

Short-term effect of 3-nitrooxypropanol on feed dry matter intake in lactating dairy cows

Journal:	Journal of Dairy Science
Manuscript ID	JDS.2020-18331.R2
Article Type:	Short Communications
Date Submitted by the Author:	27-Jul-2020
Complete List of Authors:	Melgar Moreno, Audino; The Pennsylvania State University, Animal Science; Instituto de Investigacion Agropecuaria de Panama, Animal Science Reserach Nedelkov, Krum; Trakia University, Animal Husbandry Martins, Cristian; University of São Paulo, Nutrition and Animal Production Welter, Katiéli; University of São Paulo, Animal Science Chen, Xianjiang; University of Ulster at Jordanstown, School of Computing; Agri-Food and Biosciences Institute Hillsborough, Sustainable Agri-Food Sciences Division Räisänen, Susanna; The Pennsylvania State University, Animal Science Harper, Michael ; Penn State University, Animal Science Oh, Joonpyo; Penn State University, Animal Science Duval, Stephane; DSM Nutritional Products, Research Centre for Animal Nutrition and Health Hristov, Alexander; Penn State, Animal Science
Key Words:	3-nitrooxypropanol, short-term dry matter intake, dairy cattle

SCHOLARONE[™] Manuscripts

1	INTERPRETIVE SUMMARY: Short communication: Short-term effect of 3-
2	nitrooxypropanol on feed dry matter intake in lactating dairy cows. By Melgar et al., page 000.
3	A diet containing 3-nitrooxypropanol (3-NOP), an enteric methane inhibitor under investigation,
4	administered at concentrations from 30 to 120 mg/kg feed dry matter and a control diet were
5	offered simultaneously to dairy cows to evaluate the effect of 3-NOP on short-term dry matter
6	intake. Compared with control, diet dry matter intake during the test period was quadratically
7	increased by 3-NOP. Data from this study suggest that a diet containing 3-NOP does not have a
8	negative effect on short-term dry matter intake in lactating dairy cows.
9	
10	RUNNING HEAD: 3-NITROOXYPROPANOL IN DAIRY COWS
11	
12	Short communication: Short-term effect of 3-nitrooxypropanol on feed dry matter intake in
13	lactating dairy cows
14	A. Melgar,* K. Nedelkov,*† C. M. M. R. Martins,*‡ K. C. Welter,*§ X. Chen, *# S. E.
15	Räisänen,* M. T. Harper,* J. Oh,* S. Duval,I and A. N. Hristov*1
16 17 18 19 20 21 22 23 24 25 26 27	 *Department of Animal Science, The Pennsylvania State University, University Park, PA 16802 †Department of Animal Husbandry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria ‡Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil §Department of Animal Science, School of Food Engineering and Animal Science, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil #School of Computing, University of Ulster, Co. Antrim, Northern Ireland, BT37 0QB, United Kingdom IResearch Centre for Animal Nutrition and Health, DSM Nutritional Products, Saint Louis Cedex 68305, France
27 28	68305, France

29 ¹Correspondence: <u>anh13@psu.edu</u>

30

ABSTRACT

31	The objective of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP),
32	an enteric methane inhibitor under investigation, on short-term dry matter intake (DMI) in
33	lactating dairy cows. Following a 1-wk adaptation period, 12 multiparous Holstein cows were
34	fed a basal TMR containing increasing levels of 3-NOP during 5 consecutive, 6-d periods. The
35	experiment was conducted in a tie-stall barn. Feed bins were split in half by a solid divider and
36	cows simultaneously received the basal TMR supplemented with: (1) a placebo, without 3-NOP,
37	or (2) 3-NOP included in the TMR at 30, 60, 90, or 120 mg/kg feed DM (experimental periods 2,
38	3, 4, and 5, respectively). Cows received the control diet (basal TMR plus placebo premix)
39	during experimental period 1. A premix containing ground corn grain, soybean oil, and molasses
40	was used to incorporate 3-NOP in the ration. Cows were fed twice daily: 60% of the daily feed
41	allowance at 0800 h and 40% at 1800 h. Feed offered and refused was recorded at each feeding.
42	During the morning feedings, each cow was offered either control or 3-NOP-treated TMR at
43	150% of her average intake during the previous 3 d. After collection of the evening refusals,
44	cows received only the basal TMR without the premix until the next morning feeding. The test
45	period for the short-term DMI data collection was defined from morning feeding to afternoon
46	refusals collection during each day of each experimental period. Location (left or right) of the
47	control and 3-NOP diets within a feed bin was switched every day during each period to avoid
48	feed location bias. Dry matter intake of TMR during the test period was quadratically increased
49	by 3-NOP, compared with the control. Inclusion of 3-NOP at 120 mg/kg feed DM resulted in
50	decreased 10-h DMI, compared with the lower 3-NOP doses, but was similar to the control.
51	There was no effect of feed location (left or right) within feed bin on DMI. Data from this short-
52	term study suggest that 3-NOP does not have a negative effect on DMI in lactating dairy cows.

