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Abstract
A deep recurrent neural network (RNN) for reducing transient sounds was developed and its effects on subjective speech intel-

ligibility and listening comfort were investigated. The RNN was trained using sentences spoken with different accents and cor-

rupted by transient sounds, using the clean speech as the target. It was tested using sentences spoken by unseen talkers and

corrupted by unseen transient sounds. A paired-comparison procedure was used to compare all possible combinations of

three conditions for subjective speech intelligibility and listening comfort for two relative levels of the transients. The conditions

were: no processing (NP); processing using the RNN; and processing using a multi-channel transient reduction method (MCTR).

Ten participants with normal hearing and ten with mild-to-moderate hearing loss participated. For the latter, frequency-depen-

dent linear amplification was applied to all stimuli to compensate for individual audibility losses. For the normal-hearing partic-

ipants, processing using the RNN was significantly preferred over that for NP for subjective intelligibility and comfort, processing

using the RNN was significantly preferred over that for MCTR for subjective intelligibility, and processing using the MCTR was

significantly preferred over that for NP for comfort for the higher transient level only. For the hearing-impaired participants,

processing using the RNN was significantly preferred over that for NP for both subjective intelligibility and comfort, processing

using the RNN was significantly preferred over that for MCTR for comfort, and processing using the MCTR was significantly

preferred over that for NP for comfort.
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Hearing aids and cochlear implants employ amplitude com-
pression, also called automatic gain control (AGC), to com-
press the large range of sound levels encountered in everyday
life into the limited dynamic range of impaired human
hearing (Dillon, 1996; Keshavarzi, Baer, et al., 2018;
Moore, 2008). AGC systems in hearing aids usually filter
the incoming signal into several frequency channels and
apply AGC to each channel signal independently. The
AGC in each frequency channel is characterized by an
attack time and a recovery time (ANSI, 2014). When the
input sound level abruptly increases, the gain decreases,
but this takes time to occur. The time taken for the output
to get within 3 dB of its steady value is called the attack
time. When the sound level abruptly decreases, the gain
increases, but again this takes time to occur. The time

taken for the output to increase to within 4 dB of its steady
value is called the recovery time or release time. The attack
time is often shorter than the release time, so as to avoid
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discomfort when the sound level increases abruptly.
However, despite the use of AGC, users of hearing aids
still complain about discomfort and poor speech intelligibil-
ity caused by transient sounds such as a door slamming,
cutlery clattering, and keys jingling.

Transient sounds are usually characterized by a very fast
increase in amplitude (sometimes with a rise time less than
1 ms), a rapid decline (over tens of ms), and a duration of
less than a few hundred ms (Dyballa et al., 2015).
Although some AGC systems have utilized a separate
fast-acting side branch to control the levels of transient
sounds (Boyle et al., 2009; Moore et al., 1991; Moore &
Glasberg, 1988; Stone et al., 1999), such systems are not
fast enough to provide protection from transient sounds
with a very fast onset (Dingemanse et al., 2018). Also, if
the release time is long, the gain is reduced for some time
after the transient has occurred, thereby reducing the audibil-
ity and potentially the intelligibility of speech. Finally, if both
the attack and release time are made very short, so as to
reduce the gain for intense transient sounds, this can lead
to reduced overall sound quality (Tan & Moore, 2004).
Several transient noise reduction (TNR) algorithms have
been developed to mitigate these problems (Digiovanni
et al., 2011; Dingemanse et al., 2018; Dyballa et al., 2015,
2016; Hirszhorn et al., 2012; Keshavarzi, Baer, et al.,
2018; Korhonen et al., 2013).

Digiovanni et al. (2011) studied the effects of two different
TNR algorithms on speech intelligibility and subjective ratings
of sound comfort, sound quality, and speech understanding for
hearing-impaired (HI) participants. The stimuli were sentences
presented in quiet, in multi-talker babble, with two different
types of transient (“door slams” and “chair clangs”) added,
and using a combination of each type of transient and
babble. Each condition was tested with either TNR activated
or deactivated, separately for each TNR algorithm. There
was an improvement in speech intelligibility with the TNR
activated for both algorithms when speech was presented in
babble, in the presence of chair clangs (but not door slams),
and when babble and chair clangs were combined. However,
none of the subjective preference ratings differed significantly
for TNR activated and TNR deactivated.

Korhonen et al. (2013) used a paired-comparison task to
compare the sound quality and annoyance of impulsive every-
day sounds, such as a knife on a plate, a pen tap, and a car
door, with a TNR algorithm on versus off. Experienced
hearing-aid users clearly preferred the TNR on condition,
because the quality of the sounds was less annoying and
more natural. Speech intelligibility was not adversely affected
by the TNR.

