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Abstract: We introduce the framework of noncooperative pregames and
demonstrate that for all games with sufficiently many players, there exist ap-
proximate (ε) Nash equilibria in pure strategies. In fact, every mixed strategy
equilibrium can be used to construct an ε-equilibrium in pure strategies —
ours is an ‘ε-purification’ result. Our main result is that there exists an ε-
equilibrium in pure strategies with the property that most players choose the
same strategies as all other players with similar attributes. More precisely,
there is an integer L, depending on ε but not on the number of players, so that
any sufficiently large society can be partitioned into fewer than L groups, or
cultures, consisting of similar players, and all players in the same group play
the same pure strategy. In ongoing research, we are extending the model to
cover a broader class of situations, including incomplete information.
We would be grateful for any comments that might help us improve the

paper.

∗We are indebted to Robert Aumann, Roland Benabou, Jean-Marc Bonniseau, War-
wick Dumas, Sergiu Hart, Gleb Koshevoy, Jean-Francois Mertens, Frank Page and Unal
Zenginobuz, and also to participants at presentations of this paper at Bogazici University,
Hebrew University Centre for Rationality, the Maastricht General Equilibrium conference,
and the Paris 1 Oiko NOMIA - Blaise PASCAL Seminar for comments..

†This author is indebted to Sonderforschungsbereich 303 and to the University of Bonn
for hospitality and financial support during 1990-1991 when this research was initiated.
She is also grateful to a number of researchers who listened to intuitive discussions of the
results of this paper over the intervening years, especially Jurgen Eichberger.
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1 Introduction: Learning from similar indi-
viduals.

A society or culture is a group of individuals who have commonalities of lan-
guage, social and behavioural norms, and customs. Social learning consists,
at least in part, in learning the norms and behaviour patterns of the society
into which one is born and in those other societies which one may join — our
professional associations, our workplace, and our community, for example.
Social learning may also include learning a set of skills from others that will
enable us to “fit into the society.” The society in question may be broad
as “Western civilization” or Canada, or as small as the Econometric Soci-
ety. If most people observe “similar” people and learn by mimicking other
individuals, then a stable society depends on the existence of an equilibrium
where most individuals who are similar choose the same strategies. If most
individuals learn from and mimic similar individuals, then the existence of
such equilibria is important; indeed, it is fundamental to the social sciences.
To ask whether equilibria where most players choose the same strategies

as similar players exist, we must first have an appropriate model. One of the
main contributions of the current paper is the introduction of a noncoop-
erative counterpart to the pregame framework of cooperative game theory.1

In cooperative game theory this framework has led to a number of results,
especially results showing that large games with small effective groups re-
semble, or in fact are, competitive economies. It appears that our framework
of noncooperative games may be equally useful. In this paper, we demon-
strate, for all games with sufficiently many players, existence of ε-equilibria
in pure strategies and, with a more restrictive space of player types, existence
of ε-equilibria in pure strategies where almost all players (that is, all except
at most some bounded and finite number) choose the same strategy as all
sufficiently similar players.
As in the cooperative pregame framework, we take as given a set of at-

tributes of players; here, these attributes index payoff functions. We require
two anonymity assumptions. The first is that payoffs do not depend on the
identities of other players, only on their attributes and, of course, on the
strategies they choose. The second is that when there are many players (but
still a finite number), then the actions of a small subset of players do not
significantly affect payoffs of members of the complementary player set. We

1See, for example, Wooders (1979,1983,1994) and Wooders and Zame (1984).
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require also some continuity conditions and demonstrate two main results:

Theorem 1: Existence. Given ε > 0 there exists an integer η(ε) with the
property that every game with at least η(ε) players has an ε-equilibrium
in pure strategies.

Theorem 2: Social conformity. Assume that the set of player attributes
for any fixed society can be parameterized by an index set satisfying a
property of ‘convex separation’. Then, given ε > 0, there is an integer
L(ε) such that the ε-equilibrium can be chosen so that for some parti-
tion of Ω into fewer than L subsets, {Ω }L=1, all players with attributes
represented by points in the same convex set Ω play the same strategy.

The integer L(ε) is a measure of social conformity; the smaller L(ε) the
greater the extent to which players who are dissimilar in their attributes
can conform in their choice of strategy.2 Thus, it is an important feature
of Theorem 2 that, given ε, the integer L(ε) is fixed, independently of the
numbers of players. Roughly, a space is said to satisfy convex separation
if there is some ordering on the space with the property that if all points
in one set are “less than” all points in another set, then the convex hulls
of both sets of points are disjoint. To illustrate the nonrestrictiveness of
convex separation, we note here that it is a a property of finite dimensional
Euclidean space, as we will prove.
An important aspect of Theorem 2 is indexing of attributes. An attribute

is a complete description of the possible characteristics of a player, such
as gender, height, IQ, personality, and the payoff function for any possible
society in which a player with those characteristics appears. Thus, we must
address the question of what classes of attributes satisfy convex separation.
It would not be very interesting, for example, if all players had to have
payoff functions that differed only by monotonic transformations. In fact, it
appears that the indexing problem allows a reasonably rich class of attributes.
We demonstrate, for example, that player’s attributes may consist of his
attributes in some space of characteristics, such as intelligence, educational
level, height, metabolic rate, eye color, personality and so on, and payoff
functions satisfying the property that the payoff to mixed strategies is the
expectation of payoffs to pure strategies.

2We are grateful to Roland Benabou for suggesting we emphasize this aspect of Theorem
2.
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To compare our noncooperative pregame framework to the cooperative
pregame framework, it is important to note a major and significant differ-
ence. In the cooperative framework, the payoff to a coalition is fixed and
independent of the society in which that coalition is embedded. Although
this is possible within the current noncooperative framework, it is not built
into the model and thus may or may not hold. Noncooperative games derived
from a (noncooperative) pregame are parameterized by the numbers of play-
ers of each type in the player set and may vary considerably depending on
the attributes of the players actually represented in the society. For example,
there may be little relationship between derived games where all players have
the same attribute, male for example, and games where some players have a
different attribute, female, for example. Moreover, even in the case where all
players are identical, there is no necessary relationship between a game with
n players and another with n + 1 players. That said, however, it should be
noted that asymptotically, only the distribution of players’ attributes mat-
ters; that is, the games become anonymous. Just to be sure this is clear,
in games with many players, the percentages of males and females are still
relevant, but whether a male is labelled i or j is irrelevant, and a few males
or females, more or less, are both of no great consequence.
One interesting similarity between the two frameworks is that, in the

cooperative pregame framework, the condition of small group effectiveness
plays an important role, cf., Wooders (1994).3 This condition dictates that
all or almost all gains to collective activities can be realized by groups of
players bounded in size. An equivalent condition is that small groups are
negligible: in large cooperative games derived from pregames, small groups
are effective if and only if small groups cannot have significant effects on
aggregate per capita payoff (Wooders 1993). The main substantive condition
of the current paper can be interpreted as the negligibility of small groups of
players; that is, the effects of the actions of any small set of players on the
complementary set of players become negligible in games with many players.
For cooperative pregames with side payments, the condition of small group
negligibility implies that large games are market games, as defined by Shapley
and Shubik (1969). The full implications of the condition for noncooperative
pregames have not been fully explored but we expect there to be many.

3A strong form of this condition, a sort of strict small group effectiveness was originally
introduced in Wooders (1979) and earlier versions of that paper. For our pruposes here,
this form of small group effectiveness is not useful. Neither is the ‘boundedness of marginal
contributions’ of Wooders and Zame (1984).
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Our first result is actually a “purification result,” showing that, for all
sufficiently large games, every mixed strategy equilibrium generates a pure
strategy ε-equilibrium. Our result differs from a number of purification re-
sults in the literature in that prior papers all have a continuum of players
(cf. Schmeidler 1973, Mas-Colell 1984, Khan 1989, Pascoa 1993,1998, Khan
et al. 1997, Araujo and Pascoa 2000). With a continuum of players, small
group negligibility is built into the framework and thus does not appear as a
separate assumption. Of course for a number of these results, it is easy to see
that one could consider a sequence of large finite games with player distribu-
tion converging to the distribution of player types in the given continuum,
and from the results for the continuum, establish existence of ε-equilibrium
in pure strategies for all sufficiently large games in the sequence. Our re-
sults differ in that we are not restricted to one limiting distribution of player
types; our results hold for all sufficiently large games derived from a non-
cooperative pregame. In particular, our results allow for the possibility that
there are player types who appear in arbitrarily small percentages in large
finite games. An important part of our work is defining the model of non-
cooperative pregames and establishing that a set of conditions, especially
small group negligibility, that allow us to obtain our purification result. We
note that related results have recently been obtained by Kalai (2000); these
are discussed further later.

2 The Model. Noncooperative Pregames.
We first introduce the concept of a society, then that of strategies and the set
of ‘weight functions’ derived from the set of strategy vectors. We conclude
by introducing the game corresponding to a society.

