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Abstract

Machine learning (ML) techniques are looked upon as an innovative and realistic direction to cope up with nonlinearity issues in fiber
optics communication. In this paper, a 64-quadrature amplitude modulation (QAM) based radio over fiber (RoF) system is demonstrated for
10 km of standard single mode fiber length utilizing support vector machine (SVM) method to indicate an effective nonlinearity mitigation
in front-hauls. The comparison of SVM is drawn with conventional ML classifiers to optimize symbol decision boundary that will reduce

the RoF link impairments. The results are reported in terms of BER, Eye-linearity and Quality factor.
© 2021 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The demand for future wireless networks is increasing day
by day. For satisfying this growing demand of data rate,
Analog Radio over Fiber (A-RoF) system has been proposed
as an empowering technology that improves and extends the
wireless coverage and offers high capacity mobility solution
to transport information. A-RoF has been employed in dif-
ferent scenarios ranging from inhouse to outdoor applicative
scenarios [1-4].

A-ROF systems can serve as building blocks for central-
ized/cloud radio access network (C-RAN) which connects the
base band units (BBU) to remote radio heads (RRHs). The in-
terconnectivity of these BBUs with RRHs through distribution
network is referred as the ‘fronthaul’ [5].

Apart from the advantages coming from A-RoF technology,
they also suffer from nonlinearities that arise due to inherent
properties of electrical to optical (E-O) and optical to electrical
(O-E) conversions [6].

Similarly, the use of long term evolution (LTE) signals sug-
gests the use of orthogonal frequency divisional multiplexing
(OFDM) which presents high peak to average power ratio

* Correspondence to: Fredrik Bajers Vej 7, A4, 9220, Aalborg, Denmark.
E-mail addresses: usmanhadi@ieee.org, usmanh@es.aau.dk.
Peer review under responsibility of The Korean Institute of Communica-
tions and Information Sciences (KICS).

https://doi.org/10.1016/j.icte.2020.11.002

(PAPR) [7]. Since, A-RoF transmission is based on these op-
tical subcarrier modulation techniques, A-RoF links are prone
to impairments. Being an economically viable technology,
mitigating these nonlinearities is a desired operation.

Similarly, with 5G advancements, the dynamic tracking of
increase 5G networks, it would be challenging to dynamically
track and compensate the nonlinear channel response, espe-
cially given the fact of broadband time varying data traffic
from multiple RATS.

Due to these nonlinear impairments in A-RoF systems, the
use of Digital Radio over Fiber (D-RoF) as suggested in [5,8]
can still be a good option as compared to A-RoF, however,
the increase in accuracy, results in increase in resolution bits of
analog to digital converters which makes it practically complex
and costly operation. The use of Sigma Delta Radio over
Fiber system may be used instead of mitigating nonlinearities
in A-RoF as suggested in [9,10], however, the increase in
quantization noise due to 1-bit of analog to digital converter
(ADC) and higher sampling rate is still undesirable. In such
situations, A-RoF is still a better choice to be used and
employ linearization to such systems. Indeed, due to presence
of inexpensive deployment cost and legacy infrastructure that
makes it still more preferable than other technologies.

Nonlinearity alleviation results to increase in the optical
system capacity. Many techniques have been proposed which
mitigate these nonlinearities. Analog predistortion method was

2405-9595/@© 2021 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://www.elsevier.com/locate/icte
https://doi.org/10.1016/j.icte.2020.11.002
http://www.elsevier.com/locate/icte
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icte.2020.11.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:usmanhadi@ieee.org
mailto:usmanh@es.aau.dk
https://doi.org/10.1016/j.icte.2020.11.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

M.U. Hadi

addressed in [11] where the nonlinearities of the laser source
were compensated. Digital Predistortion linearization tech-
nique using memory polynomials was discussed in [12], while
a trained predistorter based on Volterra series has been ap-
plied to non-linear A-RoF link [13,14]. More recently, Digital
Predistortion based on memory and generalized memory poly-
nomial was proposed for VCSELs based radio over fiber
links [10]. Direct Digital Predistortion technique (DPDT) that
linearizes the links by realizing the behavioral model of A-RoF
links was also proposed in [6,15]. However, these linearization
techniques are complex operations which lead to additional
complexities.

The use of machine learning (ML) based classifiers for
nonlinear mitigation in A-RoF is comparably a new concept
in the optical communications. Recently, in past few years,
the use of ML techniques to optical communication system
has given an innovative direction. ML can be employed to
explicitly describe the challenges in optical fiber communica-
tions [16] such as performance optimization, testing, planning
and equipment realization. Use of ML-based algorithms for
mitigating the nonlinearities of radio over fiber system is a
unique concept that should be investigated in detail. In general,
these methods learn from the properties of various nonlinear
impairments through the applied models which can be utilized
for either compensation and quantification of impairments
introduced.