53	Keywords: 3-nitrooxypropanol, short-term dry matter intake, dairy cattle
54	
55	Short Communication
56	
57	The enteric methane inhibitor under investigation 3-nitrooxypropanol (3-NOP) was
58	developed by Duval and Kindermann (2012). Data from studies with beef cattle indicated
59	decreased DMI when 3-NOP was included at 53, 161, and 345 mg/kg feed DM (Romero-Pérez
60	et al., 2014) and at 100 and 200 mg/kg feed DM (Vyas et al., 2016). In beef animals that had not
61	been previously exposed to 3-NOP, Lee et al. (2020) observed less preference for a diet with 3-
62	NOP compared to a diet without 3-NOP when offered a choice. These authors also observed that
63	within 7 d, the animals were accustomed to the 3-NOP diet. Overall, long-term studies with 3-
64	NOP have shown no negative effects of the inhibitor on DMI and lactation performance in dairy
65	cows (Hristov et al., 2015; Van Wesemael et al., 2019; Melgar et al., 2019). Melgar et al.
66	(2020a), however, observed approximately 5% decrease in DMI of early-lactation cows
67	receiving 60 mg 3-NOP/kg feed DM (although there was no effect on DMI when expressed on a
68	BW basis). The decreased DMI in that study did not affect milk or energy-corrected milk yields,
69	but the 3-NOP cows appeared to gain less BW than the control cows. Although this may not be a
70	significant concern in practical dairy farming as cows will recover body condition in late
71	lactation and the dry period, it is important to understand if 3-NOP does affect DMI or if the data
72	by Melgar et al. (2020a) were an artifact of the experimental design in that study. Feed intake in
73	dairy cows can be affected by multiple factors (Allen, 1996, 2000), with palatability being one of
74	them (Baumont, 1996). Anecdotal observations by researchers and barn staff involved in
75	experiments with 3-NOP conducted at the Pennsylvania State University suggested that TMR

76	containing 3-NOP may have had a distinct odor, which could potentially affect DMI (Goatcher
77	and Church, 1970; Albright, 1993). According to Goatcher and Church (1970), cows use their
78	senses to discriminate between feeds. Along with taste and chemosensory irritation, odor is one
79	important chemical factor that can determine palatability and affect appetite (Baumont, 1996).
80	With dairy cows, odoriferous compounds increased grass silage intake by about 8% over an 8-
81	wk period (Weller and Phipps, 1989). However, Dohi et al. (1991) reported that odor from cattle
82	feces deterred cows from consuming the feed. Moreover, Spence (2015) suggested that the sense
83	of smell (or olfaction) contributes most of the information to the chemical fragment of the feed
84	palatability complex. Therefore, the objective of the current experiment was to investigate if
85	organoleptic characteristics (smell/odor or taste) of a TMR containing 3-NOP would have any
86	adverse effect on short-term DMI in lactating dairy cows. We hypothesized that, when offered
87	simultaneously, short-term DMI would be similar between TMR with and without 3-NOP.
88	Animals involved in the experiment were cared for according to the guidelines of The
89	Pennsylvania State University Institutional Animal Care and Use Committee. The committee
90	reviewed and approved the experiment and all procedures involving animals. The study was
91	conducted with 12 multiparous Holstein cows, averaging (\pm SD) 74 \pm 22 DIM, 53 \pm 12 kg milk
92	yield, and 630 ± 146 kg BW, at The Pennsylvania State University's Dairy Teaching and
93	Research Center's tie-stall barn (University Park, PA). Feed bins were split in half by a solid
94	divider and, following a 1-wk adaptation to the barn environment, cows received a control diet
95	(without 3-NOP) on both sides of the feed bin for 6 d (period 1). Starting with period 2, all 12
96	cows simultaneously received 2 diets, one without 3-NOP (control) and another with 3-NOP
97	included at 30 (period 2), 60 (period 3), 90 (period 4), or 120 (period 5) mg/kg feed DM basis
98	(treatments 30NOP, 60NOP, 90NOP, and 120NOP, respectively). Each treatment was offered

99	sequentially to all cows for 6 d; thus, the experiment consisted of 5, 6-d experimental periods.
100	The 3-NOP inclusion rates were based on previous long-term experiments conducted in our
101	laboratory (40 to 80 mg 3-NOP/kg feed DM; Hristov et al., 2015; Melgar et al., 2020a) and
102	higher rates (90 and 120 mg/kg DM) were included to exaggerate the effect of treatment on the
103	organoleptic characteristics of the TMR as related to short-term DMI. Location (left or right) of
104	the control and 3-NOP TMR within a feed bin were identified with a color band (i.e., yellow for
105	control and blue for 3-NOP TMR) and sides were switched daily before the morning feeding to
106	avoid feed location bias; thus, each treatment TMR was located at each side of the feed bin for a
107	total of 3 d during each experimental period. The basal TMR contained (%, DM basis): corn
108	silage, 39; alfalfa haylage, 11; grass hay, 4; corn grain ground, 12; corn grain cracked, 2;
109	soybean seed roasted, 8; canola meal, 7; candy by-product meal, 7; whole cottonseed, 3;
110	molasses, 5; and a mineral-vitamin premix, 2. Chemical composition of the diet was (%, DM
111	basis or as indicated): CP, 16.5; NDF, 29.4; ADF, 19.1; NE _L , 1.76 Mcal/kg; NFC, 48; ash, 6.7;
112	Ca, 0.82; and P, 0.44. Supplementation of 3-NOP to the basal TMR was through a premix
113	containing (%, DM basis): ground corn grain, 60; soybean oil, 5; dry molasses, 15; and an active
114	or placebo supplement, 20 (both from DSM Nutritional Products, Basel, Switzerland). The active
115	supplement contained 10.9% 3-NOP on SiO_2 and propylene glycol and the placebo supplement
116	contained SiO ₂ and propylene glycol only. Both control and 3-NOP premixes were prepared and
117	properly labeled the day before the start of each experimental period, kept at 4°C in sealed
118	containers with no headspace, and were mixed with the basal TMR every morning replacing an
119	equivalent amount of TMR. The inclusion rate of the premix was adjusted according to the
120	targeted 3-NOP concentration for each experimental period and DM of the basal TMR. Cows
121	were fed ad libitum twice daily (at approximately 0800 and 1800 h) and had free access to

