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Scattering processes in laser backgrounds are degenerate to the emission of unobservable photons
collinear with the laser. We identify processes and observables for which such degeneracies factorize and
exponentiate, obtaining the leading-order intensity dependence of these inclusive observables at high laser
intensity, correct to all orders in the fine-structure constant (all loops, all emissions). The results show an
exponential intensity dependence distinct from that predicted by the Narozhny-Ritus conjecture on the
high-intensity behavior of quantum electrodynamics in strong fields.
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I. INTRODUCTION

It has been conjectured that QED perturbation theory
breaks down in the presence of sufficiently strong back-
ground fields, even when these fields can be accounted for
without approximation [1–4]. This Narozhny-Ritus (NR)
conjecture arose in the context of intense laser-matter
interactions, where it was observed that loop effects
calculated in constant “crossed” fields (the simplest model
of laser fields, obeying E2 − B2 ¼ E:B ¼ 0, and denoted
CCF), scaled dominantly not with powers of the fine
structure constant α, but with powers of g ≔ αχ2=3 in
which χ is, roughly, the product of field intensity and probe
particle energy [5]: for sufficiently high intensity g can
exceed unity, implying that all orders of perturbation theory
must be included in any calculation. It has now been
verified that certain n-loop self-energy contributions to the
electron propagator in a CCF indeed scale as gn [6].
It is important to ask whether the NR conjecture applies

in general backgrounds, or if it is a peculiarity of the
(unphysical) CCF case. The “LCFA,” an approximation
which argues that any strong field may be approximated as
locally constant and crossed [5,7], suggests that the con-
jecture could hold generally; however, exactly solvable
examples show that this cannot be the case [8]. It is also
known that the NR conjecture does not hold, outside of the
CCF case, at high energy [9,10].

Making general statements about the conjecture is
difficult, especially beyond CCF, if one cannot appeal to
perturbation theory to any finite order. One may, though, try
resumming perturbative results. The state-of-the-art in a
CCF is that the resummed “bubble chain” of self-energy
corrections to the electron propagator scales with g

ffiffiffi
α

p
and

g3=2
ffiffiffi
α

p
[6]. We note, for what follows, that this does not

appear to be an exponentiation of the perturbative series.
We will here investigate high-intensity behavior and

resummation in fields more general than a CCF. Our
investigation is based on degenerate processes and inclu-
sive observables. As motivation, recall that in QED any
process is degenerate with that in which, in addition,
arbitrarily many soft, undetectable, photons are emitted.
These degeneracies are summed over to obtain inclusive
observables. Consistency then requires that soft contribu-
tions from photon loops also be included; doing so yields
infrared (IR) finite, inclusive observables [11,12]. When a
background laser is present, however, there are additional
degeneracies: in a given scattering process, any photons
emitted almost collinear with an intense laser and with
energies not dissimilar from it, will be indistinguishable
from laser photons, or masked by the high flux of the field.
Physical observables should be made inclusive with respect
to these emissions—we will account for them here.
The immediate difficulty to confront is that there is no

exact method for calculating scattering amplitudes in
general high-intensity fields. (As indicated above, relying
on the LCFA conflates the validity of the NR conjecture
with the limited accuracy of that approximation [13–15].)
Consider then plane waves, in which amplitudes can be
calculated exactly at arbitrary intensity. While lacking in
realistic spatial structure (focusing), plane waves have a
direction and typical frequency, so that it makes sense to
speak of degeneracies due to photon emission collinear
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with the plane wave. By summing over such degeneracies
we will here calculate inclusive observables in plane wave
backgrounds to all orders in α. Crucially, we will show that
these observables introduce a nontrivial intensity depend-
ence to which the CCF and LCFA are blind, which leads to
a high-intensity scaling distinct from that predicted by the
NR conjecture.
The delicate part of our calculation is the identification of

relevant scales and approximations: this and final results
are presented in Sec. II. The calculation itself uses now-
standard literature methods [5,17], and is not dissimilar to
textbook calculations of soft IR effects (though the physics
is different—see [18] and references therein for recent work
on soft and soft-collinear factorization in QED). As such,
details are given in the appendices. The calculation, being
all orders in α, is still challenging, so we keep track
throughout only of the leading intensity dependence. We
conclude in Sec. III.

II. RESULTS

A. Laser-collinear degeneracy

Consider a collision between particles and a laser pulse,
the latter propagating in the direction nμ ¼ ð1; 0; 0; 1Þ. An
angular cutoff θ0 about this direction may be defined by
e.g., the laser opening angle: any photons emitted within
this cone will be indistinguishable from laser photons if
their energy is similar to that of the laser, typified by ω0

(order 1 eV for optical beams), due to either limited
detector resolution in energy and angle, or to oversaturation
from the large flux of the intense field. We assume that any
lower energy photons emitted within the same cone are also
unobservable—Notch filters allow for more sophisticated
setups [19,20], but we consider only the simplest here.
A photon of momentum qμ emitted within an angle

θ < θ0 relative to the laser direction obeys, for θ0 small,
qμ ¼ q0nμ þOðθ0Þ, or, in explicit components, q− ≔
ðq0−q3Þ=2≃ 0, q⊥ ≔ ðq1;q2Þ≃0, qþ ≔ ðq0þq3Þ=2≃q0.
The leading contribution of such photons in scattering
amplitudes may thus be found by setting qμ ¼ qþnμ in
calculations. Another way to see this is to observe that these
photons obey jq⊥j ≃ qþθ and q− ≃ θ2

4
qþ, which yields,

given that θ is itself restricted to small values, the hierarchy
q− < q⊥ < qþ. For each such photon probabilities/cross
sections are integrated over, using the usual on-shell
measure,