Dyballa et al. (2016) evaluated the effects of a multi-
channel TNR algorithm on speech intelligibility and subjec-
tive sound quality for cochlear implant users. They found an
improvement in reception thresholds for speech in both caf-
eteria and office noise and higher comfort and clarity ratings
for speech in cafeteria noise with the TNR on.

Keshavarzi, Baer, et al. (2018) investigated the effects of a
multi-channel TNR algorithm on listening comfort/annoyance
for normal-hearing (NH) and HI participants, using three
amounts of transient reduction (weak, medium, and strong).
For both participant groups, sounds processed using the
TNR algorithm were preferred over the unprocessed sounds.
Further, the medium and strong settings decreased the annoy-
ance produced by the transient sounds while preserving their
audibility.

Overall, while these studies have shown promising
results, most of them have not shown that the TNR algo-
rithms improved both speech intelligibility and listening
comfort in the presence of transient sounds. Also, when
improvements have been found, they have usually been
modest. There is clearly room for further improvements.

The systems reviewed above were all based on detecting
when a transient had occurred and reduced the gain during
the time that the transient was estimated to be present;
none were based on the use of neural networks. Over the
past few years, artificial neural networks have been widely
used in many applications, including hearing and speech pro-
cessing, and have led to significant advances in these fields.
In particular, the use of one of the most successful variants of
deep recurrent neural networks, called “long short-term
memory” (LSTM, Hochreiter and Schmidhuber, 1997), has
been found to be effective in reducing background noise,
including wind noise and babble, thus improving the intelli-
gibility and quality of speech in noisy environments for
hearing-aid users with mild-to-moderate hearing loss
(Keshavarzi et al., 2019; Keshavarzi, Goehring, et al.,
2018) and for cochlear implant users (Goehring et al., 2019).

This paper presents a study of transient-sound reduction
using a deep (multi-layer) LSTM recurrent neural network
(RNN). For brevity, this is hereafter referred to as the
RNN. The RNN was first trained to predict the ideal ratio
mask (IRM, a soft-gain function based on the ideal Wiener
filter in the time frequency [TF] domain) (Delfarah &
Wang, 2017; Srinivasan et al., 2006), using recordings of
speech corrupted by transient sounds. The clean speech
(without transients) was utilized to estimate the IRM.
Despite the use of clean speech to estimate the IRM, the
goal was not to remove the transient sounds completely,
since such sounds convey important information about envi-
ronmental events. It was assumed that since the trained RNN
would not operate perfectly, it would reduce the intensity of
the transient sounds without making them inaudible.

Once trained, the RNN was used to process the transient-
corrupted speech so as to attenuate TF segments with a low
speech-to-transient ratio (STR) while preserving segments
with high STR. The effects of the RNN processing on subjec-
tive speech intelligibility and listening comfort were assessed
for speech in the presence of transient sounds. A multi-
channel transient reduction (MCTR) method not based on a
neural network (Keshavarzi, Baer, et al., 2018) was used as
a comparison condition. The MCTR method has been
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shown to significantly increase listening comfort for intense
transient sounds superimposed on speech for both NH and
HI participants (Keshavarzi, Baer, et al., 2018).

Method

Participants
Twenty native English-speaking participants took part in the
study. None of them had taken part in any of our previous
studies. An Amplivox audiometer (International
Electrotechnical Commission (IEC) 60645-1, Type 4) was
used to measure audiometric thresholds for frequencies from
0.125 to 8 kHz. Ten participants had normal hearing (4
female, average age= 24 years, standard deviation= 3 years),
with audiometric thresholds less than 20 dB HL at all audio-
metric frequencies, and ten participants had mild-to-moderate
sensorineural hearing loss. Only the better ear (according to
the average audiometric threshold across 0.5 to 4 kHz) of
each participant was tested. The gender, age, and audiometric
thresholds for the tested ears of the HI participants are given
in Table 1. Testing took about two hours for each participant,
and participants were paid for taking part and reimbursed for
travel costs. The study was approved by the Imperial College
Research Ethics Committee.

