
Jahresber Dtsch Math-Ver (2021) 123:3–26
https://doi.org/10.1365/s13291-020-00221-1

S U RV E Y A RT I C L E

Formalising Mathematics – in Praxis;
A Mathematician’s First Experiences with
Isabelle/HOL and the Why and How of Getting Started

Angeliki Koutsoukou-Argyraki1

Published online: 6 October 2020
© The Author(s) 2020

Abstract This is an account of a mathematician’s first experiences with the proof
assistant (interactive theorem prover) Isabelle/HOL, including a discussion on the
rationale behind formalising mathematics and the choice of Isabelle/HOL in partic-
ular, some instructions for new users, some technical and conceptual observations
focussing on some of the first difficulties encountered, and some thoughts on the use
and potential of proof assistants for mathematics.
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“...We believe that when later generations look back at the development of mathematics one will
recognise four important steps: (1) the Egyptian-Babylonian-Chinese phase, in which correct
computations were made, without proofs; (2) the ancient Greeks with the development of ‘proof’; (3) the
end of the nineteenth century when mathematics became ‘rigorous’; (4) the present, when mathematics
(supported by computer) finally becomes fully precise and fully transparent.” Barendregt, H. and
Wiedijk, F. (The challenge of computer mathematics, Philos. Trans. - Royal Soc., Math. Phys. Eng. Sci.
36(1835):2351–2375 (2005) [4]).

1 Introduction

Writing a mathematical proof could be compared to making a beautiful carpet fea-
turing elaborate patterns: the end result looks impressive, mind-boggling even, but
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the actual process in fact consists of simple arguments, like small stitches. While for-
malising1 mathematics with a proof assistant (also referred to as interactive theorem
prover), that is, writing proofs in a formal language so that a computer can verify the
correctness of a proof, every simple argument should be made explicit: it can be a
painstaking process, as every step that is trivial to a human may need to be analysed
in a number of elementary sub-steps. But this process could be invaluable to stu-
dents (and sometimes even to professional mathematicians) who can gain a deeper
understanding of a proof. This is of course far from the only motivation to formalise
mathematics with a proof assistant: verification of proofs, as well as contributing to
the constantly growing libraries of formal proofs that can be used for creating tools
to assist mathematicians in their creative work, are also very important motives (a
discussion on this will follow in Sect. 2).

It should be clarified that proof assistants are not the same as computer algebra
tools, such as MATLAB or Mathematica: the latter mainly do computations, while
the former mainly do reasoning. Proof assistants can be used to verify various algo-
rithms that may have many different applications in theoretical computer science and
in industry too, but here we discuss the use of proof assistants for formalising and
verifying mathematical proofs in particular. Various different proof assistants that are
based on different formal systems have been developed over the years. A comprehen-
sive review comparing different theorem provers (as of 2006) edited by Freek Wiedijk
and forwarded by Dana S. Scott is a useful reference for interested users [65]; sev-
enteen systems2 are showcased by presentation and direct comparison of formalised
proofs. Since then, the state-of-the-art has improved with libraries of formal proofs
having expanded significantly and with the new proof assistant Lean having entered
the picture as well.

In an online list [66], Freek Wiedijk is keeping track of which theorems, out of a
list of 100 significant mathematical theorems, have been formalised in which proof
assistant, considering ten3 different systems. As of today, 95 out of the 100 theorems
of the list have been formalised in at least one of these ten systems, and Isabelle
comes second after HOL Light in the list with 83 out of the 100 theorems having
been formalised in Isabelle.

Nowadays, the most popular proof assistants for formalising mathematics are Is-
abelle, Coq, Lean, Mizar, HOL4, HOL Light, Agda and Metamath, but this article,
as the title suggests, focusses on Isabelle/HOL (: Higher Order Logic) in particular.
Isabelle was first developed by Lawrence Paulson and Tobias Nipkow [46, 51] and
supports different logical formalisms, such as first and higher-order logic as well as
Zermelo Fraenkel set theory (Isabelle/ZF). Isabelle/ZF and Isabelle/HOL share the
same basic inference procedures and user interface, however Isabelle/HOL is more
developed and, as we will see, features useful automation tools.

1I consider the terms “mechanising”/ “mechanisation” as perhaps more appropriate than the terms “for-
malising”/ “formalisation” in our context, as the latter may be confused with formalisation in the sense
of what was attemped e.g. in Principia Mathematica by Whitehead and Russell [62]. Nevertheless, I use
“mechanisation” and “formalisation” interchangeably, as it is usually done in the literature; in recent years,
these terms are being used as synonymous.
2HOL, Mizar, PVS, Coq, Otter/Ivy, Isabelle/Isar, Alfa/Agda, ACL2, PhoX, IMPS, Metamath, Theorema,
Leog, Nuprl, Omega, B method and Minlog.
3HOL Light, Isabelle, Metamath, Coq, Mizar, ProofPower, Lean, PVS, nqthm/ACL2, NuPRL/MetaPRL.
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Proof assistants are becoming more and more popular among younger mathemati-
cians and students. For example, note the prize-winning project by a group of under-
graduate students from Bremen formalising Matiyasevich’s proof of Hilbert’s 10th
problem with Isabelle/HOL [54, 58], as well as the vibrant community of young
mathematicians and undergraduate students working under the direction of Kevin
Buzzard at Imperial College London with Lean [7]. This enthusiasm has in part been
fuelled by several important milestones, such as the verification of the proof of the
four-colour theorem in Coq by Georges Gonthier [12], the verification of the proof
of the Kepler conjecture [16] in HOL Light and Isabelle by Thomas Hales et al. [17]
as well as the formalisation of Gödel’s incompleteness theorems using Isabelle/HOL
by Lawrence Paulson [48, 49].

