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Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate under 1 

Continuous Flow Left Ventricular Assist Device Support 2 

Abstract 3 

Neurological complications in Continuous Flow Left Ventricular Assist Device (CF-LVAD) 4 

patients are the second-leading risk of death after multi-organ failure. They are 5 

associated with altered blood flow in the cardiovascular system because of CF-LVAD 6 

support. Moreover, an impaired cerebral autoregulation function may also contribute to 7 

complications such as hyperperfusion in the cerebral circulation under mechanical 8 

circulatory support. The aim of this study is to evaluate the effect of cerebral 9 

autoregulatory function on cerebral blood flow rate under CF-LVAD support. A lumped 10 

parameter model was used to simulate the cardiovascular system including the heart 11 

chambers, heart valves, systemic and pulmonary circulations and cerebral circulation 12 

which includes entire Circle of Willis. A baroreflex model was used to regulate the 13 

systemic arteriolar and cerebral vascular resistances and a model of the Micromed CF-14 

LVAD was used to simulate the pump dynamics at different operating speeds. 15 

Additionally, preserved and impaired cerebral autoregulatory functions were simulated in 16 

heart failure and under CF-LVAD support. Cerebral blood flow rate was restored under 17 

CF-LVAD support at 10500 rpm pump operating speed which generated a similar arterial 18 

blood pressure and blood flow as in a healthy condition for the impaired cerebral 19 

autoregulatory function while the preserved cerebral autoregulatory function regulated 20 

the cerebral flow rate within a relatively low range for the applied pump operating speeds. 21 

Relatively low or high pump operating speeds may cause underpefusion or 22 

hyperperfusion for a failing cardiovascular system with impaired cerebral autoregulatory 23 
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function under CF-LVAD support which will contribute to the worsening of cerebral 1 

complications. 2 

Keywords: left ventricular assist device, CF-LVAD, cerebral flow, cerebral 3 

autoregulatory function 4 

Introduction 5 

 Heart failure has a complex structure at the organ and cellular levels and it is 6 

conventionally treated with inotropic support, diuretics, or moderate exercise. 7 

Nevertheless, none of these treatment techniques may work and a heart transplantation 8 

would be then required. However, the current state of donor organ supply means that 9 

many patients are not treated, due to a lack of fitting donor organ. Continuous Flow Left 10 

Ventricular Assist Devices (CF-LVADs) may be used to bridge the time between the 11 

decision to transplant and the actual transplantation in these patients [1]. Although these 12 

devices restore the perfusion levels in the patients’ body, they alter the blood flow in the 13 

cardiovascular system significantly [2,3]. Moreover, altered blood flow in the 14 

cardiovascular system under CF-LVAD support may cause problems such as gastro-15 

intestinal bleeding and end-organ failure because of the reduced pulsatility, aortic valve 16 

insufficiency due to altered aortic valve load or hemorrhagic stroke because of abnormal 17 

cerebral flow etc., which increases the morbidity and mortality of the patients [4–8].  18 

 A possible solution for the problems occurring due to the altered blood flow in the 19 

cardiovascular system may be operating the CF-LVADs at a dynamic mode instead of 20 

continuous mode [9,10]. Some of these problems have been extensively studied and 21 

dynamic CF-LVAD operating support modes have already been suggested. For instance, 22 
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there have been studies proposing CF-LVAD operating speed modulation algorithms to 1 

increase the arterial pulsatility in a co-pulsative pump support over a cardiac cycle [11–2 

14]. Aortic valve function and opening duration can be increased by reducing the CF-3 

LVAD operating speed to a minimum value before the onset of the systolic phase in the 4 

left ventricle [15,16]. Myocardial recovery because of a reverse remodeling in the 5 

ventricle may occur under CF-LVAD support with complete unloading of the left ventricle 6 

[17]. CF-LVAD operating modes imitating Frank-Starling mechanism have also been 7 

proposed to provide more physiological preloads and afterloads for the changing 8 

conditions in a patient’s body [18–20].  9 

 Neurological complications in CF-LVAD patients are the second-leading highest 10 

risk after multi-organ failure [4,21]. The prevalence of cerebral micro-bleeds which are 11 

positively correlated with haemorrhagic stroke is very common in CF-LVAD patients [22]. 12 

However, it should be noted that the causes of cerebral function problems still remains 13 

unclear and may be associated with pre- and post-operative factors such as previous 14 

strokes, persistent malnutrition and inflammation, severity of heart failure, and post-LVAD 15 

infections, reduced pulsatility or the anatomic configuration of LVAD outflow cannula-16 

ascending aorta anastomosis [23–25].  17 

In a healthy cardiovascular system, cerebral flow rate changes slightly within a 18 

range between 60 mmHg and 140 mmHg of arterial blood pressure [26]. However, in the 19 

heart failure patients clinical data indicates that cerebral flow autoregulation function may 20 

be impaired and there might be a mild to moderate average cerebral flow rate reduction 21 

[27–29]. Moreover, cerebral flow may reduce by up to 30 percent although arterial blood 22 

pressure remains within the autoregulation zone [30]. After CF-LVAD implantation, 23 
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cerebral autoregulatory function reported to be preserved [31]. Nevertheless, there are 1 

also studies reporting that cerebral hyper-perfusion may be observed after LVAD 2 

implantation and may be associated with impaired cerebral autoregulation function 3 

[32,33]. It can be concluded that the condition of cerebral flow autoregulation function 4 

may be different in patients and may affect the cerebral haemodynamic signals of CF-5 

