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We derive a simple algebraic form of the nonlinear wavenumber correction of unidirec-11

tional surface gravity waves in deep water, based on temporal measurements of the water12

surface and the spatial Zakharov equation. This allows us to formulate an improvement13

over linear deterministic wave forecasting with no additional computational cost. Our new14

formulation is used to forecast both synthetically generated as well as experimentally mea-15

sured seas, and shows marked improvements over the linear theory.16
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I. INTRODUCTION17

The goal of deterministic wave forecasting is to determine what waves will arrive at a distant18

point, or at some future time, based on spatial or temporal measurements of the sea surface. To any19

beachgoer observing the erratic nature of surface water waves this may seem an impossible task,20

recalling Lord Rayleigh’s famous statement that “The basic law of the sea way is the apparent lack21

of any law”.22

However, with advances in the remote sensing of the sea surface, and attendant increases in23

computational power, the problem of deterministic forecasting of water waves has become more24

tractable. The many applications of such deterministic forecasts – from control of wave energy25

converters17,24, to ship motion forecasting for maritime operations2,22 – have led to a significant26

surge in interest.27

In the present work we set out to develop the theoretical basis of a forecasting methodology28

that incorporates weakly nonlinear corrections to the dispersion relation up to third order. While29

deep water waves undergo (nearly) resonant interactions at third and higher orders, it is our goal30

to capture only the corrected dispersion while neglecting the slow energy exchange between wave31

modes. In order to compare with wave flume experiments, we consider unidirectional spatial32

evolution, and build our theory upon the spatial Zakharov equation developed by Shemer et al30
33

and employed in numerous subsequent studies19,29,31.34

Measurements of the free surface readily yield Fourier amplitudes, which form the basis of35

the linear description of surface waves. Indeed, these Fourier amplitudes can be used to construct36

simple and efficient linear forecasts, which have been used in practical tests of deterministic fore-37

casting systems by Hilmer & Thornhill15, Kusters et al21, Al-Ani et al2, and others. The same38

Fourier amplitudes are the foundation of weakly nonlinear approaches, where corrections to the39

linear description are sought as perturbations in the (small) wave slope.40

Weakly nonlinear approaches to wave forecasting include those based on PDEs like the nonlin-41

ear Schrödinger equation and its modifications, derived under assumptions of narrow bandwidth42

and used by numerous authors, including Trulsen36, Simanesew et al32, Klein et al20 and others.43

Alternatively, the well developed higher-order spectral method (HOS)8,38 presents an attractive44

computational technique which has gained much recent attention by the deterministic forecasting45

community4,13,23,28,39.46

While they better capture the evolution of real waves, the principal drawback of these ap-47
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proaches lies in an increased computational cost compared to linear forecasting. For practical48

applications, forecasts are needed on scales of seconds or minutes and tens or hundreds of meters,49

so computational speed is of the essence. Our approach is to extract the correct third-order non-50

linear dispersion and include it as an essentially algebraic correction in the linear forecast. This51

is computationally trivial, but we will show that it yields significant advantages over the purely52

linear approach.53

In what follows, we first review fundamental theory, including linear forecasting, in section54

II A. Section II B 1 introduces the spatial Zakharov equation, and contains the main theoretical55

results. Section III applies linear and nonlinear forecasting methods to synthetically generated56

seas, simulated in a numerical wave flume using HOS. Section IV presents comparisons with57

experimental measurements. Finally, section V presents a discussion of the results and some58

concluding remarks. Additional data is provided in tables in the Appendix.59

II. FUNDAMENTAL THEORY60

Assuming unidirectional propagation of long-crested waves, we may write the free surface61

elevation as η(x, t) where x is space and t time. In order to prepare a spatial forecast the sea62

surface must be measured at a fixed location x = x0 at N times t0, t1, . . . tN−1. It is simplest to63

assume time intervals ∆t = T/N, where T is the measurement duration, so that tn = nT/N, but64

non-uniformly sampled data can be resampled using interpolation. This leads to a record65

y0 = η(x0, t0), y1 = η(x0, t1), . . . ,yN−1 = η(x0, tN−1).66

Taking the discrete-time Fourier transform of the sequence y0, y1, . . . ,yN−1 we find67

