

IoT 2021, 2, Firstpage–Lastpage. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/iot

Article

BECA: A Blockchain-Based Edge Computing Architecture

for Internet of Things Systems

Oluwashina Joseph Ajayi 1,*, Joseph Rafferty 1, Jose Santos 2, Matias Garcia-Constantino 2 and Zhan Cui 3

1 British Telecom Ireland Innovation Centre (BTIIC), School of Computing, Ulster University,

Jordanstown Campus, Shore Road, Newtownabbey BT37 0QB, UK; j.rafferty@ulster.ac.uk
2 Pervasive Computing Research Group, School of Computing, Ulster University, Jordanstown Campus,

Shore Road, Newtownabbey BT37 0QB, UK; ja.santos@ulster.ac.uk (J.S.); m.garcia-constantino@ulster.ac.uk

(M.G.-C.)
3 Converged Network Security Research, BT Applied Research, Adastral Park, Martlesham,

Ipswich IP5 3RE, UK; zhan.cui@bt.com

* Correspondence: ajayi-o2@ulster.ac.uk

Abstract: The scale of Internet of Things (IoT) systems has expanded in recent times and, in tandem

with this, IoT solutions have developed symbiotic relationships with technologies, such as edge Com-

puting. IoT has leveraged edge computing capabilities to improve the capabilities of IoT solutions,

such as facilitating quick data retrieval, low latency response, and advanced computation, among oth-

ers. However, in contrast with the benefits offered by edge computing capabilities, there are several

detractors, such as centralized data storage, data ownership, privacy, data auditability, and security,

which concern the IoT community. This study leveraged blockchain’s inherent capabilities, including

distributed storage system, non-repudiation, privacy, security, and immutability, to provide a novel,

advanced edge computing architecture for IoT systems. Specifically, this blockchain-based edge com-

puting architecture addressed centralized data storage, data auditability, privacy, data ownership, and

security. Following implementation, the performance of this solution was evaluated to quantify per-

formance in terms of response time and resource utilization. The results show the viability of the pro-

posed and implemented architecture, characterized by improved privacy, device data ownership, se-

curity, and data auditability while implementing decentralized storage.

Keywords: IoT; edge computing; auditability; Blockchain; non-repudiation; privacy; security

1. Introduction

Over the years, the Internet of Things (IoT) has evolved across different facets of our

lives. This ranges from its usage in homes, healthcare, and supply chain, as well as for

industrial purposes. It has been projected that the adoption of IoT devices will increase,

reaching approximately 75 million devices connected by 2025 [1]. This increase in the

number of devices may be attributed to diverse deployments of IoT solutions across many

application domains, including smart homes [2], healthcare [3], smart grid [4], smart cities

[5], agriculture [6], and supply chain management [7].

Irrespective of the use case, IoT systems have a great potential to enhance both the

functionalities and capabilities of the service they provide or support [8]. However, these

use cases and emerging new ones will result in new dimensions of challenges. A major chal-

lenge is centralized data storage. As the number of IoT devices increases, the amount of data

aggregated in a single location, as well as the current storage mode in the present-day im-

plementation of IoT systems, also increase. This central data aggregation will also result in

data management and data ownership issues. Ultimately, data aggregation in a central lo-

cation could become attractive to attack, exploiting the IoT system to cause major damage.

This becomes a security and privacy concern within the IoT ecosystem [9]. IoT systems need

Citation: Ajayi, O.J.; Rafferty, J.;

Santos, J.; Garcia-Constantino, M.;

Cui, Z. BECA: A Blockchain-Based

Edge Computing Architecture for

Internet of Things Systems. IoT 2021,

2, x. https://doi.org/10.3390/xxxxx

Academic Editors: Benoît Parrein

and Bastien Confais

Received: 6 September 2021

Accepted: 11 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/).

IoT 2021, 2, FOR PEER REVIEW 2

to effectively and safely interact and integrate with their environment; therefore, a system

that can leverage the existing capabilities of edge computing platforms and resolve some of

these issues is required to enable the scalable connected future [10].

Such IoT solutions generate a vast quantity of data subject to instant processing and

analysis to support decision-making. To optimize responsiveness and reduce bandwidth

requirements, such processing should happen at the edge of the network. Edge computing

can process data at the edge of the network and make autonomous decisions [10]. Conse-

quently, the strength and weaknesses of edge computing concerning IoT must be explored.

1.1. Overview of Edge Computing

IoT systems can generate vast quantities of data from diverse types of IoT devices.

The data can be processed at the edge of the network to improve responsiveness and

scalability before being transferred to the cloud. Edge computing can transfer data from

the edge of a network to the cloud’s network and other resources, such as storage capa-

bilities and intelligent services. These capabilities can provide the critical services needed

by real-time solutions while meeting IoT systems requirements, such as high bandwidth

and low latency on the edge network [11].

Edge computing has several variations designed for distinct purposes, such as mo-

bile computing and ad-hoc networks. These variations include multi-access edge compu-

ting (MEC) and vehicular ad-hoc networks (VANETs). Multi-access edge computing

(MEC), formerly known as mobile edge computing, enables information technology (IT)

services environment with cloud capabilities at the edge of the cellular network [10]. Fur-

thermore, vehicular ad-hoc networks (VANETs) enable groups of cars to maintain com-

munication across the edge of the network [12].

Despite the numerous advantages of edge computing, there are open challenges,

such as centralized data storage, which can lead to a single point of failure and a point of

attack that can be exploited by adversaries [13], as well as IoT user data ownership.There

are also concerns about who the data generated by IoT devices belongs to, i.e., the user or

the edge computing platform providers. Data or information security and privacy issues

[10], and even data auditability, which can support non-repudiation, among others [9] are

also of great concern.

Several studies have investigated the usage and effectiveness of edge computing.

Jiang et al. [14] explored the energy efficiency of edge computing as it relates to edge de-

vices and servers. Lan [15] leveraged edge computing capabilities for real-time monitor-

ing of a complex IoT-based event that involves data communication and processing mech-

anism. In an IoT study, edge computing was also used based on a unified platform for

heterogeneity sensing between devices by Lan et al. [16]. These studies did not attempt to

address any edge computing limitations or deficiencies but leverage its features.

Edge computing has some features that make it ideal for different real-time applica-

tions, such as smart home and smart monitoring. These features include location aware-

ness, proximity to users, mobility support, ultra-low latency, dense geographical distri-

bution, and interoperability [17]. With edge computing gaining attention, in the review

by Liu et al. [18], some edge computing systems were identified, including CORD,

Akraino Edge Stack, EdgeX Foundry, Apache Edgent, and Azure IoT Edge. These appli-

cations are now being widely used in the IoT domain, for testing, and in production.

Amongst all the identified features of edge computing, its limitations, for example

the centralized data storage, cannot be underestimated and, therefore, need to be exam-

ined to provide adequate solutions and appropriate steps to deal with them. These steps

start by examining the current edge computing architecture within the IoT domain to pro-

vide a robust architecture that will address these limitations.

IoT 2021, 2, FOR PEER REVIEW 3

1.2. Overview of Distributed Ledger Technology

DLT can be described as a decentralized system with multiple nodes, which are usu-

ally peer-to-peer networks. These nodes can save and keep immutable records on a data-

base called Ledger [19]. In 2009, the first known DLT, called Bitcoin [20], became popular

for its digital currency value, and it forms the basis for what we now know today as block-

chain technology. Different types of Blockchain can be deployed based on two main strat-

egies: permissionless and permissioned.

Permissionless ledgers can allow any entity to create and validate blocks in the

ledger. Entities can also update transactions at will without requiring any permission

within the network. This provides an open, transparent, and accessible set of transactions

between all entities, and as a result, privacy within the network becomes questionable.

On the other hand, a permissioned ledger preserves privacy within a network. Mem-

bers within this network are uniquely identified, resulting in all entities being properly

authorized and trusted. These features make this type of blockchain relevant in some use

cases, especially those requiring high security and privacy.

