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Abstract: The work presented in this paper provides guidance in optimally determining the appropriate 

fitting region used in digital image correlation (DIC) when fitting a crack tip field model to DIC data.  In 

this work, the technique is applied to the CJP crack tip field model and uses the Levenberg-Marguardt (L-

M) iterative method to solve for the crack tip position. This is combined with an error analysis of the main 

term of the Williams series expansion for crack tip stresses and the extrapolation of Saint-Venant’s principle 

to determine the optimum fitting region for use in DIC fit with the multi-parameter solution for the CJP 

crack tip field model. A comparison is then made between the size and shape of the crack tip plastic zone 

obtained using the Williams and the CJP models. This demonstrated that as the plastic zone size increased, 

there was a deterioration in accuracy of the description of the crack tip plastic zone using the Williams 

series expansion, while the CJP description remains more accurate. In addition, KF, the stress-intensity 

factor that drives crack growth in the CJP model has a strong linear relationship with the plastic zone area, 

which indicates that KF is a direct driving force for crack growth and there is a clear relationship between 

ΔKCJP and ΔKI. 

Keywords: Crack tip fields, CJP model, Digital image optimisation, Levenberg-Marguardt iterative 
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1 Introduction 

In early studies of fatigue crack growth of structures, it was considered that crack wake contact (clo-

sure) could only occur under the action of compressive loading. When Rice [1] studied the stress field at a 

crack tip, he excluded the possibility of crack closure under cyclic loading. However, Elber [2] in work on 

centre-cracked tension specimens, observed that this would be true only for an idealised crack that is not 
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propagating, and proposed that partial crack closure would occur after unloading due to the permanent 

tensile deformation left in the wake of the crack. His work on centre-cracked tension specimens led him to 

propose the concept of crack closure. The crack closure effect on fatigue crack growth has been widely 

accepted with the crack opening level proposed to have a significant effect on fatigue crack growth rate [3]. 

Many papers have been published on crack closure measurement techniques and on models that have been 

proposed to determine the effect of crack closure on the crack growth rate [e.g. 3-7]. It is widely accepted 

that when a crack tip plastic zone occurs under an applied tensile stress, residual stresses can lead to crack 

surface contact (closure) during unloading. For instance, Beevers et al [8] proposed a 2-dimensional model 

based on a single asperity contact under Mode I plane strain conditions where contact produces a compres-

sion of the asperity during the lower portion of the load cycle. However, definitive measurements of the 

stress arising from contact between the upper and lower fracture surfaces in the crack tip region have never 

been reported and measurements of closure are usually either indirect, e.g. compliance-based, or inferred 

from visual examination. 

Indirect measurement methods have placed a limit on understanding the physical basis of fatigue crack 

closure mechanisms [9]. Full field experimental techniques have recently become widely available and 

provide an opportunity to revisit mechanistic understanding of fatigue crack closure. They can provide full 

field displacement or stress data that can then be fitted to advanced crack tip field models that better capture 

the effects of a crack tip plastic zone on the local displacement or stress field, and can therefore offer 

insights into the physical mechanisms of closure. Polycarbonate is a refractive, ductile material whose 

fatigue properties have been widely studied. It is suitable for investigation with the photoelastic method, 

where isochromatic fringes are used to establish a direct functional relationship with the stress field; thus, 

this method is accurate and potentially able to resolve wake contact forces. 

Polycarbonate was employed by Pacey at al [10] in photoelastic work on 2 mm thick compact tension 

specimens, that was aimed at elucidating the crack wake contact force in fatigue crack closure. That work 

used the Muskhelishvili complex potential method to obtain a mathematical model to describe the stresses 

near the tip of a crack that is experiencing a single-point fracture surface contact. This model was fitted to 

the full-field experimental data measured by photoelasticity near the crack tip [10], using a combination of 

a simple genetic algorithm and the downhill simplex optimisation method to perform the fitting quickly 

and accurately. Stress intensity factors measured during two load cycles fitted well with the applied load 
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cycle and clearly displayed evidence of plasticity-induced shielding on the effective stress intensity factor. 

However, the results given by the model showed that the pressure exerted on the crack flanks was random, 

and did not follow a consistent trend with the applied load cycle. 