Yj =
N−1

∑
n=0

yn exp(−i2π jn/N) =
N−1

∑
n=0

yn exp(−itnω j), (1)68

where ω j = 2π j/T. We can obtain a continuous, periodic extension of the signal from the inverse69

transform, which can be written for N even as70

y(t) =
Y0

N
+

1
N

N/2−1

∑
m=1

[Ym exp(iωmt)+Y ∗m exp(−iωmt)] . (2)71

Note that y(t) = y(t+T ). The term Y0/N = 1
N ∑

N−1
n=0 yn is the mean elevation of the sampled points.72
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A. Linear forecasting73

In the linear theory of gravity water waves there is a one-to-one correspondence between posi-74

tive wavenumbers k ∈ R+ and positive frequency ω ∈ R+, given by the dispersion relation75

ω
2 = gk tanh(kd),76

where g is the acceleration of gravity and d is the (constant) water depth. For deep water d→ ∞77

this dispersion relation reduces to the simpler expression ω2 = gk. This correspondence allows for78

a linear forecast to be constructed from the N samples captured in (2). By stipulating that a wave79

with measured frequency ωm has wavenumber km = ω2
m/g, it is immediately possible to write:80

ζL(x, t) =
Y0

N
+

1
N

N/2−1

∑
m=1

[Ym exp(i(kmx−ωmt))+Y ∗m exp(−i(kmx−ωmt))] . (3)81

The waves accounted for in the forecast then have frequencies between ω1 = 2π

T and ωN/2−1 =82

2π(N/2−1)/T. The energy associated with a given frequency moves at the group velocity, de-83

fined as84

cg :=
dω(k)

dk
,85

with the simple form in deep water cg = 0.5g/ω.86

For a given measurement, the longest waves of interest ωL will travel fastest, and the shortest87

waves ωS slowest (note that practically ωL may not be ω1, nor ωS be ωN/2−1, as there may be88

negligible energy associated with the longest or shortest waves that can be theoretically resolved).89

This leads to the concept of a predictable region in (x, t) as shown in Figure 1.90

The thick lines in Figure 1 show the group velocities cg,L and cg,S of the longest and shortest91

waves ωL and ωS, respectively. Thinner lines in between these indicate the group velocities of92

waves of length intermediate between ωL and ωS. For a measurement at x = 0 over time t =93

[t0, t1], all the waves in the shaded region originate in the measurement domain, and are therefore94

predictable. The only exceptions are waves longer than ωL or shorter than ωS that may encroach95

from t < t0 or t > t1, and are not accounted for in the forecast.96
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FIG. 1. Predictable region (grey shaded area) based on measurements at x = 0 in [t0, t1].

B. Nonlinear forecasting97

1. The spatial Zakharov equation98

The discussion in the preceding section II A is relevant only for waves of small steepness, such99

that linear wave theory may be employed. Weakly nonlinear theory (to third order) makes for100

dramatic changes to the dispersion relation of waves in deep water, and complicates the forecast101

problem considerably.102

The theoretical basis for our nonlinear forecast will be the spatial Zakharov equation (ZE)

developed in the early 2000s by Shemer et al30. This takes the form

icg
∂B(x,ω)

∂x
=
∫∫∫

T (k,k1,k2,k3)B∗(x,ω1)B(x,ω2)B(x,ω3)

· exp(−i(k+ k1− k2− k3)x)δ (ω +ω1−ω2−ω3)dω1dω2dω3. (4)

where cg denotes the deep-water, linear group velocity. This equation can be discretised as follows:103

icg, j
dB j(x)

dx
= ∑

l,m,n
TjlmnB∗l BmBn exp(−i(k j + kl− km− kn)x)δ (ω j +ωl−ωm−ωn), (5)104

where Bi = B(ωi,x), and we abbreviate by Tjlmn the kernel T (k j,kl,km,kn) of the Zakharov equa-105

tion. In (5) the function δ is the ordinary Kronecker delta function. To extract the effect of nonlin-106

ear dispersion we follow the procedure outlined by Stuhlmeier & Stiassnie34 for the conventional107

temporal Zakharov equation (see also the discussion in Gao et al11 for further background).108
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We write the complex amplitude B j(x) as |B j|exp(iargB j), where both magnitude and argu-

ment may depend on x. Separating into real and imaginary parts leads to:

cg, j
d|B j|

dx
=−∑Tjlmnδ

mn
jl |Bl||Bm||Bn|sin(θ jlmn), (6)