Hoping that this may be of help to students interested in formalisation of mathe-
matics and automated reasoning, I am sharing this report4 on my comments (mostly
focussing on the difficulties) on my experience with Isabelle/HOL working within
the ALEXANDRIA project at the University of Cambridge, as a pure mathematician
who had no prior formalisation experience. My goal is to give an overview of my
experience with Isabelle/HOL so far and of my views on the formalisation of mathe-
matics, and to share some instructions on getting started with Isabelle as well as some
first observations which I made, both technical and conceptual, that might prove to
be helpful to students and beginners in their early learning stages.

The plan of this paper is as follows: in Sect. 2, I discuss the main motives for
formalising mathematics also commenting on my own motivation and research back-
ground and I introduce the ALEXANDRIA project at the University of Cambridge.
In Sect. 3, I give a brief introduction on how to get started with Isabelle/HOL. In
Sect. 4, I discuss the first difficulties I encountered with Isabelle/HOL. In Sect. 5,
I give an overview of the first projects I worked on as case studies to explore what
Isabelle/HOL can and cannot do. Section 6 is to be read as a caution to new users
showing how to avoid making a bad use of a proof assistant, in particular I give ex-
amples of different kinds of mathematical mistakes and show how Isabelle would not
detect them if the user is not making a responsible use of it. Finally, Sect. 7 involves a
comment on the main two different aspects of revolutionising mathematical practice
through the mechanisation of mathematics.

2 Motivation for Formalising Mathematics and the ALEXANDRIA
Project

2.1 Why Formalise Mathematics?

However one would like to describe mathematical practice, it is certainly not the
same as programming (nor should it be reduced to it). As computers and artificial
intelligence are becoming more and more integrated into every aspect of our lives,
“modernising” mathematical practice in that respect does not sound unexpected, but
this is not an issue of modernisation for the sake of it (although for some people this

4This is an updated version of some earlier online notes from July 2019 that I had shared on ResearchGate.
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would be a sufficient reason); in fact, formalising mathematics offers many direct
benefits. There are different approaches to making a choice about what material to
formalise. These are: (a) formalising the mathematical curriculum, that is, basic mate-
rial that undergraduate students are usually taught; (b) formalising advanced, famous
results, e.g. the aforementioned formalisations of Gödel’s incompleteness theorems,
the four-colour theorem and Hilbert’s 10th problem; (c) formalising new research
results, that can be either from mainstream research papers or that could be consid-
ered groundbreaking (like the aforementioned proof of the Kepler conjecture). To the
above we can add a fourth strategy, which is not quite achievable with the current
state-of-the-art but is one of the main goals for the future of the field: (d) discover
new mathematical results through the process of formalising.5 To this end, advances
in machine learning are widely regarded as necessary. Timothy Gowers has described
how an interactive assistant would ideally “converse” with a human mathematician
to assist the discovery of new results [14]. But, today, we are still far from this goal.

There are different expected benefits that motivate each strategy.
An obvious first reason is verification. This applies mostly to (c), since in all other

cases the material has been checked by a great number of people over the years and
we wouldn’t expect to find mistakes in elementary material. With more advanced and
more recent results the probability of finding mistakes of course starts to increase. A
recent example in the theory of Gromov-hyperbolic spaces is a mistake found through
formalisation in Isabelle by Gouëzel and Shchur [13].

Another reason, applying mostly to (a) and (b), is that contributing to the (very
fast growing) libraries of formal proofs amounts to the creation of a database with
a huge potential. A “physical” mathematical library consisting of “material” books,
or even an online library consisting of pdf files, is more restrictive – while here we
have to do with a library written in code: something we can modify, interact with,
reuse. More importantly, formalised material can be used to create tools for goal (d).
A vision for the future is the creation of an interactive assistant that would provide
“brainstorming” tips to research mathematicians in real time assisting them in the
process of discovering (or inventing) a new result.

A third reason, applying to all (a), (b), (c) (and (d)), is that the process of formalis-
ing in itself can help the user gain brand new insights even in already familiar topics.
To a large extent this is because of the high level of detail in which a formalised proof
must be written, but also because using new tools forces to look at familiar material
from a new angle.6

Last but not least, formalisation can also serve educational purposes (this applies
mostly to (a)).

I will not elaborate further on a general discussion about this topic – I rather re-
strict to mentioning the inspiring papers by Avigad [3], Paulson [50], Lamport [42],
Barendregt and Wiedijk [4] and the classical QED Manifesto from the mid-90’s [6].

5Although the original proofs of the four-colour theorem and the Kepler conjecture were computer-
assisted, they were not discovered through the process of formalising, but were formalised later for verifi-
cation purposes.
6Kevin Buzzard gave an instance of this phenomenon regarding notions of equivalence and similarity
for groups during his talk at Big Proof which took place in May 2019 at the International Center for
Mathematical Sciences in Edinburgh https://www.icms.org.uk/bigproof.php.

https://www.icms.org.uk/bigproof.php
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Pioneering mathematicians such as the Fields medalists Timothy Gowers [14] and
Vladimir Voevodsky [61] and more recently Kevin Buzzard [7–9, 11], Peter Koepke
[24] and Benedikt Löwe [43], among others, have been very strong advocates for the
use of proof assistants and formal verification in mathematics.

2.2 More Personal Motivation and My Mathematics Background

As a pure mathematician with some background in logic and proof theory, my own
interest in the topic was initially driven not only by a fascination for the emerging
culture of re-imagining mathematical practice in the light of new AI developments
but also by philosophical questions on the nature of mathematical proofs, e.g. when
encountering in my own research work different proofs of similar statements giving
completely different computational content [29, 31].