Speech Materials and Transients
The speech materials used in the study were taken from the
CSTR VCTK (Center for Speech Technology Voice
Cloning Toolkit, available at: https://datashare.ed.ac.uk/
handle/10283/3443), a British-English multi-speaker corpus
created at the University of Edinburgh. We chose this
corpus to ensure that the RNN would generalize to a wide
range of unseen talkers with different accents. The sentences
in the corpus were sampled using a 48-kHz rate with 16-bit
resolution. For this study, the sentences were down-sampled
to 16 kHz. This was done to be consistent with our previous

studies and with our processing toolboxes. A sampling rate of
16 kHz is sufficient to cover the typical frequency range of
hearing aids (Moore et al., 2001). Sixteen hundred sentences
from 80 talkers (40 female and 40 male) were used for train-
ing the RNN and 300 sentences from six other talkers
(3 female and 3 male) were used for evaluating the perfor-
mance of the RNN using objective estimators of speech intel-
ligibility. Twelve sentences were used for subjective
evaluations of speech intelligibility and comfort (from two
female and two male talkers, three sentences for each
talker), randomly taken from the 300 sentences used for the
objective measures. The sentences had a mean duration of
1.98 s, with a standard deviation of 0.59 s.

Twenty-four different transients were used. Fifteen transi-
ents (described in Table 2) were used to train the RNN and
nine (described in Table 3) for evaluating the RNN using
objective measures and for the experimental evaluation.
Note that some of the transients, such as a bag of bottles
breaking, contained multiple peaks. On each trial, one transi-
ent was added to one sentence at a randomly determined
position within the sentence. The STR was calculated as
the ratio of the root-mean-square (RMS) level of the cleanTable 1. Age, Gender, and Audiometric Thresholds (dB HL) of the

Hearing-Impaired (HI) Participants.

Frequency (kHz)

Gender Age (years) 0.125 0.5 1 2 3 4 6 8

Female 55 25 25 30 50 55 55 40 50

Female 22 5 15 25 40 55 55 60 50

Female 60 10 25 25 35 10 15 30 50

Male 60 35 30 30 40 55 55 50 45

Female 57 15 20 35 50 55 65 65 70

Female 73 25 25 10 20 35 45 65 65

Male 75 0 20 35 50 60 55 60 65

Female 66 5 10 35 45 50 35 35 45

Male 56 30 30 10 15 30 30 45 70

Female 63 20 15 45 25 15 15 25 15

Table 2. Transient Sounds Used for Training the

Recurrent Neural Network (RNN).

A concrete block hit with a metal hammer

A metal can filled with metal bolts, shaken once

A plastic ball-point pen being clicked

A metal spoon being swirled in a porcelain cup

A glass vase hit with the finger

Automatic gun fire in the distance

Knocking on a door

Opening of a door

A church bell

A window breaking

A wine bottle breaking

Hammer and chisel on brick

Hammering of a brick wall

Hammering an iron stake into masonry

Laying a table in preparation for a meal

Table 3. Transient Sounds Used for Testing the

Recurrent Neural Network (RNN) and for

Evaluating the Subjective Effects.

Two water glasses tapped together

A glass jar filled with glass marbles, shaken once

A set of keys dropped on a wooden table

Two metal rails hit together

A knife being flicked with the fingernail

Milk bottles breaking

Bag of bottles breaking

Desk bell ringing

A closing door
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speech relative to the RMS level of the transient measured in
a 5-ms rectangular window centered around the peak ampli-
tude of that transient. STRs of −5, −10, and −15 dB were
used for training the RNN. STRs of −5, −10, −15, and
−20 dB were used for objective evaluation of the RNN.
STRs of −10 and −15 dB were used for the subjective eval-
uations. These STRs were chosen so that the transients would
be at least somewhat unpleasant in the condition of no pro-
cessing (NP).

RNN Algorithm
Figure 1 shows schematic diagrams of the training of the
RNN (part A) and the application of the trained RNN
(part B). The input signal (bottom), namely the speech cor-
rupted by a transient sound, was modeled as:

x(t) = s(t)+ v(t) (1)

where t is time, x is the corrupted speech, s is the clean
speech, and v is the transient sound. The RNN consisted of
an input layer, two LSTM layers with 128 and 64 units,
respectively, and a fully connected output layer with 64
units. The RNN processed three-time-step inputs, where
each step corresponded to features extracted from a single
time frame of speech; steps 1, 2, and 3 corresponded to suc-
cessive time frames j−2, j−1, and j, respectively.

The acoustic features used to train the RNN were the
energy in each time frame at the output of a 64-channel

gammatone filter bank (Patterson et al., 1995) with filter
center frequencies equally spaced on the ERBN-number
scale (Glasberg & Moore, 1990) and ranging from 50 to
8,000 Hz. The gammatone features were calculated using a
fast Fourier transform with 5-ms Hanning-windowed time
frames with a 50% overlap. Acoustic features were feed
into the RNN as the inputs and the IRM was predicted as
the output. The IRM for the ith frequency band and jth
time frame, IRMij, was defined as (Delfarah & Wang, 2017):

IRMij =
���������

S2ij
S2ij + V2

ij

√
(2)

where Sij and Vij are the magnitudes of s(t) and v(t) in the ith
frequency channel of time frame j, respectively.

