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Abstract: Shallow gas accumulation in unconsolidated Quaternary 

sediments, and associated seepage at the seafloor, is widespread in the 

north Irish Sea. This study integrates high-resolution seafloor 

bathymetry and sub-surface geophysical data to investigate shallow gas 

accumulations and possible fluid (gas and/or liquids) migration pathways 

to the seafloor in the northern part of the Irish Sea. Shallow gas occurs 

broadly in two geological settings: the Codling Fault Zone and the 

Western Irish Sea Mud Belt. The gas has been recognised to accumulate in 

both sandy and muddy Quaternary marine near-surface sediments and is 

characterised by three characteristic sub-bottom acoustic features: i) 

enhanced reflections, ii) acoustic turbid zones, and iii) acoustic 

blanking.  The seepage of shallow gas at the seafloor has resulted in the 

formation of morphological features including methane-derived authigenic 

carbonates, seabed mounds and pockmarks.  In many instances, the evidence 

for this gas as biogenic or thermogenic in origin is inconclusive. Two 

distinct types of pockmarks are recorded in the Western Irish Mud Belt: 

pockmarks with a relatively flat centre, and pockmarks with a central 

mound. Based on our observation and existing models, we infer that the 

formation of a carbonate crust at the seabed surface, is needed as a 

precursor for the creation of such mounds within pockmarks. The formation 

processes are interpreted to be different for sandy versus muddy 

sediments, due to variability in erodibility and sealing capacities of 

the substrate. We suggest that the origin of these features is linked to 

the presence of deeper hydrocarbon source rocks with existing and 

reactivated faults forming fluid migration pathways to the surface. This 

in turn could indicate a mixed thermogenic-biogenic origin for seep-

related structures in the study area. These features have significant 

implications for the future development of offshore infrastructure 

including marine renewable energy as well as for seabed ecology and 

conservation efforts in the Irish Sea. 
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-------------------------------------------------- 



There are no linked research data sets for this submission. The following 

reason is given: 

Data will be made available on request 
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Dublin, 13th October 2020 

Dear Editor, 

Having put considerable effort into addressing the previous set of comments, my co-authors and I are 

disappointed that the manuscript has not been accepted in its current format. However, we appreciate 

the efforts of both you and your reviewers and thank you for the time taken in making our manuscript 

ultimately more robust.  

Having reviewed and approached the latest set of comments, we feel there is either a degree of confusion 

on behalf of the reviewers, or miscommunication on our part, with regard to the aims and objectives of 

the study, as well as the limitations of the dataset we have. As we reiterate later, currently relating to the 

Irish Sea there are a number of separate papers which focus on morphological features at the seabed that 

represent fluid/gas seepage and expulsion, as well as shallow expressions of gas accumulation (e.g. 

O’Reilly et al. (2014) and Van Landeghem et al. (2015)). These papers generally suggest a mixed 

biogenic and thermogenic component to the gas-related feature that is described. With regard to the 

thermogenic component, it is generally proposed and accepted that hydrocarbons generated at depth 

migrate along structural lineaments (i.e. faults) to the shallow subsurface. To our knowledge, there is no 

current geological model that integrates bedrock geology, hydrocarbon sources, structural geology, 

Quaternary geology and seafloor morphology in the Irish Sea. This manuscript aims to do just that in 

order to create a framework in which to study further aspects of the fluid migration process and feature 

formation. The reviewers all make relevant observations and suggestions of further work which, we feel, 

this framework will facilitate as part of future studies, but are currently outside the scope of this 

particular study.  

With that in mind, we have endeavored to address each of the comments made by both reviewers, whilst 

more clearly detailing our aims and objectives as well as the limitations of our data with 

recommendations for further work. Below we make specific responses to each comment raised.  

We hope that this will be agreeable with you and your reviewers and we would implore you to make a 

decision on this manuscript either way. 

 

Kind Regards 

Mark Coughlan (on behalf of the co-authors) 

 

 

*Cover Letter
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Reviewer 3 

1) Rev3 feels that the paper still lacks of clear evidence of fluid flow to support the arguments. To Rev3, 

most of the evidence is not related to migration of gas (such as the seismic amplitude anomalies) 

and most of the seabed features are enhanced by using contrasting color.  

 

This paper illustrates sub-surface acoustic anomalies and seabed morphological features, which are 

remnants of fluid flow, migration, and seepage at the seafloor. Our study certainly lacks concrete 

evidence of fluid flow and seepage such as geochemical and ROV video/image grabs. However, the 

geophysical datasets used in this study have provided several sites of interest which we anticipate will 

be the target of future sampling cruises in the coming years. There are several scientific publications 

which, showcase acoustic and geomorphological analysis of fluid flow and seepage features. 

Addressing to Rev3’s comments on “seabed features are enhanced by using contrasting color”, we fail 

to see how they are considering we use standard colour schemes. Furthermore, we provide bathymetric 

profiles of the seabed features discussed to exhibit their cross-sectional geometry. Nevertheless, if the 

Editor agrees we can change the colour-scale.  

 

With regards to seismic amplitude anomalies (presumably referring to the seabed brightening in Fig. 

3), this is evident locally above the termination of the faults. Moreover, the entire section is presented 

to highlight extent of the brightening in proximity to the faults and shows the difference between 

normal-amplitude and high- amplitude zones within the same stratigraphic horizon. This was done with 

the express intention to demonstrate that this is not a lithological feature and to not mislead the reader. 

We would appreciate if the Editor would make a decision on whether the evidence presented is 

sufficient. 

 

2) Rev3 also states that most of the pockmarks, mounds and depressions are less than a meter in height 

and several hundreds of meters wide ("the authors cite works, e.g., O'Reilly et al., 2014 where 

carbonate mounds of 5-10 meters are shown in the same area, so I am wondering why they do not 

take into account those studies to verify their interpretation").  

 

Most of the pockmarks are less than a metre in height, which is consistent with other descriptions of 

pockmarks in Irish waters referenced in the text (Line 97: Croker et al., 2005; Games, 2001; Szpak et 

al., 2015, 2012). In the tabulated data regarding pockmark morphology, it is clear that all pockmarks 

bar one are under 200 m in diameter with the majority under 100 m. Only one pockmark is hundreds 

of metres wide, and in Fig. 11 its outline has been marked by contoured lines to highlight its elliptical 

morphology. However, we have decided to remove this figure and related text from this manuscript, 

after critical comments from Rev3.   

 

With regards to the carbonate mounds, we clearly refer to the interpretation documented by O’Reilly 

et al. (2014) and Van Landeghem et al. (2015) in lines 252-254 (of our previous submission) while 

drawing our interpretations on the carbonate mounds. It seems that Rev3 might have missed these 

lines. The mounds we illustrate in this study are not less than a meter, but 8-16 m high and 60 m in 

diameter.  

 

3) The authors just imply that all of the features observed are gas related, with a proposed model that 

does not take into account any sort of mechanism for which gas migrate along fault (focused) and 

then suddenly as a front.  

*Detailed Response to Reviewers (Revision Notes)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

Yes, we do propose that reactivated faults allow fluids to migrate from depth to the near surface. This 

migration of fluids (including gas), along faults is a well-described and generally accepted process, 

owing to factors such as, higher permeability along faults, buoyancy, and differential pressure. These 

faults are Cenozoic or older in age, therefore they typically terminated at or near the boundary with 

the base of the Quaternary units. Therefore, the continued migration of gas, or any fluid, towards the 

surface or laterally within the Quaternary units will depend on the petrophysical and geomechanical 

properties of those younger units.  

 

We appreciate that in Lines 108-111 and 345-348 we could have been clearer in our objectives, scope 

and the limitations of this study. To date in the Irish Sea, numerous studies have described seabed 

morphological features linked to gas/fluid expulsion or seepage. The majority of these studies 

propose a thermogenic gas component and reference possible migratory pathways (i.e. faults) from 

deeper stratigraphic layers (source or reservoir rocks) to the surface, without offering actual evidence 

of fault systems (fluid migration pathways). Ultimately, the aim of this paper is the establishment of a 

geological framework incorporating bedrock geology, hydrocarbon source rocks, structural geology 

(faults), Quaternary geology and seafloor morphology in the Irish Sea which would allow 

investigation of subsurface fluid flow mechanisms. 

 

We mention in the Introduction of the manuscript, that there is a mixed thermogenic and biogenic 

signatures documents in the CFZ and the WISMB. We also mention the thermogenic origin of the gas 

in the CFZ area which has migrated along faults to reach shallow stratigraphic layers and results in 

gas fronts and other seepage features. So, it was already evident that fluids (thermogenic gas) had a 

deeper source and used fault conduits to reach shallow sub-seabed sediments. However, as suggested 

by Rev3 and the Editor, we have now added this in the discussion of the proposed model for the 

formation of mounds and pockmarks.  

   

4) Lastly, the author simply do not explain that pockmarks and mounds and other features are related to 

different type of fluid migration. 

 

We have now discussed the alternative formation mechanisms of pockmarks, i.e., seepage of pore-

water (Harrington, 1985) – this is likely possible – particularly due to the lack of geochemical data at 

present to support gas seepage from the pockmarks; and fresh-water ice rafting (Paull et al., 1999) – 

which is unlikely in the current geological setting.  

 

Reviewer 3 in-manuscript comments 

Line 80-81: gas is more compressible than water. sediments might compact more if a substantial amount 

of water is replaced by gas.... 

- We are merely highlighting what is mentioned in that reference. This is not our theory.  

 

Line 98-99: I am wondering whether other references for the formation of pockmark can be used... 

- This reference refers specifically to Irish Sea pockmarks previously studied, we are happy to consider 

other references offered by the reviewer. 

Line 312-313: this depression has just a 0.8 m relief over a distance of 850...this is not a pockmark! 

- Again, we feel this fits with the range of previously described pockmarks referenced in the text.  
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Line 314-316: I disagree 

- Subjective, but we have removed this inference for the sake of progressing the manuscript.  

 

Line 395-396: This is very speculative. The seabed shows a clear subsidence that can produce space and 

increase the thickness of the near-seabed sediments, and from here produce tuning anomalies. If long 

migration from the deeper part of the basin is invoked, I am wondering why no gas is visible underneath 

these amplification. This is to me a very weak argument. 

- The text has been amended to address this in Lines 402-407 

 

Line 419: No, it does not! 

- Text amended 

 

  Reviewer 5 

1) It is important to clarify he processing strategy which has been used for those seismic data: if some 

amplitude preservation type processing has not been applied (excluding any modification of the 

amplitude calibration or NMO) to me the amplitude analysis through the stacked trace can produce 

ambiguities. I will clarify my comments a bit more precisely further on point “xy”. 

To reiterate, the sub-bottom profiler data presented is single-channel. All processing steps have been 

outlined in the “Sub-bottom acoustic data” section of the manuscript, including the velocity values 

used 

2) Figure 6b 

- Multibeam : The proportion of acoustic energy reflected back from the seabed is determined by the 

impedance contrast, sometimes referred to as 'hardness' and apparent surface roughness scale. the 

question is how the dB intensity variation can be correlated to gas content other than hardness or 

roughness of the seabed. and this is where i believe the author should better discuss their results. 

There is a huge lot of literature which generally assign  high backscatter intensity with rock or 

coarse-grained sediment, and low backscatter intensity characterizes finer grained sediments. But 

given the nature of the seabed and the physics nature of the backscatter variation a dB relative scale 

is not enough to add petrophysics values to the images.  without ground-truthing it is not possible to 

determine the exact nature of the specific substrates. So Fig 6B i am questioning what in reality 

figure 6b is telling to us. While the other images included in Fig 6 are seabed morphological maps 6b 

it is not simply that. The authors should make some effort to clarify the nature of this backscattered 

signal or not include this figures.  In fact if the two mound , at seabed condition where compaction is 

excluded, are saturated by gas..they should soften the p sonar impedance and therefore i expect to 

have the way around in term of signal: not shadowing. so it has to be a hardening but the fluid 

content being secondary here. To me the nature of the mounds remains very speculative.. 

To be clear, in this study we use the multibeam backscatter data as a means to identify areas of seabed 

hardness relative to surrounding softer substrate (coarse-grained sediments vs. soft sediments), and 

not a means to identify gas-saturated sediments.  We agree with Reviewer 5 in that, ultimately, these 

features need to be ground-truth. But, in the absence of such data (ROV images of the mounds), we 

refer to previous studies where similar mounds in the vicinity of our study area have been confirmed 

as remnants of gas seepage  (i.e. O’Reilly et al., (2014); Van Landeghem et al., 2015). Hence, our 

interpretation of the features in Figure 6 is in keeping with those of O’Reilly et al. (2014); Van 

Landeghem et al. (2015) for this area, as indicated in the main text of the manuscript.  
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3) Fig 11 B. the same consideration apply to figure 11 B. But I do not exclude the proposed 

interpretation, of carbonate precipitation which geologically (given the strat context given by the 

authors) and petrophysically is plausible. 

Again we agree that, ideally, this would be groundtruthed, but we have no such data at present. In any 

case Fig. 11 has been removed to negate further confusion.  

 

4) Fig 9 ; how is it produce the surface with colour scale in mbsf (so in depth). ? what are the data 

source for this surface? the author refer to 2D seismic and sparkers line..buty no other 3D source of 

data 

The 3D surface of the depth to the top of shallow gas displayed in Fig. 9 was generated from a 

sparker seismic grid detailed in Fig. 1 of Coughlan et al. (2019). We hope that the editor would agree 

to the fact that we can generate a 3D surface from a dense grid of 2D sparker seismic lines. We have 

added additional text in the figure caption of Fig. 9 to emphasize the same. To avoid unnecessary 

replication, the reader is referred to that paper for details of the data used and processing steps (Lines 

292-294).  

