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1 INTERPRETIVE SUMMARY: Short communication: Short-term effect of 3-

2 nitrooxypropanol on feed dry matter intake in lactating dairy cows. By Melgar et al., page 000. 

3 A diet containing 3-nitrooxypropanol (3-NOP), an enteric methane inhibitor under investigation, 

4 administered at concentrations from 30 to 120 mg/kg feed dry matter and a control diet were 

5 offered simultaneously to dairy cows to evaluate the effect of 3-NOP on short-term dry matter 

6 intake. Compared with control, diet dry matter intake during the test period was quadratically 

7 increased by 3-NOP. Data from this study suggest that a diet containing 3-NOP does not have a 

8 negative effect on short-term dry matter intake in lactating dairy cows.
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30 ABSTRACT

31 The objective of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP), 

32 an enteric methane inhibitor under investigation, on short-term dry matter intake (DMI) in 

33 lactating dairy cows. Following a 1-wk adaptation period, 12 multiparous Holstein cows were 

34 fed a basal TMR containing increasing levels of 3-NOP during 5 consecutive, 6-d periods. The 

35 experiment was conducted in a tie-stall barn. Feed bins were split in half by a solid divider and 

36 cows simultaneously received the basal TMR supplemented with: (1) a placebo, without 3-NOP, 

37 or (2) 3-NOP included in the TMR at 30, 60, 90, or 120 mg/kg feed DM (experimental periods 2, 

38 3, 4, and 5, respectively). Cows received the control diet (basal TMR plus placebo premix) 

39 during experimental period 1. A premix containing ground corn grain, soybean oil, and molasses 

40 was used to incorporate 3-NOP in the ration. Cows were fed twice daily: 60% of the daily feed 

41 allowance at 0800 h and 40% at 1800 h. Feed offered and refused was recorded at each feeding. 

42 During the morning feedings, each cow was offered either control or 3-NOP-treated TMR at 

43 150% of her average intake during the previous 3 d. After collection of the evening refusals, 

44 cows received only the basal TMR without the premix until the next morning feeding. The test 

45 period for the short-term DMI data collection was defined from morning feeding to afternoon 

46 refusals collection during each day of each experimental period. Location (left or right) of the 

47 control and 3-NOP diets within a feed bin was switched every day during each period to avoid 

48 feed location bias. Dry matter intake of TMR during the test period was quadratically increased 

49 by 3-NOP, compared with the control. Inclusion of 3-NOP at 120 mg/kg feed DM resulted in 

50 decreased 10-h DMI, compared with the lower 3-NOP doses, but was similar to the control. 

51 There was no effect of feed location (left or right) within feed bin on DMI. Data from this short-

52 term study suggest that 3-NOP does not have a negative effect on DMI in lactating dairy cows. 
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53 Keywords: 3-nitrooxypropanol, short-term dry matter intake, dairy cattle

54

55 Short Communication

56

57 The enteric methane inhibitor under investigation 3-nitrooxypropanol (3-NOP) was 

58 developed by Duval and Kindermann (2012). Data from studies with beef cattle indicated 

59 decreased DMI when 3-NOP was included at 53, 161, and 345 mg/kg feed DM (Romero-Pérez 

60 et al., 2014) and at 100 and 200 mg/kg feed DM (Vyas et al., 2016). In beef animals that had not 

61 been previously exposed to 3-NOP, Lee et al. (2020) observed less preference for a diet with 3-

62 NOP compared to a diet without 3-NOP when offered a choice. These authors also observed that 

63 within 7 d, the animals were accustomed to the 3-NOP diet. Overall, long-term studies with 3-

64 NOP have shown no negative effects of the inhibitor on DMI and lactation performance in dairy 

65 cows (Hristov et al., 2015; Van Wesemael et al., 2019; Melgar et al., 2019). Melgar et al. 

