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Abstract

Background: Genome-wide association studies (GWAS) have identified over 56 susceptibility loci associated with
Alzheimer’s disease (AD), but the genes responsible for these associations remain largely unknown.

Methods: We performed a large transcriptome-wide association study (TWAS) leveraging modified UTMOST
(Unified Test for MOlecular SignaTures) prediction models of ten brain tissues that are potentially related to AD to
discover novel AD genetic loci and putative target genes in 71,880 (proxy) cases and 383,378 (proxy) controls of
European ancestry.

Results: We identified 53 genes with predicted expression associations with AD risk at Bonferroni correction
threshold (P value < 3.38 × 10−6). Based on fine-mapping analyses, 21 genes at nine loci showed strong support for
being causal.

Conclusions: Our study provides new insights into the etiology and underlying genetic architecture of AD.
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Background
Alzheimer’s disease (AD) is a common neurodegenera-
tive disorder in the aging population [1]. The primary
pathological feature of AD is characterized by aggrega-
tion of amyloid β peptides into extracellular plaques, as
well as hyperphosphorylated tau into intracellular neuro-
fibrillary tangles, accompanied by neuroinflammation,

gliosis, and neurodegeneration [2]. The life quality of
AD patients is significantly decreased because of severe
impairment in individual executive and cognitive func-
tions [3], which brings a substantial burden on not only
the patients, but also their families, society, and the
healthcare system [4]. It is estimated that in 2019, 5.8
million people that aged beyond 65 were diagnosed with
AD in the USA, which had yielded a total expenditure of
approximately 290 billion dollars for health care, long-term
care, and hospice services [5]. To reduce the burden of AD,
a better characterization of the etiology of AD is critically
needed. Mutations in specific genes such as APP, PSEN1,
PSEN2, APOE, and TREM2 are reported to increase the
risk of developing AD [6]. In addition, Genome-wide Asso-
ciation Studies (GWAS) have identified more than 56
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common genetic loci associated with AD risk [7]. However,
these loci can explain only a small fraction of the heritabil-
ity of AD [8, 9]. Apart from conventional GWAS focusing
on individual variants, there has been recent interest in
transcriptome-wide association studies (TWAS) focusing
on genetically predicted gene expression to gain additional
insights into the genetic basis of complex traits and diseases
[10]. This methodology integrates gene expression genetic
prediction models built in reference datasets and large-
scale disease GWAS datasets to identify novel candidate
susceptibility genes whose genetically predicted expression
levels are associated with the traits [11].
Several TWAS have already been conducted to identify

candidate susceptibility genes for AD risk. In an earlier
TWAS by Hao et al. involving 17,008 AD cases and
37,154 controls, 25 AD risk-associated genes were identi-
fied by leveraging gene expression prediction models of
brain dorsolateral prefrontal cortex, adipose, and blood
tissues [12]. Raj et al. leveraged dorsolateral prefrontal
cortex (DLPFC) tissue gene expression prediction
models and identified eight associated genes at novel loci
by studying 25,580 cases and 48,466 controls [13]. Hu
et al. leveraged 44 tissues, including ten brain tissues
(anterior cingulate cortex BA24, caudate basal ganglia,
cerebellar hemisphere, cerebellum, cortex, frontal cortex
BA9, hippocampus, hypothalamus, nucleus accumbens
basal ganglia, and putamen basal ganglia), to build gene
expression prediction models using a new joint-tissue
imputation approach under the proposed UTMOST
framework, which aims to increase the prediction accur-
acy by borrowing information across tissues. By applying
the models to 17,008 AD cases and 37,154 controls, they
identified 12 novel susceptibility gene candidates [14]. In
a recent TWAS by Gerring et al., gene expression pre-
diction models of 48 tissues built using The Genotype-
Tissue Expression (GTEx) project data (version 7) were
developed, and 126 tissue-specific gene-based associa-
tions involving 50 genes were reported for AD risk [15].
These findings have contributed substantially to the etio-
logical understanding of AD. However, some limitations
of existing TWAS should be noted. First, most of these
studies do not systematically evaluate different brain tis-
sues [12, 13, 16]. It is known that multiple types of brain
tissues could be causal for AD pathogenesis [5, 8, 15].
AD is a neurodegenerative disorder partly induced by
dysregulation of different brain regions [17], which may
affect the hypothalamus-pituitary-adrenal axis function
leading to changes of behavior and mood in patients
[18–20]. Although Hu et al [14] studied different brain
tissues, they built gene expression prediction models
with relatively small reference datasets (version 6 of
GTEx), leading to a much smaller number of prediction
models with satisfactory performance. Second, existing
studies largely relied on earlier AD GWAS datasets with

