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We present a theoretical model of the temperature distribution in the boundary layer region6
close to the seabed. Using a perturbation expansion, multiple scales, and similarity variables,7
we show how free-surface waves enhance heat transfer between seawater and a seabed with8
a solid, horizontal, smooth surface. Maximum heat exchange occurs at a fixed frequency9
depending on ocean depth, and does not increase monotonically with the length and phase10
speed of propagating free-surface waves. Close agreement is found between predictions by11
the analytical model and a finite difference scheme. It is found that free-surface waves can12
substantially affect the spatial evolution of temperature in the seabed boundary layer. This13
suggests a need to extend existing models that neglect the effects of a wave field, especially14
in view of practical applications in engineering and oceanography.15
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1. Introduction17

The present manuscript investigates how surface water waves impact temperature transport18
at the sea-bed. The subject of temperature conduction in fluids is incredibly varied, with a19
vast literature (see e.g. Landau & Lifshitz (1989) and White (1991) for useful background20
information). In the most general setting the temperature distribution and flow field mutually21
influence one another, which makes for a rich and complex problem. However it is often22
possible to adopt the simplifying assumption that the flow is independent of temperature.23
When it comes to the oceanic environment, temperature transport has been studied at large24

as well as small scales. At the largest scales, wind-driven gyres and overturning circulation25
are responsible for oceanic heat transport from the tropics to higher latitudes (Ferrari &26
Ferreira 2011). Turning to the small scales, research investigations have been devoted to27
studying temperature in the surface boundary layer, which forms the interface between ocean28
and atmosphere. Early work by O’Brien (1967) considered heat transfer at wavy surfaces29
specified in Lagrangian coordinates, whereas Witting (1971) later investigated the role of30
surface gravity and capillary waves on surface heat flux. Experimental work by Veron et al.31
(2008) has also underscored the importance of surface gravity waves in driving air-sea heat32
transfer in the ocean.33
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To the best of our knowledge the effect of surface waves on heat transfer in the sea-bed34
boundary layer has not hitherto been studied. Whereas the motion associated with surface35
waves decreases with depth, in intermediate depths (relative to the length scale of the waves)36
this motion extends all the way down the water column. This is an important driver of sea-bed37
mass transport (Mei & Chian 1994), as well as the transport of solutes and contaminants38
(Winckler et al. 2013). In the present paper, we show that this motion is responsible for39
temperature convection.40
For a suitable choice of scales, and an idealised flat and smooth bed, we are able to41

treat the problem analytically by means of perturbation theory. We assume the fluid is42
incompressible and viscous, enabling the fluid density to be independent of fluid pressure,43
and the hydrodynamic problem to be decoupled from its thermodynamic counterpart. The44
second-order wave-induced motion is determined by an approach analogous to that used45
in investigating mass transport by Mei et al. (2005), Ch. 10. This motion drives flow in46
the boundary layer, and results in a convection-diffusion equation for the temperature. This47
approach is mathematically similar to earlier studies by Lighthill (1950; 1954).48
By introducing a slow time scale and similarity variables we are able to solve the equation49

for the sea-bed temperature transport to yield explicit expressions for the heat transfer. We50
also obtain a theoretical criterion by which to estimate the frequency of free-surface waves51
that maximises heat exchange, and validate the analytical approximation by comparison with52
a full numerical solution based on a finite difference scheme. Our results suggest that the53
effect of free-surface waves should be included in existingmodels to ensure proper estimation54
of the temperature field near the seabed, especially when such models are applied in practice.55

2. Mathematical model56

Let us consider a two-dimensional fluid domainΩ(G, I, C), where G is horizontal distance, I is57
vertical distance upwards from the horizontal seabed, and C is time. We assume that the fluid58
is viscous and incompressible, in which case the equation of heat convection and diffusion59
in a laminar boundary layer assumes the simplified form (Landau & Lifshitz 1989)60

m)

mC
+ D m)

mG
+ F m)

mI
= j∇2), (2.1)61

where ) is temperature, j is thermometric conductivity, and (D, F) are the horizontal and62
vertical components of the velocity field. Diffusion effects are expected to be greatest close63
to a heat source because of the low thermometric conductivity of water. For this reason, we64
introduce the following non-dimensional quantities (Mei et al. 2005; Michele & Renzi 2019;65
Michele et al. 2019)66

