and QDia-
betes set a minimum age of 25 when using their
online calculators, although PRIMROSE sets a
minimum of age 18 years. Additionally, in our pri-
mary analysis, we tested a sample of participants
with or at risk of psychosis, whereas QDiabetes
and QRISK3 were designed for use in the general
population. Furthermore, we tested a different out-
come compared with the original algorithms. We
tested metabolic syndrome since it is an established
precursor of both T2DM and CVD (26, 27) and is
a more suitable outcome for younger populations.
The improvement in discrimination statistics after
substituting age provides some face validity to our
choice of outcome.

However, discriminative ability is only half the
story, since discrimination statistics cannot assess
the accuracy of the amount of risk apportioned by
a model; this represents a test of absolute risk esti-
mates and is examined with a measure of calibra-
tion. Our calibration plots at 18 years showed that
observed risk was systematically greater than pre-
dicted risk in all models, suggesting a notable
underprediction of risk in younger participants.
Calibration plots improved markedly in all algo-
rithms when we artificially substituted age to the
mean age of the original studies. This suggests that
the manner with which age is modelled in current
algorithms is a major limiting factor in applying
them to younger populations. This is likely because
many cardiometabolic risk factors are cumulative
over time (173); thus, age becomes increasingly

important with regard to cardiometabolic risk as
one gets older. This notion is elegantly painted by
all three algorithms, which modelled age as either a
non-linear function, included interactions between
age and other predictors, or both.

Strengths and limitations

Strengths of this systematic review include follow-
ing PRISMA reporting guidelines (13), as would
be expected for a high-quality review. Alongside
the review, we were able to complement our find-
ings with an exploratory analysis using data from
a large birth cohort of young adults. We were able
to test three validated cardiometabolic risk predic-
tion algorithms which are commonly used in clini-
cal medicine in the UK, on a different population
who are in clear and crucial need of a suitable tool.

Limitations of the study first and foremost relate
to the exploratory analysis. The three algorithms we
tested were not designed for use in young adults,
though this in itself should not be a barrier to
explore potential suitability in a different popula-
tion. Nevertheless, our results should not be seen to
cast doubt on the predictive ability of such algo-
rithms when applied to the populations intended by
the authors. We were unable to include every predic-
tor from the algorithms we tested, which may have
impacted upon performance statistics. That said, the
impact of this limitation on our results may not have
been uniform for each predictor we could not
include. For example, even if we had the data, it is
unlikely that many participants in our relatively
young cohort would have diagnosed CVD or
chronic kidney disease, a history of gestational dia-
betes or be prescribed statins. Also, our measured
outcome differed from the outcome of the algo-
rithms we tested. Whilst three algorithms included
in the systematic review did aim to predict risk of
metabolic syndrome, we did not consider them for
our exploratory analysis since they did not include
psychiatric predictors, were at relatively high risk of
bias, and study authors did not publish their fully
specified algorithm equations. Nevertheless, meta-
bolic syndrome is a precursor of T2DM (26) and
CVD (27), and the relatively good performance of
the algorithm when we artificially substituted age to
the mean age of the original study suggests face
validity to our chosen outcome. Our sample size was
relatively small compared with the original studies.
However, by testing a more encompassing outcome,
we were able to include a greater number of cases
and reduce the impact of model overfit.

Other limitations relate to the systematic review.
We were unable to follow a meta-analytic
approach to the synthesis of results due to study
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heterogeneity. The lack of meta-analytic approach
meant we were unable to examine the risk of publi-
cation bias, which may have played a part in the
configuration of studies we included in our synthe-
sis, since only three included studies were not pub-
lished in peer-reviewed journals.
In conclusion, young people who are at higher risk
than the general population of developing psy-
chosis are also at higher risk of developing car-
diometabolic disorders. A suitable cardiometabolic
risk prediction algorithm for this population
would be highly beneficial to general and psychi-
atric practitioners to help them to tailor treatment
plans with the aim of reducing long-term physical
and psychiatric morbidity. Existing car-
diometabolic risk algorithms cannot be recom-
mended for this purpose since they likely
underestimate the cardiometabolic risk of all
young people, let alone a group already at signifi-
cantly higher risk than the general population.
Existing algorithms require recalibration to suit
younger populations, and, better still, a new car-
diometabolic risk prediction algorithm is required
which is specifically developed for young people
with psychosis. A well-designed algorithm may
include a more appropriate distinction of metabol-
ically active antipsychotics; should more appropri-
ately weight the predictors for the specific
characteristics of young people with psychosis; and
may include a more age-appropriate outcome,
such as metabolic syndrome. Further, particular
attention should be paid to patient acceptability,
to ensure the algorithm is actually used in clinical
practice rather than simply buried in a research
database. In lieu of a suitable algorithm, simple
lifestyle interventions such as smoking cessation,
encouraging a healthy diet and increasing physical
activity must be offered to all young people with or
at risk of psychosis. Indeed, encouraging results
are emerging from studies of primary prevention in
this population (174, 175), who may not have yet
developed chronic and pervasive lifestyle beha-
viours which are associated with chronic illness.
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231

Cardiometabolic Risk Prediction in Early Psychosis



Figure S2. Flow-diagram of included participants in sensitivity
analysis of all participants at age 18 years.
Figure S3. Relative weighting of age vs other predictors in
PRIMROSE(6).
Figure S4. Calibration plots of algorithms tested in ALSPAC
at age 18 years and at mean age of original study (whole sam-
ple).
Table S1. Predictors included in QDiabetes, QRISK3 and
PRIMROSE.
Table S2. Risk of bias assessment using PROBAST.
Table S3. Participant characteristics of studies included in sys-
tematic review.