 

5) Figs 10 ; those to me represent crucial images. they are sparker seismic lines crossing the potential 

top of a gas cumulations  surrounded by pockmarks. What I do not find that convincing is the seismic 

expression of what the authors call Enanced reflections: 

the enhanced reflection in figure 10b are all of the same polarity of the seabed..which is not what i 

expect in case of gas cumulation in a shallow environment whenre unconsolidated shale/sand should 

roughly respond with shale stronger than sand and therefore any sand saturated by gas produce 

reflector with reverse polarity respect to the seabed. I am not sure they represent a convincing 

stacked reflection ( or what in the literature Foschi et al., define amplitude anomalies stacked 

structure) deriving from gas anomalies. I believe the authors should more precisely discuss all the 

options out of the what the data proposed are indicating. Morover i believe that some sort of partial 

stack or AVO should be added in one of those enhanced reflectors and cross the major mounds as gas 

has in the shallow context a crystal clear footprint in the AVO.  

 

Firstly, in relation to Fig. 10, it is important to note that the data presented here is shallow (<50 m) 

single-channel sparker data, and not conventional 2D multichannel seismic data – where we look for 

polarity reversals as an indicator to the presence of shallow gas or gas hydrates. AVO analysis is not 

feasible on single-channel sparker data, as far as we are aware of. 

 

With regards to the enhanced reflectors, these occur within localised areas of acoustic turbidity, and 

above zones of acoustic blanking on the seismic profile. This is consistent across a number of seismic 

profiles from this area presented in this paper and Coughlan et al. (2019). The presence of acoustic 

turbidity and blanking infer the presence of shallow gas, which is why we are presenting this 

evidence. Our identification of features as “enhanced reflection” horizons is consistent with other 

work (i.e. Judd and Hovland, 1992), but if Reviewer 5 wishes to direct us towards additional literature 

in this area we will gladly review and consider it. For now, our main concern would be that there is 

agreement on the presence of shallow gas, enhanced reflections notwithstanding.  
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6) the only image that i found convincing is figure 14. it shows the only clear potential gas chimney and 

acoustic blanketing..suggesting that some of those feature imaged in figure 13 may represent 

pockmark out of other (the linea sequence of seabed mounds may still represent sedimentary 

features..)  which are not that convincing 

We are slightly confused by this comment. Our understanding is that the reviewer is satisfied with our 

interpretation of shallow gas at Queenie Corner from the seismic profile and that of gas chimneys 

(which clearly cause seabed mounds on the same profiles), but maintains the corresponding features 

on bathymetric data may still be sedimentary (Location of seismic line Fig. 14 is shown on Fig. 13 

clearly). We feel that there is enough evidence to spatially link the subsurface gas accumulation 

(imaged as enhanced reflections and turbidity zones) and gas migration (imaged as gas chimneys) in 

Fig. 14 to the seafloor mounds in Fig. 13. Of course they may still represent sedimentary features as 

the reviewer suggests, but again we suggest the evidence of shallow gas beneath the mounds is 

compelling, and in lieu of other available data, this interpretation is the most plausible in our view. As 

the reviewer mentions about the linearity of the mounds, similar seabed mound features, 2-6 km long 

seabed mounds have been documented in the Alboran Sea owing to thermogenic fluid migration 

(Comas and Pinheiro, 2007) 

 

7) So  i believe that the authors at this stage should put some more effort at describing the data 

proposed and on that ground discuss all the potential implication of those ambiguities 

Overall the paper is extremely interesting, in fact I like the discussion of the implication of the 

interpretation and seismic within a site survey approach which should in fact , if this is the message 

the authors would like to convey, have been introduced at the start: an overview of the issues with 

reconnaissance of the shallow gas but also the application of those techniques in a contest of site 

surveying and de risking. there a few paper on that subject and in the future more will appear. In this 

context a failure by the authors in convincing that all those mound or enhanced reflections features 

may really represent gas intrusion should not hinder the paper: in fact it should remain a nice 

rigorous case history showing the problem of ambiguities in a shallow context where the data 

available are multibeam sonar, sparkers and only a limited amount of good conventional  seismic 

data  may not be crystal clear. 

We agree with Reviewer 5 on this point and appreciate their comments and suggestions.  We have 

taken these under consideration and made the following revisions accordingly: 

1. We have added a section in the Discussion on “Data and geological model limitations” where 

we discuss the limitations of the data used and the ambiguities introduced; 

2. Made recommendations on future data collection in the Conclusions and Recommendations 

section to overcome these ambiguities.   

The Lead Author would also like to offer that, on the basis of the limitations of the data highlighted, 

an additional survey in this area was undertaken in July 2020 using targeted site investigation 

techniques (including multichannel sparker seismic) which should clarify some of the ambiguities 

mentioned in this study. The data from this survey is part of an ongoing project, analysis of the 

acquired data would take considerable amount of time, and cannot be completed in the near future 

(hence not be included in this study). 
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 An integrated methodology is used to assess fluid flow in the north Irish Sea 

 Characterisation of a previously undocumented accumulation of shallow gas in Quaternary 

sediments, 17 new pockmarks and an area of seabed mounds  

 New mechanisms proposed for pockmark and seabed mound formation for this location 

 Cenozoic faulting and re-activation of older faults generates pathways for deep fluids to migrate 

to the shallow sub-surface 

 At the seabed, sediment properties play a strong role in the morphological expression of fluid 

seepage structures 

*Highlights (for review)
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 14 

ABSTRACT 15 

 16 

Shallow gas accumulation in unconsolidated Quaternary sediments, and associated seepage at the 17 

seafloor, is widespread in the north Irish Sea. This study integrates high-resolution seafloor bathymetry 18 

and sub-surface geophysical data to investigate shallow gas accumulations and possible fluid (gas and/or 19 

liquids) migration pathways to the seafloor in the northern part of the Irish Sea. Shallow gas occurs 20 

broadly in two geological settings: the Codling Fault Zone and the Western Irish Sea Mud Belt. The gas 21 

has been recognised to accumulate in both sandy and muddy Quaternary marine near-surface 22 

sediments and is characterised by three characteristic sub-bottom acoustic features: i) enhanced 23 

reflections, ii) acoustic turbid zones, and iii) acoustic blanking.  The seepage of shallow gas at the 24 

seafloor has resulted in the formation of morphological features including methane-derived authigenic 25 

carbonates, seabed mounds and pockmarks.  In many instances, the evidence for this gas as biogenic or 26 

thermogenic in origin is inconclusive. Two distinct types of pockmarks are recorded in the Western Irish 27 

Mud Belt: pockmarks with a relatively flat centre, and pockmarks with a central mound. Based on our 28 

observation and existing models, we infer that the formation of a carbonate crust at the seabed surface, 29 

is needed as a precursor for the creation of such mounds within pockmarks. The formation processes 30 
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are interpreted to be different for sandy versus muddy sediments, due to variability in erodibility and 31 

sealing capacities of the substrate. We suggest that the origin of these features is linked to the presence 32 

of deeper hydrocarbon source rocks with existing and reactivated faults forming fluid migration 33 

pathways to the surface. This in turn could indicate a mixed thermogenic-biogenic origin for seep-34 

related structures in the study area. These features have significant implications for the future 35 

development of offshore infrastructure including marine renewable energy as well as for seabed ecology 36 

and conservation efforts in the Irish Sea.   37 

 38 

Keywords: pockmark, seabed mounds, fluid seepage, MDAC, mud diapir, geohazards, ecological 39 

conservation, offshore infrastructure 40 

INTRODUCTION 41 

The accumulation of gas in shallow, unconsolidated marine sediments is aa global phenomenon 42 

(Andreassen et al., 2007; Dondurur et al., 2011; Ergün et al., 2002; Hovland and Judd, 1992; Karisiddaiah 43 

and Veerayya, 1994; Mazumdar et al., 2009). It represents an important tool for frontier hydrocarbon 44 

exploration, while also posing a significant geohazard, affecting sediment engineering properties 45 

(Andreassen et al., 2007; Hovland et al., 2002; Sills and Wheeler, 1992). The impacts of shallow gas and 46 

seepage on seabed ecology has also gained importance over the recent years (Jordan et al., 2019; Kiel, 47 

2010; Rathburn et al., 2000). To date in the Irish Sea (Fig. 1), a number of areas associated with shallow 48 

gas and fluid seepage have been designated as Special Areas of Conservation (SAC) due to the unique 49 

habitats they form as “Submarine structures made by leaking gases”, according to the Annex I / II of the 50 

E.U. Habitats Directive (National Parks and Wildlife, 2015). These can form two described habitat types: 51 

Bubbling Reefs and Structures within Pockmarks. In the Irish Sea, the SAC areas are predominantly 52 

related to Methane-Derived Authigenic Carbonates (MDAC) and are known locally as the Codling Fault 53 

Zone (CFZ) SAC and Croker Carbonate Slabs (CCS) SAC (Fig. 1). Further north, Queenie Corner is an 54 

offshore site within the Western Irish Sea Mud Belt (WISMB) that was designated as a UK Marine 55 

Conservation Zone (MCZ) in 2019 for its subtidal mud habitat and sea-pen and burrowing megafauna 56 

communities (Clements and Service, 2016).   57 

 58 

Shallow gas in unconsolidated marine sediments can have a biogenic or thermogenic origin. Bulk 59 

isotopic analysis on samples from the CFZ by O’Reilly et al. (2014) indicate a biogenic origin of the 60 

seeping gas, with some possible thermogenic contribution from underlying Carboniferous coal deposits. 61 
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Methanogenesis of organic-rich Quaternary sediments has been proposed as a source for shallow gas in 62 

Bantry Bay (Jordan et al., 2019) and Dunmanus Bay (Szpak et al., 2015) elsewhere in Irish waters. 63 

Evidence for shallow gas accumulations and seepage in the Irish Sea has been detected from geophysical 64 

observations on seismic lines as gas chimneys, enhanced reflectors and acoustic turbidity (e.g. Judd and 65 

Hovland (1992)). Where fluids (e.g. methane gas) emanate from the seabed, morphological features 66 

such as mounds and pockmarks have formed in the Western Irish Sea (Croker et al., 2005).   67 

 68 

Mounds are elevated bathymetric features which can form due to upward migrating fluids exerting 69 

pressure on overlying relatively impermeable layers or precipitation of carbonates due to prolonged 70 

methane gas seepage. Owing to their different formation mechanism, they are known as seabed domes, 71 

mud diapirs, and carbonate mounds, all of which have been found in the Irish Sea (Croker et al., 2005). 72 

Hovland and Curzi (1989) documented seabed domes and mud diapirs in the Adriatic Sea offshore Italy, 73 

where gas bubbles concentrating in plastic clay caused local density reversals, resulting in the upward 74 

buoyant flow of the clay and deformation of overlying unlithified layers, thus forming elevated 75 

bathymetric features at the seafloor and associated gas seepages. Such seabed domes and mud diapirs 76 

have also been found offshore India (Ramprasad et al., 2011), in Norwegian Arctic fjords (Roy et al., 77 

2014), and offshore New Zealand (Koch et al., 2015). Croker et al. (2005) previously mapped mounds 78 

(referred to as “seabed doming”) in the WISMB, and suggested that they may have formed due to the 79 

replacement of water in the pore space with gas causing an increase in sediment volume in the upper 80 

sediment layers. For this to occur, fine-grained, relatively impermeable sediments are required. Croker 81 

et al. (2005) also suggested that seabed doming might be an initial stage of pockmark formation. 82 

Mounds can also form when prolonged methane gas seepage at the seabed chemically interacts with 83 

surrounding minerals to form a carbonate precipitate cement (MDAC), binding the sediment matrix and 84 

forming hard, resistive rocks (Judd et al., 2019). With continued seepage over time, MDACs can continue 85 

to precipitate and grow into sizeable features up to 10 m high and 250 m in length, as found at the CFZ 86 

in the western Irish Sea (O’Reilly et al., 2014).  87 

 88 

Pockmarks are the most common manifestations of fluid seepage on the seafloor and are formed by 89 

fluids escaping through the seafloor sediments (Hovland and Judd, 1988). Unconsolidated sediments at 90 

the seafloor are lifted and winnowed by the escaping fluids (pore water or gas) forming crater-like 91 

depressions. Their shapes are typically circular to sub-circular, however, asymmetric, elongated and 92 

trough-like pockmarks have also been documented (Judd and Hovland, 2007; Roy et al., 2015). 93 
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Pockmark diameters range from < 5m (unit-pockmarks) to > 1500m (mega-pockmarks) (Hovland et al., 94 

2010; Sun et al., 2011). Pockmarks found in Irish waters vary in size with smaller features typically 2 – 3 95 

m in diameter (unit-pockmarks) and tens of centimetres deep. Relatively larger pockmarks offshore 96 

Ireland are approximately 20 m in diameter and up to 2 m in depth (Croker et al., 2005; Games, 2001; 97 

Szpak et al., 2015, 2012). What is imperative for their formation is a fine-grained, clay to silt, substrate at 98 

the seafloor (Croker et al., 2005).   99 

 100 

Seafloor and sub-seabed evidence for shallow gas and fluid migration in the Irish Sea, specifically the CFZ 101 

and WISMB, has been previously  documented (e.g. Croker et al. (2005)). Geochemical analysis of the 102 

seep and mound locations suggest mixed biogenic and thermogenic signatures (Judd et al., 2019; 103 

O’Reilly et al., 2014). However, factors such as structural and stratigraphic features responsible for the 104 

migration of fluids responsible for a thermogenic signature are still poorly understood. Furthermore, 105 

models applicable to the formation mechanisms of the seep-related seafloor features in the Irish Sea are 106 

lacking. With this in mind, the aims of this study are:  107 

(i) To spatially map and characterise geophysical evidence for shallow gas, fluid migration and 108 

seafloor seepage in the north Irish Sea;  109 

(ii) To establish a geological framework incorporating bedrock geology, hydrocarbon source 110 

rocks, structural geology (faults), Quaternary geology and seafloor morphology in the Irish 111 