limited numbers of AD cases and controls for associ-
ation analyses. Furthermore, although research supports
an immune component in the etiology of AD [21, 22],
existing TWAS have been limited in studying tissues,
such as the spleen, having immune cell types. These lim-
itations have constrained the ability of existing TWAS
for characterizing AD-associated genes.
Herein, to identify novel candidate susceptibility genes

for AD risk, we performed a comprehensive TWAS of
AD risk using GWAS data involving 71,880 (proxy)
cases and 383,378 (proxy) controls of European ancestry,
by leveraging gene expression prediction models built
using state-of-the-art modeling strategies in ten different
tissues, from the latest version of The Genotype-Tissue
Expression (GTEx) v8 [23], that are potentially related to
AD pathogenesis [20, 24, 25]. It was identified earlier
that AD-by-proxy, based on parental diagnoses, showed
a high genetic correlation with AD (rg = 0.81) [9]. Thus,
we leveraged the meta-analysis results of the clinical AD
GWAS and the AD-by-proxy GWAS in this study to in-
crease the statistical power. The tissues analyzed here in-
cluded brain cortex, anterior cingulate cortex BA24,
hippocampus, amygdala, caudate basal ganglia, nucleus
accumbens basal ganglia, putamen basal ganglia, sub-
stantia nigra, hypothalamus of cerebrum, and pituitary.
Spleen tissue was also included in a separate analysis to
characterize additional genes related to AD.

Methods
Building gene expression prediction models
Genome and gene expression data of ten different brain tis-
sues and spleen tissue from the GTEx (v8) [23] were used
to develop gene expression genetic prediction models. The
detailed information of the GTEx v8 dataset including
genotyping method, RNA sequencing experiments, and
quality control processes, has been described elsewhere [26,
27]. In brief, only genes with a reasonable expression level
were included for model building (thresholds: ≥0.1 TPM in
≥20% of samples and ≥6 reads (unnormalized) in ≥20% of
samples). Expression values for each gene were inverse nor-
mal transformed across samples. By adjusting for the sex,
platform, first five principal components, and PEER (Prob-
abilistic Estimation of Expression Residuals) factors, the re-
sidual of normalized expression level was generated for
model training. All 838 GTEx v8 samples (more than 85%
are of European ancestry) were included. We included
brain cortex (n = 205), anterior cingulate cortex BA24 (n =
147), hippocampus (n = 165), amygdala (n = 129), caudate
basal ganglia (n = 194), nucleus accumbens basal ganglia (n
= 202), putamen basal ganglia (n = 170), substantia nigra (n
= 114), hypothalamus of cerebrum (n = 170), pituitary (n =
237), and spleen (n = 146) samples with matched genome
and transcriptome data available for gene expression gen-
etic model building using a modified UTMOST framework
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[14]. Single-nucleotide polymorphism (SNPs) located
within 1Mb upstream and downstream of the gene were
included as potential features for the model building.
The weights for SNPs in the prediction model were es-

timated with a LASSO penalty both within- and cross-
tissues. Fivefold cross-validation was performed for
hyperparameter tuning using two hyperparameters, λ1
and λ2, for the within-tissue and cross-tissue penaliza-
tion, respectively. In the final step of the original UT-
MOST model building pipeline, a “heritable gene” was
defined by the model’s prediction performance estimated
in the entire dataset which was used to train the final
model. Model training and performance evaluation in
the same dataset may result in overestimation of the pre-
diction performance [28]. The overestimation will result
in a large number of low-quality “heritable genes” for
downstream analysis, which will increase the false posi-
tive rate and the multiple comparison burden. To avoid
the model estimation in the entire dataset (and thus
avoid the inflated performance), we modified the model
training process by using a consistent array of hyper-
parameter pairs across the five-fold cross-validation,
which made the tuning error of hyperparameter pairs
comparable across different folds in the cross-validation
step (in contrast to the original UTMOST, which used a
fold-specific array of lambda pairs). After the fivefold
training, the lambda pair with the lowest average tuning
error across the five folds was selected for final use. The
performance of the prediction models was assessed by
the correlation between the predicted and observed ex-
pression levels in the combined tuning set. The script
for the modified version of UTMOST is available at
https://github.com/gamazonlab/MR-JTI/blob/master/
model_training/UTMOST/main_modified.r [29]. Only
models with Pearson’s correlation r ≥ 0.1 and P < 0.05
were retained for the subsequent association analyses.