2.1 Societies.

We assume a compact metric space Ω of player types. Let N be a finite set
and let α be a mapping from N to Ω, called an attribute function. The pair
(N,α) is a society.
Let Z+ denote the set of non-negative integers. The profile of a society

(N,α) is a function ρ(N,α) : Ω→ Z+ given by
ρ(N,α)(ω) = α−1(ω)
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Thus, the profile of a player set tells us the number of players with each
attribute in the set. Let support( ρ(N,α)) denote the support of the function
ρ(N,α), that is,

support(ρ(N,α)) = {ω ∈ Ω : ρ(N,α)(ω) = 0}.
Let P (Ω) denote the set of all functions from Ω to Z+ with finite support.
Note that for each possible society (N,α) the profile of N is in P (Ω). Note
also that the sum of profiles (defined pointwise) is also a profile.
Before introducing the game corresponding to any society, we require

some preliminary concepts.
Let S = {s1, ...., sK} be a finite set of pure strategies. Let ∆(S) denote

the set of mixed strategies. In each game Γ(N,α), each player will have the
strategy choice set ∆(S). The support of a mixed strategy σi is denoted by
support(σi), where “support” is defined as above. A mixed strategy is called
pure if it puts unit weight on a single pure strategy.
A strategy vector is given by σ = (σ1, ..., σ|N |) ∈ ×i∈N∆(S) where σi

denotes the strategy of player i. Let σik denote the probability with which
player i plays pure strategy sk. We denote the set of all strategy vectors by
Σ. A strategy vector σ is called degenerate if for each i, for some k, σik = 1;
that is, each player’s strategy is a pure strategy.
Given an attribute function α (or a profile ρ(N,α)) we define a weight

function w(·, ·;α) (or w(·, ·; ρ(N,α))) as a mapping from Ω × S into R+

satisfying the conditions that

k

w(ω, sk;α) = ρ(N,α)(ω).

Thus, given an attribute function α, a weight function is an assignment of
a non-negative real number to each attribute-strategy pair (ω, s) so that the
sum, over strategies, of the weights attached to the pairs (ω, s) equals the
number of players with that attribute. It follows that

k ω∈support(ρ(N,α))
w(ω, sk;α) = |N | .

It is convenient to also define weight functions relative to strategy vec-
tors. Given an attribute function α and a strategy vector σ, define a weight
function w(·, ·;α, σ) relative to α and σ by:

w(ω, sk;α,σ) =
i∈N :α(i)=ω

σi(sk)
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for each sk ∈ S and for each ω ∈ Ω. We interpret w(ω, s;α, σ), as showing,
for each ω ∈ Ω, the ‘weight’ given to pure strategy sk in the strategy vector
σ by players assigned type ω by α. That is, given the society (N,α) and
the strategy vector σ, w(ω,sk;α,σ)

ρ(N,α)(ω)
is the expected proportion of times strategy

sk will be played by the average player of type ω. It is immediate that a
weight function relative to an attribute function α and a strategy vector σ is
a weight function, as defined above. In particular

k

w(ω, sk;α, σ) = p(N,α)(ω)

for each ω ∈ Ω. Note that there may be many strategy vectors that generate
a given weight function relative to an attribute function. Let Wα denote the
set of all possible weight functions for the society (N,α).
For a strategy p ∈ ∆(S) and attribute ω0 ∈ Ω we denote by χ(·, ·;ω0, p)

the individual weight function.

χ(ω, sk;ω0, p) = pk if ω = ω0 and

χ(ω, sk;ω0,m) = 0 otherwise.

for each sk ∈ S, where pk denotes the probability pure strategy sk ∈ S is
played, given the mixed strategy p.
Given an attribute function α and a strategy vector σ ∈ Σ with cor-

responding weight function w(·, ·;α, σ) ∈ Wα, let w−i(·, ·;α, σ) denote the
weight function in which player i’s contribution is not included. That is,

w−i(ω, s;α, σ) = w(ω, s;α,σ)− χi(ω, s;ω0,σi)

for all ω ∈ Ω, all s ∈ S and for all i ∈ N , where α(i) = ω0 and χi(·, ·;ω0, σi)
is the individual weight function of player i given attribute function α and
strategy vector σ.
Given (N,α) and i ∈ N let Wα−χi denote the set of weight functions for

the society (N\{i},α N\{i} ).

2.2 The games Γ(N,α).

With the above definitions in place, we can now define the games Γ(N,α).
For any society (N,α), the game Γ(N,α) is given by the pair (S,H) where
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S is the finite set of strategies and

H = {hω(·, ·; ρ(N,α)), ω ∈ supportρ(N,α)}
where, for each i ∈ N , hα(i)(·, ·; ρ(N,α)) is a given payoff function mapping
∆S ×Wα−χi into R+.
Given an attribute function α, a strategy vector σ and the corresponding

weight function w(·, ·;α, σ) ∈Wα, the payoff of player i ∈ N is given by

hα(i)(σi, w−i(ω, sk;α, σ), ρ(N,α)) ∈ R+. (1)

The interpretation is that hω(σi, w−i(·, ·;α, σ), ρ(N,α)) is the payoff to a
player i ∈ N with α(i) = ω, in the game Γ(N,α), from playing the (possibly)
mixed strategy σi when the strategy choices of the remaining players are
represented by w−i(·, ·;α, σ). Note that payoff functions are parameterized by
the population profile ρ(N,α) since different population profiles correspond
to different games. We make the standard assumption that the payoff to a
mixed strategy is the expected payoff from pure strategies, that is,

hω(p,w−i(·, ·;α), ρ(N,α)) =
k

pkhω(sk, w−i(·, ·;α), ρ(N,α)). (2)

Note that implicit in the definition of the payoff function there is an
anonymity assumption. For example, consider two players i, j ∈ N, where
a(i) = α(j), and two alternative scenarios. In the first scenario player i
plays pure strategy s1 and player j plays pure strategy s2. In the second
scenario, roles are reversed so that player i plays s2 and player j plays s1.
Then, assuming everything else remains the same, the payoff to a third player
i ∈ N is indifferent to this switch between i and j. This example is a special
case of a continuity assumption (continuity 1) below.
The standard definition of a Nash equilibrium applies. A strategy vector

σ is a Nash equilibrium only if, for each i ∈ N and for each pure strategy
sk ∈support(σi), it holds that
hα(i)(sk, w−i(·, ·;α,σ), ρ(N,α)) ≥ hα(i)(t, w−i(·, ·;α, σ), ρ(N,α)) for all t ∈ S.

2.3 Large anonymous games

We now introduce the following assumptions about growing sequences of
games which together constitute a large anonymous game property. First,
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without loss of generality we can suppose that the furthest distance between
any two points in Ω is less than one. For ease in notation, since any function
f with finite support from Ω to Z+ completely describes the profile of some
society (N,α), where f (ω) = |α−1(ω)| , we will refer to such a function as a
profile. Define f = ω∈Ω

f(ω)=0
f(ω) and note that when f = ρ(N,α), then

f = |N | .
Observe that a profile f induces a probability measure |1|

f
f on Ω where

each singleton set {ω} is assigned the probability
|f(ω)|
f

;

let us call this probability measure µ(f). Similarly, for a given attribute
function α, a weight function w induces a probability measure |ω(ω,sk;α)|

w
=

µ(w(·, ·;α)) on Ω×S where probability of a singleton set {(ω, sk)} is |ω(ω,sk;α)|w

and w = k ω∈Ω
w(ω)=0

w(ω, sk).

To define a metric between societies (N,α) and (N ,α ), we consider two
cases, |N | = |N | and then |N | = |N | . For the first case, label the points
in N by 1, ..., |N | and those in N by 1 , ..., |N | so that d((N,α), (N ,α )) =
sup dist(α(i),α(i )) is minimized, where dist denotes the metric on Ω. In the
second case, |N | = |N | define d((N,α), (N ,α )) = |N −N |. Then d is a
well-defined metric. In fact, when |N | = |N |, d corresponds to the Prohorov
metric.4

Throughout the following, let {N ν} be a sequence of player sets with |N ν|
becoming large as ν becomes large and let {αν} be a sequence of attribute
functions, αν : N ν → Ω. For ease in notation, let {f ν} be the sequence of
profiles where, for each ν, we have f ν = ρ(N ν,αν).
We give two variants of a continuity property - the second implies the first.

These continuity properties are both formulated as Lipschitz conditions on
large games and are with respect to changes in attributes of players. Both
conditions dictate that if we change attributes of players in large player sets
only slightly, then for any given strategy vector, the change in payoffs of
players is small. The second continuity condition states that in addition, if
we change the attribute of a player only slightly then the change in his own
payoff is small.