Permissioned blockchain has some inherent features which give it an edge over cen-

tralized systems. These include decentralization, privacy, immutability, security, scalabil-

ity, accountability, data auditability, and data providence. Today, there are different types

of blockchain, some of which are developed and designed for specific purposes [21–26].

With these features of blockchain, if it is successfully combined with the edge computing

platform, some of the deficiencies of the current IoT representation will be adequately

addressed. Edge computing will provide the required high processing power and reduced

latency, while blockchain will provide the IoT systems with the features, such as the fol-

lowing: security, privacy, data auditability, non-repudiation of action among IoT devices,

and, most especially, decentralized storage.

Hyperledger Fabric [27] (Fabric) has been identified as an enterprise blockchain net-

work and has been used by many organizations for different use cases [28]. The unique-

ness of Fabric lies in its default design tailored towards privacy and maintaining multiple

copies of consistent ledgers across the peers within its network. These features make Fab-

ric stand out and, therefore, will be used within our implementation.

1.3. Goals of the Study

The focus of this study is to develop, design, and implement a solution that addresses

the identified edge computing deficiencies or limitations while leveraging on its capabili-

ties. Below are our contributions to knowledge:

1. To provide a novel blockchain-based edge computing architecture that leverages

edge computing and blockchain capabilities to offer a scalable, secure, and distrib-

uted IoT System.

2. To provide a distributed IoT System that supports data privacy, data auditability,

and non-repudiation of actions between IoT devices.

3. To provide a custom blockchain network adapter that automatically creates the

blockchain network and facilitates the connection to the edge computing platform

through a designed and implemented middleware.

These goals are achieved by developing and designing our architecture based on edge

computing and blockchain with proof of concept (PoC) implementation. Furthermore, the

results from the communication between the edge and blockchain platforms were also pre-

sented, and performance testing of our implementation (PoC) was carried out.

The rest of this paper is organized as follows. Section 2 focuses on the background

and related work, starting by discussing the need for decentralized storage in IoT systems,

followed by a review of existing architectures. Section 3 focuses on our proposed block-

chain-based edge computing architecture alongside a discussion that focuses on the de-

tailed components of our architecture. Section 4 discusses our implementation setup and

IoT 2021, 2, FOR PEER REVIEW 4

results, while performance testing is presented in Section 5. We present our conclusion

and future work in Section 6.

2. Background and Related Work

A major challenge in the current representation of IoT systems is the centralized na-

ture of the platforms currently being used in different use cases, leading to a single point

of failure [29]. Any availability issue related to such a system can lead to extreme damage

and consequently downtime to the entire network and ecosystem. Other identified chal-

lenges include data privacy, security, data ownership, data auditability, and non-repudi-

ation of actions between IoT devices. These challenges may be addressed by exploring a

distributed IoT systems representation [13]. Data can be stored and processed on different

entities in a distributed system, and IoT devices can securely communicate to exchange

data without centralized entities [30]. Creating a distributed representation of IoT systems

requires a distributed ledger with the following inherent properties: transparency, pri-

vacy, immutability, auditability, and security [31].

Interoperability plays an important role within IoT systems as it enables and sup-

ports communication between heterogeneous IoT devices. To this end, interoperability

issues need to be considered while exploring the efficiency of distributed approaches in

resolving the identified challenges of edge computing. At the device interaction level,

edge computing platforms can provide interoperability, which is essential in IoT systems

by enabling the design and implementation of different communication protocols [14].

For example, a provision of protocols such as Bluetooth Low Energy (BLE), message queu-

ing telemetry transport (MQTT), Modbus, and simple network management protocol

(SNMP) on a single Edge Computing platform. In addition, there are enterprise-grade

edge computing platforms in existence today that support interoperability; an example of

this is EdgeX Foundry [32]. EdgeX Foundry enables devices of different communication

protocols to communicate on the edge network.

2.1. Edge Computing IoT Architecture

Currently, no global standards for IoT architecture can easily be referenced, and re-

searchers have suggested different architectures for IoT systems [33]. Some of these archi-

tectures may align with a specific use case or application. For instance, Martin et al. [34]

proposed and designed an architecture based on edge computing and edge smart gate-

ways. Their architecture was designed to filter and aggregate data within their application

and was tailored towards a structural health monitoring of IoT applications to reduce la-

tency. In addition, their architecture provided a centralized location for data aggregation,

which can disrupt the availability of the IoT solution if exploited.

In another study by Alanezi and Mishra [35], an architecture based on edge compu-

ting and an IoT framework was used to devise and execute an ambient intelligent task

such as the automated discovery of new sensors and services at the network’s edge. In

their approach, mobile devices use Bluetooth Low Energy (BLE) to discover services of-

fered by the edge server. These services are then shared with available sensors within the

environment for planning purposes. They achieved an IoT-based architecture using edge

computing, but data privacy was impossible because all the devices store data and share

resources and services at the network’s edge.

Cicirelli et al. [36] designed a cognitive-enabled edge-based IoT (CEIoT) architecture

for smart environments, which exhibit cognitive behaviors. This architecture was de-

signed to support cognitive computing in a distributed context, usually for edge-based

computational nodes. In addition, their architecture was designed to address issues of

data computation, which was achieved at the edge of the network; however, data are still

centrally stored, with no privacy maintained within the represented smart environments.

Gheisari et al. [37] presented a simulation of an edge computing-based architecture

designed for privacy-preserving of an IoT-based smart city. They used ontology within

IoT 2021, 2, FOR PEER REVIEW 5

the architecture of the network’s edge to support the conversion of a highly dynamic

mode to privacy behavior aspect entities. As a result, they could achieve privacy with their

approach, but data were still centrally stored, and devices could not be held accountable

for the data they shared or transmitted. These are major issues because this architecture

was proposed within the smart city context, with many IoT devices.

Other studies leverage the capabilities of edge computing to design their architecture

for different purposes. These include a study by Marjanovic et al. [38], which presented a

reference architecture for mobile crowdsensing (MCS) deployments. They used their ap-

proach to decentralize MCS services to improve performance in terms of scalability. How-

ever, privacy issues, alongside data ownership and security, were not adequately ad-

dressed within their solution. An edge-based architecture proposed by Pace et al. [39]

supports healthcare applications within Industry 4.0. The literature noted that edge com-

puting capabilities were adopted for one use case or the other with no adequate attempt

to address its challenges. Some of the challenges that were not addressed were centralized

data storage, data security, and privacy [40].

2.2. Blockchain-Based Edge Computing IoT Architecture

To address some of the challenges of edge computing identified in previous sections,

some researchers have explored blockchain technology. For example, Akkaoui et al. [41]

designed an edge computing and blockchain system called “EdgeMediChain”. Their ar-

chitecture implemented using Ethereum—is a form of permissionless blockchain used to

facilitate scalability and security within the healthcare ecosystem. However, their ap-

proach used a permissionless blockchain that does not support privacy and does not

uniquely identify the entity within its network.

In another study by Bonnah and Shiguang [42], edge computing and blockchain were

used to achieve decentralized security by eliminating a public trusted entity. In their ap-

proach, notable principles of permissioned blockchain were used within the network.

They also achieved authentication of users within the solution that intends to access a

service or resources. In addition, their approach addressed issues of a single point of fail-

ure by providing distributed data storage, but privacy was not adequately considered and

dealt with.

Chuang et al. [43] introduced “TIDES”, a trust-aware IoT data system that relies on

blockchain and multi-access edge Ccmputing. Their solution, which is economic in nature,

allows IoT devices to trade data and reduce trading latency. However, this study was not

focused on privacy among IoT devices. Furthermore, data storage is still partially central

on the multi-access edge computing platform. A study by Cui et al. [44] proposed and

designed a trusted edge computing IoT platform based on blockchain. Their work empha-

sized solving task allocation problems within IoT environments through a heuristic algo-

rithm. Some studies by Guo et al. [45,46] also adopted the combination of edge computing

and blockchain to design a selected construct collaborative mining network (CMN) within

IoT mobile devices and also created a distributed and trusted authentication system. This

was achieved by applying edge computing to the blockchain node to provide name reso-

lution, authentication service, and collaborative sharing.