In particular, regarding my mathematics background, my PhD research [32]
was pen-and-paper work and involved applications of proof theory to mathematics
(mainly in nonlinear analysis) [28–31]. I have been working within Ulrich Kohlen-
bach’s proof mining programme [25–27] that involves pen-and-paper extraction of
constructive/quantitative information from proofs in the form of computable bounds,
which requires a logical analysis of a proof and rewriting it to make the logical form
of all the statements involved explicit via revealing the hidden quantifiers. It is only
natural that such a line of research would provoke the question:

What is it that makes a “good” proof?

which of course has many possible answers:

• a shorter proof;
• a more “elegant” proof (which is of course usually subjective);
• a simpler proof (consider Hilbert’s 24th problem (1900): “find criteria for simplic-

ity of proofs, or, to show that certain proofs are simpler than any others.” [45]);
• thinking in terms of Reverse Mathematics – a proof in a weaker subsystem of Z2

(Second Order Arithmetic);
• an interdisciplinary proof (e.g. a geometric proof for an algebraic problem or vice-

versa would be considered to give a deeper mathematical insight);
• a proof that is easier to reuse i.e. if it provides some algorithm or technique or

intermediate result that can be useful in different contexts too;
• a proof giving “better” computational content.

In the aforementioned proof mining papers [29, 31] it turns out that different proofs
of similar statements (about the fixed points of nonexpansive semigroups) give com-
pletely different computational content, which in turn, provokes the question:

What do we mean by “better” computational content?

• a bound of lower complexity?
• a bound that is more precise numerically?
• a bound that is more “elegant”?

It would be reasonable to ask too:

• How are the aforementioned proof features related to each other (if at all)?
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• Could we ever ensure that we get the optimal computational content (from a given
proof)?

The answers to the above questions are non-trivial – and my hope is that formalisation
could provide us with some useful insights.

I joined the ALEXANDRIA project in October 2017, some months after obtain-
ing my PhD in pure mathematics and with no prior formalisation experience in any
proof assistant. Although proof mining has trained me in patiently de-constructing
proofs into every elementary sub-step and in tidying up proofs after finding their un-
derlying logical structure, which are both necessary skills for anyone interested in
formalisation, starting to explore a proof assistant was to me a brand new challenge.

2.3 The ALEXANDRIA Project

The project ALEXANDRIA: Large-Scale Formal Proof for the Working Mathemati-
cian led by Lawrence Paulson and funded by the European Research Council, started
at the University of Cambridge in Autumn 2017 and is aiming at contributing to the
creation of a proof development environment for working mathematicians through a
collaboration of mathematicians and computer scientists. The focus of the project is
the management and use of large-scale mathematical knowledge, both as theorems
and as algorithms. To formalise mathematical proofs we make use of the proof assis-
tant Isabelle/HOL. Our goals involve not only the contribution to the Isabelle libraries
with new formalised material, but also the management and organisation of the li-
braries, as well as the creation of interactive tools that would assist mathematicians
in the process of both formalising known proofs and discovering new results. To this
end, tools facilitating automation and search are important priorities. The ALEXAN-
DRIA group members are Lawrence Paulson, Wenda Li, Anthony Bordg, Yiannos
Stathopoulos and myself. For more information I refer to the project description by
Lawrence Paulson [47].

3 First Steps in Isabelle/HOL

Isabelle has several major advantages over other proof assistants: first of all, it uses
the structured language Isar, which is understandable by both humans and machines.
Moreover, it supports automation tools, which are much more efficient than automa-
tion in any other proof assistant. The main automation tool featured by Isabelle/HOL
is Sledgehammer [5], which searches for proofs by calling a number of external au-
tomated theorem provers, and afterwords converts the proofs (if found) to Isar. Also,
there is the command try0, which calls a number of widely used proof methods
in search of a proof (simp, auto, blast, metis, argo, linarith,
presburger, algebra, fastforce, force, fast, meson, satx).

There are also certain counterexample finding tools (nitpick and Quickcheck). Sledge-
hammer, nitpick and Quickcheck are not supported by Isabelle/ZF. We will discuss
more Isabelle’s automation later. Another advantage of Isabelle is that its libraries are
already quite extensive – a great deal of material has been formalised over the years
and the libraries are constantly growing. Isabelle is based on simple types and the
internal/implementation languages are Standard ML and Scala. It does admit classi-
cal (i.e. non-constructive) proofs. In particular, Isabelle/HOL includes the axiom of
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choice. The default user interface is Isabelle/jEdit, which provides real-time proof
checking, as well as rich semantic information for the formal text and direct links to
the user manuals and tutorials7 (see “Documentation” at the left-hand side of the user
interface).

The first step is of course to download Isabelle (which is distributed for free under
open-source licenses) from the Isabelle website [21]. Installation is straightforward.
Next, one should get familiar with the Isabelle Libraries and the Archive of Formal
Proofs (AFP) [1]. The HOL and ZF Libraries can be found in [22] and [23] respec-
tively. The AFP contains a vast collection of formalised material in a variety of top-
ics in mathematics (algebra, analysis, probability theory, number theory, geometry,
topology, graph theory, combinatorics, category theory) as well as some applications
in economics and physics. Moreover, the AFP contains extensive proof libraries in
computer science and logic. As of 2 September 2020, there are 553 entries by 362
authors [1]. Isabelle users can get help with their questions on the Isabelle mailing
list8 as well as on the Isabelle Zulip chat.9

Reading the manuals and tutorials can be helpful, but usually learning-by-doing
can be more efficient. It would be thus advisable to start by exploring some theories
from the library (e.g., after having installed Isabelle, by opening a session and going
to

File→ Open→ isabelle→ src→ HOL→ Analysis

to get to the Analysis Library theory files) and/or download one of the AFP entries
(there are detailed instructions on the website [1]) and make modifications to see how
it responds.