4See, for example, Kirman in the Handbook of Mathematical Economics, pages 197-198.
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Continuity with respect to attributes: Given ε > 0 there exists a simi-
larity parameter δ(ε) such that:

for any sequence of attribute functions {αν}, where αν : N ν → Ω and
satisfies:

dist(αν(i),αν(i)) < δ(ε) for all i ∈ Nν and for all ν,

and for any sequence of strategy vectors {σν}, weight functions {wν(·, ·;αν, σν)}
and {wν(·, ·;αν, σν)}, and profiles {f ν} where f ν = ρ(Nν,αν).:

Continuity 1 (with respect to the attributes of others):

lim
ν→∞

hαν(i)(σi, w
ν
−i(·, ·;αν, σν), f ν)− hαν(i)(σi, wν

−i(·, ·;αν,σν), f
ν
) < ε

for all σi ∈ ∆(S) and for all i with αν(i) = αν(i).
(Note that since a player’s payoff function is parameterized by the
profile of the society in which he’s a player, it is indeed possible that
his payoff changes when the attributes of other players change.5 But
although the payoff functions of the players have been changed — for
each player j, αν(j) changes to αν(j)− the actions of the players remain
unchanged. This is possible since a strategy vector lists a strategy for
each player i ∈ N and the N remains unchanged — only the payoff
functions of the players in N have possibly changed, not the set of
players nor their strategies. Thus, if one finds it reasonable that the
payoff functions of players are affected only by the actions of others
and not by their payoff functions, then this form of continuity is very
mild.6)

5In standard models of economies, the preferences of players are taken as independent
of the preferences of other players. Thus, this assumption would be immediately satisifed
by such models.

6There are situations where individuals claim to be affected by the feelings, loyalties
or thoughts of others, independent of their actions. In Arthur Miller’s celebrated book,
The Crucible, Rachel has been a pious woman, known for her good deeds and kind works,
all through her long life. But the witch hunters of Salem interpreted Rachel’s apparent
goodness as just a clever disguise to hide her love of the devil. Rachel was put to death as
a witch; for witch hunters, the private feelings of others and their thoughts are significant.
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Continuity 2 (with respect to all attributes):

lim
ν→∞

hαν(i)(σi, w
ν
−i(·, ·;αν, σν), f ν)− hαν(i)(σi, wν

−i(·, ·;αν,σν), f
ν
) < ε

for all σi ∈ ∆(S) and all i.

In continuity 1, we essentially only consider the changes in payoffs, from
perturbing the attribute function, to players who keep the same attribute
type in both societies (N ν,αν) and (N ν,αν). In continuity 2, we consider
the change in payoffs to players who themselves also have their attribute
type slightly perturbed between societies (Nν ,αν) and (Nν ,αν) and impose
continuity. In a later section, we will discuss attributes more fully.
Societies (N,α) and individual games Γ(N,α) derived from noncooper-

ative pregames have an anonymity property as noted previously; the game
Γ(N,α) and the payoff hα(i)(·, ·, ρ(N,α)) to an individual player i ∈ N do not
depend on the names of other players, only on the profile of the player set.
To obtain our results we require further conditions on payoff functions as the
numbers of players in the games becomes large. For our current results, we
use the strong anonymity condition below. Note that this condition, along
with continuity, can also be viewed as a small group negligibility assumption.
In brief, strong anonymity ensures that the actions of near-negligible sets of
players do not significantly change the payoffs of the complementary set.7

Strong anonymity: Assume that for some finite set of points {ω1, ...,ωJ}
in Ω, {ω1, ...,ωJ} = support(f ν) for each ν. Also suppose that for each
ωj ∈ {ω1, ...,ωJ}, fν(ωj)

fν
converges as ν → ∞. Let {wν(·, ·;αν)} and

{gν(·, ·;αν)} be sequences of weight functions where wν and, respec-
tively, gν are relative to attribute function αν.

If, for each pure strategy sk ∈ S, for some real numbers {θjk : j =
1, ..., J} it holds that:

lim
ν→∞

wν(ωj , sk;α
ν)

wν
= lim

ν→∞
gν(ωj , sk;α

ν)

gν
= θjk,

8 (3)

7It is interesting that, in cooperative pregames, the condition of small group negligibility
is equivalent to the condition of small group effectiveness; see Wooders (2001).
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then:

lim
ν→∞

hαν(i)(p,w
ν
−i, f

ν) = lim
ν→∞

hαν(i)(p, g
ν
−i, f

ν)

for all p ∈ ∆(S) and all i.

If preferences satisfy strong anonymity then, for games with many play-
ers, the payoff to a player depends only on his own strategy choice and the
proportion, relative to the total population of players, of each type playing
each strategy.
Note that in the definition of strong anonymity, for each ν, it holds that

{ω1, ...,ωJ} ⊂ support(f ν) but in general it may be that the supports of the
functions fν become infinite as ν becomes large. The definition of strong
anonymity requires, however, while the player sets tend to become infinitely
large, ‘in the limit’ the number of attributes represented in the population
tends towards a fixed, finite subset of the attributes represented in the in-
dividual games. The actions of players with attributes represented in the
populations (N,αν) but in vanishingly small proportions do not have sig-
nificant effects on the payoffs of other players. Although strong anonymity
is a restriction only on special sorts of sequences of societies, along with
our continuity assumption it allows uniform results — that is, results for all
sufficiently large games rather than for sequences of games.
Given ω ∈ Ω, let the ball around ω with diameter δ be denoted B(ω, σ)

and defined by

B(ω, δ) = ω∗ ∈ Ω : d(ω,ω∗) <
δ

2
.

3 Results.
We first state two useful lemmas. The first lemma applies to any game and
concerns approximation of mixed strategy vectors by degenerate strategy
vectors. The second lemma concerns limiting approximations for sequences
of games. With these two lemmas in hand, in the following subsection, we
next prove our purification result and then, in the final subsection, we prove
our social conformity result.
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3.1 Two lemmas.

We firstly introduce some notation. We say a vector a = (a1, ..., aN) ≥ b =
(b1, ..., bN) if and only if ai ≥ bi for all i = 1, ..., N . Let ZK+ denote the set of
K dimensional vectors for which every element is a non-negative integer.
For any strategy vector σ = (σ1, .., σN) (where σi = (σi1, ..., σiK) ∈ ∆K

for i = 1, ..., N), let M(σ) denote the set of vectors m = (m1, ..,mN) such
that, for each i ∈ N :
(a) mi = (mi1, ...,miK) ∈ ZK+ ,
(b) mi = 1 and,

(c) For all k, mik = 1 implies σik > 0.

Informally,M(σ) denotes the set of strategy vectors with the property that
each player i is assigned, as a pure strategy, some strategy in the support of
σi. If σ were a Nash equilibrium then in the strategy vector m, each player
would be assigned a strategy in his best response set for σ.
The following lemma shows that given any choices of mixed strategies,

(σi, i = 1, ..., N), one for each player, we can select pure strategies mi for
each player so that each player’s pure strategy is a best response to the
initially given mixed strategy choices and so that the total number of players
assigned strategy sk is within K of the total weight assigned to sk by the
initially given mixed strategy vector, that is,

i

σik −
i:mik=1

mik ≤ K. (4)

Actually, the result is somewhat stronger.

Lemma 1: For any strategy vector σ = (σ1, ...,σ|N |) ∈ ∆KN and for any
vector g ∈ ZK+ such that i σi ≥ g, there exists a pure strategy vector
m = (m1, ...,m|N |) ∈M(σ) such that:

i

mi ≥ g.

(To relate this to the interpretation above, choose g so that for each k =
1, ...,K, i σik − gk < 1. Then, since k i σik = |N | it holds that |N | −
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k gk < K. Note also that k imik = |N | . It follows that for each pure
strategy sk, (4) holds.)

Proof9: Suppose the statement of the lemma is false. Then, there exists a
strategy vector σ = (σ1, ...,σi, ...,σN) and a vector g ∈ ZK where i σi ≥ g
and such that, for any vector m = (m1, ...,m|N |) ∈M(σ) there must be at
least one k for which imik < gk. For each vector m ∈ M(σ) let L be
defined as follows:

L(m) =
k:gk− imik>0

gk −
i

mik

Select m0 ∈M(σ) for which L(m) attains its minimum value over all m ∈
M(σ). Intuitively the vector m0 is ‘as close’ as we can get to satisfying the
lemma. Pick a strategy k such that gk − im

0
ik
> 0.

For any subset I of N and any vector m ∈M(σ) let the set S(I,m) ⊂ S
be such that:

S(I,m) = sk ∪ {sk ∈ S : mik = 1 for some i ∈ I}

We can now define sets In k for n = 0, 1, ... as follows:

I0 k = i ∈ N : m0
ik
= 1 ,

In+1 k = In k ∪
j ∈ N : σjk > 0 and m0

jk = 0

for some k ∈ S In k ,m0

Consider a player i1 ∈ I1 k \I0 k . Then, m0
i1k
= 0, σi1k > 0 and

m0
i1k1

= 1 for some sk1 ∈ S. Thus, there exists an m∗ ∈ M(σ) such that
m∗i = m0

i for all i = i1 while m∗i1k = 1 and m∗i1k1 = 0. Suppose that

i∈N m
0
ik1
> gk1. This implies, given that m

0
ik1
and gk1 are integers, that

i∈N m
0
ik1
≥ gk1+1. Then, it follows, by the definition of L(m) that L(m∗) =

9The proof of this result could perhaps also be derived from the Shapley-Folkman
Theorem (see, for example, Green and Heller 1991). It appears, however, to be an extension
since Lemma 1 implies the Shapley-Folkman Theorem and more.
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L(m0) − 1. This contradicts that we chose the vector m0 ∈ M(σ) with
minimum L.
Consider a player in ∈ In k \In−1 k where n ≥ 2 and minkn = 1 for

some pure strategy skn . By the construction of I
n k if

in ∈ In k \In−1 k

there must exist some strategy

skn−1 ∈ S In−1 k ,m0 \S In−2 k \In−1 k ,m0

such that σinkn−1 > 0 and m0
inkn−1 = 0. This implies, by the definition of

S(I,m), that there exists a player

in−1 ∈ In−1 k \In−2 k

such that m0
in−1kn−1 = 1. Continuing this chain as far as necessary, it follows

that there exists a set of players C = {i1, ..., in} ⊂ In k , where for all

it ∈ C, it ∈ I t k and m0
itkt
= 1, and a vector m∗ ∈M(σ) such that:

for i1 : m∗i1k1 = 0 and m
∗
i1k
= 1,

for all it ∈ C\{i1}: m∗itkt = 0 and m∗itkt−1 = 1, and
for all i /∈ C and all sk ∈ S: m∗ik = m0

ik.

