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Abstract 

Strontium (Sr) substituted calcium phosphate (CaP) coatings have stimulated a lot of 

interest as Sr is known to provide osteoconductive properties. Most of the work to date 

with respect to Sr substituted coatings has focused on the creation of crystalline Sr-

substituted hydroxyapatite (HA), as opposed to amorphous coatings. The work 

reported here utilises radio frequency magnetron sputtering to deposit both amorphous 

CaP and Sr-containing CaP coatings and their characterisation using X-Ray 

Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass 

Spectrometry (ToF-SIMS). The CaP coating had a high Ca/P atomic ratio at 1.81 ± 

0.02. The amorphous Sr containing CaP coating was shown to contain Sr with  a Ca/P 

and (Ca + Sr)/P atomic ratios of 1.18 ± 0.05 and 1.49 ± 0.05, respectively. Peak-fitting 

of the overlapping Sr3d and P2p region also showed the presence of previously 

unreported doublets for each element. The ToF-SIMS results also highlighted that Sr 

was homogeneously distributed across the surface of the Sr containing coating via 

detailed chemical mapping experiments. This study has shown that sputtering can be 

used to deposit Sr-containing CaP coatings and that the use of surface analytical 

techniqes is important for understanding their uppermost surface properties. 
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1.0 Introduction 

Hydroxyapatite [HA – Ca10(PO4)6(OH)2] is a calcium phosphate (CaP) material that 

has been extensively studied a bulk material for replacement of human bone tissue and 

as coatings on orthopaedic devices due to their similarity to the inorganic portion of 

human bone. However, it is well understood that biological apatites differ significantly 

from the chemically pure forms of laboratory synthesised CaPs. Typically, biological 

apatite has a Ca/P of around 1.54, which is significantly lower than chemically pure 

HA [1]. It has also been shown to contain a range of trace ions, including strontium 

(Sr), magnesium (Mg), silicon (Si) and zinc (Zn) as highlighted in Table 1 [2,3]. 

Therefore, in order to enhance the performance of CaP coatings used in orthopaedic 

implant devices, it is suggested the development of substituted CaP materials for such 

applications is a priority given the positive benefits such materials could provide.  

Table 1. Comparison of the composition and lattice parameters of the mineral phase of 

bone with stoichiometric HA [2,3].  

Composition Conc. level Bone Stoichiometric HA 

Calcium (Ca) wt. % 34.8 – 36.6 39.6 

Phosphorus (P)  15.2 – 17.1 18.5 

Carbonate (CO3)  4.80 - 7.40 - 

Sodium (Na)  0.90 – 1.00 - 

Magnesium (Mg)  0.60 - 0.72 - 

Chlorine (Cl)  0.10 - 0.13 - 

Fluorine (Fl)  0.10 - 0.03 - 

Potassium (K)  0.03 – 0.07 - 

Strontium (Sr)  0 – 0.05 - 

Silicon (Si) ppm 0 – 500 - 

Zinc (Zn)  0 – 39 - 

Chromium (Cr)  0 – 0.33 - 

Cobalt (Co)  0 – 0.025 - 

Manganese (Mn)  0 – 0.17 - 

Lattice parameters  Bone Stoichiometric HA 

a-axis  0.9410 0.9430 

c-axis  0.6890 0.6891 
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Of the trace elements highlighted in Table 1, Sr has been documented as beneficial as 

it plays a vital role in improving solubility, increasing bone formation via the 

stimulation of osteoblast activity, as well as enhancing pre-osteoblast proliferation and 

differentiation pathways down the osteoblast lineage [4]. Sr is also documented as 

having the ability to play an inhibiting role in the resorption of bone and encouraging 

new bone growth, potentially helping in the treatment of osteoporosis and improving 

bone strength [5–8]. In addition, there is still disagreement as to the preferred 

concentration of Sr in any substituted apatite in order to achieve the desired outcome, 

in vivo [9,10]. Therefore, to deliver the appropriate biofunctionality of the coatings 

produced it will be essential to regulate the levels of Sr available at the interface 

between the surface and the in vivo environment. 

Sr substituted CaP coatings have already been manufactured using a range of well-

established approaches, namely plasma spraying [11–13], sol-gel methods [14], pulsed 

laser deposition [15,16], micro-arc oxidation [17], co-blasting [18] and Radio 

Frequency (RF) Magnetron Sputtering methods [19–25]. Each techniques has 

advantages and disadvantages, but sputtering has already shown significant promise 

in this area as the operating parameters can be tuned to deliver coatings with specific 

properties. [19–25]. 