Associations between genetically predicted gene
expression levels and AD risk
Based on S-PrediXcan [10], we investigated the associa-
tions of genetically predicted gene expression in multiple
tissues with AD risk by applying the prediction models to
the summary statistics generated from a large GWAS of
AD, which included 71,880 (proxy) cases and 383,378
(proxy) controls of European ancestry from three consor-
tia (Alzheimer’s disease working group of the Psychiatric
Genomics Consortium (PGC-ALZ), the International
Genomics of Alzheimer’s Project (IGAP), and the Alzhei-
mer’s disease Sequencing Project (ADSP)) and UK Bio-
bank [9, 30]. The SNP-SNP covariance matrices estimated
using all GTEx v8 subjects were used. For each gene, in
the main analyses, we combined the association p values
across the different brain tissues by a Cauchy distribution-
based combination approach [31]. Briefly, we transformed

the P values derived from TWAS of multiple tissues into
standard Cauchy random variables and used the average
of transformed P values as the test statistics. Its P value
can be calculated analytically, which is highly accurate
when the actual P value is very small. Cauchy combination
test was conducted using R V3.6.1. software [32]. We then
applied the Bonferroni correction to determine the signifi-
cance threshold. Focusing on the identified associated
genes, to determine the most likely causal genes for AD
risk, we conducted FOCUS (Fine-mapping Of CaUsal
gene Sets) fine-mapping analysis, as described elsewhere
[33]. Briefly, we ran FOCUS in each type of brain tissue
separately with GWAS summary statistics [9], TWAS re-
sults, and prediction models for each corresponding tissue
as inputs. FOCUS outputted the posterior probability for
each gene, and the default 90% credible gene set was used
to determine the likely causal genes. We also conducted a
separate analysis focusing on spleen tissue to identify add-
itional genes showing an association with AD.

“Core Analysis” in Ingenuity Pathway Analysis (IPA)
For the identified AD risk-associated genes using brain
tissues in main analyses, we performed the “Core Ana-
lysis” in IPA [34] to assess the enriched pathways, bio-
logical function, or diseases and networks. Briefly, the
list of identified AD risk-associated genes was submitted
to IPA for “Core Analysis”.

Results
Brain tissue and spleen tissue gene expression prediction
models
We developed gene expression prediction models using
a modified UTMOST [14] (Unified Test for MOlecular
SignaTures) method. The number of prediction models
with a performance of at least 0.01 (i.e., the correlation
between predicted expression and measured expression
of at least 10%) ranged from 5015 to 8582 across the dif-
ferent brain tissues we assessed (Additional file 1: Table
S1). There were 8759 models established with perform-
ance R2 ≥0.01 for the spleen tissue.

Associations of predicted gene expression levels in brain
tissues with AD risk
The full results of TWAS for AD risk across the ten brain
tissues were included in Additional file 2: Table S2. For
each gene, we combined the gene-level association p
values across the different brain tissues by a Cauchy
distribution-based combination approach [31] and then
used the stringent Bonferroni correction threshold to de-
termine the significantly associated genes. Of the 14,787
genes tested, we observed 54 significant associations at
Bonferroni corrected threshold P < 3.38 × 10−6 (Fig. 1).
After excluding HLA-DQA2 which is located in a linkage
disequilibrium (LD)-extensive region, 53 genes located at
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18 distinct genomic loci were retained (Table 1 and Add-
itional file 3 and 4: Table S3 and S4).
These include 35 genes that have not been previously

