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Abstract: This study is aimed at the detection of single-trial feedback, perceived as erroneous by the
user, using a transferable classification system while conducting a motor imagery brain–computer
interfacing (BCI) task. The feedback received by the users are relayed from a functional electrical
stimulation (FES) device and hence are somato-sensory in nature. The BCI system designed for this
study activates an electrical stimulator placed on the left hand, right hand, left foot, and right foot
of the user. Trials containing erroneous feedback can be detected from the neural signals in form of
the error related potential (ErrP). The inclusion of neuro-feedback during the experiments indicated
the possibility that ErrP signals can be evoked when the participant perceives an error from the
feedback. Hence, to detect such feedback using ErrP, a transferable (offline) decoder based on optimal
transport theory is introduced herein. The offline system detects single-trial erroneous trials from
the feedback period of an online neuro-feedback BCI system. The results of the FES-based feedback
BCI system were compared to a similar visual-based (VIS) feedback system. Using our framework,
the error detector systems for both the FES and VIS feedback paradigms achieved an F1-score of
92.66% and 83.10%, respectively, and are significantly superior to a comparative system where an
optimal transport was not used. It is expected that this form of transferable and automated error
detection system compounded with a motor imagery system will augment the performance of a BCI
and provide a better BCI-based neuro-rehabilitation protocol that has an error control mechanism
embedded into it.

Keywords: brain–computer interfacing; error related potential; functional electrical stimulation;
somato-sensory feedback; optimal transport; transfer learning

1. Introduction

Brain–computer interfaces (BCIs) have led to numerous advances in neuro-rehabilitation
by providing a communication and control channel that bypasses the muscular activation of
the limbs and relies more on the intention of the users as decoded from their neural activities.
This technology was initially conceived for the benefit of patients with neural disorders,
such as post-stroke effects, amyotrophic lateral sclerosis, spinal injuries, and physical
disabilities [1,2], but as research has progressed in this area so has the potential applications
of this technology in communications [3], automation [4], the military [5], and gaming [6].
Electroencephalography (EEG) is the most commonly used modality for the recording
of neural signals [7,8]. Although the potential for applying BCI systems in clinical and
general applications is high, such an approach remains extremely demanding in terms
of the cognitive attention and effort required [9]. Even after numerous years of research,
BCI systems are still prone to error in the detection of mental intentions, making them
unreliable for real-world applications.
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The reliability of a BCI can be improved by detecting errors made by the system
and by including an error-correction process to rectify the previous erroneous decision.
One such way is the detection of error-related potentials (ErrPs) directly from the neural
signals of the users when controlling the system [10–12]. Earlier studies on EEG signals
related to erroneous actions during a speed response task have been reported [13–15].
ErrP signals are usually generated when a subject commits an error or observes an error
being committed either by another user or an agent [16]. Hence, an ErrP signal is usually
generated while the user performs another task, such as when using a P300 speller or a
motor/mental imagery system, and the system provides erroneous feedback (in visual,
auditory, or sensory form, among others) to the user. The choice of feedback depends on
the intended application of the BCI [17].

Numerous researchers have aided in the design of automatic ErrP detectors, which
have been successfully implemented in BCIs involving sensori-motor rhythms and in
event-related potentials (ERPs) such as the P300. Early research on ErrPs was reported
by Ferrez et al. [10], in which an ErrP was used as a corrective measure to cancel the
movement of the cursor for an incorrectly classified motor intention. In addition, one of
the first studies on integrating ErrP-based correction on an online P300 speller system
was reported in [18], in which the authors detected a single trial ErrP with an accuracy of
approximately 60%. In addition, Schmidt et al. [19] used an online ErrP recognition system
in their Center Speller [20]. A similar system was used by Spüler et al. [21] on young,
elderly, and motor-impaired individuals with ALS and Duchenne muscular dystrophy.
Bevilacqua et al. [22] explored the possibility of detecting ErrPs during a pseudo-online
motor imagery BCI speller task. Studies also exist that showed no or little improvement of
BCI performance after using ErrP for automatic error correction [18,23], or the participants
were more confused and preferred not to use BCI with the error correction system [23].
When implementing an automatic error detector using ErrP, it is expected that the clas-
sification performance of ErrP will be higher to that of the companion BCI signal (such
as, P300, motor imagery, etc); otherwise, the overall performance will suffer. It can be
attributed to small datasets with even less occurrence of ErrP. Recent studies have aimed to
improve the detection of ErrP by using double detection of single-trial responses [24,25],
or by implementing more robust classification techniques [26]. An extensive review of
the applications of ErrPs for motor-impaired individuals along with briefs on existing
challenges and future direction can be found in [27,28].

An open area of research prevalent to a BCI is the need for the design of a zero-training
or minimal-training system that can completely remove or reduce the need for constantly
training users before each new session. This requirement arises from the non-stationarity
found in an EEG owing to changes in the electrode location and impedances [29], as well
as changes in the cognitive state of the user [30]. Transfer learning approaches are being
extensively investigated for this purpose. Current approaches applied for cross-subject
transfer learning include a least squares transformation of the source EEG [31], k-nearest
neighbor [32], and multi-subject common spatial patterns [33,34]. Some deep-learning
approaches have also been proposed using adversarial networks and manifold constraints
for cross-subject classification [35–37]. Extensive details on transfer learning approaches
applied to a BCI are discussed in [38,39].