There is still a strong interest in developing and studying Sr substituted CaP coatings 

that could have the ability to enhance the osteoblast response. A core requirement in 

the development of such coatings is providing a detailed understanding of their 

uppermost surface properties [26–28]. Most studies to date provide a detailed 

characterisation of the bulk properties of coatings however, this can sometimes lead 

to misinterpretation of the interfacial relationship between the coating properties and 

its subsequent performance in physiological environments, which is critical [27]. 

There is therefore a requirement to undertake a detailed characterisation of the surface 

properties of any coatings produced, namely its chemistry that will be critical in 

determining its fate, both in vitro and ultimately, in vivo. To date, there are limited 

studies using surface characterisation techniques, such as those based on X-Ray 

Photoelectron Spectroscopy (XPS) and in particular Time-of-Flight Secondary Ion 

Mass Spectrometry (ToF-SIMS) to determine the uppermost surface chemistry of Sr 

substituted CaP [22,29]. Most notably, no studies have considered the spatial 
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arrangement of the chemical species across the surface. Key to this work is the 

identification of the Sr species on the surface of the coatings. 

In order to address this obvious deficiency, the work reported here details the 

deposition of amorphous CaP coatings containing Sr via RF magnetron sputtering and 

their subsequent detailed characterisation using XPS and ToF-SIMS in order to better 

understand their uppermost surface chemistry. In particular, ToF-SIMS is useful for 

this purpose as it provides high spatial resolution and allows chemical mapping of the 

distribution of chemical species at the surface [30]. Sr containing coatings in this study 

were deposited using established parameters of RF power, working gas pressure and 

throw distance in order to deliver amorphous coatings as has been previously 

undertaken by the authors [20–22,31–33]. The coatings produced here were 

characterised in the as-deposited state. The as-deposited state was chosen here, as they 

would be amorphous in nature, with such coatings highlighted as providing excellent 

reactivity and potential osteoconductivity in the physiological environment [34]. In 

addition, the precursor powders used to produce the sputtering targets were also 

characterised to ensure their quality prior to deposition and to provide a benchmark 

for the coatings produced thereof. To the knowledge of the authors, this is the first 

attempt to undertake such a detailed characterisation of amorphous CaP sputter 

deposited coatings incorporating Sr ions using ToF-SIMS chemical mapping in 

conjunction with supporting detailed XPS analyses. 

 

2.0 Materials and Methods 

2.1 Manufacturing of Sputtering Targets 

Sputtering targets were manufactured by dry pressing the precursor powder materials 

(hydroxyapatite [HA - (Plasma Biotal Captal-R), UK] powder or 13 % biphasic 

calcium phosphate [SrHA - (Himed Inc. NY), USA]) into low oxygen copper troughs 

(76 mm diameter and 5 mm thick) at a load of 40kN for 10 minutes. Two sputtering 

targets were utilised for each deposition run. 
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2.2 Substrate Preparation 

Chemically pure titanium coupons (cpTi) [Titanium International Ltd., UK] were 

prepared by an established protocol in order to provide suitable surfaces onto which 

HA and SrHA coatings were deposited. [20-22].  

 

2.3 RF Magnetron sputter deposition  

Radio Frequency (RF) magnetron sputtering was undertaken using a Kurt J. Lester 

system (USA) as in previous published work [20-22]. 

 

2.4 Characterisation of the Powders and Coatings 

The HA and SrHA powders were characterised using Raman Spectroscopy, Fourier 

Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), X-Ray 

Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass 

Spectrometry (ToF-SIMS). For the analysis of the powders using XPS and ToF-SIMS, 

the materials were pressed into a 13 mm disk to prevent loose powder contamination 

within the vacuum chambers. The as-deposited HA and SrHA coatings were 

characterised using both XPS and ToF-SIMS in order to determine the chemistry of 

the uppermost surface of the coatings. The coatings were only examined in the as-

deposited state and were not subject to any thermal processing in order to maintain 

their amorphous nature. 

 

XRD of the samples was carried out using a Bruker D8 Discover Diffractometer 

(Bruker, USA).  Diffraction scans were obtained using a Cu Kα X-ray radiation (λ = 

1.540 Å) source, operating at 40 kV and 40 mA. FTIR spectroscopy scans were 

obtained for each sample using a Varian 640-IR system with a PIKE Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) accessory in 

absorbance mode. Raman Spectroscopy of the samples was undertaken using an InVia 

Qontor Raman system (Renishaw, UK). Samples were analysed using a 785 nm laser 

and a x20 objective lens. XPS was performed using an Axis Ultra DLD Spectrometer 

(Kratos, UK). Spectra were analysed using monochromated Al Kα X-rays (hѵ = 

1486.6 electron volts (eV)) operating at 10 kV and 15 mA.  All high-resolution spectra 

for C1s, O1s, Ca2p, P2p/Sr3d, Sr3p and P2s were recorded at a pass energy of 20 eV. 