− cg, j|B j|
d arg(B j)

dx
= ∑Tjlmnδ

mn
jl |Bl||Bm||Bn|cos(θ jlmn), (7)

with

θ jlmn = ∆x+ argB j + argBl− argBm− argBn,

δ
mn
jl = δ (ω j +ωl−ωm−ωn), and

∆ = k j + kl− km− kn.

Assuming that there is negligible evolution of the amplitudes, so that the |B j|’s may be replaced109

by their initial values |B j(0)|, we rewrite110

−cg, j
d
dx

(argB j) =
1
|B j|

(
∑

l
el j|Bl|2|B j|Tjl jl +∑

l
∑

m 6= j
∑
n6= j

Tjlmnδ
mn
jl |Bl||Bm||Bn|cos(θ jlmn)

)
(8)111

and, neglecting the second term on the right-hand side (which captures only exactly resonant112

quartets), integrate:113

−cg, j(argB j) = ∑
l

el j|Bl|2Tjl jlx+ argB j(0), (9)114

where el j = 1 for l = j and el j = 2 for l 6= j. The kernels of the Zakharov equation reduce for two115

unidirectional waves (scalar k) to116

T (k,k1,k,k1) =


kk2

1
4π2 for k1 < k,

k2k1
4π2 for k1 ≥ k.

(10)117

This leads to a correction for the wavenumber:118

Kn = kn−
1

cg,n
∑

l
eln|Bl(0)|2Tlnln, (11)119

which is the counterpart to the well-known Stokes’ correction to the frequency. The effects of120

(weak) nonlinearity are thus to decrease the wavenumber by an amount of O(ε2) compared to the121

linear theory. We will explore the effect of this wavenumber correction on two explicit solutions122

below, and see that it also impacts the predictable region discussed in section II A above.123
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2. Explicit solutions to the spatial Zakharov equation124

The spatial Zakharov equation (4) can be easily solved in two special cases: a single mode, or125

two modes. The former corresponds to the spatial evolution of the well-known Stokes’ wave33,126

and the latter to the spatial evolution of the third-order two-wave system first considered by127

Longuet-Higgins & Phillips25. Either of these cases trivially fulfil the resonance condition, since128

δ (ωa+ωa−ωa−ωa) = 1 and δ (ωa+ωb−ωa−ωb) = 1. Because the viewpoint of wavenumber129

correction (rather than frequency correction) is somewhat unusual in water waves, it is instructive130

to consider these solutions.131

In case of a single wave ω j, the spatial Zakharov equation (with Tj j j j abbreviated by Tj) be-132

comes133

icg, j
dB j(x)

dx
= Tj|B j(x)|2B j(x), (12)134

which admits the constant amplitude solution135

B j(x) = A je
−iA2

j Tjx/cg, j . (13)136

If two waves are present, say ωa and ωb, the spatial ZE becomes the coupled system

icg,a
dBa

dx
= Ta|Ba|2Ba +2Tab|Bb|2Ba, (14)

icg,b
dBb

dx
= Tb|Bb|2Bb +2Tab|Ba|2Bb, (15)

where the symmetry of the kernel Tabab = Tabba has been used to simplify the expressions and

Tabab has been abbreviated by Tab. Again, this system admits a solution with constant amplitudes

Aa and Ab,

Ba(x) = Aa exp(−i(TaA2
a +2TabA2

b)x/cg,a), (16)

Bb(x) = Ab exp(−i(TbA2
b +2TabA2

a)x/cg,b). (17)

The relationship between the complex amplitudes and the leading order free surface elevation137

is given by138

η(x, t) =
1

2π

∫
∞

−∞

(
ω

2g

)1/2

[B(x,ω)exp(i(k(ω)x−ωt))+ c.c.]dω. (18)139

Here “c.c.” stands for the complex conjugate of the preceding expression. For a single mode140