Table S4. Algorithm characteristics of studies included in sys-
tematic review.
Table S5. Algorithm performance of studies included in sys-
tematic review.
Table S6. Characteristics of ALSPAC participants included in
exploratory analysis (whole sample).
Table S7. Odds ratio and 95% CI for the association between
predictors included in algorithms measured at 18 years and
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Table S8. Discrimination statistics for algorithms tested on
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Summary 
Background Young people with psychosis are at high risk of developing cardiometabolic disorders; however, there is 
no suitable cardiometabolic risk prediction algorithm for this group. We aimed to develop and externally validate a 
cardiometabolic risk prediction algorithm for young people with psychosis.

Methods We developed the Psychosis Metabolic Risk Calculator (PsyMetRiC) to predict up to 6-year risk of incident 
metabolic syndrome in young people (aged 16–35 years) with psychosis from commonly recorded information at 
baseline. We developed two PsyMetRiC versions using the forced entry method: a full model (including age, sex, 
ethnicity, body-mass index, smoking status, prescription of a metabolically active antipsychotic medication, HDL 
concentration, and triglyceride concentration) and a partial model excluding biochemical results. PsyMetRiC was 
developed using data from two UK psychosis early intervention services (Jan 1, 2013, to Nov 4, 2020) and externally 
validated in another UK early intervention service (Jan 1, 2012, to June 3, 2020). A sensitivity analysis was done in UK 
birth cohort participants (aged 18 years) who were at risk of developing psychosis. Algorithm performance was 
assessed primarily via discrimination (C statistic) and calibration (calibration plots). We did a decision curve analysis 
and produced an online data-visualisation app.

Findings 651 patients were included in the development samples, 510 in the validation sample, and 505 in the 
sensitivity analysis sample. PsyMetRiC performed well at internal (full model: C 0·80, 95% CI 0·74–0·86; partial 
model: 0·79, 0·73–0·84) and external validation (full model: 0·75, 0·69–0·80; and partial model: 0·74, 0·67–0·79). 
Calibration of the full model was good, but there was evidence of slight miscalibration of the partial model. At a cutoff 
score of 0·18, in the full model PsyMetRiC improved net benefit by 7·95% (sensitivity 75%, 95% CI 66–82; 
specificity 74%, 71–78), equivalent to detecting an additional 47% of metabolic syndrome cases.

Interpretation We have developed an age-appropriate algorithm to predict the risk of incident metabolic syndrome, a 
precursor of cardiometabolic morbidity and mortality, in young people with psychosis. PsyMetRiC has the potential 
to become a valuable resource for early intervention service clinicians and could enable personalised, informed 
health-care decisions regarding choice of antipsychotic medication and lifestyle interventions.

Funding National Institute for Health Research and Wellcome Trust.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
license.

Introduction 
People with psychotic disorders such as schizophrenia 
have a life expectancy shortened by 10–15 years compared 
with the general population,1 predominantly owing to a 
higher prevalence of physical conditions such as 
type 2 diabetes, obesity, and cardiovascular disease 
(CVD).2 These comorbidities lead to a reduced quality of 
life and substantial health economic burden3 and usually 
develop early in the course of the psychotic disorder. For 
example, insulin resistance and dyslipidaemia are 
detectable from the onset of psychosis in adults in the 
second or third decades of life,4,5 probably due to a 
combination of genetic, lifestyle, and other environmental 
influences.6 Since some treatments for psychosis can 
exacerbate cardiometabolic risk (eg, certain antipsychotic 

medications), identification of young adults at the highest 
risk of adverse cardiometabolic outcomes as soon as 
possible after diagnosis of a psychotic disorder is crucial, 
so that interventions can be tailored to reduce the risk of 
longer-term cardiovascular morbidity and mortality.

Prognostic risk prediction algorithms are a valuable 
means to encourage personalised, informed health-care 
decisions. In the general population, cardiometabolic 
risk prediction algorithms such as QRISK37 are 
commonly used to predict CVD risk from baseline 
demographic, lifestyle, and clinical information, to 
identify higher-risk individuals for tailored interventions. 
A recent systematic review8 explored the suitability of 
existing cardiometabolic risk prediction algorithms for 
young people with psychosis. However, all algorithms 
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were developed in samples of adults with a mean age 
across included studies of 50·5 years, and no studies 
included participants younger than 35 years. Most 
included studies did not include relevant predictors such 
as antipsychotic medication, so the authors of the review 
concluded that none are likely to be suitable for young 
people with psychosis.8 Furthermore, an accompanying 
exploratory analysis found that existing algorithms 
significantly underpredict cardiometabolic risk in young 
people with or at risk of developing psychosis.8

Therefore, following TRIPOD reporting guidelines9 
(appendix p 19), we developed and externally validated 
the Psychosis Metabolic Risk Calculator (PsyMetRiC) to 
predict up to 6-year risk of metabolic syndrome, an age-
appropriate precursor of CVD and early mortality, in 
young people with psychosis. We prioritised clinical 
usefulness and patient acceptability via input from a 
young person’s advisory group, and by developing 
two PsyMetRiC versions: one with and one without 
biochemical results.