Other concepts are based on the integration of blockchain and edge computing. These

include concepts based on deep reinforcement learning [47], artificial intelligence [48,49],

and video surveillance systems [50]. Most of these studies used permissionless blockchain,

which does not provide adequate privacy. This calls for the design, development, and

implementation of an architecture that uniquely leverages enterprise-grade edge compu-

ting and permissioned blockchain platforms to achieve security, privacy, data auditabil-

ity, and distributed storage.

It was established here that an architecture based on edge computing and blockchain

is necessary, but most importantly, the studies examined do not address the major chal-

lenges identified. Therefore, this study will explore and use Hyperledger Fabric identified

in Section 1.2 to provide a solution that will remove the identified challenges.

IoT 2021, 2, FOR PEER REVIEW 6

3. Proposed Architecture

The purpose of architecture is to achieve an efficient representation of a system. In

the IoT context, architecture is required to represent, organize, and present the functional

structure of the IoT systems for efficient functionalities. These functionalities include sup-

porting the hardware, software, workflow, network, protocols, services, and applications.

IoT architectures can have three, four, five, or six layers [40]. This study adopts a three-

layer architecture, as shown in Figure 1, which was also conceptualized to include the

major components of IoT representation.

Figure 1. A three-layer annotated architecture.

The first layer (layer 1 at the bottom) replicates the full stack of an edge computing

system. The IoT devices represent any device connected to the Internet and can acquire or

transmit data. The network or communication protocols are essential for communication

among IoT devices. This enhances and provides interoperability between heterogeneous

devices or elements of the IoT System. This layer’s application or presentation segment

provides a user interface (UI) to enhance visualization within the IoT systems.

The middleware layer (layer 2) provides a connection between layers 1 and 3. Typi-

cally, this layer may consist of technologies that connect these two layers to facilitate data

transport. With this layer in place, a connection can automatically be achieved between

layers 1 and 3.

The blockchain layer (layer 3) provides a decentralized storage capability. Depending

on the design approach and implementation steps taken, it can also provide security, pri-

vacy, immutability, and data auditability. To conceptualize the annotated architecture

presented in Figures 1 and 2, details of the internal components in each of the three layers

of the proposed architecture with technologies adopted at each layer are proposed. Gen-

erally, to actualize the proposed architecture’s design, development, and implementation,

enterprise-grade edge computing and blockchain were adapted for layers 1 and 3, respec-

tively. In addition, for layer 2, custom microservices and a message bus were designed

and implemented to establish and facilitate the connection between layers 1 and 3. The

technologies adopted in our proposed overall architecture in Figure 2 are briefly de-

scribed.

IoT 2021, 2, FOR PEER REVIEW 7

Figure 2. Proposed overall architecture.

1. Layer 1—EdgeX Foundry

In layer 1, EdgeX Foundry [32] (EdgeX), an open source IoT Edge computing plat-

form, which supports interoperability within heterogeneous devices, was used. The

EdgeX platform is modular in nature and is microservice-based, with several services

within it connected by an application programming interface (API). The microservices can

be altered, adjusted, or plugged together with a similar proprietary component from an-

other vendor based on a user-defined application. This property makes EdgeX a vendor-

neutral edge computing IoT system.

As shown in Figure 2, components of EdgeX were harnessed with the distributed na-

ture and features of blockchain to remove identified challenges in current representations

of IoT, such as centralized data storage, amongst others. The components of EdgeX used

were device virtual, device service, data storage, notification service, core data, and commu-

nication protocols. These are sets of microservices that were selected to achieve layer 1.

2. Layer 2—Microservices, and Apache Kafka

The middleware consists of four microservices and Apache Kafka. The four micro-

services developed include the config server, the registry service (discovery service), the

API gateway (Zuul), and the IoT PoC. Our microservices were developed using the Spring

Framework based on Java and using Maven as the build tool. Spring Framework is used

to develop a Spring Boot application. Each microservice exposed a port for communi-

cating with each other. Since Spring application requires a database path to facilitate com-

munication, we used MySQL as our Java Database Connectivity (JDBC) and runs on port

3306. Table 1 summarises the features of the four microservices.

Table 1. Microservices and their overall properties.

Microservice Name Spring Application Name Server Servlet.Context Path Server Port

Config Server Iotconfigerver - 9003

API Gateway Zuul /api-gateway 9000

Registry Service Discoveryservice - 8010

IoT PoC Service Iotpocservice /api-poc 9001

IoT 2021, 2, FOR PEER REVIEW 8

Apache Kafka is the message bus used within the proposed architecture. The need

for a robust, distributed messaging, fault-tolerant, and scalable system gives rise to the

development of Apache Kafka [51] by Linkedln before it was moved to the Apache Soft-

ware Foundation. Kafka can be used as a message bus or message center that provides

data fields between different applications. It leverages its topics, group, and cluster re-

sources to provide a publish-subscribe service within participating applications. There are

typically data provider(s) and data consumer(s) in such a system.

Kafka uses Zookeeper, which provides synchronization and flexibility within a dis-

tributed system to manage its cluster node, topics, partitions, and other delegation activi-

ties. In addition, for the design and implementation of our architecture, Apache Kafka and

Zookeeper serve as a message bus between Hyperledger Fabric and EdgeX through our

microservices.

3. Layer 3—Hyperledger Blockchain Network

Fabric offers a range of advantages over other nlockchain systems. Some of these in-

clude maintaining multiple ledgers across its peers and its modular nature as some of its

components can be replaced. For instance, the certificate authority (CA) can be replaced

by any third-party X.509 compliant CA. In addition, the consensus mechanism that en-

sures the correctness and consistency of the internal state of the ledger is fully pluggable.

Another unique feature is the smart contract called chaincode, which can automatically

execute specific instructions tailored towards a particular use case or scenario.

Figure 3 depicts a sample of the Hyperledger Fabric Network used, supporting the

one depicted as layer 3 in Figure 2.

Figure 3. Hyperledger Fabric Blockchain Network.

Fabric Software Development Kit (SDK): Currently, Fabric supports NodeJS, Java, and

Golang. The user application can interact with the SDK through Restful API with transac-

tion proposals submitted through the peers of each organization within the network. Or-

ganizations within the network are units representing an entity. For example, an entity can

be a company or IoT device associated with a Fabric certificate authority (Fabric CA).

Membership Service Provider (MSP): To maintain security and identity manage-

ment, each organization has an MSP that uniquely identifies its users; thus, the MSP of an

IoT 2021, 2, FOR PEER REVIEW 9

organization is unique from the other. The MSP, through the Fabric CA, generates identi-

ties for the users. For example, an admin user is generated by default once a network is

instantiated. However, the number of other users depends on the parameters specified

while setting up the network.

Channel: This is used by Fabric to maintain privacy within the network. Two or more

organizations can have a channel created between them while having another channel for

interacting with each other. This ensures data privacy and integrity by making data avail-

able to the intended users within the organization.

Peers: Peers within organizations are responsible for proposing transactions detailed

in the chaincode. Each organization has multiple peers (Endorsing/Anchor, Commuting,

and normal). The peers communicate with each other using gossip protocols while keep-

ing the content of the ledger consistent.

Orderer: This is responsible for creating, committing, and maintaining blocks in the

ledger. The ledger which is connected to each peer is a persistent storage within the net-

work. This persistent storage across the ledger of the peers gives Fabric the decentralized

storage feature.

In a general context, Figure 3 depicts the following: through the MSP and Fabric CA,

all entities within an organization are registered. Channel(s) are instantiated to maintain

privacy between two or more organizations. Fabric also supports creating an endorsement

policy that further maintains security and privacy. A chaincode is instantiated on the

Peers. Ideally, a peer that is visible to other organizations is called the Anchor or Endors-

ing peer. The Fabric uses a database (CouchDB) to persist the ledger. The contents of the

ledger on each peer are consistently maintained.