Sea which will facilitate further studies into subsurface fluid flow mechanisms; 112 

(iii) To suggest theories of seabed mound and pockmark formation in the WISMB.  113 

 114 

To achieve this, we provide an integrated analysis of shallow high-resolution datasets (sub-bottom 115 

acoustic, multibeam echosounder bathymetry and backscatter data) and deep 2D multichannel seismic 116 

datasets from the north Irish Sea. Inferences are made on the formation mechanisms of seep-related 117 

seabed features which can be used to better predict their distribution elsewhere in the region. Finally, 118 

the implications of shallow gas and fluid-seepage at the seafloor are considered in the context of marine 119 

infrastructure siting and ecological conservation.  120 

BACKGROUND GEOLOGY  121 

 122 

The bedrock geology of the Irish Sea is characterised by a series of rift basins with several kilometres of 123 

Carboniferous, Permian and Triassic sedimentary fill. These basins formed through a series of 124 
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extensional events in the Carboniferous, Permian and Jurassic, punctuated by episodes of uplift during 125 

the Late Carboniferous Variscan Orogeny and more recently the Alpine Orogeny during the Cenozoic. 126 

During the Cenozoic event, the Irish Sea experienced kilometre-scale uplift resulting in the present-day 127 

configuration of erosional outliers, which are remnants of a much larger rift system (Jackson and 128 

Mullholland, 1993). These rift basins include the Kish Bank Basin and Peel Basin, both of which have 129 

been the focus of hydrocarbon exploration during the last fifty years (Fig. 1) (Dunford et al., 2001; 130 

Newman, 1999). Lithologies capable of generating hydrocarbons have been encountered in the 131 

Carboniferous, including the gas-prone Pennine Coal Measures Group and the oil-prone Bowland Shale 132 

Formation (Fig. 2). These source rocks have generated significant quantities of hydrocarbons, with an 133 

estimated 1.8 BBOE (Billion Barrels of Oil Equivalent) discovered in the East Irish Sea Basin (Bunce, 134 

2018). Similar exploration activities took place in the western Irish Sea, primarily in the Kish Bank Basin, 135 

with four wells drilled between 1977 and 1997. While no commercial discoveries were made, the 136 

presence of the Pennine Coal Measures Group was proven in the 33/22-1 well on the southern margin 137 

of the Kish Bank Basin (Thomas, 1978).  138 

   139 

The bedrock in the Irish Sea has largely been blanketed with Quaternary sediments, collectively referred 140 

to as the Brython Glacigenic Group (Fig. 2). Subglacial sediments deposited by the Irish Sea Ice Stream 141 

(ISIS) during the Last Glacial Maximum are referred to as the Upper Till (UT) member (Fig. 2), and 142 

comprise a till containing stiff or hard clay with clasts ranging in size from sand-grade to boulders up to 1 143 

m (Jackson et al., 1995). Overlying the UT are a series of units deposited in a glaciomarine to marine 144 

environment as the ISIS retreated, referred to as the Western Irish Sea Formation (WISMF) (Fig. 2) 145 

(Jackson et al., 1995). Included in this formation, at the base, is the Chaotic Facies (CF). This unit consists 146 

of ice-proximal sediments, dominated by gravels with silts, sands and cobble-grade components 147 

(Coughlan et al., 2019; Jackson et al., 1995). The overlying Prograding Facies (PF) is composed of fine- to 148 

medium-grained sands that are tabular stratified, having been deposited in a marine environment in 149 

front of the retreating Irish Sea Ice Stream (ISIS) (Coughlan et al., 2019; Jackson et al., 1995). The Mud 150 

Facies (MF) is characterised by stratified grey-brown muddy sands with silts and clays and is interpreted 151 

as being deposited in a fully marine environment (Coughlan et al., 2019; Woods et al., 2019). The 152 

organic-rich sediments of the MF have been identified as a potential source of shallow gas (biogenic-153 

origin) in the north Irish Sea in the Western Irish Sea Mud Belt. The anaerobic decomposition of the 154 

organic-rich sediments followed by rapid burial under high sedimentation rates during marine 155 

transgression in the Early Holocene produced biogenic gas in the shallow sediments (Yuan et al., 1992). 156 
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The UT and WISF deposits have been reworked during marine transgression and sea-level rise in the 157 

Holocene forming a complex distribution of sediments and bedforms, collectively referred to as the 158 

Surface Sands Formation (SSF) (Fig. 2) (Jackson et al., 1995; Ward et al., 2015).  159 

DATA AND METHODS 160 

 161 
This study uses a variety of shallow and deep geophysical datasets. The shallow datasets used in this 162 

study include multibeam echosounder (MBES) bathymetry and backscatter data as well as shallow 163 

sparker and pinger seismic data from a variety of surveys (Table 1). They were acquired primarily as part 164 

of the Integrated Mapping for the Sustainable Development of Ireland’s Marine Resource (INFOMAR) 165 

programme, delivered by the Geological Survey of Ireland (GSI) and Marine Institute of Ireland. Data 166 

collected by the Agri-Food and Biosciences Institute (AFBI) in collaboration with GSI and by a Natural 167 

Environment Research Council (NERC) sponsored survey (NE/H02431/1) is accessed for Queenie Corner.  168 

A combination of ArcGIS, IVS Fledermaus, IHS Kingdom and Petrel software were used to analyse and 169 

integrate these datasets for a complete sub-surface to seafloor analysis.  170 

 171 

Multibeam echosounder data 172 

 173 

The high-resolution multibeam datasets were collected with the EM3002D multibeam echosounder 174 

(MBES) onboard the RV Celtic Voyager (dual head) and RV Corystes (single head) acquiring bathymetry 175 

data in the 300 kHz range using dynamically focused beams. The horizontal accuracy (x, y) was usually 176 

less than 50 cm with a vertical accuracy (z) of <15 cm obtained for the processed bathymetry data. Data 177 

processing was performed on board with the CARIS HIPS and SIPS software package to remove 178 

erroneous pings and correcting for tidal and water displacement offsets. The output from the CARIS 179 

HIPS and SIPS software consisted of un-gridded, tidally corrected XYZ data that was subsequently 180 

gridded using QPS Fledermaus v.7 to a 2 m cell resolution. Gridded raster data was then exported to 181 

ArcGIS v10 and Fledermaus v.7.7.6 for 3D visualization and morphological analysis of seafloor features. 182 

Relative backscatter values were obtained from the strength of the return signal during MBES 183 

acquisition. Data were processed using Geocoder in CARIS HIPS and SIPS and exported into ESRI ArcGIS 184 

in gridded formats.  185 

 186 

Sub-bottom acoustic data 187 

 188 
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Seismic sparker data were gathered using a Geo-Source 400 sparker system. The system consisted of a 6 189 

kJ pulsed power supply operating predominantly at a frequency of 0.5 - 2 kHz. The unfiltered return 190 

signal was picked up using a Geo-Sense single channel hydrophone array. A maximum penetration of 50 191 

m below the seabed was achieved with a vertical resolution of up to 30 cm. Seismic sparker data were 192 

incorporated into IHS Kingdom software in SEG-Y format and merged with ASCII navigation data before 193 

being processed and interpreted. A trapezoid bandpass filter was applied (low pass value 0.9 - 1.2 kHz, 194 

high pass value 5 - 6 kHz) and an automatic gain control of 50 and 100 ms. Horizons were picked 195 

manually, and seismic depths were converted from two-way travel time to metres using an acoustic 196 

internal velocity of 1600 m s-1 through shallow marine sediments. Seismic pinger data were collected 197 

from Queenie Corner using a hull-mounted SES 5000 3.5kHz pinger system with a 200 ms duration. Data 198 

were acquired using the CODA system and processed using IHS Kingdom.  199 

 200 

2D multichannel seismic data 201 

 202 

The 2D multichannel reflection seismic data used in this study consisted of a multi-vintage database of 203 

six surveys acquired as part of the hydrocarbon exploration activities in the Irish sea. These seismic 204 

surveys were acquired between 1983 and 1995, comprising over 2,800 kilometres of data, and 205 

processed as per industry standards (Yilmaz, 2001). The majority of the seismic data are centred on the 206 

Kish Bank Basin, with five 2D seismic surveys not extending significantly beyond the bounds of the basin. 207 

Coverage of the remainder of the study area is provided by a single reconnaissance survey acquired by 208 

WesternGeco in 1983, which covers the entirety of the Irish sector of the Irish Sea. Stratigraphic control 209 

is provided by four deep boreholes drilled to test for hydrocarbons in the Kish Bank Basin. Data 210 

associated with these boreholes consists of wireline logs (gamma ray, caliper, neutron-density, sonic, 211 

and resistivity logs), well completion reports, formation tops, and time-depth relationship data in the 212 

form of checkshots. Seismic interpretation of key stratigraphic horizons and seismic to well tie was 213 

carried out in Petrel software.  214 

RESULTS AND INTERPRETATION 215 

 216 

2D multichannel seismic data  217 

 218 
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A 2D multichannel reflection seismic dataset, consisting of several discrete surveys, was used to 219 

investigate the bedrock geology of the region, structural lineaments and gas related features. Six key 220 

horizons were mapped in the vicinity of the Lambay Deep and Kish Bank Basin where formation tops 221 

from four hydrocarbon exploration boreholes provided stratigraphic control: (i) Seabed; (ii) Base-222 

Quaternary; (iii) Base-Cenozoic; (iv) Top Lower Triassic; (v) Top Permian; (vi) Top Basement 223 

(Carboniferous & older) (Fig. 1 and Fig. 3).  224 

 225 

Where the Codling Fault Zone transects the Kish Bank Basin, a number of seismic amplitude anomalies 226 

are observed in the upper Cenozoic section. These seismic amplitudes are locally distributed, including 227 

distinct seabed brightening and widespread reverse-polarity anomalies (Fig. 3). These features are 228 

confined to the Codling Fault Zone and are not observed in other areas of the Kish Bank Basin. They 229 

cause acoustic blanking of the deeper section, either due to absorption or reflection of acoustic energy, 230 

significantly reducing seismic image quality at depth. Absorption of acoustic energy can be caused due 231 

to presence of gas in the upper stratigraphic sediments, whereas reflection could be attributed to the 232 

presence of high-density rocks such as igneous bodies. The latter is unlikely, as igneous bodies have not 233 

been documented in the upper Cenozoic sediments in this part of the Irish Sea.  234 

 235 

There is limited stratigraphic control beyond the Kish Bank Basin, towards the Peel Basin (Fig. 1). Data 236 

quality is poor here, owing to the limited reflectivity within the Palaeozoic section. Therefore, only the 237 

Base-Cenozoic unconformity could be reliably interpreted. A small half-graben was identified in the 238 

north of the study area (i.e. the WISMB; Fig. 1 and Fig. 4) which at present remains undrilled. Owing to 239 

its location along strike from the Peel Basin in the UK sector of the Irish Sea, this minor graben is 240 

interpreted as an erosional outlier, and the stratigraphy is inferred to be Permian and Triassic, similar to 241 

that of the Peel Basin (Floodpage et al., 2001). The bounding faults of this small graben are observed to 242 

offset the Base-Cenozoic surface, indicating relatively recent tectonic activity, and the areal extent of 243 

this graben correlates with the extent of the acoustic turbidity mapped on sub-bottom profiler sections 244 

(Fig. 4).  245 

 246 

Further east within the WISMB, underlying the Queenie Corner area, a 2D reflection seismic line images 247 

folded Carboniferous rocks at depth, overlain by Cenozoic sediments (Fig. 5). Similar to structures 248 

observed in Fig. 3, several minor faults are observed offsetting the Base-Cenozoic Unconformity and 249 

represent relatively recent tectonic activity (Fig. 5).  250 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 251 

Multibeam and Sub-bottom acoustic data 252 

 253 

Codling Fault Zone  254 

 255 
The seabed in the Codling Fault Zone is dynamic with extensive sediment waves (Croker et al., 2005) 256 

(Fig. 6). Also prominent are mounds, which form distinctive bathymetric highs relative to the 257 

surrounding seafloor. Approximately 23 mounds have been described previously by O’Reilly et al. (2014) 258 

and Van Landeghem et al. (2015) and been interpreted as carbonate mounds. This study identified a 259 

further two mounds which exhibit a roughly circular morphology and have an approximate diameter of 260 

60 m (Fig. 6). They protrude 8 and 16 m respectively from the seabed and have a higher backscatter 261 

than the surrounding seafloor. Based on their morphological similarity and proximity with the carbonate 262 

mounds identified Van Landeghem et al. (2015), we infer that these two mounds are probably also 263 

carbonate mounds (MDAC) formed due to prolonged seepage of methane gas from the seafloor. 264 

However, geochemical sampling and ROV image grabs would be required to ground-truth their 265 

association with gas seepage.    266 

 267 

Lambay Deep 268 

 269 
The Lambay Deep itself is a pronounced bathymetric low on the seabed, forming a linear trough-like 270 

feature broadly oriented NW-SE that is approximately 11 km long. The Deep is 135 mbsl at its deepest 271 

point and is generally 50 m deeper than the surrounding seabed (Fig. 7). The northern extent of the 272 

Lambay Deep is bound by an area of exposed bedrock, identified by its rugged seafloor morphology and 273 

high backscatter. At its southern extent, the Deep is bound by a sediment wave field. Located near the 274 

centre of the Deep is a prominent mound forming a bathymetric high with a clear backscatter contrast 275 

to the surrounding seabed (Fig. 7).  276 

 277 

The sparker data acquired over the Lambay Deep cover the area above the mound, where we observe 278 

an acoustically transparent 24 m thick unit, above an enhanced reflection (LD-1, Fig. 8). The western 279 

flank exhibits acoustic turbidity. These acoustic anomalies are possibly attributed to the accumulation of 280 

shallow gas beneath the mound, which was earlier described by Croker et al. (2005) as the Lambay Deep 281 

