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Abstract
Land regions are warming rapidly. While in a warming world at extra-tropical latitudes vegetation
adapted to higher temperatures may move in from lower latitudes this is not possible in the tropics.
Thus, the limits of plant functioning will determine the nature and composition of future
vegetation. The most temperature sensitive component of photosynthesis is photosystem II. Here
we report the thermal safety margin (difference between photosystem II thermotolerance (T50) and
maximum leaf temperature) during the beginning of the dry season for four tree species
co-occurring across the forest-savanna transition zone in Brazil, a region which has warmed
particularly rapidly over the recent decades. The species selected are evergreen in forests but
deciduous in savannas. We find that thermotolerance declines with growth temperature >40 ◦C for
individuals in the savannas. Current maximum leaf temperatures exceed T50 in some species and
will exceed T50 in a 2.5 ◦C warmer world in most species evaluated. Despite plasticity in leaf
thermal traits to increase leaf cooling in hotter environments, the results show this is not sufficient
to maintain a safe thermal safety margin in hotter savannas. Overall, the results suggest that
tropical forests may become increasingly deciduous and savanna-like in the future.

1. Introduction

An increase in the frequency of extreme weather
events, such as droughts and heatwaves, is expected as
a consequence of climate change [1]. This is in addi-
tion to rapidly increasing temperatures. Heatwaves
are defined as a period of several consecutive days
with extremely high temperatures [2]. Such high tem-
peratures may negatively affect the functioning and
survival of plants [3, 4].

For most tropical tree species the intrinsic capa-
city to cope with extreme heat in a warming world
under natural conditions is poorly known. The
impact of different abiotic stressors has been investig-
ated in experimental studies [5], however, in natural
areas observations are rare [6]. Long-term exposure
to excessively high temperatures can affect the ability

of essential tree physiological processes [7]. As the
leaf temperature rises above the optimum temperat-
ure for photosynthesis, the activation state of Rubisco
decreases [8] and net photosynthesis is reduced [9]
while mitochondrial respiration rises [10]. Studies on
broad bean have indicated that at temperatures above
35 ◦C the thylakoid membranes inside the chloro-
plasts undergo structural changes [11] and when the
temperature exceeds 40 ◦C, photosystem II (PSII)
can be deactivated and linear electron transport stop
[12]. Above 45 ◦C damage to PSII may become irre-
versible and can lead to the death of the leaf [13].
In tropical regions, irreparable thermal damage of
PSII occurs in the region of 45 ◦C–52 ◦C [14]. The
impact of heat can be further increased when abiotic
stresses act together (e.g. temperature, humidity, and
light) [15].
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Figure 1. (a) Schematic profile of the study areas in savannas (rocky cerrado and typical cerrado) and forest (cerradão) in Bacaba
Municipal Park, Nova Xavantina, Mato Grosso, Brazil, (b) temperature trends based on climate data measured at the
meteorological stations of the Brazilian meteorological service (INMET), (c) histograms of daily maximum temperatures
collected by the station of INMET in Nova Xavantina-MT for the 1980–1989 and 2010–2019 periods and (d) precipitation and
temperatures measured using a Watchdog climate measurement unit installed at Bacaba Park, Nova Xavantina, inside the cerrado
where we made measurements on trees. The shaded section indicates when the field measurements were done.

