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Abstract
Accurate predictions of soot emissions from com-

bustion systems are required to implement the design
of low-emission aero-engine combustors that can mit-
igate the effects of particulate matter on human health
and the environment. The use of detailed models of
soot formation can be unfeasible in terms of com-
putational costs for optimisation procedures involv-
ing a large number of numerical simulations of dif-
ferent combustor configurations. A reduced-order for-
mulation for turbulence-chemistry interactions and ki-
netic post-processing of Computational Fluid Dynam-
ics (CFD) simulations, i.e., the Incompletely Stirred
Reactors Network (ISRN) method, has recently pro-
vided promising qualitative predictions of soot emis-
sions while allowing the use of complex chemistry at
minimal computational costs. However, loss of ac-
curacy and uncertainty in the predictions of relevant
quantities, e.g., temperature and pollutant emissions,
should be accounted for when reduced-order models
like the ISRN method are employed. Hence, the in-
tegration of the ISRN method with data-driven ap-
proaches included in the framework of Uncertainty
Quantification (UQ) has been pursued and is presented
in this work. The grid parameters of the ISRN were
calibrated via a UQ approach so that the predictions
of temperature within an aero-engine model combus-
tor match those obtained by a detailed CFD simula-
tion with accuracy higher than 90%. The UQ ap-
proach results in the determination of a feasible set
of grid parameters and information about the corre-
lation between them. Then, the proposed methodol-
ogy has been applied on soot emissions in the aero-
engine combustor to obtain bounded predictions from
the ISRN method that are of the same order of magni-
tude as the corresponding ones provided by the high-
order Conditional Moment Closure (CMC) combus-
tion model.

1 Introduction
The use of Computational Fluid Dynamics (CFD)

tools is crucial for the development of novel, clean,
and cost-effective combustion technologies. Despite
the improvements in the computational capability, the
implementation of detailed physics models in CFD
simulations can still be challenging for sensitivity
analysis and optimisation procedures, which require
a large number of numerical simulations of different

combustor configurations. Therefore, the implementa-
tion of reduced-order models featuring lower dimen-
sionality and limited loss of accuracy can be benefi-
cial. Uncertainty in the predictions of relevant quan-
tities, such as temperature and pollutant emissions, is
introduced by employing reduced-order models. This
uncertainty can be, however, quantified by data-driven
approaches included in the framework of Uncertainty
Quantification (UQ). UQ eventually aims at minimis-
ing the uncertainty in the predictions of reduced-order
models so that the latter can replicate with the highest
possible accuracy the performances of the correspond-
ing detailed models. This is achieved by calibrating
important model parameters (inverse UQ) and propa-
gating their uncertainty on the model predictions (for-
ward UQ). Inference methods were used to perform
inverse UQ and constrain the parameter space with ex-
perimental measurements in several combustion stud-
ies, such as [1, 2]. Equally numerous are the stud-
ies involving forward propagation of uncertainties to
provide prediction intervals on laminar flame speeds
[3, 4], ignition delay times [2, 5], and NOx emissions
[6–10].

A reduced-order formulation for turbulence-
chemistry interactions and kinetic post-processing of
CFD simulations, i.e., the Incompletely Stirred Reac-
tor Network (ISRN) method, was recently presented
and applied on combustors of practical interest for
soot emission calculations, i.e., the Cambridge Rich-
Quench-Lean (RQL) burner [11], a model aero-engine
combustor [12, 13] and a single-sector model com-
bustor operating on Jet-A1 fuel [13, 14]. The ISRN
method represents a reactor network formulation of
the Incompletely Stirred Reactor (ISR) theory, which
is based on the Conditional Moment Closure (CMC)
combustion model [15]. It provided promising results
in terms of qualitative prediction of soot emissions
while allowing the use of detailed chemistry at a frac-
tion of the computational cost compared to more de-
tailed methods. However, the sensitivity of the ISRN
predictions to the network parameters has not been in-
vestigated yet. The following study presents the UQ-
aided application of the ISRN approach on a model
aero-engine combustor for which experimental mea-
surements [16] and CFD simulation data [12, 13] are
available. The objective of this work is to calibrate the
grid parameters of the ISRN so that the predictions of
temperature within the combustor replicate those ob-
tained by the detailed CFD simulation with accuracy