In our previous study [40], we used functional electrical stimulation (FES) [41,42]
as a form of neuro-feedback to motor-imagery BCI tasks. FES is traditionally used for
stroke rehabilitation, and operates by directing electrical stimulation to the muscles located
in the impaired section of the body, and aims at eliciting a recovery of daily life skills,
such as standing, grasping, cycling, and walking, by re-training the users regarding these
tasks [43,44]. In [40], we demonstrated that FES-based feedback augments the motor-
learning skills of the participants. In this study, we aim to detect a response evoked in the
brain signals of the participants in the form of ErrP when they observe (in the case of visual
feedback) or sense (in case of FES as feedback) an erroneous trial. Such feedback could be
due to either the participant or the online classifier making an error. Erroneous perception
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is a frequently occurring cognitive process in our daily life. The motor imagery paradigm is
popularly employed in BCI for neuro-rehabilitation. Thus, verifying erroneous perception
from neural signals while the user is performing a primary task (for example, motor
learning of upper limbs) is an important issue. In a previous study [45], a reinforcement
learning based BCI was developed that uses the ErrP signals to control the activation of
an FES device. In the present study, we first detect whether individuals trained only on
motor imagery tasks can identify incorrect feedback by eliciting ErrPs. If detected, we aim
to study the effects of FES on such elicitation and compare the results with standard visual
feedback. If successful, this detection of incorrect feedback will allow patients to directly
intervene in their motor recovery process and will make the neuro-rehabilitation paradigm
more interactive and reliable to them. This study marks the first time such an approach has
been undertaken.

In this experiment, the participants underwent training not to evoke an ErrP and for
only motor imagery tasks. Hence, no preliminary data on the participants were available
that could be used to train the error detector. Thus, as a work-around, we have developed
a cross-subject transferable, automated ErrP detection system for individual participants
by considering the knowledge representation of other participants carrying out the same
tasks. In this study, we apply optimal transport theory [46] as a transfer learning technique
to train a classifier on erroneous and correct trials for a known group of users and to
test it on an unknown user (cross-subject). An optimal transport was previously used
in source localization using an EEG/MEG [47], P300 [48], and sleep stage detection [49],
although this is the first time it is being used for error detection.

The rest of this paper is as follows: Section 2 briefly describes the experiment protocol
adopted for the study of FES as a type of neuro-feedback during a motor-imagery BCI task.
This section also provides insight into the proposed method adopted for an automated ErrP
detection system based on transfer learning. Section 3 provides a detailed discussion on the
results and their significance. A summary of this study and future approaches including
potential areas of application are discussed in Section 4, followed by some concluding
remarks in Section 5.

2. Materials and Methods

As FES feedback is tactile in nature, it is quite possible that the participants will elicit
ErrP when the wrong limb receives the feedback. ErrP signals are generally identified by a
negative deflection occurring at 50–100 ms after the feedback response, which is immedi-
ately followed by a positive peak at approximately 200–500 ms after such a response [50].
The positive peak is due to the conscious post-error adjustment made by the participant [9].
The complete flow of the online experiment conducted by the FES and VIS groups and a
conceptualised diagram of detecting erroneous feedback during the online experiment is
illustrated in Figure 1. In this study, we designed an automatic, transferable error detector
tuned to detect ErrP signals. In its current iteration, the system is applied offline, but, in
future experiments, an online version will be implemented to assist the participants with an
error correction. Sections 2.1–2.4 briefly describe the online neuro-feedback BCI experiment
using functional electrical stimulation as a feedback modality that we conducted for a
four-class motor imagery class. Extensive details of the experiment are provided in [40].
Then, from Section 2.5 onward, we describe our methodology in extracting characteristic
features from erroneous and correct feedback and the implementation of a transferable
decoder to correctly predict those feedback across participants.



Brain Sci. 2021, 11, 1393 4 of 18

Afferent Sensory Feedback

to the corresponding body part

Stim

Raw EEG
Temporal filter

FES somatosensory feedback

Time

Synchronized

CSP pattern extraction

LDA classifier

Feedback modality:
Motor imagery of

Left hand/ Right hand/

Left Leg/ Right Leg

Decoding 

Motor Imagery

Error Perception Decoding

Figure 1. Representation of the online BCI system for the VIS and FES groups, as described in
Section 2. Based on the LDA classifier output, the occurrence of ErrP signals is expected to be
detected from incorrectly classified trials (as mentioned above).

2.1. Data Acquisition

The neural signals were recorded using a TMSI Refa8 EEG amplifier at a sampling
rate of 256 Hz from 17 electrode locations in the fronto-central, central, centro-parietal,
and parietal regions (arranged in a standard 10–20 configuration), namely, Fz, FC3, FCz,
FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P3, Pz, and P4. The left ear mastoid was
used as a reference electrode while the right ear electrode was used as the ground electrode.