The clean speech was used to obtain Sij and to calculate
the IRM during training. The objective of the training was
for the IRM estimated by the RNN to be as close as possible
to the true IRM. The machine learning frameworks “Keras”
(Chollet, 2015) and “Tensorflow” (Abadi et al., 2016) were
used to build, train and test the RNN. The “Adam” optimizer
(Kingma & Ba, 2014) with learning rate= 0.001, β1= 0.9,
β2= 0.999, ϵ= 10−8 was used as the optimizer method
during training so as to minimize the mean square error.
The batch size was 1,500 and 5 training runs (epochs) were
used. Although there are some similarities between the
RNN used in the present study and the ones employed in
our previous studies, such as the number of layers, the type
of input features (Gammatone features), and the target type

Figure 1. Schematic diagram of the RNN algorithm used in this study. Panels A and B show the training and testing procedures,

respectively.
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(IRM), they differ in terms of the number of time steps, the
number of units in each layer, batch size, and the number
of epochs.

After the RNN had been trained, it was used to estimate
the IRM for each TF segment in each time frame. The esti-
mated IRM was used to process the noisy speech in each
time frame so as to attenuate each TF unit by an amount
depending on the estimated STR for that TF unit; the lower
the STR, the greater was the attenuation, according to equa-
tion 2. The overlap-add procedure (Allen, 1977) was used to
reconstruct the complete signal from the processed overlap-
ping time frames.

MCTR Algorithm
The MCTR algorithm (Keshavarzi, Baer, et al., 2018) was
used as a comparison condition. The MCTR was not based
on a neural network. It used seven steps to reduce transient
sounds: (1) the input signal was resampled to 22.05 kHz;
(2) the resampled signal was segmented into 1-ms (22
samples) time frames with a 12-sample overlap, using a
Tukey window; (3) a frequency-domain representation of
each time frame was calculated by applying a 32-point FFT
to the signal in each time frame, resulting in 16 frequency
bins; (4) the frequency bins were grouped into 5 frequency
channels. The number of bins in frequency channels 1 to 5
was 1, 1, 2, 3, and 9, respectively; (5) Transients were
detected by comparing the short-term magnitude in fre-
quency channel i and time frame j, Mij, to a running estimate
of the RMS magnitude in that frequency channel and that
time frame, RMSij. A transient was deemed to be present in
frequency channel i of time frame j when:

Mij / RMSij > δi (3)

where the values δi were 12, 21, 12, 8, and 7 for frequency
channels 1 to 5, respectively; (6) the magnitude for the ith fre-
quency channel of that time frame was attenuated by an
amount, Cij, whose value in dB was defined by:

C(Rij) = αRij Rij > 0 i = 1, 2, . . . , 5
0 otherwise

{
(4)

where α was 0.467 and Rij was 20log10(Mij / RMSij); (7) the
processed signal was down-sampled to 16 kHz. The value
of α corresponds to the “medium” setting used by
Keshavarzi, Baer, et al. (2018). Figure 2 shows both time
domain waveforms (left) and spectrograms for the clean
speech, speech corrupted by two transients (one near the
start of the speech and one centered at about 1.4 s after the
start), corrupted speech processed using the RNN, and cor-
rupted speech processed by the MCTR algorithm. Note that
two transients were used in the figure for illustrative
purpose only; only one transient per sentence was used for
training and testing of the RNN.

Procedure
The participant was seated in a soundproof room and wore a
Sennheiser HD650 headset connected to the sound card of a
Macbook Pro. The HD650 headphones have approximately
a diffuse-field response, and levels were specified as equiva-
lent diffuse-field levels based on measurements made with a
KEMAR dummy head (Burkhard & Sachs, 1975). The
stimuli for the HI participants were given linear frequency-
dependent amplification according to the “Cambridge
formula” (Moore & Glasberg, 1998) to ensure that the
speech was audible over a wide frequency range. This was
done separately for each HI participant, based on the audio-
gram of the test ear, using a 513-tap finite impulse response
filter implemented using the fir2 function in MATLAB (the
Mathworks). Three conditions were used: NP, RNN, and
MCTR. For condition NP, the RMS input level of the
speech (excluding the transient sounds and prior to the
Cambridge-formula amplification for the HI participants)
was 60 dB sound pressure level (SPL). Since the RNN and
MCTR attenuated the transient level markedly and the
speech level only slightly, the overall level of the processed
speech-plus-transient was set to 60 dB SPL. This level was
chosen to be consistent with our previous study (Keshavarzi,
Baer, et al., 2018); it led to a comfortable level for the
speech while preventing the transient from being excessively
loud. The three conditions were compared in terms of subjec-
tive intelligibility and comfort, using the paired-comparison
procedure described by Moore & Sęk, (2013). There were
three pair-wise comparisons: RNN versus NP, RNN versus
MCTR, and MCTR versus NP. The two sounds to be com-
pared were presented in succession with a 1-s silent interval
between them. Both of the two possible orders were used
for each pair and the order was randomized across trials.