Mud Diapir (LDMD). To the east of the LDMD, low-amplitude parallel to sub-parallel reflections 282 
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characterise the sedimentary sequence. The acoustic turbidity zone is imaged on a second 283 

representative seismic line across the Deep, and further illustrates an upper acoustic unit displaying an 284 

almost transparent seismic signature with faint, horizontal, parallel laminations overlying an enhanced 285 

reflection in the centre of the deep (LD-2, Fig. 8). The enhanced reflections imaged in both these sparker 286 

lines could be possibly attributed to the sharp acoustic impedance contrast between the underlying gas 287 

charged sediments and the overlying lithology. Hence, the enhanced reflections are interpreted as top 288 

of shallow gas accumulation. The flanks exhibit a more complex stratigraphy with chaotic acoustic units 289 

bounded by moderate to strong internal reflectors. The acoustic turbid zones are possibly caused due to 290 

scattering of acoustic energy by gas which is finely disseminated within impervious clay-rich sediments. 291 

The sedimentary strata on either side of the LDMD exhibit onlapping structures, which is typical at mud 292 

diapir locations (Fig. 8). Onlapping stratigraphy on either side of the LDMD suggest uplifting due to the 293 

structure (Fig. 8). 294 

 295 

Western Irish Sea Mud Belt 296 

 297 
As described earlier, the enhanced reflection is interpreted as the top of the shallow gas accumulation  298 

in the WISMB, which lies between 8 and 18 mbsf and extends across an area of approximately 90 km2 299 

(Fig. 9). The accumulation has an inverted bowl topography with the rims climbing down towards its 300 

edges, and an enhanced reflection marks the top (Fig. 10). The upper layers in the gas-charged zone are 301 

lenticular, and characterized by an acoustically turbid zone, while exhibiting a sharp contrast to the 302 

surrounding sediments (Fig. 10). Sub-bottom acoustic anomalies related to shallow gas accumulation in 303 

this area of the WISMB and details on the shallow seismic stratigraphy have previously been 304 

documented by Coughlan et al. (2019).  305 

 306 

Circular to sub-circular crater like features were identified on bathymetry data, which were interpreted 307 

as pockmarks which are direct indicators of fluid seepage at the seafloor. A total of seventeen 308 

pockmarks (P1-17) were identified using the slope tool in ArcGIS to highlight slope changes along 309 

pockmark walls.  All pockmarks in this study (with the exception of P12) were found in water depths 310 

greater than 40 m (Fig. 9). Information on calculated dimensions and morphology for each pockmark is 311 

presented in the supplementary material (S1). Two separate morphologies were identified: pockmarks 312 

with central mounds within them and pockmarks without any central mounds.  313 

 314 
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P1, P2 and P3 are clustered with a distance of 355 m between P1 and P2 and a further 420 m between 315 

P2 and P3 in a northerly direction. Other pockmarks along this trend are more widely spaced. Pockmarks 316 

P1 to P12 are sub-circular in shape, although P5-P8 are more elongate. The alignments of the long-axis 317 

of the elongate pockmarks are in different orientations suggesting no influence of bottom currents on 318 

the morphological evolution of the pockmarks. Relief relative to the seabed varies between 0.6m (P3) 319 

and 1.6m (P10) with pockmarks becoming generally larger and deeper to the northwest. P12 is a typical 320 

giant irregular pockmark, as documented in the UK North Sea (Cole et al., 2000). It is elliptical in plan-321 

view, and at least 5 times larger than any of the other pockmarks in this group, the short and long axis 322 

being c. 500 m and 1000 m.  323 

 324 

Most pockmarks in this study are between 74 and 153 m wide with P7, P10 and P11 being 171 to 268 m 325 

wide. P4 and the larger P10 and P11 pockmarks contain small mounds at their centre being 0.1 m, 0.2 m 326 

and 0.4 m high respectively (Fig. 11). P14, P15, P16 and P17 are all circular with a depth typically of 0.4 327 

m to 1 m relative to the seabed. P15 also has a mound about 0.1 m in height at its centre. Maximum 328 

diameters vary from 54.5 m to 90 m across with the larger-diameter pockmarks tending to be deeper. 329 

 330 

Queenie Corner 331 

 332 
Analysis of the MBES data from the Queenie Corner MCZ suggests largely the same flat topography as 333 

seen in the WISMB with notable mound structures. The mounds occur in isolation as well as part of a 334 

linear chain, which is approximately 2 km in length (Fig. 12). They exhibit a maximum relief of 1 m 335 

compared to the regular seabed (Fig. 12). Backscatter data from these mounds also indicate higher 336 

reflectance compared to the surrounding sediments (Fig. 12).  337 

 338 

A single Pinger line from the Queenie Corner site revealed acoustic turbidity, indicating shallow gas, at 339 

its western end, coinciding with the mounds observed on MBES data (Fig. 12 and 14). The top of the 340 

acoustic turbidity occurs within 1 m of the seabed with clear evidence for gas chimneys reaching the 341 

seabed rooted from the acoustic turbid zone. The gas chimneys emanating from the acoustic turbid 342 

zone precisely underlie the mounds observed on the MBES data. Further east, we observe a sharp 343 

boundary of the turbidity zone which is interpreted as the gas front (Fig. 13B).  344 

 345 
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DISCUSSION 346 

 347 

Revised geological model with inferences on gas origin and controls on fluid migration  348 

 349 
Structural lineaments (i.e. faults) and the properties of Quaternary sediments in the Irish Sea play a 350 

significant role in fluid migration from deep seated hydrocarbon source rocks to the shallow sub-351 

seafloor stratigraphic layers, and eventually in subsequent seepage at the seafloor. In this section we 352 

discuss an individual, revised geological model for the CFZ and WISMB to elucidate the potential origins 353 

for hydrocarbon fluids in both areas and the pathways that would allow for the migration of such fluids 354 

to the sub-seabed and seafloor. This is not to suggest that there is no biogenic component to any 355 

shallow gas in these areas. The data presented demonstrates that a thermogenic source cannot be 356 

excluded, and it is accepted that mixing of sources can occur.  357 

 358 

Codling Fault Zone (incl. Lambay Deep) 359 

 360 
Gas-prone source rocks have been proven throughout the Irish Sea with the most prolific being the gas-361 

prone Pennine Coal Measures Group and the oil-prone Bowland Shale Formation, both of Carboniferous 362 

age (Pharaoh et al., 2016). Within the study area, the Pennine Coal Measures Group has been proven in 363 

the 33/22-1 borehole on the southern margin of the Kish Bank Basin where 17 metres of coal were 364 

encountered with associated methane gas being detected within these coal horizons (Thomas, 1978). 365 

These coal-bearing horizons are interpreted throughout the Kish Bank Basin and are observed as the 366 

high-amplitude reflectors visible beneath the Base-Permian Unconformity (Fig. 3). Analysis of vitrinite 367 

reflectance data at the 33/22-1 borehole  indicates these gas-prone source rocks have reached the 368 

pressure and temperature conditions to generate gas at present-day, suggesting that these same 369 

horizons at deeper, down-dip positions have generated hydrocarbons (Thomas, 1978). The Bowland 370 

Shale Formation has not been encountered in the 33/22-1 borehole, where the Pennine Coal Measures 371 

Group sits unconformably upon Lower Palaeozoic metasediments, although erosional outliers may be 372 

preserved elsewhere in the study area. 373 

In addition to the presence of gas-prone source rocks, several indicators of an active petroleum system 374 

have been encountered in the vicinity of the Kish Bank Basin, in the form of both liquid and gaseous 375 

hydrocarbons. Both the previously mentioned 33/22-1 borehole and the 33/17-1 borehole on the 376 

eastern margin of the Kish Bank Basin encountered residual oil, the former in Carboniferous sandstones 377 
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and the latter in Triassic sandstones (Charterhouse, 1986; Thomas, 1978). The 33/22-1 borehole 378 

reported tentative oil-staining in Lower Pleistocene sands which may indicate the remigration of liquid 379 

hydrocarbons from within the bedrock to these shallow, unconsolidated sediments. Previous authors 380 

have also presented a proprietary seep dataset which shows the location of present-day oil seeps, with a 381 

strong correlation between the location of seeps and distribution of both large faults and where source-382 

rocks sub-crop at the seabed (e.g. Anderson, 2013; Dunford et al., 2001). 383 

Remigration of hydrocarbons from the bedrock to the shallow seabed can be facilitated by recent 384 

tectonic activity, which creates fluid conduits in the form of faults, which either breach existing 385 

hydrocarbon accumulations at depth or allow hydrocarbons to migrate directly from source rocks to 386 

seabed sediments (Anka et al., 2012; Corcoran and Doré, 2002).  In the study area, the Codling Fault 387 

Zone is the most recent tectonic feature, being a NNW-SSE trending strike-slip fault and offshore 388 

extension of the Newry and Camlough Faults of Northern Ireland (Fig. 1). Kilometre-scale dextral motion 389 

on the fault has been recorded by several previous studies  (e.g. Dunford et al., 2001) with the most 390 

recent research indicating displacement of 8.7 kilometres, incorporating up to 2 kilometres of normal 391 

movement on the basin-bounding fault along the northern margin of the Kish Bank Basin (Anderson, 392 

2013). The timing of this fault activity is poorly constrained due to the attenuated Cenozoic section 393 

preserved in the study area but has been inferred to have a component of both Paleocene and 394 

Oligocene movement (Anderson, 2013; Dunford et al., 2001).  395 

Several observations from 2D multichannel seismic data recorded in this study correlate spatially with 396 

the location of the Codling Fault Zone. Within the confines of the Kish Bank Basin, amplitude brightening 397 

is observed above the fault zone within the Quaternary units, with a sharp western boundary directly 398 

above the trend of one of main fault splays and a more diffuse contact to the east (Fig. 3). Additionally, 399 

reverse polarity anomalies are observed in the Cenozoic section directly above the fault zone. While 400 

none of the available boreholes penetrate these anomalies, correlation with those seismic intervals 401 

along-strike indicate these sediments consist of poorly consolidated sandstones interbedded with thin 402 

layers of mudstone (Charterhouse, 1986; Thomas, 1978).These anomalies may represent local charging 403 

of these sands with re-migrated gaseous hydrocarbons which have migrated up the main fault plane of 404 

the Codling Fault Zone (e.g. Løseth et al., 2009).Other authors have presented proprietary single-405 

channel seismic data from this area which supports this interpretation, such as  reverse-polarity 406 

anomalies and flat spots reported by Dunford et al., (2001). However, these anomalies will remain a 407 

speculative interpretation until ground truthing is done by geochemical sampling.  408 
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Evidence for shallow gas is also observed in Quaternary sediments (i.e. the PF and SSF) from shallow, 409 

sub-bottom acoustic data in the Lambay Deep causing enhanced reflection (Fig. 8). The PF has also been 410 

observed to be gas-bearing in the CFZ (Van Landeghem et al., 2015). Whilst we infer a thermogenic 411 

origin for the gas/fluids in this area, a biogenic component cannot be discounted. Isotope analysis of 412 

MDAC at the CFZ SAC by O’Reilly et al. (2014) suggests possible mixing of biogenic and thermogenic 413 

sourced gas. Based on the present data, it is not possible to estimate the timescales for the migration of 414 

these fluids. The Croker Carbonate Slab SAC is located 12-15 kms NE of the CFZ SAC area (Fig. 1). Judd et 415 

al. (2019) place the formation of MDACs in the Croker Carbonate Slab SAC between 17 ka BP to 5 ka BP, 416 

with evidence for present day gas seepage. The MDAC cements the PF, which is inferred as being 417 

deposited in a glaciomarine environment between approximately 20 ka and 10 ka BP (Judd et al., 2019). 418 

It is also assumed that, prior to the deposition of the PF as the ISIS retreated, gas accumulated beneath 419 

the ice sheet (Judd et al., 2019). Gas accumulations below ice-sheets has also been proposed for other 420 

locations globally during the Devensian (Crémière et al., 2016; Fichler et al., 2005; Portnov et al., 2016). 421 

This spatial correlation of seabed features with the Codling Fault Zone implies that at least a portion of 422 

the fluids responsible for their formation will be bedrock-sourced thermogenic gas, with the Codling 423 

Fault Zone acting as the main conduit for the migration of hydrocarbon fluids to the shallow subsurface.  424 

Western Irish Sea Mud Belt (including Queenie Corner) 425 

Shallow gas accumulations have been observed in the MF in the WISMB, acoustically blanking the layers 426 

below (Coughlan et al., 2019) (Fig. 10). Similar accumulations of shallow gas in the WISMB have 427 

previously been linked with a biogenic origin, given the organic rich nature of the MF sediments (Yuan et 428 

al., 1992). Stable isotope data in Woods et al. (2019) presents evidence for methane seeps in the WISMB 429 

during the Mid Holocene age (post 8.2 ka). Considering the Holocene age of the MF and the estimated 430 

volume of gas present (Supplementary Material; S2), it is difficult to envision a solely biogenic source. 431 

This study has provided credible evidence of shallow gas accumulation directly above a Permo-Triassic 432 

infilled basin with its boundaries defined by the graben-bounding faults (Fig. 3 and Fig. 14). These faults, 433 

which were reactivated during the Cenozoic and are observed offsetting the Base-Cenozoic 434 

Unconformity, would provide pathways for fluid flow from the Carboniferous source rocks below (Fig. 435 