G ′ = G:, I′ = I/X, D′ = D/�l, F′ = F/�l:X, C ′ = lC, ) ′ = )/)1 (2.2)67

where : is a typical wavenumber of the propagating surface waves, l the frequency of wave68
oscillations, � the amplitude of oscillations near a seabed of intermediate depth ℎ, )1 is69

the temperature of the seabed, X =
√
2a/l the scale of the boundary layer thickness and a70

the kinematic viscosity coefficient. We also define the small parameter n = �: � 1, which71
represents the steepness of the propagating waves. Substitution of (2.2) into (2.1) yields the72
governing equation in non-dimensional form73
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, (2.3)74
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where the small parameter ` is defined by75

` =

√
j

lX2
=

√
j

2a
, ` ∼ O (n) . (2.4)76

The assumption that ` is comparable with n is justified for fluids characterised by small77
thermometric conductivity, such as water, as will be shown in Section 3.78
Given that X: ∼ O(n4) is very small, equation (2.3) can be simplified as follows79

m) ′

mC ′
+ n

(
D′
m) ′

mG ′
+ F′ m)

′

mI′

)
= `2

m2) ′

mI′2
+ O

(
n3

)
, (2.5)80

in which we neglect third-order contributions. Therefore, convective effects driven by the81
moving fluid appear at second order O (n), whereas diffusion is significant at third order82
O

(
n2

)
. Having obtained the governing equation for fluid temperature, we now derive83

expressions for the components of the fluid velocity field in the boundary layer at the84
seabed. The dynamic problem is decoupled from its thermodynamic counterpart, and so the85
water particle velocity components (D, F) are determined by analogy to the analysis of mass86
transfer phenomena by Mei et al. (2005), Ch. 10.87

2.1. Flow field in the laminar boundary layer88

The mass continuity and Navier-Stokes equations in the boundary layer region can be89
approximated by90

mD

mG
+ mF
mI

= 0, (2.6)91
92

mD

mC
+ D mD

mG
+ F mD

mI
= − 1

d

m%

mG
+ a m

2D

mI2
,
1
d

m%

mI
+ 6 = 0, (2.7)93

where d denotes fluid density, 6 acceleration due to gravity, and % the total pressure. Here,94
the dynamic component of the pressure ? = % − d6I does not depend on vertical elevation95
and matches the value in the inviscid flow region outside the boundary layer. Hence,96

mD

mC
+ D mD

mG
+ F mD

mI
=
m*

mC
+* m*

mG
+ a m

2D

mI2
, (2.8)97

where * is the horizontal component of the inviscid flow velocity at the seabed, and the98
corresponding vertical component is zero. By assuming the following perturbation expansion99
in terms of n = �: � 1,100

D = D1 + D2 +$ (l�n2), (2.9)101

with D1 = $ (l�), D2 = $ (l�n), we obtain the following leading order problem $ (1)102

mD1
mC

=
m*

mC
+ a m

2D1

mI2
, (2.10)103

D1 = 0, I = 0, (2.11)104

D1 = *, I � X. (2.12)105106

Given that107

* = Re
{
*04

−ilC} , (2.13)108

with*0 a function of G, we obtain109

D1 = Re
{
*0

(
1 − 4−(1−i)I′

)
4−ilC

}
. (2.14)110
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By integrating the continuity equation (2.6), the vertical component of water particle velocity111
at the leading order may be expressed as112

F1 = Re
{
X
m*0
mG

[
1 + i
2

(
1 − 4−I′ (1−i)

)
− I′

]
4−ilC

}
. (2.15)113

The governing equation at second order is given by114

mD2
mC
− a m

2D2

mI2
= *

m*

mG
−

(
D1
mD1
mG
+ F1

mD1
mI

)
, (2.16)115

which admits second (2l) and zeroth harmonic solutions. The second harmonic component116
contributes only a small oscillatory correction to the first harmonic obtained at leading order,117
which can be eliminated by time-averaging over the period 2c/l. More significant is the118
drift associated with the zeroth harmonic, for which we obtain119