The main experiment consisted of two separate parts. In
the first part, the participant was asked to indicate their pref-
erence in terms of subjective speech intelligibility. The
instructions to the participant for this part, which appeared
on the computer screen, were the same as those used by
Keshavarzi et al. (2019): “On each trial you will hear the
same sentence twice in succession. Please decide whether
the first or second sentence is more intelligible and by how
much, by using the mouse to position the slider on the
screen.”

In the second part, the participant indicated their prefer-
ence in terms of listening comfort. The instructions for this
part were same as those used by Keshavarzi, Baer, et al.
(2018): “On each trial, you will hear the same sentence
twice in succession. A transient background sound (e.g.,
the sound of glasses clinking) has been added to each sen-
tence. The background sound should be clearly audible and
it should sound natural, but it should not be too loud or too
annoying and it should not interfere with your perception
of the sentence. Please decide whether you prefer the
sound in the first interval or the sound in the second interval,

Keshavarzi et al. 5



and by how much, by using the mouse to position the slider
on the screen. Your judgment should be based on the balance
between the audibility/naturalness of the transient sound and
its loudness/annoyance. For example, if the transient sound is
barely audible or does not sound natural in the first interval
and is clearly audible and natural but not too loud or annoy-
ing in the second interval, you should indicate a preference
for interval 2. On the other hand, if the sound is clearly

audible and natural in both intervals, but is comfortably
loud in interval 1 and louder or more annoying in interval
2, you should indicate a preference for interval 1.”

On each trial, each pair of stimuli was presented only
once. The participant responded using a mouse to move a
slider on the screen along a continuum labeled “1 much
better,” “1 moderately better,” “1 slightly better,” “equal,”
“2 slightly better,” “2 moderately better,” and “2 much

Figure 2. Waveforms (left) and spectrograms (right) of clean speech (panels A and B), speech corrupted by two transients (panels C and

D), corrupted speech processed by the RNN (panels E and F), and corrupted speech processed by the multi-channel transient reduction

(MCTR) algorithm (panels G and H). Note that two transients are shown purely for illustrative purposes; only one transient per sentence

was used during training and testing.
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better.” Choices were not limited to the labeled positions; any
position along the slider could be chosen. In each part of the
study, each of the three pairs of conditions was presented
twice in both orders for each of twelve sentences and for
two STRs (–10 dB and –15 dB). Therefore, there were 144
trials in each part.

Preference scores for each participant and each pair of
conditions were calculated as described by Moore and Sęk
(2013). The extreme positions of the slider were arbitrarily
assigned values of −3 and +3. Regardless of the order of pre-
sentation of two conditions, X and Y, if condition X was pre-
ferred, the slider position was assigned a negative number
and if condition Y was preferred the slider position was
assigned a positive number. The overall score for a particular
comparison and a given STR was obtained by averaging the
scores obtained for both orders for that comparison at that
STR for each participant. Scores were then averaged sepa-
rately for the NH and HI participants.

Results

Objective Evaluation of Speech Intelligibility
As a check that the RNN and MCTR algorithms were per-
forming in a reasonable way and were not markedly distort-
ing the speech, three objective metrics were used to estimate
speech intelligibility for the stimuli used in conditions NP,
MCTR, and RNN. The metrics were the normalized covari-
ance metric (NCM, Ma et al., 2009), the short-time objective
intelligibility (STOI, Taal et al., 2011), and the sEPSMcorr

(Relano-Iborra et al., 2016). All metrics use the clean
speech as a reference and all give values ranging from 0 to
1, where 0 indicates very poor intelligibility and 1 indicates
very high intelligibility. All metrics are based on filtering
the signal into frequency channels and assessing the similar-
ity of the channel envelopes for the original signal and the
corrupted signal. The metrics were calculated for 300 sen-
tences from six talkers. Figure 3 shows the results for the
NCM (panel A, left), STOI (panel B, middle), and
sEPSMcorr (panel C, right) for conditions NP, MCTR,
RNN, and also for the ideal case of stimuli processed using
the true IRM, for STRs of −5, −10, −15, −20 dB. As
expected, all metrics decreased with decreasing STR,
although the decrease was small for IRM processing.
Importantly, all three metrics gave higher values for condi-
tion RNN than for conditions MCTR and NP, especially
for the lower STRs, although the effect was small for
sEPSMcorr. All metric values were lower for the RNN than
for the true IRM, indicating that the RNN was less than
perfect in estimating the IRM, as expected.