14). The gas is seen to be hosted in the PF, below the base of the MF (Fig. 10). This suggests upward fluid 436 

migration through the underlying CF (glacial outwash sediments) and UT member (subglacial till). Whilst 437 

the UT in the Irish Sea is often over-consolidated, it is highly heterogeneous comprising a range of 438 

sediment classes that would facilitate fluid migration through it (Fig. 14) (Coughlan et al., 2019; Van 439 
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Landeghem et al., 2015). The top of the shallow gas is typically within 10-12 m of the seabed-surface and 440 

has a sharp boundary with the surrounding non-gas bearing sediments (Fig. 10). Pockmarks P14, P15, 441 

P16 and P17 were found to coincide with the lateral extent of underlying shallow gas accumulation, 442 

previously identified by Coughlan et al. (2019) (Fig. 9 and Fig. 15). Episodic or continuous migration of 443 

this shallow gas accumulation to the seafloor would allow for fluid seepage at the seafloor, and the 444 

formation of features such as mounds and pockmarks, which will be discussed in more detail in the next 445 

section. Pockmarks occurring outside this accumulation of shallow gas form a strong, linear trend 446 

coincident with the prognosed extension of the Codling Fault Zone (Fig. 15), implying that fluid migrating 447 

from deeper source rocks along the main fault of CFZ possibly seep out from these pockmarks.        448 

 449 

Formation mechanisms of seep-related seafloor features 450 

 451 

We can classify seep-related seafloor morphological features observed in this study into two different 452 

types: mounds and pockmarks (Fig. 15). Mounds can be further classified into mounds formed from 453 

MDACs and mounds formed due to mud-diapirism. Mounds described here in association with the CFZ 454 

have collectively been described extensively in the literature as carbonate mounds formed from MDACs 455 

(Judd et al., 2019; O’Reilly et al., 2014; Van Landeghem et al., 2015). Alternatively, the mound located 456 

within Lambay Deep was described by Croker et al. (2005) as the Lambay Deep Mud Diapir (LDMD). Judd 457 

and Hovland (2007) defined a mud diapir as a sediment structure that has risen through a sediment 458 

sequence due to upward migrating fluids, piercing or deforming younger sediments. Mud diapirs can be 459 

recognised on seismic profiles as an acoustically amorphous piercement structure, as documented in the 460 

East China Sea (Xing et al., 2016), SW Taiwan (Chen et al., 2014), and the Mediterranean Ridge 461 

(Camerlenghi et al., 1992). In this section we focus on the formation mechanisms of the remaining 462 

seabed features in the WISMB, which are poorly understood in an Irish Sea context.  463 

 464 

The pockmarks identified in this study are concentrated in the western part of the WISMB (Fig. 15). 465 

Within this set of pockmarks (P1-P17) there are two different morphologies: pockmarks with a central 466 

mound and pockmarks without a central mound. All the pockmarks are located in an area of sandy-mud 467 

to muddy-sand according to the British Geological Survey DigSBS250 database (Fig. 15). This 468 

differentiates them from pockmarks previously documented by Yuan et al. (1992), which were located in 469 

areas dominated by mud class sediments and were related to a zone of “acoustically turbid sediments” 470 

(ATZ) (Fig. 15). Yuan et al. (1992) offers no explanation for the mechanism for their formation, although 471 
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Croker et al. (2005) does highlight the requirement of clay- to silt-grade substrate for the formation of 472 

pockmarks. The fluids escaping from these pockmarks could either be biogenic- or thermogenic-sourced 473 

or of mixed origin. We further suggest that pore-water escape from the shallow glacimarine deposits 474 

could have also led to the formation of pockmarks, as suggested in other glacimarine settings 475 

(Harrington, 1985; Roy et al., 2019), however, pore-water escape would not support the formation of 476 

mounds within pockmarks.   477 

 478 

Low-relief seabed mounds are found in Queenie Corner in the eastern part of the WISMB, which is 479 

characterised by sandy-mud seafloor sediments (Fig. 15). Mounds mapped by Croker et al. (2005) occur 480 

in areas of mud and sandy mud (Fig. 15). The near surface sediments in the WISMB are often under-481 

consolidated, and so likely to be highly permeable (Coughlan et al., 2019; Mellet et al., 2015), which is 482 

unsuitable for the mechanism of formation proposed by Croker et al. (2005). In this study, described 483 

mounds and pockmarks are located in distinct areas and separated from each other.  484 

 485 

The distribution of these seep-related seafloor morphological features varies over differing seafloor 486 

sediment types, which indicates differing formation mechanisms. Based on previous studies (Brothers et 487 

al., 2011; Crémière et al., 2018; Hammer et al., 2009; Hovland, 2002; Loher et al., 2018) and 488 

observations made in this study, we discuss two conceptual models for: 489 

(i) The formation of central mounds within pockmarks in muddy sediment areas with a sand-490 

component, and;  491 

(ii) The formation of seabed mounds in muddy sediments, leading to the formation of collapsed 492 

pockmarks. 493 

 494 

The formation of central mounds within pockmarks in sediments with a sand component 495 

 496 
Initially fluid seepage at a relatively flat seafloor facilitates the development of microbial mats and an 497 

initial MDAC crust, which reduces the seepage rate at that location (Fig. 16A; Stage 1). Over time, this 498 

MDAC crust develops further, forming a consolidated seal at the seafloor (Fig. 16A; Stage 2). A 499 

combination of seepage of fluids from, and bottom currents at, the seafloor around the mounds 500 

preferentially erodes the surrounding un-cemented seafloor sediments, partially exposing the MDAC 501 

crust (Fig. 16A; Stage 3). Further seepage of fluids around the perimeter of the carbonate crust along 502 

with reworking and winnowing of sediments finally exposes the mound completely, which resembles a 503 
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mound at the centre of a pockmark (Fig. 16A; Stage 4). This is in agreement with the formation 504 

mechanism of carbonate mounds within pockmarks on a relatively flat seabed whereby a combination 505 

of fluid seepage and bottom currents erode the surrounding un-cemented seafloor sediments, partially 506 

exposing the mound in the centre of the pockmarks as has been suggested by Crémière et al. (2018). 507 

Similar carbonate crusts have been observed within pockmarks in the Harstad Basin in the Barents Sea 508 

(Crémière et al., 2018) and offshore Norway (Hovland et al., 2010), where several satellite pockmarks 509 

surrounding the 'mother pockmark' have been documented with a carbonate mound in the centre.  510 

 511 

The formation of seabed mounds, leading to pockmarks in muddy sediments 512 

 513 
Initially, prolonged seepage of methane gas at the seafloor leads to the formation of thin fragments of 514 

MDAC, followed by cementation of these thin MDAC fragments just beneath the seabed (Fig. 16B; Stage 515 

1). The thin MDAC crust beneath the seabed acts as an impermeable seal at the seabed sediment-water 516 

interface and redirects fluid seepage around the MDAC crust perimeter (Fig. 16B; Stage 2). Gas starts to 517 

accumulate and build up pore-pressure beneath the crust, while also increasing the pore-volume. The 518 

build-up of pore pressure and increase of pore volume within the unconsolidated sediments underlying 519 

the MDAC crust is facilitated by the combined effect of upward fluid migration and sealing capacities of 520 

mud-rich sediments and the MDAC crust. The sealing effect of the MDAC crust, along with the buoyant 521 

force of the upward migrating gas and increase in pore-volume, results in the bulging outward of the 522 

unconsolidated sediments and the MDAC crust (Fig. 16B; Stage 3). At this point, the MDAC crust has 523 

been modified to a carbonate mound due to the outward bulging of the sediments underneath, such as 524 

the mounds at Queenie Corner (Fig. 13). The gradual increase in the buoyant force of the gas further 525 

leads to the formation of fractures within the deformed MDAC mound, to the point when the MDAC 526 

mound ruptures and collapses under its own weight after the underlying pressurised gas has dissipated 527 

(Fig. 16B; Stage 4). The collapsed mound resembles a crater-like depression like a pockmark. A single 528 

grab sample taken from the area of seafloor mounds in the southwestern section of Queenie Corner 529 

revealed cemented muds, with a strong odour, which would suggest hardened substrates caused by 530 

oxidation of methane forming carbonate precipitates (Supplementary Material; S3). However, this 531 

hypothesis assumes that the initial MDAC crust formation is thin enough to be deformed by the increase 532 

in pore pressure and volume due to the upward migrating fluids.  533 
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 534 

Data interpretation and geological model limitations 535 
 536 
The identification, characterisation and assessment of geohazards such as shallow gas, fluid flow and 537 

seepage involves a multidisciplinary approach utilising a range of site investigation techniques 538 

(Cevatoglu et al., 2015; Clare et al., 2017; Vanneste et al., 2014). This study aims to integrate multi-scale 539 

geophysical datasets in order to develop a geological framework to study potential fluid migration 540 

pathways from deeper stratigraphy or source rocks to shallow gas accumulations, and thereafter 541 

seepage at seafloor in the Irish Sea. Characterising and describing shallow gas acoustic features on 542 

shallow seismic data in particular depends on the acquisition system and frequencies used (Tóth et al., 543 

2014). The shallow sub-bottom data used to characterise shallow sub-seabed features were gathered as 544 

part of regional surveys, without the express intention of studying shallow gas and fluid flow. The 545 

systems used to gather shallow sub-bottom  data (i.e. sparker and pinger) transmit a signal within a 546 

frequency range of 0.5 – 4 kHz, which can be attenuated through scattering by fluid bubbles in gas 547 

charged sediments, the result of which is acoustic turbidity and  blanking (Tóth et al., 2014). Both these 548 

phenomena are recognised in this study (Fig. 10) and are common at depth in such areas of mud to 549 

sandy mud on single-channel datasets (e.g. Laier and Jensen, 2007). As a result, only the top of the gas 550 

front is identified on shallow sub-bottom data, and there is ambiguity with regards to the depth of 551 

shallow gas and details of the underlying geology. However, low-frequency 2D-multichannel seismic 552 

provides information on underlying bedrock geology and tectonics. Ultimately, some studies show 553 

amplitude versus offset (AVO) analysis on 2D-multichannel seismic data to further affirm the presence 554 

of gas in the sediments (e.g. Kim et al., 2020) 555 

 556 

At the seafloor, geomorphological features synonymous with fluid migration and seepage can be 557 

mapped using multibeam echosounder (e.g. Roelofse et al., 2020). In this study pockmarks have been 558 

identified, characterised and discussed within the context of fluid migration and seepage. However, 559 

there is a current lack of geochemical data from these pockmarks to ascertain the nature of fluids 560 

seeping from them. Analysis of cores taken in the vicinity of the pockmarks in the WISMB and the LDMD 561 

discussed here proved inconclusive in terms of determining the composition of sub-surface fluids due to 562 

a lack of depth penetration (O’Reilly, S. pers. Comms.). As this study has identified several areas within 563 

the northern Irish Sea where there is compelling evidence for the presence of gas in the shallow 564 

subsurface, we anticipate future research cruises will acquire sediment and pore-water samples to 565 

confirm the nature of origin or fluids seeping from these locations.  566 
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 567 

Implications of shallow gas and fluid seepage 568 

  569 

The presence of gas accumulations in shallow sub-surface sediments can have engineering implications 570 

for the construction of offshore infrastructure and is considered a geohazard within the hydrocarbon 571 

and maritime industry (Evans, 2011; Hovland et al., 2002; Sun et al., 2017) as well as for renewable 572 

energy developments (Society for Underwater Technology, 2005). When gas occurs in solution in the 573 

pore-water, or free gas-filled voids between sediment grains, it can affect the compressibility of the 574 

sediment and negatively influence the engineering properties (Sills and Wheeler, 1992; Sultan et al., 575 

2012). Where fluid seeps to the seafloor, it can impact the ground-conditions by: (i) forming a hard 576 

surface (i.e. MDAC), which may be difficult to pile or penetrate, or; (ii) causing changes in seabed 577 

bathymetry (e.g. doming or pockmarks), which would create seabed instability. Hence, it is vital to do a 578 

marine baseline study of an area of interest before installation of submarine engineering structures. This 579 

study, inter alia, has mapped a widespread occurrence of shallow gas throughout the north Irish Sea as 580 

well as included previous studies in the area, which overlies a variety of geological and tectonic settings 581 

(Fig. 1 and 15). More research is required to better understand the migration of fluids along proposed 582 

fault-routes, their sealing versus leaking capabilities, and the true nature and timing of the seeping 583 

fluids. At the very least, it is possible to anticipate where certain shallow gas and fluid escape structures 584 

may be encountered based on regional geology and mitigating site investigation techniques planned 585 

accordingly.   586 

 587 

Studies have shown that MDAC harbours different benthic communities to surrounding sediments in the 588 

Irish Sea: whether this is due to the formation of complex three-dimensional reef-like structures in 589 

otherwise fairly homogeneous sedimentary habitats, thereby allowing colonisation by taxa common on 590 

hard rocky substrates, or due to the unique characteristics of MDAC which are as yet unclear (Judd et al., 591 

2019; Noble‐James et al., 2020). Pockmarks have been shown to harbour exclusive fauna in the North 592 

Sea (Webb et al., 2009), characterised by species with endosymbiotic sulphur-oxidising bacteria, as well 593 

as the structures providing shelter for specific fish species (Dando, 2001). (Dando, 2010) reviewed 62 594 

shallow-water hydrothermal vent and cold seep sites and found that obligate species are rare at such 595 

sites, however higher species diversity was often found in the immediate vicinity of seeps often due to 596 

the heterogeneity of the bathymetry, compared with surrounding more homogeneous areas.  As yet, 597 

the pockmarks and seabed doming in this study have not had targeted biological sampling, but at 598 
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Queenie Corner cemented sediment was retrieved by Day-grab from one seabed dome area with faunal 599 

excavation of the cemented sediment by bivalves and gastropods (Supplementary Material; S3). 600 