Suppose that

i∈N
m0
ikn > gkn.

Then, again noting this implies that

i∈N
m0
ikn ≥ gkn + 1,

we have that

L(m∗) = L(m0)− 1.
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To see this we note that

i∈N
m0
ikt =

i∈N
m∗ikt

for all 1 ≤ t ≤ n− 1 while

i∈N
m0
ikn =

i∈N
m∗ikn + 1

and

i∈N
m0
ik
+ 1 =

i∈N
m∗
ik
.

Then use the definition of L(m). This contradicts the choice ofm0 ∈M(σ) to
minimize L(·).
Ultimately, for some n∗ ≥ 1 we must have that In

∗+1 k = In
∗
k .

This is an immediate consequence of the finiteness of the player set.
The above has shown that if there exists a strategy sk ∈ S In

∗
k ,m0

where:

i∈N
m0
ik > gk

then we have the desired contradiction. This implies, for all sk ∈ S In
∗
k ,m0

that:

i∈N
m0
ik ≤ gk. (5)

Using the definition of In k and that In
∗+1 = In

∗
, there can exist no

player j ∈ N\In∗ k such that σjk > 0 for some sk ∈ S In
∗
k ,m0 ,

unless m0
jk = 1. This implies that:

i∈N\In∗(k)

m0
ik ≥

i∈N\In∗(k)

σik (6)

for all sk ∈ S In
∗
k ,m0 .
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Using the definition of S In
∗
k ,m0 , we have that:

k:sk∈S(In∗(k),m0) i∈In∗(k)

m0
ik ≥

k:sk∈S(In∗(k),m0) i∈In∗(k)

σik. (7)

Combining 6 and 7 and using the statement of the lemma, we see that:

k:sk∈S(In∗(k),m0) i∈N
m0
ik ≥

k:sk∈S(In∗(k),m0) i∈N
σik ≥

k:sk∈S(In∗(k),m0)

gk

However, by assumption:

gk >
i∈N

m0
ik

and also by assumption, sk ∈ S In
∗
k ,m0 . Thus, there must exist at

least one sk ∈ S In
∗
k ,m0 such that:

gk <
i∈N

m0
ik.

This contradicts 5 and completes the proof.

Having completed the proof let us provide an intuitive explanation of the
sets In k with reference to figure 1 below.

The set I0 k contains those players who are ‘assigned’ the pure strategy

sk by vector m
0. That is, if i0 ∈ I0(k) then m0

i0k
= 1. The set I1 k \I0 k

consists of those players who could have been assigned the strategy k accord-
ing to the definition of M(σ), but were not. That is, if i1 ∈ I1 k \I0 k ,

then σi1k > 0 but m
0
i1k
= 0.

Suppose that m0
i1k1

= 1. That is, player 1 was assigned pure strategy sk1 .

In looking at the set I2 k \I1 k pure strategies k = k play a role. In

particular, if there exists a player i2 such that m0
i2k2

= 1 and σi2k1 > 0 then

player i2 ∈ I2 k \I1 k . That is, player i2 could have been assigned the
strategy sk1 but was actually assigned strategy sk2 . Further, there exists a

player i1 ∈ I1 k using pure strategy sk1 .
10 In adding the next group of

10We also require that σi2k = 0 otherwise player i2 would be included in the set I
1 k .
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players, I3 k \I2 k , we can now take into account the pure strategy sk2 .

Thus, we start looking for some player i3 such that m0
i3k3

= 1 and σi3k2 > 0.
And so on.
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i0∈ I0 k i1∈ I1 k \I0 k i2∈ I2 k \I1 k i3∈ I3 k \I2 k · · ·
⇓ ⇓ ⇓ ⇓

σi0k> 0
m0
i0k
= 1.

σi1k> 0
m0
i1k
= 0

σi2k= 0
m0
i2k
= 0.

σi3k= 0
m0
i3k
= 0.

and for some k1,
σi1k > 0
m0
i1k1

= 1 .

For k1,
σi2k > 0,
m0
i2k1

= 0

For k1,
σi3k1= 0,
m0
i3k1
= 0.

and for some k2
σi2k2> 0
m0
i2k2

= 1 .

For k2
σi3k2> 0
m0
i3k2
= 0

and for some k3
σi3k3> 0
m0
i3k3

= 1.

Figure 1
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Any of the players in I1 k \I0 k , such as i1, could have been assigned

the pure strategy k (since σi1k > 0) but instead i1 was assigned the pure
strategy sk1 . Player i2 could have been assigned pure strategy i1 (since
σi2k1 > 0) but was assigned pure strategy sk2. Generalising, any player

in ∈ In k \In−1 k could have been assigned pure strategy skn−1 but was
actually assigned pure strategy skn.

Now, suppose that there exists a strategy sk ∈ S In
∗
k ,m0 such

that:

i∈N
m0
ik ≥ gk + 1

We can do the following reallocation: putm0
inkn

equal to zero and setm0
inkn−1 =

1 for all n ≥ 2 and set mi1k1 = 0 and mi1k
= 1. This leaves the numbers

allocated to strategy skt for all 1 ≤ t ≤ n−1 unchanged. The number playing
skn reduces by one and the number playing sk increases by one. Essentially,
the player in has been allocated to a strategy skn where ‘it is not needed’.
Thus, we can take player in away from strategy skn and allocate it to strat-
egy skn−1 . Repeating this chain we finish by putting mi1k

= 1. If there was
a shortfall in the number of players using strategy sk we thus reduce this
shortfall to at the worst one less than we began with. At best, we can, of
course, overcome the shortfall completely and repeatedly applying the above
procedure will eventually do so.

Roughly, our next Lemma shows that, for any growing sequence of games,
if there is only a finite number of types that appear in positive proportions
in the limit, then in the limit, strategy vectors can be purified. Suppose,
as is standard in papers showing purification of mixed strategy equilibria,
we had a continuum of players with a finite number of types where type
ωa appears in the proportion θak. Then the following result demonstrates
that we can approach the continuum purification in large finite games.11 But
it shows more. The games considered in Lemma 2 could have vanishingly
small percentages of players of some types. Our conditions ensure that these
players cannot significantly effect payoffs to other players and are, in the
continuum limit, negligible.

11In fact, such a result was obtained in Rashid (1983).
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Before introducing our next lemma, we introduce an additional term. A
weight function w(·, ·;α) ∈Wα is called integer-valued if w(ω, sk;α) ∈ Z+ for
each ω ∈ Ω and each sk ∈ S. We typically denote an integer-valued weight
function by g(·, ·;α). If g(·, ·;α)is an integer-valued weight function there
exists strategy vectors σ such that σi is degenerate for all players i ∈ N
and g(·, ·;α, σ)(ω) = g(·, ·;α)(ω) for all ω ∈ Ω. Moreover, every degenerate
strategy vector σ generates an integer-valued weight function. Given the
profile ρ(N,α) and a degenerate strategy vector σ, the interpretation is that,
for each attribute ω and strategy sk ∈ S, g(ω, sk,α) denotes the number of
players i in N with attribute ω whose strategy σi places weight 1 on some
pure strategy sk.

Lemma 2: Let {N ν} be a sequence of player sets with |N ν| becoming large
as becomes large. Let {ω1, ...,ωJ} ≡ L be a finite set of points in Ω. Let {αν}
be a sequence of attribute functions, αν : N ν → Ω and {f ν} a corresponding
seqence of profiles, fν = ρ(Nν,αν), such that support(f ν) = {ω1, ...,ωJ} for
all ν. Let {σν} be a sequence of strategy vectors and {wν} be a sequence
of weight functions, where wν is relative to strategy vector σν and attribute
function αν, such that the limν→∞

wv(ωj ,sk;α
ν ,σν)

wv
= θjk exists for all sk ∈ S

and all ωj ∈ L. Then, there exists a sequence {sν} of degenerate strategy
vectors and a sequence {gν} of integer-valued weight functions, where gν is
relative to strategy vector sν and attribute function αν, such that:

1. for all sk ∈ S and all ωj ∈ L:

lim
ν→∞

gν(ωj , sk;α
ν, sν)

gν
= lim

ν→∞
gν(ωj , sk;α

ν , sν)− 1

gν
= θjk

2. the strategy vector sν is such that sνi ∈support(σν
i ) for all i ∈ N ν and

for all ν.