Z
d3q

ð2πÞ32q0
→

θ20
4ð2πÞ2

Z
ω0

0

dqþqþ: ð1Þ

B. Laser-collinear emissions

We consider nonlinear Compton scattering (NLC)
[5,7,17,22–26], that is the emission of a photon,

momentum lμ, from an electron, momentum pμ, traversing
a plane wave described by the two-component transverse
potential aðn · xÞ (the integral of the electric field [27]).
This exclusive process shows, for constant crossed fields,
the high-intensity scaling associated with the NR conjec-
ture. Our interest is in the corresponding inclusive process
which accounts for the additional emission of arbitrarily
many laser-collinear degenerate photons described above;
see Fig. 1. In the corresponding scattering amplitudes, there
are nontrivial integrals over “lightfront time” xþj ≔ n · xj
at each emission vertex xμj , due to the spacetime depend-
ence of the background plane wave. (See Appendix A for
details.) In particular, the degenerate emissions introduce a
lightfront time-ordered dependence on xμj which prevents
their contributions from factorizing out in general, as would
be the case with leading soft factors.
It is however possible to find observables for which

collinear corrections do factorize. In that part of the
observable photon spectrum for which lμ obeys
s≡ n · l=n · p ≪ 1, we find that the effect of adding a
collinear emission is simply to multiply the amplitude by a
scalar factor, up to an error of order s. Let us analyze this
restriction. It is important to emphasize that lμ is supposed
to be observable, and small s does notmean that lμ is itself
degenerate with the laser. To illustrate this, suppose we
insist on s ≤ 0.01, which means a 1% error induced by our
approximation. Then for a head-on collision of a 1 GeV
electron with the laser, see Fig. 2, we are restricted to

FIG. 1. Exclusive (left) and inclusive (right) nonlinear Comp-
ton scattering at tree level. The double lines indicate Volkov
electron wave functions, dressed exactly and to all orders by the
background [21]. Photons with momentum qμj are degenerate
with the laser.

FIG. 2. The error induced by our approximation, in terms of the
observed photon energy l0 and emission angle θ (relative to the
laser direction), in the case of a head-on collision between a
1 GeV electron and a laser pulse. Each curve bounds a region of
percentage error, as highlighted.
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considering emitted photon energies of <10 MeV when
those photons are scattered forward of the electron, and
<20 MeV for scattering at right angles to the collision axis:
these emissions are not laser degenerate, and are exper-
imentally measurable.
It is also important to stress that, in considering observ-

able photons at small s, and degenerate emissions which
have s ¼ 0, we are focusing on that part of the emission
spectrum in which the LCFA is known to fail [13–16].
To be explicit, let N be the tree-level NLC amplitude, and
let a0 ∼ jaj=m be the “dimensionless intensity parameter”
characterizing the strength of the background. The LCFA
predicts that the small-s emission probability in NLC
behaves as [5,7]

dP
ds

����
s≪1

∼!
Z

d2p0⊥jN j2LCFA ∼
a2=30

s2=3
; ð2Þ

at high intensity, exhibiting the typical 2=3-power scaling
of the NR conjecture. However, it can be shown without
approximation that the true behavior is [14]

dP
ds

����
s≪1

∼
Z

d2p0⊥jN j2 ∼ a20: ð3Þ

As such, the high-intensity behavior of our inclusive
observables may be expected to, and indeed will, differ
from that in constant fields.
Returning to our calculation, laser-collinear emissions

both factorize and exponentiate in the considered part of the
spectrum. We write a prime on amplitudes to indicate that
we restrict to this regime. Let jMj2 be the inclusive sum
over (mod squared) amplitudes with any number of
collinear emissions, all at tree level, see Fig. 1. We show
in Appendix A that the leading intensity dependence of
jM0j2 is, for ã the Fourier transform of a,

jM0j2 ∼ exp

�
αθ20
4π

Z
ω0

0

dqþqþ
jãðqþÞj2
ðn · pÞ2

�
jN 0j2: ð4Þ

The exponent is positive, and we conclude that degenerate
emissions enhance the measured emission probability (as
soft emissions do [11,12]). This enhancement is exponen-
tially increasing with intensity—by unitarity, this must be
compensated for by a similar exponential factor from loop
corrections. We confirm this below, but (4) already tele-
graphs the final result—the high-intensity scaling of
inclusive observables will be exponential.

C. Loop corrections

As (4) contains all orders of α, we must for consistency
also consider all orders of loop corrections to NLC; to
illustrate, the relevant one-loop diagrams are shown in
Fig. 3, two self-energies [5,28] and the vertex correction

[29–31]. Note that we are only interested in a-dependent
terms, which are UV finite [32,33]. We cannot, and do not
aim to, calculate exact loop effects to all orders in α, but
only to include effects from laser-collinear virtual photons
which (i) must compete with the real emissions investigated
above and (ii) will be incorrectly captured by the LCFA, as
real emissions are.
We begin as we did for real emissions by addressing the

momentum integration region for virtual laser-collinear
photons, which is again more involved than for soft
corrections. We need to identify the full region over which
the approximations we made for real emissions continue to
hold. This is simplified, as described in Appendix B, by
performing the contour integral in the photon propagator,
which allows us to take the virtual photons to obey the on-
shell relation qþ ¼ q2⊥=4q−. Collinearity requires that the
transverse momentum q⊥ be less than some absolute
cutoff, as otherwise the photon momentum will no longer
be approximately degenerate with the laser (and distinct
from the observable momenta in the game). It can be
checked that, for the real emissions above, the energetic
restriction on the photon momentum implies q− < ω0θ

2
0=4

and jq⊥j < ω0θ0; but these inequalities, and the hierarchy
q− < q⊥ < qþ, are obeyed over the larger region of
momentum space shown in Fig. 4, which encloses the real
emission region, but also admits increasingly high photon
energy at smaller (closer to laser-collinear) emission angles.
(Essentially, we can make the virtual photon momentum q−
small by taking qþ to be arbitrarily large,1 provided q⊥ is
bounded.) The complete region over which we may
integrate virtual photon momenta while staying within
our approximation is then conveniently characterized by
jq⊥j ≃ q0θ < ω0θ0. We note that this includes a region with
θ > θ0 but q0 < ω0 (not marked in the figure), which takes
us away from collinear and into the IR; we neglect this
region, as we are not here keeping track of IR effects
(but see the appendixes.)
We find, as at tree level (see Appendix B for the full

calculation), that these laser-collinear virtual photons
introduce lightfront-time ordered terms into the integrand
of the NLC amplitude, which prevents factorization in
general. Making the same assumption as above, i.e.
restricting attention to that part of the emission spectrum
with n · l ≪ n · p, we again obtain factorization.