Whether the fauna in such structures is unique compared to surrounding sedimentary areas would 601 

require further investigation; however, substrata-boring fauna could be viewed as a functionally 602 

significant component of the local ecosystem (Noble‐James et al., 2020).  An understanding of this, 603 

coupled with accurate mapping of the extent and potential ecological connectivity of such features 604 

throughout the Irish Sea, is required to underpin effective management of these habitats.   605 

 606 

CONCLUSIONS AND FUTURE WORK 607 

High-resolution geophysical datasets from the Irish Sea reveal sub-seabed shallow gas accumulations in 608 

Quaternary sediments and a range of seafloor expressions of fluid seepage. Based on the integrated 609 

geophysical investigation of seafloor geomorphologies, shallow sub-surface sediments and deeper 610 

geological and tectonic features, this study generated a geological framework from which the following 611 

can be made summarised. 612 

In both the Codling Fault Zone and Western Irish Sea Mud Belt, there is compelling evidence linking 613 

shallow gas accumulation within Quaternary sediments with major structural lineaments (i.e. faults) in 614 

the bedrock geology. These faults can act as pathways for hydrocarbon fluids to migrate from deeply 615 

seated source rocks to shallow stratigraphic layers. This supports earlier geochemical studies which 616 

found a thermogenic component to the shallow gas and seafloor seepage features in both these areas.  617 

In the Western Irish Sea Mud Belt, both pockmarks and seabed mounds were recorded in areas of mud 618 

with a varying sand component. Pockmarks display two morphologies consisting of regular, circular 619 

types and pockmarks with a central mound, typically less than 0.5 m in relief. Pockmark centres often 620 

exhibit high backscatter reflectance values suggesting some degree of sediment consolidation due to the 621 

formation of MDAC. Mounds are typically 1 m in height above the regular seabed and are associated 622 

with gas chimneys rooted to an underlying shallow gas accumulation. These mounds, and surrounding 623 

seabed, exhibit high back backscatter reflectance values, again, suggesting the formation of MDAC. This 624 

is supported by a grab sample from a mound containing cemented, MDAC-like material.  625 
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We propose two mechanisms for the formation of pockmarks; one in muddy seafloor settings with a 626 

sand component, which accounted for the formation of a central mound, and one for the formation of 627 

thin MDAC mounds as pre-cursors to pockmarks in muddy seafloor settings.  628 

Based on our findings, we make the following concluding statements and recommendations for future 629 

work: 630 

● The revised geological models for the Codling Fault Zone and Western Irish Sea Mud Belt allow 631 

for a better understanding of the role of existing and re-activated faults as a potential pathway 632 

for fluid (e.g. gas) migration from kilometre-scale depth to the shallow sub-seabed. In future, 633 

this will help quantify the contribution of thermogenic-sourced gas to ongoing shallow sub-634 

seabed gas accumulation and seafloor seepage in these areas. Geochemical analysis of targeted 635 

seabed seepage and shallow gas accumulation locations from the Western Irish Sea Mud Belt is 636 

required to constrain the origin of shallow gas definitively and is a proposed area of further 637 

work.  638 

● To validate the model linking the creation of MDAC to pockmark formation, repeat survey data 639 

over the mounds at Queenie Corner is required to record their evolution over time.  640 

● The presence of shallow gas accumulations in the Western Irish Sea Mud Belt, along with gas 641 

chimneys and mounds, suggests that fluid seepage at the seafloor is an on-going process. This 642 

has significant implications for seabed infrastructure development and seabed ecological and 643 

conservation efforts.  Based on the results of this study and models presented, our 644 

understanding of the geological controls on fluid migration and seafloor seepage is greatly 645 

improved, making it increasingly possible to predict the extent of shallow gas and location of 646 

certain gas seepage structures in the Irish Sea. Future data collection surveys (e.g. INFOMAR) 647 

will further improve this understanding.  648 

● To better constrain gas content and extent of gas front in areas of acoustic blanking, we 649 

recommend the acquisition of multichannel seismic data and the application of AVO analysis. 650 

● Ground-truthing and further geotechnical analysis of Quaternary sediments is required to better 651 

understand how fluids migrate through, and are hosted in, these sediments. 652 
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● Biological data available from the Western Irish Sea Mud Belt pockmarks and mounds are 653 

limited in determining the range of biodiversity at these sites at present. Epibenthic surveys 654 

consisting of drop-frame or towed camera platforms or ship-based grab sampling are typically 655 

unable to spatially target and sample chemoautotrophic communities, so it is recommended 656 

that ROV techniques are used for such purposes. 657 
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 898 

Figure Captions 899 

Figure 1 Overview of the location of study areas (A-D) within the Irish Sea along with 2D reflection 900 

seismic lines and borehole locations referred to in the text superimposed on previously mapped areas of 901 

sub-cropping Carboniferous rocks, Mesozoic sedimentary basins (both accessed from EMODNet) and 902 

structural lineaments (Anderson, 2013; Anderson et al., 2016). Also included are Special Areas of 903 

Conservation (SAC) and Marine Conservation Zones (MCZ) related to gas features and the extent of the 904 

Western Irish Sea Mud Belt. Please note that the Carboniferous potential source rock is present in the 905 

Permian-Triassic basins. 906 

 907 

Figure 2 (A) Simplified lithostratigraphic column of the bedrock geology of the Western Irish Sea. (B) 908 

Simplified lithostratigraphic column of the Quaternary section discussed in this study. 909 

 910 

Figure 3 2D multichannel seismic line E95IE18-03 and accompanying geoseismic interpretation. Image 911 

quality degrades significantly within the Codling Fault Zone due to a combination of structural 912 

complexity and shallow gas-related features. Inset: Several shallow gas related features are identified 913 

within the Codling Fault Zone, including seabed brightening with a sharp boundary above a major, near-914 
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seabed splay of the Codling Fault Zone, and reverse polarity anomalies with associated seismic blanking 915 

and signal dispersion.   916 

 917 

Figure 4 2D multichannel seismic line IS-12 and accompanying geoseismic interpretation. The graben fill 918 

is predicted to be of Permian-Triassic sediment, similar to the stratigraphy of the along-strike Peel Basin. 919 

The faults bounding the graben are observed to offset the Base-Cenozoic Unconformity, indicating 920 

recent tectonic activity and representing possible fluid-migration pathways.  921 

 922 

Figure 5 2D multichannel seismic line JSM92-30 and accompany geoseismic interpretation. Several 923 

minor faults are observed offsetting the Base-Cenozoic Unconformity in the Queenie Corner area.  924 

 925 

Figure 6 Seabed mounds observed at the southern part of the study area (within the Codling Fault Zone) 926 

are interpreted as carbonate mounds which form as a result of prolonged seepage at the seafloor. 927 

Sediment waves are predominant in this region of the study area. A and B highlight the mound 928 

structures in close up (note different water depth scales for better visualization of the mounds). High 929 

backscatter is evident at these two locations. Refer to Fig. 1 for location.  930 

 931 

Figure 7 (A) High-resolution bathymetric data illustrating seafloor morphology at Lambay Deep, along 932 

with (B) vertical profile across the 1 km wide depression. (C) Zoom-in of the bathymetric high which is 933 

characterized by high-backscatter (D). Refer to Fig. 1 for location.  934 

 935 

Figure 8 Lambay Deep as imaged by sparker seismic data with interpreted units. Highlighted is the 936 

mound referred to as the Lambay Deep Mud Diapir (LDMD) and acoustic evidence for shallow gas 937 

(acoustic turbidity and enhanced reflections). ‘M’ denotes seabed multiple. Unit names are referenced 938 

from Figure 2. Yellow line is the top of UT (Upper Till member), blue line is top of PF (Prograded Facies), 939 

SSF is Surface Sands Formation. Red line denotes the edge of the LDMD. Dashed black line is the top of 940 

the shallow gas. 941 

 942 

Figure 9 Depth to the top of the gas accumulation (interpreted on a grid of 2D sparker seismic lines 943 

shown in Fig. 1 of Coughlan et al., (2019), identified in the Western Irish Sea Mud Belt superimposed on 944 

water depth from MBES data. Highlighted are the pockmarks described in Supplementary Material, the 945 

location of seismic lines presented in Fig. 10 and the pockmarks presented in detail in Fig. 11.  946 
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 947 

Figure 10 Sparker seismic lines highlighted in Fig. 9 from the WISMB with interpreted units. Also 948 

presented is evidence for shallow gas accumulation (enhanced reflection, acoustic turbidity, acoustic 949 

blanking). ‘M’ denotes seabed multiple. Unit names are referenced from Figure 2. Full black line 950 

indicates the top of bedrock. Yellow line is the top of UT (Upper Till member), green line is the top of CF 951 

(Chaotic Facies), blue line is top of PF (Prograded Facies). Dashed black line denotes the gas front. 952 

 953 

Figure 11 High-resolution bathymetric data illustrating (A) a central mound within pockmark P15, and 954 

(B) morphology of a circular pockmark P13 without a central mound along with their vertical profiles. (C) 955 

Central mounds within pockmarks P10 and P11, which are separated by approximately 1 km. Refer to 956 

Fig. 9 for locations.   957 

 958 

Figure 12 High-resolution multibeam bathymetric data (top) and backscatter data (bottom) of the 959 

Queenie Corner area seafloor. Refer to Fig. 1 for location. A closer illustration of the seabed mound 960 

structures of various sizes and shapes (sub-circular to elongated) have been shown along with their 961 

vertical profiles.  962 

 963 

Figure 13 Pinger profile highlighted in Fig. 12 from Queenie Corner illustrates acoustic evidence for 964 

shallow gas in the form of gas chimneys (a) and acoustic blanking (b). Seabed mounds are observed at 965 

the top of gas chimneys (a).   966 

 967 

Figure 14 Conceptual model proposed for fluid migration from deeper thermogenic source rocks via 968 

recently reactivated fault conduits to shallow gas-charged Quaternary sediments in the Western Irish 969 

Sea Mud Belt. Subsequently, some of the gas migrates upwards to the seafloor, leading to the formation 970 

of pockmarks (due to fluid seepage) and seabed mounds (due to increase of pressure and volume within 971 

sediment pores). 972 

 973 

Figure 15 Overview map of shallow gas accumulations and fluid seepage features identified in this study 974 

along with similar features identified from other referenced studies. This information is superimposed 975 

on the British Geological Survey DigSBS250 database, which maps seabed sediment distribution. 976 

according to the Folk Classification, in the Irish Sea at a scale of 1:250,000. Some pockmarks from this 977 

study are seen to form above a mapped shallow gas accumulation with mud-dominated sediments, 978 
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generally pockmarks (this study) are concentrated in areas with a sandier component. Seabed mound 979 

features in this study were found in areas where the seabed sediment is mud-dominated.  980 

 981 

Figure 16 Conceptual models proposed for (A) the formation of mounds at the centre of pockmarks in 982 

sand-rich sediments and (B) seabed mounds in mud-rich sediments as a precursors to collapsed 983 

pockmarks, , adapted from previous studies (Hovland, 2002; Crémière et al. 2018; Loher et al. 2018). 984 

 985 

Table Captions 986 

Table 1 List of surveys from which data were used in this study. 987 
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ABSTRACT 15 

 16 

Shallow gas accumulation in unconsolidated Quaternary sediments, and associated seepage at the 17 

seafloor, is widespread in the north Irish Sea. This study integrates high-resolution seafloor bathymetry 18 

and sub-surface geophysical data to investigate shallow gas accumulations and possible fluid (gas and/or 19 

liquids) migration pathways to the seafloor in the northern part of the Irish Sea. Shallow gas occurs 20 

broadly in two geological settings: the Codling Fault Zone and the Western Irish Sea Mud Belt. The gas 21 

has been recognised to accumulate in both sandy and muddy Quaternary marine near-surface 22 

sediments and is characterised by three characteristic sub-bottom acoustic features: i) enhanced 23 

reflections, ii) acoustic turbid zones, and iii) acoustic blanking.  The seepage of shallow gas at the 24 

seafloor has resulted in the formation of morphological features including methane-derived authigenic 25 

carbonates, seabed mounds and pockmarks.  In many instances, the evidence for this gas as biogenic or 26 

thermogenic in origin is inconclusive. Two distinct types of pockmarks are recorded in the Western Irish 27 

Mud Belt: pockmarks with a relatively flat centre, and pockmarks with a central mound. Based on our 28 

observation and existing models, we infer that the formation of a thin carbonate crust at the seabed 29 

surface, which collapses over time, is needed as a precursor for the creation of such mounds within 30 
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pockmarks.. The formation processes are interpreted to be different for sandy versus muddy sediments, 31 

due to variability in erodibility and sealing capacities of the substrate. We suggest that the origin of 32 

these features is linked to the presence of a deeper potential hydrocarbon source rocks with existing 33 

and reactivated faults forming fluid migration pathways to the surface. This in turn could indicate a 34 

mixed thermogenic-biogenic origin for seep-related locations associated structures in the study area. 35 

These features have significant implications for the future development of offshore infrastructure 36 

including marine renewable energy as well as for seabed ecology and conservation efforts in the Irish 37 

Sea.   38 

 39 

Keywords: pockmark, seabed mounds, fluid seepage, MDAC, mud diapir, geohazards, ecological 40 

conservation, offshore infrastructure 41 

INTRODUCTION 42 

The accumulation ofShallow gas in shallow, unconsolidated marine sediments is aa global 43 

phenomenonglobally widespread (Andreassen et al., 2007; Dondurur et al., 2011; Ergün et al., 2002; 44 

Hovland and Judd, 1992; Karisiddaiah and Veerayya, 1994; Mazumdar et al., 2009). It represents an 45 

important tool for frontier exploration of hydrocarbon exploration, while also posingreservoirs, as well 46 

as being a significant geohazard, affecting sediment engineering properties (Andreassen et al., 2007; 47 