reported to be associated with AD risk in TWAS (Table 1
and Additional file 3: Table S3), as well as 18 genes previ-
ously reported in AD TWAS (Additional file 3: Table S3).
The associations based on individual tissue prediction
models can be found in Additional file 3 and 4: Table S3
and S4. A total of 45 genes showed concordant association
directions across all the tested tissues, positively (17 genes)
or negatively (28 genes). Tissue-specific association direc-
tions were observed for the remaining eight genes
(APOC2, APOC4, APOE, FAM111A, GPC2, LAMTOR4,
OPA3, and ZNF112). Based on the fine-mapping ap-
proach, FOCUS [33], using 90% credible gene sets to de-
fine putative causal genes, we found that 21 of the genes
are likely causal genes for AD risk (Table 2 and Additional
file 5: Table S5). Ten of the 21 putative causal genes
(NDUFS2, FCER1G, BTNL2, AC004522.3, GPC2, PVRIG,
KAT8, AC012146.1, ACE, and AC243964.3) have not been
reported in previous TWAS.
The full list of GWAS identified risk SNPs for AD and

their distances to the identified genes are shown in Add-
itional file 6: Table S6. Of the 35 newly identified associated
genes, four genes (FAM241A at 4q25, SAPCD1 at 6p21.33,
FAM 111A at 11q12.1, and ACE at 17q23.3) are more than
500 kb away from any GWAS-identified AD risk variants
(Table 1 and Additional file 3: Table S3). Of the 18 previ-
ously reported AD-associated genes, the directions of the
associations are consistent between the current study and
previous TWAS studies (Additional file 4: Table S4).

In a separate analysis focusing on the spleen tissue, 26
significant associations at Bonferroni corrected threshold P
< 5.71 × 10−6 (0.05/8759) were identified and 25 genes were
retained after excluding HLA-DQA2 (Additional file 7:
Table S7). Nineteen of them, namely, NDUFS2 (1q23.3),
FCER1G (1q23.3), NIT1 (1q23.3), FAM241A (4q25),
AL355353.1 (6p12.3), CLU (8p21.1), AC090515.2 (15q22.1),
KAT8 (16p11.2), PRSS36 (16p11.2), VKORC1 (16p11.2),
ZNF668 (16p11.2), PRSS53 (16p11.2), AC135050.6
(16p11.2), AC012146.1 (17p13.2), AC243964.3 (19q13.31-
13.32), CEACAM19 (19q13.31), PVR (19q13.31), APOC4
(19q13.32), and TRAPPC6A (19q13.32), were also identified
in our main analyses using the brain tissue gene expression
prediction models. Of the remaining six genes, three
(INPP5D at 2q37.1, MS4A2 at 11q12.1, and MS4A4E at
11q12.2) were suggested in previous GWAS for AD risk [7]
and three genes (SLC24A4 at 14q32.12, CTSH at 15q25.1,
and SETD1A at 16p11.2) were reported to be associated
with AD risk in previous studies [35–37].

Pathway analysis
For the genes identified in the main analyses focusing on
brain tissues, we performed the “Core Analysis” function
within Ingenuity Pathway Analysis (Ingenuity System Inc,
USA), including “Canonical Pathway,” “Disease and Func-
tions,” and “Network” analyses. Fourteen of 53 associated
genes (ACE, APOC1, APOC2, APOC4, APOE, CD2AP,
CLU, CR1, FCER1G, NECTIN2, PRSS36, PRSS53, PVR, and
ZNF668) were enriched in 11 canonical pathways (P < 0.05)
(Additional file 8: Table S8). These contain the neuropro-
tective role of THOP1 in Alzheimer’s disease (P = 1.70 ×

Fig. 1 Manhattan plot of association results from the Alzheimer’s disease transcriptome-wide association study. The x-axis represents the genomic
position of the corresponding gene, and the y-axis represents -log10-transformed association combined P value, which is derived from individual
p values from single tissue model-based analyses. Each dot represents the association for one specific gene. The red line shows combined P =
3.38 × 10−6 based on 14,787 tests. The top two associations of TOMM40 and APOE with P < 2.38 × 10−134 are not shown in this figure
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10−3). Other canonical pathways are related to immune
function, such as IL-12 signaling and production in macro-
phages (P = 2.75 × 10−7), LPS/IL-1 mediated inhibition of
RXR function (P = 1.10 × 10−3) and natural killer cell sig-
naling (P = 7.41 × 10−3).
Overall, four networks were identified based on the Net-

work Analysis (Additional file 9: Table S9). Eighteen associ-
ated genes were in the top network “Metabolic Disease,