FIG. 3. The one-loop contributions to nonlinear Compton
scattering; the vertex correction (left diagram) and self-energies.

1In contrast to soft effects, we can integrate over arbitrarily
high energies, but we repeat that the terms of interest are UV
finite (they simply yield Fourier transforms).
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Integrating over the region marked in Fig. 4, we find
that the contribution from the virtual photons entirely
cancels that from real emissions. (Recall that in the IR,
soft divergences cancel between emissions and loops
[11,12].) What remains yields our final result for the all-
loops inclusive amplitude:

jM0j2all loops ∼ exp

�
−
αω2

0θ
2
0

4π

Z
∞

ω0

dqþ
qþ

jãðqþÞj2
ðn · pÞ2

�
jN 0j2: ð5Þ

We have thus found that inclusive corrections lead to an
exponential intensity dependence at high intensity. Let us
compare with [6] in which one-loop polarization operator
insertions to the electron propagator (the bubble chain) are
resummed exactly in a CCF. This gives essentially the
elastic scattering amplitude, whose imaginary part is the
probability of NLC. The resummed amplitude still scales
with a positive, fractional power of intensity: curiously, this
might suggest that resummed results, and observables
constructed from them, could still be made arbitrarily large
at high intensity. In our resummed result, on the other
hand, the exponential damping controls the high-intensity
behavior, in line with both unitarity and the behavior of
resummed soft corrections. See Appendix C for the
phenomenology of the corrections implied by (5); for
upcoming experiments, these are certainly negligible, but
this is not the regime of interest.
Our results are not in contradiction to CCF results. As in

(2)–(3), the small-s behavior in genuinely constant fields is
very different to that in any field which switches on and off
asymptotically, as is also true of soft effects [27]. Indeed the
small-s region we consider is precisely that in which the
locally constant field approximation breaks down [13–15].
Our results show that collinear n-loop (and emission)
effects beyond CCFs scale with powers not of αn but with
ðαa20Þn, which grow faster with intensity than the αa2=30

scaling predicted by CCF results. We have shown that these
effects exponentiate upon resummation, changing for
example the exclusive NLC intensity dependence (3) to
the inclusive result

dPinc

ds

����
s≪1

∼
Z

d2p0⊥jM0j2 ∼ a20 expð−αa20 · constÞ: ð6Þ

III. DISCUSSION

In the context of the NR conjecture, on the high-intensity
behavior of QED in external fields, we have investigated
inclusive observables in the nonlinear Compton scattering
of a photon from an electron in an intense laser pulse, in
which we include laser-collinear (degenerate) emissions.
To assess the relevance of the conjecture beyond the case

of constant crossed fields (CCFs), we have specifically
addressed that part of the photon emission spectrum in
which locally constant field approximations, commonlyused
to generalize CCF results to general fields, arewell known to
break down [13–15]. In this part of the spectrum, laser-
collinear emissionswere found to factorize and, resummed to
all orders in α (all emissions, all loops), yield an exponential
dependence on intensity (and not on the product χ of energy
and intensity)which is distinct fromanybehavior seen to date
for constant fields, even when resummed, and cannot be
captured by locally constant field approximations.
As such our results do not contradict CCF results. Rather

we have shown that high-intensity behavior, outside of a
CCF, can differ significantly from that predicted by the NR
conjecture, both at finite order in perturbation theory and
after resummation. Our findings thus reinforce the idea
that the conjecture has limited relevance beyond the CCF
case [8–10]. (While our calculation of degenerate pro-
cesses assumed a pulsed plane wave background, see also
Appendix C, similar, in fact richer, degeneracies clearly
exist for more realistic fields.)
We can view our results from a different angle. As part of

our calculation we have shown that, outside of CCFs, higher
loops in strong backgrounds can induce effects scaling with
powers not ofα, butwithαa20, which is a stronger scaling than
that predicted by the NR conjecture. This also suggests a
breakdown of perturbation theory. We have shown that the
considered effects can be resummed, upon which they
exponentiate, and bring with them both a nontrivial intensity
dependence due to the presence of the background, and a
portion of the usual soft IR divergence. This can be cancelled
by also including laser-collinear degenerate emissions,
which also introduce an extra intensity dependence; what
remains is of course (5) with its exponential high-intensity
behavior. Thus, outside of constant fields, resummation
yields well-behaved results consistent with unitarity and in
line with the behavior of soft corrections.
We restricted our study to a particular part of the NLC

spectrum. It couldwell be that in another part of the spectrum
(e.g., high lightfront energy, rather than low) the resummed
high-intensity behavior is different again. It would be
interesting to investigate this. The high-intensity behavior
of other processes and more general observables, and their
degeneracies, remain an open question. Let us briefly discuss
some effects which should be included in future calculations.
In general, there are other sources of (potentially collinear)

radiation, such as vacuum emission [34,35], but in a plane
wave background such “dressed tadpole” contributions are

FIG. 4. Region of momentum integration for virtual laser-
collinear photons; this covers both the real emission region (blue)
and photons and a region of high energy, but small emission angle
(orange).
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vanishing [36], hence there is nothing to include in our case.
One might expect that such emissions would, in any case, be
less significant than those from charged particles being
rapidly accelerated by the strong field, and indeed an
abundance of produced photons has been identified as an
experimental signature of e.g., Schwinger pair production
[37,38]. A preliminary estimate of the impact of soft
emissions could be obtained by evaluating the Weinberg
soft factors [39] for our process, following the methods in
[40], and seeing how a0 enters. It may be that more
comprehensive results could be obtained in constant crossed
fields using the resummation techniques of [6]; however, the
crossed field approximation is well known to fail in the IR.
It is expected that backreaction on the driving laser field

becomes significant for scattering in the high-intensity
regime [41]. How backreaction impacts the NR conjecture
remains a challenging open question. We note that no
analogous perturbative breakdown appears in the simplest
toy models for which backreaction can be included [42],
but this may be due to the simplicity of the model.
We can drawone final conclusion. Experimental proposals