− a m
2D2

mI2
= *

m*

mG
− ©­«

mD21
mG
+ mD1F1

mI

ª®¬ , (2.17)120

where the overbar represents the averaged value of the relevant variables. The boundary121
conditions at second order reduce to122

D2 = 0, I = 0, (2.18)123

mD2
mI

= 0, I � X, (2.19)124
125

and the horizontal drift velocity component is given by126

D2 = −
1
l
Re

{
�1*0

m*∗0
mG

}
, (2.20)127

in which128

�1 =
1 + i
4

{
−3i + 4−2I′

[
−1 − (1 + i) 4I′ (1−i) + 24I′ (i+1) (I′ + 2i + 1)

]}
, (2.21)129

and ()∗ denotes the complex conjugate of the relevant variable. Let us consider a progressive130
wave propagating in the positive direction described by the following velocity potential (Mei131
et al. 2005, Ch. 1):132

Φ = Re
{
−i�6
l

cosh :I
cosh :ℎ

4i(:G−lC)
}
, l2 = 6: tanh(:ℎ), (2.22)133

in which � is thewave amplitude and ℎ is the undisturbedwater depth. The inviscid horizontal134
water particle velocity component at I = 0 is thence given by135

ΦG |I=0 = * = Re
{

�l

sinh :ℎ
4i(:G−lC)

}
→ *0 =

�l

sinh :ℎ
4i:G . (2.23)136
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Substitution of (2.23) into expressions (2.14), (2.15) and (2.20) yields the following horizontal137
and vertical water particle velocity components in the boundary layer138

D =
�l

sinh :ℎ

{
Re

{(
1 − 4−(1−i)I′

)
4i(:G−lC)

}
139

+ �:4−I
′

2 sinh :ℎ
[− (2 + I′) cos I′ + 2 cosh I′ + (1 − I′) sin I′ + sinh I′]

}
, (2.24)140

F =
�l:X

sinh :ℎ
Re

{
i4i(:G−lC)

[
1 + i
2

(
1 − 4−I′ (1−i)

)
− I′

]}
. (2.25)141

142

These expressions are used in the next section to solve the temperature distribution in the143
boundary layer region.144

2.2. Convection and diffusion of temperature in the boundary layer145

We introduce the following expansion for the temperature ) ′,146

) ′ = ) ′1 (G
′, I′, C ′, g′) + n) ′2 (G

′, I′, C ′, g′) + n2) ′3 (G
′, I′, C ′, g′) , (2.26)147

where g′ = n2C ′ denotes the slow time scale of diffusion effects. Substitution of (2.26) in148
(2.5) yields a sequence of boundary value problems at different orders. The leading order149
problem yields150

m) ′1
mC ′

= 0, (2.27)151

indicating that the temperature atO(1) is a function of spatial coordinates and slow time scale152
only, i.e. ) ′1 (G

′, I′, g′). The governing equation at second order O(n) expressed in physical153
variables is given by154

n
m)2
mC
+ D1

m)1
mG
+ F1

m)1
mI

= 0, (2.28)155

representing the convective effect of the oscillatory flow, where the terms (D1, F1) are given156
by (2.14)-(2.15). Note that the term n reappears here because of our use of physical variables.157
The water particle velocity components are harmonic in time, and so the response )2 can be158
written as159

)2 = −
1
nl

Re
{
i4−ilC

{
m)1
mG
*0

(
1 − 4−(1−i)I′

)
+ X m)1

mI

m*0
mG

[
1 + i
2

(
1 − 4−I′ (1−i)