Overall, the functionalities of Fabric include identity management, which is achieved

through its MSP and CA. Furthermore, privacy, security, and confidentiality are main-

tained by creating channel(s) and endorsement policy. The orderer ensures that there is

efficient processing which provides scalability and consistency within Fabric. Finally,

modularity is achieved by supporting pluggable CA and consensus algorithm that deter-

mines how the orderer commits blocks to the ledger through the peers. All these features

match the criteria for what we intend to achieve, which justifies why we use Fabric within

this study.

Similarly, some studies have leveraged the modular nature and capabilities of EdgeX

to achieve their aim. For example, Kim et al. [52] leveraged EdgeX UI and analytical fea-

tures and used it as a monitor platform in their work based on Deep Q-Network. Sobecki

et al. [53] also leveraged the EdgeX platform for visualization in their work based on deep

learning. Others [54,55] also used this platform in one way or the other. However, none

of these studies proposed an architecture based on EdgeX and Fabric platforms, which is

one of the major steps taken in this study.

4. Implementation and Results

This section describes the steps taken in the design, development, and implementa-

tion of the proposed architecture. First, the identified components within the architecture

were presented to align with how they were used within the implementation, followed

by our implementation approach. Finally, this section closes with the presentation of the

results from the implementation.

4.1. Implementation Components—Specifics

The major components of our implementation are presented here to show the specific

steps taken. We started from layer 1, which is the EdgeX platform, through to layer 3.

Layer 1: EdgeX

EdgeX Foundry, implemented in the Go programming language and as a set of mi-

croservices, is also containerized and runs as Docker containers. As with every Docker-

related application, EdgeX has a YAML file, and an instance of this can be run as required.

IoT 2021, 2, FOR PEER REVIEW 10

We selectively enabled some major components that are required for our study. Two vir-

tual IoT devices were enabled through the edgex-device-virtual services running on port

49990 with a dedicated API. Other enabled components are coredata on port 48080,

metadata on port 48081, and command on port 48082. This selection makes our version of

EdgeX lightweight and runs faster. The UI, which runs on port 4000, was used for logging

and virtualization. MongoDB was also used for storage and data persistence. EdgeX as-

signs unique objectID to devices for standard and proper identification. This formed layer

1 of the proposed architecture (edge computing), which provides high processing power,

low latency, and interoperability among IoT devices. Table 2 gives a description and de-

tails of the selected EdgeX microservices used within our implementation.

Table 2. Selected EdgeX microservices description and their respective port number.

S/N Microservice Description Port

1 edgex-device-virtual
This microservice simulates different types of devices to generate

events and provide readings to the coredata microservice.
49990

2 coredata
It provides centralized persistence of all the data collected by the de-

vices.
48080

3 metadata The metadata stores information relating to a device. 48081

4 command
This microservice enables the issuance of commands and action to

devices, usually through the GET and PUT commands.
48082

5 edgex UI
EdgeX UI provides the interface to manage and monitor an instance

of EdgeX.
4000

6 MongoDB
EdgeX uses MongoDB to persist both the data and the metadata of

(connected) devices
27017

Layer 2: Microservices

Briefly described here are the four microservices within Layer 2 that are used in the

implementation.

1. Config Server Microservice: In a distributed system such as this, Spring Cloud

Config supports and provides externalization of configurations common to all the mi-

crosystems within the solution. It provides a collective place where all application’s exter-

nal properties can be managed. This also helps to secure the application as these common

files are usually located outside the main application directory, and the path is also en-

crypted. All microservices will not run until these files are ‘called’ within each micro-

service. For our implementation, we used the ‘Desktop/dev’ path and the ‘genkey’ com-

mand of the ‘keytool’ utility tool to generate a Keystore that supports the Secure Shell

layer (SSL). This provides a secure design approach for our implementation by ensuring

that a proper connection is established at runtime.

2. API Gateway Microservice: In Spring applications, the API gateway selected was

developed by Netflix, called Zuul. In our implementation, Zuul is used to achieve authen-

tication by identifying various resource requirements and declining requests that do not

meet these requirements. It also provides dynamic routing to other microservices hosting

the requested services. Zuul was integrated with Eureka (on port 8010) and hosted on our

registry service, which helps to identify microservice network locations by dynamically

discovering them within the network. During bootstrap, it calls the Config Server micro-

service to enforce its profiles and to enable access. It also provides authentication and au-

thorization to external users before devices are registered, and data persisted to MongoDB

of EdgeX.

3. Registry Service Microservice: This microservice is based on Eureka, which is a

discovery service. Each microservice registers itself on this while specifying its host, port,

and node name, as well as other specific metadata. Other microservices can use this

IoT 2021, 2, FOR PEER REVIEW 11

metadata in making important decisions. Multiple instances of other microservices can be

created here to provide fault tolerance to the solution.

4. IoT PoC Microservice: This deals with the major functionalities of the implemen-

tation. It was used for communication from EdgeX, through Kafka, to Hyperledger, and

vice versa. It facilitates the registration of devices on our local database (MongoDB) pro-

vided by EdgeX. After the registration, the devices automatically get registered on Fabric

using the APIs designed as a ‘Hyperledger network adapter. Its ‘application. properties’

specified the JDBC database host, port, name (MySQL, in this case), and the Kafka details

(group_id, admin, producer, and consumer bootstrap-server port which runs on port

9092). This microservice was also used to implement data transfer objects (DTOs) that

maps to the functionalities of EdgeX, Kafka configuration, Swagger configuration (which

helps to interact with the API gateway), and other resources. Finally, its bootstrap prop-

erties referenced the Config Server microservice for security enforcement.

Table 3 provides a brief description of the four microservices used within Layer 2.

Table 3. Selected EdgeX microservices description and their respective port number.

S/N Microservice Description

1 Config Server

It was developed to provide security within the implementation while provid-

ing an encrypted path where common files used within the application are lo-

cated or stored, usually outside the application’s main directory.

2 API Gateway

It was developed to achieve authentication by identifying various resource re-

quirements and declining requests that do not meet these requirements. Some

of these requirements might be to authenticate and authorize the identity of the

entity requesting access to the application. It also provides dynamic routing to

other microservices hosting the requested services

3 Registry Service
It was developed to facilitate the registration of other microservices as they

specify their host, port, node name, and other specific metadata.

4 IoT PoC

It was designed to provide the much-needed communication between layer 1

(edge platform) and layer 3 (blockchain) through the messaging system. It was

also designed and developed to facilitate the functional requirements and in-

teraction within the architecture.

Layer 2: Kafka

The following topics were created on Kafka and used for communication between

the consumer and the producer. ‘Userregistraton’—which is where the automatically reg-

istered Fabric organizations, users, and invoked Fabric CA details are published; ‘Channel

creation’— an established channel between the peers of the two organizations, with the

payload also pushed on Kafka from Fabric, which is automatically invoked using the API

created on Fabric; ‘Channel join’—which aids the joining of the peers of the two organi-

zation created on Fabric. This ensures privacy between the two organizations, and also

enforces that between the IoT devices; ‘Transaction’—which deals with the exchange of

information within the organizations and works in conjunction with the activities of the

channel; ‘Chaincode’—which facilitates the initiation of chaincode, although this was not

actively used in this study; and ‘Instantiate’—which instantiates the chaincode on the

peers, and, with the help of the orderer, a consensus is reached by the peers of the two

organizations on committing the transactions to the ledger.

A group was also created in Zookeeper to form the cluster. This is essential to create

fault tolerance within our implementation as Zookeeper ensures topics are divided into

several partitions, and manages the delegation of leaders and followers, and automatically

assigns a new leader should the active partition fail for any reason. The Kafka producer

bootstrap-server, Kafka admin properties bootstrap services, Kafka consumer bootstrap-

IoT 2021, 2, FOR PEER REVIEW 12

servers, and Kafka consumer group id on our Spring boot application and run on port

9092 are also configured

Layer 3: Hyperledger Fabric Component

Hyperledger Fabric 1.4.4 artifacts [56], i.e., the first long-time support version of Fabric

at the time of this implementation, was used for the implementation. This research had al-

ready begun before the release of version 2.0. As earlier pointed out, in Section 3, several

components form the foundation of the Fabric Network. NodeJS SDK of Fabric was used to

interact with its modules. APIs were created, and a simple app was created on a dedicated

port—4003 which also serves as the Hyperledger network adapter.