B(x,ω) = B0(x)δ (ω−ω0) we find, using (13),141
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η(x, t) =
1
π

(
ω0

2g

)1/2

A0 cos(([k(ω0)−A2
0T0000x/cg,0]x−ω0t)). (19)142

This is a simple sinusoidal wave with a wavenumber altered due to the effect of the weakly non-143

linear dispersion relation. Normalising the constant amplitude via144

A0 = πa0

(
2g
ω0

)1/2

,145

this reduces to146

η(x, t) = a0 cos(k0[1−a2
0k2

0]x−ω0t).147

An exactly analogous procedure for two waves (ka < kb) yields the free surface148

η(x, t)= aa cos
(

ka

[
1−a2

ak2
a−2a2

bk3/2
a k1/2

b

]
x−ωat

)
+ab cos

(
kb

[
1−a2

bk2
b−2a2

ak3/2
a k1/2

b

]
x−ωbt

)
.149

This shows clearly that the dispersion of one mode ωa is influenced both by its own steepness aa150

and also by that of the second mode ωb. It is easy to verify that these wavenumber corrections can151

be obtained from equation (11), making liberal use of (10) to simplify the kernels.152

3. Nonlinear forecasts with wavenumber correction153

The wavenumber correction (11) gives rise to a simple improved forecast154

ζN(x, t) =
Y0

N
+

1
N

N/2−1

∑
m=1

[Ym exp(i(Kmx−ωmt))+Y ∗m exp(−i(Kmx−ωmt))] , (20)155

where Km denotes the corrected wavenumber. This is otherwise cosmetically identical to the linear156

forecast (3), a kinship which demonstrates the advantages of the formulation. Indeed, the only157

additional computational cost consists of calculating the Km’s from the Fourier amplitudes via158

simple algebra.159

In addition, the change in wavenumber leads to a change in phase and group velocities, which160

become cp, j = ω j/K j and cg, j = dω j/dK j, respectively. The latter of these must be evaluated nu-161

merically in practice. The nonlinear corrected velocities are somewhat larger, effectively because162

of a smaller denominator (K j is smaller than the linear wavenumber k j, and this effect is more163

pronounced for shorter waves than for longer waves), which means that the spatial predictable164

zone increases in size slightly when nonlinear corrections are taken into account. The extent of165

this increase depends on both the frequencies and the amplitudes present in the measured sea.166
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FIG. 2. The upper panel shows a diagram of the HOS-NWT numerical wave flume configuration. P1–P4

denote the probes at which measurements are taken. Right-going waves are generated in water of 3 m depth,

and fully absorbed by a numerical beach at the right-hand side of the flume. The lower panel depicts the

nonlinear predictable zone for a JONSWAP spectrum with Hs = 0.03 m, γ = 3.3 generated in the 15 m long

HOS-NWT numerical wave flume. Waves are generated at the wavemaker (x = 0 m) between t = 0 and

t = T = 72 s.

III. DETERMINISTIC FORECASTING OF SYNTHETIC SEAS167

To assess the utility of the linear and the new nonlinear deterministic forecast it is necessary to168

generate a wave field, measure it at a point, and compare the forecast with other measurements.169

This procedure can be undertaken either in a wave flume or computationally, and we devote this170

section to the latter. The advantage of synthetic seas lies in the ease of tuning inputs, and the171

ability to easily produce many realisations of different cases. To this end, we employ the open172

source HOS-NWT code9 which implements the high-order spectral method (HOS).173
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Throughout we use a numerical wave flume to generate purely unidirectional, random wave174

fields initialised by JONSWAP spectra with peak frequency fp = 1.3 Hz, values of significant175

wave–height Hs between 0.02 – 0.04 m, and peak-sharpening parameters γ = 1, 3.3 and 7. The176

numerical wave flume is 15 m long and 3 m deep, with probes located at 3, 6, 9 and 12 m, and177

has a fully absorbing beach, as depicted in the upper panel of Figure 2. HOS is used to model the178

nonlinear propagation of waves along the flume, and includes nonlinear dispersion, (near) resonant179