higher than 90%. The UQ approach results in the de-
termination of a feasible set of grid parameters that
allow the ISRN method to reach the above-mentioned
objective. The analysis also provides useful informa-
tion about the correlation between the grid parame-
ters. Subsequently, an updated feasible set of grid pa-
rameters is determined to obtain bounded predictions
of soot mass fractions in the aero-engine combustor
from the ISRN method that are of the same order of
magnitude as the corresponding ones provided by the
high-order model, i.e., the Conditional Moment Clo-
sure (CMC).

2 Methodology
The ISRN approach employed in this study is the

network extension of the ISR theory developed by
Mobini and Bilger [17, 18]. The ISR model can be re-
garded as a spatially-integrated approximation of the
multi-dimensional CMC equation. An ISR is a re-
active zone where the flow and the mixture fraction
fields are not homogeneous but the conditional aver-
ages of the reacting scalars, conditioned on the mix-
ture fraction, are. These assumptions grant the use of
simple ordinary differential equations in mixture frac-
tion space to model a whole combustion chamber at
reduced computational costs. Details about the ISRN
governing equations can be found in Refs. [11–14].

The ISRN approach is here applied on a model
aero-engine combustor developed at DLR [16]. The
main combustion chamber has a cross-sectional area
of 0.068×0.068 m2 and a height of 0.12 m. Ethy-
lene is injected by sixty annular straight-channel inlets
located in between two concentric nozzles introduc-
ing air with tangential velocity generated by a pair of
swirlers. Additional injector ports are situated at the
height of 0.08 m to radially feed secondary air into
the combustion chamber, consistent with the Rich-
Quench-Lean (RQL) concept. The computational do-
main reproducing the experimental rig is schemati-
cally shown in Fig. 1a. A single case, whose oper-
ating conditions are reported in Refs. [12, 13], is in-
vestigated.

A reference CFD simulation using Large Eddy
Simulation (LES) and the CMC combustion model
was performed to provide the ISRN method with the
average flow fields and assess the predictive capabili-
ties of the ISRN itself. The computational details of
the LES-CMC simulation are reported in Refs. [12,
13]. The ISRN was then discretised on a coarser grid,
shown in Figure 1b, which was reconstructed around
the mesh of the reference LES-CMC simulation. The
CFD simulation allows for arbitrary positioning of the
ISRs and facilitates data transfer between solvers by
exploiting the topology of the CFD faces. The grid
was obtained by using two geometric series along the
Z axis, parallel to the reactor centreline, and the or-
thogonal X and Y axes, respectively. The series have
four parameters overall: the dimension dZ of the first

ISR on the Z axis; the ratio rZ along the positive di-
rection of the Z axis; the dimension dW of the same
ISR on the X and Y axes; and the expansion ratio rW
along the outward direction of the X and Y axes. The
variability of the four grid parameters was explored
via an Uncertainty Quantification (UQ) approach that
aimed at determining the feasible combinations allow-
ing the ISRN to replicate with enough accuracy the
predictions of the underlying LES-CMC simulation.
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Figure 1: (a) Computational domain with instanta-
neous mixture fraction field, taken from Ref. [12]. (b)
Contour of time-averaged temperature from the LES-
CMC simulation, and representative ISRN grid de-
picted with white lines.