This led the authors to consider what additional plasticity-induced stresses might be affecting crack 

tip shielding and, in 2007, Christopher et al [11] proposed a new model for the crack tip stress field that 

included additional force terms to describe an exponential distribution of wake contact behind the crack tip 

and a compatibility-induced stress acting along the crack plane at the notional elastic-plastic boundary. This 

mathematical model was referred to as the Christopher-James-Patterson (CJP) model. Initially, this model 

was applied to the same polycarbonate compact tension (CT) specimens as had been used for the previous 

work reported by Pacey et al [10], and the results demonstrated that the CJP model accurately described 

the effective driving force for fatigue crack growth in polycarbonate in the presence of plasticity-induced 

shielding. In order to extend the work to metallic alloys, a displacement-based solution for the CJP model 

was reported by James et al [12] and this allowed the digital image correlation technique to be used and 

fitted to the CJP model on a full-field basis. Vasco-Olmo et al [13] used the DIC technique in combination 

with the CJP model to obtain the crack tip plastic zone size and shape, both via the model and experimen-

tally, and compared the CJP model predictions with those provided by the Williams and Westergaard crack 

tip stress models. The results showed that the CJP model gave size and shape data that was the closest to 

the experimentally measured values. 

However, in applying the DIC technique to the measurement of crack tip fields, the position of the 

crack tip is an important parameter that affects the accuracy of the results obtained for the stress parameters 

in the CJP model. James et al [12] highlighted the sensitivity of the results obtained from the CJP model to 

selection of the region used to fit the experimental displacement or stress field. They used an empirical 

exploration of the influence of the data collection region and the crack tip position to identify optimum 

values for these parameters. A number of different optimisation techniques have been used in other pub-

lished work that has used DIC techniques to characterise the crack tip displacement field so as to calculate 

a stress intensity factor. These include Newton-Raphson iteration, the use of genetic algorithms, the simplex 

method, and the pattern search technique [14-18]. However, the use of mathematical methods to determine 

the optimal crack tip position when using the CJP model has not been reported in detail yet. 

In summary, although the crack closure effect has been widely studied, improved crack tip field 
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models are required to advance understanding of the mechanisms involved and to be able to better predict 

the influence of loading parameters, such as mean cyclic stress and variable amplitude loading, on crack 

tip shielding and hence on crack growth rates. Only then can an improved predictive capability be devel-

oped for fatigue crack growth rate and fatigue life prediction. The CJP model is a more complete mathe-

matical model of the elastic crack tip stress field in the presence of plasticity-induced shielding and repre-

sents an advance over the Williams or Westergaard models. Reference [19] has shown that although the 

CJP model, like the Westergaard model and the Williams model, uses coordinate axes aligned with the 

crack tip, the CJP model leads to stress intensity factors that are geometry-independent, at least for CT and 

double edge-notched tension specimens. Hence there is no necessity for a compliance-based geometry cor-

rection factor. The more inclusive physical basis of the model also provides a wider range rationalisation 

of crack growth rate data as a function of stress ratio and effective range of stress intensity factor than is 

possible using the Paris relationship for crack growth rate.  

 However, a significant issue in applying the CJP model to digital image correlation relates to an 

optimum identification of the crack tip position, which is hard to accurately measure and position in the 

measured crack tip displacement field, while the selection of an optimum fitting region in terms, typically, 

of inner and outer measurement radii can only be assessed experimentally, which is time-consuming and 

potentially inaccurate.  

To address these problems, this study proposes the use of the Levenberg-Marguardt (L-M) iterative 

method to solve for the crack tip position based on the CJP model. Then, combined with the error analysis 

of the main term of the Williams series and the generalization of the Saint-Venant principle, a more theo-

retically-based method for selecting the fitting area is developed. An analysis of the actual displacement 

field shows that the proposed methods for determining the crack tip position and selecting the fitting area 

are effective. The work presented in this paper can therefore provide guidance in an optimised application 

of the CJP model (or other crack tip field model) to full-field experimental displacement data obtained via 

digital image correlation. 
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2 Introduction to CJP model 

2.1 Williams model 

The Williams model is based on linear elastic fracture mechanics and uses the mathematical form of 

an infinite series to describe the crack tip stress field distribution in a stable state, drawing from previous 

research results [20]. According to this model the crack tip stress field for a mode I crack can be expressed 

as a function of the number of adopted terms in the series, the series coefficients and the polar coordinates 

of a set of points at the region surrounding the crack tip[13]:  
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Where 
1 2IA K =   and 2 4A T= −  .  