66 (2020a), however, observed approximately 5% decrease in DMI of early-lactation cows 

67 receiving 60 mg 3-NOP/kg feed DM (although there was no effect on DMI when expressed on a 

68 BW basis). The decreased DMI in that study did not affect milk or energy-corrected milk yields, 

69 but the 3-NOP cows appeared to gain less BW than the control cows. Although this may not be a 

70 significant concern in practical dairy farming as cows will recover body condition in late 

71 lactation and the dry period, it is important to understand if 3-NOP does affect DMI or if the data 

72 by Melgar et al. (2020a) were an artifact of the experimental design in that study. Feed intake in 

73 dairy cows can be affected by multiple factors (Allen, 1996, 2000), with palatability being one of 

74 them (Baumont, 1996). Anecdotal observations by researchers and barn staff involved in 

75 experiments with 3-NOP conducted at the Pennsylvania State University suggested that TMR 
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76 containing 3-NOP may have had a distinct odor, which could potentially affect DMI (Goatcher 

77 and Church, 1970; Albright, 1993). According to Goatcher and Church (1970), cows use their 

78 senses to discriminate between feeds. Along with taste and chemosensory irritation, odor is one 

79 important chemical factor that can determine palatability and affect appetite (Baumont, 1996). 

80 With dairy cows, odoriferous compounds increased grass silage intake by about 8% over an 8-

81 wk period (Weller and Phipps, 1989). However, Dohi et al. (1991) reported that odor from cattle 

82 feces deterred cows from consuming the feed. Moreover, Spence (2015) suggested that the sense 

83 of smell (or olfaction) contributes most of the information to the chemical fragment of the feed 

84 palatability complex. Therefore, the objective of the current experiment was to investigate if 

85 organoleptic characteristics (smell/odor or taste) of a TMR containing 3-NOP would have any 

86 adverse effect on short-term DMI in lactating dairy cows. We hypothesized that, when offered 

87 simultaneously, short-term DMI would be similar between TMR with and without 3-NOP. 

88 Animals involved in the experiment were cared for according to the guidelines of The 

89 Pennsylvania State University Institutional Animal Care and Use Committee. The committee 

90 reviewed and approved the experiment and all procedures involving animals. The study was 

91 conducted with 12 multiparous Holstein cows, averaging (± SD) 74 ± 22 DIM, 53 ± 12 kg milk 

92 yield, and 630 ± 146 kg BW, at The Pennsylvania State University’s Dairy Teaching and 

93 Research Center’s tie-stall barn (University Park, PA). Feed bins were split in half by a solid 

94 divider and, following a 1-wk adaptation to the barn environment, cows received a control diet 

95 (without 3-NOP) on both sides of the feed bin for 6 d (period 1). Starting with period 2, all 12 

96 cows simultaneously received 2 diets, one without 3-NOP (control) and another with 3-NOP 

97 included at 30 (period 2), 60 (period 3), 90 (period 4), or 120 (period 5) mg/kg feed DM basis 

98 (treatments 30NOP, 60NOP, 90NOP, and 120NOP, respectively). Each treatment was offered 
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99 sequentially to all cows for 6 d; thus, the experiment consisted of 5, 6-d experimental periods. 

100 The 3-NOP inclusion rates were based on previous long-term experiments conducted in our 

101 laboratory (40 to 80 mg 3-NOP/kg feed DM; Hristov et al., 2015; Melgar et al., 2020a) and 

102 higher rates (90 and 120 mg/kg DM) were included to exaggerate the effect of treatment on the 

103 organoleptic characteristics of the TMR as related to short-term DMI. Location (left or right) of 

104 the control and 3-NOP TMR within a feed bin were identified with a color band (i.e., yellow for 

105 control and blue for 3-NOP TMR) and sides were switched daily before the morning feeding to 

106 avoid feed location bias; thus, each treatment TMR was located at each side of the feed bin for a 

107 total of 3 d during each experimental period. The basal TMR contained (%, DM basis): corn 

108 silage, 39; alfalfa haylage, 11; grass hay, 4; corn grain ground, 12; corn grain cracked, 2; 

109 soybean seed roasted, 8; canola meal, 7; candy by-product meal, 7; whole cottonseed, 3; 

110 molasses, 5; and a mineral-vitamin premix, 2. Chemical composition of the diet was (%, DM 

111 basis or as indicated): CP, 16.5; NDF, 29.4; ADF,19.1; NEL, 1.76 Mcal/kg; NFC, 48; ash, 6.7; 

112 Ca, 0.82; and P, 0.44. Supplementation of 3-NOP to the basal TMR was through a premix 

113 containing (%, DM basis): ground corn grain, 60; soybean oil, 5; dry molasses, 15; and an active 