A theory file starts with theory [the name of the file] followed by imports
[the libraries or AFP entries that need to be imported for the purposes of the theory
at hand]. The theory is then developed between the keywords begin and end. The
file should be saved with the same name that is used right after theory, followed
by “.thy”.

The user can call the automation tools to look for proofs simply by typing
try0 and Sledgehammer. In order to search for already formalised material in
the loaded theories of the active session, the user can type find_theorems or
find_theorems name: followed by some search word. While looking at an
open .thy file, the user can place the cursor on any object and by pressing the
Command key and clicking, the jEdit interface takes the user to the theory where
the object is defined. The keyword sorry can be used in the place of a missing
proof, so that a statement can be temporarily regarded as “proven” and the user may
even refer to the result to use it in other proofs and return to the missing proof
later. The keyword oops has a similar use, except that it “abandons” a proof typ-
ically in the middle; unlike sorry, it cancels the entire proof attempt up to the
previous lemma/theorem/proposition/corollary keyword and the claimed
statement is not available to be used.

7These can also be found under “Documentation” on [21].
8https://lists.cam.ac.uk/mailman/listinfo/cl-isabelle-users.
9https://isabelle.zulipchat.com.

https://lists.cam.ac.uk/mailman/listinfo/cl-isabelle-users
https://isabelle.zulipchat.com
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Looking at examples online from the Library [22] and the AFP [1], the user will
notice the variation of colours, which helps to distinguish between different kinds
of keywords. For example, text with comments or headings, and facts in quotations
that had been previously assumed/defined/shown within the same proof appear in or-
ange, words indicating the structure of a theory or a proof, like theorem, lemma,
proof, by, qed, subsection appear in navy blue, keywords of an imperative
nature within a proof such as fix, assume, thus, show, obtain appear in light
blue, keywords indicating the posing of assumptions and conclusions i.e. assumes,
fixes, and, where, shows, if, is appear in green, entire mathematical state-
ments appear in pink, the keywords apply and done referring to applying one or
more proof methods appear in red, comments within the symbols (* and *) appear in
dark red, and everything else appears in black.

Note that while working directly on a formalisation within an active Isabelle ses-
sion the colours will differ, namely the user will notice that fixed/free variables appear
in blue and bound variables appear in green.

3.1 Examples

Most new users would agree that Isar looks understandable, at least not much less
than LATEX code: a few examples with some clarifications are given below. The reader
is invited to locate the following examples, which can be accessed online on the Li-
brary or the AFP as given. However, in order to be able to work directly with the the-
ory (and to decipher any references to unknown objects by Command-Click which
will take the user to the wanted definition of the object in question), the user must
open these theories via an Isabelle session following the previously given instruc-
tions.

3.1.1

A definition of the 7-dimensional real cross product from my AFP entry on Octonions
[34]: We have defined a multiplication operation between two 7-dimensional real
vectors �a and �b giving a 7-dimensional real vector, so that each of its coordinates is
given in terms of the coordinates of �a and �b; for example, the first coordinate will be
given by a2 · b4 − a4 · b2 + a3 · b7 − a7 · b3 + a5 · b6 − a6 · b5.

3.1.2

A statement attesting that norm equality implies inner product equality (and the con-
verse) together with a proof, from the Analysis/HOL Library [22], in particular from
the theory Inner_Product by Brian Huffman: Notice that the proof here is “apply-
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style” and not a structured Isar proof. The user can see the definitions of each symbol
and of norm, inner, as well as the statements of the lemmas order_eq_iff,
norm_le that are used in the proof by placing the cursor on the object in question,
pressing the Command key and clicking.

3.1.3

Let us now look at an example in more detail, comparing the “informal” with the for-
mal proof. Consider the following version of the Cauchy-Schwarz inequality together
with a proof. An “informal” proof is given below. Note that we use [___] to denote
the “trivial” intermediate arguments which are missing and will be explicitly shown
in the formal proof.

Cauchy-Schwarz inequality: For every two vectors �x, �y of an inner product space
over the field of real numbers, |〈�x, �y〉|2 ≤ 〈�x, �x〉 · 〈�y, �y〉.
Proof: We distinguish two cases: The case that �y = 0 (in which the proof is triv-
ial [___]) and the case that �y �= 0. Assume that �y �= 0. Let r := 〈�x, �y〉/〈�y, �y〉.
We have that: 0 ≤ 〈�x − r �y, �x − r �y〉 [___] = 〈�x, �x〉 − 〈�y, �x〉 · r [___] = 〈�x, �x〉 −
|〈�x, �y〉|2/〈�y, �y〉 [___]. So we have shown that 0 ≤ 〈�x, �x〉 − |〈�x, �y〉|2/〈�y, �y〉 from
which follows that |〈�x, �y〉|2/〈�y, �y〉 ≤ 〈�x, �x〉 [___] from which the wanted inequal-
ity immediately follows [___]. QED.

The above proof is written in Isabelle (this is from the Analysis/HOL Library
[22], in particular from the theory Inner_Product by Brian Huffman) as follows (note
that in the place of every [___] we have provided proofs which are indicated by the
keyword by in navy blue followed by some proof method, or by some proof method
and one or more lemmas):



12 A. Koutsoukou-Argyraki

We continue with a few more examples of well-known statements formulated in
Isabelle.