Methods 
Data sources 
We developed PsyMetRiC using pooled retrospective 
data from patients aged 16–35 years enrolled in 
the Birmingham psychosis early intervention service 
(EIS; sample frame n=391) or Cambridgeshire and 
Peterborough Assessing, Managing and Enhancing 
Outcomes (CAMEO) EIS (sample frame n=1113). 
Anonymised data from the Birmingham psychosis EIS 

were collected between Jan 1, 2014, and Dec 31, 2018, as 
part of the National Clinical Audit of Psychosis Quality 
Improvement programme, and were enhanced locally 
with medication data conforming to the Health Research 
Authority definition of service evaluation, which were 
confirmed by Birmingham Women’s and Children’s 
Hospital National Health Service (NHS) Foundation 
Trust. CAMEO data were identified by anonymously 
searching for EIS patients enrolled between Jan 1, 2013, 
and Nov 4, 2020, using the Clinical Records Anonymisation 
and Text Extraction (CRATE) tool10 (NHS National 
Research Ethics Service references 12/EE/0407 and 
17/EE/0442). Predictors were assessed at the closest point 
(within 100 days) to EIS enrolment, and outcomes were 
assessed up to 6 years later. We excluded patients who had 
less than 1 year of follow-up, had the outcome at baseline, 
or had missing data on all predictor or outcome variables.

To externally validate PsyMetRiC, we used the Clinical 
Records Interactive Search (CRIS) resource to capture 
anonymised data from South London and Maudsley 
NHS Foundation Trust (SLaM) EIS (National Institute 
for Health Research [NIHR] Biomedical Research 
Centre [BRC] CRIS Oversight Committee reference 
20-005). Our sample frame included 2985 EIS patients 
aged 16–35 years enrolled between Jan 1, 2012, and 
June 3, 2020. Patients were excluded and predictors and 
outcomes were assessed in the same manner as for the 
development set.

In a sensitivity analysis, we examined the performance 
of PsyMetRiC in young adults who had or were at risk of 

See Online for appendix

Research in context

Evidence before this study
Cardiometabolic risk prediction algorithms are commonly used in 
the general population as tools to encourage informed, 
personalised treatment decisions with the aim of primary 
prevention of longer-term cardiometabolic outcomes. In a recent 
systematic review of cardiometabolic risk prediction algorithms 
developed either for general or psychiatric populations, 
we searched Embase (1947 to Dec 1, 2019), Ovid MEDLINE 
(1946 to Dec 1, 2019), PsychINFO (1806 to Dec 1, 2019), 
Web of Science (from inception to Dec 1, 2019), and the first 
20 pages of Google Scholar (to Dec 1, 2019). Search terms 
related to cardiometabolic (metabolism, metabolic, diabetes 
mellitus, cardiovascular disease, obesity, cardiometabolic); 
risk prediction (risk assessment, risk, outcome assessment, 
prediction, prognosis); and algorithm (calculator, computers, 
algorithms, software, tool) were included. Over 100 studies 
were included in the review. Yet, few were validated externally, 
only one was developed in a sample of people with mental 
illness, none were done in young populations, most were rated 
as being at high risk of bias, and most did not include relevant 
predictors such as antipsychotic medication. Additionally, 
existing algorithms substantially underpredict cardiometabolic 
risk in young people with or at risk of developing psychosis. 

Therefore, existing algorithms are unlikely to be suitable for 
young people with psychosis.

Added value of this study
We have developed and externally validated, to our knowledge, 
the first clinically useful and age-appropriate cardiometabolic risk 
prediction algorithm tailored for young people with psychosis—
the Psychosis Metabolic Risk Calculator (PsyMetRiC)—using 
patient data from three geographically distinct UK National 
Health Service psychosis early intervention services. PsyMetRiC 
can reliably predict the risk of incident metabolic syndrome in 
young people with psychosis and young people who are at risk of 
developing psychosis.

Implications of all the available evidence
Whereas established risk prediction algorithms are suitable for 
use in older general population samples, with PsyMetRiC we are 
able to extend cardiometabolic risk prediction to young people 
with psychosis, a group who are at significantly higher 
cardiometabolic risk than the general population. Our findings 
can pave the way for a future clinical tool to encourage 
personalised treatment decisions with the aim of improving the 
long-term physical health of young people with psychosis.
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developing psychosis from the Avon Longitudinal Study 
of Parents and Children (ALSPAC) birth cohort 
(appendix p 1).11 Our sample frame included participants 
identified as having experienced definite psychotic 
symptoms at either 18 years or 24 years, assessed via 
the semi-structured Psychosis-Like Symptom Interview 
(appendix p 1). Predictors were assessed at age 18 years, 
and the outcome was assessed at age 24 years. We 
excluded participants as described for the development 
set.

The ALSPAC Ethics and Law Committee and local 
research ethics committees provided ethical approval. 
Informed consent was obtained from patients following 
the recommendations of the ALSPAC Ethics and Law 
Committee at the time the data were collected. 

Outcomes 
We used the harmonised definition12 of the metabolic 
syndrome as a binary outcome, which was at least 
three from the following list: ethnicity-specific waist cir
cumference of at least 94 cm in males and at least 80 cm 
in females for white people, at least 90 cm in males and 
at least 80 cm in females for other ethnic groups, or 
body-mass index (BMI) greater than 29·9 kg/m²; 
triglyceride concentrations at least 1·70 mmol/L; HDL 
concentration less than 1·03 mmol/L in males or less 
than 1·29 mmol/L in females; systolic blood pressure 
greater than 130 mm Hg; or fasting plasma glucose 
greater than 5·60 mmol/L. 