)
− I′

]}}
,

(2.29)160
in which *0 is given by (2.23). Hence the component )2 oscillates periodically in time161
with the frequency of the propagating waves l. Note that the corresponding slowly varying162
amplitude )1 is an unknown yet to be determined. Moving to third order O(n2), we obtain163
the following non-dimensional governing equation164

m) ′3
mC ′
+
m) ′1
mg′
+ D′1

m) ′2
mG ′
+ F′1

m) ′2
mI′
+ D′2

m) ′1
mG ′

=
`2

n2

m2) ′1
mI′2

. (2.30)165

Averaging over a wave period yields an equation for the slow evolution of the leading-order166
temperature )1 which, in physical variables, takes the simplified form167

m)1
mC
+ D̃ m)1

mG
− j m

2)1

mI2
= 0, (2.31)168



6

where the velocity D̃ in the convective term reads169

D̃ =
�2l:

2 sinh2 :ℎ
4−I

′ (4 cosh I′ + sinh I′ − 4 cos I′) . (2.32)170

Expression (2.31) with forcing term (2.32) governs the spatial and temporal evolution171
of temperature at leading order )1. Governing equation (2.31) suggests that convection172
effects occur horizontally, whereas temperature diffusion occurs normal to the seabed. In the173
following it is convenient to work with a relative temperature )' (G, I, C) = )1(G, I, C) − )F ,174
where )F is the ambient water temperature at a large distance from the seabed. We then175
consider the steady state configuration m)'/mC = 0 and apply the following boundary176
conditions177

)' (G, 0, C) =)1 − )F , (2.33)178

)' (G,∞, C) =0, (2.34)179180

which indicate that the temperature matches the bed temperature )1 > 0 at the seabed I = 0,181
and the ambient water temperature )F > 0 far from the boundary layer, respectively. For182
simplicity we will denote by Δ) = )1 − )F the temperature difference between bed and183
ambient water. The solution to the boundary value problem can be found numerically by184
applying a standard finite difference scheme. However, the properties of the steady solution185
of (2.31) are first investigated analytically by considering the behaviour of the water particle186
velocity field (2.32) close to the seabed. By Taylor-expanding D̃ about I → 0 and retaining187
terms up to first order we obtain188

ID̃0
m)'

mG
− m

2)'

mI2
= 0, D̃0 =

�2l:

2jX sinh2 :ℎ
. (2.35)189

The form of (2.35) implies the following similarity solution (White 1991; Landau & Lifshitz190
1989)191

)' = Δ)Θ (W) , W =
I

(3G)1/3
, (2.36)192

whereΘ (W) is a normalised temperature. Substitution of (2.36) in (2.35) yields the following193
boundary value problem in the new variable W194

Θ′′ (W) + W2D̃0Θ′ (W) = 0, W > 0, (2.37)195

Θ = 1, W = 0, (2.38)196

Θ = 0, W = ∞. (2.39)197198

The ordinary differential equation (2.37) is simpler than the parabolic equation given by199
(2.35). The corresponding solution is200

Θ =

WD̃
1/3
0 E

[
2
3 ,
D̃0W

3

3

]
31/3Γ

(
1
3

) , (2.40)201

where202

E[U, V] =
∫ ∞

1

4−VD

DU
dD, Γ[U] =

∫ ∞

0
DU−14−D dD, (2.41)203
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are the exponential integral function and the gamma function, respectively. Substitution of204
the similarity variables (2.36) into (2.40) gives the final solution for the temperature field205

)' (G, I) = IΔ)
(
D̃0
G

)1/3 E [
2
3 ,
D̃0I

3

9G

]
32/3Γ

(
1
3

) . (2.42)206

Solution (2.42) is similar to that found for heat transfer from a flat plate byWhite (1991), Ch.207
4-3.2. Once the fluid temperature is known, the seabed heat transfer can be evaluated from208
Fourier’s law as follows:209

@ = −^ m)'
mI

����
I=0

=
^Δ)

Γ

(
1
3

) (
3D̃0
G

)1/3
, (2.43)210

where ^ = jd2? is thermal conductivity and 2? is specific heat at constant pressure. By211
integrating (2.43) along G from 0 up to a finite distance ! we obtain the total heat flux212
exchanged between seabed of length ! and the overlying seawater as213

& =

∫ !

