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Abstract

A rig is a ring without negatives. We analyse the free rig on a generator x subject to the
equivalence x ∼ 1 + x+ x2, showing that in it the non-constant polynomials form a ring. This
ring can be identified with the Gaussian integers, which thus acquire objective meaning.

1 Introduction

Quotient polynomial rings serve as mathematical models in a wide variety of applications and have
been extensively studied; see, e.g., [2]. The corresponding situation for rigs (also known as semir-
ings) is underdeveloped. The interest for investigating this is that rigs provide direct mathematical
models in scenarios where additive inverses have, a priori , no meaning or interpretation.

One such scenario arises naturally in the context of category theory, and yields applications in
programming and type theory. Consider the notion of a distributive category : a category with finite
sums and finite products with the latter distributing over the former. In such a category, sums and
products endow the set of isomorphism classes of objects with the structure of a rig, its so-called
Burnside rig . The Burnside rig of a distributive category is in fact a ring iff the category is trivial.
Thus the natural algebraic structure arising in this context is that of a rig rather than a ring.

Following the investigations of Lawvere [6] and Blass [1], Gates [5] showed that the Burnside
rig of the free distributive category D[X]/(X ∼= p(X)) on a generator X equipped with an iso-
morphism X ∼= p(X), where p ∈ N[x] has non-zero constant term, is the quotient polynomial rig
N[x]/(x = p(x)) of the rig N[x] under the least congruence identifying x and p(x). Thus the struc-
ture of N[x]/(x = p(x)) and calculations in it give information on the isomorphisms satisfied by
objects X ∼= p(X) in distributive categories. For instance, suppose that p1, p2 ∈ N[x] with p1 = p2
in N[x]/(x = p(x)): then for all objects X of a distributive category D,

X ∼= p(X) =⇒ p1(X) ∼= p2(X) .

Moreover, every derivation of the equality in the algebra N[x]/(x = p(x)) yields an isomorphism in
the category D.

The distributive categories D[X]/(X ∼= p(X)) can be described as categories with objects given
by types (e.g., the generator amounts to a recursively defined type) and morphisms given by
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programs. The use of the rig N[x]/(x = p(x)) in this context yields interesting applications to
programming and type theory; see [3] for details.

In [4] and [3], we started the study of the quotient polynomial rigs N[x]/(x = p(x)) where
p ∈ N[x] has non-zero constant term; [4] contains the case of polynomials p with degree at least
two, and [3] encompasses all polynomials. Among other things, we showed that these quotient
polynomial rigs have a decidable word problem. The result for polynomials p of degree at least two
is obtained as a consequence of the following decomposition:

N[x]/(x = p(x)) ∼= N ⊎ Z[x]/(x− p(x)) (1)

which gives a complete and well-understood description of the rig. Here ⊎ is disjoint union and the
algebraic structure of the right-hand side has additive and multiplicative units respectively given
by 0 and 1, addition extended by the obvious action of N on Z[x]/(x − p(x)), and multiplication
extended freely. (The corresponding decomposition result for linear p is more subtle: see [3].)

In particular, Z[x]/(x − p(x)) embeds as the set of (equivalence classes of) non-constant poly-
nomials in N[x]/(x = p(x)); addition and multiplication are preserved by this embedding, but
the additive and multiplicative units of Z[x]/(x − p(x)) correspond, inevitably, to elements of
N[x]/(x = p(x)) other than 0 and 1. There are two remarkable aspects to this: first, that the non-
constant elements of the rig N[x]/(x = p(x)) carry a ring structure at all, and second, that this ring
is Z[x]/(x−p(x)), which can be thus realised by isomorphism classes of objects inD[X]/(X ∼= p(X)).