energy exchange, and the effects of bound modes – considerably more physics than captured by180

either of our simple forecasts.181

To produce a forecast, measurements from probe P1 are sampled, the Fourier amplitudes ex-182

tracted via FFT, and inserted into either (3) or (20). The resulting forecasts can then be compared183

to the measured time series at subsequent probes P2, P3, and P4. The lower panel of Figure 2184

depicts the nonlinear predictable zone based on an example for Hs = 0.03 and γ = 3.3. Waves are185

generated by the wavemaker at x = 0 m and propagate along the 15 m long numerical flume. The186

longest waves resolved are ωL = 3.1rad/s and the shortest ωS = 25.1rad/s, and the associated187

nonlinear group velocities determine the edges of the predictable zone. The data at P1 is then used188

to generate forecasts as shown in Figure 3. The horizontal (time) axis has a different starting point189

for each panel of Figure 3, reflecting the narrowing of the predictable region seen in Figure 2 (for190

convenience, in Figure 2 we have set t = 0 s as the beginning of the record at P1, rather than the191

start of the wavemaker).192

Figure 3 shows excellent agreement between measurement and both forecasts for the closest193

probe P2, while the forecast grows progressively less accurate as distance from the measurement194

point increases. However, the nonlinear forecast ζN remains considerably closer to the measured195

data at P4, some ten peak wavelengths from the initial measurement.196

In order to obtain a measure of the aggregate quality of a forecast it is useful to compare197

the fit over several realisations. Figure 4 considers the mean correlation ρ̄ (using Pearson’s linear198

correlation coefficient ρ , where a value of ρ = 1 indicates that the two signals rise and fall together,199

and a value of ρ =−1 indicates that one rises when the other falls) between a linear or nonlinear200

forecast produced from probe 1 and the predictable portion of the measured time series at probe n,201

for n = 2, 3, or 4. Here and elsewhere the predictable region is calculated based on the nonlinear202

group velocities; it is therefore strictly slightly larger than the comparable predictable zone based203

on linear group velocities, see section II B 3.204

Figure 4 has been generated by forecasting 20 realisations of a JONSWAP spectrum with γ =205
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FIG. 3. Comparison of linear (ζL, red curve) and nonlinear forecasts (ζN , yellow curve) with measurements

(Pi, blue curve) for a numerically generated JONSWAP spectrum with Hs = 0.03 and γ = 3.3. The horizontal

axis shows time (a section through the nonlinearly corrected predictable region), while the vertical shows

free surface elevation. (Top panel) comparison with measurements at probe P2. (Middle panel) comparison

with measurements at probe P3. (Bottom panel) comparison with measurements at probe P4.

3.3, each with random, uniformly distributed phases. Subsequently the arithmetic mean of the206

linear correlations is plotted: at the measurement point P1 (∆x = 0 m) the forecast is identical207

to the probe record, yielding perfect correlation ρ = 1 in all cases. With distance ∆x from the208

measurement, the average correlation is shown to decrease – markedly for steeper seas and linear209

forecasts (dashed lines), but much less so for the nonlinear forecast.210

Table I in the Appendix provides the numerical values of the mean correlations for JONSWAP211

spectra with γ = 1, 3.3 and 7. As in Figure 4, for higher wave steepness, nonlinear dispersion is212

well captured by the corrected forecast ζN (see rows ρ̄N
i, j), as evidenced by the good agreement213

for moderate distances. Table II additionally provides the root-mean-square (RMS) error for each214

of the cases considered, which captures the error in amplitude as well as phase (in contrast to the215

correlation, which only captures the concurrent increase/decrease of two signals). It is remarkable216

that the nonlinear forecast at 9 m distance has nearly the same RMS error as the linear forecast at217
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FIG. 4. Mean correlations ρ̄ over 20 realisations between synthetic simulated seas and forecasts based on

linear (ζL) and nonlinear (ζN) forecasts. The horizontal axis ∆x denotes distance from the measurement

probe P1, and markers are placed at probes P2, P3 and P4. Three difference significant wave heights Hs

ranging from 0.02 to 0.04 are used, and peak-sharpening parameters γ = 3.3.