122	drinking water. The basal TMR was prepared using a stationary mixer (Electra-Mix, model 1062,
123	I. H Rissler; Mohnton, PA) and separate mixers (Rissler Mobile TMR Mixer Model 1050; I. H.
124	Rissler) were used to mix the control and 3-NOP TMR. The daily DM allowance was split at
125	60%, fed at the morning feeding, and 40% fed at the evening feeding. Feed offered and refused
126	was recorded at each feeding. During the morning feedings, each cow was offered either control
127	or 3-NOP TMR at 150% of her normal intake during the previous 3 d. One third of each TMR
128	(i.e., control and 3-NOP) allocated for the morning feeding was stored in 20-kg plastic containers
129	and fed around 1300 h due to limited space in the feed bins. The plastic containers were color-
130	coded to match the color on the feed bin side assigned to the each TMR for that day. The basal
131	TMR without the premix was stored in one Rissler mixer until fed after collection of the
132	afternoon feeding refusals. Cows received only the basal TMR (i.e., without the 3-NOP or
133	placebo premixes) until the next morning feeding and feed was pushed up to the cows 4 to 6
134	times daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation
134 135	times daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on
134 135 136	times daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on DMI.
134 135 136 137	times daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on DMI. The amount of feed offered and refused was weighed individually and recorded for each
134 135 136 137 138	times daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on DMI. The amount of feed offered and refused was weighed individually and recorded for each cow, from each location side (left or right of the feed bin), at the morning and evening feeding to
134 135 136 137 138 139	times daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on DMI. The amount of feed offered and refused was weighed individually and recorded for each cow, from each location side (left or right of the feed bin), at the morning and evening feeding to measure daily as-fed intake during the entire experiment. The test period for short-term DMI
134 135 136 137 138 139 140	times daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on DMI. The amount of feed offered and refused was weighed individually and recorded for each cow, from each location side (left or right of the feed bin), at the morning and evening feeding to measure daily as-fed intake during the entire experiment. The test period for short-term DMI data was defined from 0800 to 1800 h (i.e., from morning feeding to afternoon refusals
134 135 136 137 138 139 140 141	times daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on DMI. The amount of feed offered and refused was weighed individually and recorded for each cow, from each location side (left or right of the feed bin), at the morning and evening feeding to measure daily as-fed intake during the entire experiment. The test period for short-term DMI data was defined from 0800 to 1800 h (i.e., from morning feeding to afternoon refusals collection) during each day of each experimental period. Samples of the TMR and refusals were
134 135 136 137 138 139 140 141 142	itimes daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on DMI. The amount of feed offered and refused was weighed individually and recorded for each cow, from each location side (left or right of the feed bin), at the morning and evening feeding to measure daily as-fed intake during the entire experiment. The test period for short-term DMI data was defined from 0800 to 1800 h (i.e., from morning feeding to afternoon refusals collection) during each day of each experimental period. Samples of the TMR and refusals were collected every 3 d and stored at -20°C. Dry matter content of the TMR and refusals was
 134 135 136 137 138 139 140 141 142 143 	imes daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on DMI. The amount of feed offered and refused was weighed individually and recorded for each cow, from each location side (left or right of the feed bin), at the morning and evening feeding to measure daily as-fed intake during the entire experiment. The test period for short-term DMI data was defined from 0800 to 1800 h (i.e., from morning feeding to afternoon refusals collection) during each day of each experimental period. Samples of the TMR and refusals were collected every 3 d and stored at -20°C. Dry matter content of the TMR and refusals was
 134 135 136 137 138 139 140 141 142 143 144 	dimes daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on DMI. The amount of feed offered and refused was weighed individually and recorded for each cow, from each location side (left or right of the feed bin), at the morning and evening feeding to measure daily as-fed intake during the entire experiment. The test period for short-term DMI data was defined from 0800 to 1800 h (i.e., from morning feeding to afternoon refusals collection) during each day of each experimental period. Samples of the TMR and refusals were determined by drying at 55°C for 72 h in a forced-air oven and used to calculate DMI from the as-fed TMR intake data. Samples of the feed ingredients were collected throughout the