[43–46] for observing signals of the (anticipated) nonper-
turbative physics atαχ2=3 ≳ 1 often rest on observing “some”
deviation from literature predictions, as intensity is made
large. These predictions are, though, based on lowest-order
perturbative calculations of exclusive observables (or phe-
nomenologicalmodels built from them),while anymeasured
observable will be partially inclusive, since no experiment
has 100% detector coverage. Our results show that it is not
enough, inmaking experimental predictions at high intensity,
to take deviations from lowest order predictions as evidence
for entering the nonperturbative regime: there are other
effects with a competing intensity dependence.
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APPENDIX A: LASER-COLLINEAR EMISSIONS
AND DEGENERACY

1. Notation, conventions, and the background field

Our focus is on degeneracies due to unobservable photon
emissions that are collinear with (the photons in) a

background plane wave field, of arbitrary temporal profile,
but compact support: a pulse. The field depends on n · x
where nμ is a null vector, n2 ¼ 0. We can always choose
n · x ¼ x0 þ x3, lightfront time. We use lightfront coordi-
nates x� ¼ x0 � x3, x⊥ ¼ ðx1; x2Þ for position and p� ¼
ðp0 � p3Þ=2, p⊥ ¼ ðp1; p2Þ for momenta. As such
v� ¼ 2v∓ for all vectors vμ. The background is aμðxÞ ¼
δ⊥μ a⊥ðxþÞ in which the two transverse components a⊥ arise
as lightfront time integrals of the two electric field
components of the plane wave, with aμð−∞Þ ¼ 0. For a
typical (e.g., Gaussian) pulse shape, the field will be
characterized by some dimensionless peak field strength
a0, i.e., aðxþÞ ∼ma0, which is the effective coupling
between the background and fermions. a0 easily exceeds
unity in modern laser pulses.

2. Classical and quantum particle dynamics

The on-shell kinetic momentum of a classical particle in
the plane wave (the exact solution to the Lorentz force
equation) is, for pμ the initial momentum before entering
the wave,

πμðxþÞ ¼ pμ − aμðxþÞ þ nμ
2p · aðxþÞ − aðxþÞ2

2n · p
: ðA1Þ

In the quantum theory, scattering amplitudes are calculated
in the Furry picture, which treats the coupling a0 as part of
the “free” theory, i.e., without approximation, and then
treats the coupling e between dynamical (quantized) fields
in perturbation theory, as normal. (It is this perturbative
expansion which is conjectured to break down at suffi-
ciently high field strength, at least in constant crossed
fields.) Hence the interaction vertex is −ieγμ as usual, but
the fermion propagator and external legs become dressed
by the background. (For a recent overview see [17].) The
asymptotic wave function describing an incoming electron
of initial momentum pμ in amplitudes is

ψpðxÞ¼
�
1þ=aðxþÞ=n

2n ·p

�
up exp

�
−ip ·x− i

Z
xþ

−∞

2p ·a−a2

2n ·p

�
;

ðA2Þ

where up is the usual u-spinor. For discussions of the
physical content of these wave functions see for example
[17,27,47]. The corresponding fermion propagator is

Sðx; yÞ ¼ i
Z

d4p
ð2πÞ4

�
1þ =n=aðxþÞ

2n · p

�
=pþm

p2 −m2 þ iϵ

�
1þ =aðyþÞ=n

2n · p

�
e
−ip·ðx−yÞ−i

R
xþ
yþ

2p:a−a2
2n:p : ðA3Þ
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3. Laser-collinear emissions

We recall that the Lorentz-invariant measure for on-shell photons may be written, in terms of Cartesian coordinates or
lightfront coordinates, as

dqo:s: ≔
d3q

ð2πÞ32q0
¼ d2q⊥dq�

ð2πÞ32q�
Θðq�Þ; ðA4Þ

with the unintegrated momentum component being determined by the mass-shell condition qμqμ ¼ 0. In the text and in
what follows we will use each of the three forms of the on-shell measure above, as necessary.
Since the plane wave is univariate, depending on only n · x ¼ xþ, the only nonzero laser momentum component is qþ. As

such laser-degenerate photons must have fq−; q⊥g ≃ 0. How these conditions are imposed, and to what tolerance, depends
on the situation of interest. As in the main text, real photons degenerate with the laser obey q0 ≤ ω0 and θ < θ0 for ω0 and
θ0 given cutoffs in energy and emission angle relative to the laser direction, respectively. Using Cartesian coordinates, this
gives a measure

Z
d3q

ð2πÞ32q0
→

1

2ð2πÞ3
Z

ω0

0

dq0q0

Z
θ0

0

dθ sin θ
Z

2π

0

dϕ →
θ20

16π2

Z
ω0

0

dq0q0 ; ðA5Þ

where, in the final step, we have assumed θ0 ≪ 1 and truncated the integrand, whatever it may be, to zeroth order in θ0. In
lightfront coordinates, which are often more useful in our investigation, the energetic and angular restrictions above reduce
to, again for θ0 small, qþ < ω0 and jq⊥j < qþθ0. Hence our integral may also be written

Z
d2q⊥dqþ
ð2πÞ32qþ

ΘðqþÞ →
1

2ð2πÞ3
Z

ω0

0

dqþ
qþ

Z
d2q⊥Θðq⊥ − qþθ0Þ →

θ20
16π2

Z
ω0

0

dqþqþ ; ðA6Þ

which agrees with (A5) because q0 ¼ qþ to leading order in θ0.