In this companion paper to [4, 3] we analyse one important example of the above situation
in detail: the case p(x) = 1 + x + x2. There are various reasons for doing this. One is that we
can establish the decomposition (1) in a very simple, though insightful, manner, and can prove the
further result (akin to the situation in the theory of Gröbner bases for rings) that the word problem
can be solved by a finite strongly normalising reduction system. Whether this kind of result holds
in generality is open. Another motivation, which gives name to the paper, is to show that the ring
of Gaussian integers

Z[x]/(1 + x2) ∼= Z[i] = {m+ n i | m,n ∈ Z } ⊆ C

has objective meaning in the sense that it arises as the set of isomorphism classes of objects in
a distributive category with the algebraic operations of addition and multiplication corresponding
respectively to the categorical operations of sum and product. (Recall from above that the additive
and multiplicative units cannot arise as the initial and terminal objects.) We leave open the problem
of finding a distributive category with Burnside rig N[x]/(x = 1+x+x2), which would provide the
Gaussian integers with an even more direct (e.g., combinatorial, geometric, or topological) objective
meaning.

Section 2 presents the results of the paper, whilst Section 3 gives an application to program-
ming and type theory using the following argument (which we invite the reader to consider be-
fore studying the rest of the paper). Since, as we will see shortly, the identity x = x5 holds in
N[x]/(x = 1 + x+ x2), it follows that in any distributive category the implication

X ∼= 1 +X +X2 =⇒ X ∼= X5 (2)

holds. In particular, for the distributive category of sets and functions (with additive structure
given by the empty set and disjoint union, and multiplicative structure given by the singleton

2



and cartesian product) the set of Motzkin trees (that is, unlabelled planar unary- and/or binary-
branching trees) clearly satisfies the hypothesis of the implication (2). Thus, there is an isomorphism
in the language of distributive categories (not merely in set theory) between the sets of Motzkin
trees and five-tuples of Motzkin trees.

2 Results

A rig is a set R equipped with elements 0 and 1 and binary operations + and · such that (R, 0,+)
is a commutative monoid, (R, 1, ·) is a monoid, and the distributive laws

0 = a 0 0 = 0 a
a b+ a c = a (b+ c) b a+ c a = (b+ c) a

hold for all a, b, c ∈ R.
The free rig on a generator x is the set of polynomials N[x] with natural number coefficients

equipped with the usual addition and multiplication of polynomials and their respective units. The
main object of study in this paper is the quotient polynomial rig

N[x]/(x = 1 + x+ x2)

defined as the quotient rig N[x]/∼ where ∼ is the smallest congruence on the rig N[x] satisfying
x ∼ 1 + x+ x2.

While studying the work of Blass [1] we noticed that there is an unfolding/folding procedure that
works well as a calculational heuristic method for establishing many identities in quotient polyno-
mial rigs N[x]/(x = p(x)). In exploring the quotient polynomial rig N[x]/(x = 1 + x+ x2) we soon
observed that the generator x behaves very much like the imaginary unit. For instance, we have
x ∼ x5. This can be seen from the following calculation, exemplifying the unfolding/folding pro-
cedure referred to above, in which an unfolding step replaces xn+1 with xn + xn+1 + xn+2 (n ≥ 0)
whilst a folding step does the opposite.

x ∼ 1 + x+ x2 (unfolding x)

∼ 1 + x+ x+ x2 + x3 (unfolding x2, aiming at cancelling 1)

∼ x+ x+ x3 (cancelling 1 and x2 by folding 1 + x+ x2)

∼ x+ x+ x2 + x3 + x4 (unfolding x3, aiming at cancelling x)

∼ x+ x2 + x4 (cancelling x and x3 by folding x+ x2 + x3 )

∼ x+ x2 + x3 + x4 + x5 (unfolding x4, aiming at cancelling x)

∼ x2 + x4 + x5 (cancelling x and x3 by folding x+ x2 + x3)

∼ x2 + x3 + x4 + x5 + x5 (unfolding x4, aiming at cancelling x2)

∼ x3 + x5 + x5 (cancelling x2 and x4 by folding x2 + x3 + x4)

∼ x3 + x4 + x5 + x5 + x6 (unfolding x5, aiming at cancelling x3)

∼ x4 + x5 + x6 (cancelling x3 and x5 by folding x3 + x4 + x5)

∼ x5 (cancelling x4 and x6 by folding x4 + x5 + x6)

The reasons for which this calculation goes through are explained by the following proposition.

Let −1 = x2, 0 = 1 +−1, and 1 = 1 + 0 in N[x].
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Proposition 1 1. For n ≥ 0, xn 0 ∼ 0.