Hovland et al., 2002; Sills and Wheeler, 1992). The impacts of shallow gas and seepage on seabed 48 

ecology has also gained importance over the recent years (Jordan et al., 2019; Kiel, 2010; Rathburn et 49 

al., 2000). To date in the Irish Sea (Fig. 1), a number of areas associated with shallow gas and fluid 50 

seepage have been designated as Special Areas of Conservation (SAC) due to the unique habitats they 51 

form as “Submarine structures made by leaking gases”, according to the Annex I / II of the E.U. Habitats 52 

Directive (National Parks and Wildlife, 2015). These can form two described habitat types: Bubbling 53 

Reefs and Structures within Pockmarks. In the Irish Sea, the SAC areas are predominantly related to 54 

Methane-Derived Authigenic Carbonates (MDAC) and are known locally as the Codling Fault Zone (CFZ) 55 

SAC and Croker Carbonate Slabs (CCS) SAC (Fig. 1). Further north, Queenie Corner is an offshore site 56 

within the Western Irish Sea Mud Belt (WISMB) that was designated as a UK Marine Conservation Zone 57 

(MCZ) in 2019 for its subtidal mud habitat and sea-pen and burrowing megafauna communities 58 

(Clements and Service, 2016).   59 

 60 
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Shallow gas in unconsolidated marine sediments can have a biogenic or thermogenic origin. Bulk 61 

isotopic analysis on samples from the CFZ by O’Reilly et al. (2014) indicate a biogenic origin of the 62 

seeping gas, with some possible thermogenic contribution from underlying Carboniferous coal deposits. 63 

Methanogenesis of organic-rich Quaternary sediments has been proposed as a source for shallow gas in 64 

Bantry Bay (Jordan et al., 2019) and Dunmanus Bay (Szpak et al., 2015) elsewhere in Irish waters. 65 

Evidence for shallow gas accumulations and seepage in the Irish Sea has been detected from geophysical 66 

observations on seismic lines as gas chimneys, enhanced reflectors and acoustic turbidity (e.g. Judd and 67 

Hovland (1992)). Where fluids (e.g. methane gas) emanate from the seabed, morphological features 68 

such as mounds and pockmarks have formed in the Western Irish Sea (Croker et al., 2005).   69 

 70 

Mounds are elevated bathymetrictopographic seafloor features which can either form due to upward 71 

migrating fluids exerting pressure on overlying relatively impermeable layers or precipitation of 72 

carbonates due to prolonged methane gas seepage. Owing to their different formation mechanism, they 73 

are known as seabed domes, mud diapirs, and carbonate mounds, all of which have been found in the 74 

Irish Sea (Croker et al., 2005). Hovland and Curzi (1989) documented seabed domes and mud diapirs in 75 

the Adriatic Sea offshore Italy, where gas bubbles concentrating in plastic clay caused local density 76 

reversals, resulting in the upward buoyant flow of the clay and deformation of overlying unlithified 77 

layers, thus forming elevated bathymetrictopographical features at the seafloor and associated gas 78 

seepages. Such seabed domes and mud diapirs have also been found offshore India (Ramprasad et al., 79 

2011), in Norwegian Arctic fjords (Roy et al., 2014), and offshore New Zealand (Koch et al., 2015). Croker 80 

et al. (2005) previously mapped mounds (referred to as “seabed doming”) in the WISMB, and suggested 81 

that they may have formed due to the replacement of water in the pore space with gas causing an 82 

increase in sediment volume in the upper sediment layers. For this to occur, fine-grained, relatively 83 

impermeable sediments are required. Croker et al. (2005) also suggested that seabed doming might be 84 

an initial stage of pockmark formation. Mounds can also form when prolonged methane gas seepage at 85 

the seabed chemically interacts with surrounding minerals to form a carbonate precipitate cement 86 

(MDAC), binding the sediment matrix and forming hard, resistive rocksrock-like substances (Judd et al., 87 

2019). With continued seepage over time, MDACs can continue to precipitate and grow into sizeable 88 

features up to 10 m high and 250 m in length, as found at the CFZ in the western Irish Sea (O’Reilly et al., 89 

2014).  90 

 91 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Pockmarks are the most common manifestations of fluid seepage on the seafloor and are formed by 92 

fluids escaping through the seafloor sediments (Hovland and Judd, 1988). Unconsolidated sediments at 93 

the seafloor are lifted and winnowed by the escaping fluids (pore water or gas) forming crater-like 94 

depressions. Their shapes are typically circular to sub-circular, however, asymmetric, elongated and 95 

trough-like pockmarks have also been documented (Judd and Hovland, 2007; Roy et al., 2015). 96 

Pockmark diameters range from < 5m (unit-pockmarks) to > 1500m (mega-pockmarks) (Hovland et al., 97 

2010; Sun et al., 2011). Pockmarks found in Irish waters vary in size with smaller features typically 2 – 3 98 

m in diameter (unit-pockmarks) and tens of centimetres deep. Relatively larger pockmarks offshore 99 

Ireland are approximately 20 m in diameter and up to 2 m in depth (Croker et al., 2005; Games, 2001; 100 

Szpak et al., 2015, 2012). What is imperative for their formation is a fine-grained, clay to silt, substrate at 101 

the seafloor (Croker et al., 2005).   102 

 103 

Seafloor and sub-seabed evidence for shallow gas and fluid migrationseepage in the Irish Sea, 104 

specifically the CFZ and WISMB, has been previously  documented (e.g. Croker et al. (2005)). 105 

Geochemical analysis of the seep and mound locations suggest mixed biogenic and thermogenic 106 

signatures (Judd et al., 2019; O’Reilly et al., 2014). However, factors such as structural and stratigraphic 107 

features responsible for the migration of fluids responsible for a thermogenic signature are still poorly 108 

understood. Furthermore, models applicable to the formation mechanisms of the seep-related seafloor 109 

features in the Irish Sea are lacking. With this in mind, the aimsThe aim of this study areis therefore two-110 

fold:  111 

(i) To spatially map and characterise geophysical evidence for shallow gas, fluid migration and 112 

seafloor seepage in the north Irish Sea;  113 

(ii) To establish a geological framework incorporating bedrock geology, hydrocarbon source 114 

rocks, structural geology (faults), Quaternary geology and seafloor morphology in the Irish 115 

Sea which will facilitate further studies into subsurface fluid flow mechanisms; 116 

To(i)  to provide a revised geological model to investigate the potential sources of thermogenic gas in 117 

the north Irish Sea (namely the CFZ and WISMB), as well as the direct fluid pathways and stratigraphic 118 

controls that allow it to migrate to shallow sub-seabed accumulations and form seep-related seafloor 119 

features, and; 120 

(iii) (ii) to suggest theories of seabed mound and pockmark formation in the WISMB.  121 
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To achieve this, we provide an integrated analysis of shallow high-resolution datasets (sub-bottom 123 

acoustic, multibeam echosounder bathymetry and backscatter data) and deep 2D multichannel seismic 124 

datasets from the north Irish Sea. Inferences are made on the formation mechanisms of seep-related 125 

seabed features which can be used to better predict their likely distribution elsewhere in the region. 126 

Finally, the implications of shallow gas and fluid-seepage at the seafloor are considered in the context of 127 

marine infrastructure siting and ecological conservation.  128 

BACKGROUND GEOLOGY  129 

 130 

The bedrock geology of the Irish Sea is characterised by a series of rift basins with several kilometres of 131 

Carboniferous, Permian and Triassic sedimentary fill. These basins formed through a series of 132 

extensional events in the Carboniferous, Permian and Jurassic, punctuated by episodes of uplift during 133 

the Late Carboniferous Variscan Orogeny and more recently the Alpine Orogeny during the Cenozoic. 134 

During the Cenozoic event, the Irish Sea experienced kilometre-scale uplift resulting in the present-day 135 

configuration of erosional outliers, which are remnants of a much larger rift system (Jackson and 136 

Mullholland, 1993). These rift basins include the Kish Bank Basin and Peel Basin, both of which have 137 

been the focus of hydrocarbon exploration during the last fifty years (Fig. 1) (Dunford et al., 2001; 138 

Newman, 1999). Lithologies capable of generating hydrocarbons have been encountered in the 139 

Carboniferous, including the gas-prone Pennine Coal Measures Group and the oil-prone Bowland Shale 140 

Formation (Fig. 2). These source rocks have generated significant quantities of hydrocarbons, with an 141 

estimated 1.8 BBOE (Billion Barrels of Oil Equivalent) discovered in the East Irish Sea Basin (Bunce, 142 

2018). Similar exploration activities took place in the western Irish Sea, primarily in the Kish Bank Basin, 143 

with four wells drilled between 1977 and 1997. While no commercial discoveries were made, the 144 

presence of the Pennine Coal Measures Group was proven in the 33/22-1 well on the southern margin 145 

of the Kish Bank Basin (Thomas, 1978).  146 

   147 

The bedrock in the Irish Sea has largely been blanketed with Quaternary sediments, collectively referred 148 

to as the Brython Glacigenic Group (Fig. 2). Subglacial sediments were deposited by the Irish Sea Ice 149 

Stream (ISIS) during the Last Glacial Maximum are referred to as the Upper Till (UT) member (Fig. 2), and 150 

comprise a till containing stiff or hard clay with clasts ranging in size from sand-grade to boulders up to 1 151 

m (Jackson et al., 1995). Overlying the UT are a series of units deposited in a glaciomarine to marine 152 

environment as the ISIS retreated, referred to as the Western Irish Sea Formation (WISMF) (Fig. 2) 153 
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(Jackson et al., 1995). Included in this formation, at the base, is the Chaotic Facies (CF). This unit consists 154 

of ice-proximal sediments, dominated by gravels with silts, sands and cobble-grade components 155 

(Coughlan et al., 2019; Jackson et al., 1995). The overlying Prograding Facies (PF) is described as being 156 

composed of fine- to medium-grained sands that are tabular stratified, having been deposited in a 157 

marine environment in front of the retreating Irish Sea Ice Stream (ISIS) (Coughlan et al., 2019; Jackson 158 

et al., 1995). The Mud Facies (MF) is characterised by stratified grey-brown muddy sands with silts and 159 

clays and is interpreted as being deposited in a fully marine environment (Coughlan et al., 2019; Woods 160 

et al., 2019). The organic-rich sediments of the MF have been identifiedsuggested as a potentialthe 161 

source of shallow gas (biogenic-origin) in the north Irish Sea in the Western Irish Sea Mud Belt. The 162 

anaerobic decomposition of the organic-rich sediments followed by rapid burial under high 163 

sedimentation rates during marine transgression in the Early Holocene produced biogenic gas in the 164 

shallow sediments (Yuan et al., 1992). The UT and WISF deposits have been reworked during marine 165 

transgression and sea-level rise in the Holocene forming a complex distribution of sediments and 166 

bedforms, collectively referred to as the Surface Sands Formation (SSF) (Fig. 2) (Jackson et al., 1995; 167 

Ward et al., 2015)(Jackson et al., 1995; Ward et al., 2015).  168 

DATA AND METHODS 169 

 170 
This study uses a variety of shallow and deep geophysical datasets. The shallow datasets used in this 171 

study include multibeam echosounder (MBES) bathymetry and backscatter data as well as shallow 172 

sparker and pinger seismic data from a variety of surveys (Table 1). They were acquired primarily as part 173 

of the Integrated Mapping for the Sustainable Development of Ireland’s Marine Resource (INFOMAR) 174 

programme, delivered by the Geological Survey of Ireland (GSI) and Marine Institute of Ireland. Data 175 

collected by the Agri-Food and Biosciences Institute (AFBI) in collaboration with GSI and by a Natural 176 

Environment Research Council (NERC) sponsored survey (NE/H02431/1) is accessed for Queenie Corner.  177 

A combination of ArcGIS, IVS Fledermaus, IHS Kingdom and Petrel software were used to analyse and 178 

integrate these datasets for a complete sub-surface to seafloor analysis.  179 

 180 

Multibeam echosounder data 181 

 182 

The high-resolution multibeam datasets were collected with the EM3002D multibeam echosounder 183 

(MBES) onboard the RV Celtic Voyager (dual head) and RV Corystes (single head) acquiring bathymetry 184 

data in the 300 kHz range using dynamically focused beams. The horizontal accuracy (x, y) was usually 185 
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less than 50 cm with a vertical accuracy (z) of <15 cm obtained for the processed bathymetry data. Data 186 

processing was performed on board with the CARIS HIPS and SIPS software package to remove 187 

erroneous pings and correcting for tidal and water displacement offsets. The output from the CARIS 188 

HIPS and SIPS software consisted of un-gridded, tidally corrected XYZ data that was subsequently 189 

gridded using QPS Fledermaus v.7 to a 2 m cell resolution. Gridded raster data was then exported to 190 

ArcGIS v10 and Fledermaus v.7.7.6 for 3D visualization and morphological analysis of seafloor features. 191 

Relative backscatter values were obtained from the strength of the return signal during MBES 192 

acquisition. Data were processed using Geocoder in CARIS HIPS and SIPS and exported into ESRI ArcGIS 193 

in gridded formats.  194 

 195 

Sub-bottom acoustic data 196 

 197 

Seismic sparker data were gathered using a Geo-Source 400 sparker system. The system consisted of a 6 198 

kJ pulsed power supply operating predominantly at a frequency of 0.5 - 2 kHz. predominantly. The 199 

unfiltered return signal was picked up usingin a Geo-Sense single channel hydrophone array. A 200 

maximum penetration of 50 m below the seabed was achieved with a vertical resolution of up to 30 cm. 201 

Seismic sparker data were incorporated into IHS Kingdom software in SEG-Y format and merged with 202 

ASCII navigation data before being processed and interpreted. A trapezoid bandpass filter was applied 203 