LVAD patients. Moreover, the proposed CF-LVAD operating speed regulation techniques 6 

may cause more complications in a cardiovascular system with impaired cerebral flow 7 

autoregulation function under heart pump support.  8 

 In this study, the effects of preserved and impaired cerebral autoregulation 9 

functions on cerebral flow rate under CF-LVAD support have been investigated at 10 

different speeds of the heart pump utilising numerical simulations. The cerebral 11 

circulation model includes the entire Circle of Willis, thus enabling an accurate 12 

representation of cerebral circulation. The autoregulatory mechanism regulates systemic 13 

arteriolar resistance and pial circulation resistance simulating the physiological functions 14 

of preserved and impaired cerebral autoregulation. 15 

Materials and Methods 16 

Any changes in arterial blood pressure are detected by baroreceptors in the walls 17 

of the large systemic arteries and is then transmitted to the central nervous system. A 18 

drop in arterial blood pressure stimulates the sympathetic nervous system. The response 19 

of the cardiovascular system to a pressure drop in the large arteries is to increase the 20 

systemic peripheral resistance by constricting the arterioles [34]. Therefore, the 21 

autoregulation of the systemic peripheral resistance has been modelled using mean 22 
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aortic pressure (pao,m) in the cardiovascular system model [35]. The set point of the 1 

autonomic nervous system was selected as 100 mmHg aortic pressure and systemic 2 

arteriolar resistance at this pressure was taken from [35]. 3 

, ,100(100 )ars Rars ao m arsR S p R∆ = −                  (1) 4 

,

,

100

100
ars ars ao m

ars

ars ars ao m

R R p
R

R R p

− ∆ ≥
= 

+ ∆ <
                (2) 5 

Here, Rars, ∆Rars, Rars,100 and SRars represent systemic arteriole resistance, change 6 

in the systemic arteriolar resistance, systemic arteriolar resistance at 100 mmHg mean 7 

aortic pressure and sensitivity of the systemic arteriolar resistance. In the equation above 8 

0.0175 mmHg-1 and 1 mmHgs/mL were used for SRars and Rars,100 respectively [35]. 9 

Cerebral blood flow response is also correlated with mean systemic arterial 10 

pressure [36] and the cerebral flow rate changes slightly within a range of 60 mmHg and 11 

140 mmHg arterial pressures in healthy subjects [26]. Moreover, cerebral vessel 12 

resistance changes linearly within this range in order to regulate cerebral blood flow [37]. 13 

However, in the heart failure patients there might be a mild to moderate average cerebral 14 

flow rate reduction [27,30] because of impaired cerebral autoregulation. The cerebral 15 

blood flow was regulated using a varying resistance in the pial circulation as given below. 16 

, ,100(100 )pc Rpc ao m pcR S p R∆ = −                (3) 17 

,

,

100

100

pc pc ao m

pc

pc pc ao m

R R p
R

R R p

+ ∆ ≥
= 

− ∆ <
              (4) 18 

Here, Rpc, ∆Rpc, Rpc,100 and SRpc represent pial circulation resistance, change in 19 

the pial circulation resistance, pial circulation resistance at 100 mmHg mean aortic 20 

Page 5 of 38 Artificial Organs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

6 

 

pressure and the sensitivity of the pial circulation resistance. In the equation above SRpc 1 

was 0.0120 mmHg-1 for the healthy condition and preserved cerebral autoregulation for 2 

heart failure. Impaired cerebral flow autoregulation was simulated by reducing SRpc to 3 

0.0055 mmHg-1. The pial circulation resistance (Rpc,100) at 100 mmHg arterial blood 4 

pressure was 5 mmHgs/mL. The utilised preserved and impaired cerebral flow 5 

autoregulation functions together with the physiological preserved and impaired cerebral 6 

flow autoregulation functions [38] have been given in Figure 1. 7 

Numerical simulations were performed using a cardiovascular system model 8 

which includes the left and right ventricles, left and right atria, heart valves, aorta, aortic 9 

arch, systemic arterioles, systemic capillaries, systemic veins, pulmonary arteries, 10 

pulmonary arterioles, pulmonary veins and cerebral circulation. The cerebral circulation 11 

consists of pial circulation, cerebral capillaries and cerebral veins, left and right internal 12 

carotid arteries, left and right vertebral arteries, basilar artery, left and right superior 13 

cerebellar arteries, left and right anterior choroidal arteries, left and right ophthalmic 14 

arteries, left and right middle arteries, left and right posterior cerebral arteries, left and 15 

right posterior communicating arteries, left and right anterior cerebral arteries and the 16 

anterior communicating artery simulating the entire Circle of Willis in the cerebral 17 

circulation as well. 18 

The applied ventricle models simulate the ventricular wall mechanics using 19 

myocardial constitutive properties and intramyocardial pressure.  Active and passive fibre 20 

stresses include the myocardial constitutive laws for fibre stress and radial stress [39]. 21 

The left ventricular pressure (plv), volume change (dVlv/dt) and active fibre stress (σa) are 22 

given below.  23 

Page 6 of 38Artificial Organs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

7 

 