2. For all non-constant p in N[x], p+ 0 ∼ p.

3. For all non-zero p in N[x], p 0 ∼ 0.

4. For all non-constant p in N[x], p 1 ∼ p.

5. For all non-zero p in N[x], p+−1 p ∼ 0.

6. For all non-constant p, q in N[x] and for any r in N[x], the cancellation law

p+ r ∼ q + r =⇒ p ∼ q

holds.

7. For p in N[x] and n in N, p ∼ n if and only if p = n.

Proof: (1) x 0 = x+ x3 ∼ 1 + x+ x2 + x3 ∼ 1 + x2 = 0.
(2) Since x+ 0 ∼ x, we also have that

xn+1 + 0 ∼ xn+1 + xn 0 = xn (x+ 0) ∼ xn+1

for all n ≥ 0.
(3) We have from (2) that n 0 ∼ 0 for all n ≥ 1. Hence,

(
∑

i∈I
xni

)

0 =
∑

i∈I
(xni 0) ∼

∑

i∈I
0 ∼ 0

for all finite non-empty I.
(4) Follows from (2) and (3).
(5) Follows from (3).
(6) For p, q non-constant and r non-zero we have that

p+ r ∼ q + r =⇒ p+ r +−1 r ∼ q + r +−1 r =⇒ p+ 0 ∼ q + 0 =⇒ p ∼ q .

(7) Consider the unique rig homomorphism from N[x]/(x = 1 + x+ x2) to the rig of countable
cardinals mapping x to ℵ0. �

In the light of the proposition, the previous derivation of x = x5 in N[x]/(x = 1+ x+ x2) amounts
to the following one:

x ∼ x+ 0 (x2 + x3) = x+ x2 + x3 + x4 + x5 = 0 (x+ x2) + x5 ∼ x5 .

Theorem 2 The subset of N[x]/(x = 1+x+x2) consisting of (equivalence classes of) non-constant
polynomials, equipped with the usual addition and multiplication but with additive unit 0 and mul-
tiplicative unit 1, is a ring; negatives are given by multiplication with −1. Further, this ring is
(isomorphic to) the ring of Gaussian integers.

Proof: The first part is a corollary of Proposition 1. For the second part, write R for the ring in
question; then the isomorphism is given by the restriction to R of the unique generator-preserving
rig homomorphism N[x]/(x = 1 + x+ x2) → Z[x]/(1 + x2) and by the unique generator-preserving
ring homomorphism Z[x]/(1 + x2) → R. �
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Explicitly, the isomorphism in the proof amounts to the mappings below.

R → Z[i]
p(x) 7→ p(i)

Z[i] → R
±m± n i
(m,n ∈ N)

7→ ±1m+±1nx

It follows that the Gaussian integers are represented in N[x]/(x = 1 + x+ x2) by the polynomials

m+ 1 + x2 , m+ nx (n 6= 0) , m+ nx3 (n 6= 0) , mx2 + nx , mx2 + nx3 (3)

where m,n ∈ N are not both 0.

Remark Proposition 1(7) and Theorem 2 together imply that N[x]/(x = 1+ x+ x2) is formed by
extending the addition and multiplication of the rigs N and Z[i] to their disjoint union

N ⊎ (Z× Z)

with additive and multiplicative units respectively given by 0 and 1, and with addition extended
by the obvious action of N on Z[i]:

ℓ+ (m,n) = (m,n) + ℓ = (ℓ+m,n) (ℓ ∈ N, m, n ∈ Z) ,

and multiplication extended freely:

ℓ · (m,n) = (m,n) · ℓ =
∑

ℓ
(m,n) (ℓ ∈ N, m, n ∈ Z) .

Corollary 3 For all non-constant p and q in N[x] the following are equivalent.

1. p = q in N[x]/(x = 1 + x+ x2).

2. p = q in Z[x]/(1 + x2).

3. p(i) = q(i) in Z[i].

Corollary 4 The word problem in N[x]/(x = 1 + x+ x2) is decidable.