The thermal limits of PSII can be assessed by
exposing leaves to light pulses (PAM, pulse amplitude
modulation) and measuring fluorescence responses
to these pulses [16, 17]. From the fluorescence sig-
nal the efficiency of PSII photochemistry, or quantum
yield, can be estimated [18]. PSII chlorophyll fluores-
cence quantum yield as a function of leaf temperature
tends to follow a sigmoidal curve. The decrease at high
temperatures has been interpreted as a decrease in
functioning of PSII. Once very low levels of quantum
efficiency have been reached damage to PSII has been
shown to be irreversible [19]. The temperature cor-
responding to a 50% PSII quantum yield decrease is
referred to as T50 and is a frequently used metric of
leaf thermotolerance [14, 20]. Based on T50 a thermal
safetymargin of the leaf photosynthesis apparatus has
traditionally been estimated as the difference between
leaf thermotolerance and air temperature [21, 22].
However, leaf temperatures differ from air temperat-
ure because heat gained by absorption of solar radi-
ation and loss via longwave radiation, sensible heat
and latent heat loss are not in balance. Thus, these
limits may have been underestimated. Indeed sev-
eral studies have shown that leaf temperatures can
be substantially higher than air temperature [23]. A
physiologically more accurate thermal safety margin
of the photosynthesis apparatus is thus the difference
between maximum leaf temperature and T50.

In this study we evaluated for the first time the
leaf photosynthetic thermal safety margin (TSM), the
difference between maximum leaf temperature and
T50, for tree species co-occurring along a gradient

of savanna and forest formations (figure 1(a)) in
the Amazonia-Cerrado transition area based on
in-vivo measured leaf temperatures and determina-
tion of T50.

The region (Amazonia-Cerrado transition) has
warmed rapidly over recent decades, with maximum
air temperatures reaching 45 ◦C and is subjected
to regular and increasingly hot and dry heat waves
(figures 1(c) and (d)). It is a region which has
experienced large rates of deforestation and conver-
sion of vegetation to pasture and crop plantations.
It is representative of a wide vegetation belt along
the southern reaches of the Amazonia humid forest
region characterized by a mosaic of remaining forests
and agricultural land, which have similar temperat-
ure trends (figure 1(b)). We assessed TSM of four
tree species occurring in three common vegetation
formations across the transitional zone (figure 1(a)):
transitional forest (cerradão), typical cerrado (cerrado
típico) and rocky cerrado (cerrado rupestre). These
formations are in close proximity but differ in struc-
ture and microenvironment The transitional forest
(cerradão), which interconnect areas of cerrado with
the forest, contains the tallest trees and closed can-
opy, lower air temperatures and radiation, and higher
relative humidity and soil moisture, and with the
rocky cerrado at the opposing extreme [24, 25]. In
the typical cerrado, trees are spaced wider apart com-
pared to transitional forests and have a compar-
ably low stature [26]. In the rocky cerrado, trees are
located between the rocks [27]. The species chosen
Qualea parviflora Mart., Pseudobombax longiflorum
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Table 1. Thermal analysis of co-occurrent trees in savanna and forest formations in the Amazonia-Cerrado transition. Loss of 50% of
the PSII function (T50), maximum leaf temperature (TLmax), excessive leaf temperature (∆TMax), current thermal safety margin (TSm)
and future thermal safety margins (TSm+2.5 ◦C and +5 ◦C). RC= rocky cerrado, TC= typical cerrado, FO= forest (cerradão),
sd= standard deviation.

Species Vegetations

T50 (
◦C)

average (min
and max)

TLmax (
◦C)

average and sd
∆TMax (

◦C)
average and sd TSm (◦C) TSm+2.5 ◦C TSm+5 ◦C

Hymenaea stigonocarpa
RC 49.06

(47.2–51.4)
47.79± 2.96 1.71± 0.89 1.95 −0.55 −3.05

TC 49.84
(46.9–51.3)

42.47± 2.43 4.94± 0.84 −0.50 −3 −5.5

FO 50.96
(48.5–54)

36.99± 1.78 2.75± 0.26 2.81 0.31 −2.19

Vatairea macrocarpa
RC 47.58

(45.5–49.1)
41.40± 1.12 3.07± 0.49 −0.89 −3.39 −5.89

TC 47.96
(44.3–52.7)

32.42± 0.52 2.76± 0.63 −0.2 −2.7 −5.2

FO 50.24
(47.6–52.8)

34.44± 0.70 1.43± 0.19 3.41 0.91 −1.59

Pseudobombax longiflorum
RC 46.74

(46.3–47.7)
44.80± 1.02 5.22± 2.57 −3.88 −6.38 −8.88

TC 47.7
(45.3–50.4)