All APIs have an endpoint pointing to this port. It is important to state that Fabric is

a containerized application, and Docker was used for its deployment. As such, using the

YAML files, the network requirements were specified, with its artifacts to generate the

network of two organizations. With this, a private network was created with each organ-

ization having its CA in the form of the Fabric CA, which the MSP of each organization

uses to create identities.

Two organizations and two users per organization were specified (since we are using

two virtual devices from EdgeX) alongside the admin for each of them. A bash script that

starts the private network was created, and with the APIs designed, the private network

starts automatically and generates each organization’s artifacts. The Hyperledger Fabric

network adapter facilitated this within the implementation. These artifacts include the us-

ers, enabled by Fabric CA and MSP, the peers, ledgers, and channel.

A NodeJS application was created where all the dependencies of our network were

‘called’ and referenced accordingly. For example, the kafka-node, and its dependencies,

and all the REST endpoints. Node version 8.17.0 and npm version 6.14.5 are required for

this Fabric network to run. Ultimately, the Fabric network created can serve as a testbed

for any application to use while just making little modification where necessary, but the

APIs created will work in any scenario. Figure 4 shows the interaction between Fabric,

Kafka, and IoT POC microservices within this implementation.

Figure 4. Interaction between Fabric, Kafka, and Microservice.

4.2. Implementation Approach

As earlier discussed in Section 3, by leveraging on the functionalities provided by

EdgeX, such as device-virtual-service, two virtual devices were utilized: KMC.BAC-

121036CE01, and JC-RR5.NAE9.ConfRoom.Padre.Island01. These devices were enabled

through EdgeX with IoT PoC microservice facilitated through data transfer objects

IoT 2021, 2, FOR PEER REVIEW 13

(DTOs). For these devices to be registered, the EdgeX Docker containers and their UI com-

ponents were started. Figure 5 shows our implementation approach between components

of our architecture.

Figure 5. Implementation approach.

In Figure 5, a load balancer, Ribbon [57], which gives the application control over the

collections of HTTP requests and TCP clients, was introduced. For simplicity, an overall

flowchart of all steps taken within the application is shown in Figure 6.

Figure 6. Flowchart showing steps taken for the implementation.

IoT 2021, 2, FOR PEER REVIEW 14

Figure 6 presents a detailed flowchart of what happened within the implementation

approach. From Figures 5 and 6, the API gateway microservice facilitates the login pro-

cess. At this stage, authentication and authorization are achieved by initiating the instance

of the application through the Swagger implemented with it. A username and password

are required to initiate this process, which provides authentication and authorization for

the solution. After this is achieved, the devices are registered on EdgeX, but before this,

EdgeX provides a UI that runs on port 4000 and requires registration by providing an

email and password. This provided a second level of security.

Once devices are registered on EdgeX, through the topics on Kafka previously dis-

cussed, and with the Fabric endpoints (Hyperledger network adapter), the IoT PoC mi-

croservice made the device details from EdgeX available, and the APIs automatically cre-

ated an identity for the devices on Fabric users within each organization. Since this is a

test network developed for this implementation, it can be replaced at any time by chang-

ing it in the orderer.yaml file.

The IoT devices are uniquely identified on EdgeX as well as on Fabric. This is because

EdgeX used ObjectID while Fabric, through its CA, and MSP gave identities in the form

of certificates and secret keys. In addition, the devices are registered on users of each or-

ganization as facilitated by the Fabric network adapter. This provides security across our

architecture and improves on the one provided by EdgeX and the one achieved through

the microservices.

The devices which are uniquely identified in these organizations create interactions

between their peers through the Fabric channel. This channel creates a data communica-

tion path between the devices, which enforces privacy, as only the devices on this channel

can share data and be held accountable for this. Additionally, if a device shares data that

resulted in any action being taken by another device (actuation), this activity can be traced

back to the originating device. This accountability property enhanced by the immutability

feature of Hyperledger Fabric will offer non-repudiation of actions between the devices,

as the origin of data can be traced to each device.

Fabric internally used CouchDB for ledger storage (transactions and blocks), with

instances stored across each peer of the organizations. This storage on the ledger of each

peer provides consistent records across both organizations. As such, the content of each

ledger of the peers is the same. With this, decentralized data storage is provided within

the solution. For example, suppose a peer of an organization is attacked; in this case, the

other peers will still have a valid ledger. As a result of this, the whole network will be safe

from compromise because, before the content of a ledger on a peer can change, there has

to be an initiation of transaction with a consensus reached by all the peers within the net-

work. Furthermore, this decentralized data storage and data consistency provide data au-

ditability because the data stored, which is immutable, can be queried.

4.3. Results

In the previous section, the implementation approach was presented alongside the

details on how the connection was established across our architecture to address the chal-

lenges identified. Presented in this subsection are some results from our implementation.

Figure 7 shows the output of the device registered on EdgeX. After devices are registered

on EdgeX, a unique objectID is assigned. Fabric published the details of the device auto-

matically registered on it to Kafka, and IoT PoC microservice consumes this and saves it

on MongoDB, which updates the device details on EdgeX. This step keeps the details of

the device’s operations updated on MongoDB. Figure 8 shows the output of devices reg-

istration on both organizations of Fabric and presented in JSON format.

Figure 8 shows a sample of device registration on Fabric. JC.RR5.NAE9.Con-

fRoom.Padre.Island was registered on user btcii2 and btiic3 on Fabric organization 1 and

2, respectively, while device KMC.BAC121036CE was also registered on user btcii4, and

IoT 2021, 2, FOR PEER REVIEW 15

btcii5, respectively. In addition, Fauxton, a web UI for CouchDB usually used in develop-

ment to visualize the content of the database on the ledger of the peers, was also enabled

to access the secret key and certificate of users in each organization.

Figure 7. EdgeX usercreater UI and registered devices.

Figure 8. Devices registered on Fabric organizations.

Figure 9 shows a sample of the secret key and the certificates for admin and user of

organization 1 and that of the device associated with it. This provided adequate security

to the devices within the architecture since each device within the organization is uniquely

identified. Therefore, communication is only established upon verification of the creden-

tials of each user to which the devices are associated.

IoT 2021, 2, FOR PEER REVIEW 16

Figure 9. Secret keys and certificates of admin and device on organization 1.

5. Performance Testing

It is important to conduct performance testing to check the viability of the imple-

mented architecture. The application used microservices and Docker containers. First, the

microservices designed can be replicated on the registry service (discovery service) to give

our solution a fault tolerance feature. This also supports scalability. Kafka is also known

to scale within an application with a fault tolerance feature. Fabric is also trusted to pro-

vide scalability within an application; this can be achieved by simply specifying the net-

work details while setting up its network artifacts.

From the implementation, some metrics were gathered based on the underlisted:

(1) The latency of our solution based on service calls through API gateway using Zipkin.

These metrics are necessary because all ‘http’ requests are routed through these micro-

services.

(2) A graphical representation of the resource utilization of some samples of Docker con-

tainers using cAdvisor. Considered here are few Docker containers that are used to

process the core data generated within the architecture.

(3) The Hyperledger Fabric’s transaction latency metrics which ultimately measures its

performance according to the Linux Foundation white paper on Hyperlerger Fabric

performance metrics [58].

IoT 2021, 2, FOR PEER REVIEW 17

Zipkin is used for monitoring Spring boot applications and for distributed tracing of

‘http’ requests while recording the timing or duration of when the request was granted. It

also helps with data required for monitoring latency within a modular solution. These

data are tied together into what is known as spans. It helps to trace both internal and

external API calls for service. A unique trace ID is used to correlate this request. Zipkin

runs in the background before the microservices are instantiated to measure the metrics

adequately. It provides a user interface that assisted with the capturing of the ‘http’ re-

quest. Table 4 shows eight trace IDs, with two spans each, and their respective timing in

milliseconds (ms).