Preferences Scores for Intelligibility
To assess whether the preference scores for a given paired
comparison and a given STR were significantly different

from zero (indicating a significant preference for one condition
relative to another at that STR), the scores for each participant
were first averaged across the twelve sentences and two orders
of presentation used for the evaluation. Shapiro-Wilk tests
showed that the scores were not normally distributed for
some pairs of conditions, so Wilcoxon signed-rank tests
were used to assess whether the ten resulting scores (one for
each participant) differed significantly from zero (using two-
tailed tests). This was done separately for each pair of condi-
tions and each STR and separately for the NH and HI partic-
ipants. No correction for multiple comparisons was applied
because we were testing specific hypotheses that both RNN
and MCTR processing would be preferred over NP.

Figure 4 shows box plots of the preference scores for
speech intelligibility for each STR (−10 dB left and
−15 dB right) and each pair of conditions, for the NH (top)
and HI (bottom) participants. For each pair of conditions, if
the score fell above 0, this indicated that the first condition
in the pair was preferred. For example, for the column
labeled RNN vs NP, the mean preference score was above
0, so condition RNN was on average preferred over condition
NP. The average preference scores for all pairs of conditions
were small (below 1, corresponding to the “slightly better”
label on the slider), especially for the HI participants.

For the NH participants (Figure 4A and B): (1) RNN was
significantly preferred over NP for both STRs (W= 4, p=
.014 for STR= –10 dB; W= 4, p= .014 for STR= –15 dB);
(2) RNN was significantly preferred over MCTR for both
STRs (W= 4, p= .014 for STR= –10 dB; W= 8, p= .049
for STR= –15 dB); (3) There was no significant preference
for MCTR vs NP for STR= –10 dB (W= 24, p= .77) or
STR= –15 dB (W= 25, p= .85).

For the HI participants (Figure 4C and D): (1) RNN was
significantly preferred over NP for both STRs (W= 1, p=
.004 for STR= –10 dB; W= 1, p= .004 for STR= –15 dB);
(2) There was no significant preference for RNN vs MCTR
for STR= –10 dB (W= 11, p= .11) or for STR= –15 dB
(W= 15, p= .23); (3) There was no significant preference
for MCTR vs NP for STR= –10 dB (W= 13, p= .26) or
STR= –15 dB (W= 13, p= .16).

Preferences Scores for Listening Comfort
Figure 5 shows box plots of the preference scores for listen-
ing comfort. The average preference scores for all pairs of
conditions were again small, although the preferences for
the HI participants for listening comfort were generally
larger than for intelligibility. For the NH participants
(Figure 5A and B): (1) RNN was significantly preferred
over NP for both STRs (W= 8, p= .049 for STR= –10 dB;
W= 5, p= .02 for STR= –15 dB); (2) RNN was not signifi-
cantly preferred over MCTR for either STR, although there
was a trend in that direction (W= 12, p= .13 for STR= –
10 dB; W= 18, p= .38 for STR= –15 dB); (3) There was
no significant preference for MCTR vs NP for STR= –
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10 dB (W= 27, p= 1), while there was a small but significant
preference for MCTR vs NP for STR= –15 dB (W= 8, p=
.049).

For the HI participants (Figure 5C and D): (1) RNN was
significantly preferred over NP for both STRs (W= 1, p=
.004 for STR= –10 dB; W= 1, p= .004 for STR= –15 dB);
(2) RNN was significantly preferred over MCTR for both
STRs (W= 2, p= .006 for STR= –10 dB; W= 7, p= .037
for STR= –15 dB); (3) MCTR was significantly preferred
over NP for both STRs (W= 0, p= .008 for STR= –10 dB;
W= 3, p= .021 for STR= –15 dB).

Preference Scores for Individual Transients
To assess the consistency of preference scores across the nine
transients, the scores for each transient were averaged across
participants for each pair-wise comparison. To reduce the
effects of random variability, the scores were also averaged
across the two STRs. The results for subjective intelligibility
are shown in Figure 6. For the RNN vs NP comparison, the
preference scores were small but positive (indicating a pref-
erence for RNN over NP) for all of the transients, for both the
NH and HI participants. For the RNN vs MCTR comparison,
the preference scores were positive for all of the transients
except transient 2 (a glass jar filled with glass marbles,

shaken once) for the NH participants and transient 1 (two
water glasses tapped together) for the HI participants, indicat-
ing a preference for RNN over MCTR for most transients.
For the MCTR vs NP comparison, the preferences were
very small and varied in sign across transients. In
summary, there were consistent preferences for intelligibility
across transients for RNN over NP and mostly consistent
preferences for RNN over MCTR.