43.67± 6.89 2.88± 0.40 −0.58 −3.08 −5.58

FO 48.06
(47.6–48.4)

36.12± 0.98 1.27± 0.39 1.39 −1.11 −3.61

Qualea parviflora
RC 47.08

(45.1–48.6)
36.11± 1.57 2.62± 0.34 −0.94 −3.44 −5.94

TC 49.65
(48–50.6)

34.16± 0.62 3.06± 0.12 1.19 −1.31 −3.81

FO 48.04
(47.2–49.7)

31.11± 0.31 2.14± 1.32 0.50 −2 −4.5

(Mart.) A. Robyns, Hymenaea stigonocarpa Mart.
ex Hayne and Vatairea macrocarpa (Benth.) Ducke.
occur in all three vegetation types, and therefore give
an indication of both the interspecific variation in
heat tolerance and thermal traits and the extent of
intraspecific plasticity in these traits across differ-
ent environments. However, their phenological status
varies across vegetation types in that all species in our
study are evergreen in the forest but deciduous in leaf
habit in the savanna formations. April–May is not the
hottest period of the year, therefore the leaf air tem-
perature differences we measured are likely an under-
estimate of maximum leaf to air differences.

To better understand the thermal tolerance res-
ults, we also measured leaf morphological and
physiological traits related to leaf temperature regu-
lation. Functional traits can influence the amount of
solar radiation intercepted by the leaf and leaf cool-
ing by sensible and latent heat loss. For example,
a high density of trichomes reduces the entry of
radiation into the tissue, leaf angle and orientation
can impact the intensity of radiation intercepted
and stomatal conductance will influence transpira-
tion rates and thus latent heat loss. In addition, leaf
size also contributes to regulation of leaf temperature

(e.g. smaller leaves have a thinner boundary layer and
are more efficient at losing heat) [28, 29]. We eval-
uated a large set of leaf traits including leaf water
mass content, specific leaf area, adaxial cuticle thick-
ness, adaxial epidermis thickness, trichome density,
stomatal density, stomatal size, maximum area of sto-
matal pore and leaf thickness.

2. Results

2.1. Leaf morphological and anatomical traits,
maximum leaf temperature and∆TMAX
In the savannas, individuals had more efficient leaf
anatomical and morphological traits: higher trich-
omes density, thicker epidermis and cuticle, to regu-
late leaf temperature, when compared to individuals
in the forest (supplementary table 1 which is available
online at stacks.iop.org/ERL/16/034047/mmedia). In
contrast, specific leaf area of individuals in the forest
was the only trait whose values were higher for forest
individuals compared to the savannas (supplement-
ary table 1).

Maximum leaf temperature (TLmax) differed sig-
nificantly between savanna and forest individu-
als (TLmax: P < 0.05, table 1), but was similar
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Figure 2. Variation of mean thermal tolerance (T50) of photosystem II of co-occurrent species in savanna and forest vegetation in
Amazonia-Cerrado transition.

between savannas individuals (TLmax: P = 0.41,
table 1). Individuals in forest had lower maximum
leaf temperature (mean of 34.7 ◦C) than individuals
in savanna (mean 42.5 ◦C), (table 1).

The maximum leaf air temperature difference
(∆TMAX: difference in temperature between leaf and
air) observed during the period of measurements was
positively correlated with the thickness of the epi-
dermis (R2 = 0.43, P = 0.02) and negatively with the
specific leaf area (R2 =−0.40, P= 0.04, supplement-
ary figure 1). We also observed that the leaves of indi-
viduals growing in the savannas (typical cerrado and
rocky cerrado) with higher values of cuticle thickness
and small leaves are warmer than the leaves of indi-
viduals of the same species growing in the forest (sup-
plementary figure 1 and supplementary table 1).