Proof: Given two polynomials in N[x], if they are both non-constant then evaluate them at i and
test for equality in Z[i]; otherwise, by Proposition 1(7), they are equivalent if and only if they are
equal. �

Our analysis yields an algorithm for obtaining a derivation of the equality of two polynomials
in N[x]/(x = 1 + x + x2). Indeed, for non-constant p and q in N[x] use the division algorithm in
Z[x] to obtain

p(x)− q(x) = (w1(x)− w2(x)) (1 + x2) + r(x)

with w1, w2 in N[x] and with remainder r satisfying r = 0 or 0 ≤ deg(r) ≤ 1. By Corollary 3, p and
q are equal in N[x]/(x = 1 + x + x2) if and only if r = 0. In that case we can obtain a derivation
of the equality by noticing that

p(x) + (w1(x) + w2(x))x ∼ p(x) + w1(x)x+ w2(x) (1 + x+ x2)

= q(x) + w1(x) (1 + x+ x2) + w2(x)x

∼ q(x) + (w1(x) + w2(x))x

and then deriving p ∼ q using the cancellation law (Proposition 1(6)).
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Example 5 Since 2 + i2 = i4 in Z[i], it follows that 2 + x2 = x4 in N[x]/(x = 1 + x + x2). A
derivation of this equality using the above method follows.

2 + x2 ∼ 2 + x2 + (2 + x2)x+−1 (2 + x2)x

∼ 2 + x2 + 2x+ x2 (1 + x+ x2) +−1 (2 + x2)x

= x4 + 2 (1 + x+ x2) + x2 x+−1 (2 + x2)x

∼ x4 + (2 + x2)x+−1 (2 + x2)x

∼ x4

It is interesting to note that a more direct derivation of the above can be obtained by the unfold-
ing/folding procedure:

2 + x2 ∼ 1 + 1 + x+ x2 + x3 (unfolding x2, aiming at cancelling 1)

∼ 1 + x+ x3 (cancelling 1 and x2 by folding 1 + x+ x2)

∼ 1 + x+ x2 + x3 + x4 (unfolding x3, aiming at cancelling 1)

∼ x+ x3 + x4 (cancelling 1 and x2 by folding 1 + x+ x2)

∼ x+ x2 + x3 + x4 + x4 (unfolding x3, aiming at cancelling x)

∼ x2 + x4 + x4 (cancelling x and x3 by folding x+ x2 + x3)

∼ x2 + x3 + x4 + x4 + x5 (unfolding x4, aiming at cancelling x2)

∼ x3 + x4 + x5 (cancelling x2 and x4 by folding x2 + x3 + x4)

∼ x4 (cancelling x3 and x5 by folding x3 + x4 + x5)

Theorem 6 Two polynomials in N[x] are equal in N[x]/(x = 1 + x+ x2) if and only if they have
the same normal form in the following strongly normalising reduction system.











x4 → 2 + x2

x+ x3 → 1 + x2

xn + 1 + x2 → xn (1 ≤ n ≤ 3)

Proof: The reduction system is terminating, as whenever p → q we have that p(2) > q(2).
Further, all critical pairs are joinable and so the reduction system is also confluent.

To conclude the proof we show that the normal forms are exactly given by the constants together
with the polynomial representation (3) of the Gaussian integers. That is, the normal forms are the
polynomials

m+ 1 + x2 , m+ nx , m+ nx3 , mx2 + nx , mx2 + nx3

with m,n ∈ N.
By successive applications of the first reduction rule (in the form of xm+4 → 2xm+xm+2) every

polynomial reduces to one of degree less than or equal to 3. Further, since a+ b x+ c x2 + dx3

(a, b, c, d ∈ N) reduces to

(a+min(b, d)) + (c+min(b, d))x2 + (b−· d)x+ (d−· b)x3 ,

normal forms are either of the form (i) k + ℓ x2 + nx3 or (ii) k + ℓ x2 + nx with k, ℓ, n ∈ N. We
analyse each case in turn.
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(i) If n = 0 then the polynomial is of the form k + ℓ x2; in which case, if ℓ > k it reduces to
(ℓ− k)x2, and if ℓ ≤ k it reduces to k if ℓ = 0 and to (k − ℓ) + 1 + x2 if ℓ 6= 0.