3 m for all cases considered.218

For the steepest waves and longest propagation distances the forecast quality degrades markedly,219

nevertheless the nonlinear forecast retains a clear advantage in both correlation and RMS error.220

Indeed, for Hs = 0.03 and 0.04 m and over all values of γ, the nonlinear forecast can predict twice221

as far (6 m vs 3 m) as the linear forecast with the same average correlation and RMS error. It is222

also interesting to note that prediction is consistently easier for narrower spectra (γ = 3.3, 7), with223

accuracy of both linear and nonlinear forecasts increasing at a given distance as γ increases.224

IV. DETERMINISTIC FORECASTING IN A WAVE FLUME225

To assess the accuracy of our new nonlinear forecasting approach, we also compare with exper-226

imental data from the 40 m long, 2.7 m wide flume at IRPHE/Pytheas Aix Marseille University.227

Data are taken from four probes placed at distances of 3.79, 6.64, 11.63, and 16.11 m from a228

piston wave maker in water of depth d = 0.8 m, as shown in Figure 5. As above, measurements229

from probe 1 will supply the data necessary to produce a forecast, which is then compared with230
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h =0.8m

3.8m 2.9m 4.9m 4.5m 23.9m

FIG. 5. Diagram of the experimental configuration. P1–P4 denote the probes at which measurements are

taken. Right-going waves are generated in water of 0.8 m depth.

data from probes 2–4. We will consider three cases: (J1) a JONSWAP spectrum with fp = 1.10231

Hz, γ = 3.3 and Hs = 0.01 m, (J2) a steeper JONSWAP spectrum with fp = 1.11 Hz, γ = 3.3 and232

Hs = 0.04 m, and (M) a modulated plane wave, consisting of a plane wave with fp = 1.42 and233

slope ak = 0.16, and two side bands.234

Forecasts for the two JONSWAP cases J1 and J2 are depicted in panel (a) and panel (b) of235

Figure 6 respectively. For lower steepness wave fields with Hs = 0.01 either linear or nonlinear236

forecasting produces excellent agreement with measurements up to probe P3, nearly 8 m (ca. 7237

peak wavelengths) away, as seen in Figure 6(a). Due to the low steepness, the nonlinear correction238

is essentially negligible, and ζL is barely distinguishable from ζN . Akin to what was observed for239

synthetic data generated by HOS in section III, as the wave steepness is increased to Hs = 0.04240

m the forecasts begin to depart from the measured data. The difference in linear and nonlinear241

forecasts is clearer here, with the quality of the dispersion-corrected forecast ζN outstripping the242

simple linear case ζL. This information is also captured by the correlation, shown in Figure 8, and243

RMS error, shown in the Appendix, Table III, which provide a measure of forecast quality (here244

only over a single experimental realisation).245

Forecasts for a modulated plane wave are shown in Figure 7. This case exhibits the well-246

known modulational instability of a degenerate quartet consisting of a carrier and two side bands,247

and the side-band growth with propagation distance can be clearly seen in the insets depicting the248

Fourier amplitude spectrum at probes P2, P3 and P4. As the wave-field propagates along the flume,249

the side-band amplitudes grow at the expense of the carrier, while also influencing the modes’250

dispersion.251
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FIG. 6. Comparison of linear (ζL, red curve) and nonlinear (ζN , yellow curve) forecasts with measured

probe data (Pi, blue curve) for JONSWAP cases J1 (panel (a)) and J2 (panel (b)). Measurements taken at

probe P1 supply the Fourier amplitudes for the forecasts at probe P2 (top panel), probe P3 (middle panel)

and probe P4 (bottom panel).
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FIG. 7. Comparison of linear (ζL, red curve) and nonlinear (ζN , yellow curve) forecasts with measured

probe data (Pi, blue curve) for modulated plane wave case M. Measurements taken at probe P1 supply the

Fourier amplitudes for the forecasts at probe P2 (top panel, 2.85 m propagation distance), probe P3 (second

panel, 7.84 m propagation distance) and probe P4 (third panel, 12.32 m propagation distance). The bottom

panel is an enlargement of the region outlined in black in panel 2. The Fourier amplitude spectrum at the

three measurement gauges P2, P3 and P4 is shown adjacent to panels 1–3.