Neurological Disease, Organismal Injury and Abnormal-
ities” (Fig. 2). Interestingly, some associated genes located
in the network are known risk genes for AD, such as CLU
(8p21.1) [38], ACE (17q23.3) [39], and APOE (19q13.32)
[40], suggesting that the network could possibly regulate
AD development.
Based on the “Disease and Functions” analysis, the top

20 disease functional categories can be found in

Table 1 Thirty-five genes that have not been previously identified in TWAS for AD risk

Region Gene name Typea Combined P value Index SNP(s)b Distance of gene to the index SNP (kb)

1q23.3 NDUFS2 Protein 2.81 × 10−10 rs4575098 11.50

FCER1G Protein 7.43 × 10−10 rs4575098 29.63

B4GALT3 Protein 1.45 × 10−6 rs4575098 7.63

NIT1 Protein 1.85 × 10−6 rs4575098 60.16

4q25 FAM241A Protein 2.88 × 10−6 rs6448451 102,041.93

6p12.3 AL355353.1 lncRNA 3.16 × 10−8 rs9381563 12.34

CD2AP Protein 1.98 × 10−7 rs10948363 Within

6p21.32 BTNL2 Protein 1.95 × 10−11 rs9271192 203.63

6p21.33 SAPCD1 Protein 3.61 × 10−8 rs9271192 845.90

7q22.1 PVRIG Protein 4.44 × 10−9 rs7384878 112.94

AZGP1 Protein 3.96 × 10−8 rs7384878 358.38

AC004522.3 lncRNA 5.00 × 10−8 rs7384878 385.81

CNPY4 Protein 1.85 × 10−7 rs7384878 208.92

CASTOR3 Protein 2.77 × 10−7 rs7384878 62.19

LAMTOR4 Protein 3.35 × 10−7 rs7384878 178.48

STAG3 Protein 5.62 × 10−7 rs7384878 112.94

GJC3 Protein 8.58 × 10−7 rs7384878 404.81

GPC2 Protein 2.31 × 10−6 rs7384878 157.05

AP4M1 Protein 2.78 × 10−6 rs7384878 224.08

11q12.1 FAM111A Protein 9.60 × 10−7 rs983392 1001.00

15q21.3 AC090515.2 lncRNA 1.13 × 10−6 rs442495 37.66

15q21.3-q22.1 MINDY2 Protein 1.43 × 10−6 rs442495 40.78

16p11.2 KAT8 Protein 9.70 × 10−10 rs59735493 Within

PRSS36 Protein 2.96 × 10−9 rs59735493 17.15

AC135050.6 lncRNA 9.24 × 10−8 rs59735493 Within

PRSS53 Protein 2.25 × 10−7 rs59735493 32.15

ZNF668 Protein 1.81 × 10−6 rs59735493 47.54

CCDC189 Protein 2.16 × 10−6 rs59735493 359.56

AC135050.1 lncRNA 2.66 × 10−6 rs59735493 58.98

17p13.2 AC012146.1 lncRNA 8.33 × 10−8 rs9916042 30.32

SCIMP Protein 1.47 × 10−6 rs9916042 127.77

17q23.3 ACE Protein 8.67 × 10−8 rs28394864 14,103.65

19q13.31-13.32 AC243964.3 lncRNA 5.89 × 10−25 rs75627662 185.10

19q13.32 GEMIN7 Protein 5.79 × 10−7 rs75627662 168.88

OPA3 Protein 1.12 × 10−6 rs76320948 136.37
aProtein: protein coding genes; lncRNA: long noncoding RNAs; bThe risk SNP closest to the gene is presented and a full list of all risk SNPs, and their distances to
the genes are presented in Additional file 6: Table S6
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Table 2 Fine-mapping results based on TWAS-identified genes for AD risk

Region Tx Start Tx End Tissue OR (95% CI) TWAS P value Focusa

1q23.3 NDUFS2 161166894 161184185 Brain caudate basal ganglia 0.96 (0.95–0.97) 1.83 × 10−9 0.96