Sample charging was corrected by setting the lowest BE component of the C1s spectral 

envelope to 285.0 eV [35]. Photoelectron spectra were further processed by 
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subtracting a Tougaard background and using the peak area for the most intense 

spectral line of each detected elemental species to determine the % atomic 

concentration. In the case of the Sr substituted samples, the P2p and Sr3d peaks 

overlap at 133.134 eV therefore, for these samples the P2s and Sr3p peaks were used 

in order to provide the appropriate quantification results. In total 3 areas were analysed 

from each sample. Peak-fitting was carried out using a mixed Gaussian – Lorentzian 

synthetic peak function using Casa software (version 2.3.19PR1.0) (Casa Software 

Ltd., UK). Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) data was 

obtained using a ToF-SIMS V instrument (IONTOF, Germany) equipped with a 25 

keV bismuth (Bi) liquid metal ion gun (primary ion source) with an emission current 

of 1 μA, a pulsed target current of 14 nano Amps (nA). A pressure of at least 5.00 x10-

8 Pa was maintained in the analysis chamber throughout experimentation. Data was 

collected by using the Bi1+ primary ion gun species operating in both the positive and 

negative polarity. ToF-SIMS ion intensity images of 256 × 256 pixels were acquired 

using a random raster, using spectroscopy mode over a 500 x 500 μm area on the 

sample surface. An electron flood gun was used to shower the sample with electrons 

to prevent a build-up of charge was operated at a filament current of 2.35 A during 

acquisition.  Data acquisition, processing and analysis was performed using Surface 

Lab 6 (IONTOF, Germany). 

 

3.0 Results 

3.1 Characterisation of the HA and SrHA Precursor Powders 

Figure 1(a) shows the XRD pattern for the HA powder, which is equivalent to that 

expected for pure HA in accordance with. the International Centre for Diffraction Data 

(ICDD) file #00-09-0432. The peak positions signify that the material does not contain 

any additional impurity phases. The XRD pattern for the SrHA powder is shown in 

Figure 1(b) and is as expected for a Sr-substituted HA material, with broader peaks 

observed when compared to the pure HA powder, and shifting to lower 2 positions. 

[36]. However, no additional impurities were detected using XRD for the SrHA 

material. 
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Figure 2(a) shows a typical FTIR spectrum of the HA precursor powder. Absorption 

bands characteristic of PO4
3- stretching and bending vibrations can be observed 

between 1100 – 950 cm-1 and 620 – 450 cm-1 along with O-H stretching and librational 

bands at 3570 and 632 cm-1, respectively as shown in Table 2 [29,36-38]. In addition 

to this, carbonate (CO3
2-) peaks were observed as highlighted in Table 2 [39]. These 

results show that the HA material exhibits CO3
2- substitution at both OH- (A-site) and 

PO4
3- (B-site) locations [10,39]. Figure 2(b) and Table 2 highlights the FTIR results 

for the SrHA precursor powder. Poorly resolved peaks characteristic of PO4
3- groups 

can again be observed between 1100 - 950 cm-1 and 620 – 450 cm-1, as would be 

expected [40–43]. However, the peak expected for the O-H liberation at around 630 

cm-1 is not present and the O-H stretching vibration at 3569 cm-1 has a low intensity. 

Peaks associated with carbonate (CO3
2-) were also observed at 880 cm-1 and between 

1550 - 1400 cm-1, which again highlights significant CO3
2- substitution in both the A 

and B sites [39].  

 

Table 2. FTIR results from HA and SrHA powders. 

Peak Assignment  HA (cm-1) SrHA (cm-1) 

PO4
3- (P-O) (3) 

1091 

1070* 

1026 

1091* 

- 

1025* 

PO4
3- (P-O) (1) 962 961 

PO4
3- (O-P-O) (4) 

601 

565 

599 

565 

PO4
3- (O-P-O) (2) 474 475 

CO3
2- (C-O)  1550-1400 1550-1400 

CO3
2- (O-C-O) 879 880 

OH- (O-H) 3570 3569 

OH- (O-H) 631 - 

* - weak shoulder 

 

The Raman spectra for the HA and SrHA precursor powders are shown in Figures 3(a) 

and (b), with their respective peak assignments in Table 3. The PO4
3- peak positions 
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reported for the HA powder are all as expected for pure HA [44,45] however, the peak 

positions that are reported for the SrHA powder are all shifted to lower values, which 

is typical of Sr substituted HA powders and the main PO4
3- at 956.2 cm-1 is 

considerably broader than that for pure HA [43,44]. CO3
2- bands were not observed in 

the Raman spectra for either materials however, these may have been masked by the 

PO4
3- peaks. 