The surface electrical stimulation was delivered using a computer-controlled stim-
ulator (ProStim, MXM, France) with a maximum pulse width (PW) modulation [51] of
400 µs at a constant amplitude and frequency (20 Hz). Each stimulation sequence consisted
of a trapezoidal envelope train PW (0.4 s ramp-up, 1.2 s plateau, and 0.4 s ramp-down).
Rectangular electrodes of 5 × 9 cm in size were placed in the anterior compartment of
the upper-limbs and the triceps surae muscle group for the lower-limbs to induce a wrist
flexion and foot plantar flexion, corresponding to the mental task performed. The electrical
stimulation was set by the participants before the start of the experiment to a comfortable
level. Nevertheless, it was ensured that the electrical stimulation did not exceed 25 mA.

The EEG recording, display of visual cues, feedback, and online classification of the
motor imagery tasks were conducted using OpenVIBE software [52]. The output of the
classifier was sent as a command to the stimulator through MATLAB. An offline analysis
for automated ErrP detection was conducted in a Python 3.5 environment, the results of
which are discussed in Section 3.
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2.2. Participants

Sixteen naive participants (13 male and 3 female, with a mean age = 28 ± 9 years)
volunteered for this study. Among the 16 participants, 8 received feedback regarding the
electrical stimulation (henceforth, called the FES group), whereas the other 8 were provided
visual feedback (henceforth, called the VIS group). The selection of participants in the FES
and VIS groups was conducted at random. The participants undertook the experiment in
isolation while sitting in a comfortable chair placed in front of a display monitor placed
at eye level. The subjects were informed about the purpose of the experiment and the
tasks they would be required to perform prior to the start of the experiment. After this
debriefing, if they agreed to continue with the experiment, the participants signed an
informed consent form that was previously approved by the institutional (Inria) ethical
committee. Following the completion of the experiment, the participants were asked to
provide a subjective assessment of how focused they were while performing the tasks on
scale of 1–−10.

2.3. Task Description and Visual Cue

The participants performed the cued motor imagery tasks using their left hand, right
hand, left foot, and right foot. Each participant from the FES and VIS groups underwent
a single training session followed by three feedback sessions. Each session consisted of
24 trials for each motor imagery task.

The visual cues (Figure 2) were displayed in the following sequence. At the beginning
of each trial, a fixation cross was displayed on the screen for 1 s. Motor imagery instructions
were then provided for 1 s in the form of arrows. The sequence of arrows was as follows:
a left/right arrow to indicate a motor imagery on the left/right side, followed by an
up/down arrow to indicate whether to move the hand or foot. For example, if a right
arrow was displayed followed by a down arrow, then the participant must imagine moving
the right foot. The instruction cues were followed by a feedback period of 4 s, where the
participant conducted the task at hand and had the chance to visualize (VIS group)/sense
(FES group) their own performance. There was delay of 500 ms in the projection of the
feedback (that is, the display of a feedback bar or the relay of electrical stimulation) owing
to the computations involved by the online decoder. Finally, after the feedback period,
a blank screen was displayed for 2.5–3.5 s, allowing the participants to relax.

B +
Time

+ B

20s 1s 0.5s 0.5s                         4s                2.5s-3.5s

Right imagery

Left imagery

Hand imagery

Leg imagery

Figure 2. Sequence of visual cues displayed to the participants during the online neuro-feedback
experiment. Each trial began with the display of a fixation cross, denoted by ‘+’ in the figure, followed
by a left or right arrow indicating the left or right side of the body, and finally an up or down arrow
to indicate whether to move the hand or foot. The second ‘+’ is the feedback period, which is the
time interval of interest in this study.

2.4. Generation of Online Motor Imagery Commands for Feedback

While the participants were conducting the experiment, continuous streams of EEG
signals were recorded using Openvibe software. The continuous EEG signals were seg-
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mented into lengths of 5 s (epochs), starting from 1 s before the onset of the feedback period
of each motor imagery (MI) task. Each epoch was then filtered using a fourth-order Butter-
worth band-pass filter at [.5,40] Hz, notch filtered at 50 Hz and re-referenced at Fz. Hence,
the influence of muscle artefact, electrical stimulator noise, and line noise were removed at
this stage of the processing. Finally, log-transformed variances of the first and last spatial
filters were computed using common spatial patterns (CSPs) [53] to extract the feature
vectors. These feature vectors were used as inputs to a multi-class linear discriminant
analysis (LDA) classifier [54].

The classifier (in Openvibe) predicted the outcome of the motor imagery task con-
ducted by the participant during each trial in the form of output labels and the hyperplane
distance. The feedback begins to be elicited 500 ms after the start of the feedback period
and is constant for the whole duration of the feedback period. The FES group receives
feedback to the limb (right/left hand or right/left foot) corresponding to the output label at
different intensities of the stimulation pulse widths, depending on the hyperplane distance.
The intensity of the electrical stimulation does not go beyond that selected by the partic-
ipant at the beginning of the experiment. The feedback for the VIS group was provided
to the subject in the form of a blue bar. If the bar appeared to the right of the fixation
cross, the participant was informed that the classifier had achieved a correct prediction.
Otherwise, for an incorrect classification, the bar appears to the left of the fixation cross. It
must be noted that the FES group received no form of visual feedback. We had observed
that there were no discriminable features from the EEG signals of the left and right foot
movement which was further reflected in the classification accuracy. Hence, for our offline
studies on this dataset, we had combined both the right and left foot imagery as one that is
foot imagery.