The nonlinear forecast ζN employs only the initial mode amplitudes to calculate the corrections252

to the dispersion relation (the procedure described in section II B 1 effectively neglects the energy253

exchange between modes, employing the Fourier amplitudes of P1 throughout). The effect of this254

is clearly visible in the enlarged forecast in Figure 7 (bottom panel). It is also illustrated in Figure255
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(ζN) forecasts. The horizontal axis ∆x denotes distance from the measurement probe P1, and markers are

placed at probes P2, P3 and P4. Upper panel: JONSWAP cases J1 and J2. Lower panel: modulated plane

wave case M.

8 which depicts the correlation between measurements and forecasts and Table III which gives the256

RMS errors: the nonlinear forecast ζN shows excellent agreement with the measured phases, but257

fails to capture the evolving amplitudes at larger distances. Because the correlation is insensitive258

to amplitudes, good agreement is found for all nonlinear forecasts up to probe P4 in Figure 8. For259

yet longer propagation distances, the different rates of change of the various amplitudes eventually260

degrade the otherwise good match between the phases in ζN and the experimental record.261

V. DISCUSSION262

We have derived a compact and theoretically simple wavenumber correction from the spatial263

Zakharov equation, and demonstrated its utility in simple cases of wave forecasting from synthetic264

and experimentally generated waves. We have seen that this method accurately captures the most265

important aspects of nonlinear dispersion in one propagation direction, and is a spatial analogue266
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of the techniques developed by Stuhlmeier & Stiassnie35 for the temporal forecasting problem.267

In contrast to the temporal case, it remains a significant challenge to extend the spatial Zakharov268

formulation (and attendant wavenumber corrections) to directional (2D) seas. These corrections269

may have applicability beyond the immediate context of deterministic forecasting, for example270

to the so-called Molin lensing effect26 which has recently been studied in the context of wave271

run-up41.272

Wave prediction theories, such as that presented in this manuscript, are only one part of this273

story: ocean waves must first be properly measured. For ship-borne applications, considerable274

work is currently being undertaken on X-band marine radar27,42. For fixed installations, such275

as wave energy converters, in-situ measurements may be obtained by Acoustic Doppler Current276

Profiler17, arrays of inexpensive buoys10, LiDAR12, or stereo-imaging40, to name only some of the277

many possibilities. There have also been recent mathematical advances5,14 in recovering the free-278

surface from bottom pressure measurements, which may allow for practical exploitation. Measure-279

ment errors and sources of noise must be dealt with efficiently, as discussed recently by Desmars et280

al7, for example by continuous data assimilation and ensemble Kalman filtering37. Subsequently281

prediction can be accomplished with a wide variety of propagation techniques.282

We have used the fast Fourier transform throughout, and tacitly assumed that it introduces no283

appreciable errors into the forecasting methodology. This is not quite the case, as the sampled284

water surface is not a strictly periodic signal, and we have only a finite-length snapshot at each285

probe location. This induces a rectangular windowing and results in spectral leakage, recently286

addressed in the context of forecasting1,16.287

It is interesting to observe that in our synthetic forecasts a decrease in spectral width (by in-288

creasing γ) increases the average accuracy of our forecasts, as measured by the linear correlation289

and presented in table I. Of the two phenomena associated with cubically nonlinear wave propa-290

gation in deep water, energy exchange is expected to be more significant for a narrow spectrum,291

while frequency correction is expected to be less significant. The former phenomenon is con-292

nected to the Benjamin-Feir index introduced by Janssen18, connecting spectral width and scale293

of nonlinearity to the appearance of modulational instability. The latter is a consequence of the294

asymmetry of (11): energy in long waves has a large effect on the dispersion of short waves, but295

not vice versa. For a broader spectrum, with energy distributed among modes further from the296

spectral peak (especially in higher frequencies), these dispersion corrections should therefore be297

more significant34.298
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The extremely narrow and discrete spectrum of the modulated plane wave in Figure 7, allows299

to track energy transfer clearly, and makes it a popular laboratory wave, although it is unlikely300

to be found on the ocean. The energy exchange associated with the modulational instability3,6
301

drives significant changes in the spectral amplitudes between one probe and the next, while both302

linear and nonlinear forecasts implicitly assume the spectrum remains unchanged throughout the303

propagation. Therefore, it is interesting to see that, although the amplitudes of the waves are not304

well predicted, the phases are matched very well for the nonlinear forecast.305
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Appendix: Data tables312