2.2. Leaf photosynthesis thermal limits (T50)
Thermal tolerance (T50) varied significantly between
savanna and forest individuals, and between spe-
cies (supplementary table 2). In some cases, the
quantum yield of PSII versus temperature curves var-
ied within a species across vegetation types (supple-
mentary figures 2–13). Combining all species, indi-
viduals in the forest were found to have higher
thermal tolerance values compared to individuals in

the savannas (P < 0.0001; figure 2 and table 1).Within
species, T50 also varied significantly across vegetation
types, except for H. stigonocarpa. The T50 values of
Q. parviflora were higher in the typical cerrado and
lower in the rocky cerrado and in the forest, whereas
for V. macrocarpa and P. longiflorum, the T50 values
were higher in the forest and lower in the savannas
(supplementary table 3).

2.3. Thermal safety margins and climate change
predictions
H. stigonocarpa and V. macrocarpa had the highest
mean thermal safety margins (TSM) values, while P.
longiflorum andQ. parviflora showed the lowestmean
values of TSM (table 1). We find that individuals
growing under higher mean maximum air temper-
atures had lower TSM (table 1). Thermal safety mar-
gins were highest for individuals in the forest (table 1)
with the exception of Q. parviflora, with somewhat
higher TSM in the typical cerrado than in the forest.
H. stigonocarpa had high TSM values in both the
rocky cerrado and in the forest (table 1). Surprisingly,
the maximum estimated leaf temperatures already
exceed T50 for individuals in the savannas except for
Q. parviflora in the typical cerrado, and H. stigono-
carpa in the rocky cerrado (figure 3). Thus, there are

4



Environ. Res. Lett. 16 (2021) 034047 I Araújo et al

Figure 3. Projection of temperature for future climates of species co-occurrent in savanna RC= rocky cerrado, TC= typical
cerrado and FO= forest (cerradão) vegetation of the Amazonia-Cerrado transition. Loss of 50% of photosystem II function
(T50), maximum air temperature= 45.4 ◦C (TMax_air), maximum air temperature+ excess leaf temperature (TMax_air +∆TMax),
estimated maximum leaf temperature with an increase of 2.5 ◦C (TMax_air +∆TMax + 2.5 ◦C) and estimated maximum leaf
temperature with an increase of 5 ◦C (TMax_air +∆TMax + 5 ◦C).

already rare instances towards the beginning of the
dry period when the leaf photosynthesis apparatus of
these species is heavily stressed and potentially dam-
aged (figure 3 and table 1).

To assess potential future temperature safety mar-
gins of leaf PSII operation we compare currently
estimated maximum leaf temperatures plus 2.5 ◦C
(climate change scenario RCP 4.5) and 5 ◦C (RCP
8.5) (figure 3 and table 1) [30]. We have chosen these
temperature elevations based on a summary of cli-
mate model projections for the period 2080–2100
[30]. With the increase of 2.5 ◦C, the vast majority of
the species evaluated showed negative thermal safety
margins (figure 3 and table 1), with the exceptions
of H. stigonocarpa and V. macrocarpa growing in the
forest. On the other hand, with an increase of 5 ◦C,
all species evaluated showed negative thermal safety
margins (table 1). Even before the temperature eleva-
tion simulations, trees from the rocky cerrado and the
typical cerrado had very low or even negative thermal
safety margins, indicating that these individuals are
more sensitive to changes in future climate changes
(table 1 and figure 3).

3. Discussion

Our results show that the leaves of individuals grow-
ing in savanna formations had more efficient leaf
morphological and anatomical traits during the onset
of the dry season to regulate leaf temperature, com-
pared to the leaves of individuals of the same spe-
cies in the forest. In response to the exposure of

the leaves of savanna individuals to more extreme
temperature and direct solar radiation, the individu-
als have developed functional strategies capable of
dissipating heat more efficiently [31]. As individu-
als in the forest experience lower maximum leaf tem-
peratures, they may need to invest less in strategies
to increase efficiency in heat dissipation. The lower
temperatures in the forest may possibly be linked to
evaporative cooling or local atmospheric circulation
caused by the mosaic of remaining forests and agri-
culturally used land. Finally, in the forest, individuals
are exposed to higher air humidity, resulting in lower
vapor pressure deficit (VPD) and reduced leaf tran-
spiration, assuming stomatal conductance does not
change. Thiswould favor a higher leaf temperature for
trees during times with high CO2 assimilation rates.