Proof: Suppose the statement of the lemma is false. Let S denote the set
of sequences of degenerate strategy vectors such that for any sequence {sν} ∈
S, sνi ∈support(σν

i ) for all i ∈ N ν and for all ν. Given any strategy vector σν

there always exists a degenerate strategy vector sν such that sνi ∈support(σν
i )

for all i ∈ Nν and therefore S is non empty. By assumption there exists no
sequence {sν} ∈ S satisfying the statement of the Lemma. Thus, there
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exists an ε0 > 0 such that for any sequence of strategy vectors {sν} ∈ S,
with corresponding sequence of integer-valued weight functions {gν}, and for
any ν there exists a ν0 > ν, an ωj ∈ L and a pure strategy sk ∈ S such that:

gν0(ωj , sk;α
ν0 , sν0)

gν0
− θjk > ε0

and/or:

gν0(ωj, sk;α
ν0, sν0)− 1

gν0
− θjk > ε

By way of contradiction let us construct a sequence of integer-valued
weight functions as follows. For each ν, for each sk ∈ S and each ωj ∈
L define the integer gν(ωj , sk) as the largest integer less than or equal to
wν(ωj, sk;α

ν, sν). Formally:

gν(ωj, sk) = {x ∈ Z+ : x = min{(y − wν(ωj, sk;α
ν, sν)) : y ∈ Z+ and y ≤ wν(ωj , sk;α

ν , sν)}

The construction of g implies that:

1 ≥ wν(ωj, sk;α
ν, sν)− gν(ωj, sk) ≥ 0

for all sk ∈ S, all ωj ∈ L and for all ν.
Now fix ωj. We next apply Lemma 1 to a stituation where all the players

i with attribute ωj are taken as the total player set; thus, the analogue of σ
in the statement of Lemma 1 is {σν

i : α
ν(i) = ωj}. The analogue of g in the

statement of Lemma 1 is g (ωj, ·). Lemma 1 implies that we can choose, for
each ν, degenerate strategy vectors sν (the analogues of mν in the statement
of Lemma 1) with corresponding integer valued weight functions gν such that:

1. sνi ∈support(σν
i ) for all i ∈ N ν.

2. gν(ωj , sk) + Lν ≥ gν(ωj, sk) ≥ gν(ωj , sk) for all k = 1, ..., K, where
Lν ∈ Z+ is defined for each ν as:

Lν = f ν(ωj)−
K

k=1

gν(ωj, sk)
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We note that Lν ≤ K for all ν. Thus:

|wν(ωj , sk;α
ν, sν)− gν(ωj , sk)| ≤ max{1, K − 1}

|wν(ωj, sk;α
ν, sν)− gν(ωj , sk) + 1| ≤ max{2, K − 2}

Therefore, given that f ν →∞ as ν →∞, for any ε1 there exists a ν1 such
that for all ν > ν1 we have that:

max
|wν(ωj , sk;α

ν , sν)− gν(ωj, sk)|
f ν

,
|wν(ωj , sk;α

ν, sν)− gν(ωj , sk) + 1|
fν

< ε1

However, if we select ε1 ∈ (0, ε) then for all ν > ν1 and for all ωj ∈ L and
sk ∈ S:

gν(ωj , sk)

gν
− θjk < ε

and

gν(ωj , sk)− 1

gν
− θjk < ε

This gives the desired contradiction.

3.2 Existence of ε-equilibrium in pure strategies.

In the following Theorem, we demonstrate that, given ε > 0 there is an
integer η sufficiently large so that every game Γ(N,α) has an ε-equilibrium in
pure strategies. To obtain this result, at a point in the proof we arbitrarily
select a Nash equilibrium for each game in a sequence and show that if
there are sufficiently many players, this Nash equilibrium can be used to
construct an ε-equilibrium in pure strategies. Since the selection of the Nash
equilibrium was arbitrary, our result can be viewed as a purification theorem
— in sufficiently large games, every Nash equilibrium can be purified. The
section concludes with a discussion of recent related research in Kalai (2000).

Theorem 1: Given a real number ε > 0 there exists a real number η0(ε) > 0
such that for all societies (N,α), where preferences satisfying continuity 1 and
strong anonymity, and where ρ(N,α) > η(ε), the induced game Γ(N,α)
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has an ε-equilibrium in pure strategies. Moreover, for any mixed strategy
equilibrium there exists an ε-purification.

Proof: Suppose that the statement of the Theorem is false. Then there
is some ε > 0 such that, for each integer ν there is a society (Nν ,αν) and
induced game Γ(N ν,αν) with profile ρ(Nν,αν) > ν for which there does
not exist an ε-equilibrium in pure strategies. For ease of notation, denote
ρ(N ν,αν) by f ν. That is, for each induced game Γ(N ν,αν) there does not ex-
ist a degenerate strategy vector sν, with corresponding integer-valued weight
function gν(·, ·;αν,σν) such that:

hα(i)(s, g
ν
−i(·, ·;αν, σν), fν) ≥ hα(i)(t, gν−i(·, ·;αν, σν), fν)

for all t ∈ S and for all i ∈ Nν where s ∈support(σν
i ).

Observe, however that the game Γ(Nν ,αν) has a mixed strategy Nash
equilibrium; this is an immediate application of Nash’s well known theorem.
Denote a Nash equilibrium (NE) of the game Γ(Nν,αν) by σν with the ap-
propriate weight function wν(·, ·;αν, σν). Since σν is a Nash equilibrium, for
each ν and for each i ∈ N ν we have:

hαν(i)(σ
ν
i , w

ν
−i, f

ν) ≥ hαν(i)(t, wν
−i, f

ν)

for all s ∈ S and

hαν(i)(s,w
ν
−i, f

ν) ≥ hαν(i)(t, wν
−i, f

ν)

for all t ∈ S and for all s ∈support(σν
i ).

Let δ ε
8
be the similarity parameter as defined by (Lipschitz) continuity

for a required payoff bound of ε
8
. Use compactness of Ω to write Ω as the

disjoint union of a finite number of non-empty subsets Ω1, ...,ΩA, each of
diameter less than δ. For each a, choose and fix a point ωa ∈ Ωa.
We define the attribute function αν as follows, for all ν and for all i ∈ Nν :

αν(i) = ωa if and only if α(i) ∈ Ωa

Given the weight function wν(·, ·;αν,σν) relative to society (N ν,αν) and
Nash equilibrium strategy vector σν let wν(·, ·;αν, σν) denote the weight func-
tion relative to αν and σν .
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For each a = 1, ..., A and for each k = 1, .., K define θνak as follows:

θνak =
wν(ωa, sk;α

ν, σν)

|Nν|
By passing to a subsequence if necessary assume that the limν→∞ θνak = θak
exists for all a = 1, .., A and all k = 1, ..., K.
By Lemma 2 there exists a sequence {sν} of strategy vectors and a se-

quence {gν(·, ·;αν, sν)} of integer-valued weight functions relative to attribute
function αν and the degenerate strategy vector sν, such that:

1. for all ν and for all sk ∈ S and all ωa ∈ Ω,

lim
ν→∞

gν(ωa, sk;α
ν, sν)

gν
= lim

ν→∞
gν(ωa, sk;α

ν, sν)− 1

gν
= θak (8)

2. for all ν and for all i ∈ N ν, sνi ∈support(σν
i ) .

Given the weight function gν(·, ·;αν, sν), let gν(·, ·;αν, sν) denote the in-
teger valued weight function relative to society (Nν,αν) and strategy vector
sν.

Consider the payoff to player i ∈ Nν from changing the strategy vector
σν to sν. We let f

ν

−i denote the profile of a society in which the attribute of
a player j ∈ Nν\{i} is given by α(j) and the attribute of player i is given by
α(i).
By continuity 1 and the choice of δ we have that there exists a ν1 such

that for all ν > ν1:

hα(i)ν(t, w
ν
−i(·, ·;αν ,σν), f ν)− hα(i)ν (t, wν

−i(·, ·;αν, σν), f
ν

−i)

< ε
8

for any t ∈ S.
Given Lemma 2 and strong anonymity, we have that for any ε2 > 0 there

exists a ν2 such that for all ν > ν2:

hα(i)ν(t, w
ν
−i(·, ·;αν ,σν), f

ν

−i)− hα(i)ν (t, gν−i(·, ·;αν, sν), f
ν

−i)

< ε2

26



for any t ∈ S. Set ε2 ∈ (0, ε4).
Again, using continuity 1 and the choice of δ we have that there exists a

ν3 such that for all ν > ν3:

hα(i)ν (t, g
ν
−i(·, ·;αν, sν), f

ν

−i)− hα(i)ν(t, gν−i(·, ·;αν, sν), f ν)

<
ε

8

for any t ∈ S.
Thus, for any ν > max{ν1, ν2, ν3} we have that:

hα(i)ν(t, w
ν
−i(·, ·;αν, σν), f ν)− hα(i)ν (t, gν−i(·, ·;αν, sν), f ν)