Machine learning methodologies such as K nearest neigh-
bor algorithms (KNN), artificial neural networks (ANN) and
support vector machines (SVM) are widely used in channel
monitoring, modulation format identification, nonlinear com-
pensation, equalization and demodulation [17-19]. SVM based
study has been carried out in [20-23] in coherent optical
communication system that reduced the fiber induced nonlin-
earities by 1 dB in comparison to the neural network-based
technique. Similar studies have been carried out in [20] where
enhanced improvements were reported.

There are two main advantages with ML approaches.

i They can partially mitigate the fiber nonlinearities and
noise interactions.

ii The knowledge of optical link is not needed a priori.
This tends to make them a good choice for optical
networks where dynamic tracking and compensation of
link and channel impairments is needed.

In this paper, the mitigation of nonlinear impairments is
evaluated by employing SVM based machine learning meth-
ods. In the proposed system, a 20 MHz LTE signal with
64 quadrature amplitude modulation (QAM) is injected into
distributed feedback (DFB) laser for 100 km single mode fiber
transmission. This will cause signal to suffer from nonlinear-
ities caused due to opto-electronic devices in the RoF link as
the decision boundary is non-linear. The utilization of SVM
method is compared with conventional ML classifier method
in order to mitigate the nonlinearities of the RoF link.
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Fig. 1. Fundamental SVM classifier.

2. SVM decision in RoF system

The separation of one class of data points can be done
using SVM classifiers that looks for the best possible hy-
perplane. The representation of best hyper plane is the one
which has largest margin. Similarly, SVM classification relies
on finding the best boundary to distinguish two cases. It was
shown in [18] that each SVM classifier is responsible for one
bit. Since, M-QAM signal requires log, M SVM decisions,
therefore 64 QAM will require 6 SVM classifiers.

In order to understand the principle of SVM detection, the
separable decision function is represented as:

ey

where @ and b are the parameters of the hyper-plane. The order
of correct classification is defined by functional marginality
defined as follows:

y(x) = sign(w.x + b)

5 = (w.x + D).y

wherei=1,2,..., N

The samples are classified correctly when 8; > 0, therefore
the magnitude of §; has no influence in hyper plane itself
which means that hyper plane can have many values of 5
provided that the proportion of variance between @ and b
remains the same.

From functional marginality, we can defined marginality §
as explained in [13] as:

|w.x + b|

i =

(@)

lell

§ = min §;
i=1.N

Therefore, the SVM process will become:

maxé when §; >68; i=1,...,N

®,b
with final optimization target formulated as:

1wl
> 3)
In order to solve this functionality, minimal optimization
algorithm is used. The fundamental SVM classifier is shown
in Fig. 1.
Each signal’s bit is labeled as f;,, where n = 1, ...,6. The
designed boundary of each SVM and gray-coded constellation
diagram for 64-QAM are shown in Fig. 2.
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Fig. 2. SVM decision for 64 QAM signal. . (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

The first and fourth bits have linear classification rep-
resented by SVM1 and SVM4, where the test data of the
constellation points above the black line and at right side of
the blue line marked as “+1” and others are marked as “—1”.
SVM2 up to SVM6 are non-linear classifiers, whose test point
of the constellation points inside the rectangle closure are
referred to “41” and others as “—1”.

The conventional classifier that we used in this study is a
maximum likelihood classifier (MLC) that is generally used as
a conventional solution. MLC is based on Bayesian statistics
and provides parametric approach in decision making. MLC
has been well explained in [24—27]. The mathematical descrip-
tion utilized int his work regarding conventional ML/MLC has
been taken from [24].

3. Simulation setup

The analytical model demonstrates the model of the RoF
systems which is shown in Fig. 3. The model has been real-
ized using a VPI photonics simulator. Input comprises of 64
QAM LTE 20 MHz signal. The SVM decisions are performed
in MATLAB. The electro optical (E-O) converter consists
of distributed feedback laser (DFB) emitting wavelength at
1550 nm. After 100 km standard single mode fiber (SSMF)
transmission, the signal is sent to the photo diode (PD) having
center frequency of 3.5 GHz. Details are given in Table | of
the simulation setup.

The received signal is sent to Baseband DSP block of signal
analyzer after which it is passed through post processing pro-
cess where machine learning decision are carried out followed
by the parametric evaluation block.

The steps involved in SVM implementation are as follows:

1. Firstly, the data is transmitted synchronously to each of
the SVMs.

2. The parametric optimization is performed for six SVM
classifiers.

3. Error bits are counted by comparing the labeled data
with original data.

Consider (100011) as a constellation data received for
SVM decision. Primarily, the test data is transferred to SVM1
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Fig. 3. Experimental bench for comparison of conventional ML classifiers
and SVM.
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Fig. 4. BER versus number of training data points for SVM compared with
conventional ML classifier.