Close to the crack tip (r/a ≪ 1), the first two terms in the series, which are equivalent to the Westergaard 

function expression [12], are sufficient to characterise the stress field in this area. In a similar way, the 

displacement fields around the crack tip can be described as[13]: 
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Where 
1 2Ia K =  2 4a T= , G is the shear modulus, E and 𝜐 are the Young’s modulus and the Pois-

son’s ratio of the material respectively and, ( ) ( )= 3 1  − +  for plane stress or =3 4 −   for plane 

strain. 
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2.2 CJP crack tip field model 

Fatigue of ductile materials occurs via plastic deformation processes at the crack tip, and the Poisson's 

ratio in the plastic region is different from that in the elastic region (plastic deformation is a constant volume 

process with ν = 0.5), which necessarily produces a compatibility stress at the elastic–plastic boundary. 

Moreover, contact of the crack surfaces during crack propagation induces an additional stress distribution 

near the tip. Both of the compatibility and contact stresses will have an effect on the applied stress field 

ahead of the crack, and are not considered in the Williams crack tip stress expansion series. Both of these 

stresses are the result of plasticity-induced shielding. CJP model is based on Muskhelishvili’s complex 

potentials [21], and it postulates that the plastic enclave that exists around a fatigue crack tip and along the 

crack flanks will shield the crack from the full influence of the applied elastic stress field. According to 

this, the crack tip stress field equations are then described by the following expressions [12]: 
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Where 0A B+  , 0D E+ = , C T= − . 

Unlike the Williams model, the CJP model leads to three stress-intensity factors [12, 13, 19]: FK , the 

stress-intensity factor that drives the crack forwards and reduces to the standard Irwin stress-intensity factor 

if no plasticity is present; RK , a stress intensity-factor that retards crack propagation and arises from the 

action of crack wake contact and the compatibility-induced stresses; and SK , a shear stress-intensity fac-

tor generated by the compatibility-induced stresses at the elastoplastic boundary. The three stress-intensity 

factors are expressed as follows: 
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To use DIC technology with the CJP model to study fatigue crack growth rate in metallic alloys, the fol-

lowing complex variable function of the displacement field of the model must be used [12]: 
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Where ( ) ( )= 3- 1+    is the plane stress state; =3-4   is the plane strain state; and   is Poisson's 

ratio of the material in the elastic region.  It should be noted that under Mode I or Mode I plus II loading, 

it appears that 
FK  and 

RK  provide sufficient information to characterize the effective driving force for 

crack growth. It is believed that under Mode III loading, 
SK will prove to have utility. It should also be 

noted that, from the way in the which the force components were defined in the CJP model, negative val-

ues of 
RK  have significance. 

3 Solving for the CJP model stress parameters 

3.1 Linear fitting 

As mentioned above, accurate determination of the position of the crack tip is an important prerequi-

site in using DIC techniques to obtain the parameters in crack tip field models such as the CJP model. In 

previous work, the discontinuous characteristics of the vertical displacement field at the crack tip have 

generally been used to determine the position of the crack tip [19, 22] . If the coordinates of the crack tip 

position are known, the CJP model parameters can be found using a linear fitting method. Assuming that 

the discontinuous characteristics of the displacement field are used to obtain the coordinates of the crack 
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tip ( ),o ox y , ( ) ( )o oz x x i y y= − + − , the real and imaginary parts of the stress field equation (5) can 

be separated. Substituting D = -E into equation (5) then gives: 
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The measured displacement fields contain both translation and rotational components, as if the specimen 

rotates slightly with point P as the center of rotation (R<<1), then the displacement of point P represents 

both the deformation and a rigid body translation, which can be written as shown in equation (7): 
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In this equation, 
,

xu  and 
,

yu  are the translational components of the sample. The position of the crack 

tip can be used as the coordinate origin to establish a rectangular coordinate system. Assuming that the 

coordinates of the rotation center point P are (xp, yp), as shown in Fig. 1, the coordinates of any point A in 

the coordinate system are (x, y), the rotation of the sample causes point A to move to A’, and the motion 

component is given by equation (8): 
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The Pythagoras relationship between the sides of a triangle can be used to obtain equation (9): 
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Therefore, when the crack tip is taken as the origin of the coordinates, the total displacement equation of any 

point A is: 
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Where 
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Selecting a region near the crack tip for the fitting process gives the inverse equation system as KX b= , 

with the matrix form as shown in equation (12): 
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The solution of the inverse system of equations is given by ( ) ( )
1

T TX K K K b
−

= , from which the param-

eters in the CJP model can be determined. 