≤ hα(i)ν (t, w
ν
−i(·, ·;αν, σν), fν)− hα(i)ν(t, wν

−i(·, ·;αν ,σν), f
ν

−i)

+ hα(i)ν (t, w
ν
−i(·, ·;αν, σν), f

ν

−i)− hα(i)ν(t, gν−i(·, ·;αν ,σν), f
ν

−i)

+ hα(i)ν (t, g
ν
−i(·, ·;αν,σν), f

ν

−i)− hα(i)ν (t, gν−i(·, ·;αν, σν), fν)

< ε
8
+ ε

4
+ ε

8
= ε

2

for any t ∈ S.
However, given that

hα(i)ν (s, w
ν
−i(·, ·;αν, σν), fν)− hα(i)ν(t, wν

−i(·, ·;αν, σν), f ν) ≥ 0
for all s ∈support(σν

i ), for all i ∈ N , for all t ∈ S and for all ν, this implies
that for ν > max{ν1, ν2, ν3}:

hα(i)ν (s
ν
i , g

ν
−i(·, ·;αν, sν), fν)− hα(i)ν(t, gν−i(·, ·;αν, sν), f ν)

≥ − hα(i)ν (t, w
ν
−i(·, ·;αν, σν), fν)− hα(i)ν(t, gν−i(·, ·;αν ,σν), f ν) −

hα(i)ν (s
ν
i , g

ν
−i(·, ·;αν ,σν), f ν)− hα(i)ν (sνi , wν

−i(·, ·;αν, σν), f ν)
≥ − ε

2
− ε

2
= −ε

which gives the desired contradiction
We note that the equilibriummixed strategy vector with which we started

our proof was arbitrary. Thus, any mixed strategy can be ε-purified. (See,
for example, Aumann et. al. 1984).

Some recent related results are developed in Kalai (2000). In that paper,
Kalai introduces the appealing concept of information proof Bayesian equi-
librium, a type of equilibrium immune to changes in the prior probability of
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types, in the probabilities of mixed pure actions, and in the order of play, as
well as to information leakage and the possibility of revision. Remarkably, he
demonstrates that this is a property of Bayesian equilibrium for a broad class
of large games. Kalai also uses a sort of pregame consisting of specifications
of sets of possible player types T and possible player actions A, yielding
a finite set of possible player compositions C = A× T , and a specification
of an equi-continuous family of payoff functions. From these components,
large games can be constructed. We understand, from discussions with Ehud
Kalai, that for games with complete information his current results for large
games imply the existence of ε-Nash equilibria in pure strategies. Similarly,
our Theorem 1 can be modified to apply to games with incomplete infor-
mation and imply existence and ε-purification of Bayesian ε-equilibrium in
pure strategies; this is being carried out in work in progress (Cartwright and
Wooders 2001).
The frameworks of Kalai (2000) and this paper are sufficiently dissimilar

so that there is no immediate comparison between either the models or the
results. It does appear that Kalai’s results are stronger but his framework
appears more restrictive. For example, in Kalai (2000), only the distribution
of opponents over compositions is relevant, and not numbers of players. In
our framework, exact numbers of players can matter, but the larger the total
number of players in the game, the less they matter. In addition to existence
results, Kalai (2000) also contains a number of characterization results for
information-proof equilibria.

4 Social conformity.
Besides permitting results such as Theorem 1 (and various extensions), our
framework has the advantage that it allows us to address and provide new
formulations, of different questions than currently in the game-theoretic lit-
erature, as exemplified by the following social conformity result. The inter-
pretation of this result also requires us to look more deeply at the attribute
space. We proceed with the statement and proof of our social conformity
result and postpone discussion of indexing attributes to the next section.
An important aspect of the following result is that the number of distinct

cultures required to partition the total player set into connected intervals,
with the property that all players in the same interval play the same pure
strategy, is bounded by a constant, J(ε)K, which is independent of the size
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of the total player set. The smaller the bound J(ε), the stronger the so-
cial conformity, since the smaller J(ε), the more dissimilar players who are
choosing the same strategy may be.
Before stating Theorem 2 we require the following definition.

convex separation. Let Ω be a well ordered set with binary relation ≥ such
that any two elements ω,ω ∈ Ω are equal, written ω = ω , if and only if
they are identical in the normal sense. Furthermore, suppose that given
any two finite set of points ΩJ = {ω1, ...,ωJ} and ΩQ = {ω1, ...,ωQ},
where ω1, ...,ωJ ,ω1, ...,ωQ ∈ Ω if: ω1 ≤ ω2 ≤ ... ≤ ωJ < ω1 ≤ ω2 ≤
... ≤ ωQ then the convex hulls of the sets ΩJ and ΩQ are distinct.

it appears that convex separation is satisfied by interesting class of metric
spaces. After the proof of Theorem 2, we demonstrate that a closed subset
of finite dimensional Euclidean space satisfies convex separation.
We can now state and prove our second theorem:

Theorem 2: Assume thatΩ satisfies convex separation. Given a real number
ε > 0, there exists a real number η1(ε) > 0 and an integer J(ε) such that for
all societies (N,α), where:

1. |N | > η1(ε).

2. Preferences satisfy continuity 2 and strong anonymity.

3. For some fixed number B, for all ω ∈ Ω, |α(ω)| ≤ B.

there exists a partition of Ω into C ≤ J(ε)K convex subsets {ωc}Cc=1 such
that the induced game Γ(N,α) has an ε-equilibrium in pure strategies with
the property that, for each c = 1, ..., C, all players in Ωc choose the same
pure strategy.

Proof: Suppose not. Then, there is some ε0 > 0 such that for each integer
ν there is a society (N ν,αν) and induced game Γ(N ν,αν) with profile fν ,
where fν > ν and for which no ε-equilibrium satisfies the conditions of the
lemma.
We begin by noting that, by Theorem 1, for any ε0 there exists a number

η0(
8
18
ε0) and ν∗ such that if f ν > f ν

∗ ≥ η( 8
18
ε0) the society (N ν,αν) has
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an 8
18
ε0-equilibrium in pure strategies. Denote an 8

18
ε0 equilibrium of society

(Nν,αν) by sν with corresponding weight function gν(·, ·;αν, sν).
Given ε0, let δ ε0

18
be the similarity parameter as defined by (Lipschitz)

continuity 2 for a required payoff bound of ε0
18
. Use compactness of Ω to

write Ω as the disjoint union of a finite number of convex non-empty subsets
Ω1, ...,ΩJ(ε0), each of diameter less than δ.
Given the binary relation ≤ assume, without loss of generality, that for

all ν and for all i, j ∈ N ν, if α(i) < α(j) then i < j. For each ν we rearrange
the strategy vector sν in two stages:

1. Let nνkl denote the number of players i such that α(i) ∈ Ωl and sik = 1.
That is nνkj denotes the number of players with attributes in the set
Ωl playing pure strategy sk with probability 1. Then for each j =
1, ..., J(ε0) starting with the minimum integer i ∈ N such that αν(i) ∈
Ωj allocate players in ascending order to strategy 1 until nν1j players
are allocated to strategy 1. Then move onto strategies 2, ...,K. This
procedure will clearly reallocate the assignment of strategies within the
partition Ωj so that the weight within Ωj to each pure strategy remains
the same.

2. We have still, however, yet to create convex subsets in which all play-
ers use the same strategy. For example we may have B players with
attribute type ω where the first player is allocated to pure strategy sk
and the next B − 1 players to pure strategy sk+1. So, the second part
of the reallocation is to allocate all those players with the same type
to a unique pure strategy that at least one player previously used. It
is relatively easy to see that the total number of people whose pure
strategy we may have to change in this second part of the reallocation
is less than or equal to (K − 1)J(ε0)(B − 1).