145	experiment, composited, dried as for the TMR samples, and ground in a Wiley Mill (Thomas
146	Scientific; Swedesboro, NJ) through a 1-mm sieve. Samples were submitted to Cumberland
147	Valley Analytical Services (Waynesboro, PA) for chemical composition analyses. Analyzed
148	chemical composition of the individual feed ingredients and their inclusion rate in the TMR were
149	used to calculated chemical composition of the basal TMR.
150	Cows were milked twice daily at 0600 and 1800 h and milk production was recorded at
151	each milking. Milk samples were collected during day 4 (p.m. milking) and day 5 (a.m. milking)
152	of the adaptation and experimental periods. An aliquot of each milk sample was placed in tubes
153	with a preservative (2-bromo-2-nitropropane-1, 3-diol) and submitted to Dairy One Cooperative,
154	Inc. (Ithaca, NY) for analysis of milk fat, true protein, and lactose using Milkoscan models 6000,
155	FT+ (Foss Electric A/S, Hillerød, Denmark). Milk from 3-NOP fed cows was discarded for the
156	duration of the study and for an additional 7-d after the study was completed.
157	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were
157 158	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were
157 158 159	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were analyzed using the MIXED procedure. A total of 576 observations were used in the 10-h DMI
157 158 159 160	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were analyzed using the MIXED procedure. A total of 576 observations were used in the 10-h DMI analysis [12 cows × 4 periods (period 1 data were not included in the analysis) × 6 days × 2 sides
157 158 159 160 161	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were analyzed using the MIXED procedure. A total of 576 observations were used in the 10-h DMI analysis [12 cows × 4 periods (period 1 data were not included in the analysis) × 6 days × 2 sides of the feed bin]. The model included treatment (control and 3-NOP), side (left and right side of
157 158 159 160 161 162	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were analyzed using the MIXED procedure. A total of 576 observations were used in the 10-h DMI analysis [12 cows × 4 periods (period 1 data were not included in the analysis) × 6 days × 2 sides of the feed bin]. The model included treatment (control and 3-NOP), side (left and right side of the feed bin), and treatment × side interaction. Overall, 24-h DMI was analyzed with treatment,
157 158 159 160 161 162 163	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were analyzed using the MIXED procedure. A total of 576 observations were used in the 10-h DMI analysis [12 cows × 4 periods (period 1 data were not included in the analysis) × 6 days × 2 sides of the feed bin]. The model included treatment (control and 3-NOP), side (left and right side of the feed bin), and treatment × side interaction. Overall, 24-h DMI was analyzed with treatment, day of TMR offering, and the interaction treatment × day of TMR offering. A total of 360
157 158 159 160 161 162 163 164	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were analyzed using the MIXED procedure. A total of 576 observations were used in the 10-h DMI analysis [12 cows × 4 periods (period 1 data were not included in the analysis) × 6 days × 2 sides of the feed bin]. The model included treatment (control and 3-NOP), side (left and right side of the feed bin), and treatment × side interaction. Overall, 24-h DMI was analyzed with treatment, day of TMR offering, and the interaction treatment × day of TMR offering. A total of 360 observations were used in the 24-h DMI analysis [12 cows × 5 periods (period 1 data were
157 158 159 160 161 162 163 164 165	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were analyzed using the MIXED procedure. A total of 576 observations were used in the 10-h DMI analysis [12 cows × 4 periods (period 1 data were not included in the analysis) × 6 days × 2 sides of the feed bin]. The model included treatment (control and 3-NOP), side (left and right side of the feed bin), and treatment × side interaction. Overall, 24-h DMI was analyzed with treatment, day of TMR offering, and the interaction treatment × day of TMR offering. A total of 360 observations were used in the 24-h DMI analysis [12 cows × 5 periods (period 1 data were included in the analysis) × 6 days]. In both models, cow was random effect and all others were
157 158 159 160 161 162 163 164 165 166	All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were analyzed using the MIXED procedure. A total of 576 observations were used in the 10-h DMI analysis [12 cows × 4 periods (period 1 data were not included in the analysis) × 6 days × 2 sides of the feed bin]. The model included treatment (control and 3-NOP), side (left and right side of the feed bin), and treatment × side interaction. Overall, 24-h DMI was analyzed with treatment, day of TMR offering, and the interaction treatment × day of TMR offering. A total of 360 observations were used in the 24-h DMI analysis [12 cows × 5 periods (period 1 data were included in the analysis) × 6 days]. In both models, cow was random effect and all others were fixed. Data were also analyzed using orthogonal and polynomial contrasts to evaluate 3-NOP