If n 6= 0 then the polynomial reduces to (k−· ℓ) + (ℓ−· k)x2 + nx3 which is either of the form
m+ nx3 or mx2 + nx3 with m,n ∈ N.

(ii) If n = 0 then the polynomial is of the form k + ℓ x2, and we are in the situation of the first
case above.

If n 6= 0 then the polynomial reduces to (k−· ℓ) + (ℓ−· k)x2 + nx which is either of the form
m+ nx or mx2 + nx with m,n ∈ N. �

It follows that the word problem in N[x]/(x = 1 + x+ x2) is decidable in polynomial time.

Example 7 1. For m ≥ 1, we have that xm+4 → 2xm + xm+2 → xm + xm−1 + xm+1 → xm.
Hence, as we saw in the introduction, x5 = x in N[x]/(x = 1 + x+ x2).

2. In N[x]/(x = 1+x+x2), we have that x (1+x3)8 ∼ 16x. Indeed, (1+x3)2 = 1+2x3+x6 →∗

1 + 2x3 + x2 → 2x3. It follows that (1 + x3)4 ∼ 4x6 →∗ 4x2 and so (1 + x3)8 ∼ 16x4 →∗

32 + 16x2 →∗ 17 + x2. Finally, x (1 + x3)8 ∼ 17x+ x3 → 16x + 1 + x2 → 16x.

3 An application

We conclude the paper with an application to programming and type theory.
As briefly mentioned in the introduction, the rig N[x]/(x = 1 + x + x2) has straightforward

objective realisation by types; see [3] for details. Indeed, in the programming language ML, the
generator is realised by the type of Motzkin trees defined as follows.

datatype X = e | s of X | m of X * X

Importantly, calculations in the rig translate as programs that establish isomorphisms between
the associated types. Thus, for instance, the identity x = x5 in N[x]/(x = 1 + x+ x2) entails an
isomorphism (in the language of distributive categories) between Motzkin trees and five-tuples of
Motzkin trees, and using the methods of this paper a program realising it can be automatically
constructed. We illustrate this by working this example out manually.

First, consider the second derivation in Example 5 establishing the identity x4 = 2 + x2 in
N[x]/(x = 1 + x+ x2). It yields an isomorphism between

type X4 = X * X * X * X

and

datatype U = o1 | o2 | p of X * X

given explicitly by the following program.
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val fold1: X4 -> U = fn t => case t of

( e, e, e, e ) => o1

| ( e, e, e, s(e) ) => o2

| ( e, e, e, s(s(t)) ) => p( e, t )

| ( e, e, e, s(m(t1,t2)) ) => p( s(t1), t2 )

| ( e, e, e, m(t1,t2) ) => p( m(e,t1), t2 )

| ( e, e, s(t1), t2 ) => p( m(s(e),t1), t2 )

| ( e, e, m(t1,t2), t3 ) => p( m(s(s(t1)),t2), t3 )

| ( e, s(t1), t2, t3 ) => p( m(s(m(e,t1)),t2), t3 )

| ( e, m(t1,t2), t3, t4 ) => p( m(s(m(s(t1),t2)),t3), t4 )

| ( s(t1), t2, t3, t4 ) => p( m(m(t1,t2),t3), t4 )

| ( m(t1,t2), t3, t4, t5 ) => p( m(s(m(m(t1,t2),t3)),t4), t5 )

Now, following Example 7(1), we exhibit an isomorphism between the types X * U and X. A program
corresponding to the derivation

x (2 + x2) = 2x+ x3 ∼ 1 + 2x+ x2 + x3 ∼ 1 + x+ x2 ∼ x

follows.

val fold2: X * U -> X = fn t => case t of

( t, o1 ) => s(t)

| ( e, o2 ) => e

| ( s(t), o2 ) => m(e,t)

| ( m(t1,t2), o2 ) => m(s(t1),t2)

| ( t1, p(t2,t3) ) => m(m(t1,t2),t3)

Finally, an isomorphism between the types X * X4 and X can be given by composing the previous
programs:

val fold: X * X4 -> X = fn t => case t of

( t1, t2to5 ) => fold2( t1, fold1( t2to5 ) )
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