Predictor variables
Predictors were included based on a balance of clinical 
knowledge, past research, likely clinical usefulness, and 
patient acceptability after discussion of the work with 
the McPin Foundation Young Persons Advisory Group 
(YPAG), a group of volunteers aged younger than 
24 years with personal experience of mental health 
difficulties (appendix p 10). The full model comprised 
age (continuous; years), ethnicity (categorical; white 
European or not recorded [reference], Black or African-
Caribbean, Asian, or other), sex (female or male), BMI 
(continuous; kg/ m²), current smoking status (binary; at 
least one cigarette on average daily), prescription of a 
metabolically active antipsychotic drug (binary; based on 
relative cardiometabolic risk; appendix p 11), HDL 
concentration (continuous; mmol/L), and triglyceride 
concentration (continuous; mmol/L). A partial model, 
without HDL and triglyceride concentrations, was dev
eloped to cover eventualities where biochemical results 
are not available (appendix pp 5–8).

Statistical analysis
We developed PsyMetRiC using the forced entry method, 
after ruling out predictor multi-collinearity, to minimise 
risk of overfitting and as recommended for smaller 
datasets.13 We did a formal sample size calculation.14 
Briefly, the sample size required was estimated from the 

estimated outcome prevalence, the a priori estimated R² 
of the model, and the estimated required model 
shrinkage. For the full model, the minimum sample 
required was 494, and for the partial model it was 
394 (appendix p 2).14 We did not consider non-linear 
terms or interactions to reduce risk of overfitting. We 
used multiple imputation using chained equations for 
missing data and we pooled estimates using Rubin’s 
rules (appendix p 3). An initial internal validation step 
(500 bootstraps) was done, and coefficients were shrunk 
for optimism using the pooled corrected C slope as a 
shrinkage factor. After this step, predictive performance 
was assessed (see later).

The algorithms were applied to the external validation 
sample. The distribution of predicted outcome prob
abilities was inspected using histograms. Algorithm 
performance was primarily assessed with measures of 
discrimination (C statistic) and calibration (calibration 
plots; appendix p 4). We also recorded Nagelkerke-Cox-
Snell-Maddala-Magee R² index, the calibration intercept 
(ideally close to 0), C slope (ideally close to 1), and the 
Brier score, which is an overall measure of algorithm 
performance (ideally close to 0, with scores >0·25 
generally indicating a poor model).

Decision curve analysis15 was used to assess the clinical 
usefulness of PsyMetRiC by estimating net benefit. Net 
benefit is a metric of true positives minus false positives, 
and is calculated as

where w is the outcome odds at a given risk threshold.16 
The risk threshold is the amount of tolerable risk before 
an intervention is deemed necessary. Net benefit 
incorporates the consequences of the decisions made 
on the basis of an algorithm, and is therefore preferable 
to related measures such as sensitivity and specificity 
alone.16 We also reported the standardised net benefit 
(net benefit/outcome prevalence) and related metrics 
(sensitivity and specificity). In decision curve analysis, 
consideration only of the range of risk thresholds that 
may reasonably be considered in clinical practice is 
customary. Our upper bound of 0·35 represents a 
greater than one in three chance of developing 
metabolic syndrome should nothing change, and it is 
unlikely that risk thresholds greater than this should be 
tolerated. We drew a decision curve plot to visualise the 
net benefit of both PsyMetRiC versions over varying 
risk thresholds compared with intervening in all 
patients or intervening in no-one. Net harm (ie, more 
false positives than true positives exposed to an 
intervention at a selected risk threshold) is indicated 
when a proposed intervention is plotted at y<0. Classical 
decision theory proposes that at a chosen risk threshold, 
the choice with the greatest net benefit should be 
preferred.16

sensitivity × prevalence – (1 – specificity) 
× (1 – prevalence) × w
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Visual representation of PsyMetRiC
We have provided two simulated case histories applying 
PsyMetRiC algorithms. Additionally, we developed an 
online data-visualisation app using shiny for R, which 
allows an interactive exploration of the effect of 
modifiable and non-modifiable risk factors and their 
combinations on cardiometabolic risk in young people 
with psychosis according to their PsyMetRiC score.

Role of the funding source 
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. 

Results 
Data from 651 patients were included in the pooled 
development sample: 352 from the Birmingham EIS and 
299 from CAMEO (table 1). After 500 bootstraps, the 

Development sample SLaM EIS external 
validation sample 
(n=510)

ALSPAC risk of 
psychosis sensitivity 
analysis sample 
(n=505)

Birmingham EIS 
(n=352)

CAMEO EIS  
(n=299)

Pooled development 
sample (n=651)

Age, years 23·76 (4·90) 25·42 (4·77) 24·52 (4·91) 24·45 (4·75) 17·81 (0·43)

Ethnicity

White European or not 
recorded

111 (32%) 250 (84%) 361 (55%) 154 (30%) 494 (98%)

Black or African-Caribbean 94 (27%) 15 (5%) 109 (17%) 250 (49%) <5 (<1%)*

Asian or other 147 (42%) 34 (11%) 181 (28%) 106 (21%) <5 (<1%)*

Sex

Male 232 (66%) 208 (70%) 440 (68%) 351 (69%) 184 (36%)

Female 120 (34%) 91 (30%) 211 (32%) 159 (31%) 321 (64%)