Brain anterior cingulate cortex BA24 0.95 (0.93–0.96) 6.79 × 10−10 1

Brain hippocampus 0.94 (0.92–0.96) 3.29 × 10−10 1

FCER1G 161185024 161190489 Brain hypothalamus 0.92 (0.89–0.94) 1.44 × 10−9 0.97

1q32.2 CR1 207669492 207813992 Brain hypothalamus 1.20 (1.15–1.25) 1.00 × 10−16 1

Brain nucleus accumbens basal ganglia 1.17 (1.13–1.21) 1.44 × 10−17 1

Brain anterior cingulate cortex BA24 1.13 (1.10–1.16) 2.47 × 10−17 1

Brain caudate basal ganglia 1.13 (1.10–1.16) 1.22 × 10−17 1

Brain hippocampus 1.12 (1.09–1.15) 6.76 × 10−17 1

Brain amygdala 1.12 (1.09–1.15) 2.60 × 10−17 1

Brain substantia nigra 1.12 (1.09–1.15) 2.28 × 10−17 1

Brain cortex 1.11 (1.09–1.14) 7.96 × 10−18 1

Brain putamen basal ganglia 1.11 (1.09–1.14) 1.41 × 10−17 1

6p21.32 BTNL2 32361740 32374905 Brain caudate basal ganglia 1.07 (1.05–1.10) 5.09 × 10−12 1

Brain cortex 1.05 (1.03–1.07) 1.10 × 10−6 0.91

7q22.1 AC004522.3 99527015 99546243 Brain amygdala 0.96 (0.94–0.97) 2.63 × 10−8 0.93

GPC2 99767229 99774995 Brain putamen basal ganglia 1.04 (1.02–1.05) 1.71 × 10−6 0.96

PVRIG 99815864 99819113 Brain hippocampus 0.98 (0.97–0.99) 9.74 × 10−9 0.93

NYAP1 100081550 100092422 Brain hypothalamus 0.86 (0.82–0.91) 2.72 × 10−9 1

8p21.1 CLU 27454434 27472548 Brain putamen basal ganglia 0.92 (0.90–0.94) 3.77 × 10−13 1

16p11.2 KAT8 31127075 31142714 Pituitary 0.98 (0.97–0.99) 1.28 × 10−9 0.98

Brain hippocampus 0.98 (0.97–0.98) 4.90 × 10−10 0.96

Brain caudate basal ganglia 0.98 (0.97–0.98) 1.43 × 10−9 0.93

Brain amygdala 0.98 (0.97–0.98) 1.16 × 10−9 0.93

Brain substantia nigra 0.97 (0.97–0.98) 1.64 × 10−9 1

Brain anterior cingulate cortex BA24 0.97 (0.96–0.98) 3.59 × 10−10 0.98

17p13.2 AC012146.1 5014763 5017674 Brain caudate basal ganglia 0.97 (0.97–0.98) 5.29 × 10−8 0.96

Brain hippocampus 0.97 (0.97–0.98) 1.98 × 10−7 0.96

Brain amygdala 0.97 (0.96–0.98) 4.12 × 10−8 0.97

17q23.3 ACE 61554422 61599205 Brain anterior cingulate cortex BA24 0.97 (0.96–0.98) 5.18 × 10−8 0.99

19q13.31-13.32 AC243964.3 45135500 45222031 Brain amygdala 1.04 (1.03–1.05) 1.78 × 10−25 1

Brain anterior cingulate cortex BA24 1.03 (1.03–1.04) 6.17 × 10−25 1

Brain putamen basal ganglia 1.03 (1.02–1.03) 8.54 × 10−25 1

Pituitary 1.03 (1.02–1.03) 1.17 × 10−24 1

19q13.31 CEACAM19 45165545 45187631 Brain amygdala 1.05 (1.04–1.06) 5.36 × 10−20 1

Brain anterior cingulate cortex BA24 1.04 (1.03–1.05) 1.66 × 10−15 0.99

19q13.32 NECTIN2 45349432 45392485 Brain substantia nigra 0.92 (0.90–0.93) 2.67 × 10−27 1

Pituitary 0.98 (0.96–0.99) 4.62 × 10−3 1

TOMM40 45393826 45406946 Pituitary 9.05 (8.19–9.99) 0 1

APOE 45409011 45412650 Brain substantia nigra 1.42 (1.38–1.46) 7.92 × 10−135 1

Pituitary 0.86 (0.84–0.89) 4.89 × 10−24 1

APOC4 45445495 45452820 Brain putamen basal ganglia 0.98 (0.98–0.99) 2.65 × 10−12 1

APOC2 45449243 45452822 Brain anterior cingulate cortex BA24 1.08 (1.06–1.11) 7.84 × 10−12 1

Brain putamen basal ganglia 1.03 (1.02–1.04) 2.77 × 10−8 1
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Additional file 10: Table S10, including three categories
related to AD, late-onset Alzheimer disease (P = 2.80 ×
10−11), familial Alzheimer disease (P = 2.25 × 10−6), and
Alzheimer disease (P = 4.16 × 10−5).