,( 2 )ln(1 / ) / 3
lv f m r w lv

p V Vσ σ= − +               (5) 1 

lv
mv av

dV
Q Q

dt
= −                 (6) 2 

σ σ υ= ( ) ( ) ( )a ar s sc f l g t h                (7) 3 

In the equations above, σf and σm,r represent fibre stress and radial wall stress, Vw 4 

and Vlv are the ventricular wall volume and cavity volume respectively. Qmv and Qav are 5 

the flow rate through the heart valves. c is the parameter defining the strength of the 6 

ventricular contraction, σar is the active fibre stress and f, and h are the functions that 7 

define sarcomere length (ls) and sarcomere shortening velocity (υs) respectively. The 8 

contraction of the left ventricle is activated by an activation function (glv) over a cardiac 9 

cycle. 10 

2
max, max,

max,

sin ( / ),
( )

0,
lv lv

lv

lv

t t t t
g t

t t

π ≤= 
>

                (8) 11 

 Here, t and tmax,lv represent the time and twitch duration in the left ventricle model 12 

over a cardiac cycle. Detailed information about the full left ventricle model can be found 13 

in [39]. The right ventricle was described in a similar way using different parameter 14 

values. 15 

 The left atrium was modelled in the same way using different parameter values for 16 

the wall volume, active fibre stress, and activation function. The contraction of the left 17 

atrium is driven by an activation function (gla) as given below. 18 

2
max,

0,
( )

sin ( / ),

la

la

la la

t t
g t

t t t tπ

≤
= 

>
                  (9) 19 
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In the equation above, tla and tmax,la   are the time that left atrial contraction onsets and left 1 

atrial twitch duration over a cardiac cycle. 2 

The circulatory system was described using a lumped parameter model including 3 

electrical analogues for resistance (R), compliance (C) and inertia (L). The heart valves 4 

were modelled as ideal diodes allowing one-way blood flow. In this system, the change of 5 

pressure (dpao/dt) and the change of flow rate (dQao/dt) in the aorta has been given 6 

below. 7 

−
=ao ao av

ao

dp Q Q

dt C
                 (10) 8 

− −
=ao ao aa ao ao

ao

dQ p p R Q

dt L
             (11) 9 

 In the equations above, Qav is the flow rate through the aortic valve, and pao is the 10 

pressure in the aorta. Cao, Rao and Lao represent the aortic compliance, resistance and 11 

inertance respectively. The change of the pressures and flow rates in the other 12 

compartments were modelled in the same way using different parameter values. 13 

The circle of Willis is a ring of interconnecting arteries located at the base of the 14 

brain and is composed of anterior cerebral arteries, anterior communicating artery, 15 

internal carotid arteries, posterior cerebral arteries and posterior communicating arteries. 16 

These blood vessels are supplied with blood by the vertebral and basilar arteries and 17 

distribute the blood to the superior cerebellar arteries, middle cerebral arteries, anterior 18 

choroidal arteries and ophthalmic arteries [40]. In the cerebral circulation model, the 19 

internal carotid and vertebral arteries were modelled using resistance and inertance 20 

properties, and the rest of the cerebral circulation includes resistance, and compliance 21 
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properties (Fig. 2) using a similar relationship as described in Eq. 6 and Eq. 7. Generally, 1 

blood flow is distributed uniformly and does not vary considerably in each section on the 2 

left and right sides unless there are  significant anatomical variations or anomalies in the 3 

structure of the cerebral arteries [41,42]. Therefore, in this study all of the blood vessels 4 

on the left and right sections are assumed to be identical. Resistances (R) were 5 

estimated using the Poiseuille equation for each compartment in the Circle of Willis and 6 

for cerebral circulation as given below. 7 

4

8
R l

r

µ
π

=                     (12) 8 

Here, µ, r and l are the blood viscosity, inner radius and length of the blood 9 

vessels. The base values for blood vessel inner radiuses and lengths are taken from [38] 10 

to estimate the resistances for the cerebral circulation. It should be noted that resistance 11 

of the blood vessels in Circle of Willis and cerebral circulation varies within a large range 12 

and significantly different values have been reported [41,43–48]. Such large variations in 13 

the blood vessel lengths and inner radiuses cause a large variation in resistances. 14 

Therefore, the resistance of the blood vessels in the cerebral circulation were adjusted 15 

manually around the base values taken from [38] to obtain the physiological flow rates in 16 

the cerebral circulation and Circle of Willis flow rates. 17 

A dilated cardiomyopathy (DCM) condition was simulated as the pathological case 18 

in this study. Dilated cardiomyopathy is a condition in which the heart's ability to pump 19 

blood is decreased because the left ventricle is enlarged and weakened. It is 20 

characterised with reduced contractility, increased left ventricular volume and elevated 21 

left ventricular filling pressures [1]. To simulate dilated cardiomyopathy, the contractility of 22 
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the left ventricle (c) was reduced from 1 to 0.60. The left ventricular wall volume was 1 

increased from 200 mL to 225 mL, zero pressure left-ventricular volume, increased from 2 

0.3Vlv to 0.4Vlv as defined in [39]. All of the parameter values used in the systemic, 3 

pulmonary and cerebral circulations, left and right ventricles and left and right atria have 4 

been given in the Appendix section.  5 

To simulate CF-LVAD support, a model which estimates the pressure difference 6 

across the Micromed heart pump considering the operating speed of the pump, flow rate 7 

and change of the flow rate through the pump [49] was integrated into the cardiovascular 8 

system model: 9 

CF LVAD
CF LVAD CF LVAD CF LVAD CF LVAD CF LVAD

dQ
p K R Q L

dt
ω −

− − − − −∆ = − −2         (13) 10 

1 2CF LVAD CF LVADR k Q k− −= +              (14) 11 

In the equations above, ∆pCF-LVAD and QCF-LVAD denote the pressure difference 12 

across the pump and flow rate through the pump. LCF-LVAD (2e-2mmHg s2/mL) and RCF-13 