The Bound-to-Bound Data Collaboration (B2B-
DC) was employed as UQ approach. Frenklach et
al. [19] introduced the concept of data collaboration
for the development of chemical reaction mechanisms
and demonstrated that a combined analysis of several
experimental datasets can increase the amount of ex-
tracted information and improve the predictions of a
kinetic mechanism. Feeley et al. [20] showed that the
techniques of data collaboration can be used to assess



the mutual consistency of experimental results and ki-
netic model predictions and identify potential outliers.
From these two seminal works, B2B-DC methodology
has been refined and successfully applied in several
other studies [21–25]. B2B-DC lies in the determin-
istic UQ framework as it characterises uncertainties
with interval bounds rather than probability distribu-
tions [23]. The uncertainty bounds are specified for
selected quantities of interest (QoIs) and model param-
eters and derived from domain knowledge. The prior
uncertainty region of model parameters is denoted by
H,

H = {x | αk ≤ xk ≤ βk, k = 1, ..., Np}. (1)

The model parameters x have prior uncertainty de-
fined by lower and upper bounds α and β, respectively,
which form a hyper-cube in the parameter space. The
bounds affecting the QoIs are used to extract a smaller
region withinH, referred to as the feasible set F ,

F = {x | x ∈ H, li ≤ |Mi(x)− di| ≤ ui,
i = 1, ..., NQoI}. (2)

In Equation 2, Mi(x) is the model output, which is
evaluated at specified parameter inputs and compared
to the corresponding datum di having li and ui as
lower and upper bounds of uncertainty, respectively.
The collection of Mi(x), di, li and ui is referred to
as a dataset. The dataset is deemed consistent if its
feasible set is non-empty and inconsistent otherwise.
A constrained optimisation procedure is undertaken to
determine a numerical measure of consistency, indi-
cated by CD:

CD := maximise
x∈H

γ

subject to (1− γ)li ≤ |Mi(x)− di| ≤ (1− γ)ui
for i = 1, ..., NQoI . (3)

In Equation 3, the uncertainty affecting the datum di
can be enlarged or reduced by the term γ. The dataset
is consistent if CD ≥ 0, i.e., a positive maximum
value of γ is obtained, proving the existence of input
parameters that satisfies all the constraints. The set
of data di in Equation 3 can come either from exper-
iments or high-fidelity simulations. In this work, two
sets of QoIs were selected: the temperature predictions
and the soot mass fraction estimates of the LES-CMC
simulation of the DLR burner at the centerline and at
twelve horizontal cutplanes located at different heights
above the inlet (from 10 to 130 mm). The data were
averaged along the centerline and azimuthally aver-
aged on the cutplanes. The prior parameter space of
the ISRN model consists of the variability ranges of
the four network features dZ, rZ, dW , and rW . A
space-filling design was generated over the parameter
space via Latin Hypercube Sampling (LHS) [26]. To
explore the whole parameter space, rational-quadratic

polynomials are trained on the ISRN simulation re-
sponses evaluated at the sampled points for each QoI.
These polynomials act as surrogate models, namely
approximation functions that are needed to emulate the
behaviour of the ISRN model accurately, while being
computationally cheaper to evaluate. Fifty simulations
are undertaken at as many points sampled via LHS.
After an adequate surrogate model is trained on simu-
lation responses, the B2B-DC determines the feasible
set of grid parameters by evaluating the consistency of
105 dataset units overall. Each unit combines the sur-
rogate model evaluationMi(x), the LES-CMC predic-
tion, either di = T̃CMC,i or di = Ỹs,CMC,i, (where T̃
and Ỹs stands for averaged temperature and soot mass
fraction, respectively) and the bounds li and ui. The
values of the bounds are determined by the level of ac-
curacy that is required from the reduced-order model.
A flow chart illustrating the steps of the methodology
described above is shown in Figure 2. If the valida-
tion step is successful, i.e., the dataset is proven con-
sistent, the workflow ends with the determination of
bounded predictions from the reduced-order models
with its calibrated parameters. Instead, if the dataset is
inconsistent, the B2B-DC approach provides feedback
to address the model-data disagreement, the bounds of
variability on model parameters and data may be ex-
panded or the reduced-order model may be improved,
and the workflow in Figure 2 is continuously followed
until consistency is eventually reached.
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Figure 2: Methodology scheme. In this work,
the high-fidelity model is the LES-CMC approach,
whereas the reduced-order model is the ISRN method
with its uncertain grid parameters.