The above procedure reassigns the 8
18
ε0-equilibrium sν to create a new

strategy vector sν. For each ν, let Nν
kl denote the set of players i ∈ Nν

such that α(i) ∈ Ωl and sik = 1. That is, a player i ∈ Nν
kl if the players

attribute is in the set Ωl and the player is allocated, in the new strategy
profile, the strategy sk. Given the set of attributes {αν(i) : i ∈ N ν

kl} let
Ων
kl denote the convex hull of these attributes. Given the steps 1 and 2
above and the definition of Ω we have that the sets Ων

kl are distinct and
convex. Furthermore, every player i ∈ Nν belongs to some subset Ων

kl. Thus,

30



(given some appropriate reallocation of the remaining attribute space) we
have created, for all ν, a partition of Ω into convex subsets Ων

1 , ...,Ω
ν
C, where

C ≤ J(ε)K and such that any two players i, j ∈ Ων
c use the same pure

strategy.
We now consider the change in payoffs from this reallocation.
The first part of the reallocation process can be seen as mathematically

equivalent to changing the attribute types of players. That is, instead of
thinking of swapping, say, the strategies that players i and j use, we can
think of it as swapping the attribute types of players i and j while keeping
their strategies unchanged. Thus, stage 1 is mathematically equivalent to
creating a new society (N ν,αν) satisfying dist(αν(i),αν(i)) < δ ε0

18
for all

i ∈ Nν . The weight function relative to strategy vector sν and society αν is
given by gν(·, ·;αν, sν). (We note that the profile of societies (N ν,αν) and
(Nν,αν) are equivalent to f ν.) This interpretation and the choice of δ allows
us to make use of continuity 2 by arguing that there exists a ν1 such that for
all ν > ν1:

hαν(i)(t, g
ν
−i(·, ·;αν, sν), f ν)− hαν(i)(t, gν−i(·, ·;αν , sν), f ν) <

1

18
ε0

for all t ∈ S and for all i ∈ Nν.
Consider, now the second part of the reallocation in which at most finite

number (K − 1)L(ε0)(B − 1) players change pure strategy. Assume this
changes the strategy vector to sν and the weight function to gν(·, ·;αν, sν).
Because, only a finite number of players change strategy, it can be shown,
using continuity 2 (or 1), strong anonymity and an argument analogous to
that in Theorem 1, that there exists a ν2 such that for all ν > ν2:

hαν(i)(t, g
ν
−i(·, ·;αν, sν), f

ν
)− hαν(i)(t, gν−i(·, ·;αν , sν), f

ν
) <

4

18
ε0

for all t ∈ S and all i ∈ N ν. The intuition is clear - there are only a
bounded and given number of players changing strategies - note that J(ε0)
can be fixed at say 1

δ
+ 1 - and so for large enough populations the weight

function is relatively unchanged by these players changing strategies. Thus
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for ν > max{ν1, ν2}:

hαν(i)(t, g
ν
−i(·, ·;αν, sν), f ν)− hαν(i)(t, gν−i(·, ·;αν, sν), f

ν
) ≤

hαν(i)(t, g
ν
−i(·, ·;αν , sν), f ν)− hαν(i)(t, gν−i(·, ·;αν, sν), f

ν
)

+ hαν(i)(t, g
ν
−i(·, ·;αν, sν), f

ν
)− hαν(i)(t, gν−i(·, ·;αν, sν), f

ν
)

< 1
18
ε0 +

4
18
ε0 =

5
18
ε0

for all t ∈ S and all i ∈ Nν.
We began by noting that there exists a finite ν∗ such that for all ν > ν∗

there exits an 8
18
ε0-equilibrium in pure strategies sν and corresponding weight

function gν(·, ·;αν, sν), implying that:

hαν(i)(s, g
ν
−i(·, ·;αν, sν), fν) ≥ hαν(i)(t, gν−i(·, ·;αν , sν), f ν)− 8

18
ε0

for all t ∈ S and all s ∈support(sνi ) and for all i ∈ Nν .
This implies, for all ν > max{ν1, ν2, ν∗} that:

hαν(i)(s, g
ν
−i(·, ·;αν, sν), f

ν
)− hαν(i)(t, gν−i(·, ·;αν, sν), f

ν
) ≥ (9)

− hαν(i)(s, g
ν
−i(·, ·;αν, sν), fν)− hαν(i)(s, gν−i(·, ·;αν, sν), f

ν
) (10)

− hαν(i)(s, g
ν
−i(·, ·;αν , sν), f ν)− hαν(i)(t, gν−i(·, ·;αν, sν), f ν)

− hαν(i)(t, g
ν
−i(·, ·;αν, sν), fν)− hαν(i)(t, gν−i(·, ·;αν , sν), f

ν
)

≥ − 5
18

ε0 − 8

18
ε0 − 5

18
ε0 = −ε0

for all s ∈support(sνi ) and for all i ∈ N ν.
The above expression, however, gives the desired contradiction. To see

this we make two observations. Firstly, we repeat the analogy that swapping
the strategies of players is ‘equivalent’ to swapping their attribute types.
Thus, if stage 1 of the reallocation swaps the strategy of players i and j
the above shows that player j is at an ε0-equilibrium. Secondly, we have to
consider the players who were allocated a new and different strategy in stage
2 of the reallocation. We recall that, say b ≤ B, players were of the same
attribute type and at most b− 1 were reallocated a different strategy. How-
ever, this implies that at least one player i did retain their original strategy
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sνi and so remain at an ε0-equilibrium. Given the other b − 1 players have
the same attribute type they must also be at an ε0-equilibrium.

In an appendix, we provide several examples illustrating various spaces
that satisfy convex separation, including Euclidean space, both finite or infi-
nite dimensional.

5 Attribute indexing.

5.1 An example of attribute indexing

A particular example of attribute indexing may be helpful. Note first that
that an attribute can be given by a sequence of real numbers x = (x1, x2, ....)
where xi ∈ [a, b] for some finite a, b ∈ R. Given two sequences x = (x1, x2, ...)
and (y1, y2, ...), a standard metric is given by:

ρs(x, y) =
∞

i=1

|xi − yi|
1+ |xi − yi|2

−i (11)

which makes Ω a metric space furnished with the product topology. The
metric space (Ω, ρ) is compact and therefore separable. This metric, how-
ever, may not appear very appropriate in that traits described ‘early in the
sequence’ receive undue weight when measuring the distance between two
sequences. This may not be as severe as it may seem as the ordering of the
numbers in the sequence is of ‘our choice’.12 We can, however, improve on
the metric above.
12We may prefer the metric in which the distance between two sequences x = (x1, x2, ...)

and (y1, y2, ...) is given by:

ρl∞(x, y) = sup
i
|xi − yi|

The metric space (Ω, ρl∞) is, however, not separable and therefore not compact. To see
this think of a set of sequences: {(1, 0, 0, ...), (0, 1, 0, 0, ...), (0, 0, 1, 0, 0, ...)}. This set is not
finite and the distance between any two points in the set is 1. This implies that there
cannot be a finite ε-net for ε < 1

2 . That is, for ε <
1
2 there cannot be a finite set of points{ω1, ...,ωG} belonging to Ω such that the collection of balls {B(ωi, ε)} covers Ω. Thus,

the space (Ω, ρl∞) is not totally bounded and therefore not compact. (To show the space
is not separable use the set of all binary sequences.)
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We begin by introducing some notation: Given a sequence of real numbers
x = (x1, x2, ...) and a finite set of positive integers P = (1, ..., P ), a sequence
x = (x1, x2, ...) is a permutation of x with respect to P if:
1. xi = xi for all i /∈ P and,
2. there exists a one-to-one mapping p from P to P such that xi = xpi for
all i ∈ P .

For any x ∈ Ω let πP(x) denote the set of permutations of x with respect
to P. Then we can define a metric, given P , by:

ρP(x, y) = sup
z∈πP(x−y)

∞

i=1

|zi|
1+ |zi|2

−i

This is indeed a metric for any finite set P. Furthermore, the metric space
(Ω, ρP) is compact. Thus, in this metric we essentially pick a finite set of
‘representative points’ and measure the distance between two attributes so
the representative points are the most important.
To see how a sequence of numbers x = (x1, x2, ....) can be interpreted as

an attribute firstly, assume that a player’s endowment or physical charac-
teristics, such as endowment of commodities, profession, or power measured
in some way, are given by a point in a closed subset of RC for some finite
positive integer C. Also assume that payoffs to mixed strategies are the nat-
ural convex combinations of the payoffs to pure strategies.13 We begin by
taking a society (N,α) as given. Taking the attributes of players i ∈ N as
fixed and noting that there are only a finite number of strategies K, there
are only a finite number of possible integer valued weight functions g for the
society (N,α). Furthermore, this implies that there are only a finite number
of possible strategy/integer valued weight function pairs (sk, g) with respect
to player i for the society (N,α). Thus, suppose we associate a real num-
ber {−1} ∪ [0, B] to each of these possible strategy/integer valued weight
function pairs. We assign the value −1 only to strategy/integer valued pairs
that are not feasible - for example player i with attribute α(i) playing strat-
egy s where g(α(i), s) = 0. The real number attached to a strategy/integer

13For example, if there are two players and player 1 chooses the pure strategy s1 while
player two chooses the mixed strategy s1 with probability p1 and s2 with probability p2,
then the payoff to player 1 is p1 times his payoff to both players choosing s1 plus p2 times
his payoff to his strategy s1 and strategy s2 for player two.
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valued weight function pair is interpreted as the payoff from a realization of
that strategy/integer valued weight function pair. This implies that, for the
given society (N,α), the payoff function of player i can be defined by a finite
sequence of bounded real numbers.
A simple example may be clarifying. Consider a society of four people

indexed 1, 2, 3 and 4 and two strategies indexed A and B. Suppose further
that α(N,α)(1) = α(N,α)(2) = ω1 and α(N,α)(3) = α(N,α)(4) = ω3. Let
us consider the payoff function of player 1. The payoff function must assign
values to the following strategy/integer valued weight function pairs:-