The results for comfort are shown in Figure 7. For the
RNN vs NP comparison, the preference scores were positive
(indicating a preference for RNN over NP) for all of the tran-
sients, for both the NH and HI participants. For the RNN vs
MCTR comparison, the preference scores were again posi-
tive (indicating a preference for RNN over MCTR) for all
of the transients, although the preference score was close to
0 for transient 1 for the HI participants. For the MCTR vs
NP comparison, the preferences were very small but were
mostly positive. In summary, there were consistent prefer-
ences for comfort across transients for RNN over NP and
for RNN over MCTR.

Discussion
The evaluation using the objective predictors of intelligibility
(NCM, STOI, and sEPSMcorr) showed that the RNN led to

Figure 3. Objective measures of speech intelligibility (NCM, panel A; STOI, panel B; sEPSMcorr, panel C) for transient-corrupted speech

processed using NP, MCTR, RNN, and true IRM at STRs of −5, −10, −15, and −20 dB. Higher numbers indicate greater predicted

intelligibility.

MCTR = multi-channel transient reduction; NCM = normalized covariance metric; STOI = short-time objective intelligibility; NP = no

processing; RNN = recurrent neural network; STR = speech-to-transient ratio.
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higher scores than NP, especially for the lower STRs used.
However, the objective scores for the RNN processing
were not as high as for processing based on the true IRM.
While this indicates that the RNN was not as effective as
the IRM in attenuating the transients, it should be borne in
mind that, as anticipated, the RNN did not remove the tran-
sients completely. In real life, people need to be aware of

events going on around them, and it is important that
sounds like a door slamming remain audible after attenua-
tion. That was the reason why the instructions in terms of lis-
tening comfort included the sentence “Your judgment should
be based on the balance between the audibility/naturalness of
the transient sound and its loudness/annoyance.” It appears
that while the RNN was not actually trained to keep the

Figure 4. Box and whisker plots of preference scores for speech intelligibility for each pair-wise comparison. Panels A and B show the

results for the NH participants and panels C and D show results for the HI participants. Open circles denote the average preference scores

across participants and the gray symbols show the individual scores.

Note. *symbols indicate preference scores that are significantly different from zero.

NH = normal-hearing; HI = hearing-impaired.
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transient sounds audible, it did this at least to some extent. It
would be interesting in a future study to train the RNN not
using the clean speech as a reference, but rather using
speech corrupted by transients with higher STRs, such that
the transients were audible but not uncomfortable.

To assess generalization, the RNN was tested using
unseen talkers and unseen transients. All three objective mea-
sures and some of the subjective results indicated that at least
some generalization did occur. However, it is not known how
well the RNN would generalize for speech in the presence of

background sounds such as babble, in addition to transients.
That is a topic for future studies.

In a previous study evaluating the MCTR algorithm
(Keshavarzi, Baer, et al., 2018), three settings of α were
used, 0.267, 0.467, and 0.933 corresponding to weak,
medium, and strong transient reduction (attenuation).
Preferences were evaluated only for listening comfort, i.e.,
in terms of the balance between the annoyance produced
by the transient and the audibility of the transient; the instruc-
tions were the same as for the present study. The results for

Figure 5. As Figure 4, but for listening comfort.
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the NH participants indicated that MCTR processing was
preferred over NP and that the medium attenuation setting
was slightly preferred over the weak attenuation setting and
the strong attenuation setting. The results for the HI

participants also showed a preference for MCTR processing
over NP, but the medium and strong attenuation settings were
preferred over the weak attenuation setting. These results jus-
tified the use of the medium attenuation setting for both
groups in the present study. The results of the present
study for listening comfort for MCTR vs NP were similar
to those of the earlier study, in showing small but significant
preferences for MCTR.

The results of the present study showed that for listening
comfort and the HI participants, RNN processing was signif-
icantly preferred over NP and over MCTR processing for
both STRs (Figure 5). In other words, the RNN processing
improved listening comfort more than the MCTR processing.
The preference for RNN processing over NP contrasts with
the results of Digiovanni et al. (2011) who found that prefer-
ences did not differ significantly with their TNR system
active versus inactive. Our results are consistent with those
of Korhonen et al. (2013) and Dyballa et al. (2016), in
showing subjective preferences for the conditions with
TNR activated. It is difficult to compare the magnitude of
the benefit of the TNR systems across studies because of dif-
ferences in the transients used and in the STRs used.