4. Laser-collinear emission amplitudes

Consider an incoming electron leg of momentum pμ in a given scattering amplitude, connecting to a vertex at position xμ,
and so represented by a Volkov wave function ψpðxÞ. On that leg we add a laser-collinear emission. In the amplitude, ψpðxÞ
is then replaced by (stripping off the photon polarization vector)

Z
d4ySðx; yÞγμeiq·yψpðyÞ ¼ eiq·x

�
i=nγμ

2n · p
þ
Z

xþ

−∞
dyþ

πμðyÞ
n · p

e−iqþðx−yÞþ
�
ψpðxÞ; ðA7Þ

inwhich the left-hand expression follows from theFeynman rules, and the right-hand side is exact forqμ ≡ qþnμ, collinearwith
the plane wave. If qμ deviates from collinear in some small parameter, as in (A3) above, then the right-hand side of (A7) is
correct to leading order in that parameter. For emission from an outgoing leg of momentum p0

μ we have, similarly,

ψ̄p0 ðxÞ →
Z

d4yψ̄p0 ðyÞγμeiq·ySðy; xÞ ¼ ψ̄p0 ðxÞ
�
iγμ=n
2n · p0 þ

Z
∞

xþ
dyþ

π0μðyÞ
n · p0 e

−iqþðx−yÞþ
�
eiq·x; ðA8Þ

in which π0 depends on p0 as π depends on p in (A2). We remark that damping factors are understood to be in place, in these
expressions, for the terms inπμwhich are field independent [24,48]. These are the terms contributing to thevacuum limit,where
the factor in square brackets of (A7) reduces to

i
=nγμ

2n · p
− i

pμ

p · q − iϵ
; ðA9Þ

and similarly for (A8), whichwe recognize from textbook discussions of collinear emission factors, see e.g., [49]. Note that the
second term in (A9) carries a factor of 1=qþ, equivalent to 1=q0 here, which is where the usual IR divergence arises.2

We alreadyknow that such divergences drop out of inclusive observables, butwewill keep track of them for the time being. The
two results (A7) and (A8) are the basic building blocks of the following calculations.

2While there are, strictly, no collinear divergences in massive QED, we mention that, contrary to what is often inferred from the Lee-
Nauenberg theorem, the cancellation of collinear divergences in massless theories is far from resolved, see [50,51] and also below.
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5. Laser-collinear emission correction
to nonlinear Compton

We consider nonlinear Compton scattering (NLC), the
emission of a photon of momentum lμ and polarization ε

μ
l,

from an electron of initial momentum pμ scattering off the
plane wave to momentum p0

μ. Beginning at tree level, the
scattering amplitude is, see also Fig. 5,

N ≔ −ie
Z

d4xψ̄p0 ðxÞeil·x=εlψpðxÞ; ðA10Þ

the detailed evaluation of which is well covered in the
literature [5,17,23,24,52,53]; the only detail we will need
here is that the fx⊥; x−g integrals in any part of an
amplitude on a plane wave background can be performed
to yield momentum-conserving delta functions in three
directions. For NLC this means

N ∝ δ3⊥;−ðp0 þ l − pÞ: ðA11Þ

We next consider the same process but with an additional,
unobservable, photon emission (almost) degenerate with
the plane wave, i.e., with photon momentum qμ ¼ qþnμ.
The scattering amplitude is

M2 ≔ ð−ieÞ2
Z

d4xd4yψ̄p0 ðxÞeil·x=εlSðx; yÞ=εqeiq·yψpðyÞ þ ψ̄p0 ðyÞ=εqeiq·ySðy; xÞeil·x=εlψpðxÞ; ðA12Þ

in which the second term is the photon exchange diagram, and where εμl, ε
μ
q, are the polarization vectors for the photons of

momenta lμ and qμ respectively. Applying (A7) and (A8) we find

M2 ¼ ð−ieÞ2
Z

d4xψ̄p0 ðxÞeil:x
�
i=εq=n=εl
2n · p0 þ

i=εl=n=εq
2n · p

�
eiq·xψpðxÞ

þ ψ̄p0 ðxÞeil·x=εlψpðxÞ
�Z

∞

xþ
dyþ

εq · π0ðyþÞ
n · p0 eiqþy

þ þ
Z

xþ

−∞
dyþ

εq · πðyþÞ
n · p

eiqþy
þ
�
: ðA13Þ

Recall that our interest is in the behavior of this, and related,
processes at high intensity, i.e., large a0. We will therefore
keep track (in addition to possible soft divergences) of the
leading-order a0 dependence introduced by collinear ef-
fects, much as one might only keep track of leading logs in
an IR calculation.
Observe that in the second line of (A13), the term outside

the large round brackets is just the integrand of the NLC
scattering amplitudeN , as in (A10). Multiplying this, inside
the brackets, are the two scalar terms from (A7) and (A8).
Now, we can choose to work in lightfront gauge such that
n · ε ¼ 0 for photon polarization vectors ε; hencewe can set,
directly from (A1), εq · π ¼ εq · ðp − aÞ, so that we have
εq · π ∼ −εq · a ∼ a0 for a0 large; for a moment we retain
also the εq · p term, as this carries the IR divergence in (A9).
Compared to these terms, those in the first line of (A13) are
subleading in both the IR and ina0, sowedrop them.Herewe
would seem tobe stuck—there is no further simplificationwe
can make in general. In particular, the xþ dependence of the
integrals stops us from factorizing collinear contributions out
of the amplitude, in contrast to soft effects [40].