HDL concentration, mmol/L 1·76 (0·35) 2·08 (0·49) 1·88 (0·57) 1·57 (0·37) 1·21 (0·31)

Triglycerides concentration, 
mmol/L

1·46 (1·18) 1·30 (0·89) 1·39 (1·06) 1·23 (0·71) 1·06 (0·77)

BMI, kg/m2 22·06 (5·13) 24·01 (5·73) 23·63 (5·43) 22·96 (6·94) 23·22 (3·55)

FPG, mmol/L 5·20 (1·02) 5·17 (1·45) 5·19 (1·28) 5·03 (1·10) 5·31 (0·49)

Systolic BP, mm Hg 121·18 (11·04) 119·88 (12·25) 120·65 (11·68) 119·96 (13·70) 115·10 (11·88)

Metabolically active 
antipsychotics†

239 (68%) 216 (72%) 455 (70%) 472 (93%) 58 (11%)

Current smoker 182 (52%) 133 (44%) 315 (48%) 469 (92%)‡ 286 (57%)

Follow-up, years 2·44 (1·54) 1·43 (1·03) 1·86 (1·32) 2·73 (1·76) 5·18 (0·39)

Time of predictor assessment 
from EIS enrolment, days

23·55 (25·44) 21·93 (29·84) 16·71 (26·38) 3·05 (36·01) §

Metabolic syndrome at 
baseline¶

31/383 (8%) 18/317 (6%) 49/700 (7%) 30/540 (6%) 22/527 (4%)

Metabolic syndrome at 
follow-up

74 (21%) 35 (12%) 109 (17%) 86 (17%) 76 (15%)

Data are mean (SD), number (%), or n/N (%). Some percentags do not add up to 100 because of rounding. ALSPAC=Avon Longitudinal Study of Parents and Children. 
BMI=body-mass index. BP=blood pressure. CAMEO=Cambridgeshire and Peterborough Assessing, Managing and Enhancing Outcomes. EIS=early intervention service. 
FPG=fasting plasma glucose. SLaM=South London and Maudsley NHS Foundation Trust. *Reported as <5 owing to ALSPAC reporting guidelines. †Listed in the appendix 
(p 11). ‡Smoking status was derived using the CRIS-IE-Smoking application using natural language processing software to extract ever smoking status information from 
open-text fields (appendix p 6). §Health record and service use data are not available in ALSPAC. ¶N numbers are the sample size before excluding cases with metabolic 
syndrome at baseline. 

Table 1: Demographics and clinical characteristics of patients in the algorithm development and internal and external validation sets

Full model Partial model

Intercept –6·439813 –6·973829

Age, years 0·006233226 0·00633115

Black or African-Caribbean ethnicity 0·004258861 0·07548129

Asian or other ethnicity 0·211217746 0·29285950

Male sex 0·222300765 0·31460036

Body-mass index, kg/m² 0·141186241 0·16912161

Current smoker 0·153691193 0·24751854

Prescribed a metabolically active 
antipsychotic

0·497552758 0·60013558

HDL, mmol/L –0·399013329 *

Triglycerides, mmol/L 0·343528440 *

*Variable not included in model.

Table 2: Final coefficients for the Psychosis Metabolic Risk Calculator 
after shrinkage for optimism
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pooled corrected C slope was 0·90 for the full model 
and 0·93 for the partial model; these values were used as 
shrinkage factors. Final PsyMetRiC coefficients are 
presented in table 2. Histograms showing the distribution 
of predicted outcome probabilities are provided in the 
appendix (p 14).

At internal validation, the pooled performance statistics 
for the full model were C 0·80 (95% CI 0·74 to 0·86); 
R² 0·25 (95% CI 0·22 to 0·28); Brier score 0·07 (95% CI 
0·05 to 0·09); and intercept –0·05 (95% CI –0·08 to –0·02). 
For the partial model, these statistics were C 0·79 (95% CI 
0·73 to 0·84); R² 0·19 (95% CI 0·14 to 0·24); Brier 
score 0·10 (95% CI 0·07 to 0·13); and intercept –0·07 
(95% CI –0·10 to –0·04). Calibration plots showed good 
agreement between observed and expected risk at most 
predicted probabilities, although in both PsyMetRiC 
versions there was evidence of slight overprediction of 
risk at higher predicted probabilities (appendix p 15).

Our sample frame in the SLaM EIS identified 
2985 patients, 510 of whom were eligible for inclusion in 
the SLaM external validation set; the appendix (p 9) 
provides details of the missing sample analysis. After 
applying PsyMetRiC to the SLaM EIS patient sample, 
performance statistics for the full model were C 0·75 
(95% CI 0·69 to 0·80); R² 0·21 (95% CI 0·18 to 0·25); 
Brier score 0·07 (95% CI 0·04 to 0·10); and intercept –0·05 
(95% CI –0·08 to –0·02). For the partial model, these 
statistics were C 0·74 (95% CI 0·67 to 0·79); R² 0·17 
(95% CI 0·14 to 0·20); Brier score 0·08 (95% CI 
0·05 to 0·11); and intercept –0·07 (95% CI –0·11 to –0·03). 
Calibration plots showed good agreement between 
observed and expected risk in the full model, but in the 
partial model there was evidence of slight miscalibration 
(underprediction of risk at lower predicted probabilities, 
and overprediction of risk at higher predicted prob
abilities; figure 1). In both models, 95% CIs widened as 
predicted probabilities became more extreme owing to 
lower numbers of participants with more extreme 
predicted probabilities (appendix p 15).