Table 1

System parameters.
Parameter Value
RF signal
Carrier frequency 3.5 GHz
Constellation 64 QAM

Symbol rate 16 MSymbols/s

Laser

Wavelength 1550 nm
Average power 10 mW

Line width 16 MHz
Fiber

Fiber dispersion 16 ps/nm km
Fiber distance 100 km
Attenuation 0.2 dB/km
Photo-detector

Responsivity 0.9 A/W

where the first bit “1” is classified and labeled as “1” by SVM1
decision. Secondly, it is sent to SVM2 and the second bit “0” is
labeled as “—1”. Finally, the test data is sent to SVM3, SVM4
and SVMS5, where the third, fourth and fifth bits are labeled
as “—17, “—1” and “+41”, respectively.

Finally, SVMG6 receives the data and it classifies the sixth bit
“1” as “+1”. Once all the test data are labeled, we recalculate
the BER of six bits data. As a result, all constellation points
of 64-QAM signal can be decided correctly by the six SVMs.

For comparative study, the modulation format has been
modified from 64 QAM to 16 QAM and instead of 20 MHz
LTE signal, 5 and 10 MHz LTE signal are also considered in
results shown in Figs. 8§ and 9 We also change fiber length
from 100 km to 1000 km in order to see the effect of the
proposed methodology.
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Fig. 6. BER versus optical power for SVM compared with conventional ML
classifier.

4. Simulation results and discussion

The simulation results are discussed in this section. Fig. 4
represents the bit error rate (BER) versus number of training
data points. SVM is compared with respect to conventional
machine learning classifiers as explained in [14,15,20] for
comparison. It is shown for training data smaller than 500
units, SVM performance is efficient because the training sam-
ples are only utilized for finding the difference in marginal
boundaries. When the number of training data is larger than
1500 or more, SVM saturates the improvement in performance
because for SVM decision, the test point is only needed and
six SVMs boundary’s distance.

Fig. 5 shows the behavior of optical power sensitivity
with increase in eye linearity (increase of modulation non-
linearity distortion). It shows that the SVM machine learning
performance is less affected by the increase of eye-linearity.
Similarly, the smaller slope means an increased sensitivity gain
with the increase of eye-linearity.

Similarly, in Fig. 6, BER is reduced significantly when
SVM detection is compared with conventional detection. Con-
ventional ML classifier results in reduction of BER with
increasing received optical power. However, it can be seen that
SVM based detection has BER which saturates in reduction
after 0 dBm of optical power.

In Fig. 7, the amplitude is changed from 0.1 to 0.8 volts. It
is observed that with the lower amplitude, the nonlinearity is
negligible. However, when the adjacent channel leakage ratio
is high, the nonlinearity of the link becomes worse. The SVM
decision improves the BER performance when compared with
conventional ML classifier decision.

Similarly, a Q-factor for 64 QAM modulation with ref-
erence to input launch power is compared in Fig. 8 with
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Fig. 7. BER versus change in driver amplitude for SVM compared with
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Fig. 8. Q-factor versus launch power for SVM compared with conventional
ML classifier and without ML/SVM.

traditional ML classifier method and the case when there is
no method for improvement with 1000 km fiber length. We
show the performance with SVM, with ML classifier and the
case where no method is employed. The results signify that
Q-factor for SVM method is always above 9.5 dB up till 2
dBm, however, for ML classifier, the results are always better
than the case with no ML/SVM method.

Similarly, Q-factor is compared with fiber distance up to
1000 km for —5 dBm of RF input power for SVM, ML
classifier and without SVM/ML method. We have chosen
1000 km as a distance as we would like to show that the
capability of mitigation is not only for front haul scenarios
but could also be applied to back haul as well. The maximum
improvement with SVM reduces the fiber induced nonlinearity
penalty by about 2.2 dB which is seen at 200 km. These fibers
induced nonlinearity penalty improvements in Figs. 8 and 9
are comparable to results shown in [20-28] where 16 QAM
modulation is shown up to 1200 km.

Moreover, the eye diagrams with SVM and without any
compensation methods are shown at 100 km in Fig. 10. The
results verify that SVM is a better eye opener as compared to
conventional method.

5. Conclusions

The article demonstrated a novel signal decision approach
implementation for RoF system where SVM classifier was
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Fig. 10. Eye diagrams at 100 km for (a) SVM compared with (b)
conventional ML classifier shows suppression in the latter case.

(b) Conventional

compared with conventional ML classifier in order to see
the impact on mitigation of nonlinearity in RoF system. The
simulation results show that for 20 MHz LTE signal, 64 QAM
modulation having 100 km of fiber length, SVM results in
reduction of the bit error rate in considered RoF system. The
in-depth experimental evaluation and comparison with other
ML techniques are envisaged for future work.
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