3 Results and discussion
Before running the validation step of B2B-DC ap-

proach (see Figure 2 and Equation 3), the adequacy
of the surrogate models must be evaluated. For each
QoI, a surrogate model was trained on 80% of sam-
pled points, whereas the remaining 20% constitutes



the test samples. The test samples were hold out from
the surrogate training and used to estimate the surro-
gate model fitting error, via a 5-fold cross-validation
[27]. The maximum error across all folds is used as
the estimate of the fitting error. The maximum abso-
lute deviation between the surrogate and the ISRN on
the test points is defined as δs,i = max(|Si(xtest) −
Mi(xtest)|), where Si(xtest) represents the surrogate
model prediction. The maximum error is propagated
forward by expanding the corresponding lower and up-
per bounds of Equation 3, i.e., [li − δs,i, ui + δs,i]. As
far as temperature is concerned, the accuracy of ISRN
method was fixed to a minimum of 90%. Thus, li and
ui are equal to 0.9di and 1.1di, respectively. Figure 3
reports the histogram plot of the surrogate model fit-
ting error for the temperature QoIs. Minimal fitting
errors, below 2%, ensure the accuracy of the surro-
gates and the validity of the feasible set eventually pro-
vided by the B2B-DC analysis. The dataset was found
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Figure 3: Histogram of the maximum relative fitting
error associated with the 70 QoIs. The maximum rel-
ative fitting error reported is from the 5-fold cross-
validation.

consistent as indicated by CD = 0.0451. The feasible
set of the four grid parameters was determined and is
shown in Figure 4 through pair-wise projections. Fig-
ure 4 corresponds to a matrix plot, in which the di-
agonal sub-plots report the marginal distributions of
the feasible values of the input parameters. The off-
diagonal elements of the matrix plot depict the condi-
tional distributions among the different input parame-
ters, correlated by pairs. The axis limits of each sub-
plot correspond to the initial variability ranges of the
related grid parameters. From Figure 4, it can be seen
that a reduction of the prior parameter space, i.e., the
combined variability of the four grid parameters, was
achieved.

Once the feasible set is determined, posterior
bounds on the ISRN predictions for each QoI were
also estimated and are shown in Figure 5. In
general, a QoI prediction corresponds to solving[
min
x∈F

yp(x),max
x∈F

yp(x)

]
, with F representing the pa-

rameter feasible set and yp the output from the surro-

Figure 4: Pair-wise projections from the feasible set.
Each scatter plot’s sub-axis represents the prior bounds
of the corresponding parameters.

gate model. As shown in Figure 5, the feasible pa-
rameter values allow the ISRN method to replicate the
temperature predictions of the LES-CMC simulations
with more than 95% accuracy at all the considered lo-
cations but the ones corresponding to QoI #11, 12, 17,
18, and 23.
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Figure 5: Comparison between the temperature pre-
dictions from the LES-CMC simulation (black dots),
the prior bounds of variability matching 90% accuracy
(blue bars) and the posterior bounds on the ISRN pre-
dictions (red bars).

Subsequently, additional 35 averaged values of
soot mass fractions considered at 7 relevant slices were
considered. Rational-quadratic surrogates were con-
structed on the same 50 ISRN runs for each soot mass
fraction QoI. Figure 6 reports the histogram plot of the
surrogate model fitting error for the soot mass frac-
tion QoIs. The maximum fitting error is below 4%.
Each fitting error is added to the initial bounds on the
QOIs, as mentioned above. To reach consistency, the
B2B approach was run to find the grid parameters at
which the ISRN method provides soot mass fraction
predictions of the same order of magnitude as the cor-
responding LES-CMC data. Accordingly, the lower
and upper bounds li and ui ascribed to the LES-CMC



0 5 10 15 20 25 30 35

QoI [#]

0

0.5

1

1.5

2

2.5

3

3.5

4

M
a
x
 R

e
l 
E

rr
o
r 

[%
]

Figure 6: Histogram of the maximum relative fitting
error associated with the additional 20 QoIs. The max-
imum relative fitting error reported is from the 5-fold
cross-validation.

data were computed according to Equation 4:

[li, ui] = [log10(di)− 0.5, log10(di) + 0.5]

for i = 1, ..., NSMF (4)

where NSMF is the number of soot mass fraction data
taken into account as additional QoIs. The enlarged
dataset was found consistent as indicated by CD =
0.0247. The updated feasible set of the four grid pa-
rameters was therefore determined and is shown in
Figure 7 through pair-wise projections. It can be no-
ticed that a further reduction of the prior parameter
space was achieved.