LVAD are the inertance and resistance effects in the pump. K (8.56e-05mmHg s2/rad2), k1 14 

(9.17e-04mmHg s2/mL2) and k2 (203e-3mmHg s/mL) are the estimated parameters [49] 15 

and ωCF-LVAD denotes the operating speed of the pump. The electric analogue of 16 

cardiovascular system, CF-LVAD and cerebral circulation models together with a 17 

schematic of circle of Willis have been given Figure 2. The abbreviations used in Figure 2 18 

have been listed in the Appendix section. 19 

The simulations were performed using Matlab Simulink R2017a. The set of 20 

equations was solved using the ode15s solver. The maximum step size was 1e-3 s, 21 

relative tolerance was set to 1e-3. The CF-LVAD was operated between 7500 rpm and 22 
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12500 rpm rotation speeds with 1000 rpm intervals. The heart rate was kept at 75 bpm 1 

for all of the conditions in the numerical simulations. 2 

Results 3 

First, the simulations were performed for the healthy cardiovascular system model 4 

and DCM cardiovascular system models with preserved and impaired cerebral 5 

autoregulatory functions. The left ventricular and atrial pressures, aortic pressure and left 6 

ventricular and atrial volumes for the healthy condition and DCM conditions with 7 

preserved and impaired cerebral flow autoregulation functions have been given in Figure 8 

3. 9 

The healthy cardiovascular system model simulates the pressure and volume 10 

signals within the normal physiological range. Peak left ventricular pressure is around 11 

125 mmHg for the healthy cardiovascular system model. Reduced contraction in the left 12 

ventricle decreases the peak left ventricular and aortic pressures while increasing the 13 

diastolic left ventricular and atrial pressures in both DCM models with preserved and 14 

impaired cerebral flow autoregulation functions. Left ventricular volume changes between 15 

50 mL and 116 mL in the healthy model. Left ventricular volume increased significantly in 16 

both DCM models with preserved and impaired cerebral flow autoregulation functions 17 

while left atrial volume increased slightly. The mean aortic pressure, cardiac output and 18 

mean pump output under CF-LVAD support for the healthy cardiovascular system model, 19 

DCM cardiovascular system models with preserved and impaired cerebral flow 20 

autoregulation functions with and without CF-LVAD support have been given in Table 1. 21 
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 The mean aortic pressure and cardiac output decreases in the DCM models with 1 

respect to the healthy model. CF-LVAD support generates similar mean arterial 2 

pressures and blood flow rates as in the healthy cardiovascular system model for the 3 

DCM models with preserved and impaired cerebral autoregulation functions at 10500 4 

rpm pump operating speed. The mean aortic pressures, cardiac outputs and mean pump 5 

outputs were similar for the simulated physiological conditions at different CF-LVAD 6 

operating speeds. Flow rate signals in the internal carotid arteries, vertebral arteries, 7 

basilar artery, posterior cerebral arteries, anterior cerebral arteries and middle cerebral 8 

arteries are given for the healthy cardiovascular system model and DCM cardiovascular 9 

system models with preserved and impaired cerebral flow autoregulation functions in 10 

Figure 4. The presented results for the blood flow rate in the cerebral circulation shows 11 

only one side since the same parameter values were used and the same results have 12 

been obtained for the blood vessels in left and right compartments of the cerebral 13 

circulation. 14 

 Blood flow rate in the internal carotid arteries changes between 165 mL/min and 15 

475 mL/min while the vertebral arterial blood flow rate variation is between 46 mL/min 16 

and 146 mL/min over a cardiac cycle in the healthy cardiovascular system. Changes in 17 

the basilar arterial flow rate over a cardiac cycle were between 94 mL/min and 290 18 

mL/min, posterior and anterior arterial blood flow rates change between 30 mL/min and 19 

90 ml/min and 50 ml/min and 157 mL/min and middle arterial blood flow rate changes 20 

between 77 ml/min and 245 ml/min in the healthy cardiovascular system. Blood flow 21 

rates in the internal carotid arteries, vertebral arteries, basilar artery, posterior cerebral 22 

arteries, anterior cerebral arteries and middle cerebral arteries reduced in the DCM 23 
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cardiovascular system models. Amplitudes of the flow rate signals in these 1 

compartments decreased for the DCM cardiovascular system models as well. Mean flow 2 

rates in the internal carotid arteries, vertebral arteries, basilar artery, posterior cerebral 3 

arteries, anterior cerebral arteries and middle cerebral arteries for the healthy 4 

cardiovascular system model, DCM cardiovascular system models with preserved and 5 

impaired cerebral flow autoregulation functions with and without CF-LVAD support have 6 

been given in Figure 5. 7 

 The mean flow rate in the in the internal carotid arteries, vertebral arteries and 8 

basilar  artery  were 274  mL/min, 82  mL/min  and 162 mL/min respectively in the healthy 9 

cardiovascular system. The mean flow rate in the posterior cerebral arteries, anterior 10 

cerebral arteries and middle cerebral arteries were 51 mL/min, 87 mL/min and 136 11 

mL/min respectively in the healthy cardiovascular system. Blood flow rates in each 12 

compartment of cerebral circulation decreased for the DCM cardiovascular system 13 

models due to a reduced contractility and arterial pressure. The decrease in the blood 14 

flow rates for the DCM cardiovascular system models with impaired cerebral flow 15 

autoregulation function is significantly higher with respect to the DCM cardiovascular 16 