114 or placebo supplement, 20 (both from DSM Nutritional Products, Basel, Switzerland). The active 

115 supplement contained 10.9% 3-NOP on SiO2 and propylene glycol and the placebo supplement 

116 contained SiO2 and propylene glycol only. Both control and 3-NOP premixes were prepared and 

117 properly labeled the day before the start of each experimental period, kept at 4°C in sealed 

118 containers with no headspace, and were mixed with the basal TMR every morning replacing an 

119 equivalent amount of TMR. The inclusion rate of the premix was adjusted according to the 

120 targeted 3-NOP concentration for each experimental period and DM of the basal TMR. Cows 

121 were fed ad libitum twice daily (at approximately 0800 and 1800 h) and had free access to 
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122 drinking water. The basal TMR was prepared using a stationary mixer (Electra-Mix, model 1062, 

123 I. H Rissler; Mohnton, PA) and separate mixers (Rissler Mobile TMR Mixer Model 1050; I. H. 

124 Rissler) were used to mix the control and 3-NOP TMR. The daily DM allowance was split at 

125 60%, fed at the morning feeding, and 40% fed at the evening feeding. Feed offered and refused 

126 was recorded at each feeding. During the morning feedings, each cow was offered either control 

127 or 3-NOP TMR at 150% of her normal intake during the previous 3 d. One third of each TMR 

128 (i.e., control and 3-NOP) allocated for the morning feeding was stored in 20-kg plastic containers 

129 and fed around 1300 h due to limited space in the feed bins. The plastic containers were color-

130 coded to match the color on the feed bin side assigned to the each TMR for that day. The basal 

131 TMR without the premix was stored in one Rissler mixer until fed after collection of the 

132 afternoon feeding refusals. Cows received only the basal TMR (i.e., without the 3-NOP or 

133 placebo premixes) until the next morning feeding and feed was pushed up to the cows 4 to 6 

134 times daily. The intention of this interrupted offering of 3-NOP TMR was to avoid adaptation 

135 and thus being able to evaluate the effect of short-term exposure to 3-NOP-supplemented feed on 

136 DMI. 

137 The amount of feed offered and refused was weighed individually and recorded for each 

138 cow, from each location side (left or right of the feed bin), at the morning and evening feeding to 

139 measure daily as-fed intake during the entire experiment. The test period for short-term DMI 

140 data was defined from 0800 to 1800 h (i.e., from morning feeding to afternoon refusals 

141 collection) during each day of each experimental period. Samples of the TMR and refusals were 

142 collected every 3 d and stored at -20°C. Dry matter content of the TMR and refusals was 

143 determined by drying at 55°C for 72 h in a forced-air oven and used to calculate DMI from the 

144 as-fed TMR intake data. Samples of the feed ingredients were collected throughout the 
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145 experiment, composited, dried as for the TMR samples, and ground in a Wiley Mill (Thomas 

146 Scientific; Swedesboro, NJ) through a 1-mm sieve. Samples were submitted to Cumberland 

147 Valley Analytical Services (Waynesboro, PA) for chemical composition analyses. Analyzed 

148 chemical composition of the individual feed ingredients and their inclusion rate in the TMR were 

149 used to calculated chemical composition of the basal TMR.   

150 Cows were milked twice daily at 0600 and 1800 h and milk production was recorded at 

151 each milking. Milk samples were collected during day 4 (p.m. milking) and day 5 (a.m. milking) 

152 of the adaptation and experimental periods. An aliquot of each milk sample was placed in tubes 

153 with a preservative (2-bromo-2-nitropropane-1, 3-diol) and submitted to Dairy One Cooperative, 

154 Inc. (Ithaca, NY) for analysis of milk fat, true protein, and lactose using Milkoscan models 6000, 

155 FT+ (Foss Electric A/S, Hillerød, Denmark). Milk from 3-NOP fed cows was discarded for the 

156 duration of the study and for an additional 7-d after the study was completed. 