2.5. Filtering and Processing of EEG Signals

First, the recorded EEG signals were segmented into epochs within the range of
[0, 1.5] s, where 0 indicates the onset of the feedback period. As mentioned earlier, the feed-
back would be sensed (for the FES group) or visualized (for the VIS group) 500 ms after the
onset of the feedback. Thus, our signal of interest, that is, the ErrP, should be present after
500 ms. The epochs were then low-pass filtered at a pass band of 0-6 Hz and a stop band of
8–128 Hz with an optimal finite impulse response (FIR) filter designed using a Remez ex-
change algorithm [55]. We kept the higher cut-off at 6 Hz to remove any overlapping of the
motor imagery signals with our signal of interest. ErrP signals are dominant in the range of
[0.1, 10] Hz [10] while motor imagery signals are dominant in the range of [8, 12] Hz [40].
As the online experiment is based on motor imagery control, some overlap between motor
imagery and ErrP waveforms were found in electrode Cz during preliminary analysis.
As the focus of analysis in this study is to detect whether ErrP were being generated within
the participants during the online experiment, a passband of [0–6] Hz was selected in this
study to limit the influence of motor imagery signals in the classification process (while
taking into consideration an attenuation of the signal amplitude).

Based on the literature [27], ErrP signals are dominant in the anterior cingulate cortex
of the human brain. Thus, we selected FCz, Cz, and CPz electrodes for analysis because
they are the closest to this region. A surface Laplacian filter [56] was applied to the EEG
signals of these electrodes to spatially filter the signal (for example, to spatially filter Cz,
the mean of the adjoining electrodes C1, FCz, C2, and CPz were subtracted from the
original signal at Cz). The spatially filtered signals were then baseline corrected using
signal segments retrieved from 300 ms before the onset of the motor imagery stimulus. We
chose this earlier segment of the signal for a baseline correction to avoid contamination
from any signals occurring from the motor imagery EEG signals. Finally, the processed
signal was down-sampled by a factor of 16. The resulting down-sampled signal of length 24
was then used as the features for each channel. The feature vector prepared has dimensions
of Number_o f _Trials× ( f eatures× channels) = 96× (24× 3) = 96× 72.
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2.6. Relabeling of Epochs to Correctness

To detect erroneous trials in the form of ErrP signals, we re-labeled the trials with
correct feedback (produced by the online BCI) as ‘correct’, whereas the trials with incorrect
feedback were labeled as ‘incorrect’. The percentage of correct and incorrect feedback for
each participant is shown in Figure 4a,b (see Section 3.1). Henceforth, all analyses described
in this paper use ‘correct’ and ‘incorrect’ trials as the ground truth.

2.7. Transfer Learning Using Regularized Discrete Optimal Theory

Intuitively speaking, transport theory is the study of optimal solutions to transport
mass between two probability distributions by minimizing the transportation cost. Optimal
transport was first formulated by Gaspard Monge in 1781 as a resource allocation problem
that searches for a transport map to minimize a certain cost. Kantorovic [57] proposed
an adaptation of the optimal transport problem that looks for a probabilistic coupling to
minimize the cost function. Recent studies have begun modifying and implementing an
optimal transport to solve covariate shifts [46] in domain adaptation problems. Extensive
details on optimal transport for domain adaptation can be found in [46,58]. In this study, we
briefly describe this method for ErrP detection across different participants. The method-
ology applied here was adopted from an earlier study on a P300 Speller classification
problem [48].

2.7.1. Background

Let us consider V = {( fi, ci)}N
i=1 to be the data obtained from a participant or vol-

unteer. Each participant has undergone N trials, and the feature vectors F = fi
N
i=1 ⊂ Rd

of dimension d have corresponding classes C = ci
N
i=1. Assume that we have a group of

participants as sources and another group as targets. Their corresponding neural data will
then be denoted as Vs and Vt. Let us assume that the classes for the sources are known and
the targets are to be estimated. In addition, being a transfer learning problem, it is assumed
that the source and target domains have been subject to a covariate shift. Here, we aim to
recover a transport plan between the probability distribution of the source domain P(Fs)
and the target domain P(Ft). This plan will allow us to map the source domain onto the
target domain, and a classifier trained on the transported source data can finally predict the
classes of the target data.

The discrete adaptation of our problem is limited to the matching of empirical mea-
sures µs of P(Fs) and µt of P(Ft) owing to a fixed number of samples (trials). The empirical
distribution µ for both the source and target domain are given by the following:

µ =
N

∑
i=1

piδ fi
(1)

where pi is the probability mass (associated with either the source or target), and δ f is
the Dirac distribution for feature f . Considering ps and pt as the probability mass of the
source and target data and 1N as a unit vector of the I-dimension, we can then compute the
transport plan τ0 in such a manner that, when probabilistic couplings occur between µs
and µt, X = {τ ∈ (R+)Ns×Nt |τs1Nt = ps, τtNIs = pt}, and thus τ0 ∈ X can be derived
from the following minimization problem:

τ0 =argminτ∈X < τ, J >F +

λ ∑
i,j

τ(i, j) log τ(i, j)+

η ∑
j

∑
c

l||τ(Ic, j)||2

(2)

where < . > is the Frobenius dot product, and Ic represents a set of indices corresponding
to class c ∈ {correct, incorrect}.
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The first term of Equation (2) represents the discrete adaptation of the Kantorovic
formulation [57], and J denotes the cost function matrix, which is actually the cost required
to move the probability mass from f s

i to f t
j . The squared Euclidean distance given by

d( f s
i , f t

j ) = || f s
i − f t

j ||2 is the preferred metric for a unique coupling, and we therefore use
it in the present study.