6. Factorization and exponentiation

There is however a subset of observables for which
collinear corrections factorize. Consider that part of the

photon spectrum for which s ≔ n · l=n · p ≪ 1 for the
emitted photon. As discussed in the main text, this does
not mean the emission is itself collinear with the laser, even
though laser photons have s ¼ n · q=n · p ¼ q−=p− ¼ 0.
In this regime, we may replace, in the expressions above,

1

n · p0 ¼
1

n · p

�
1þ n · l

n · p
þ…

�
≃

1

n · p
; ðA14Þ

in which we have used the momentum conservation rule in
(A11), which continues to hold because the emissions we are
adding are collinear to the laser. As in the main text, we use a
prime on amplitudes to indicate that we restrict our dis-
cussion to that part of the spectrum for which (A14) applies
up to some acceptable error. With this assumption, the field-
dependent parts of the scalar factors in (A13) combine into a
single integral which is x independent and computes the
Fourier transform of the background. We then have

M0
2 ∼ −ie

�
i
εq · p0

q · p0 − i
εq · p

q · p
−
εq · ãðqþÞ

n · p

�
N 0: ðA15Þ

Hence, in thegiven part of the spectrum, the effect of adding a
collinear emission is simply tomultiply the S-matrix element
by a scalar factor. Mod-squaring, summing over polariza-
tions εμq and integrating over qμ using the measure (A5) or
(A6) yields

FIG. 5. The first diagram is NLC at tree level. Adding a laser-
degenerate photon emission yields the second and third diagrams
(“double” NLC at tree level, for investigations of which see
[54–57]).
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jM0
2j2 ≃

�
−
αθ20
4π

Z
ω0

μ
dqþ

1

qþ

�
p0

n · p0 −
p

n · p

�
2

þ qþ
ãðqþÞ · ã�ðqþÞ

ðn · pÞ2 þ…

�
jN 0j2: ðA16Þ

The ellipses denote terms which are IR finite and of lower
order in a0.
Now consider the analogous processes with two or more

degenerate emissions. These emissions again generate
lightfront time-ordered integrals, as appear in (A13). In
the primed regime, these again combine to give xþ-
independent factors, as we will demonstrate here for the
case of two collinear emissions.3 Accounting for photon
exchange, there are six Feynman diagrams, see Fig. 6. Let

the first collinear photon q1 always be attached to vertex y,
and q2 be attached to vertex z. The nondegenerate photon
with momentum l is always at vertex x. In each diagram,
the leading-order integrands are the same, in the primed
regime, as they were above, except each features integrals
over different regions of x‐y‐z space. Let us write ðxyÞ as
shorthand for the step function Θðxþ − yþÞ, then the six
contributions can be summarized as, matching the order of
the diagrams in Fig. 6,

ðyzÞðzxÞ þ ðzyÞðyxÞ þ ðyxÞðxzÞ þ ðzxÞðxyÞ þ ðxyÞðyzÞ þ ðxzÞðzyÞ: ðA17Þ
Observe that we can write, for example, the first term as ðyzÞðzxÞ ¼ ðyzÞðzxÞðyxÞ in which the bar indicates that the new
step-function is implied by the first two. Using this trick, consider the sum of the first three diagrams:

ðyzÞðzxÞðyxÞ þ ðzyÞðyxÞðzxÞ þ ðyxÞðxzÞ ¼ ðzxÞðyxÞ½ðyzÞ þ ðzyÞ� þ ðyxÞðxzÞ
¼ ðzxÞðyxÞ þ ðyxÞðxzÞ
¼ ðyxÞ: ðA18Þ

Similarly, the second three diagrams sum to ðxyÞ, so that in total one integrates over “1”meaning the whole y-z plane. Thus,
to the level of approximation considered, the collinear contribution becomes x independent and again factorizes. Squaring
up, we obtain the same contribution as for one emission, but squared, and with an additional 1=2! symmetry factor for two
collinear photons—in other words the second term of the exponential series. The extension to higher orders is then clear.
Performing the incoherent sum over all possible numbers of degenerate emissions therefore gives an exponential

correction to the exclusive NLC probability. The leading order behavior, in intensity, of the inclusive NLC probability with
respect to laser-collinear emissions is

jM0j2inc: ∼ exp

�
−
αθ20
4π

Z
E

μ

dqþ
qþ

�
p0

n · p0 −
p

n · p

�
2
�
exp

�
αθ20
4π

Z
E

μ
dqþqþ

jãðqþÞj2
ðn · pÞ2

�
jN 0j2: ðA19Þ

The first exponential is simply a piece of the usual soft IR
divergence [11,12,58,59], since our degenerate integration
region includes a (spherical angular) portion of soft
parameter space. However, we already know that this will
cancel against loop corrections (nor is it explicitly field
dependent). We therefore drop the IR divergent contribu-
tion from here on. Our interest is in the second exponential
of (A19). This is, like the soft correction, positive, but

explicitly increasing with intensity a0. We note that the
exponent depends on intensity a0 and electron lightfront
energy n · p individually, and not on their product χ ≔
a0ω0n:p=m2, which is the only parameter on which
(locally) constant crossed-field results depend. (A depend-
ence on intensity and energy separately is the behavior one
expects of fields more general than CCFs [9,10,60], and
indeed is the reason why the high-energy and high-intensity
limits, which both yield high χ, do not commute beyond
CCFs [9,10].) This shows that LCFA calculations cannot
capture the effects we consider. Observe that, at large
enough a0, the exponential growth of the real emission
correction violates unitarity; this growth must therefore be

FIG. 6. The six diagrams contributing to “triple” NLC, in which two emissions are degenerate with the laser.

3By momentum conservation, for many almost collinear
emissions it becomes a better and better approximation to stay
in the “primed” regime, i.e., taking n · l=n · p small, as more
energy is carried away by the collinear photons.
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compensated for by loop corrections, to which we turn in
the next section. Before moving on, though, we comment
briefly on the form of similar collinear corrections in
another processes, namely nonlinear Breit-Wheeler pair
production, the amplitude for which is obtained by crossing
symmetry from that of NLC.
In nonlinear Breit-Wheeler, adding a laser-collinear

emission onto either the outgoing positron or electron line
gives a lightfront time integral like that in (A8), from the
vertex position [denoted x above, e.g., in (A13)] to infinity,
rather than one as in (A7) and one as in (A8). This suggests
that we would not be able to factorize out a spatially
independent factor from the collinear insertion (at least
under the same hypothesis as in the text), because we could
not combine the two different integration regions to remove
the x dependence. Consequently, a much more involved
calculation would be needed to analyze collinear correc-
tions for nonlinear Breit-Wheeler. We speculate that this
may be related to a behavior seen in [6] for higher loop
diagrams in constant crossed fields. There, two different
intensity dependencies were seen to arise in resummed
bubble-chain diagrams, attributed to different possible cuts
of the loop amplitudes into either photon-producing proc-
esses (like NLC) or pair-producing processes (like non-
linear Breit-Wheeler). This rather intriguing story will be

addressed elsewhere. Here we return to NLC, and proceed
to consider loop corrections.