It is important to note that there is no record of data to form a basis for comparison

with our result, but we emphasize that the result presented is viable considering this ap-

plication as a cross-domain application.

Examined next is the performance of the Docker containers used within the applica-

tion. For instance, Hyperledger Fabric and EdgeX Foundry components are set up as

Docker containers. This implementation was implemented using a system with the fol-

lowing configuration: Intel Core i7-3770 CPU @3.40 GHz, 16 GB RAM, and 64-bit Ubuntu

18.04.4 LTS operating system. Samples selected were a peer from one of the two organi-

zations and the edgeX-core-metadata, where most of the transactions occur in EdgeX. The

metrics for this performance evaluation is based on the undelisted:

(1) memory consumption;

(2) network throughput (Transfer—Tx, and Received—Rx (in bytes per second);

(3) transaction errors.

To achieve this, ‘cAdvisor’ (Container Advisor), a tool by Google that examines a

container’s resources usage and performance, was used. The samples of metrics taken us-

ing ‘cAdvisor’ are presented in histograms as seen in Figures 10 and 11.

Table 4. Resource call latency using Zipkin.

S/N Trace ID Total Spans Duration (ms)

1 660782e3d5eb0967 2 368.167, 256.161

2 3d57f8d327ce6727 2 13.266, 7.340

3 6870d10dc9ae9a2d 2 9.235, 5.634

4 3ff7e2c1066649b3 2 8.998, 4.662

5 12b91717e27a71b1 2 8.967, 5.259

6 17cc84d3936a7437 2 8.686, 4.665

7 53c9e24c6e457101 2 7.517, 3.593

8 d4a04fa94c34ba7c 2 6.920, 3.792

IoT 2021, 2, FOR PEER REVIEW 18

Figure 10. Resource usage for Peer0 and organization 2.

Figure 10 show the metrics for peer0 of organization 2 of Fabric. This container used

63.78 megabytes of memory (RAM). In terms of network throughput, 3000 bytes are trans-

mitted and received per second at peak, with no error rate recorded in the transaction.

The metrics obtained for peer1 of organization 1 at peak are as follows: 63.85 megabytes

of memory consumed, 3200 bytes per second of data were transmitted and received with

no data loss during transmission, which gives an error rate of zero.

The edge-core-metadata container from EdgeX (Figure 11) used as the edge computing

platform was also examined. At peak, 20.72 megabytes of memory was consumed, 80,000

and 120,000 bytes of data were transmitted and received, respectively, with no error in trans-

action. For each of these containers, 0% of memory was consumed, and the CPU usage ob-

tained was also very low despite an adequate amount of transmission in bytes per second

taking place on the containers. No error was also recorded in the transmission of these data.

These show that our application can effectively run on systems with minimal specifications.

IoT 2021, 2, FOR PEER REVIEW 19

Figure 11. Resource usage of edgex-core-metadata.

Furthermore, to present Hyperlegder Fabric’s performance based on transaction la-

tency, we used the Hyperledger Caliper [59]. Hyperledger Caliper as a performance

benchmark framework allows users to test different blockchain solutions for performance

within a use case. At layer 3 of our architecture, the Fabric network adapter was developed

to enhance the functionality of Hyperledger Fabric by automatically creating its network

artifacts. For this implementation, two peers were created in each of the Fabric’s organi-

zation that facilitates the automatic registration of devices registered on the Edge platform

(Layer 1). We captured the transaction latency, a network-wide view of the amount of

time taken for a transaction’s effect to be usable across the network using Hyperlerger

Caliper. This measurement includes when the device is registered on the edge to the point

it is automatically associated with the users created on each organization and established

data synchronization back to the edge, as facilitated by Layer 2 of the architecture.

Table 5 presents the summary of Fabric’s organizations, peers, users, and associated

devices used within our implementation, while Table 6 shows the longest commit time in

seconds across each of the peers of both Fabric’s organization for device registration and

data communication read latency.

Table 5. Summary of fabric’s artefact and associated devices.

Organizations Peers Users Associated Devices

Organization 1 Peer 0, Peer 1
Admin, btcii2,

btcii4

JC.RR5.NAE9.ConfRoom.Padre.Island,

KMC.BAC121036CE

Organization 2 Peer 0, Peer 1
Admin, btcii3,

btcii5

JC.RR5.NAE9.ConfRoom.Padre.Island,

KMC.BAC121036CE

Table 6. Hyperledger Fabric Transaction Latency.

Organizations Peers
Device Registration Commit

Time (Seconds)

Data Communication Read Latency

(Seconds)

Organization 1
Peer 0 7 18

Peer 1 7 18

Organization 2
Peer 0 7 18

Peer 1 7 18

IoT 2021, 2, FOR PEER REVIEW 20

In Table 6, the longest time taken for device registration and data communica-

tion/read latency, as initiated by the peers (0,1) of both organizations and committed to

the ledger, are presented. It takes a total of 7 seconds for the devices to be issued with

identities within the Fabric organization and committed to the Peer’s ledger following the

instantiation of the application. This comes after the provision of the IoT devices on the

Edge platform, through the middleware (layer 2) and the Fabric network adapter.

In addition, it takes 18 seconds for data retrieval and communication back to the Edge

platform from the ledgers through the messaging system of layer 2. This latency is essen-

tial to keep the Edge’s database updated on the IoT devices’ identities and aid synchroni-

zation and data consistency. A value of 7 and 18 seconds, respectively, for device registra-

tion and data communication read latencies for a multi-domain application indicate no

blockchain overhead. This is due to the adequate steps and approaches taken to imple-

ment this novel architecture.

6. Conclusion and Future Work

Presented in this work is a three-layer architecture with unique features. A robust

edge computing platform, called EdgeX and Hyperledger Ledger Fabric, were adapted

and used within the architecture’s design, development, and implementation. In addition,

a Hyperledger Fabric network adapter was created that automatically produced the Fab-

ric network and facilitated the connection established through microservices and Kafka.

IoT device data communication was established across this multi-domain application

that addressed the challenges of edge computing in IoT platforms. This implementation

addresses issues of central data storage by providing multiple device data storage on Fab-

ric peers ledgers. Privacy was also achieved by creating a channel among Fabric organi-

zations’ peers that keeps the data shared among the devices private. Since the data in the

ledgers are immutable, data auditability becomes possible with this application as it is

easy to know which device initiates a transaction committed to the ledger. Therefore, our

approach helps us to achieve non-repudiation of action among the devices because the

origin of the data can be traced.

For security, the API gateway and Config Server microservices provide a first-level

authentication and authorization, while second-level security is provided by EdgeX as

users must be created before devices are registered. Finally, the third level of security was

provided by Fabric CA and MSP, which assigned an enrolment, secret, public, and private

key to admin of the organizations, while certificates and secret keys are also assigned to

devices registered on Fabric users.

The registry microservice hosted on Eureka can replicate more microservices in-

stances, thereby providing fault tolerance and scalability for our application. In addition,

this work implemented a multi-domain platform as EdgeX Foundry and Hyperledger

Fabric, which is used in architecture for IoT solutions for the first time. With this architec-

ture implemented and tested in terms of its performance, we will further explore its po-

tential in our subsequent studies. Areas that will be explored include how the capabilities

of the IoT devices are maintained across the architecture, and the effectiveness of the se-

curity put in place within the implementation of the architecture will be further evaluated.

Author Contributions: Conceptualization, O.J.A.; methodology, O.J.A., J.R., J.S., M.G.-C. and Z.C.;

software, O.J.A.; validation, J.R., J.S., M.G.-C. and Z.C.; formal analysis, O.J.A.; investigation, O.J.A.,

J.R., J.S., M.G.-C. and Z.C.; resources, O.J.A., J.R., J.S. and M.G.-C.; writing—original draft prepara-

tion, O.J.A.; writing—review and editing, J.R., J.S., M.G.-C. and Z.C.; visualization, O.J.A.; supervi-

sion, J.R., J.S., M.G.-C. and Z.C.; project administration, J.R., and Z.C. All authors have read and

agreed to the published version of the manuscript.