Table 3. Raman results from HA and SrHA powders. 

Peak Designation HA (cm-1) SrHA (cm-1) 

 PO4
3- (2) 

431.2 

448.8 

428.6 

445.0 

PO4
3- (4) 

579.5 

590.6 

607.7 

616.3 

574.6 

586.9 

604.0 

- 

PO4
3- (1) 960.8 956.2 

PO4
3- (3) 

1031.0 

1045.6 

1075.8 

1027.6 

1040.5 

1070.2 

Figure 4(a-d) shows the XPS peak-fitted high-resolution peaks for the C1s, O1s, Ca2p 

and P2p for the HA precursor powder. The corresponding peak positions for each of 

the individual components for the peak-fitting is given in Table 4, with the 

quantification results shown in Table 5. The peak positions match up to those expected 

for HA found in the literature [42,43]. For the C1s peak in Figure 4(a), the main 

component observed at 285.0 eV was from C-H / C-C bonds present from surface 

hydrocarbons. The C1s components observed at 286.3, 287.8 and 289.3 eV, are 

indicative of C-H / C-C, C-O / C=O and carbonate species, respectively [48–50]. Peak-

fitting the O1s envelope for the HA powder resulted in three components as shown in 

Figure 4(b).  The components located at 531.7 and 532.9 eV can be assigned to O-P 

and O-C bonding, respectively [51]. The third additional component observed at 534.1 

eV is associated with O=C bonding or possibly physiosorbed water [51]. The Ca2p 

envelope shows two doublets after peak-fitting, as seen in Figure 4(c). The Ca2p1/2 

and Ca2p3/2 bands fitted to each of the resolved doublets are separated by ~3.5 eV and 

have the correct relative intensity ratio [38]. The most intense of these two overlapping 
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doublets is present at 347.6 eV (Ca2p3/2) and 351.1 eV (Ca2p1/2) and the second less-

intense doublet at 348.4 eV (Ca 2p3/2) and 352.2 eV (Ca 2p1/2). This data suggests that 

the calcium for the HA powder is present in two different chemical environments. The 

main doublet at lower binding energy is deemed to be associated with HA [38]. The 

most obvious source of the second, less intense, doublet is the occurrence of a CaCO3 

species. Additional support for this interpretation comes from the strong CO3
2- 

contribution to the corresponding C1s spectral envelope. However, the binding energy 

position for the Ca2p3/2 line (348.4 eV) is somewhat higher than that generally 

recorded in the literature for CaCO3, i.e. it is normally in the range 346.5–347.3 eV 

[38]. Additionally, the presence of low concentrations of additional CaP phases cannot 

be ruled out [28]. Finally, for the HA precursor powder, as shown in Figure 4(d), the 

P2p envelope can be fitted with two peaks, one at 133.5 eV and one at 134.4 eV. These 

can be attributed to the resolved doublet of P-O bonding from HA, with the peak at 

lower BE corresponding to the P2p3/2 peak and the peak at higher BE corresponding 

to the P2p1/2. The peaks are separated by ~0.9 eV and have the correct relative intensity 

ratio. The Ca/P atomic ratio of the HA precursor powder was 1.59  0.02, which is 

slightly lower than the value expected for stoichiometric HA (1.67), as shown in Table 

5. This is not unexpected as XPS is a surface sensitive technique, analysing the top 5-

10 nm of the sample. Similar results have been observed in the literature previously 

[27,28]. Figure 4(e-h) shows the peak-fitted high-resolution peaks for the C1s/Sr3p, 

O1s, Ca2p and P2p/Sr3d for the SrHA precursor powder. The corresponding peak 

positions for each of the individual components for the peak-fitting are given in Table 

4, with the quantification results shown in Table 5.  

The peak-fitting of the C1s and O1s envelopes showed distinct similarities to the those 

for the HA precursor powder, as highlighted in Table 4 and Figures 4(e) and (f), 

respectively. The Ca2p envelope for the SrHA precursor powder, as shown in Figure 

4(g) was fitted with a single doublet, with the Ca2p3/2 (347.4 eV) and Ca2p1/2 (350.9 

eV) bands separated by ~3.5 eV (and having the correct relative peak intensities) [38]. 