Discussion
In this study, we built comprehensive gene expression
prediction models leveraging a modified UTMOST
method to systematically evaluate the associations of
genetically predicated gene expression across the human
transcriptome in ten brain tissues and spleen, a

representative tissue that contains immune cell types,
with AD risk. A total of 53 genes were found to be asso-
ciated with AD risk for their genetically predicted ex-
pression in brain tissues, including 35 that have not
been reported in previous TWAS. Fine-mapping ana-
lyses identified 21 of the 53 as putative causal genes for
AD risk. Ten of the 21 fine-mapped genes are reported
here for the first time. We also identified associations of
specific genes in analyses of spleen tissue. Our findings
contribute to improved understanding of the etiology
and genetics of AD. Interestingly, different genes tend to

Table 2 Fine-mapping results based on TWAS-identified genes for AD risk (Continued)

Region Tx Start Tx End Tissue OR (95% CI) TWAS P value Focusa

Pituitary 0.95 (0.93–0.97) 1.33 × 10−5 1

ZNF296 45574758 45579846 Brain amygdala 0.89 (0.86–0.92) 2.90 × 10−12 1

KLC3 45836692 45854778 Brain amygdala 0.94 (0.92–0.97) 1.49 × 10−6 0.94
aThe posterior probabilities of FOCUS

Fig. 2 The top networks identified by Ingenuity Pathway Analysis (IPA). Function of the top network involved in metabolic disease, neurological
disease, organismal injury and abnormalities. Circle indicates gene from the Knowledge Base—not part of our TWAS identified genes for AD risk.
Shaded circle indicates our TWAS identified genes for AD risk. Straight line indicates direct interaction. Dashed line indicates indirect interaction.
More information of IPA legend can be found in http://qiagen.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5rTCAS
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be prioritized as putatively causal in different brain tis-
sues. This may reflect that different causal genes may
play a role in AD etiology in different brain tissues,
which warrants further investigation.
Of the 35 AD-associated genes identified in analyses of

brain tissues that have not been reported in previous
TWAS, four of them, FAM241A at 4q25, SAPCD1 at
6p21.33, FAM 111A at 11q12.1, and ACE at 17q23.3, are
located at novel loci (Table 1). ACE, which encodes
angiotensin I converting enzyme, is a known gene for
AD [41, 42]. The remaining three genes, FAM241A,
SAPCD1, and FAM 111A, are protein coding genes
whose functions are not entirely clear and whose link
with AD needs further investigation. Seven long noncod-
ing RNA (lncRNA) genes (AC004522.3, AC012146.1,
AC090515.2, AC135050.1, AC135050.6, AC243964.3, and
AL355353.1) were also found to be associated with AD
risk in this study. Previous work has suggested lncRNAs
to potentially have a significant impact on normal neural
development and on the development and progression
of neurodegenerative diseases [43]. For example, specific
lncRNAs may play a function as Decoy and/or Scaffold
to sequester secretase enzyme, and thus decrease amyl-
oid beta (Aβ) aggregation; they may also sequester ki-
nases for decreasing tau hyperphosphorylation.
Furthermore, lncRNAs may keep hyperphosphorylated
tau proteins apart [44]. The lncRNAs identified here as
associated with AD risk warrant further investigation.
The APOE has been identified as a biomarker for