3.2 Nonlinear fitting method 

3.2.1 Solving nonlinear equations 

The mathematical calculation of the stress parameters in the CJP model using the linear fitting method 

is not complicated. However, due to the bluntness of the crack tip, the actual displacement field does not 
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have the theoretically expected form near the crack tip. It is also difficult to find the location of the crack 

tip accurately from the discontinuity of the vertical displacement field and precise location of the crack tip 

is very important in determining accurate parameter values [13]. To solve this problem, the crack tip posi-

tion can be used as an unknown quantity and calculated along with other parameters using a nonlinear 

iteration method. The real functions of the pure Mode I crack displacement field are expressed as follows 

[23]: 
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where ( ) ( )
2 2

i o i or x x y y= − + − , ( )( )=acos i ox x r − ，and ( ),o ox y  are the crack tip coordi-

nates. Assuming that the unknown quantity is ( ), , , , , , , ,o o x yZ A B C E x y u u R= , we can write an objective 

function expression as (16): 
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The solution ( )F Z  that minimises the objective function Z  is the optimal solution, and ,i iU V  are the 

horizontal and vertical displacements corresponding to the point ( ),i ix y  measured using the DIC tech-

nique. The Gauss-Newton (G-N) iterative algorithm or the modified Levenberg-Marguardt (L-M) iterative 

algorithm can be used to the calculate numerical solutions. Because the latter is more suitable for the non-

linear solution of the ill-conditioned matrix in the iterative process, the numerical solution of the L-M 

iterative algorithm was used in this study. In concise form, we assume ( , ; )i i i i ip u x y Z U= −  ,

( , ; )i i i i iq v x y Z V= − : 
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The iteration format of the L-M algorithm is [24]: 
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( )DF Z  is a Jacobi matrix, which can be obtained from the derivation rule as follows: 
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k kDF Z DF Z . In the L-M algorithm, 
k  is 

added as a damping factor to change the iterative matrix to ( ) ( )T

k k kDF Z DF Z I+ . The introduction of 

k   can help improve the condition number of the iterative matrix ( ) ( )T

k kDF Z DF Z  , but as 
k   in-

creases, the convergence speed of the iterative method will slow down. Changing 
k  during the iterative 

process ensures that the iterative matrix is always in a non-ill-conditioned state, which improves the solu-

tion accuracy. Changing 
k  can make each effective iteration converge toward a decreasing objective 

function, ensuring that the final solution is as close as possible to the global optimal solution. Wang [24] 

proposed several methods for updating the damping factors during the iterative process. The goal is to both 

improve the ill-conditioned characteristics of the iterative matrix and converge the iteration toward reduc-

ing the objective function; this complicates the iterative process considerably. The ill-conditioned equation 

can be solved using the pre-processing conjugate gradient (PCG) algorithm to ensure that the solution is 
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accurate. Therefore, the selection of the damping factor 
k  in the iteration process only needs to ensure 

that the iteration converges towards reducing the objective function. At the beginning of the iteration, a 

small 
0  can be selected to accelerate the convergence of the initial iteration and in this work was selected 

with a value between 10-7 and 10-5. It should be noted that this value maybe not suitable in all cases. Re-

search is currently ongoing to determine whether a suitable generalised value of 
0  can be determined.  

3.2.2 Choosing the fitting area 

Another factor that affects the accuracy of determination of the parameters in the CJP model is the 

selection of the fitting area during the iteration process. Usually, an over-deterministic approach is adopted 

where measurement points are placed evenly along a series of concentric arcs around the crack tip. As the 

CJP model is an improved elastic model that accounts for plasticity through its effects on the elastic field 

ahead of the crack tip, the measurement region has to exclude the crack tip plastic zone. The inner radius 

of these arcs can therefore be related to the size of the crack tip plastic zone, which can be obtained by 

processing the displacement field data using the material parameters. The detailed method for calculating 

the plastic zone is described in section 4.2. 