system model with preserved cerebral flow autoregulation function. CF-LVAD support 17 

increases the blood flow rate the cerebral circulation slightly until the pump operating 18 

speed becomes 9500 rpm in the DCM cardiovascular system model with preserved 19 

cerebral flow autoregulation function. Blood flow rates in the each compartment of the 20 

cerebral circulation reduced after 10500 rpm pump speed except in the internal carotid 21 

arteries. Increasing the pump operating speed reduces the blood flow rate slightly in this 22 

compartment as well for the DCM cardiovascular system model with preserved cerebral 23 
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flow autoregulation function. Blood flow rates increased in the compartments of the 1 

cerebral circulation for the DCM cardiovascular system models with impaired cerebral 2 

flow autoregulation function with the increasing CF-LVAD operating speeds. At 10500 3 

rpm pump operating speed blood flow rates in the compartments of the cerebral 4 

circulation are almost the same to the healthy cardiovascular system model. The total 5 

mean blood flow rate in the cerebral circulation for both DCM cardiovascular system 6 

models with preserved and impaired cerebral flow autoregulation functions with and 7 

without CF-LVAD support have been given in Figure 6. 8 

 Total mean blood flow rate was around 710 mL/min for the healthy cardiovascular 9 

system model. It decreased to 680 mL/min in the DCM cardiovascular system model with 10 

preserved cerebral flow autoregulation function. The blood flow rate increased with the 11 

increasing pump operating speed until the pump operating speed becomes 10500 rpm 12 

and started to decrease at the higher CF-LVAD operating speeds. The total mean flow 13 

rate was around 601 mL/min for the DCM cardiovascular system model with impaired 14 

cerebral flow autoregulation function and it increased with the increasing pump operating 15 

speed. At 10500 rpm CF-LVAD operating speed, the total mean cerebral blood flow rate 16 

was around 710 mL/min and 715 mL/min for the DCM cardiovascular system models 17 

with preserved and impaired cerebral autoregulation functions respectively. The flow rate 18 

signal amplitudes in the internal carotid arteries, vertebral arteries, basilar artery, 19 

posterior cerebral arteries, anterior cerebral arteries and middle cerebral arteries for the 20 

healthy cardiovascular system model, DCM cardiovascular system models with 21 

preserved and impaired cerebral flow autoregulation functions with and without CF-LVAD 22 

support have been given in Figure 7. 23 
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Flow rate signal amplitudes in each compartment shown in Figure 7 reduced in 1 

the DCM cardiovascular system models with respect to the healthy cardiovascular 2 

system model. CF-LVAD support decreased the flow rate signal amplitudes further. 3 

However, the flow rate signal amplitudes are similar for both DCM models under CF-4 

LVAD support. Vascular resistances in the pial circulation and systemic peripheral 5 

circulation for the healthy cardiovascular system model, DCM cardiovascular system 6 

models with preserved and impaired cerebral flow autoregulation functions with and 7 

without CF-LVAD support have been given in Figure 8. 8 

 The resistance of the pial and systemic peripheral circulations are 5 mmHgs/mL 9 

and 1 mmHgs/mL as the set points of autoregulation function in the healthy 10 

cardiovascular system. The resistance of pial circulation decreased in the DCM 11 

cardiovascular system models. The preserved cerebral flow autoregulation function 12 

reduced the pial circulation resistance more with respect to the impaired cerebral flow 13 

autoregulation function in the DCM cardiovascular system models. CF-LVAD support 14 

increased the resistance of the pial circulation in both DCM cardiovascular system 15 

models. The resistance of pial circulation is more sensitive to the CF-LVAD operating 16 

speed changes for the preserved cerebral flow autoregulation function with respect to the 17 

impaired cerebral flow autoregulation function. Again, at 10500 rpm pump operating 18 

speed, the pial circulation resistance in the DCM cardiovascular system models with 19 

preserved and impaired autoregulation functions was similar to the resistance in the 20 

healthy cardiovascular system model. The systemic peripheral resistance in DCM 21 

cardiovascular system models increased with respect to the healthy cardiovascular 22 

system model.  CF-LVAD support reduced the systemic peripheral resistance similarly 23 
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for the both DCM cardiovascular system models with preserved and impaired 1 

autoregulatory functions.  2 

Discussion 3 

In this study, the effect of cerebral autoregulatory function on the cerebral 4 

haemodynamic signals under CF-LVAD support was assessed using a numerical model, 5 

which described the heart, systemic and pulmonary circulations and cerebral circulation 6 

and a heart pump. The cerebral circulation model included the entire Circle of Willis 7 

enabling for an accurate representation of cerebral circulation. Additionally, the flow rate 8 

in the systemic arteriolar and cerebral circulations were regulated using a baroreflex 9 

model for the resistances in these sections. For a healthy condition average flow rate 10 

through internal carotid arteries and vertebral arteries are around 730 mL/min, however, 11 

this value changes within a large variation range [42,50]. The blood flow rate through the 12 

internal carotid arteries and vertebral arteries was 710 mL/min being within the 13 

physiological range for the healthy cardiovascular system. The flow rate in the internal 14 

carotid arteries changed between 165 mL/min and 475 mL/min over a cardiac cycle. 15 