3.1.4

The statement of the Stone-Weierstrass theorem for polynomial functions, from the
Analysis/HOL Library [22], in particular from the theory Weierstrass_Theorems by
Lawrence Paulson:

3.1.5

A version of Zorn’s lemma, together with a proof, from the HOL Library [22], in par-
ticular from the theory Zorn by Jacques Fleuriot, Tobias Nipkow and Christian Ster-
nagel, ported from Lawrence Paulson’s Zorn theory development from Isabelle/ZF:

3.1.6

The statement and a proof of the Riemann mapping theorem, from the Com-
plex_Analysis/HOL Library [22], in particular from the theory Riemann_Mapping
by Lawrence Paulson (note that the formal proof here is very short as it directly fol-
lows from auxiliary statements formalised in the same theory):
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4 First Difficulties Encountered

4.1 Syntax

As in any new programming (or even natural) language, the first challenge for a new
user is familiarisation with the syntax and the essential keywords. In fact, I found
Isar to be both quite intuitive in terms of structure and easily readable, while the
jEdit user interface is very user-friendly. The fact that Isar admits structured proofs
is a major advantage. There are, however, certain (mostly syntactic) features that
may seem surprising to a new user. Some miscellaneous characteristic examples
are:

• The standard proof patterns
have "a<b" also have "...<c" finally show "a<c" by auto and
have "a<b" moreover have "...<c" ultimately show "a<c" by

auto.
• The syntax does not allow for shortcuts such as “a < b < c” or “a, b, c > 0”,

instead one has to write "a<b∧b<c" or "a<b" and "b<c", respectively
"a>0∧b>0∧c>0" or "a>0" and "b>0" and "c>0".

• The user has to remember to always include type information. Even arabic numbers
are in certain cases regarded as constants of some unknown type unless their type
is explicitly stated (e.g.(1::int)/(2::int)^0 = 1 is proven just by the proof
method simp while for 1/2^0 = 1 automation gives no answer nor do we get any
explanatory error messages). Moreover, for exponentiation, if the exponent is of
type real or integer one has to use powr, while for type natural the symbol ^works.
Also, often the user has to switch the type of a variable or constant (of_int,
of_real, of_nat) when confronted for instance with division.

• The meaning of some keywords, e.g.: where, that, when, at_top,
sequentially.
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• The use of several symbols, e.g.: the meet and join operators for lattices are sym-
bolised by 	, 
 instead of ∧, ∨ that are normally used in the literature; different
kinds of arrows; the absolute value symbol.

• Overall the extremely high level of detail in which proofs must be written.

Discovering such features for the first time may be slightly time-consuming for a
new user as error messages are not always helpful. New users should not be discour-
aged by the potentially slow progress during the very first stages of their learning as
after some practice the learning process accelerates significantly and becomes very
rewarding.

4.2 Search Features

After syntax, search is of very high significance for the mathematician user, both in
terms of finding material by thematic classification, and of finding essential technical
lemmas and definitions while in the process of formalising new work. In the latter
case, it is extremely helpful that the interface allows for words to function as hyper-
links: as mentioned, by pressing the Command key while clicking on each object,
the user is taken to the theory where the object at hand is defined. However, there is
room for improvement with respect to search features, from different points of view.
In particular:

(1) It is possible to search for theorems only on the basis of symbolic patterns occur-
ring in them or of their names (via find_theorems or find_theorems name:
as mentioned) so an unexpected name could create obstacles. Even though
find_theorems is helpful most of the time, in some cases it could be limiting. In
particular:

• As search is done based on pattern-matching, especially new users may some-
times not know what are the appropriate search words for the notions that they are
looking for (e.g. “summable” yields many results while “summability” yields no
results, “infimum” and “supremum” yield no results while a lot of related mate-
rial exists in the libraries etc). That is, searching for associated concepts would be
more helpful.

• find_theorems is case-sensitive (e.g. “borel” gives 510 results while “Borel”
gives no results). We are aiming for case-insensitive search.

• Search is performed only in the libraries and theories that have been already loaded
by the user. Ideally, search would be performed in all the libraries (and the AFP)
regardless of what the user has loaded.

• It would be useful to differentiate the search for facts based on mathematical ob-
jects related to their statements from the search for facts based on mathematical
objects related to their proofs and to patterns that may occur in their proofs.

• An efficient method of filtering and ranking the search results would also be useful
to have.

(2) At the same time, manual search in the Library can be rather time-consuming,
which is a consequence of the four following facts: (a) the fast growing size of the Li-
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brary, especially the Analysis Library. Tobias Nipkow has recently initiated an effort
to create a comprehensive manual for the contents of the Analysis Library. Fabian
Immler, Lawrence Paulson, Manuel Eberl, Wenda Li, Mohammad Abdulaziz and
myself have been contributing to this work in progress. (b) The general difficulty in
classifying mathematical knowledge, as very often the borders between mathematical
disciplines are unclear. Users may have difficulty finding material that is classifiable
in different ways. (c) It is not unusual in mathematical literature to use different names
in different contexts for the same notion (synonymy). For instance, I had been looking
for a formalisation of the valuation operator v2 i.e. v2(n) = maxA for n ∈ Z where
A = {k ∈ N : 2k divides n}. I was informed by Manuel Eberl that he had formalised
this under the name “multiplicity” (and in fact for p-order, not just 2-order), in the
Computational Algebra Library, in Factorial.Ring.thy [22]. (d) And vice-versa: using
the same name while referring to different notions (polysemy). This unfortunately
happens too often: see for example the response received on MathOverflow when I
asked the community about instances of this phenomenon in their field of mathemat-
ical research [44]. This is obviously one of the sources of errors for the mathematical
literature that we hope to eliminate thanks to formalisation, nevertheless it can cause
problems for the actual formalisation process as well because of the challenges it
creates for the organisation of the Library.