Funding: This research was funded by British Telecom and Invest Northern Ireland through BTIIC

(British Telecom Ireland Innovation Centre) and the APC was funded by BTIIC.

Institutional Review Board Statement: Not applicable.

IoT 2021, 2, FOR PEER REVIEW 21

Informed Consent Statement: Not applicable.

Data Availability Statement: The data reported here were captured using the tools mentioned on

the study. These data will vary based on the implementation. The details of these tools with required

URL have been referenced within the paper.

Acknowledgments: This research is supported by the BTIIC (British Telecom Ireland Innovation

Centre) project, funded by British Telecom and Invest Northern Ireland.

Conflicts of Interest: The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported in this paper.

References

1. IoT: Number of Connected Devices Worldwide 2012–2025. Statista. Available online: https://www.statista.com/statis-

tics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 10 July 2020).

2. Pal, D.; Funilkul, S.; Charoenkitkarn, N.; Kanthamanon, P. Internet-of-Things and Smart Homes for Elderly Healthcare: An End

User Perspective. IEEE Access 2018, 6, 10483–10496, https://doi.org/10.1109/ACCESS.2018.2808472.

3. Laplante, N.L.; Laplante, P.A.; Voas, J.M. Stakeholder Identification and Use Case Representation for Internet-of-Things Appli-

cations in Healthcare. IEEE Syst. J. 2018, 12, 1589–1597, https://doi.org/10.1109/JSYST.2016.2558449.

4. Saleem, Y.; Crespi, N.; Rehmani, M.H.; Copeland, R. Internet of Things-Aided Smart Grid: Technologies, Architectures, Appli-

cations, Prototypes, and Future Research Directions. IEEE Access 2019, 7, 62962–63003, https://doi.org/10.1109/AC-

CESS.2019.2913984.

5. An, J.; Gall, F.L.; Kim, J.; Yun, J.; Hwang, J.; Bauer, M.; Zhao, M.; Song, J. Toward Global IoT-Enabled Smart Cities Interworking

Using Adaptive Semantic Adapter. IEEE Internet Things J. 2019, 6, 5753–5765, https://doi.org/10.1109/JIOT.2019.2905275.

6. Dholu, M.; Ghodinde, K.A. Internet of Things (IoT) for Precision Agriculture Application. In Proceedings of the 2nd Interna-

tional Conference on Trends in Electronics and Informatics (ICOEI 2018), Tirunelveli, India, 11–12 May 2018; pp. 2018–2021.

7. Shafique, M.N.; Khurshid, M.M.; Rahman, H.; Khanna, A.; Gupta, D.; Rodrigues, J.J.P.C. The Role of Wearable Technologies in

Supply Chain Collaboration: A Case of Pharmaceutical Industry. IEEE Access 2019, 7, 49014–49026, https://doi.org/10.1109/AC-

CESS.2019.2909400.

8. Al-Shargabi, B.; Sabri, O. Internet of Things: An Exploration Study of Opportunities and Challenges. In Proceedings of the 2017

International Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia, 8–10 May 2017; pp. 1–4,

https://doi.org/10.1109/ICEMIS.2017.8273047.

9. Tari, Z.; Yi, X.; Premarathne, U.S.; Bertok, P.; Khalil, I. Security and Privacy in Cloud Computing: Vision, Trends, and Chal-

lenges. IEEE Cloud Comput. 2015, 2, 30–38, https://doi.org/10.1109/MCC.2015.45.

10. El-Sayed, H.; Sankar, S.; Prasad, M.; Puthal, D.; Gupta, A.; Mohanty, M.; Lin, C.T. Edge of Things: The Big Picture on the Inte-

gration of Edge, IoT and the Cloud in a Distributed Computing Environment. IEEE Access 2017, 6, 1706–1717,

https://doi.org/10.1109/ACCESS.2017.2780087.

11. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728,

https://doi.org/10.1109/ACCESS.2020.2991734.

12. Elazhary, H. Internet of Things (IoT), Mobile Cloud, Cloudlet, Mobile IoT, IoT Cloud, Fog, Mobile Edge, and Edge Emerging

Computing Paradigms: Disambiguation and Research Directions. J. Netw. Comput. Appl. 2019, 128, 105–140,

https://doi.org/10.1016/j.jnca.2018.10.021.

13. Roman, R.; Zhou, J.; Lopez, J. On the Features and Challenges of Security & Privacy in Distributed Internet of Things. Comput.

Networks 2013, 57, https://doi.org/http://doi.org/10.1016/j.comnet.2012.12.018.

14. Jiang, C.; Fan, T.; Gao, H.; Shi, W.; Liu, L.; Cérin, C.; Wan, J. Energy Aware Edge Computing: A Survey. Comput. Commun. 2020,

151, 556–580, https://doi.org/10.1016/j.comcom.2020.01.004.

15. Lan, L. Mechanism Based on Edge Computing for Internet of Things Real-Time Monitoring. IEEE Access 2019, 7.

16. Lan, L.; Shi, R.; Wang, B.; Zhang, L. An IoT Unified Access Platform for Heterogeneity Sensing Devices Based on Edge Compu-

ting. IEEE Access 2019, 7, 44199–44211, https://doi.org/10.1109/ACCESS.2019.2908684.

17. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge Computing: A Survey. Futur. Gener. Comput. Syst. 2019, 97, 219–

235, https://doi.org/10.1016/j.future.2019.02.050.

18. Liu, F.; Tang, G.; Li, Y.; Cai, Z.; Zhang, X.; Zhou, T. A Survey on Edge Computing Systems and Tools. Proc. IEEE 2019, 107,

1537–1562, https://doi.org/10.1109/JPROC.2019.2920341.

19. Chowdhury, M.J.M.; Ferdous, M.S.; Biswas, K.; Chowdhury, N.; Kayes, A.S.M.; Alazab, M.; Watters, P. A Comparative Analysis

of Distributed Ledger Technology Platforms. IEEE Access 2019, 7, 167930–167943, https://doi.org/10.1109/ACCESS.2019.2953729.

20. Böhme, R.; Christin, N.; Edelman, B.; Moore, T. Bitcoin: Economics, Technology, and Governance. J. Econ. Perspect. 2015, 29,

213–238.

21. Corda Open Source Blockchain Platform for Business. Available online: https://www.corda.net/ (accessed on 16 July 2020).

22. EOSIO—Blockchain Software Architecture. Available online: https://eos.io/ (accessed on 16 July 2020).

23. Home Ethereum.Org. Available online: https://ethereum.org/en/ (accessed on 16 July 2020).

24. MultiChain Open Source Blockchain Platform. Available online: https://www.multichain.com/ (accessed on 16 July 2020).

IoT 2021, 2, FOR PEER REVIEW 22

25. Home Quorum. Available online: https://www.goquorum.com/ (accessed on 16 July 2020).

26. Hyperledger Sawtooth—Hyperledger. Available online: https://www.hyperledger.org/use/sawtooth (accessed on 16 July 2020).

27. Hyperledger Fabric—Hyperledger. Available online: https://www.hyperledger.org/use/fabric (accessed on 16 July 2020).

28. Blockchain Showcase—Hyperledger. Available online: https://www.hyperledger.org/learn/blockchain-showcase (accessed on

10 July 2020).

29. Parikli, S.; Dave, D.; Patel, R.; Doshi, N. Security and Privacy Issues in Cloud, Fog and Edge Computing. Procedia Comput. Sci.

Sci. 2019, 160, 734–739, https://doi.org/10.1016/j.procs.2019.11.018.

30. Kshetri, N. Can Blockchain Strengthen the Internet of Things? Secur. IT 2017, 19, 68–72, https://doi.org/10.1093/cercor/bhh040.

31. Siano, P.; De Marco, G.; Rolan, A.; Loia, V. A Survey and Evaluation of the Potentials of Distributed Ledger Technology for

Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Syst. J. 2019, 1–13,

https://doi.org/10.1109/JSYST.2019.2903172.