The second term of Equation (2) is the first regularization term that solves the optimiza-
tion problem using the Sinkhorn–Knopp algorithm [59]. The third term of the equation,
proposed by Courty et al. [46], is a regularizer that ensures that new samples will give
mass only to existing samples of the same class by inducing a group-sparse penalty on the
columns of τ0. In this study, we set the regularization value to 10.

Finally, the new location of the target data is computed using barycentric mapping
∩Fs = diag(τT

0 1Ns)
−1τT

0 Ft, where ∩Fs and Ft are the feature vectors of the transported
source and target data, respectively.

2.7.2. Classification between Correct and Incorrect Trials

The formulation of the optimal transport problem allows the source features to trans-
port to the target domain whose labels are unknown to the classifier. The next step is to
train a classifier on the transported source features to predict the unknown target features.
In our study, we used the leave-one-out cross validation method to split the feature vectors of
individual participants into training and test sets. In each fold of this method, the optimal
transport and classification processes will be tested on one participant, while being trained
on the remaining participants. Each training set is used to train the optimal transport and
classification algorithm on the correct and incorrect trials, which is then used to predict the
trials for the corresponding test set. An illustration of the transport of features and class
prediction during training and testing is provided in Figure 3.

EEG Epochs

Output
Correct/
Incorrect

FIR filter
1 - 6  Hz

FCz

Cz

CPz

Predicted

Source (Fs, Cs)

Target (Ft, Ct)
Train

(Transported Fs, Cs)

Test
(Ft)

Ct

Laplacian Filter Baseline
Correction

Downsample

Leave-One-Out
Cross-Validation

Optimal 
Transport

Random Forest

Figure 3. Block diagram representing the error detection pipeline, beginning from the processing of
neural signals to the generation of the feature vectors, the transport of the source data to the target
domain, and, finally, classification using random forest.

Herein, we trained a random forest model [60] to achieve our goal of ErrP detection.
We had employed grid-search to find the optimal parameters for our study. We found
that the model which had 100 decision trees applied bootstrapping (samples are drawn
with a replacement during training) and employed the Gini criterion, yielding the best
result. The random forest approach fits sub-samples (with a replacement) of the dataset
on various individual decision trees and the final output is an average of the individual
results obtained from each decision tree. This form of estimation improves the prediction
accuracy and controls an over-fitting. With the use of stratified cross-validation, we further
ensured that our results did not benefit from an over-fitting. The metrics used to evaluate
our proposed methodology are discussed in the next section.
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2.8. Classification Metrics

In this study, the performance of the automatic ErrP detector has been evaluated based
on the precision, recall, and F1-score [61]. Precision represents the ratio of correctly classified
positive predictions (in our case, ‘incorrect’ classes) over all positive predictions. Recall
highlights the ratio of correctly classified positive classes that were predicted correctly to
the actual number of positive classes. F1-score, given as 2× (Recall × Precision)/(Recall +
Precision), seeks to balance the precision (ratio of correctly predicted positive observa-
tions to the total number of positive observations predicted) and recall (ratio of correctly
prediction positive observations to all observations in the actual class) by reducing the
numbers of false positives and false negatives. Hence, it is an effective performance mea-
sure for a dataset with an uneven class distribution and has a distinct advantage over the
accuracy metric.

3. Results
3.1. Online Feedback Accuracy for FES and VIS Groups

Figure 4a,b show the accuracy of the online feedback of the individual participants
during the motor imagery tasks. It was observed that the eight participants in the VIS
group were correct for 66% (Standard deviation = 8.792) of all trials, with participant VIS04
achieving an accuracy of 78.125%, whereas the eight participants in the FES group were
correct for 74.32% of all tasks (Standard deviation = 6.553) with participant FES06 achieving
the highest accuracy of 86.458%.
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(a) (b)

Figure 4. Accuracies of the online feedback of eight participants from the (a) VIS and (b) FES groups while conducting an
online motor imagery feedback task.

3.2. Analysis of Event-Related Potentials for Correct and Incorrect Trials

Figure 5 shows the grand averages of the ERPs with a 1.5 s length from the onset of
the feedback period at electrodes FCz, Cz, and CPz. The grand averages were computed
using all participants in the FES (top panel) and VIS (bottom). One of the aims of this
study was to detect whether feedback from erroneous trials elicits ErrP signals among the
participants. As mentioned earlier, the participants received feedback 500 ms after the
onset of the feedback period (marked by the dotted line vertical in the figure). Thus, for an
ERP analysis, we focused on the period 500 ms after the onset of the feedback period.
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Onset of feedback display Detection of ErrP

Detection of ErrP

Figure 5. Grand averages of the event-related potentials at electrodes FCz, Cz, and CPz during
correct (in blue) and incorrect (in red) feedback received while the participants in the FES (top panel)
and VIS (bottom panel) groups were conducting the motor imagery tasks. The differences between
the correct and incorrect ERP signals are plotted in black, and the corresponding p-values of the
Kruskal–Wallis test [62] at each time instance are compared between the correct and incorrect
feedback trials. The black-dotted horizontal line represents the 5% significance level, and the dotted
vertical line represents the onset of a feedback display (both visual and somato-sensory) received by
the participants.