APPENDIX B: VIRTUAL COLLINEAR
CORRECTIONS TO NLC

As the inclusive probability above contains all orders in
α, we must for consistency add all order loop corrections. It
is not possible to do this exactly, but we will show in this
section that we can include the laser-collinear parts of the
loops and see how they impact high-intensity scaling. For
this we will need the photon propagator. We saw above that
collinear emissions generate lightfront time-ordered terms,
and that the leading-a0 dependence of our amplitudes was
easily identified using lightfront gauge. In this gauge the
photon propagator is

Gμνðy − zÞ ¼ −i
Z

d4q
ð2πÞ4

e−iq·ðy−zÞ

q2 þ iϵ

�
gμν −

nμqν þ qμnν
n · q

�
:

ðB1Þ

It is convenient to immediately evaluate the qþ integral in
Gμν using the residue theorem, which yields

Gμνðy − zÞ ¼ −
Z

d2q⊥dq−
ð2πÞ32jq−j

e−iq·ðy−zÞΘðq−ðy − zÞþÞLμνðqÞ −
Z

dq−
2π

e−iq−ðy−zÞ−
iδþ;⊥ðy − zÞ

2q2−
nμnν; ðB2Þ

inwhich qþ is nowdetermined by the on-shell condition, and
the “transverse projector” LμνðqÞ is the same tensor as in
(B1), but for qμ on-shell. While (B2) is a commonly used
result, it is worth highlighting the features relevant to our
investigation. Consider the first term in (B2). We note that
(i) Lμν is orthogonal to both qμ and nμ, as were our
polarization tensors for real photons, (ii) the step function
will introduce into amplitudes an additional ligtfront-time
ordered dependence which, recall from (A7) and (A8), is the
essential structure introduced by real collinear emissions, and
(iii) the integrationmeasure is almost theon-shellmeasure, as
appeared for real emissions. It is for these reasons that
lightfront gauge is natural for our problem [61]. The second
term in (B2) is the instantaneous propagator, which we will
see below yields terms subleading in a0. IR cutoffs are in
place just as in the tree-level calculation.

We begin, as we did for real emissions, with the leading
order contributions in α, before considering the generali-
zation to all orders. The order α contribution to account for
is the interference term between the tree-level and one-loop
NLC amplitudes which arises when the whole amplitude
is mod-squared. There are three contributing one-loop
diagrams,4 shown in Fig. 3. These are, respectively, the
vertex correction [29–31] and two self-energies [5,28].
UV divergences are removed by subtracting the free-
field contributions as usual, but we are only interested in
a0-dependent terms, which are UV finite. We consider each
in turn.

1. The vertex correction

The expression to evaluate is

N vertex ≔ ð−ieÞ3
Z

d4xd4yd4zψ̄p0 ðyÞγμSðy; xÞ=εeil·xSðx; zÞγνψpðzÞGμνðy − zÞ: ðB3Þ

4The remaining one-loop contribution to NLC contains the photon polarization tensor, but no photon loop, and hence does not
contribute to our discussion of laser-collinear corrections. We note also that the polarization tensor inserted onto a laser-collinear photon
will reduce to the free loop [62], and hence be intensity independent.
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We would like to evaluate the y and z integrals in (B3), but
taking account only of laser-collinear effects, or in other
words isolating the contribution for which the collinear
results (A7) and (A8) can be applied. Because we can
take qμ to be on-shell in the integral representation (B2)
of Gμν, we know from the above that some appropriate
integration range exists as it covers at least the region

appropriate to real emissions. We specify the full region
in the main text, but the details are not needed at this
stage: we need only know that in this region we can apply
(A7)–(A8).
We begin with the instantaneous term in the propagator.

This contributes, highlighting only the relevant terms, and
underlining those coming from the propagator,

ðB4Þ

Using (A7)–(A8), the generated factors of πμ will be contracted with the highlighted factors of nμ from the propagator.
However n · π ¼ n · p, from (A1), which is independent of a0. Hence the instantaneous propagator does not contribute to
the leading-order intensity dependence. [The highlighted delta function in (B4) does not affect this argument, because the
yþ and zþ integrals do not need to be, and are not, evaluated for (A7) or (A8) to hold.] We turn to the Lμν term in the
propagator. Again writing out only the important structures which will generate terms leading in intensity, and underlining
contributions from the propagator, we find

ðB5Þ

Observe that the time-ordering in the integrals simplifies the Heaviside theta function in the propagator to justΘðq−Þ, which
turns the measure on qμ in (B2) into the on-shell measure proper, see (A4). Evaluating π0 · LðqÞ · π, the leading intensity
dependence is aðyÞ · aðzÞ. Thus we find the laser-collinear part of the vertex correction is, to leading order in intensity,

N vertex ∼ e2
Z

dqo:s:

Z
d4x½−ieψ̄p0 ðxÞ=εeil·xψpðxÞ�

Z
∞

xþ
dyþ

Z
xþ

−∞
dzþe−iqþyþ

aðyÞ · aðzÞ
n · p0n · p

eiqþz
þ
: ðB6Þ

This expression shows that the laser-collinear virtual
contribution has the effect of multiplying the tree-level
NLC integrand, shown in large square brackets, by a
lightfront-time dependent scalar factor. As such there is no
factorization, although this should not surprise us given the
tree-level results.