The sample frame for the ALSPAC validation set 
comprised 505 patients. In the ALSPAC sample, 
performance statistics for the full model were C 0·73 
(95% CI 0·66 to 0·79); R² 0·20 (95% CI 0·17 to 0·23); 
Brier score 0·08 (95% CI 0·04 to 0·11); and 
intercept –0·03 (95% CI –0·07 to 0·01). For the partial 
model, these statistics were C 0·71 (95% CI 0·64 to 0·77); 
R² 0·17 (95% CI 0·13 to 0·22); Brier score 0·09 (95% CI 
0·05 to 0·13); and intercept –0·03 (95% CI –0·07 to 0·00). 
The appendix (p 17) shows histograms of predicted 
outcome probabilities. Calibration plots showed good 
agreement between observed and expected risk in the 
full model, albeit with some minor evidence of mis
calibration (slight underprediction of risk at lower 
predicted probabilities, and overprediction of risk at 
higher predicted probabilities; appendix p 18). The same 
pattern of slight miscalibration was marginally more 
pronounced in the partial model.

Decision curve analysis suggested that at predicted 
probability cutoffs greater than 0·05, both PsyMetRiC 
algorithms provided greater net benefit than the 
competing extremes of intervening in all patients or in 
none (figure 2). At most risk thresholds greater than 0·05, 
the full model provided slight improvement in net benefit 
compared with the partial model. The appendix (pp 12–13) 
provides numerical decision curve analysis results (net 
benefit, standardised net benefit, sensitivity, and spe
cificity) across a range of reasonable risk thresholds. For 
example, if an intervention were considered necessary 
above a risk score of 0·18, the full model would provide a 
net benefit of 7·95% (95% CI 5·37–10·82), with a 
sensitivity of 75% (95% CI 66–82) and specificity of 
74% (71–78), meaning that an additional 47% of metabolic 

Figure 1: Calibration plots for external validation of PsyMetRiC algorithms in 
an early intervention service patient sample
Calibration plots are shown for the PsyMetRiC full model (A) and partial model 
(B). Calibration plots illustrate agreement between observed risk (y axis) and 
predicted risk (x axis). Perfect agreement would trace the red line. Algorithm 
calibration is shown by the dashed line. Triangles denote grouped observations 
for participants at deciles of predicted risk, with 95% CIs indicated by the 
vertical black lines. Axes range between 0 and 0·8 since very few individuals 
received predicted probabilities greater than 0·8. PsyMetRiC=Psychosis 
Metabolic Risk Calculator.
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syndrome cases could be prevented (standardised net 
benefit). At the same risk threshold, the partial model 
would provide a net benefit of 7·74% (95% CI 
4·79–10·36), with a sensitivity of 75% (95% CI 65–81) 
and specificity of 74% (70–77), meaning that an additional 
46% of metabolic syndrome cases could be prevented 
(standardised net benefit). For both models, these data 
equate to around an additional eight cases of metabolic 
syndrome that could be prevented per 100 individuals, 
without any increase in false positives.

Figure 3 shows decision trees outlining two simulated 
case scenarios to visualise the effect of modifiable and 
non-modifiable risk factors in young people with 
psychosis, as calculated from PsyMetRiC full and partial 
models. We have developed an online data visualisation 
app for both PsyMetRiC versions, which allows the user 
to interactively explore the effect of modifiable and 
non-modifiable risk factors and their combinations on 
cardiometabolic risk in young people with psychosis, 
based on PsyMetRiC scores.

Discussion
We have developed and externally validated PsyMetRiC, 
which is to our knowledge the first cardiometabolic risk 
prediction algorithm tailored specifically for young 
people with psychosis. PsyMetRiC can predict up to 
6-year risk of incident metabolic syndrome from 
commonly recorded clinical information, highlighting 
modifiable risk factors that could be addressed to reduce 
risk. Metabolic syndrome is a precursor to CVD and early 
mortality,18 and is a suitable outcome for younger 
populations, since it occurs more commonly in younger 
adults than do more distal cardiovascular endpoints such 
as CVD. The external validation of both PsyMetRiC 
versions was good, with C statistics greater than 0·70. 
Calibration of the full model was good, but there was 

evidence of slight miscalibration of the partial model. 
Therefore, the partial model in particular may benefit 
from recalibration in larger samples. Both PsyMetRiC 
versions displayed greater net benefit than alternative 
strategies across a range of feasible risk thresholds, 
although at most risk thresholds our results show that 
the full model should be used preferentially.

Our data visualisations help to illustrate three things: 
first, antipsychotic medication choice imparts a sub
stantial influence on cardiometabolic risk; second, 
addressing lifestyle factors can effectively reduce 
cardiometabolic risk even in the presence of anti
psychotic medication; and third, advancing age in 
young adults does not influence cardiometabolic risk 
substantially relative to other risk factors. Although 
PsyMetRiC will benefit from future validation in larger 
samples, it has the potential to become a valuable 
resource to promote better management of physical 
health in young people with psychosis—eg, by 
highlighting modifiable risk factors and encouraging 
clinicians to make more personalised, informed 
decisions, such as with the choice of antipsychotic 
medication or lifestyle interventions, or both.