The ERPs show consistent negative peaks (albeit with differing magnitudes) in all
electrodes at approximately 200–300 ms after the onset of the feedback display (as shown
in the figure, 700–800 ms after the beginning of the feedback period) followed by a positive
peak. The difference in signal between the correct and incorrect feedback (in black) further
magnifies the presence of positive and negative peaks. Furthermore, the profile of the
p-values of the Kruskal–Wallis significance tests (in grey, twin-y-axis) shows a statistically
significant difference between the correct and incorrect feedback at the negative and
positive peaks which validates the presence of ErrPs for incorrect trials. The ERPs also show
a statistically significant difference before the onset of the feedback display, particularly for
the Cz electrode. This may be interpreted as the presence of some lingering effects related
to the motor imagery tasks, and a further investigation will be required in this regard.

It must also be noted that the differences in amplitude of the ERPs for the FES group
are higher than those for the VIS groups. It is expected that this phenomenon will be
highlighted in the classifier performance, and it can be considered that FES feedback also
evokes a greater response in detecting error than visual feedback.

3.3. Classification Results from Optimal Theory Based Transfer Learning

In this section, we present the classification performance in the form of the precision,
recall, and F1-score for both FES and VIS groups. First, we compare the results obtained
with and without the use of an optimal transport in our classification pipeline. Next, we
describe the results for the FES and VIS groups using the optimal transport and random
forest (as a classifier). Finally, we compare the performance of our random forest (RF)
classifier with other commonly used classification algorithms. A two-tailed Wilcoxon
signed-rank test [63] was employed for all comparisons.

3.3.1. Comparison of Decoder Performance with and without Optimal Transport

Tables 1 and 2 show the performances of the individual participants in the FES and
VIS groups, respectively, for our proposed pipeline using an optimal transport and random
forest classifier. For comparison, we designed another classification pipeline that does
not employ an optimal transport process. Here, we used a leave-one-out cross validation
method (similar to the one mentioned in Section 2.7.2) to split the feature vectors of the
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individual participants into training and test sets. In each fold of the cross-validation,
the classifier (without the optimal transport process) was tested on one of the participants
while being trained on the remaining participants. The results of this pipeline are shown in
Tables 3 and 4.

Table 1. Classifier performance (in %) of FES group with optimal transport.

Precision Recall F1-Score

FES01 96.98 96.67 96.71
FES02 93.33 93.33 93.33
FES03 94.98 95.00 94.96
FES04 84.98 85.42 85.15
FES05 88.72 87.50 87.93
FES06 100.00 100.00 100.00
FES07 93.08 91.67 91.97
FES08 92.57 91.67 91.26

Mean 93.08 92.66 92.66
SD 4.35 4.43 4.43

Table 2. Classifier performance (in %) of VIS group with optimal transport.

Precision Recall F1-Score

VIS01 87.36 87.50 86.98
VIS02 86.65 85.94 85.74
VIS03 77.40 76.25 75.80
VIS04 95.25 95.31 95.25
VIS05 87.63 84.37 83.42
VIS06 76.24 76.04 76.13
VIS07 80.61 81.25 80.76
VIS08 80.54 81.25 80.73

Mean 83.96 83.49 83.10
SD 5.97 5.92 5.94

Table 3. Classifier performance (in %) of FES group without optimal transport.

Precision Recall F1-Score

FES01 46.69 68.33 55.48
FES02 78.53 68.33 57.05
FES03 49.00 70.00 57.64
FES04 65.33 75.00 68.51
FES05 73.14 79.17 73.96
FES06 89.08 87.50 82.56
FES07 57.63 75.00 65.18
FES08 45.83 62.50 52.88

Mean 63.16 73.23 64.16
SD 15.06 7.23 9.68
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Table 4. Classifier performance (in %) of VIS group without optimal transport.

Precision Recall F1-Score

VIS01 49.18 60.94 54.43
VIS02 48.38 51.56 46.25
VIS03 56.50 53.75 42.52
VIS04 77.49 79.69 77.96
VIS05 56.36 59.38 52.51
VIS06 51.08 61.46 53.58
VIS07 61.28 69.79 62.17
VIS08 62.50 70.83 63.54

Mean 57.84 63.42 56.62
SD 8.91 8.81 10.44

The results in the tables indicate a significant improvement in the performance when
the optimal transport is employed. The average precision, recall, and F1-score in the FES
group (Tables 1 and 3) significantly improve by 29.92%, 19.43%, and 28.5%, respectively
(p < 0.0118 for all metrics). A similar improvement of 26.12% (p < 0.0118 for all metrics) is
also noted for the average precision, recall, and F1-score in the VIS group (Tables 2 and 4).