2. The self-energies

The calculation of the self-energy diagrams proceeds as
for the vertex correction. Subtleties concerning self-energy
contributions on external legs, and renormalization, are

discussed in [39]. However, we are interested in the UV
finite, a0-dependent terms, which contain the physics of
e.g., radiative spin flip [47], and must be included. We use a
uniform notation such that the “hard” NLC vertex is always
at x, the “left-hand” end of the loop is at y, and so comes
with a factor e−iq·y, while the right-hand end of the loop is
always at z, and comes with a factor eiq·z, see Fig. 3. The
time-orderings andΘ functions appearing again conspire so
as to extract a particular contribution from the propagator.
The self-energy corrections are precisely as in (B6), except
that the lightfront time integrals are replaced by

Z
∞

xþ
dzþ

Z
∞

zþ
dyþe−iqþyþ

aðyÞ · aðzÞ
ðn · p0Þ2 eiqþz

þ þ
Z

xþ

−∞
dyþ

Z
yþ

−∞
dzþe−iqþyþ

aðyÞ · aðzÞ
ðn · pÞ2 eiqþz

þ
: ðB7Þ

3. Factorization and exponentiation

Each of the one-loop contributions in (B6) and (B7) covers a different region in configuration (x-y-z) space. This
dependence arises through lightfront time-ordering at both the vertices and from the photon propagator. It is, just as at tree
level, the residual x dependence of these time-orderings which prevents us from factorizing out the laser-collinear
contributions. Let us therefore make the same assumption as for emissions; we restrict attention to that part of the emitted
photon spectrum with n · l ≪ n · p which, recall, allows us to replace factors of n · p0 with n · p. In this case the three ðy; zÞ
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integrands in (B6) and (B7) become equal. Writing the three regions of integration in the step-function notation introduced
above, the sum of (B6) and (B7) may be represented as

ðyxÞðxzÞ þ ðzxÞðyzÞ þ ðxyÞðyzÞ ¼ ðyxÞðxzÞðyzÞ þ ðzxÞðyzÞ þ ðxyÞðyzÞðxzÞ
¼ ðyzÞðxzÞ½ðyxÞ þ ðxyÞ� þ ðzxÞðyzÞ
¼ ðyzÞ½ðxzÞ þ ðzxÞ�
¼ ðyzÞ; ðB8Þ

which is x independent. Thus, the sum of all one-loop contributions factorizes, and we can write

N 0
one-loop ∼

�
e2

Z
dqo:s:

Z
∞

−∞
dyþ

Z
yþ

−∞
dzþe−iqþyþ

aðyÞ · aðzÞ
ðn · pÞ2 eiqþz

þ
�
N 0: ðB9Þ

The remaining time-ordering can be undone to again yield Fourier transforms of the field, at the cost of introducing a factor
of 1=2. This factor is cancelled when we mod-square the sum of the tree-level and one-loop contributions, to find

jN 0 þN 0
one-loopj2 ≃

�
1 − e2

Z
dqo:s:

jãðqþÞj2
ðn · pÞ2

�
jN 0j2 þOðe4Þ; ðB10Þ

which is of precisely the same form as the contributions
from real emissions, the only difference being in the (here
unspecified) integration region.
For the extension to higher orders, we note that the

integration regions in the three one-loop amplitudes com-
bine, in the primed regime, to cover the whole y-z plane,
forming an x-independent factor (factorization). By com-
parison with the free theory, and through the explicit
examples above, one sees that the addition and combination
of the different loop contributions on the external fermion
legs corresponds in Fourier space to the same combina-
torics of combining soft legs into loops [as is explicit in the
appearance of the soft factors for real emissions in (A16)].
We are only adding collinear photons to the fermion legs in
our diagram, the effect of which is to multiply by scalar
factors when we sum over all permutations, hence all
fermion legs remain “effectively” external in our NLC-
degenerate processes, and at higher orders the counting of
diagrams and factors goes through as above. Hence the
virtual contributions will also factorize at higher orders, just
as they did for real emissions, and exponentiate, as they
must to maintain unitarity at high intensity.
Indeed there is a sense in which the exponential form of

the laser-collinear contributions should not be surprising; the
Volkov solutions themselves can be viewed simply as
encoding the summation over all possible coherent emissions
and absorptions of mutually collinear laser photons [63–65],
and are themselves exponential functions of intensity.

APPENDIX C: PHENOMENOLOGY

For a phenomenological estimate, we take a simple,
circularly polarized Gaussian pulse; the two-component
transverse potential is

aðxÞ ¼ ma02
−2x2

τ2 ðcosω0x; sinω0xÞ; ðC1Þ

with normalization chosen such that a0 is the peak intensity
and τ is the full-width half-maximum (intensity) pulse
duration. We consider the case of a long, almost flat-top
pulse, which means τ large, or, in Fourier space, narrow
bandwidth. In this case we may approximately write the
Fourier transform of the field as

jãðqÞj2 ∼ π3=2τffiffiffiffiffiffiffiffiffiffiffiffi
log 16

p δregðq − ω0Þ þ… ðC2Þ

in which δreg is a properly normalized delta function
regulated by τ, and the ellipses denote a second spectral
delta which does not contribute to our results. We can now
easily evaluate the exponential factor in (5). We find

−αθ20π3=2

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð16Þp ðω0τÞ2

a20m
2

ðn · pÞ2 ≃ −5 × 10−5
a20T

γ2ð1þ βÞ2 ;

ðC3Þ
in which the integral over the regularized delta yields a
factor of 1=2, and for the final “engineering formula” we
have assumed a head-on collision and set θ ¼ tan−1 0.15 ≃
0.15 for the opening angle of a typical optical laser with
ω ¼ 1.55 eV [66], and T is the FWHM pulse duration
measured in femtoseconds. To maximize the impact of
collinear corrections we need intense, long pulses, and low-
energy electrons; for large γ, the collinear contribution is
very strongly suppressed. Indeed, it is clear that, for any
experiment which could be performed in the very near
future, the corrections implied by (5) are negligible, but this
is not the regime of interest.
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