In this appendix we provide detailed tables of correlations and RMS errors for the synthetic313

and experimental forecasts considered in sections III and IV, respectively.314
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TABLE I. Mean correlations ρ̄ over 20 realisations between synthetic simulated seas and forecasts based

on linear (superscript L) and nonlinear (superscript N) forecasts. Subscripts i, j denote that measurements

from probe i are used to forecast probe j. Significant wave height Hs ranges from 0.02 to 0.04, for three

peak-sharpening parameters γ = 1, 3.3 and 7.

γ = 1 γ = 3.3 γ = 7

Hs 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04

ρ̄L
1,2 0.9663 0.8498 0.7204 0.9802 0.9015 0.8012 0.9823 0.9274 0.8382

ρ̄N
1,2 0.9883 0.9432 0.8914 0.9933 0.9637 0.9297 0.9928 0.9704 0.9368

ρ̄L
1,3 0.8895 0.6375 0.4327 0.9373 0.7419 0.5323 0.9449 0.7930 0.6014

ρ̄N
1,3 0.9665 0.8736 0.7898 0.9838 0.9227 0.8391 0.9834 0.9311 0.8630

ρ̄L
1,4 0.8096 0.4499 0.2574 0.8656 0.5604 0.3176 0.9036 0.6314 0.3667

ρ̄N
1,4 0.9530 0.8071 0.7057 0.9660 0.8708 0.7392 0.9762 0.8700 0.7693

TABLE II. RMS errors from 20 realisations between synthetic simulated seas and forecasts based on linear

(superscript L) and nonlinear (superscript N) forecasts. Subscripts 1, j denote that measurements from probe

P1 are used to forecast probe Pj, so that EL
1, j =

√
E((Pj−ζL)2) and EN

1, j =
√

E((Pj−ζN)2). Significant

wave height Hs ranges from 0.02 to 0.04, for three peak-sharpening parameters γ = 1, 3.3 and 7.

γ = 1 γ = 3.3 γ = 7

Hs 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04

EL
1,2 0.0012 0.0039 0.0070 0.0010 0.0032 0.0060 0.0009 0.0028 0.0054

EN
1,2 0.0006 0.0024 0.0044 0.0006 0.0019 0.0036 0.0006 0.0017 0.0034

EL
1,3 0.0021 0.0061 0.0101 0.0018 0.0053 0.0092 0.0017 0.0048 0.0085

EN
1,3 0.0009 0.0036 0.0061 0.0009 0.0028 0.0054 0.0009 0.0027 0.0050

EL
1,4 0.0029 0.0074 0.0114 0.0026 0.0069 0.0112 0.0022 0.0064 0.0109

EN
1,4 0.0011 0.0044 0.0072 0.0013 0.0037 0.0069 0.0011 0.0037 0.0066
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TABLE III. RMS error for linear (superscript L) and nonlinear (superscript N) forecast for the three experi-

mental cases M, J1, and J2. Subscripts i, j denote that measurements from probe i are used to forecast probe

j.

Case M Case J1 Case J2

EL
1,2 0.0074 0.0005 0.0040

EN
1,2 0.0030 0.0005 0.0030

EL
1,3 0.0133 0.0008 0.0083

EN
1,3 0.0061 0.0009 0.0053

EL
1,4 0.0187 0.0010 0.0090

EN
1,4 0.0087 0.0010 0.0052
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12S. T. Grilli, C.-A. Guérin, and B. Goldstein Ocean Wave Reconstruction Algorithms Based341

on Spatio-temporal Data Acquired by a Flash LIDAR Camera. Proceedings of the Twenty-first342

International Offshore and Polar Engineering Conference. Maui, Hawaii, USA, 275–282, 2011.343
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