32. The Linux Foundation Project. Home—EdgeX Foundry. Available online: https://www.edgexfoundry.org/ (accessed on 10 July

2020).

33. Abdmeziem, R.M.; Tandjaoui, D.; Romdhani, I. Architecting the Internet of Things: State of the Art. Robot. Sens. Cloud Springer

2015, 36, 77–94, https://doi.org/10.1007/978-3-319-22168-7.

34. Martin Fernandez, C.; Diaz Rodriguez, M.; Rubio Munoz, B. An Edge Computing Architecture in the Internet of Things. In

Proceedings of the 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC), Singapore, 29–31

May 2018; pp. 99–102, https://doi.org/10.1109/ISORC.2018.00021.

35. Alanezi, K.; Mishra, S. An Edge-Based Architecture to Support the Execution of Ambience Intelligence Tasks Using the IoP

Paradigm. Futur. Gener. Comput. Syst. 2021, 114, 349–357, https://doi.org/10.1016/j.future.2020.08.001.

36. Cicirelli, F.; Guerrieri, A.; Spezzano, G.; Vinci, A. A Cognitive Enabled, Edge-Computing Architecture for Future Generation

IoT Environments. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18

April 2019; pp. 35–40, https://doi.org/10.1109/WF-IoT.2019.8767246.

37. Gheisari, M.; Pham, Q.V.; Alazab, M.; Zhang, X.; Fernandez-Campusano, C.; Srivastava, G. ECA: An Edge Computing Archi-

tecture for Privacy-Preserving in IoT-Based Smart City. IEEE Access 2019, 7, 155779–155786, https://doi.org/10.1109/AC-

CESS.2019.2937177.

38. Marjanovic, M.; Antonic, A.; Zarko, I.P. Edge Computing Architecture for Mobile Crowdsensing. IEEE Access 2018, 6, 10662–

10674, https://doi.org/10.1109/ACCESS.2018.2799707.

39. Pace, P.; Aloi, G.; Gravina, R.; Caliciuri, G.; Fortino, G.; Liotta, A. An Edge-Based Architecture to Support Efficient Applications

for Healthcare Industry 4.0. IEEE Trans. Ind. Inform. 2019, 15, 481–489, https://doi.org/10.1109/TII.2018.2843169.

40. Goyal, P.; Sahoo, A.K.; Sharma, T.K. Internet of Things: Architecture and Enabling Technologies. Mater. Today Proc. Elsevier

2020, 34, 719–735, https://doi.org/10.1016/j.matpr.2020.04.678.

41. Akkaoui, R.; Hei, X.; Cheng, W. EdgeMediChain: A Hybrid Edge Blockchain-Based Framework for Health Data Exchange. IEEE

Access 2020, 8, 113467–113486, https://doi.org/10.1109/ACCESS.2020.3003575.

42. Bonnah, E.; Shiguang, J. DecChain: A Decentralized Security Approach in Edge Computing Based on Blockchain. Futur. Gener.

Comput. Syst. 2020, 113, 363–379, https://doi.org/10.1016/j.future.2020.07.009.

43. Chuang, I.H.; Huang, S.H.; Chao, W.C.; Tsai, J.S.; Kuo, Y.H. TIDES: A Trust-Aware IoT Data Economic System with Blockchain-

Enabled Multi-Access Edge Computing. IEEE Access 2020, 8, 85839–85855, https://doi.org/10.1109/ACCESS.2020.2991267.

44. Cui, L.; Yang, S.; Chen, Z.; Pan, Y.; Ming, Z.; Xu, M. A Decentralized and Trusted Edge Computing Platform for Internet of

Things. IEEE Internet Things J. 2020, 7, 3910–3922, https://doi.org/10.1109/JIOT.2019.2951619.

45. Guo, S.; Dai, Y.; Guo, S.; Qiu, X.; Qi, F. Blockchain Meets Edge Computing: Stackelberg Game and Double Auction Based Task

Offloading for Mobile Blockchain. IEEE Trans. Veh. Technol. 2020, 69, 5549–5561, https://doi.org/10.1109/TVT.2020.2982000.

46. Guo, S.; Hu, X.; Guo, S.; Qiu, X.; Qi, F. Blockchain Meets Edge Computing: A Distributed and Trusted Authentication System.

IEEE Trans. Ind. Inform. 2020, 16, 1972–1983, https://doi.org/10.1109/TII.2019.2938001.

47. Li, M.; Yu, F.R.; Si, P.; Wu, W.; Zhang, Y. Resource Optimization for Delay-Tolerant Data in Blockchain-Enabled IoT with Edge

Computing: A Deep Reinforcement Learning Approach. IEEE Internet Things J. 2020, 7, 9399–9412,

https://doi.org/10.1109/jiot.2020.3007869.

48. Singh, S.K.; Rathore, S.; Park, J.H. BlockIoTIntelligence: A Blockchain-Enabled Intelligent IoT Architecture with Artificial Intel-

ligence. Futur. Gener. Comput. Syst. 2020, 110, 721–743, https://doi.org/10.1016/j.future.2019.09.002.

49. Xu, J.; Wang, S.; Zhou, A.; Yang, F. Edgence : A Blockchain-Enabled Edge-Computing Platform for Intelligent IoT-Based DApps.

China Commun. 2020, 17, 78–87.

50. Wang, R.; Tsai, W.T.; He, J.; Liu, C.; Li, Q.; Deng, E. A Video Surveillance System Based on Permissioned Blockchains and Edge

Computing. In Proceedings of the 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), Kyoto,

Japan, 27 Feburary–2 March 2019; pp. 1–6, https://doi.org/10.1109/BIGCOMP.2019.8679354.

51. Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 10 July 2020).

52. Kim, J.B.; Kwon, D.H.; Hong, Y.G.; Lim, H.K.; Kim, M.S.; Han, Y.H. Deep Q-Network Based Rotary Inverted Pendulum System

and Its Monitoring on the EdgeX Platform. In Proceedings of the 2019 International Conference on Artificial Intelligence in

Information and Communication (ICAIIC), Okinawa, Japan, 11–13 Feburary 2019; pp. 34–39,

https://doi.org/10.1109/ICAIIC.2019.8668979.

https://ieeexplore.ieee.org/xpl/conhome/8665865/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8665865/proceeding

IoT 2021, 2, FOR PEER REVIEW 23

53. Sobecki, A.; Szymański, J.; Gil, D.; Mora, H. Deep Learning in the Fog. Int. J. Distrib. Sens. Networks 2019, 15,

https://doi.org/10.1177/1550147719867072.

54. Xu, R.; Jin, W.; Kim, D. Microservice Security Agent Based on API Gateway in Edge Computing. Sensors 2019, 19, 1–17,

https://doi.org/10.3390/s19224905.

55. Zhang, W.; Fan, H.; Zhang, Y.; Gao, Y.; Dong, W. Enabling Rapid Edge System Deployment with Tinyedge. In Proceedings of

the SIGCOMM Posters and Demos '19: Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos, Beijing, China,

19–23 August 2019; pp. 104–106, https://doi.org/10.1145/3342280.3342323.

56. Introducing Hyperledger Fabric 1.4 LTS!—Hyperledger. Available online: https://www.hyperledger.org/blog/2019/01/10/intro-

ducing-hyperledger-fabric-1-4-lts (accessed on 10 July 2020).

57. Getting Started Client Side Load Balancing with Ribbon and Spring Cloud. Available online: https://spring.io/guides/gs/client-

side-load-balancing/ (accessed on 4 November 2020).

58. The Linux Foundation Project. Hyperledger Blockchain Performance Metrics White Paper—Hyperledger. Available online:

https://www.hyperledger.org/learn/publications/blockchain-performance-metrics (accessed on 24 September 2020).

59. The Linux Foundation. Fabric Hyperledger Caliper. Available online: https://hyperledger.github.io/caliper/v0.3.2/fabric-config/

accessed on 28 September 2020).