(3) Efficient search for proof patterns and algorithms is another big challenge to
be tackled. To this end, employing tools from machine learning is considered very
promising.

Within our project, Yiannos Stathopoulos and I are currently working on SErAPIS
(: Search Engine by the ALEXANDRIA Project for Isabelle), a concept-oriented
search engine [59, 60], by using techniques from natural language processing. A
different search engine for Isabelle is independently being developed by Fabian Huch
and Alexander Krauss in Munich [20].

4.3 Automation

The high level of detail that is required when formalising a mathematical proof can
render the process time-consuming, thus efficient automation is vital. This is one
important factor that makes Isabelle/HOL more user-friendly than other proof assis-
tants. In general, Sledgehammer and try0 work remarkably well for very simple
statements, while the possibility of counterexample finding with Quickcheck and nit-
pick can be very helpful. However, in many occasions certain elementary examples
(e.g. splitting up summations) cannot be solved by automation as one would initially
expect. Another observation is that for algebraic expressions where minus is involved,
it is often much easier to find proofs by automation when we are working with type
integer than when we are working with type natural, due to the respective definitions
not having the same algebraic properties. Moreover, in certain cases where long and
complicated expressions are involved and in examples involving distributivity, sim-
plification, handling inequalities involving division/multiplicative inverses, compar-
ing inequalities after multiplying with a complicated expression, comparing compli-



16 A. Koutsoukou-Argyraki

cated expressions involving logarithms or exponents, Sledgehammer times out (while
try0 also fails), even though in examples of the same style but involving simpler
expressions they are successful in finding proofs. It is worth noting that automation
power is constantly getting improved, so in a couple of years, if not sooner, more and
more complicated examples will most likely be solvable by automation.

As a sidenote regarding automation, a common source of errors for inexperienced
users is the use of the keyword sorry which temporarily regards an unproven state-
ment as proven, so that the user can go on with the formalisation and even use the
statement in other proofs, and return later to fill in the gap. This may lead automation
to suggest a proof of a statement B using a wrong statement A that had been “shown”
by sorry prior to statement B. This is a consequence of the principle of explosion
in logic (ex falso sequitur quodlibet–from falsehood anything follows). Even though
sorry is extremely helpful, new users should be aware of the above issue.

4.4 Using the Formalised Material

Finally, other issues of secondary importance that the user should be aware of relate
to the rigidity of the structure of the formalised fundamental material in the Library.
For instance, the definition of an “algebra” in the Library includes associativity, so
working with nonassociative algebras is not possible within an existing type class, e.g.
see my development of Octonions [34] following Lawrence Paulson’s development
of Quaternions [52]. Another example is an observation by Anthony Bordg that a
ring-scheme is required in order to define an abelian monoid.10

It should be noted that in my experience so far I did not encounter a problem with
the fact that Isabelle is based on simple types instead of dependent types. Lawrence
Paulson discusses this issue [53].

5 Experimenting and Exploring

For the first project I suggested to formalise a proof that is (1) research-level, (2) using
elementary material that is already in the Isabelle Library, (3) not very long or too
complicated. I thus opted for an irrationality criterion for infinite series by Hančl [18]
that fulfills the above prerequisites and Wenda Li and I formalised it [38]. It turned
out that the Library did not contain a development for infinite products that were used
in the proof (at that time we were using Isabelle 2017), so we used infinite sums via
the logarithm instead. With this incentive, Lawrence Paulson soon afterwards wrote
a development for infinite products (extending earlier work by Manuel Eberl) which
was included in Isabelle 2018.

After a discussion with Anthony Bordg I realised that it can also be meaningful to
formalise a theorem even if all the proofs of the statements its proof relies on are yet
not fully formalised. This would be achieved by using the theorems on which our the-
orem at hand depends as assumptions (implemented as a locale, or within a context).

10Isabelle mailing list archive, available on https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2018-
November/msg00052.html.

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2018-November/msg00052.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2018-November/msg00052.html


First Experiences with Isabelle/HOL–the Why and How 17

This is a compromise on the vision of “absolute correctness” but it is a more realistic
approach that reflects actual mathematical practice, and at least provides verification
on a level of “relative” correctness. An obvious benefit of this approach would be the
possibility to reach more advanced mathematics more quickly. I am still too reluctant
to recommend this, as a generalised use of it could help spread errors in the literature
undermining the whole point of verification and even do more harm than good if the
wrong results have the “Isabelle/HOL-verified” seal. But provided that (1) the theo-
rem used as an assumption is safe as a central/mainstream result that has been widely
and carefully checked and (2) assumptions and methods are made fully transparent, it
can be a worthwhile experiment. I thus decided to formalise some result in research-
level mathematics following from some well-known, fundamental theorem the proof
of which has not been formalised, so Wenda Li and I formalised two transcendence
criteria for infinite series by Hančl and Rucki [19] that make use of Roth’s celebrated
theorem on rational approximations [55]. In our formalisation [39], Roth’s theorem
was given only as an assumption. The process of formalisation revealed a slight mis-
take in the original proof [19] which, as it turned out after corresponding with the
authors, was very easily fixable. Wenda Li and I have also recently formalised certain
irrationality criteria for infinite series by Erdős and Straus from 1974 [10]. As noted
in our formalisation work [40], certain inequalities from one of the proofs of the orig-
inal paper required a few minor corrections (this did not affect the correctness of the
statements nor the general proof structure).