Despite the more efficient morphological and
anatomical traits, which should reduce leaf temperat-
ure [32], during themeasurement periodwe observed
higher leaf temperatures and ∆TMAX values in the
savanna formations. Plants in the savanna formations
are exposed to higher air temperatures whichwill lead
to higher leaf temperatures compared to the forest,
but their traits could help limit this. However, these
adaptations were not sufficient for individuals from
savannas to maintain similar or lower ∆TMAX com-
pared the same species in the forest.

Plants from warmer biomes [22] which are
exposed regularly to heatwaves [33] have been
shown to have high thermotolerance. In contrast,
we found that T50 declined in warmer vegetation
types, suggesting that the increased stress to which
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these plants were exposed has reduced their ability
to cope with the heat and so at the beginning of the
dry period, the savanna trees are already thermally
stressed. Therefore, our study demonstrates that, for
the individuals in the savannas, the critical levels of
tolerable temperature for photosynthetic function is
already reached at the beginning of the dry season.
In particular, the T50 of P. longiflorum and V. mac-
rocarpa in the rocky and typical cerrado is already
being exceeded by the current maximum air temper-
atures, thus having a negative TSM. The combination
of higher leaf temperatures and lower T50 in savanna
formations thus results in lower thermal safety mar-
gins. Such low TSM would be expected to intensify as
the dry season progresses. However, the deciduous
nature of these species in the savannas provides an
adaptation that allows for protection against danger-
ously high temperatures. In the forests too, thermal
safety margins would be expected to become increas-
ingly negative with dry season severity. The higher
T50 and higher TSM of forest trees provides a level of
tolerance against high leaf temperatures in the peak
of the dry season. However, there are limits to this
tolerance, beyond which leaves cannot be sustained
without damage. Beyond these limits, species persist-
ence is likely only possible if there is an associated
shift towards a deciduous habit, as observed in the
savannas.

For the projected increase of 2.5 ◦C, the thermal
safety margin of the studied species will be regularly
exceeded even at the beginning of the dry season,
both in savannas and in the forest, and for individu-
als in savannas the situation is more critical. In par-
ticular, the TSM+2.5 ◦C of H. stigonocarpa and V. mac-
rocarpa in the forest would potentially support this
temperature increase. For a future increase of 5 ◦C,
our results indicate that during the beginning of the
dry period, the PSII of all species regardless of veget-
ation types will be severely affected (table 1). These
results demonstrate that for all these vegetation types
there will be an intensification of thermal risk. This is
in line with what has been found for other tropical
trees [14, 34], where individuals that may be oper-
ating near and even above their thermal thresholds
are more likely to be affected by the increase in heat-
waves. In savanna species which are already decidu-
ous, the increased thermal risk may alter the timing
and duration of leaf loss, with potentially reducing
productivity. In the forests, however, where our focal
species are not deciduous, trees might be expected
to become increasingly deciduous and savanna-like
in the future, with important consequences for forest
structure, productivity and carbon storage.

4. Conclusion

Our measurements demonstrate that the thermal
limits of some tropical savanna and forest species are
close to themaximum temperatures experienced, and

thus how these species function is likely to be affected
by the increase in global temperature. A defence to
thermal stress is deciduousness, a characteristic of
those individuals growing in savannas, but not those
in forests. Our results thus indicate expected shifts in
deciduousness in the future and thus a trend towards
savanna vegetation replacing forests in the regions in
Southern Amazonia characterized by large patches of
deforestation.
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lenhosa de um Cerrado Típico na regĩao Nordeste do Estado
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