The envelope for P2p and Sr3d peaks overlaps significantly, as shown in Figure 4(h), 

but can be resolved into two distinct doublets. The first doublet represents P-O 

bonding from the SrHA, with the peak at lower binding energy (BE) corresponding to 

the P2p3/2 peak (133.1 eV), and the peak at higher BE corresponding to the P2p1/2 

(133.9 eV). The peaks are separated by ~ 0.8 eV and have the correct relative intensity 
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ratio. The second peak-fitted doublet represents the Sr3d peak, with the peak at lower 

binding energy (BE) corresponding to the Sr3d5/2 peak (133.3 eV) and the peak at 

higher BE corresponding to the Sr3d3/2 (135.2 eV). The peaks are separated by ~1.8 

eV and also have the correct relative intensity ratio [52]. Peak fitting of the P2p/Sr3d 

envelope in a Sr substituted HA powder has not been previously reported in the 

literature to the best of the knowledge of the authors. The Ca/P ratio, (Ca + Sr)/P and 

(Sr + Ca)/Sr atomic ratios of the SrHA powder was 0.95  0.05, 1.30  0.09 and 1.37 

 0.03, respectively as shown in Table 5. These values were below those expected for 

this material [19]. 

Table 4. XPS peak positions from different powders and coatings (eV). 

Peak HA Powder SrHA Powder HA Coating SrHA Coating 

O1s  531.7 531.2 531.4 531.4 

O1s 532.9 532.4 532.4 532.3 

O1s 534.1 533.6 533.8 533.3 

     

Ca2p3/2  347.6 347.4 347.4 347.7 

Ca2p1/2 351.1 350.9 350.9 351.2 

Ca2p3/2  348.4 - 348.3 - 

Ca2p1/2 352.2 - 351.8 - 

     

C1s  285.0 285.0 285.0 285.0 

C1s  286.3 286.4 285.9 285.8 

C1s  287.8 287.8 286.7 286.5 

C1s  289.3 289.1 289.1 289.1 

     

Sr3p3/2 - 269.1 - 269.6 

Sr3p1/2 - 279.5 - 280.0 

     

P2s 191.0 190.8 190.8 190.8 

     

P2p3/2 

P2p1/2 

133.5 

134.4 

133.1 133.2 133.3 

133.9 134.1 134.2 

     

Sr3d5/2 - 133.3 - 133.7 

Sr3d3/2 - 135.2 - 135.4 
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Table 5. XPS data for the different HA and SrHA powders and coatings. 

Sample 

Atomic % Quantification Ratios 

Ca/P (Ca + Sr)/P (Ca + Sr)/Ca 

HA Powder 1.59  0.02 - - 

SrHA Powder 0.95  0.05 1.30  0.09 1.37  0.03 

HA Coating 1.81  0.02 - - 

SrHA Coating 1.18  0.05 1.49  0.05 1.26  0.01 

 

ToF-SIMS has been used here to examine the surfaces of the pressed disks of the HA 

and SrHA powders. The positive ion spectra for the HA material is shown in Figure 

5(a) with the peaks observed at m/z of 40, 41 and 57 corresponding to Ca+, CaH+, and 

CaOH+, respectively [22,26,29]. A significant peak is also observed at m/z 23 in the 

HA powder positive ion spectrum, which corresponds to Na+. The positive ion spectra 

for the SrHA precursor is shown in Figure 5(c), with a strong Sr+ peak clearly visible 

at m/z 88, as would have been expected [22]. For both the HA and SrHA powders the 

presence of a range of different isotopes and oxides of these species are also observed 

along with significant peaks corresponding to organic species. The negative ion 

spectra for the HA powder is shown in Figure 5(b), with strong peaks observed at m/z 

of 16, 17, 47, 63 and 79, corresponding to O-, OH-, PO-, PO2
- and PO3

-, respectively 

[22,26,29]. Peaks corresponding to organic contamination were detected throughout 

the spectrum along with peaks for F- and Cl- m/z of 19 and 35, respectively. The 

negative ion spectra obtained from the SrHA powder are largely similar to those for 

the HA powder as highlighted in Figure 5(d).  

Normalised intensities of Ca+, CaPO2
+ and Sr+ about the total ion count are presented 

in Figures 6(a) – positive ions and 6(b) – negative ions. The HA disk exhibited strong 

Ca+ and CaPO2
+ with no intensity for Sr+. The SrHA disk exhibited a stronger peak 

Ca+ and CaPO2
+ and a significant presence of Sr+. There are increases in the PO-, PO2

- 

and PO3
- intensity in the SrHA disk compared to the HA disk, as highlighted in Figure 

8(b). For both the HA and SrHA disks, PO2
- had the strongest intensity. 
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From these results the HA powder was confirmed to be a crystalline carbonated HA 

material. The SrHA powder analyses highlighted significant levels of Sr substituting 

for Ca in the HA lattice, with significant A-B CO3
2- substitution. 