Page 8 of 21

168	presented as least squares means. Statistical differences were considered significant at $P \le 0.05$
169	and a trend toward significance at $0.05 < P \le 0.10$. Descriptive statistics for the production data
170	(milk yield and milk composition) were computed using the MEANS procedure.
171	Due to the nature of the experimental design of the study (short-term and partial treatment
172	of the TMR offered to the cows), milk yield and milk composition data are not reported in tables
173	and are presented here only as a reference. Average milk yield was 50.9, 51.0, 48.6, 49.6, and
174	49.9 kg/d (SEM = 2.91 kg/d) for control, 30NOP, 60NOP, 90NOP, and 120NOP, respectively.
175	During the experiment, milk fat, milk true protein, and lactose averaged (\pm SEM) 3.55 \pm 0.154%,
176	$2.78 \pm 0.035\%$, and $4.86 \pm 0.033\%$, respectively.
177	Samples of TMR were analyzed for 3-NOP concentration by DSM Nutritional Products
178	(Global R&D Analytics, Kaiseraugst, Switzerland). Analyzed concentrations of 3-NOP in the
179	TMR were 0, 30.6, 60.0, 92.8, and 120.5 mg/kg feed DM for control, 30NOP, 60NOP, 90NOP,
180	and 120NOP, respectively. Relative SD was below 3.1% for each 3-NOP level set of samples.
181	Table 1 contains both 10-h test period and overall 24-h DMI data. During the 10-h test
182	period, DMI was increased ($P < 0.001$; quadratic effect) by 3-NOP. Compared with control, 3-
183	NOP increased (<i>P</i> < 0.001) 10-h DMI by 26, 27, and 35% (30, 60 and 90 mg 3-NOP/kg feed
184	DM, respectively. The 10-h test period DMI for the highest dose of 3-NOP was not different (P
185	= 0.35; not shown in Table 1) from the control. Overall, 24-h DMI, which included 3-
186	NOP/control TMR followed by basal TMR offerings, was not affected ($P = 0.33$) by 3-NOP
187	compared with the control. Rate of 3-NOP inclusion had no effect ($P \ge 0.14$) on 24-h DMI of the
188	cows. Both effect of day (of treatment) and treatment \times day interaction were significant ($P <$
189	0.001; Table 1, footnote 4) for 24-h DMI. Plotting the 24-h DMI data showed variability in the
190	day-to-day DMI, but no visible trends over the course of treatment (6 d). The interaction

ScholarOne support: (434) 964 4100

191	treatment \times day appeared to be caused by differences in DMI among treatments during the first 3
192	d of the experimental periods, similar DMI on d 4, and lower DMI for 30NOP on d 5 (data not
193	shown). Kim et al. (2019) fed 100 mg 3-NOP/kg feed DM with a high-forage or a high-grain
194	diets and observed no effect of 3-NOP on DMI in beef cattle. These authors reported no effect of
195	3-NOP on feeding behavior or feed sorting in both experiments (i.e., high-forage or high-grain
196	diets). Supplementation with 3-NOP at 100 mg/kg feed DM in a short-term eating preference
197	study in beef cattle fed high-forage or high-grain diets showed no effect of 3-NOP
198	supplementation on DMI (Lee et al., 2020). Similarly, a short-term dose-response study by
199	Melgar et al. (2020b) with mid-lactation dairy cows, suggested that inclusion of 3-NOP up to
200	200 mg/kg feed DM, administered via the TMR, had no effect on DMI, when compared with the
201	control; however a linear tendency for decreased DMI was observed with increasing 3-NOP
202	dose. Vyas et al. (2018) also reported that increased inclusion rate of 3-NOP decreased DMI by 7
203	and 5% during the backgrounding and finishing phase in beef cattle, respectively. A recent 3-
204	NOP meta-analysis of beef and dairy data (Kim et al., 2020) also reported an overall decrease in
205	DMI with 3-NOP.
206	As indicated earlier, the basis for the current study was: (1) clearly distinct odor of the 3-
207	NOP TMR, compared with the control TMR, sensed by project staff in several experiments
208	conducted at our dairy facility, and (2) the lower absolute DMI by 3-NOP cows reported in
209	Melgar et al. (2020a). Dry matter intake in dairy cows is affected by several important factors,
210	including gut/rumen fill and chemostatic mechanisms (Allen, 2000). In the current preference
211	study, however, we focused on the short-term effects of 3-NOP on DMI. Clearly, gut fill did not
212	play a role in the current experiment as cows were fed the same basal diet and there are no data
213	indicating that feed passage rate is directly affected by 3-NOP. We also believe chemostatic

214	regulation of DMI was unlikely due to the short-term nature of our experiment. In addition, we
215	have not seen an increase in the absolute concentration of propionate in ruminal fluid of cows
216	receiving 3-NOP (Lopes et al., 2016; Melgar et al., 2020a), although molar proportion of
217	propionate may increase (Lopes et al., 2016; Kim et al., 2019 - beef steers fed a high-forage
218	diet). It has to be also pointed out that in the current experiment: (1) cows always had access to
219	and a choice between 3-NOP and control TMR during the 10-h test period, and (2) 3-NOP and
220	control TMR were offered for 10 h only and then cows were offered the control TMR for the
221	remaining 14 h of the feeding cycle. Thus, it appears that the lack of effect of 3-NOP on short-
222	term DMI in the current experiment was most likely a result of lack of effect of the compound or
223	the organoleptic properties of the feed. Kim et al. (2019) arrived at a similar conclusion in beef
224	cattle. Although cows in the current experiment had access to 3-NOP TMR for only 10 h/d, the
225	possibility of carry-over effects of residual sensations from previous sensory experiences
226	(Lawless and Heymann, 1998) on short-term DMI cannot be eliminated. Our assumption,
227	however, is that these potential carry-over effects were minimized due to the longer (14 h)
228	exposure to untreated, control TMR. In sensory evaluation studies, techniques such as washout
229	periods and using of palate cleansers have been proposed to minimize carry-over effects during
230	tasting (Johnson and Vickers, 2004).
231	Digestible feed energy not converted into enteric methane, due to inhibition of
232	methanogenesis as the case with 3-NOP, has the potential to increase energy availability for
233	productive purposes. Milk production or BW gain responses to 3-NOP, however, have been
234	inconsistent (see discussion in Melgar et al., 2020a). More recently, we performed a meta-
235	analysis of long-term 3-NOP studies conducted at The Pennsylvania State University and
236	reported an overall, moderate increase in milk fat concentration with 3-NOP compared to