157 All data were analyzed using SAS, version 9.4 (SAS Institute Inc., Cary, NC). Data were 

158 tested for normality using the UNIVARIATE procedure. Short-term (10-h) DMI data were 

159 analyzed using the MIXED procedure. A total of 576 observations were used in the 10-h DMI 

160 analysis [12 cows × 4 periods (period 1 data were not included in the analysis) × 6 days × 2 sides 

161 of the feed bin]. The model included treatment (control and 3-NOP), side (left and right side of 

162 the feed bin), and treatment × side interaction. Overall, 24-h DMI was analyzed with treatment, 

163 day of TMR offering, and the interaction treatment × day of TMR offering. A total of 360 

164 observations were used in the 24-h DMI analysis [12 cows × 5 periods (period 1 data were 

165 included in the analysis) × 6 days]. In both models, cow was random effect and all others were 

166 fixed. Data were also analyzed using orthogonal and polynomial contrasts to evaluate 3-NOP 

167 treatments vs. control and linear and quadratic effects of 3-NOP inclusion rate. Data are 

Page 7 of 21

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For Peer Review

168 presented as least squares means. Statistical differences were considered significant at P ≤ 0.05 

169 and a trend toward significance at 0.05 < P ≤ 0.10. Descriptive statistics for the production data 

170 (milk yield and milk composition) were computed using the MEANS procedure.

171 Due to the nature of the experimental design of the study (short-term and partial treatment 

172 of the TMR offered to the cows), milk yield and milk composition data are not reported in tables 

173 and are presented here only as a reference. Average milk yield was 50.9, 51.0, 48.6, 49.6, and 

174 49.9 kg/d (SEM = 2.91 kg/d) for control, 30NOP, 60NOP, 90NOP, and 120NOP, respectively. 

175 During the experiment, milk fat, milk true protein, and lactose averaged (± SEM) 3.55 ± 0.154%, 

176 2.78 ± 0.035%, and 4.86 ± 0.033%, respectively. 

177 Samples of TMR were analyzed for 3-NOP concentration by DSM Nutritional Products 

178 (Global R&D Analytics, Kaiseraugst, Switzerland). Analyzed concentrations of 3-NOP in the 

179 TMR were 0, 30.6, 60.0, 92.8, and 120.5 mg/kg feed DM for control, 30NOP, 60NOP, 90NOP, 

180 and 120NOP, respectively. Relative SD was below 3.1% for each 3-NOP level set of samples. 

181 Table 1 contains both 10-h test period and overall 24-h DMI data. During the 10-h test 

182 period, DMI was increased (P < 0.001; quadratic effect) by 3-NOP. Compared with control, 3-

183 NOP increased (P < 0.001) 10-h DMI by 26, 27, and 35% (30, 60 and 90 mg 3-NOP/kg feed 

184 DM, respectively. The 10-h test period DMI for the highest dose of 3-NOP was not different (P 

185 = 0.35; not shown in Table 1) from the control. Overall, 24-h DMI, which included 3-

186 NOP/control TMR followed by basal TMR offerings, was not affected (P = 0.33) by 3-NOP 

187 compared with the control. Rate of 3-NOP inclusion had no effect (P ≥ 0.14) on 24-h DMI of the 

188 cows. Both effect of day (of treatment) and treatment × day interaction were significant (P < 

189 0.001; Table 1, footnote 4) for 24-h DMI. Plotting the 24-h DMI data showed variability in the 

190 day-to-day DMI, but no visible trends over the course of treatment (6 d). The interaction 
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191 treatment × day appeared to be caused by differences in DMI among treatments during the first 3 

192 d of the experimental periods, similar DMI on d 4, and lower DMI for 30NOP on d 5 (data not 

193 shown). Kim et al. (2019) fed 100 mg 3-NOP/kg feed DM with a high-forage or a high-grain 

194 diets and observed no effect of 3-NOP on DMI in beef cattle. These authors reported no effect of 

195 3-NOP on feeding behavior or feed sorting in both experiments (i.e., high-forage or high-grain 

196 diets). Supplementation with 3-NOP at 100 mg/kg feed DM in a short-term eating preference 

197 study in beef cattle fed high-forage or high-grain diets showed no effect of 3-NOP 

198 supplementation on DMI (Lee et al., 2020). Similarly, a short-term dose-response study by 

199 Melgar et al. (2020b) with mid-lactation dairy cows, suggested that inclusion of 3-NOP up to 

200 200 mg/kg feed DM, administered via the TMR, had no effect on DMI, when compared with the 