 

3.2 Characterisation of the HA and SrHA Coatings 

The HA and SrHA coatings deposited here would be amorphous in nature due to the 

low discharge power utilised during RF magnetron sputtering, as has been shown in 

previous works by the authors [20–22]. Therefore, FTIR, Raman and XRD were not 

employed to analyse these surfaces as these results have been reported previously [20–

22]. Only XPS and ToF-SIMS were employed in this case to analyse the coatings in 

order to determine the chemistry of the uppermost surface, and in particular the spatial 

arrangement of functional groups of interest, namely Sr.  

Figure 7(a-d) shows the peak-fitted high-resolution peaks for the C1s, O1s, Ca2p and 

P2p for the HA coating. The corresponding peak positions for each of the individual 

components for the peak-fitting is given in Table 4, with the quantification results 

shown in Table 5 correlate to those values anticipated for HA and are similar to those 

reported for the HA target powder [38,42,40,48-51].  

The Ca/P ratio of the HA coating, as determined by XPS was 1.81  0.02, which is 

higher than the value expected for stoichiometric HA (1.67), as shown in Table 5. 

Figure 7(e-h) shows the peak-fitted high-resolution peaks for the C1s/Sr3p, O1s, Ca2p 

and P2p/Sr3d for the SrHA coating. The corresponding peak positions for each of the 

individual components for the peak-fitting is given in Table 4, with the quantification 

results shown in Table 5. The peak-fitting for the C1s/Sr3p, O1s, Ca2p and P2p/Sr3d 

envelopes showed distinct similarities to the those for the SrHA precursor powder, as 

highlighted in Table 4 and Figures 7(e) and (f), respectively. Again, the peak fitting of 

the P2p/Sr3d peak envelope shows the presence of both the P2p and Sr3d doublets 

(similar to the SrHA precursor powder), which has not been reported in the literature 

to date (to the best of the knowledge of the authors).  The Ca/P, (Ca + Sr)/P and Sr/(Ca 

+ Sr) ratios of the SrHA powder as determined by XPS were 1.18  0.05, 1.49  0.05 

and 0.21  0.01 respectively, as highlighted in Table 5. These values were below those 
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expected but are in line with previous work in the area for such amorphous coatings 

[21,22]. 

ToF-SIMS spectra of the titanium substrate Figure 8(a) and (b) show the surface is 

mainly dominated by Na+ and K+ at 23 and 39 m/z respectively, alongside 

characteristic organic contamination.  There is also a strong peak for Ti+ at 48 m/z and 

very weak peaks for Ca+ and CaPO2
+ at 40 and 103 m/z respectively, demonstrating 

that the titanium substrate sample has small amounts of calcium and calcium 

phosphate due to surface contamination. The negative titanium substrate spectra also 

exhibit surface contamination from typical organic species and dominating peaks of 

O- and OH- at 16 and 17 m/z, respectively, with no peaks present for PO-, PO2
- or PO3

-

. The HA coating shows dominant peaks of Ca+ and CaOH+ in the positive spectra and 

PO2
- and PO3

- in the negative spectra, there is also a small CaPO2
+ peak in the positive 

spectrum and PO- peak in the negative spectrum. The SrHA coating spectra strongly 

resembles the HA coating spectra with the exception of a strong Sr+ peak being present 

in the positive polarity. These spectra show that the coating process has been effective 

with large amounts of calcium and phosphates present on the surface post-coating and 

that strontium has also been effectively sputtered. No Ti+ is present on positive polarity 

spectrum for either coating indicating that the coating has been deposited 

homogeneously. 

Normalised intensities of Ti+, Ca+, CaPO2
+ and Sr+ about the total ion count are 

presented in Figures 9(a) – positive ions and 9(b) – negative ions. The titanium surface 

exhibits none of the peaks related to the HA or SrHA coating, apart from a small 

amount of calcium contamination. The HA coating exhibited a significant increase in 

Ca+ and CaPO2
+ with virtually no intensity for Ti+ and Sr+. The SrHA coating 

exhibited a lower presence of Ca+, the same amount of CaPO2
+ and a significant 

presence of Sr+. The amount of Sr+ and Ca+ present in the SrHA coating is equal to 

the amount of Ca+ present in the HA coating.  There is a slight increase in PO2
- and 

PO3
- intensity in the SrHA coating compared to the HA coating, with no phosphate 

ions present on the surface of the uncoated titanium substrate, as highlighted in Figure 

8(b). The positive polarity ion maps, as shown in Figure 10(a), for the titanium 

substrate show low levels of calcium contamination and almost no counts for the 

calcium phosphate or strontium ions, with strong ion counts for Ti+ across the entire 

surface. Ion maps for the HA and SrHA coatings, as illustrated in Figures 10 (positive 
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ion polarity maps) and 11 (negative ion polarity maps) show a homogenous 

distribution of Ca+, CaPO2
+, PO-, PO2

- and PO3
-. ions across the surface and almost no 

Ti+ counts. The SrHA coating shows a homogenous distribution of Sr+ counts across 

the surface. This shows that both coatings are homogeneously deposited and that the 

substituted strontium is also evenly distributed across the surface, due to the random 

nature of the sputtering process. The negative polarity ion maps show no phosphate 

ions present on the titanium substrate surface and homogeneously distributed 

phosphate groups on the surface of the HA and SrHA coating. 