237	untreated control diets (Melgar et al., 2019b). If confirmed, this response can be a stimulus for
238	dairy producers to adopt the use of 3-NOP in their operations once it becomes available.
239	Overall, there was no effect ($P = 0.51$) of feed location side on the 10-h test period DMI
240	in the current study (Table 1, footnote 4). There was, however, treatment \times feed location side
241	interaction ($P = 0.002$) for 10-h DMI. Analysis of this interaction (Figure 1) indicated that during
242	the 30NOP treatment period, cows had higher ($P < 0.001$) 10-h DMI from the right side than the
243	left side of the feed bin. After this initial 3-NOP inclusion period, no feed location side effect on
244	DMI was observed, suggesting that the interaction may have been a result of an initial
245	adjustment of the cows to the experimental setup.
246	Data from this short-term study suggest that 3-NOP does not have a negative effect on
247	TMR DMI, which was our original concern based on anecdotal observations by research staff
248	involved in 3-NOP studies conducted at The Pennsylvania State University. In fact, we observed
249	a quadratic increase in the 10-h TMR DMI with 3-NOP vs. the control. Long-term studies have
250	reported no effect or decreased DMI by lower doses of 3-NOP in dairy cattle (Hristov et al.,
251	2015; Melgar et al., 2019; Van Wesemael et al., 2019; 3-NOP included up to 80 mg/kg DM).
252	The current data suggest that within the maximum effectiveness range of 3-NOP inclusion (up to
253	100 mg/kg feed DM; Melgar et al., 2020b), organoleptic properties are not likely to affect short-
254	term DMI of a diet containing 3-NOP in lactating dairy cows. It has to be noted that our data
255	pertain to the effect of 3-NOP only and not the supplement used to deliver 3-NOP (which also
256	contains SiO_2 and propylene glycol). Propylene glycol, for example, may not be palatable to
257	dairy cows and may decrease DMI (Nielsen and Ingvartsen, 2004). There are some indications,
258	however, that SiO ₂ may increase feed intake in some livestock species (Martel-Kennes et al.,
259	2016; Ikusika et al., 2019).

260

261

ACKNOWLEDGEMENTS

262

This work was supported by the USDA (Washington, DC) National Institute of Food and
Agriculture Federal Appropriations under Project PEN 04539 and Accession number 1000803.
The authors thank DSM Nutritional Products (Basel, Switzerland) for providing partial financial
support for the project and for supplying 3-NOP. The authors also thank the staff of the
Pennsylvania State University's Dairy Teaching and Research Center (University Park) for their
conscientious care and management of the animals and for technical assistance during the study.
A. Melgar was supported by the Government of Panama through the IFARHU-SENACYT
Scholarship Program (Clayton, City of Knowledge, Panama) and the Agricultural Research
Institute of Panama (IDIAP; Clayton, City of Knowledge, Panama). The authors have not stated
any conflicts of interest.

273	REFERENCES
274	
275 276 277 278	Albright, J. L. 1993. Feeding behavior of dairy cattle. J. Dairy Sci. 76:485–498. https://doi.org/10.3168/jds.S0022-0302(93)77369-5.
279 280 281	Allen, M. S. 1996. Physical constraints on voluntary intake of forages by ruminants. J. Anim. Sci. 74:3063–3075. <u>https://doi.org/10.2527/1996.74123063x</u> .
282 283 284	Allen, M. S. 2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 83:1598–1624. <u>https://doi.org/10.3168/jds.S0022-0302(00)75030-2</u> .
285 286 287	Baumont, R. 1996. Palatability and feeding behaviour in ruminants. A review. Ann de Zootechnie 45, 385-400. <u>https://prodinra.inra.fr/record/131554</u> .
288 289 290	Dohi, H., A. Yamada, and S. Entsu. 1991. Cattle feeding deterrents emitted from cattle feces. J. Chem. Ecol. 17:1197–1203. <u>https://doi.org/10.1007/BF01402943</u> .
291 292 293	Duval, S., and M. Kindermann. 2012. Use of nitrooxy organic molecules in feed for reducing methane emission in ruminants, and/or to improve ruminant performance. World Intellectual Property Organization, assignee. Pat. No. WO 2012/084629 A1.
295 296 297	Goatcher, W. D., and D. C. Church. 1970. Taste responses in ruminants. 1. Reactions of sheep to sugars, saccharin, ethanol and salts. J. Anim. Sci. 30:777–783. https://doi.org/10.2527/jas1970.305777x.
299 299 300 301 302 303 304	Hristov, A. N., J. Oh, F. Giallongo, T. W. Frederick, M. T. Harper, H. L. Weeks, A. F. Branco, P. J. Moate, M. H. Deighton, S. R. O. Williams, M. Kindermann, and S. Duval. 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 112:10663–10668. <u>https://doi.org/10.1073/pnas.1504124112</u> .
305 306 307	Ikusika, O. O., C. T. Mpendulo, T. J. Zindove, and A. I. Okoh. 2019. Fossil shell flour in livestock production: A review. Animals 9:1-20. <u>https://doi:10.3390/ani9030070</u> .
308 309 310	Johnson, E. A., and Z. Vickers. 2004. The effectiveness of palate cleansing strategies for evaluating the bitterness of caffeine in cream cheese. Food Qual. Prefer. 15:311–316. https://doi:10.1016/S0950-3293(03)00071-5.
311 312 313 314 315	Kim, S., C. Lee, H. A. Pechtl, J. M. Hettick, M. R. Campler, M. D. Pairis-Garcia, K. A. Beauchemin, P. Celi, and S. M. Duval. 2019. Effects of 3-nitrooxypropanol on enteric methane production, rumen fermentation, and feeding behavior in beef cattle fed a high- forage or high-grain diet. J. Anim. Sci. 97:2687–2699. <u>https://doi.org/0.1093/jas/skz140</u> .
317 318	Kim, H., H. G. Lee, Y. C. Baek, S. Lee, and J. Seo. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production