3.3.2. Comparison of Decoder Performance between FES and VIS Feedback

The previous section clearly shows that optimal transport enhances the performance of
the error decoder. Furthermore, in Tables 1 and 2, we can see that the average performance
of the FES group is significantly superior to that of the VIS groups, i.e., 9.12% in terms of
precision, 9.17% in terms of recall, and 9.56% for the F1-score (p < 0.05 for all metrics).
The results validate our claim made in Section 3.2, and it can be concluded that the
higher amplitude of N1 and P1 observed in the FES groups are reflected in the higher
classification results.

3.3.3. Comparing Decoder Performance with Other Machine Learning Algorithms

Table 5 compares the average F1-score of our random forest classifier with other
commonly used machine learning algorithms, including a linear discriminant analysis
(LDA), logistic regression, linear support vector machines (SVMs), bagging ensemble
classifier with LDA as a weak learner, and an Adaboost classifier. The Python package
scikit-learn was used for classification.

Table 5. Combining optimal transport with other existing classifiers.

Average F1-Score Average F1-Score
FES VIS

LDA 85.66 79.43
Logistic Regression 90.57 81.34
SVM 90.60 81.22
Bagging 85.91 80.15
Adaboost 85.61 77.81
RF 92.66 83.10

The following parameters (after grid search) were employed for each of the compara-
tive algorithms:

• LDA: Solver=least square (‘lsqr’), shrinkage=automatic based on Ledoit-Wolf lemma.
• Logistic Regression: L2 regularization = 10−3 (C = 1000), tolerance = 10−4, solver = ‘lbfgs’

(limited-memory Broyden-Fletcher-Goldfarb-Shannon algorithm), and maximum
iteration for convergence = 100.
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• SVM: Penalization norm = ‘l2’, loss function = ’hinge’, tolerance = 10−4, regularization
parameter C = 1.0, and maximum iteration for convergence = 1000.

• Bagging: Base estimator = same as the LDA mentioned earlier, number of estimators
= 100, and bootstrap = True.

• Adaboost: Base estimator = a decision tree classifier with a maximum depth of 1,
number of estimators = 100, and learning rate = 1.0.

The classification pipeline for all methods is preceded by the optimal transport process
of transporting the source samples to the target domain. It can be seen from the table that
the RF classifier is superior to the rest of the classifiers but significantly better than only the
FES group against the LDA, Bagging, and Adaboost classifiers (p < 0.0175). The results
indicate that it is possible to combine an optimal transport with other machine algorithms
with a further optimization of the parameters. The reason for selecting random forest
in our study is not limited to its better performance but also includes its ability to avoid
an over-fitting, robustness to small changes in the dataset, encouragement of diversity,
and interpretability of the results.

4. Discussion

The online experiment described in this paper was originally designed to study the
effects of functional electrical stimulation on the motor learning of the participants. A few
questions arose from this experiment and some of these questions were answered in
this study.

From our online experiment, we had observed that more than 25% of the trials
displayed incorrect feedback (see Figure 4a,b). Thus, when the participants observed or
sensed an incorrect feedback, did they evoke some form of ErrP during the feedback period,
and if so, did the FES feedback have an influence in a manner similar to the motor learning?
In addition, the participants underwent training sessions to perform the motor learning
neuro-feedback tasks. No such training was given to the participants for error detection,
and hence the classifier will not have training samples for a given participant. Can we
therefore design a transferable, automatic classification approach to detect error feedback
from neural signals?

The presence of characteristic ErrP peaks in the grand-averages of the incorrect feed-
back trials (see Figure 5) answered our first question. The larger amplitudes of the negative
and positive ErrPs in the FES feedback groups suggest that ErrPs generated in the FES
group were more prevalent than those in the VIS group. This assumption is further
vindicated by the performance of our offline transferable ErrP decoder approach. The clas-
sification results (Tables 1 and 2) of the FES group were significantly better than those of
the VIS group. The superior classification results compounded with the larger ErrP peaks
suggest that sensory feedback through FES is more effective in eliciting an ErrP than the
standard visual feedback, which answers our second question. The subjective assessment
(see Section 2.2) of the participants also indicated that they took a more focused approach
toward the task when they were provided with FES feedback rather than VIS feedback,
which is a probable reason for the superior performance of the FES group.

We also found that our ErrP decoder performed significantly better than a similar de-
coder but without using optimal transport theory for the transfer learning (see Tables 2 and 3).
To understand why this is so, Figure 6 provides an example of the optimal mapping. First,
as the figure indicates, the distribution of the source (here, training dataset) differs from the
target (test dataset) (the top panel in the figure). Upon incorporating the optimal learning,
the source samples are coupled with the target samples (see the bottom-right panel of
the figure), and the transported source samples are shown (in the bottom-right panel)
to adopt the distribution pattern of the target samples for both the correct and incorrect
classes. This migration of the source samples to a new feature space led to a significant
improvement of the classifier performance. This method can also be adopted by other
classification algorithms, as shown in Table 5. Our proposed methodology has the ability
to adapt to the changing dynamics of the neural signals across sessions and participants
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and can automatically detect ErrPs without any prior training (of a user), hence meeting
the requirements of our third research question.