Ethnicity, smoking, and BMI are among the most 
commonly included predictors in existing algorithms8 
and are well known contributors to cardiometabolic 
risk,19 so we included them in PsyMetRiC. Sex is also 
frequently considered in existing algorithms,8 and we 
included it in PsyMetRiC. We found that male sex was a 
risk factor for incident metabolic syndrome, which aligns 
with meta-analytic reports that male sex is a risk factor 
for antipsychotic-induced metabolic dysfunction.19 Our 
available sample size was too small to be able to consider 
separate versions of PsyMetRiC for males and females. 
If larger samples become available in the future, 
sex-stratified versions could be considered, since existing 
algorithms developed for the general population com
monly take this step.8

Age is frequently included in existing algorithms,8 and 
we included it in PsyMetRiC. However, existing cardio
metabolic risk prediction algorithms, which were 
developed for older adults, weighted age to a greater extent 
than other predictors.8 This is probably because most 
cardiometabolic risk factors contribute cumulative risk 
over time;20 thus, age becomes increasingly important as 
one gets older. A recent exploratory analysis8 that examined 
the predictive performance of the existing general 
population cardiometabolic risk prediction algorithms, 
including QRISK37 and PRIMROSE,21 in young people 
who were at risk of developing psychosis found that each 
significantly underpredicted risk in the younger pop
ulation, possibly owing to the way existing algorithms 
have modelled age. For example, in PsyMetRiC, age is 
weighted to a much lesser extent than other predictors, 
and we achieved favourable calibration in younger 
populations. Although QRISK37 and PRIMROSE21 are 
good examples of well designed algorithms from large 

Figure 2: Decision curve analysis plot for PsyMetRiC full and partial models
The plot reports net benefit (y axis) of PsyMetRiC full and partial models across a 
range of risk thresholds (x axis) compared with intervening in all patients or 
intervening in no patients. PsyMetRiC=Psychosis Metabolic Risk Calculator.
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samples, our results suggest that PsyMetRiC is more 
appropriate for young people with psychosis.

Blood-based predictors, such as HDL and triglyceride 
concentrations, feature relatively infrequently in cardio
metabolic risk prediction algorithms.8 Meta-analytic 
evidence suggests abnormal triglyceride and HDL 
concentrations are detectable at first-episode psychosis,22 
and a raised triglyceride:HDL ratio is a hallmark of 
insulin resistance,23 which is also associated with 
first-episode psychosis.4 Abnormal HDL and triglyceride 
concentrations are associated longitudinally with cardio
metabolic outcomes.24 Guideline recommendations 
encourage blood-based monitoring both before and after 
antipsychotic exposure,25 and so such data should be 
available. We found that the inclusion of blood-based 

predictors improved all predictive performance metrics. 
However, blood-based monitoring might not always be 
possible, and we found that the partial model still 
provided reliable performance estimates, although it 
would benefit from recalibration.

Antipsychotic medication is an important contributor 
to cardiometabolic risk in young people with psychosis, 
yet has rarely been included in existing algorithms. 
Some recent algorithms have included antipsychotics 
as predictors, grouped according to the traditional 
distinctions of typical and atypical or first and 
second generation.8 However, the differential cardio- 
metabolic effects of antipsychotics do not abide by these 
distinctions. Therefore, we instead modelled anti
psychotics based on previous research (appendix p 11).

Figure 3: Simulated case scenarios to visualise the effect of modifiable and non-modifiable risk factors on cardiometabolic risk in young people with psychosis as calculated from PsyMetRiC 
full and partial models
Case scenarios are shown for the PsyMetRiC full model (A) and partial model (B). PsyMetRiC scores are presented as predicted probabilities, which can be converted to percentage chance of incident 
metabolic syndrome by multiplying by 100. BMI=body-mass index. EIS=early intervention service. NHS=National Health Service. PsyMetRiC=Psychosis Metabolic Risk Calculator. *A raised 
triglyceride:HDL ratio is indicative of insulin resistance.17 

A 24-year-old south Asian man is admitted to a psychiatric inpatient unit in the UK and diagnosed
with psychosis. His BMI is toward the upper limit of the recommended range (24·7 kg/m²). He does
not smoke. His blood test results for cholesterol are abnormal and suggest the possibility of insulin
resistance* (triglycerides 2·51 mmol/L; HDL 1·03 mmol/L)

Initial PsyMetRiC score 0·13

New PsyMetRiC score 0·13
No change in risk of metabolic syndrome

In time, he recovers from the acute psychotic episode, but shows residual symptoms and so opts to
remain on antipsychotic medication. He also accepts referral to a dietitian to address his 
cholesterol levels. 1 year later (age 25 years), improvement is reported on a repeat blood test 
(triglycerides 1·54 mmol/L; HDL 1·33 mmol/L) and his BMI has decreased to 23·3 kg/m². Owing to 
residual symptoms of psychosis, his doctor talks with him about a possible change in medication

He is commenced on aripiprazole

New PsyMetRiC score 0·19
46% increase in risk of metabolic syndrome

He is commenced on olanzapine

A

New PsyMetRiC score 0·07
46% decrease in risk of metabolic syndrome

He continues on aripiprazole

New PsyMetRiC score 0·11
15% decrease in risk of metabolic syndrome

He switches to olanzapine

A 27-year-old white European woman is diagnosed with psychosis in the community and enrolled
in the local NHS EIS. She accepts basic physical assessment only (BMI 26·2 kg/m2, in the overweight
range). She smokes 15 cigarettes per day