 

4.0 Discussion 

As highlighted earlier, the chemistry of these HA and SrHA coatings potentially offer 

significant benefits to cell behaviour in vitro and in vivo [22,53,54]. After sputtering 

these different materials onto the cpTi substrates distinct changes were observed in 

their surface properties as determined using XPS and ToF-SIMS analyses. The surface 

Ca/P ratio of the thin films deposited from the HA targets was slightly higher than that 

expected for stoichiometric HA, at 1.81  0.02 [21,22]. The positive ion spectrum 

ToF-SIMS results for the HA derived coating indicated the presence of other Ca 

species (CaH+ or CaOH+) on the surface of the sample which may help in part to 

explain the slightly elevated Ca/P ratio. This is also backed up by the presence of an 

additional Ca2p doublet in the Ca2p XPS spectrum for the coating, indicating the 

presence of either a secondary CaP phase or CaCO3 material on the surface of the 

coating. However, this elevated Ca/P is in line with expectations for coatings produced 

under the conditions employed here [21,22]. This may be a consequence of 

resputtering of the P species from the coating by negative O species as has been 

observed in previous work by Feddes at al [55]. Tyically this occurs at lower Ar gas 

pressures, and in the case here sputtering was undertaken at the lower end of the 

pressure range available in our sputtering system (2 Pa). It is further understood that 

this resputtering process can also be influenced by substrate biasing, however, substate 

biasing was not utilised in this study [56].  Furthermore, no Sr is detected on the 

surface of these CaP coatings prepared from the HA targets (as confirmed by both the 

XPS and ToF-SIMS results). The XPS analyses suggests that CO3
2- is present in the 

HA derived coatings given the CO3
2- peak observed at 289.1 eV in the C1s envelope, 

as shown in Figure 7(a). However, no distinctive CO3
2- peaks are observed in the ToF-
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SIMS spectra for this coating, suggesting that it is not present in the uppermost atomic 

layers of this sample. Therefore, the CaP coating deposited here could not be assigned 

a structural formula based on hydroxyapatite, or carbonated hydroxyapatite, as the 

coating deposited under the conditions employed here would be amorphous in nature 

[30,31,57]. It would therefore be better explained as a carbonated amorphous calcium 

phosphate material [CaxHy(PO4,CO3)z.nH2O with a Ca/P ratio of 1.0 – 2.2] as described 

in previous reports in the literature, which may be more beneficial for stimulating the 

osteoblast response, rather than crystalline hydroxyapatite [1,58]. 

In comparison, the XPS results for the SrHA derived coatings were in line with 

expectations for a Sr-substituted HA like material. Peaks for Sr3p3/2 and Sr3p1/2 can be 

clearly observed at approximately 269.6 and 280.0 eV in addition to the expected 

peaks for a CaP material [21,22]. The Ca/P ratio (and corresponding (Ca + Sr)/P ratio) 

SrHA coatings were 1.18 ± 0.05 and 1.49 ± 0.05, respectively, as reported in Table 5. 

Furthermore, if the Sr/(Ca + Sr) ratios of the SrHA coating is compared to that of the 

SrHA precursor powder (as shown in Table 5) it is evident that the Sr levels within the 

SrHA derived coatings are significantly lower than that for the SrHA powder, which 

has been observed in previous studies, highlighting a lower sputtering yield for Sr ions 

when compared to Ca, which may be related to the processing parameters utilised 

during sputtering. [19,21,22]. The processing history of the target could also play a 

role in this lower Ca/P ratio, as has been highlighted previously by Surmenev et al 