While formalising Aristotle’s assertoric syllogistic in Isabelle/HOL [33] (follow-
ing [57]), I noticed that Sledgehammer was very efficient: it is interesting that it could
find straightforward one-line proofs for statements that ancient philosophers showed
with much lengthier arguments. In mathematics it is, of course, usually the opposite,
formal proofs are longer than the original; the de Bruijn factor is used to measure
how much longer a formal proof is, and it is defined as the ratio of the number of
lines of the formal proof to the number of lines of the corresponding informal proof
in TeX encoding [63, 64].

I have also recently formalised some material on amicable numbers [35], which
revealed the efficiency of certain methods with respect to numerical computations. In
particular, the method simp immediately shows primality for small prime numbers
(for larger primes, to show primality I make use of Pratt Certificate [67] which is also
straightforward to apply) and the method eval helps to show what is the set of all
divisors of a number.

Another direction that currently interests me is a possible use of formalisation for
the benefit of automating pen-and-paper proof mining, which I conjecture could be
achieved once machine learning comes into play. I suggest, in particular, that while
building extensive libraries of formal mathematical proofs, it would be meaningful
to opt for formalising proofs whose computational content is made explicit in the
meantime, so that as automation improves and blocks of (sub)proofs get generated
automatically, the preserved computational content would get recycled, recombined
and would eventually manifest itself in different contexts. To this end, I do not suggest
restricting to only constructive proofs, but I suggest that proof mined (i.e. possibly
also non-constructive proofs but with some explicit computational content) should be
preferable, if possible [36, 37].
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6 Disclaimers and Cautions

Using a proof assistant to verify mathematics is somewhat reminiscent of writing
down a relative consistency proof as logicians do. (Of course, this is not a problem
for formalists.11 Timothy Gowers claims that “modern mathematicians are formalists,
even if they profess otherwise” and that “it is good that they are” [15]. Kevin Buzzard,
as many mathematicians interested in automated reasoning, also describes himself as
a formalist).

This reminiscence can be seen on two different levels: (1) From the point of view
of the correctness of the core of the system. This can be trusted considering the un-
derlying architecture of the proof system and the small size of the core [51, 53] and
as (on a more practical level) the user interface provides a window showing the proof
state at every step so the user can be in control of the proof. (2) From the point of
view of the correctness of the mathematical assumptions, which is the issue I discuss
below. Using a proof assistant does not guarantee “absolute” correctness, as the work
might always be prone to human errors. An obvious way of making a bad use of a
proof assistant thus leading to human errors going undetected is proving something
different than what was initially intended or claimed (while the intended statement
might even be false) because of either (a) using a misleading name of the proved
statement/ misleading definitions [44] or (b) something as simple as a typographical
error in an intermediate step of the proof like a misplaced parenthesis e.g. showing
f (n + 1) instead of f (n) + 1. Also mind the principle of explosion in logic (from
falsehood anything follows)!

6.1 Different Kinds of “Wrong” in Mathematics and Isabelle/HOL

This part is to be read as a caution to new proof assistant users; as already explained,
using a proof assistant is not a panacea guaranteeing correctness, as the work might
always be prone to human errors which, as we illustrate in the examples below, may
not be detected by the proof assistant. Mathematicians may make mistakes that fall
into different categories. Several (extremely naive) examples for each category of
mistakes and “mistakes” that may be committed by human mathematicians are given
below, and it is shown how Isabelle may not necessarily detect them, as they are
essentially “semantic” mistakes that are syntactically correct. Of course, a mathe-
matician would not make the specific elementary mistakes mentioned below, but
mistakes of a similar nature in a much more sophisticated context could possibly
be made, and as is the case with the naive mistakes below, they may be similarly
overlooked.

11Here we refer to formalism as the philosophical view that mathematical statements can be considered
as statements about the consequences of the manipulation of symbols using established rules and that
ontologically mathematics is much more akin to a game than a representation of some objective reality.
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6.1.1 Proving a Conclusion That Is Too General

This is logically correct, but mathematically undesirable. This is accepted by Is-
abelle as an instance of the logical axiom A → A ∨ B .

6.1.2 Using a Superfluous Assumption

This is again logically correct, but mathematically undesirable and accepted by
Isabelle as an instance of A ∧ B → B from logic. (As a sidenote, the proof method
metis in particular does warn the user about unused theorems in the proof. More-
over, users can check themselves for unused assumptions with find_unused_assms,
but this is not always efficient).

6.1.3 A Logical Inconsistency in the Assumptions

We have seen that superfluous assumptions are permitted–moreover it can be that
some might even contradict each other:

An instance of the above in mathematics, for example would be:
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6.1.4 Assuming One (or More) Wrong Fact(s)/ Assumption(s) That Cannot Be
Fulfilled

The first examples are instances of assuming a wrong mathematical fact while the
last one is an instance of the assumptions being incompatible as in the above subsec-
tion. For example, such mistakes (unless of course we are using assumptions that we
conjecture to be false so that they yield a proof by contradiction) could occur when an
author makes bad use of the literature by using two or more nonequivalent definitions
of a mathematical object within the same context, which may easily happen [44].