A previous study [45] had successfully controlled an FES system using BCI while
employing an ErrP for taking corrective measures. The study compared the performance
of the ErrP decoder between a control (healthy) subject and a SCI patient. The performance
of our ErrP decoder is better than the performance reported in the study. We also designed
our error detection methodology to be transferable to other users with no prior training
sessions which was not the case of the earlier work. Moreover, we went a step further
in our study and showed the positive effects of FES feedback on detecting errors that
in turn helped augment the classifier performance. Our future study on BCI based-FES
rehabilitation will incorporate such an automatic error detectors to help augment the
motor learning experience of patients by taking necessary corrective measures as quickly
as possible. Without such error-correction mechanism, it is possible for patients to get
demoralized when they get incorrect feedback which might lead them to abandon this re-
habilitation technology. Thus, the addition of an automatic and transferable error detection
system may improve the confidence of the patient while improving the retention of the
rehabilitative technology.

Even though our transferable ErrP detector showed significant improvement in perfor-
mance, the study was still implemented in an offline setting. To implement this approach
in an online setting, we will design an asynchronous form of BCI-based error monitoring
system that will be added along with the motor imagery BCI system. The error monitoring
system will begin monitoring the EEG signals from the anterior cingulate cortex at an
interval of 150–300 ms (the final interval will be determined after more research) from the
onset of the neuro-feedback period. On detection of error, the error monitoring system will
automatically shut the neuro-feedback and prompt the participant to re-do the trial one
more time.

Furthermore, the optimal transport algorithm employed in this study was semi-
supervised in nature because labels of the training and test datasets were used for optimal
mass movement (but not during the classification stage). In our online setting, we will
employ an unsupervised form of the optimal transport algorithm. In our future studies,
we will first aim to improve the existing transferable framework including unsupervised
training to design a more robust and adaptable ErrP decoder. This framework has been
tested for only this problem, but results from our present study and previous studies [47–49]
shows the efficiency of implementing optimal transport for transferable EEG decoding.
Nevertheless, we will continue testing our transferable error detection approach in more
motor-related, cognitive and behavioural experiments so that we can develop a more
generalised error detection framework.

Lastly, the experiment only considered FES and VIS feedback and did not account
for a control group of participants who were given no feedback. Moreover, we will
make changes to our stimuli paradigm and incorporate foot motor imagery as an overall
individual class rather than using right and left foot motor imagery separately. We will also
design experiments more realistic in nature and with better control conditions to improve
the practicality of the current BCI. If experiments on healthy participants are successful,
then we will aim to validate the effectiveness of combining BCI and FES along with our
error monitoring system on patients undergoing physical rehabilitation and compare its
efficacy with the current state-of-the-art.
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Source  samples
Source samples

Target samples
Target samples

Main coupling coefficients
Source samples
Target samples

Transported samples
Target samples
Transported samples

Figure 6. An illustration describing the transport of the probability distribution from the source
domain to the target domain. The transport mapping in this example is obtained from Subject 5 of the
FES group for the first and last features of the feature vector. The top two panels show the distribution
of the source and target domains, followed by a probabilistic coupling between the two domains
(bottom-left panel), and finally in the bottom-right panel, the distribution of transported sources is
mapped together with the targets. The ‘+’ and ‘o’ mark the source (original and transported) and
target samples, and the red and blue markers represent features associated with incorrect and correct
trials, respectively.

5. Conclusions

This study provided conclusive evidence regarding the presence of ErrP signals
on the EEG of participants conducting motor imagery tasks while receiving feedback
in the form of electrical stimulation. The detection of ErrP allows the participants to
correct their movements while taking necessary action to continue activating the wrong
limb (i.e., the limb that is not of interest). Our transferable, offline error decoder can
successfully identify at least 85% of incorrect trials. The superior error detection achieved
when using FES feedback suggests that it will be a suitable alternative to visual feedback
in rehabilitative applications. The incorporation of corrective measures in the cortical
learning process of BCI combined with the peripheral learning process of FES would
further augment the motor recovery process of patients undergoing neuro-rehabilitation by
providing an opportunity to patients to directly intervene and correct their actions which
will in turn increase the confidence of patients towards this technology for frequent and
longer use.
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37. Özdenizci, O.; Wang, Y.; Koike-Akino, T.; Erdoğmuş, D. Transfer Learning in Brain-Computer Interfaces with Adversarial
Variational Autoencoders. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER),
San Francisco, CA, USA, 20–23 March 2019; pp. 207–210. https://doi.org/10.1109/NER.2019.8716897.

38. Jayaram, V.; Alamgir, M.; Altun, Y.; Scholkopf, B.; Grosse-Wentrup, M. Transfer learning in brain-computer interfaces. IEEE
Comput. Intell. Mag. 2016, 11, 20–31.

39. Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms
for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. https://doi.org/10.1088/1741-
2552/aab2f2.

40. Bhattacharyya, S.; Clerc, M.; Hayashibe, M. Augmenting Motor Imagery Learning for Brain—Computer Interfacing Using
Electrical Stimulation as Feedback. IEEE Trans. Med Robot. Bionics 2019, 1, 247–255.
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