The determination of the outer radius is more complicated because the CJP model represents the ef-

fects of an applied Mode I stress and two additional terms representing the stresses induced by the plastic 

enclave around the crack. The stress field region where the CJP model is valid should be similar to that 

where the first term in the Williams stress expansion is capable of characterising the actual crack stress 

field. Zhou et al [25] theoretically derived the solution accuracy of the first term in the Williams series. The 

calculation results showed that for a crack with a half-length of 1 cm and considering a circular region 

around the crack tip with radii r = 1 mm and 2 mm, the maximum truncation error between the Williams 

approximate stress solution and the exact solution are 6.8% and 12.6%, respectively. 

Following on from this, a general rule of thumb is that a stress intensity approach based on the first 

term in the Williams series expansion requires that the plastic zone should not exceed 1/20 of the crack 

length and the first term approximation is only valid outside this region. However, in many practical situa-

tions, this range does not give conservative results and the calculated stress intensity factor will be under-

estimated due to plastic blunting of the crack tip. With respect to the calculation results presented herein, 
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the outer radius of the fitting area should not also exceed 1/5 of the crack length. As the CJP model considers 

a compatibility stress at the elastic-plastic boundary and a stress arising from contact between crack sur-

faces, the generalized Saint-Venant’s principle [26] shows that the action range of these two stresses should 

be only 1–2 times the maximum radius of the plastic zone. It is therefore fairly usual to consider an outer 

radius as 1/10 of the crack length. A suitable fitting area for the DIC data and the CJP crack tip field model 

hence has an inner radius related to the plastic zone size and an outer radius related to the crack length. 

Optimum values can therefore be determined through an iterative process. 

3.2.3 Algorithm introduction 

The initial value chosen in the nonlinear iteration is important, as it affects the convergence and the 

solution found. In the present study a reasonable initial value for the iteration was obtained by first esti-

mating the crack tip position, and then using linear to solve for the other parameters. These parameters 

together form a set of initial values for the non-linear iteration. An appropriate initial value can greatly 

reduce the number of nonlinear iterations. 

A reasonable convergence criterion to terminate the iteration is necessary for the non-linear iteration. 

After every step of iteration, the displacement field corresponding to the current theoretical solution is 

found. The theoretical displacement field is then compared with the experimental field, and the 2-norm of 

the relative error (ζ) is taken as the convergence criterion. This convergence criterion ensures that the the-

oretical displacement field obtained through the fitting process is in good agreement with the experimental 

displacement field. In the present study, the iterative process is terminated when ζ < ε = 0.05. It is worth 

noting that ε = 0.05 may not satisfy all other cases, but it was effective in this research, reducing the number 

of iterations to the range 4 - 6, and the total time to between 80 s and 120 s. 

The specific steps of the nonlinear iterative algorithm are shown in flowchart 1. 

4 Experimental Verification 

4.1 Experiment 

Experimental verification of the iterative process developed in this paper used U71MnG rail steel with 

the mechanical properties shown in Table 1. A double edge-notched tension (DENT) specimen was used 
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with dimensions shown in Fig. 2. One surface of the DENT specimen used for the DIC analysis was sprayed 

with a random black speckle pattern over a white background, and the other surface of the specimen was 

ground and polished to allow tracking of the crack tip position with a precision of 10 μm. A charge-couple 

device camera equipped with a macro-zoom lens (MLH-10X EO) was vertically aligned on the speckled 

surface of the specimen, with a field of view of approximately 19 mm × 14 mm and a resolution of 11.7 

μm/pixel. Fatigue crack growth rate testing was performed using sinusoidal loading cycles on an Electro-

Puls E3000 dynamic testing machine with maximum load of 2400 N and a stress ratio of 0.1 at 10 Hz. In 

the DIC work, the facet size was 45 pixel and each facet overlapped by 11 pixel. 

Table 1 Mechanical performance parameters of test material 

(%)E  (MPa)b  (MPa)s  (%)f    

210,000 ≥ 880 780 ≥ 10 0.28 

4.2 Algorithm application 

The following process was employed to verify that the optimization of the crack tip position did indeed 

give better results than obtained without the optimization process. The two different crack tip positions 

(estimated and optimised) were used to calculate the corresponding CJP model parameters. These parame-

ters were then used to solve for the theoretical displacement field being characterised by the CJP model.  