Additionally, the flow rate in the vertebral arteries changed between 46 mL/min and 146 16 

mL/min over a cardiac cycle. As mentioned before, the variation range of the flow rate in 17 

the internal carotid arteries and vertebral arteries is quite high. The average of flow rate 18 

signals obtained from the clinical data [50] shows a similar variation range to the flow rate 19 

signals simulated in the healthy cardiovascular system over a cardiac cycle. Mean blood 20 

flow rates over a cardiac cycle for other compartments of cerebral circulation that have 21 

been presented in this paper (Fig. 5) correspond to clinical data [42,51,52] as well 22 

validating the accuracy of the healthy cardiovascular system model. The utilised 23 
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baroreflex model used for regulating the vascular resistances simulated the preserved 1 

and impaired physiological cerebral autoregulation functions accurately for the operating 2 

range of the CF-LVAD (Fig. 1).  3 

Middle cerebral arterial blood flow velocity or blood flow rate is used an index of 4 

perfusion for the cerebral circulation. Increasing CF-LVAD operating speed may reduce 5 

the cerebral blood flow velocity for a resting condition [53]. CF-LVAD support reduced the 6 

blood flow rate for the pump operating speeds higher than 10500 rpm operating speed 7 

though the middle cerebral arteries and the rest of the cerebral circulation slightly in DCM 8 

cardiovascular system model with preserved autoregulatory function as reported in the 9 

literature [53]. The mean cerebral flow rate increased for increasing CF-LVAD operating 10 

speed in the DCM cardiovascular system model with impaired cerebral autoregulatory 11 

function. Moreover, the change in the mean cerebral flow rate was much higher in this 12 

numerical model when the pump was operating at different rotation speeds. The mean 13 

flow rates for the presented compartments of the cerebral circulation and for the entire 14 

cerebral circulation were similar for both DCM cardiovascular system models at 10500 15 

rpm pump operating speed under CF-LVAD support. Moreover, the mean flow rates in 16 

the cerebral circulation at 10500 rpm pump operating speed were similar to the healthy 17 

cardiovascular system model as well. The Micromed heart pump nominally operates at 18 

10500 rpm in the patients generating sufficient blood flow rate and pressure levels. The 19 

simulation results also show that at 10500 rpm pump operating speed, the mean aortic 20 

blood pressures and mean pump outputs for both DCM models are similar to the healthy 21 

cardiovascular system model. This result suggests that cerebral flow rate is restored 22 

under CF-LVAD support at a pump speed generating similar flow rate pressure levels to 23 
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a healthy cardiovascular system although the cerebral autoregulatory function may 1 

remain impaired. However, the suggested pump operating speed regulation techniques 2 

to avoid the harmful effects of CF-LVAD support in the literature may generate different 3 

flow rate and arterial pressure levels with respect to the healthy cardiovascular system. 4 

Moreover, as reported in the literature, pulsatile LVAD support may cause hyperperfusion 5 

in the cerebral circulation for an impaired cerebral auroregulatory function [33]. This may 6 

also occur in the heart failure patients with impaired cerebral autoregulatory function if 7 

the CF-LVAD operating speed is regulated under varying speed heart pump support. 8 

Amplitudes of flow rate signals were similar for both DCM cardiovascular system models 9 

with preserved and impaired autoregulatory functions under CF-LVAD support at 10 

different pump operating speeds. However, the mean flow rates in the cerebral 11 

circulation were different for both DCM cardiovascular system models under CF-LVAD 12 

support except when operating at 10500 rpm. The ratio between the flow rate signal 13 

amplitude and mean flow rate over a cardiac cycle is used as an index of pulsatility [54]. 14 

Therefore, the index of pulsatility is different for the DCM cardiovascular system models 15 

with preserved and impaired autoregulatory functions under CF-LVAD support except at 16 

the 10500 rpm operating speed. So, the condition of the patients’ cerebral autoregulatory 17 

function may also play a role on the cerebral circulation problems associated with 18 

pulsatility under varying speed CF-LVAD support. 19 

In this study, performance of the left ventricle was kept the same for the DCM and 20 

CF-LVAD supported cardiovascular system models. Therefore, the aortic valve remains 21 

closed over a cardiac cycle for the pump operating speeds higher than 8500 rpm. 22 

Nevertheless, such a result simulates the short term response of a left ventricle to the 23 

Page 18 of 38Artificial Organs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

19 

 

CF-LVAD implantation accurately [55]. The performance of the left ventricle might 1 

improve and pulse recovery may occur in some patients over time [55,56]. In this case, 2 

the aortic valve opens at the nominal Micromed Pump operating speeds in the patient 3 

body and the CF-LVAD provides a partial support. However, the exact mechanism of this 4 

pulse recovery is not clear, therefore, it was not included in the cardiovascular system 5 

model. In any case, the baroreflex model utilised in this study uses the mean aortic 6 

pressure to regulate the cerebral flow rate. Therefore, the flow rate in the cerebral 7 

circulation will be regulated regardless of a partial or full CF-LVAD support in the 8 

numerical model. 9 

In this study, Micromed pump model was used to simulate the mechanical 10 

circulatory support. Different CF-LVADs such as HeartMate II or HeartWare are widely 11 

used in the clinics. Again, it should be noted that the baroreflex model utilised in this 12 

study uses the mean aortic pressure to regulate the cerebral flow rate and the flow rate in 13 

the cerebral circulation will be regulated regardless of the implanted CF-LVAD type. 14 