319	performance in ruminants: a meta-analysis. J. Anim. Sci. Technol. 62:31-42.
320	https://doi.org/10.5187/jast.2020.62.1.31.
321	
322	Lee, C., S. H. Kim, K. Beauchemin, P. Celi, and S. Duval. 2020. Short-term eating preference of
323	beef cattle fed high forage or high grain diets supplemented with 3-nitrooxypropanol.
324	Animals 10:64. https://doi.org/10.3390/ani10010064.
325	
326	Lones J.C. J. F. de Matos M.T. Harner, F. Giallongo, J.Oh. D. Gruen, S. Ono, M.
320	Kindermann S. Durval and A. N. Hristov. 2016. Effect of 3-nitrooxinronanol on ruminal
220	fermentation, methane and hydrogen emissions, and methane isotopic signature in dairy
220	cows. J. Dairy Sci. 99:5335.5344. doi: 10.3168/ide.2015.10832
229	cows. J. Daily Sci. 77.5555-5544. doi: 10.5108/jds.2015-10852.
221	Louises H.T. and H. Haymann, 1008, Sancary Evolution of Eardy Dringinlas and Dreations
222	Charman & Hall Brass, New York, NY, USA
332	Chapman & Han Fless, New Fork, NT, USA.
333	Martal Kanada V. J. J. Kanada and C. Darama 2016. Effect of anotalling ailing disside in
334	Martel-Kennes, Y., J. Levesque, and C. Decaux. 2016. Effect of crystalline silicon dioxide in
335	piglet feed on growth performance with different levels of growth promoters. J. Anim.
336	SCI. 94:488 (ADSIL).
337	
338	Melgar, A., C. F. A. Lage, K. Nedelkov, S. E. Kaisanen, H. Stelenoni, M. E. Young, A. Chen, J.
339	On, S. Duval, M. Kindermann, N. D. Walker, and A. N. Hristov. 2019a. Effects of 3-
340	nitrooxypropanol on enteric methane emission and lactational performance of dairy cows.
341	J. Dairy Sci. 102(E-Suppl. 1):428 (Abstr.).
342	
343	Melgar, A., N. D. Walker, and A. N. Hristov. 2019b. Enteric gas emissions and lactational
344	performance of dairy cows fed 3-nitrooxypropanol: A meta-analysis. /th International
345	Greenhouse Gas and Animal Agriculture Conference, Iguassu Falls, Brazil. Proceedings.
346	Page 51 In Berndt A., Pereira Ribeiro, L. G., and Abdala, A. L. (Eds.). Proceedings of the
347	7th International Greenhouse Gas and Animal Agriculture Conference. Iguassu Falls,
348	Brazil, Embrapa Southeast Livestock, São Carlos, SP,
349	
350	Melgar, A., M. T. Harper, J. Oh, F. Giallongo, M. E. Young, T. L. Ott, S. Duval, and A. N.
351	Hristov. 2020a. Effects of 3-nitrooxypropanol on rumen fermentation, lactational
352	performance, and the resumption of ovarian cyclicity in dairy cows. J. Dairy Sci.
353	103:410–432. https://doi.org/10.3168/jds.2019-17085.
354	
355	Melgar, A., K. C. Welter, K. Nedelkov, C. M. M. R. Martins, M. T. Harper, J. Oh, S. E.
356	Räisänen, X. Chen, S. F. Cueva, S. Duval, and A. N. Hristov. 2020b. Dose-response
357	effect of 3-nitrooxypropanol on enteric methane emission in dairy cows. J. Dairy Sci.
358	103:6145-6156. https://doi.org/10.3168/jds.2019-17840.
359	
360	Nielsen, N. I., and K. L. Ingvartsen. 2004. Propylene glycol for dairy cows: A review of the
361	metabolism of propylene glycol and its effects on physiological parameters, feed intake,
362	milk production and risk of ketosis. Anim. Feed Sci. Technol. 115:191-213.
363	