Finally, the mean value and variance were determined in the relative error between the two theoretically 

obtained displacement fields and that measured experimentally. For example, Table 2 shows the tip coor-

dinates obtained using the two methods and the corresponding mean value and variance in the relative error 

for the case when the crack length was 18.27 mm and the load was 2400 N. It can be seen that the values 

obtained using the proposed method are significantly smaller than those calculated using the conventional 

method. 

Table 2 The mean value and the variance of the relative error of the displacement field using two different methods 

Parameter Conventional method Proposed method 

Tip coordinates (pixel) (820, 660) (809.5, 647.8) 

Mean E(η) 2.532 × 10−6 −6.954 × 10−7 

Variance D(η) 1.283 × 10−5 1.340 × 10−6 
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In this work, the plastic zone size has been used as a comparative parameter of optimisation success 

because it is well-recognised as a controlling parameter in fatigue crack growth rate. Suzuki and McEvily 

[27], amongst others, showed that the size of the crack tip plastic zone was related to the crack growth rate 

and the crack tip plastic zone produces the crack wake, which in turn causes plastic-induced shielding [2]. 

It is therefore meaningful to study the advantages of the CJP model in describing the plastic zone size (and 

shape). 

Obtaining an accurate experimental size for the crack tip plastic zone is an important prerequisite 

when studying the advantages of the CJP model in characterizing the plastic zone. In this process, the most 

important step is solving for the strain from the displacement field. Pan et al [28] proposed a local least-

squares fitting method based on the full-field displacement, which has been shown to be a useful algorithm 

for solving for strain. Subsequently, the stress field can be obtained using the generalised form of Hooke’s 

law combining the physical equation of elastic mechanics, and the size of the experimental plastic zone 

obtained by substituting the von Mises or Tresca yield criteria [29]. In the present study, the von Mises 

criterion was used.  

Comparing the theoretically obtained CJP plastic zone with the experimental determined plastic zone 

both before and after optimization, as shown in Fig. 3, shows that the optimized plastic zone is significantly 

smaller than the one obtained before optimization, and is also closer to the experimental plastic zone. 

It should be noticed that the shape of this plastic zone is irregular because the displacement field 

measured by DIC is a set of discrete points. In present study, a rectangular region with length l and width 

w is used in the DIC measurements. If there are m measurement points located in this rectangular field in 

total and n measurement points located in the plastic zone around the crack tip, then the experimental area 

of the plastic zone, Ae, can be determined by calculating Ae= l×w×n/m. Though the analysis results could 

show the effectiveness of present method for calculating the area of the plastic zone, an improved technique 

is being developed to further reduce the fitting error. When comparing the plastic zone predictions given 

by two different models, such as the Williams and CJP models, the chosen fitting areas for both models 

should be the same. As explained in the previous section, the outer radius of the fitting area is selected as 

0.1r a , with a being the crack length of the sample.  

The plastic zone shape and area estimated using the CJP model, and using the Williams model with 

the first term, 3-terms and 5-terms have been calculated and are listed in Table 3. To determine whether the 
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CJP model or the Williams model describes the plastic zone more effectively, it is advantageous to use a 

relatively long crack length where the crack tip plastic zone is large enough to emphasize differences. The 

relative error between each of these predicted plastic zone areas, Ap, and the experimentally determined 

one is defined as e=(Ap-Ae)/Ae, which is also given in Table 3. Data was acquired at crack lengths L = 17.26, 

17.65, 18.27, and 18.67 mm under the maximum load of P = 2400 N, as depicted in Figures 4a through 4d.  

These figures clearly show that the difference between the predicted plastic zone and the experimen-

tally measured plastic zone for each of the models. At all crack lengths considered, the CJP model provides 

the closest estimate with relative errors, e, ranging from -1.52% at a crack length of 17.26 mm to +5.98% 

at 18.77 mm. In contrast, errors for the first term approximation of the Williams model ranges from +1.96% 

(17.26 mm) to +24.98% (18.27 mm).  These relative errors decrease again for both the CJP and Williams 

models at a crack length of 18.67 mm.  Using a three or five term Williams approximation decreases the 

accuracy of the fit at the three smaller crack lengths and steadily improves it for a crack length of 18.67 

mm. An interpretation of the Williams results is that at a crack length of 18.67 mm the crack tip stress field 

is not being characterised as well by the single parameter approximation as with the higher order approxi-

mations. Again, in contrast, to this the CJP model remains the closest to the experimental data, supporting 

the earlier assertion that it is a wider-range elastic approximation to crack tip fields in the presence of 

plasticity-induced shielding than the Williams model.  