0
@ dG =

34/3^Δ) !2/3

2Γ
(
1
3

) D̃
1/3
0 =

^Δ)

Γ

(
1
3

) (
3
2

)4/3 (
�2!2l:

jX sinh2 :ℎ

)1/3
. (2.44)214

Equation (2.44) elucidates the influence of the length of interest ! and wave field charac-215
teristics inherently expressed by D̃0. For a fixed value of !, maximum heat exchange occurs216
when D̃0 is maximised. To investigate the behaviour of D̃0 with wave frequency l and hence217
find an approximate location for its maximum, we first Taylor-expand about : → 0 both the218
denominator of D̃0 in (2.35) and the dispersion relation (2.22) to obtain219

D̃0 ∼
�2l
√
l:

2jℎ2:2
√
2a

(
1 + ℎ2:23 +

2ℎ4:4
45

) , : ∼ l√
6ℎ
. (2.45)220

This procedure allows us to obtain an explicit location of the maximum without resorting221
to numerical methods. Differentiating (2.45), and equating the result to zero, we find the222
maximum as223

dD̃0
dl

= 0→ l =
1
2

√
3
7

(√
505 − 15

)√6

ℎ
∼ 0.894

√
6

ℎ
. (2.46)224

Thus, as the water depth increases the maximum heat flux is observed for longer waves. It225
is surprising that this maximum does not increase monotonically with wavelength, but rather226
is obtained for a fixed value of the wave frequency l. This unexpected result is validated in227
the next section, which is devoted to practical application of the theoretical model.228

3. Results and discussion229

The foregoing theory will now be applied to a practical example of waves in intermediate230
depth. Special care must be taken in choosing the wave parameters for application to laminar231
boundary layers. Several theories, numerical methods and experiments (Jonsson 1966;232
Blondeaux & Vittori 1994; Verzicco & Vittori 1996; Vittori & Verzicco 1998) have derived233
different criteria to establish the development of turbulence. For the Reynolds number in the234
boundary layer defined as 'X = �lX/a sinh :ℎ and a smooth seabed, the aforementioned235
works indicate the onset of turbulence around 'X ∼ O

(
103

)
.236

To this end, let us consider a regular field of free surface waves of amplitude � = 0.3 m237
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Figure 1: a) Profile of horizontal flow speed D̃(I); and b) Relative temperature field )' in
the vertical plane (G, I), for � = 0.3 m, )1 = 20oC, )F = 10oC, l = 1 rad s−1 and ℎ = 5

m. The thickness of the thermal boundary layer is X) ∼ 2 cm after G ∼ 10 m.

and frequency l = 1 rad s−1, travelling in the positive G-direction over water of intermediate238
depth, ℎ = 5 m. The idealised seabed is assumed flat and without roughness, which is of239
fundamental importance in triggering turbulence in the Stokes boundary layer. The Reynolds240
number in this case is 'X ∼ 490, hence the assumption of laminar flow is justified.241
We now explore the effect of free surface waves on temperature transport near the seabed.242

We assume for simplicity that water is pure and at an ambient temperature of )F = 10◦243
C, whereas the seabed temperature is )1 = 20◦ C. In the boundary layer we take fixed244
values of thermometric conductivity j = 1.4 × 10−7 m2s, specific heat at constant pressure245
2? = 4.18 × 103 J/kg ◦C, and kinematic viscosity a = 10−6 m2s−1.246
Figure 1(a) depicts the depth-profile of the horizontal velocity component in the boundary247

layer, which constitutes the crucial convective term (2.32) in equation (2.31) for the leading248
order temperature. Figure 1(b) shows the temperature field relative to the ambient water249
temperature, obtained by applying a finite difference scheme to the governing equation250
(2.31) and associated boundary conditions (2.33)-(2.34). Details of the numerical scheme251
are given in Appendix A.252
Figure 1(b) shows that the thermal boundary layer thickness – defined as the point at253