364 365 366 367	Romero-Pérez, A., E. K. Okine, S. M. McGinn, L. L. Guan, M. Oba, S. M. Duval, M. Kindermann, and K. A. Beauchemin. 2014. The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. J. Anim. Sci. 92:4682–4693. <u>https://doi.org/10.2527/jas.2014-7573</u> .
308	Snames C 2015 Multiconcome flower noncontion Call 161:24.25
369	spence, C. 2015. Multisensory havor perception. Cell. $101.24-55$.
370 271	<u>https://doi.org/10.1010/j.cen.2015.05.00/</u> .
371	Van Wesemael D. I. Vandaele B. Amne H. Cattrysse, S. Duval M. Kindermann, V. Fievez
373	S De Campeneere and N Peiren 2019 Reducing enteric methane emissions from dairy
374	cattle: Two ways to supplement 3-nitrooxypropanol. J. Dairy Sci. 102:1780–1787.
375	https://doi.org/10.3168/jds.2018-14534.
376	
377	Vyas, D., S. M. McGinn, S. M. Duval, M. Kindermann, and K. A. Beauchemin. 2016. Effects of
378	sustained reduction of enteric methane emissions with dietary supplementation of 3-
379	nitrooxypropanol on growth performance of growing and finishing beef cattle. J. Anim.
380	Sci. 94:2024–2034. <u>https://doi.org/10.2527/jas.2015-0268</u> .
381	
382	Vyas, D., A. W. Alemu, S. M. McGinn, S. M. Duval, M. Kindermann, and K. A. Beauchemin.
383	2018. The combined effects of supplementing monensin and 3-nitrooxypropanol on
384	forega and high grain dista. L Anim Sai 06:2022, 2028
385	https://doi.org/10.1003/ias/sky174
387	<u>nups.//doi.org/10.10/3/jds/sky1/4</u> .
388	Weller R and R Phipps 1989 Preliminary studies on the effect of flavouring agents on the
389	dry-matter intake of silage by lactating dairy cows. J. Agric. Sci., 112: 67-71.
390	https://doi.org/10.1017/S0021859600084112.

404	403	402	401	400	399	398	397	396	395	394	393					392	391
interaction, <i>I</i>	quadratic eff	⁴ <i>P</i> -values for	statistical and	³ Largest SEN	level, respect	120NOP (pe	simultaneous	120NOP, res	² Treatments	basal TMR)	¹ Feed with o	24-h DMI	10-h DMI	IICIII	Itom	309 containii	Table 1. Dry
P = 0.002. F	ect of 3-NC	the overal	alysis).	A published	tively. Data	riod 5). Me	ly received	pectively).	were contro	was offered	r without 3-	26.7	6.90	Control		ng increasir	matter inta
or 24-h DI)P dose). Fo	treatment		l in table; n	are presen	asured con	2 diets, or	Cows rece	ol (no 3-NC	to the cov	NOP was	26.9	8.72	30NOP	T	ng levels of	ke during
MI: Effect	or 10-h DN	effect and		1 = 576 for	ited as LSN	centration	ne without	ived the co)P) and 3-1	vs for the r	offered dui	25.6	8.78	60NOP	reatment ²	3-nitroox	10-h test pe
of day, P <	AI: effect o	contrasts (10-h DMI	A.	of 3-NOP i	3-NOP (co	ntrol diet c	NOP includ	emaining 1	ring a 10-h	27.4	9.31	90NOP		ypropanol (eriod and o
< 0.001; trea	f feed loca	C vs. Trt, c		and $n = 36$		in TMR we	ntrol) and	on both side	led at (mg/	4 h.	test period	25.7	7.23	120NOP		(3-NOP) in	verall, 24-ł
atment × d	tion side ()	ontrol vs.		0 for 24-h		re 0, 30.6 _.	30NOP (p	es of the fe	kg feed DI		l, after whi	0.94 <	0.370 <		CENT3 -	dairy cow	n period of
lay interact	left or right	all 3-NOP		DMI (n re		, 60.0, 92.8	eriod 2), 6(ed bin in p	M): 30, 60,		ch only fee	0.001	0.001	verall <mark>C</mark>		S/	a total mix
ion, $P < 0$.	P = 0.51	treatments		presents ni		, and 120.5)NOP (per:	eriod 1; st	90, and 12		ed without	0.33 0	0.001 0	vs. Trt	P value ⁴		ked ration
001.	l; treatmen	s; L, linear		umber of o		5 mg/kg fe	iod 3), 90N	arting with	20 (30NOF		3-NOP or	0.6	.14 <0.0	L Q			
	$it \times feed lo$	effect of 3		bservation		ed DM, fo	VOP (peric	1 period 2,	P, 60NOP,		placebo su	N.	01				
	cation side	-NOP dose		is used in ti		r each dose	d 4), or	COWS	90NOP, ai		upplements						
		e; Q,		he		ĊÞ			br		i.e.,						

M.

ScholarOne support: (434) 964 4100

405 Figure 1. Treatment by feed location side (left or right location in the feed bin) interaction for dry

- 406 matter intake during a 10-h test period of a total mix ration containing 3-nitrooxypropanol (3-
- 407 NOP) in dairy cows. Treatments were control, and 3-NOP (mg/kg feed DM): 30, 60, 90, and 120
- 408 for 30NOP, 60NOP, 90NOP, and 120NOP, respectively. Data are presented as least square
- 409 means and bars represent SEM; n = 72 (number of independent data points for each mean value).
- 410 Overall, treatment \times feed location side interaction, P = 0.002. Means with different letters (a,b)
- 411 within feed location side differ at P < 0.05.

ScholarOne support: (434) 964 4100