Fig. 5 depicts the relative errors for the two crack tip stress models as a function of the experimental 

plastic zone area. The data clearly indicates the trends described above for the 1, 3 and 5-parameter Wil-

liams approximations and the CJP model. 

Table 3 Experimental and estimated plastic zone area and corresponding relative error 

  
Experimental CJP 

Williams model 

  1st-term 3-terms 5-terms 

Fig. 4a 
Area (mm2) 0.8681 0.8549 0.8851 0.7746 0.7969 

e (%) -- -1.52 1.96 -10.77 -8.20 

Fig. 4b 
Area(mm2) 1.2331 1.2853 1.3383 1.1157 1.1539 

e (%) -- 4.23 8.53 -9.52 -6.42 

Fig. 4c 
Area(mm2) 2.3750 2.5170 2.9684 2.0210 2.1420 

e (%) -- 5.98 24.98 -14.91 -9.81 

Fig. 4d Area(mm2) 3.4350 3.6072 4.5614 2.4240 2.5182 



 

17 
 

e (%) -- 5.01 32.79 -29.43 -26.69 

Fig. 4e 
Area(mm2) 1.3554 1.3772 1.4995 1.1299 1.1721 

e (%) -- 1.61 10.63 -16.64 -13.52 

Fig. 4f 
Area(mm2) 0.4873 0.4593 0.4634 0.4401 0.4471 

e (%) -- -5.75 -4.91 -9.69 -8.19 

It should be noted that there are inevitably errors in the process of measuring and modelling the plastic 

zone. These include noise in the DIC measurements which would be amplified when calculating the strain 

field from the displacement field. Although the method presented in reference [28] is used to reduce the 

influence of noise on the calculated strain field, this error cannot be completely eliminated. Some studies 

have shown that the grain size of the material has a significant impact on the strain distribution at the crack 

tip and on the cumulative plastic strain distribution in the wake area [30]. At the same time, the passivation 

of the crack tip also has a certain effect on the plastic zone [32]. In addition, the numerical method used in 

this study to calculate the area of the plastic zone also contains errors. Quantifying these errors is complex 

but their magnitudes are likely to be consistent in all the modelling and the trends observed in plastic zone 

size calculation are expected to be correct. 

Reference [33] describes the relationship between the crack tip plastic zone size and the stress-inten-

sity factor, for the case of elastic-perfectly plasticity (EPP) with stress relaxation. As metallic alloys show 

non-ideal plastic deformation, this relationship can only be used as a reference, and the change in size of 

the theoretical plastic zone with stress-intensity factor does not accurately represent the change in the area 

of the plastic zone that arises from the stress redistribution attendant on plastic deformation. To a first 

approximation, the area of the plastic zone can be estimated by recording the number of DIC measurement 

points inside the plastic zone and comparing this with the total number of measurement points in the DIC 

region. From this, the area of the crack tip plastic zone can be estimated at any value of applied load. Fig. 

6 gives typical results from this calculation for a crack length of 18.27 mm, with a quadratic relationship 

between plastic zone area and load that reflects the power law relationship in the definition of the Irwin 

stress intensity factor and the plastic zone size. 

In the CJP model, FK  is the stress intensity factor that drives crack growth and it can be calculated 

as a function of load using the same nonlinear algorithm as done previously. As shown in Fig. 7 a linear 

relationship can then be obtained between FK  and plastic zone size, the linear correlation coefficient of 
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which is 0.9859.  This indicates that 
FK  is a direct measure of the driving force for crack growth. 