which the fluid temperature is 99% of the ambient water temperature )F – grows to ∼ 2 cm254
after G ∼ 10 m. The growth of the boundary layer thickness X) is initially very rapid, but255
slows as G � 0. This behaviour is also predicted by the analytical expression (2.42) which256
additionally provides several physical insights. For example, let us now consider the heat257
flux at the seabed. Figure 2(a) shows the behaviour of @ with horizontal distance G. The solid258
line represents the heat flux predicted by the numerical model based on the full governing259
equation (2.31), whereas the dashed line represents the analytical approximation (2.43). The260
latter successfully captures the behaviour of the heat flux, even though the analysis solely261
considers the first term in the Taylor expansion for the velocity D̃. The heat flux tends to262
infinity like G−1/3 as G approaches 0+. This is due to the instantaneous increment of the263
temperature field with I at G = 0+, as also shown in Figure 1(b).264
We now compare the numerical solution of (2.31) shown in Figure 1(b) to a reference case265

of interest. Let us consider the flat-plate heat transfer process with velocity field described266
by the Blasius solution as in White (1991), with velocity at infinity equal to |* |. Figure267
2(b) shows the normalised temperature profileΘ ([) (solid curve, ‘Present model‘) evaluated268
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Figure 2: a) Behaviour of heat flux @ with horizontal distance along the seabed G. The
continuous line represents the full numerical solution, whereas the dashed line represents
the analytical result (2.43) based on a Taylor expansion of the forcing term D̃ as I → 0. b)

Behaviour of normalised temperature Θ ([) versus the nondimensional variable
[ = I

√
|* | /2Ga. Solid curve (‘Present model‘) depicts the solution presented herein;

dashed curve (’White’) presents the corresponding case for the Blasius profile, see Figure
4-9 of White (1991).

according to the evolution equation for temperature (2.31), versus the normalised variable269

[ = I
√
|* | /2Ga. Note that we have used the numerical value of Prandtl number for purewater,270

%A = a/j ∼ 7. Comparison with the Blasius solution (dashed curve, ‘White‘) shows that271
the present model predicts larger values of the temperature field, even though the qualitative272
behaviour of the curves is similar. This highlights the importance of considering the complete273
velocity profiles (2.24)-(2.25) in the evolution equation (2.31).274
Finally, we validate the analytical model by investigating the behaviour of the total heat275

flux & over a fixed length ! = 10 m of seabed with varying wave frequency l and different276
values of water depth ℎ. Figure 3(a) shows & predicted by the finite difference numerical277
solver of the full convection-diffusion equation, whereas Figure 3(b) shows the corresponding278
results from the analytical approximation (2.44). The two sets of results agree each other279
qualitatively, indicating that the analytical model can be adopted for practical evaluations.280
Even so, it should be noted that the analytical model under-predicts heat flux, primarily281
because it underestimates the magnitude of the forcing term D̃.282
It is interesting to observe the presence of a maximum heat flux in each case. As the water283

depth ℎ increases, this maximum heat flux occurs at progressively lower wave frequencies284
and longer wavelengths. This behaviour is captured explicitly by equation (2.46), which285
highlights the dependence on ℎ−1/2. Note also that all the curves tend to& = 0 at large values286
of wave frequency. In such cases, the term D̃0 becomes very small and the governing equation287
(2.35) can be approximated by m2)1/mI2 ∼ 0. In other words, we require m)1/mI ∼ 0 to288
satisfy the condition at I → ∞, so that heat transfer is absent. Therefore, short waves over289
moderate sea depths do not contribute to heat transfer at the seabed boundary layer.290

4. Conclusions291

We have investigated the mechanism of heat transfer in the boundary layer region at the292
seabed. Using multiple-scale analysis and a perturbation approach, we first find the velocity293
field close to the seabed, then solve the governing convection-diffusion equation for fluid294
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Figure 3: Total heat flux & as a function of wave frequency l for different values of water
depth ℎ: a) Predictions by full numerical scheme, and b) Analytical solution (2.44). The
maximum of each curve is qualitatively predicted by the theoretical criterion (2.46), and

all curves tend to zero as l→∞.