However, the CF-LVAD flow rate-pressure characteristics will have an effect on the mean 15 

aortic pressure along with the left ventricular contractility. 16 

Conclusions 17 

Cerebral blood flow rate is restored under CF-LVAD support at a pump operating 18 

speed generating similar arterial blood pressure and blood flow rate levels as in a healthy 19 

condition for an impaired cerebral autoregulatory function while a preserved cerebral 20 

autoregulatory function regulated the cerebral flow rate within a relatively low range for 21 

the applied pump operating speeds. Relatively low or high pump operating speeds may 22 
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cause underpefusion or hyperperfusion in the cerebral circulation for a failing 1 

cardiovascular system with impaired cerebral autoregulatory function under CF-LVAD 2 

support. Although, an altered blood flow under CF-LVAD support is associated with 3 

cerebral circulatory complications, any failure in the cerebral autoregulatory function may 4 

worse the problems when the pump speed is regulated. 5 
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 8 

Figure Legends 9 

Figure 1. The utilised preserved and impaired cerebral flow autoregulation (CFAp, CFAi) function curves in 10 

the simulations and physiological preserved and impaired cerebral flow autoregulation functions 11 

Figure 2. The electric analogue of cardiovascular system, CF-LVAD and cerebral circulation models (i), the 12 

electric analogue of cerebral circulation and Circle of Willis (ii) and a schematic of circle of Willis (iii). 13 

Figure 3. The left ventricular and atrial pressures (plv,pla) and the aortic pressure (pao) in the healthy 14 

cardiovascular system model (i), DCM cardiovascular system model with the preserved cerebral 15 

autoregulation function (ii) and DCM cardiovascular system model with the impaired cerebral 16 

autoregulation function (iii). The left ventricular and atrial volumes (Vlv, Vla) in the healthy cardiovascular 17 

system model (iv), DCM cardiovascular system model with the preserved cerebral autoregulation function 18 

(v) and DCM cardiovascular system model with the impaired cerebral autoregulation function (vi) 19 

Figure 4. The flow rates in the internal carotid arteries (Qica) (i), vertebral arteries (Qva) (ii), basilar artery 20 

(Qba) (iii), posterior cerebral arteries (Qpca) (iv), anterior cerebral arteries (Qaca) (v), and middle cerebral 21 

arteries (Qmca) (vi) in the healthy cardiovascular system (H) model and DCM cardiovascular system models 22 

with the preserved (DCM,p) and impaired (DCM,i) cerebral flow autoregulation functions. 23 

Figure 5. The mean flow rates in the internal carotid arteries (i), vertebral arteries (ii), basilar artery (iii), 24 

posterior cerebral arteries (iv), anterior cerebral arteries (v) and middle cerebral arteries (vi) in the healthy 25 

cardiovascular system (H) model and DCM cardiovascular system models with the preserved (DCMp) and 26 

impaired (DCMi) cerebral flow autoregulation functions and the DCM cardiovascular system models under 27 

CF-LVAD support. 28 
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Figure 6. The total mean blood flow rate in the cerebral circulation in the healthy cardiovascular system (H) 1 

model and DCM cardiovascular system models with the preserved (DCMp) and impaired (DCMi) cerebral 2 

flow autoregulation functions and the DCM cardiovascular system models under CF-LVAD support. 3 

Figure 7. Amplitude of the flow rate signals in the internal carotid arteries (i), vertebral arteries (i), basilar 4 

artery (iii), posterior cerebral arteries (iv), anterior cerebral arteries (v) and middle cerebral arteries (vi) in 5 

the healthy cardiovascular system (H) model and DCM cardiovascular system models with the preserved 6 

(DCMp) and impaired (DCMi) cerebral flow autoregulation functions and the DCM cardiovascular system 7 

models under CF-LVAD support. 8 

Figure 8. The vascular resistances in the pial circulation (i) and systemic peripheral circulation (ii) in the 9 

healthy cardiovascular system (H) model and DCM cardiovascular system models with the preserved 10 

(DCMp) and impaired (DCMi) cerebral flow autoregulation functions and the DCM cardiovascular system 11 

models under CF-LVAD support. 12 
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 2 

 3 

Tables 4 

Table 1. The mean aortic pressure (pao,m), cardiac output (CO) and the mean pump output (MPO) for the 5 

healthy cardiovascular system model, DCM cardiovascular system models with the preserved and 6 

impaired cerebral flow autoregulation functions and the DCM cardiovascular system models under CF-7 

LVAD support. 8 

  pao,m [mmHg] CO [L/min] MPO [L/min] 

  Preserved  Impaired Preserved  Impaired Preserved  Impaired 

H 100 - 4.94 - - - 

DCM 73 74 3.02 2.98 - - 

7500 76 76 1.36 1.34 1.81 1.78 

8500            83                 83                  0.44                0.43                3.16                 3.13 
9500 92 92 - - 4.20 4.19 

10500 101 101 - - 5.04 5.04 

11500 110 110 - - 5.96 5.97 

12500 116 116 -   - 6.64 6.65 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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 1 

Appendix 2 

Table 2. Glossary of abbreviations 3 

Nomenclature 

 

rva right vertebral artery 

p pressure 

 

lva left vertebral artery 

V volume 

 

roa right ophthalmic artery 

t time 

 

loa left ophthalmic artery 

R resistance 

 

ba basilar artery 

L inertance 

 

pca posterior cerebral arteries 

C compliance 

 

rpca right posterior cerebral artery 

AV aortic valve 

 

lpca left posterior cerebral artery 

MV mitral valve 

 

rpcoa right posterior communicating artery 

PV pulmonary valve 

 

lpcoa left posterior communicating artery 

TV tricuspid valve 

 

rsca right superior cerebellar artery 

Subscripts 

 

lsca left superior cerebellar artery 

la left atrium 

 

racha right anterior choroidal artery 

lv left ventricle 

 

lacha left anterior choroidal artery 

ra right atrium 

 

rmca right middle cerebral artery 

rv right ventricle 

 

lmca left middle cerebral artery 

ao aorta 

 

raca right anterior cerebral artery 

aa aortic arch 

 

laca left anterior cerebral artery 

ars systemic arterioles 

 

acoa anterior communicating artery 

cs systemic capillaries 

 

pc pial circulation 

vs systemic veins 

 

cc cerebral capillaries 

ap pulmonary arteries 

 

vc cerebral veins 

arp pulmonary arterioles 

 