[59]. The possibility that re-sputtering played a role in this low Ca/P ratio cannot be 

ruled out either [55]. The presence of Sr on the uppermost surface of the coatings for 

the SrHA derived coatings is further confirmed by the ToF-SIMS analyses, as 

highlighted by the strong Sr peak at m/z 88 in Figures 8(e) and 9(a). Furthermore, the 

presence of Sr is seen to be homogenous and continuous across the surface, as 

highlighted by the positive ion maps in Figure 10. In addition, the ToF-SIMS result 

here show that Ca+, PO2- and PO3- species are more prevalent in the HA and SrHA 

coatings (compared with CaPO2- and the PO- species) given the normalised ion 

intensities highlighted in Figure 6 (powders) and Figure 9 (coatings). This suggests 

preferential sputtering of Ca+, PO2- and PO3- fragments under the conditions employed 

in this study. Considering both the XPS and ToF-SIMS results obtained here, and the 

understanding that the coating is amorphous in nature (based on previous work 

involving Sr substituted HA coatings produced via sputtering) [21,22], the coatings 
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would be best described as a strontium containing carbonated calcium phosphate 

material [(Ca,Sr)xHy(PO4,CO3)z.nH2O]. Consequently, the SrHA coating produced 

here could potentially provide enhanced benefits, both in vitro and in vivo, given it is 

both amorphous and contains appreciable levels of Sr ions on the uppermost surface 

of the coatings as shown by the surface characterisation undertaken here using XPS 

and ToF-SIMS. 

 

5.0 Conclusions 

The work reported here details the deposition of amorphous CaP and Sr containing 

CaP coatings via RF magnetron sputtering and their subsequent detailed 

characterisation using XPS and ToF-SIMS in order to better understand their 

uppermost surface chemistry. The HA and SrHA precursor powders used to deposit 

the coatings were both shown to be crystalline in nature and did not contain any 

significant levels of impurity phases. Both powders contained carbonate (with A-B 

substitution), as would have been expected, with the SrHA powder showing 

appreciable levels of Sr, substituting for Ca in the HA lattice. The results for the 

coatings presented here clearly show that RF magnetron sputtering can deposit 

amorphous CaP and Sr containing CaP coatings, which are non-stoichiometric (when 

compared to HA) and contain carbonate groups. It is suggested that resputtering may 

influence the stoichiometry of the surfaces produced here. Also, the processing history 

of the targets may also be important and would merit further consideration in future.  

In addition to this, the surface characterisation employed here using XPS and ToF-

SIMS clearly show that the SrHA coating has Sr ions in the uppermost surface region 

in appreciable amounts, which are homogeneously distributed across the surface and 

commensurate with that required to deliver osteoconductive properties. These results 

highlight the importance of undertaking detailed surface characterisation of such 

coatings. However, these surfaces would need to be investigated by rigorous in vitro 

testing to provide further evidence of their potential bioactivity and utility as a suitable 

material for coatings in orthopaedic applications. 
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Figure 1. XRD patterns for (a) HA powder, (b) SrHA powder, (┄) refers to ICCD # 09-

0432. 

Figure 2. FTIR Spectra for (a) HA powder, (b) SrHA powder. 

Figure 3. Raman Spectra for (a) HA powder, (b) SrHA powder. 

Figure 4. XPS high resolution scans for (a) C1s HA powder, (b) O1s HA powder, (c) 

Ca2p HA powder, (d) P2p HA powder, (e) C1s/Sr3p SrHA powder, (f) O1s SrHA powder, 

(g) Ca2p SrHA powder and (h) P2p/Sr3d SrHA powder. 

Figure 5. ToF-SIMS spectra (a) positive ions HA powder, (b) positive ions SrHA powder, 

(c) negative ions HA powder and (d) negative ions SrHA powder. 

Figure 6. Normalised ion intensities of HA and SrHA disks obtained from ToF-SIMS 

spectra for (a) positive ions and (b) for negative ions. 

Figure 7. XPS High resolution scans for (a) C1s HA coating, (b) O1s HA coating, (c) 

Ca2p HA coating, (d) P2p HA coating, (e) C1s/Sr3p SrHA coating, (f) O1s SrHA coating, 

(g) Ca2p SrHA coating and (h) P2p/Sr3d SrHA coating. 

Figure 8. ToF-SIMS spectra positive (Left) and negative (Right) of (a,b) titanium 

substrate, (c,d) HA coating, (e,f) SrHA coating. 

Figure 9. Normalised ion intensities of HA and SrHA coatings obtained from ToF-SIMS 

spectra for (a) positive ions and (b) for negative ions. 

 

Figure 10. ToF-SIMS positive ion maps of total ion count (TIC), Ca+, CaPO2
+, Sr+ and 

Ti+ for (a-e) titanium substrate, (f-j) HA coating and (k-o) SrHA coatings. 

Figure 11. ToF-SIMS negative ion maps of total ion count (TIC), Ca+, PO2
+, Sr+ and Ti+ 

for (a-d) titanium substrate, (e-h) HA coating and (i-l) SrHA coatings. 

 

 

 