For subjective speech intelligibility and for the HI partic-
ipants, RNN processing was significantly preferred over NP,
but the preference for RNN over MCTR was not significant,
although there was a trend for RNN to be preferred
(Figure 4). It would be desirable in a future study to
measure speech intelligibility via listening tests, rather than
gathering subjective preferences in terms of intelligibility,
although this might require more difficult speech materials,
to avoid ceiling effects.

The preference scores were generally small, although for
the HI participants and for listening comfort at −15 dB
STR, the median score for RNN versus NP reached 1. The
small preference scores may reflect the fact that the stimulus
levels were chosen to avoid highly aversive loudness. Higher
preference scores might have been obtained if higher overall
levels or lower STRs had been used. The small obtained
scores might also reflect the effects of random variability in
judgments, and the reluctance of participants to use the
extremes of the rating scale. The preferences for both intelli-
gibility and comfort were consistent across transients for the
RNN vs NP comparison and reasonably consistent across
transients for the RNN vs MCTR comparison, indicating
that the RNN worked well with the different types of
unseen transients.

The processing delay produced by the RNN processing
was restricted to a value that would be acceptable for users
of hearing aids. To achieve this, the RNN processed time
frames with a duration of 5 ms and with an overlap of
2.5 ms. With a fast processor, the delay produced by the
RNN in estimating the IRM would be negligible, so the
overall delay caused by the RNN processing would be
about 7.5 ms, which is below the maximum acceptable
value for hearing aids for closed fittings (Stone & Moore,

Figure 6. Preference scores for subjective intelligibility for each

transient for each pair-wise comparison, averaged across

participants within each group and across the two

speech-to-transient ratios (STRs). The ordering of the nine

transients (from left to right) is the same as in Table 3.

Figure 7. As Figure 6, but for listening comfort.
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1999; Stone & Moore, 2005) but slightly above the
maximum acceptable value for open fittings (Stone et al.,
2008). Thus, the RNN processing could be applied in
hearing aids and cochlear implants, especially when a
closed fitting is used for the former. Also, the RNN process-
ing could be implemented so as to work in parallel with other
processing, such as dynamic range compression and noise
reduction. This means that the RNN would not necessarily
increase the total processing delay of the hearing aids or
cochlear implants.

Limitations of the Study
There were several limitations of our study: (1) Since a stan-
dard set of transient sounds does not exist, it is difficult to
compare our results with those obtained using other TNR
algorithms; (2) Due to covid-related restrictions, we were
limited to only one experimental session (lasting about 2 h)
during one visit for each participant. This limited the
number of trials per transient for each STR, leading to
more “noisy” data than would be obtained with more trials;
(3) Only ten participants with normal hearing and ten with
mild-to-moderate hearing loss were tested. It would be desir-
able to test more participants to increase statistical power and
to establish whether preferences for TNR depend on the
degree and pattern of hearing loss; (4) The RNN processing
was evaluated only using transients added to speech in quiet.
Further work is needed to train and evaluate an RNN for tran-
sient reduction when other background sounds are also
present; (5) We obtained subjective preferences for speech
intelligibility rather than measuring intelligibility using lis-
tening tests. It would be desirable in the future to measure
speech intelligibility in listening tests for speech corrupted
by transient sounds in combination with different types of
background sound.

Summary and Conclusions
An RNN for reducing the loudness and annoyance of transient
sounds was trained using sentences spoken with different
accents and corrupted by a variety of transient sounds, using
the clean speech as the target. The RNN processing was
tested using sentences spoken by unseen talkers and corrupted
by unseen transient sounds to ensure that the processing gen-
eralized appropriately. A paired-comparison procedure was
used to compare all possible combinations of three conditions
in terms of subjective speech intelligibility and listening
comfort for two relative levels of the transients, −10 and
−15 dB. These STRs were chosen so that the transients
would be at least somewhat unpleasant when NP was
applied. The conditions were: NP; processing using the
RNN; and processing using a MCTR not based on an RNN.

Ten participants with normal hearing and ten with
mild-to-moderate hearing loss participated. For the latter,
frequency-dependent linear amplification using the

Cambridge formula was applied to all stimuli to compensate
for individual audibility losses. For the NH participants, pro-
cessing using the RNN was significantly preferred over that
for NP for subjective intelligibility and comfort, processing
using the RNN was significantly preferred over that for
MCTR for subjective intelligibility, and processing using
the MCTR was significantly preferred over that for NP for
comfort for the higher transient level only. For the HI partic-
ipants, processing using the RNN was significantly preferred
over that for NP for subjective intelligibility, processing
using the RNN was significantly preferred over that for
MCTR and for NP for comfort, and processing using the
MCTR was significantly preferred over that for NP for
comfort.

Overall, the results indicate that the RNN processing was
more effective in improving listening comfort than the
MCTR processing evaluated previously.
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