prognosis of mild cognitive impairment and AD [45]
and for diagnosis of depressive disorder and dementia
[46] and used as a biomarker for measuring the efficacy
of testosterone in treating AD and mild cognitive im-
pairment [47]. In our TWAS, interestingly, predicted ex-
pression of APOE in brain substantia nigra and caudate
basal ganglia was positively associated with AD risk, and
the predicted expression in the pituitary was inversely
associated with AD risk. This implies that the expression
levels of APOE in different brain regions may be related
to different mechanisms of AD progression, which war-
rants further investigation. In previous TWAS, predicted
expression of APOE in the skin was reported to be posi-
tively associated with AD risk [15]. APOE was also asso-
ciated with AD risk by analyzing cross tissue models in a
previous TWAS [13]. Similar to APOE, APOC1
(19q13.32), identified in our study, has also been previ-
ously suggested as a potential biomarker for AD (Add-
itional file 9: Table S9). The predicted expression of
APOC1 in the brain nucleus accumbens basal ganglia,
pituitary, and adrenal gland was inversely associated with
AD risk, consistent with the direction identified in previ-
ous TWAS [15].
Previous studies have suggested that AD is a neurode-

generative disease with an immune component [21, 22].

In order to illustrate whether or not genes in the spleen,
a tissue containing immune cell types, may influence AD
risk, we leveraged spleen tissue gene expression predic-
tion models and identified twenty-five genes showing an
association with AD risk. Most of them (19/25) were
also identified in our main analyses using brain tissue
gene expression prediction models. Interestingly, focus-
ing only on the associated genes based on analyses of
brain tissue prediction models, we observed enrichment
of specific immune function-related canonical pathways,
supporting potential roles of such immune-related genes
in the etiology of AD.
In our study, we performed TWAS and TWAS

fine-mapping by leveraging the summary statistics of
a meta-analysis of AD GWAS and AD-by-proxy
GWAS given the strong genetic correlation between
AD and AD-by-proxy outcomes. To further evaluate
the impact of this study design on our findings, we
have performed TWAS separately using the results
from GWAS of clinically diagnosed AD [39] and
GWAS of AD-by-proxy outcome [48]. In these two
separate analyses (Additional file 11: Table S11), as
expected, directions of the associations were largely
consistent compared with those of our main design,
supporting the validity of our design.
There are several strengths of this study. Firstly, we

used a modified UTMOST method to develop genetic
prediction models for gene expression, which can in-
crease power by jointly analyzing data from multiple
genetically correlated tissues [14]. This is in contrast to
single-tissue methods, including PrediXcan and TWAS/
FUSION, which do not account for the similarity of gen-
etic regulation across different tissues. In contrast to the
original UTMOST framework, our modified framework
used consistent hyperparameter pairs across the fivefold
cross-validation in the model training process, which
avoids the overestimation of model performance (Add-
itional file 12: Figure S1). Secondly, in this study, we
comprehensively assessed ten tissues (derived from the
brain) with strong prior support for being related to AD
pathogenesis, thus maximizing the possibility of identify-
ing AD related genes. Thus, instead of using the ROS-
MAP/AMP-AD, PsychENCODE [13, 49], or the
CommonMind Consortium [50, 51] resources, we lever-
aged GTEx data which provides a broad sampling of
brain tissues. To our knowledge, our study is the most
comprehensive TWAS of AD involving multiple disease-
related tissues that have not been systematically evalu-
ated before. Thirdly, in this study, we included 71,880
(proxy) AD cases and 383,378 (proxy) controls, which
could provide high statistical power to detect associa-
tions. Previous work has supported that AD-by-proxy
based on parental diagnoses showed a strong genetic
correlation with AD (rg = 0.81).
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Several potential limitations also need to be acknowl-
edged to interpret our findings. As with all other TWAS,
we cannot exclude the possibility that some of the asso-
ciations identified in this study may be false positives.
Several potential reasons could explain this, such as cor-
related expression across individuals, correlated pre-
dicted expression, as well as shared regulatory variants
[11]. On the other hand, we conducted fine-mapping
analyses (using FOCUS) to identify the most likely causal
genes. Additional experimental work would be needed
to better characterize whether the identified genes may
play a causal role in AD pathogenesis. Furthermore, fur-
ther statistical confirmations and functional validations
are needed for the genes showing inconsistent associ-
ation directions across the tested tissues.

Conclusions
In summary, in this large-scale study, we identified 21
putative causal genes, including 10 that have not been
reported in previous TWAS, showing an association
with AD risk for their predicted expression in brain tis-
sues. Our study provides substantial new information to
improve our understanding of the genetics and etiology
of AD risk.
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