temperature. Given the small thermometric conductivity ofwater, large temperature gradients295
occur in the region close to the ocean bed. This simplifies the problem, enabling us to elucidate296
the effects of convection and diffusion at different orders, and to find the corresponding297
evolution equation for temperature.298
We have also found an analytical expression for the temperature field based on an299

approximation of the streaming current in the bed boundary layer. The theoretical results shed300
light on the effect of surface waves on near-bed thermal transport processes. Specifically,301
they suggest that, rather than increasing monotonically with wavelength and phase speed,302
maximum heat transfer occurs at a finite value of wavelength which depends on the water303
depth. Given the spatial complexity of the velocity field, good agreement is achieved between304
the approximated analytical solution and predictions from a full numerical model based on305
a finite difference scheme.306
Our results provide a theoretical foundation for further applications to topics of consider-307

able current interest, including biofouling (Vinagre et al. 2020), coral bleaching (Monismith308
2007), cooling of underwater data centres (Cutler et al. 2017), calibration of satellite data309
(Donlon et al. 2002), and the emerging area of sea-water air-conditioning solutions (Hunt et al.310
2019). For many of these applications, effects arising from turbulence, variable topography,311
more complex free-surface wave fields, Coriolis acceleration, internal waves, seabedmobility312
(e.g. ripples and dunes), etc., must be taken into account. These phenomena considerably313
complicate ocean heat transfer mechanisms near the seabed, and would provide fruitful314
opportunities to extend the results discussed herein.315

Acknowledgements. The authors are grateful to the referees for their constructive and helpful comments.316

Funding. SM acknowledges support from EUROSWAC project funded by Interreg France (Channel)317
England Programme, project number 216. RS acknowledges support from EPSRC Grant EP/V012770/1.318

Declaration of interests. The authors report no conflict of interest.319

Appendix A. Finite difference scheme320

In this section, we describe the finite difference scheme to evaluate the steady solution of321
the boundary value problem (2.31)-(2.33)-(2.34). We first define the temperature )1(G<, I=)322
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Figure 4: Behaviour of total heat flux & versus spacing ΔI for � = 0.3 m, )1 = 20oC,
)F = 10oC, l = 1 rad s−1 and ℎ = 5 m. Convergence of numerical solution is reached for

ΔI 6 4 × 10−4 m, whereas numerical stability requires ΔG 6 24 × 10−4 m.

and forcing term D̃(I=) as )<,=, D̃=, whereas the I-derivative is evaluated using second-order323
central difference and G-integration conducted using a forward difference324

m)1
mG

=
)<+1,= − )<,=

ΔG
,

m2)1

mI2
=
)<,=+1 − 2)<,= + )<−1,=

ΔI2
. (A 1)325

Substitution into (2.31) yields326

)<+1,= = )<,= +
jΔG

D̃=ΔI
2

(
)<,=+1 − 2)<,= + )<,=−1

)
. (A 2)327

This algebraic expression is solved together with the boundary conditions in discrete form328

)0,= = )F , )<,0 = )1 . (A 3)329

The forward scheme above is numerically stable for jΔG/D̃=ΔI2 6 1/2 (Smith 1985).330
To investigate the convergence of the numerical solution, we evaluate the total heat flux &331

for � = 0.3 m, )1 = 20oC, )F = 10oC, l = 1 rad s−1, ℎ = 5 m and different values of grid332
spacing (ΔI,ΔG). These parameters correspond to the case represented in Figure 1.333
Figure 4 shows the behaviour of & versus ΔI, with corresponding values of ΔG assumed334

to be ΔG = D̃1ΔI2/2j such that the stability criterion of the forward scheme is satisfied. The335
same figure shows that for ΔI 6 4 × 10−4 m and ΔG 6 24 × 10−4 m, the numerical solution336
converges towards a fixed value. Grid spacing (ΔI,ΔG) below which the solution converges,337
depends on frequency l and sea depth ℎ. To reach convergence of the solution and avoid338
numerical instability for l ∈ [0.25; 2] rad s −1, and ℎ ∈ [5; 10] m, in our evaluations we set339
ΔG = 2 × 10−5 m and ΔI = 3 × 10−4 m. These are the numerical values for the calculation340
shown in Figure 3(a).341
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