Initial PsyMetRiC score 0·11

She is commenced on risperidone

New PsyMetRiC score 0·20
82% increase in risk of metabolic syndrome

After she begins to recover from her psychotic symptoms, she is offered and commits to smoking
cessation therapy and is successful in her efforts. She also talks to her doctor about a change in
medication due to mild adverse effects

New PsyMetRiC score 0·08
60% decrease in risk of metabolic syndrome

With some friends, she also joins a local sports club, and over the course of 1 year, her BMI has
decreased to 24·3 kg/m²

She switches to amisulpride

New PsyMetRiC score 0·16
20% decrease in risk of metabolic syndrome

She continues on risperidone

B

New PsyMetRiC score 0·06
25% decrease in risk of metabolic syndrome

She continues on amisulpride

New PsyMetRiC score 0·12
25% decrease in risk of metabolic syndrome

She continues on risperidone
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PsyMetRiC cannot yet be recommended for clinical 
use and requires prospective validation in larger samples, 
health technology assessment, and regulatory approval. 
However, in the future, PsyMetRiC could become a 
useful resource for the improved management of 
physical health in young people with psychosis. For 
example, in the presence of a very low PsyMetRiC risk 
score, gentle encouragement to maintain good physical 
health might be sufficient. This might include dietary 
advice or promoting daily physical activity and smoking 
cessation, if necessary, or both. There is little harm, yet 
much to gain, in offering gentle encouragement to live a 
healthier life, and such conversations need to become 
part of psychiatric consultation.

Patients and clinicians might prefer to tolerate a 
slightly higher threshold of risk when the proposed 
intervention could be deemed more burdensome or 
might increase the risk of other adverse effects. 
Regarding interventions that might be deemed more 
burdensome, prescribed lifestyle interventions have 
shown promise in lowering cardiometabolic risk in 
young people with psychosis,17 but regular appointments 
may be difficult to maintain around work or other 
commitments. Regarding interventions that might 
increase the risk of other adverse effects, our results 
show that switching from metabolically active anti
psychotics, or not prescribing them in the first place, is 
an effective means to reduce cardiometabolic risk. 
However, the risk of psychosis relapse or other adverse 
effects might reasonably be worrisome for patients and 
clinicians alike. Moreover, data from a meta-analysis19 
suggest that metabolically active antipsychotics could be 
associated with greater psychosis treatment response. 
Therefore, antipsychotic selection must strike an 
intricate balance between caring for psychiatric and 
physical health. Finally, trials of treatments such as 
metformin and statins are scarce in young people with 
psychosis, but evidence suggests that such medications 
might benefit both cardiometabolic and psychiatric 
outcomes.26

We have developed, to our knowledge, the first cardio
metabolic risk prediction algorithm for young people 
with psychosis, harnessing data from three geographically 
distinct patient samples and a population-based cohort. 
PsyMetRiC was developed in consultation with The 
McPin Foundation YPAG to ensure balance between 
clinical practicality and patient acceptability, and we 
received encouraging comments from the YPAG about 
PsyMetRiC (appendix p 10). We developed an online 
interactive app permitting a visualisation of the effect of 
different cardiometabolic risk factors in young people 
with psychosis. We have published our algorithm 
coefficients to encourage future validation and updating. 
We developed two versions of PsyMetRiC to maximise 
clinical utility and both validated well, suggesting that 
PsyMetRiC is likely to be suitable for use in patients 
aged 16–35 years from a UK EIS population, and, from 

the results of our sensitivity analysis, for use in young 
adults at risk of developing psychosis.

Limitations of the study include missing data. We 
excluded participants who had the outcome at baseline, as 
recommended;27 however, since predictors were assessed 
within a short timeframe after EIS enrolment, some 
metabolically sensitive individuals might have been 
excluded from our analysis. We also excluded participants 
with data missing on either all exposure or all outcome 
variables, which might also have introduced selection bias. 
The missing samples were more likely to be older and 
female, and less likely to be prescribed metabolically active 
antipsychotics. These factors might have affected some 
PsyMetRiC predictor coefficients. Nevertheless, we felt this 
exclusion step was more appropriate than imputing 
complete participant data. Multiple imputation can be 
biased when data are missing not at random, although we 
included auxiliary variables to reduce the fraction of 
missing information, limiting the effect of this bias. 
External validation of PsyMetRiC on larger samples 
is required since simulation studies have suggested a 
minimum of 100 outcome events for an accurate validation 
analysis.28 Larger prospectively collected samples in future 
might also allow for updating the algorithm with 
interactions, non-linear terms, sex stratification, and other 
potentially important predictors such as other metabolically 
active medications, physical activity, and diet. Prospectively 
collected data might also predict longer-term risk. The 
samples in our main analysis had outcomes measured up 
to 6 years; however, the mean follow-up time was shorter. 
Although our data-driven classification of metabolically 
active antipsychotics is an advance over existing algorithms, 
the metabolically active nature of different antipsychotics 
lies on a continuum rather than a dichotomy. Larger 
samples might permit the modelling of antipsychotics 
individually. Prescriber bias might have downwardly biased 
the coefficients for antipsychotics, since metabolically 
active medications might have been withheld from patients 
considered to be at higher cardiometabolic risk.

PsyMetRiC has the potential to become a valuable 
resource for health-care professionals working in EISs 
by aiding the informed choice of antipsychotic 
medication, prescription of cardioprotective drugs, and 
non-pharmacological interventions including lifestyle 
adjustments to prevent the future development of 
cardiometabolic comorbidities and consequent years of 
life lost.
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