In terms of the CJP model, the effective stress-intensity factor that ultimately drives crack propagation 

is calculated using the following formula [19]: 

max, min,CJP CJP CJP F RK K K K K = − =  −  

Fig. 8 shows a comparison between the values of max,CJPK  and 
IK  at peak load during crack propagation 

as a function of crack length. The magnitude of max,CJPK  is larger at crack lengths approximately < 17.5 

mm, and then it decreases below the Irwin value. This is interpreted as reflecting the influence of the 

shielding effect of the additional stresses that are included in the CJP model, i.e. a distribution of wake 

contact stress behind the crack tip and the compatibility stresses induced at the elastic–plastic boundary. In 

the early stages of crack propagation the contribution from the shielding stresses reduces the effective ap-

plied stress intensity through the contribution from 
RK , while at larger crack lengths crack blunting re-

duces the value of max,CJPK  below that of the Irwin stress intensity value. This blunting influence is the 

reason why the CJP formulation of stress intensity range rationalises crack growth data over a wider range 

of growth rates than the traditional value of K . Fig. 9 plots the relationship between 
IK  and 

CJPK  

and then fits this relationship with linear and cubic functions. The fit provided by the cubic function is very 

close for the DENT geometry, although a linear function could be used in engineering applications, noting 

that fitting line does not have a 45° slope. 

5 Conclusion 

The conclusions that can be drawn from this work are summarised below. 

(1) This paper has proposed a calculation method based on the L-M nonlinear iterative algorithm to solve 

for the parameters of the CJP model. Based on an error analysis of the first term in the Williams crack tip 

stress equation and a generalization of the Saint-Venant principle, a suitable fitting area is selected to solve 

for the CJP model parameters. A comparative analysis between the experimentally measured and theoreti-

cally calculated plastic zones shows that the algorithm is effective and that the proposed selection method 

for the fitting zone is accurate. 
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(2) At all crack lengths considered, the CJP model provides the closest estimate of the crack tip plastic zone 

with relative errors, e, ranging from -1.52% at a crack length of 17.26 mm to +5.98% at 18.77 mm. In 

contrast, errors for the first term approximation of the Williams model ranges from +1.96% (17.26 mm) to 

+24.98% (18.27 mm).  These relative errors decrease again for both the CJP and Williams models at a 

crack length of 18.67 mm. 

(3) Using a three or five term Williams approximation decreases the accuracy of the fit at the three smaller 

crack lengths and improves it for a crack length of 18.67 mm. An interpretation of the Williams results is 

that at a crack length of 18.67 mm the crack tip stress field is not being characterised as well by the single 

parameter approximation as with the higher order approximations. 

(4) Comparing the values of max,CJPK  and 
IK  at peak load during crack propagation, as a function of 

crack length, shows that the magnitude of max,CJPK  is larger at crack lengths approximately < 17.5 mm, 

and then it decreases below the Irwin value. This is interpreted as reflecting the influence of the shielding 

effect of the additional stresses that are included in the CJP model, i.e. a distribution of wake contact stress 

behind the crack tip and the compatibility stresses induced at the elastic–plastic boundary. In the early 

stages of crack propagation the contribution from the shielding stresses reduces the effective applied stress 

intensity through the contribution from 
RK , while at larger crack lengths crack blunting reduces the value 

of max,CJPK  below that of the Irwin stress intensity value. This blunting influence is the reason why the 

CJP formulation of stress intensity range rationalises crack growth data over a wider range of growth rates 

than the traditional value of K . 

(5) There is a linear relationship with a linear correlation coefficient of 0.9859 between the stress-intensity 

factor, FK , and the area of the plastic zone at the crack tip, indicating that the CJP model is providing a 

good descriptor for fatigue crack growth rate in the presence of shielding. 
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Flowchart 1: Non-linear iterative algorithm 
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Fig. 1 Schematic diagram of small rotation 

 

 

 

 

Fig. 2 Dimensions of the double edge-notched specimen 
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Fig. 3 The plastic zones indicated by the CJP model before (conventional) and after (proposed) optimisation of the 

crack tip position, compared with the experimentally determined plastic zone 

 

  

(a) L = 17.26 mm, P=2400N (b) L = 17.65 mm, P=2400N 
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(c) L = 18.27 mm, P=2400N (d) L = 18.67 mm, P=2400N 

  

(e) L=18.27mm, P = 2084 N (f) L=18.27mm, P = 1600 N 

 

Fig. 4 Comparison between the experimental plastic zone size and the predictions obtained using different models 

 

 

Fig. 5 Relationship between the relative error and the experimental plastic zone areas 
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Fig. 6 Relationship between plastic zone area and load for 

a crack length of 18.27 mm 

Fig. 7 Relationship between plastic zone area and FK  

 

Fig. 8 Relationship between crack length and stress-in-

tensity factor 

 

 

Fig. 9 IK  and CJPK  fitting curves 

 

 