Figure 7: Pair-wise projections from the feasible set
after considering 90 QoIs overall. Each scatter plot’s
sub-axis represents the prior bounds of the correspond-
ing parameters.

From the updated feasible set, the reduced vari-
ability of the ISRN grid parameters was propagated
through the surrogate models to obtain posterior
bounds on the ISRN predictions for the additional
QoIs. The posterior bounds are shown in Figure 8.
Figure 8 shows that the trends provided by LES-CMC
are well captured by ISRN although many posterior
bounds (red bars) do not contain the corresponding

LES-CMC averaged values (black points). Despite the
high accuracy provided by ISRN in terms of tempera-
ture estimations, the ISRN soot predictions are not as
accurate, indicating that there are sources of model in-
accuracy that need to be explored and resolved. Nu-
merical instabilities and relevant ISRN sub-models,
such as for the scalar dissipation rate and the mixture
fraction PDF, are being revisited. Moreover, the ob-
tained feasible grid parameters and the corresponding
number and dimensions of the ISRs must be corre-
lated with relevant flow features as micro-mixing rates,
residence times and local mixture fractions but also
the gradients of conditional quantities within the do-
main. This analysis will assign physical meaning to
the ISRN grid parameters and allow determining an
optimum grid, optimised both in a numerical sense
(e.g., minimisation of the sum of squared error) and
a physical fashion.
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Figure 8: Comparison between the soot mass frac-
tion predictions (shown as logarithm base 10) from the
LES-CMC simulation (black dots), the prior bounds of
variability matching one order of magnitude of vari-
ability (blue bars) and the posterior bounds on the
ISRN predictions (red bars).

In terms of computational costs, it is essential to
point out that, for this burner, the ISRN method allows
reducing the runtime by two orders of magnitude com-
pared to LES-CMC and at least an order magnitude
compared to any other CFD simulation with varying
level of detail, as discussed in Ref. [13]. In particu-
lar, a computation for the most refined ISRN grid (here
≈1000 ISRs) takes less than 48 hours on 128 MPI pro-
cesses of an Intel Xeon Skylake supercomputer (Cam-
bridge CSD3). Moreover, the training of 135 surro-
gate models takes less than 3 hours on a 4-core laptop,
whereas computing the surrogate outputs is a matter
of seconds on the same machine. Thus, the surrogate
polynomial model used in B2B guarantees accuracy
and feasibility compared to the direct use of the ISRN
method for optimisation procedures.

4 Conclusions



This work reports the successful application of an
Uncertainty Quantification approach to aid the mod-
elling of an aero-engine model combustor via the In-
completely Stirred Reactor Network (ISRN) method.
The calibration of the grid parameters of the ISRN has
been achieved by matching with predetermined accu-
racy the temperature and soot mass fraction predic-
tions of a high-fidelity CFD, i.e., LES-CMC, simu-
lation. The initial variability of the grid parameters
has been significantly reduced, and the feasible com-
binations allow ISRN to match with more than 90%
accuracy the averaged LES-CMC temperature predic-
tions and provide soot emissions of the same order of
magnitude of the averaged LES-CMC values. The pre-
sented methodology can be seamlessly integrated with
other CFD and experimental data of the DLR burner
and extended to different operating conditions. Further
validation of the ISRN model and the UQ approach
presented in this work will be carried out on differ-
ent test cases. The final goal is to validate a newly
data-driven Network of Incompletely Stirred Reactor
(NISeR) approach as a computationally cheaper and
predictive tool that permits the use of complex soot
models for estimating soot emissions, in both magni-
tude and trend, with a reasonable degree of accuracy.
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