201 control; however a linear tendency for decreased DMI was observed with increasing 3-NOP 

202 dose. Vyas et al. (2018) also reported that increased inclusion rate of 3-NOP decreased DMI by 7 

203 and 5% during the backgrounding and finishing phase in beef cattle, respectively. A recent 3-

204 NOP meta-analysis of beef and dairy data (Kim et al., 2020) also reported an overall decrease in 

205 DMI with 3-NOP.  

206 As indicated earlier, the basis for the current study was: (1) clearly distinct odor of the 3-

207 NOP TMR, compared with the control TMR, sensed by project staff in several experiments 

208 conducted at our dairy facility, and (2) the lower absolute DMI by 3-NOP cows reported in 

209 Melgar et al. (2020a). Dry matter intake in dairy cows is affected by several important factors, 

210 including gut/rumen fill and chemostatic mechanisms (Allen, 2000). In the current preference 

211 study, however, we focused on the short-term effects of 3-NOP on DMI. Clearly, gut fill did not 

212 play a role in the current experiment as cows were fed the same basal diet and there are no data 

213 indicating that feed passage rate is directly affected by 3-NOP. We also believe chemostatic 
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214 regulation of DMI was unlikely due to the short-term nature of our experiment. In addition, we 

215 have not seen an increase in the absolute concentration of propionate in ruminal fluid of cows 

216 receiving 3-NOP (Lopes et al., 2016; Melgar et al., 2020a), although molar proportion of 

217 propionate may increase (Lopes et al., 2016; Kim et al., 2019 - beef steers fed a high-forage 

218 diet). It has to be also pointed out that in the current experiment: (1) cows always had access to 

219 and a choice between 3-NOP and control TMR during the 10-h test period, and (2) 3-NOP and 

220 control TMR were offered for 10 h only and then cows were offered the control TMR for the 

221 remaining 14 h of the feeding cycle. Thus, it appears that the lack of effect of 3-NOP on short-

222 term DMI in the current experiment was most likely a result of lack of effect of the compound on 

223 the organoleptic properties of the feed. Kim et al. (2019) arrived at a similar conclusion in beef 

224 cattle. Although cows in the current experiment had access to 3-NOP TMR for only 10 h/d, the 

225 possibility of carry-over effects of residual sensations from previous sensory experiences 

226 (Lawless and Heymann, 1998) on short-term DMI cannot be eliminated. Our assumption, 

227 however, is that these potential carry-over effects were minimized due to the longer (14 h) 

228 exposure to untreated, control TMR. In sensory evaluation studies, techniques such as washout 

229 periods and using of palate cleansers have been proposed to minimize carry-over effects during 

230 tasting (Johnson and Vickers, 2004). 

231 Digestible feed energy not converted into enteric methane, due to inhibition of 

232 methanogenesis as the case with 3-NOP, has the potential to increase energy availability for 

233 productive purposes. Milk production or BW gain responses to 3-NOP, however, have been 

234 inconsistent (see discussion in Melgar et al., 2020a). More recently, we performed a meta-

235 analysis of long-term 3-NOP studies conducted at The Pennsylvania State University and 

236 reported an overall, moderate increase in milk fat concentration with 3-NOP compared to 
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237 untreated control diets (Melgar et al., 2019b). If confirmed, this response can be a stimulus for 

238 dairy producers to adopt the use of 3-NOP in their operations once it becomes available.    

239 Overall, there was no effect (P = 0.51) of feed location side on the 10-h test period DMI 

240 in the current study (Table 1, footnote 4). There was, however, treatment × feed location side 

241 interaction (P = 0.002) for 10-h DMI. Analysis of this interaction (Figure 1) indicated that during 

242 the 30NOP treatment period, cows had higher (P < 0.001) 10-h DMI from the right side than the 

243 left side of the feed bin. After this initial 3-NOP inclusion period, no feed location side effect on 

244 DMI was observed, suggesting that the interaction may have been a result of an initial 

245 adjustment of the cows to the experimental setup.   