(A; (2× A; 2×A)) ; (A; (2× A; 2×B)) ; (A; (2×A; 1×B, 1×A)) ; (A; (2×B; 2× A))

etc. where (2×A; 2×B) is interpreted as the integer valued weight function
in which two players with attribute ω1 play strategy A and two players of
attribute ω3 play strategy B. Note that the value assigned to the final
strategy/integer value weight function pair given is −1.
An attribute type and payoff function must, however, specify the payoff

from all possible societies. Given that Ω is separable let Ω∗ denote a count-
able, everywhere dense, subset of Ω. Assume, for any society (N,α), that
α(i) ∈ Ω∗ for all i ∈ N. Then, since the union of a countable number of
possible societies is countable, there are only a countable number of possi-
ble societies (N,α). Since each society (N,α) has a finite number of players
|N | , there are only a finite number of possible strategy/integer valued weight
function pairs for that society. Thus, it is possible to describe the payoff from
all strategy/integer valued weight function pairs for all societies (N,α) for
which α(i) ∈ Ω∗ for all i ∈ N by a countable sequence of real numbers.
Consider finally the payoff to strategy/integer valued weight function

pairs for societies (N,α) for which α(i) /∈ Ω∗ for some i ∈ N . Fixing the size
of the society at |N | and using the Prohorov metric, which we will denote by
dP on the space of possible weight functions for a society of size |N |, given any
integer valued weight function g and any ε > 0 there exists an integer valued
weight function g∗ such that the support of g∗ is Ω∗ and dP (g, g∗) < ε. This
follows from Ω being separable. Thus assume there exists an ε such that the
payoff from any strategy/integer valued weight function pair (s, g∗) is within
ε of the payoff from any strategy/integer valued weight function pair (s, g∗)
where the support of g∗ is Ω∗ and dP (g, g∗) < ε. The payoffs to all possible
strategy/integer valued weight function pairs can thus be given within some
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bound of ε by a countable sequence of real numbers. Theorems 1 and 2 then
follow with slight adjustment for the ε.

6 Conclusions.
The noncooperative framework promises to be fruitful. First, the techniques
developed in this paper may be useful in other applications. One potential
application, currently in progress, is to games with incomplete information
(Cartwright and Wooders 2001). So far there appears to be no major obsta-
cles to obtaining uniform large (but finite) analogues of the sorts of results
of Aumann et al. (1983). In particular, note that Lemma 1 applies to any
game and we conjecture that an extension of our model to incomplete infor-
mation would be obtained using that Lemma similarly to how it is used in
this paper. Indeed, it seems that as long as we restrict to compact metric
spaces and to the appropriate Lipschitzian continuity conditions, analogues
of Theorem 1 will continue to hold.
Other possible applications concern the so called “Equivalence Principle”

of cooperative outcomes of large (“competitive”) exchange economies. In ex-
change economies with many players, the set of equilibrium outcomes, rep-
resented by the induced utilities of members of the economy, coincides with
the core of the core of the game generated by the economy and the value out-
comes; see Debreu and Scarf (1963), Aumann (1963, 1985). We conjecture
that when noncooperative games derived from pregames are required to sat-
isfy the conditions of this paper (satisfied, in spirit, for exchange economies
for which the Equivalence Principle holds) and, in addition, the condition of
self-sufficiency — that what a coalition of players can achieve is independent
of the society in which it is embedded — then analogues of the Equivalence
Principle can be obtained for large noncooperative games. More precisely, we
conjecture that under self sufficiency, (approximate) strong equilibrium out-
comes are close to Pareto optimal and also treat similar individuals similarly
— that is, strong equilibrium outcomes have the equal treatment property.
Comparing our model with those for cooperative pregames, in spirit the

frameworks have significant similarities. The cooperative pregame frame-
work, however, is not totally satisfactory. One shortcoming is that some of
the results depend on the framework itself (cf. Wooders 1994, Theorem 4,
relating small group effectiveness and boundedness of average or per capita
payoff). This, the inability of the pregame framework to treat widespread
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externalities, and a desire to highlight what drives the results, led to the
introduction of ‘parameterized collections’ of games (cf. Kovalenkov and
Wooders 1996, 1997). We anticipate that eventually such a framework will
be introduced for noncooperative pregames. In particular, one advantage of
the framework of Kovalenkov and Wooders (1997) is that an exact bound
on the size of a game to ensure nonemptiness of ε-cores can be calculated;
we hope to eventually obtain such a bound for ‘parameterized collections of
noncooperative pregames.’
A different direction of research may lead to more insight into social

norms and the difficulties of achieving economic efficiency. When individuals
mimic similar individuals, the metric that they place on ‘similarity’ is crucial.
A bright and highly capable young woman, living in a low income area in
Liverpool, for example, may aspire to occupations similar to those of the more
successful women in her community — nurses, bank clerks, school teachers,
for example — rather than occupations similar to those of successful males
in her community with similar intellectual ability — doctors, bankers, school
principals, for example. It may be that if the ‘similarity metrics’ that people
use are biased to place too much weight on similarities of gender, race, color,
or religion rather than on similarities of ability, interests, and so on, there
may be (non-Nash) ‘stable equilibrium’ outcomes that are quite different than
Nash outcomes. Some of the motivation for developing the current model is
to explore such issues.
Related questions concern concepts of equilibrium based on imitation and

learning. Typically, such equilibrium outcomes are not Nash equilibria. This
is, in some senses, at odds with our Theorem 2 and its motivation. It may be
fruitful to investigate what sorts of learning and imitation dynamics would
lead to the sort of ε-equilibrium shown to exist in Theorem 2.

7 Appendix: Euclidean space satisfies convex
separation.

7.1 Convex separation.

To provide a simple example of convex separation, we show that a closed
subset of finite dimensional Euclidean space satisfies convex separation:
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Lemma 3: For any finite integer M the linear space ×Mm=1[0, 1] satisfies
convex separation.

Proof. We define the binary relations < and = as follows: Take any two
points x = (x1, ..., xM), x = (x1, ..., xM) ∈ ×Mm=1[0, 1]. We say that x = x if
xm = xm for all m = 1, ...,M . We say that x < x if either:

1. m xm < m xm or,

2. m xm = m xm and for some m
∗ ∈ {1, ...,M − 1} xm∗ < xm∗ and

xm = xm for all m < m∗.

Suppose ΩJ = {x1, x2, ..., xJ} and ΩQ = {x1, x2, ..., xQ} are two sets of
points in ×Mm=1[0, 1]. Then, if xj < xq for all xj ∈ ΩJ and all xq ∈ ΩQ we
claim that: the convex hulls of ΩJ and ΩQ are disjoint. Denote the convex
hull of a set of points S by con S where

con S =
x|x = n

i=1 βisi for some numbers βi, 0 ≤ βi ≤ 1,
n
i=1 βi = 1, and for some set of points si ∈ S .

Thus, suppose the claim is false. Then there exists a point x such that x ∈ con
ΩJ and x ∈ con ΩQ. Thus, for some numbers β1, ..., βQ and γ1, ..., γQ we have
that:

x =
J

j=1

γjxj and x =
Q

q=1

βqxq. (12)

which implies that:

J

j=1

γj

M

m=1

xjm =

Q

q=1

βq

M

m=1

xqm

Suppose, for some xj∗ and xq∗ we have that m xjm < m xqm. Then, given
that xj < xq for all xj ∈ ΩJ and all xq ∈ ΩQ, we must have that either
γj∗ = 0 or βq∗ = 0. Let Ω

+
J denote the set of xj ∈ ΩJ given positive weight

γj > 0 and Ω+Q the set of all xq ∈ ΩQ given positive weight βq > 0. Then

m xjm = m xqm for all xj ∈ Ω+J and xq ∈ Ω+Q. Then for any pair of points
xj ∈ Ω+J and xq ∈ Ω+Q there must exist some m

∗ ∈ {1, ...,M − 1} for which
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xm∗ < xm∗ and xm = xm for all m < m∗. Take the minimum of these m∗

over all points xj ∈ Ω+J and xq ∈ Ω+Q. Then by 12 we have that:

J

j=1

γjxjm∗ =

Q

q=1

βqxqm∗

However, by choice of m∗ we have that xjm∗ ≤ xqm∗ for all j, q and xjm∗ <
xqm∗ for some j, q which implies that:

J

j=1

γj >

Q

q=1

βq

giving the desired contradiction.

The same line of reasoning exemplified by the example above can be
extended to other spaces. Here are two examples we subsequently use below.
We can use the following binary relation on the space of bounded sequences
of real numbers: two sequences x = (x1, x2, ....) and y = (y1, y2, ...) are equal,
written x = y, if and only if xi = yi for all i ∈ Z+. We say that the sequence
x is strictly less than the sequence y if:

∞

i=1

xi
1+ |xi|2

−i <
∞

i=1

yi
1+ |yi|2

−i

The remaining case is one in which the above sum is equal but the two
sequences are not equal. This implies that there is some smallest integer
i ∈ Z+ at which they differ, say xi < yi, and in this case we say that x < y.
Consider now the set of real valued, bounded, measurable functions on

the closed unit interval. Two functions f and g are identical, written f = g,
only if f(x) = g(x) for all x ∈ [0, 1]. If

[0,1]
f(x)dµ <

[0,1]
g(x)dµ then we

say f < g. Once again, the remaining case is when the integrals are equal
but the functions are not. This implies some smallest number x ∈ [0, 1] such
that, say f(x) < g(x), and thus we say f < g..
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