1 segment one 

vp pulmonary veins 

 

2 segment two 

rica right internal carotid artery 

 

m mean 

lica left internal carotid artery 

 

    

 4 
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 6 

 7 

 8 

 9 
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 1 

Table 3. Parameter values used in the heart chambers. Parameter values in the brackets show the values 2 

in the DCM models. V, σ, c, l, v represent volume, stress, contraction coefficient, length and velocity 3 

respectively. 4 

  Left Ventricle Right Ventricle Left Atrium Right Atrium 

Vw [mL] 200 (225) 100 20 20 

V0 [mL] 60  (90) 75 25 25 

σf0 [kPa] 0.9 0.9 0.9 0.9 

σr0 [kPa] 0.2 0.2 0.2 0.2 

σar [kPa] 55 55 7.5 7.5 

cf 12 12 12 12 

cr 9 9 9 9 

c 1 (0.6) 1 1 1 

cv 0 0 0 0 

ls0 [μm] 1.9 1.9 1.9 1.9 

lsa0 [μm] 1.5 1.5 1.5 1.5 

lsar [μm] 2 2 2 2 

v0 [μm/s] 10 10 10 10 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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 1 

Table 4. Parameter values used in the circulatory loop. R, L and C represent resistance, inertance and 2 

compliance of the blood vessels respectively. 3 

  R [mmHgs/mL] L [mmHgs
2
/mL] C [mL/mmHg] 

Mitral Valve 0.0025 - - 

Aortic Valve 0.0025 - - 

Pulmonary Valve 0.0010 - - 

Tricuspid Valve 0.0010 - - 

Aorta 0.01 0.0001 0.1 

Aortic Arch 0.05 0.0001 0.25 

Systemic Arterioles Rars 0.0001 2 

Systemic Capillaries 0.24 - 4 

Systemic Veins 0.1 - 30 

Pulmonary Arteries 0.02 0.0001 3 

Pulmonary Arterioles 0.1 0.0001 6 

Pulmonary Veins 0.1 - 30 

Internal Carotid Arteries 1.738 0.0001 - 

Vertebral Arteries 5 0.0001 - 

Basilar Artery 6.474 - 0.001 

Posterior Cerebral Arteries 1 0.821 - 0.001 

Posterior Cerebral Arteries 2 3.877 - 0.001 

Posterior Communicating Arteries 321 - - 

Superior Cerebellar Arteries 7.143 - - 

Anterior Choroidal Arteries 125 - - 

Middle Cerebral Arteries 8.940 - 0.001 

Ophthalmic Arteries 125 - 0.001 

Anterior Cerebral Arteries 1 9.761 - - 

Anterior Cerebral Arteries 2 4.178 - 0.001 

Anterior Communicating Artery 53.571 - - 

Pial Circulation Rpc - 0.5 

Cerebral Capillaries 0.1 - 2 

Cerebral Veins 0.1 - 6 

 4 

Table 5. Parameter values used in the baroreflex model. pao,set, Rset and SR represent set points of the 5 

aortic pressure, resistance and sensitivity of the resistances respectively. Parameter value in the brackets 6 

show the value in the impaired cerebral autoregulatory function. 7 

  pao,set [mmHg] Rset [mmHgs/mL] SR [mmHg
-1

] 

Systemic Arterioles 100 1 0.0175 
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Pial Circulation 100 5 0.0120 (0.0055) 

 1 
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The utilised preserved and impaired cerebral flow autoregulation (CFAp, CFAi) function curves in the 
simulations and physiological preserved and impaired cerebral flow autoregulation functions  

 
78x60mm (96 x 96 DPI)  

 

 

Page 31 of 38 Artificial Organs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

  

 

 

The electric analogue of cardiovascular system, CF-LVAD and cerebral circulation models (i), the electric 
analogue of cerebral circulation and Circle of Willis (ii) and a schematic of circle of Willis (iii)  

 

175x231mm (96 x 96 DPI)  

 

 

Page 32 of 38Artificial Organs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
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system model (i), DCM cardiovascular system model with the preserved cerebral autoregulation function (ii) 

and DCM cardiovascular system model with the impaired cerebral autoregulation function (iii). The left 

ventricular and atrial volumes (Vlv, Vla) in the healthy cardiovascular system model (iv), DCM 
cardiovascular system model with the preserved cerebral autoregulation function (v) and DCM 

cardiovascular system model with the impaired cerebral autoregulation function (vi)  
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The flow rates in the internal carotid arteries (Qica) (i), vertebral arteries (Qva) (ii), basilar artery (Qba) 
(iii), posterior cerebral arteries (Qpca) (iv), anterior cerebral arteries (Qaca) (v), and middle cerebral 

arteries (Qmca) (vi) in the healthy cardiovascular system (H) model and DCM cardiovascular system models 
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cardiovascular system (H) model and DCM cardiovascular system models with the preserved (DCMp) and 
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