6.1.5 Lack of Precision when Approximating

This instance of course falls into the aforementioned case of assuming wrong facts,
but this demonstrates how imprecise approximations (which a user may be often
tempted to make, especially when dealing with numerical computations) in particular
can be accepted by Isabelle without any error messages, potentially leading to further
wrong numerical results.
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6.1.6 Requirement of an Additional Assumption

Mathematical practice involves trial-and-error (Lakatos [41]). A human mathemati-
cian would try to figure out if they could prove their conjecture to be true after
adding or removing assumptions. Although often Isabelle helps towards this direc-
tion by finding counterexamples thanks to nitpick or Auto Quickcheck, usually the
user would not directly receive a suggestion by Isabelle to modify the assumptions.
For example, in the following it would be useful if Isabelle would explicitly suggest
to include the assumption d �= 0 (if this is included, a proof by simp is immediately
found):

6.2 Discussion

Examples 6.1.1-6.1.4 should not be considered surprising: we can view them as a
manifestation of the fact that Isabelle relies on logical inference [51] while mathe-
matics, even though it is “a method of logic” as Wittgenstein wrote [68], is, moreover,
richer in content and meaning. From a logical point of view A ∧ B → B is funda-
mental, but from a mathematical point of view assuming A∧B (that could internally
amount to B if assumption B would be sufficient to prove some specific end goal)
would appear as making use of a superfluous assumption which is undesirable; from
a logical point of view the principle of explosion (from falsehood anything follows)
is fundamental, but in mathematics proving a false conclusion from assumptions that
we already know are false would be a senseless pastime (except, of course, in the
case of assumptions that are only conjectured to be false when writing a proof by
contradiction); from a logical point of view A → A ∨ B is a fundamental axiom, but
from a mathematical point of view it would not be an interesting deduction to make.

Examples 6.1.5 and 6.1.6 are not surprising either, as for Isabelle to suggest a
modification of the assumptions as a human mathematician would do would require
Isabelle to feature a kind of “Intelligence” that no proof assistant nowadays features
(not yet?). Russell and Norvig [56] (Chap. 1.1) distinguish four different categories
of definitions of artificial intelligence, none of which is safe to say that is currently
fully satisfied by Isabelle, nor by any other proof assistant to my knowledge.

The conclusion to draw from the above examples is that, after all, the user is the
one in control and thus should be careful to use Isabelle (or any other proof assis-
tant) responsibly. It should be stressed that the high value of a proof assistant lies
in the fact that it prevents another very common and dangerous source of fallacy in
mathematical practice: being misled by one’s intuition thus allowing for gaps in a
proof or for overlooking mistakes. A proof assistant like Isabelle would not allow for
this to happen, as every argument is required to be made explicit in all detail. In my
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own experience working in proof mining, which is pen-and-paper work revealing the
hidden logical structure of proofs, it sometimes turns out that the original proof can
be written in a more detailed and structured way. However, working in automated
reasoning reveals the requirement of an even higher level of rigour. Another benefit
follows from the flexibility and interactive nature of working with code in general:
one can more easily uncover hidden dependencies, e.g. one can see how and where a
proof breaks by making changes such as deleting assumptions.

7 Towards the Future

Is the way that we are doing mathematics being revolutionised? Most likely, yes.
This is reflected in an important recent milestone; for the first time, a class titled

“Computer science support for mathematical research and practice” is included in
the new Mathematics Subject Classification announced in early 2020 (MSC 2020,
Class 68Vxx). This class includes topics such as computer assisted proofs, proofs
employing automated/ interactive theorem provers, formalisation of mathematics in
connection with theorem provers. Thus, the aforementioned topics are now officially
recognised as areas of mathematical research (in addition to computer science re-
search as it was until now).

As an anecdote indicative of the current climate I mention that during the
panel discussion of the workshop Foundations in Mathematics: Modern Views in
April 2018 in Munich12 that attracted young (mostly student-level) mathematicians,
philosophers and logicians, interestingly the dominant view discussed arguing for the
importance of exploring the foundations of mathematics was their significance for
computerised mathematical proofs which among the participants of the discussion
was regarded as an inevitable development.

This revolution in mathematical practice can be regarded as two-fold: The first as-
pect is associated with our expectation of a certain level of correctness and thus refers
more to the benefits of formalisation for the purpose of verification. Barendregt and
Wiedijk [4] beautifully summarise this vision in the citation given in the beginning
of this article.

The second aspect of the revolution is associated with the tools used in our day-
to-day work. A groundbreaking tool would be an interactive assistant that would pro-
vide working mathematicians with brainstorming in the form of tips on how to prove a
statement, or even suggestions for new conjectures. This would be achieved by imple-
menting machine learning tools in an appropriate way, and after a substantial amount
of mathematics has been formalised. Today we are far from this goal, but even be-
fore we approach it, just typing mathematics in Isar (or any other machine language)
instead of using paper and pen is already a big shift in our way of working, which
would inevitably influence our way of thinking. We are one of the first generations
that now type much more than using a pen in our daily lives, and it is conceivable
that our strong impulse to write with a pen or a piece of chalk while shaping a brand
new thought or trying to understand an idea may disappear in future generations. This

12https://fmv2018.weebly.com/.

https://fmv2018.weebly.com/


First Experiences with Isabelle/HOL–the Why and How 23

is of course an issue related to psychology and cognitive science rather than purely
to mathematical practice. As a striking example it should at least be noted that most
mathematicians nowadays have no trouble understanding LATEX code, while a few
years back it was considered rather unusual, and most people would agree that Isar
looks not more unnatural than LATEX.13

Aristotle in his Nicomachean Ethics wrote [2] (Book VII, Chap. 8, 17-19):

“In mathematics, it is not reason that teaches first principles, nor is it in ac-
tions; rather, it is virtue, either natural or habituated, that enables us to think
correctly about the first principle.”

Could it be that, one day, current mathematical practice might seem to the future
generations as antiquated (or as peculiar), as the above statement may sound to us
nowadays?
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