246 Data from this short-term study suggest that 3-NOP does not have a negative effect on 

247 TMR DMI, which was our original concern based on anecdotal observations by research staff 

248 involved in 3-NOP studies conducted at The Pennsylvania State University. In fact, we observed 

249 a quadratic increase in the 10-h TMR DMI with 3-NOP vs. the control. Long-term studies have 

250 reported no effect or decreased DMI by lower doses of 3-NOP in dairy cattle (Hristov et al., 

251 2015; Melgar et al., 2019; Van Wesemael et al., 2019; 3-NOP included up to 80 mg/kg DM). 

252 The current data suggest that within the maximum effectiveness range of 3-NOP inclusion (up to 

253 100 mg/kg feed DM; Melgar et al., 2020b), organoleptic properties are not likely to affect short-

254 term DMI of a diet containing 3-NOP in lactating dairy cows. It has to be noted that our data 

255 pertain to the effect of 3-NOP only and not the supplement used to deliver 3-NOP (which also 

256 contains SiO2 and propylene glycol). Propylene glycol, for example, may not be palatable to 

257 dairy cows and may decrease DMI (Nielsen and Ingvartsen, 2004). There are some indications, 

258 however, that SiO2 may increase feed intake in some livestock species (Martel-Kennes et al., 

259 2016; Ikusika et al., 2019).  

260
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391
Table 1. D

ry m
atter intake during 10-h test period and overall, 24-h period of a total m

ixed ration
392

309 containing increasing levels of 3-nitrooxypropanol (3-N
O

P) in dairy cow
s 

Treatm
ent 2

P value
4

Item
1

C
ontrol

30N
O

P
60N

O
P

90N
O

P
120N

O
P

SEM
3

O
verall

C
 vs. Trt

L
Q

10-h D
M

I
6.90

8.72
8.78

9.31
7.23

0.370
<0.001

<0.001
0.14

<0.001
24-h D

M
I

26.7
26.9

25.6
27.4

25.7
0.94

<0.001
0.33

0.14
0.62

393
1Feed w

ith or w
ithout 3-N

O
P w

as offered during a 10-h test period, after w
hich only feed w

ithout 3-N
O

P or placebo supplem
ents (i.e., 

394
basal TM

R
) w

as offered to the cow
s for the rem

aining 14 h. 
395

2Treatm
ents w

ere control (no 3-N
O

P) and 3-N
O

P included at (m
g/kg feed D

M
): 30, 60, 90, and 120 (30N

O
P, 60N

O
P, 90N

O
P, and 

396
120N

O
P, respectively). C

ow
s received the control diet on both sides of the feed bin in period 1; starting w

ith period 2, cow
s 

397
sim

ultaneously received 2 diets, one w
ithout 3-N

O
P (control) and 30N

O
P (period 2), 60N

O
P (period 3), 90N

O
P (period 4), or 

398
120N

O
P (period 5). M

easured concentration of 3-N
O

P in TM
R

 w
ere 0, 30.6, 60.0, 92.8, and 120.5 m

g/kg feed D
M

, for each dose 
399

level, respectively. D
ata are presented as LSM

. 
400

3Largest SEM
 published in table; n = 576 for 10-h D

M
I and n = 360 for 24-h D

M
I (n represents num

ber of observations used in the 
401

statistical analysis). 
402

4P-values for the overall treatm
ent effect and contrasts (C

 vs. Trt, control vs. all 3-N
O

P treatm
ents; L, linear effect of 3-N

O
P dose; Q

, 
403

quadratic effect of 3-N
O

P dose).  For 10-h D
M

I: effect of feed location side (left or right), P = 0.51; treatm
ent × feed location side 

404
interaction, P = 0.002. For 24-h D

M
I: Effect of day, P < 0.001; treatm

ent × day interaction, P < 0.001.
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405 Figure 1. Treatment by feed location side (left or right location in the feed bin) interaction for dry 

406 matter intake during a 10-h test period of a total mix ration containing 3-nitrooxypropanol (3-

407 NOP) in dairy cows. Treatments were control, and 3-NOP (mg/kg feed DM): 30, 60, 90, and 120 

408 for 30NOP, 60NOP, 90NOP, and 120NOP, respectively. Data are presented as least square 

409 means and bars represent SEM; n = 72 (number of independent data points for each mean value). 

410 Overall, treatment × feed location side interaction, P = 0.002. Means with different letters (a,b) 

411 within feed location side differ at P < 0.05. 
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412 Figure 1. Melgar et al., 2020
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