(low pass value 0.9 - 1.2 kHz, high pass value 5 - 6 kHz) and an automatic gain control of 50 and 100 ms. 204 

Horizons were picked manually, and seismic depths were converted from two-way travel time to metres 205 

using an acoustic internal velocity of 1600 m s-1 through shallow marine sediments. Seismic pinger data 206 

were collected from Queenie Corner using a hull-mounted SES 5000 3.5kHz pinger system with a 200 ms 207 

duration. Data were acquired using the CODA system and processed using IHS Kingdom.  208 

 209 

2D multichannel seismic data 210 

 211 

The 2D multichannel reflection seismic data used in this study consisted of a multi-vintage database of 212 

six surveys acquired as part of the hydrocarbon exploration activities in the Irish sea. These seismic 213 

surveys were acquired between 1983 and 1995, comprising over 2,800 kilometres of data, and 214 

processed as per industry standards (Yilmaz, 2001).. The majority of the seismic data are centred on the 215 

Kish Bank Basin, with five 2D seismic surveys not extending significantly beyond the bounds of the basin. 216 

Coverage of the remainder of the study area is provided by a single reconnaissance survey acquired by 217 
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WesternGeco in 1983, which covers the entirety of the Irish sector of the Irish Sea. Stratigraphic control 218 

is provided by four deep boreholes drilled to test for hydrocarbons in the Kish Bank Basin. Data 219 

associated with these boreholes consists of wireline logs (gamma ray, caliper, neutron-density, sonic, 220 

and resistivity logs), well completion reports, formation tops, and time-depth relationship data in the 221 

form of checkshots. Seismic interpretation of key stratigraphic horizons and seismic to well tie was 222 

carried out in Petrel software.  223 

RESULTS AND INTERPRETATION 224 

 225 

2D multichannel seismic data  226 

 227 

A 2D multichannel reflection seismic dataset, consisting of several discrete surveys, was used to 228 

investigate the bedrock geology of the region, structural lineaments and gas related features. Six key 229 

horizons were mapped in the vicinity of the Lambay Deep and Kish Bank Basin where formation tops 230 

from four hydrocarbon exploration boreholes provided stratigraphic control: (i) Seabed; (ii) Base-231 

Quaternary; (iii) Base-Cenozoic; (iv) Top Lower Triassic; (v) Top Permian; (vi) Top Basement 232 

(Carboniferous & older) (Fig. 1 and Fig. 3).  233 

 234 

Where the Codling Fault Zone transects the Kish Bank Basin, a number of seismic amplitude anomalies 235 

are observed in the upper Cenozoic section. These seismic amplitudes are locally distributed, 236 

includingThese include distinct seabed brightening, and widespread reverse-polarity anomalies (Fig. 3). 237 

These features are confined to the Codling Fault Zone and are not observed in other areas of the Kish 238 

Bank Basin. TheyThese shallow features cause acoustic blanking of the deeper section, either due to 239 

absorption or reflection of acoustic energy, significantly reducing seismic image quality at depth. 240 

Absorption of acoustic energy can be caused due to presence of gas in the upper stratigraphic 241 

sediments, whereas reflection could be attributed to the presence of high-density rocks such as igneous 242 

bodies. The latter is unlikely, as igneous bodies have not been documented in the upper Cenozoic 243 

sediments in this part of the Irish Sea. These features are confined to the Codling Fault Zone and are not 244 

observed in other areas of the Kish Bank Basin. 245 

 246 

There is limited stratigraphic control beyond the Kish Bank Basin, towards the Peel Basin (Fig. 1). Data 247 

quality is pooralso poorer here, owing to the limited reflectivity within the Palaeozoic section. 248 
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Therefore, only the Base-Cenozoic unconformity could be reliably interpreted. A small half-graben was 249 

identified in the north of the study area (i.e. the WISMB; Fig. 1 and Fig. 4) which at present remains 250 

undrilled. Owing to its location along strike from the Peel Basin in the UK sector of the Irish Sea, this 251 

minor graben is interpreted as an erosional outlier, and the stratigraphy is inferred to be Permian and 252 

Triassic, similar to that of the Peel Basin (Floodpage et al., 2001). The bounding faults of this small 253 

graben are observed to offset the Base-Cenozoic surface, indicating relatively recent tectonic activity, 254 

and the areal extent of this graben correlates with the extent of the acoustic turbidity mapped on sub-255 

bottom profiler sections (Fig. 4).  256 

 257 

Further east within the WISMB, underlying the Queenie Corner area, a 2D reflection seismic line images 258 

folded Carboniferous rocks at depth, overlain by Cenozoic sediments (Fig. 5). Similar to structures 259 

observed in Fig. 3, several minor faults are observed offsetting the Base-Cenozoic Unconformity and 260 

represent relatively recent tectonic activity (Fig. 5).  261 

 262 

Multibeam and Sub-bottom acoustic data 263 

 264 

Codling Fault Zone  265 

 266 
The seabed in the Codling Fault Zone is dynamic with extensive sediment waves (Croker et al., 2005) 267 

(Fig. 6). Also prominent are mounds, which form distinctive bathymetric highs relative to the 268 

surrounding seafloor. Approximately 23 mounds have been described previously by O’Reilly et al. (2014) 269 

and Van Landeghem et al. (2015) and been interpreted as carbonate mounds. This study identified a 270 

further two mounds which exhibit a roughly circular morphology and have an approximatea diameter of 271 

60 m approximately (Fig. 6). They protrude 8 and 16 m respectively from the seabed and have a higher 272 

backscatter than the surrounding seafloor. Based on their morphological similarity and proximity with 273 

the carbonate mounds identified Van Landeghem et al. (2015), we infer that these two mounds are 274 

probably also carbonate mounds (MDAC) formed due to prolonged seepage of methane gas from the 275 

seafloor. However, geochemical sampling and ROV image grabs would be required to ground-truth their 276 

association with gas seepage.      277 

 278 

Lambay Deep 279 

 280 
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The Lambay Deep itself is a pronounced bathymetric low on the seabed, forming a linear trough-like 281 

feature broadly oriented NW-SE that is approximately 11 km long., aligned along NW-SE direction. The 282 

Deep is 135 mbsl at its deepest point and is generally 50 m deeperlower than the surrounding seabed 283 

(Fig. 7). The northern extent of the Lambay Deep is bound by an area of exposed bedrock, identified by 284 

its rugged seafloor morphology and high backscatter. At its southern extent, the Deep is bound by a 285 

sediment wave field. Located near the centre of the Deep is a prominent mound forming a bathymetric 286 

high with a clear backscatter contrast to the surrounding seabed (Fig. 7).  287 

 288 

The sparker data acquired over the Lambay Deep cover the area above the mound, where we observe 289 

an acoustically transparent unit with a thickness of about 24 m thick unit, above an enhanced reflection 290 

(LD-1, Fig. 8). The western flank exhibits acoustic turbidity. These acoustic anomalies are possibly 291 

attributed to the accumulation of shallow gas beneath the mound, which was earlier described by 292 

Croker et al. (2005) as the Lambay Deep Mud Diapir (LDMD). To the east of the LDMD, low-amplitude 293 

parallel to sub-parallel reflections characterise the sedimentary sequence. The acoustic turbidity zone is 294 

imaged on aA second representative seismic line across the Deep, and further illustrates an upper 295 

acoustic unit displaying an almost transparent seismic signature with faint, horizontal, parallel 296 

laminations overlying an enhanced reflection in the centre of the deep (LD-2, Fig. 8). The enhanced 297 

reflections imaged in both these sparker linesreflection could be possibly attributed to the sharp 298 

acoustic impedance contrast between the underlying gas charged sediments and the overlying lithology. 299 

Hence, the enhanced reflections are interpreted as top of shallow gas accumulation. The flanks exhibit a 300 

more complex stratigraphy with chaotic acoustic units bounded by moderate to strong internal 301 

reflectors. The acoustic turbid zones are possibly caused due to scattering of acoustic energy by gas 302 

which is finely disseminated within impervious clay-rich sediments. The sedimentary strata on either 303 

side of the LDMD exhibit onlapping structures, which is typical at mud diapir locations (Fig. 8). Onlapping 304 

stratigraphy on either side of the LDMD suggest uplifting due to the structure (Fig. 8). 305 

 306 

Western Irish Sea Mud Belt 307 

 308 
As described earlier, the enhanced reflection is interpreted as the The top of the shallow gas 309 

accumulation zone in the WISMB, which lies between 8 and 18 mbsf and extends across an area of 310 

approximately 90 km2 (Fig. 9). The accumulation has an inverted bowl topography with the rims climbing 311 

down towards its edges, and an enhanced reflection marks the top (Fig. 10). The upper layers in the gas-312 
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charged zone are lenticular, and characterized by an acoustically turbid zone, while exhibiting a sharp 313 

contrast to the surrounding sediments (Fig. 10). Sub-bottom acoustic anomalies related to shallow gas 314 

accumulation in this area of the WISMB and details on the shallow seismic stratigraphy have previously 315 

been documented by Coughlan et al. (2019).  316 

 317 

Circular to sub-circular crater like features were identified on bathymetry data, which were interpreted 318 

as pockmarks which are direct indicators of fluid seepage at the seafloor. A total of seventeen 319 

pockmarks (P1-17) were identified using the slope tool in ArcGIS to highlight slope changes along 320 

pockmark walls.  All pockmarks in this study (with the exception of P12) were found in water depths 321 

greater than 40 m (Fig. 9). Information on calculated dimensions and morphology for each pockmark is 322 

presented in the supplementary material (S1). Two separate morphologies were identified: pockmarks 323 

with central mounds within them and pockmarks without any central mounds.  324 

 325 

P1, P2 and P3 are clustered with a distance of 355 m between P1 and P2 and a further 420 m between 326 

P2 and P3 in a northerly direction. Other pockmarks along this trend are more widely spaced. Pockmarks 327 

P1 to P12 are sub-circular in shape, although P5-P8 are more elongateelongated. The alignments of the 328 

long-axis of the elongate pockmarks are in different orientations suggesting no influence of bottom 329 

currents on the morphological evolution of the pockmarks. Relief relative to the seabed varies between 330 

0.6m (P3) and 1.6m (P10) with pockmarks becoming generally larger and deeper to the northwest. P12 331 

is a typical giant irregular pockmark, as documented in the UK North Sea (Cole et al., 2000). It is elliptical 332 

in plan-view, and at least 5 times larger than any of the other pockmarks in this group, the short and 333 

long axis being c. 500 m and 1000 m (Fig. 11A). Backscatter data for P12 display higher reflectance 334 

values than the surrounding sediments (Fig. 11B). Higher reflectance could either be due to coarser 335 

sediments or due to carbonate precipitates near the seabed owing to prolonged seepage. We infer the 336 

later to be a more likely explanation to the high backscatter values from the centre of this giant irregular 337 

pockmark P12.  338 

 339 

Most pockmarks in this study are between 74 and 153 m wide with P7, P10 and P11 being 171 to 268 m 340 

wide. P4 and the larger P10 and P11 pockmarks contain small mounds at their centre being 0.1 m, 0.2 m 341 

and 0.4 m high respectively (Fig. 1112). P14, P15, P16 and P17 are all circular with a depth typically of 342 

0.4 m to 1 m relative to the seabed. P15 also has a mound about 0.1 m in height at its centre. Maximum 343 

diameters vary from 54.5 m to 90 m across with the larger-diameter pockmarks tending to be deeper. 344 
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 345 

Queenie Corner 346 

 347 
Analysis of the MBES data from the Queenie Corner MCZ suggests largely the same flat topography as 348 

seen in the WISMB with notable mound structures. The mounds occur in isolation as well as part of a 349 

linear chain, which is approximately 2 km in length (Fig. 1213). They exhibit a maximum relief of 1 m 350 

compared to the regular seabed (Fig. 1213). Backscatter data from these mounds also indicate higher 351 

reflectance compared to the surrounding sediments (Fig. 1213).  352 

 353 

A single Pinger line from the Queenie Corner site revealed acoustic turbidity, indicating shallow gas, at 354 

its western end, coinciding with the mounds observed on MBES data (Fig. 1213 and 14). The top of the 355 

acoustic turbidity occurs within 1 m of the seabed with clear evidence for gas chimneys reaching the 356 

seabed rooted from the acoustic turbid zone. The gas chimneys emanating from the acoustic turbid 357 

zone precisely underlie the mounds observed on the MBES data. Further east, we observe a sharp 358 

boundary of the turbidity zone which is interpreted as the gas front (Fig. 13B14B).  359 

 360 

DISCUSSION 361 

 362 

Revised geological model with inferences on gas origin and controls on fluid migration  363 

 364 
Structural lineaments (i.e. faults) and the properties of Quaternary sediments in the Irish Sea play a 365 

significant role in fluid migration from deep seated hydrocarbon source rocks to the shallow sub-366 

seafloor stratigraphic layers, and eventually in subsequent seepage at the seafloor. In this section we 367 

discuss an individual, revised geological model for the CFZ and WISMB to elucidate the potential origins 368 

for hydrocarbon fluidsthermogenic gas in both areas, and the pathways and controls that would allow 369 

for the migration of such fluids to the sub-seabed and seafloor. This is not to suggest that there is no 370 

biogenic component to any shallowthe gas in these areas. The data presented demonstrates that a 371 

thermogenic source cannot be excluded, and it is accepted that mixing of sources can occur.  372 

 373 

Codling Fault Zone (incl. Lambay Deep) 374 

 375 
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Gas-prone source rocks have been proven throughout the Irish Sea with the most prolific being the gas-376 

prone Pennine Coal Measures Group and the oil-prone Bowland Shale Formation, both of Carboniferous 377 

age (Pharaoh et al., 2016). Within the study area, the Pennine Coal Measures Group has been proven in 378 

the 33/22-1 borehole on the southern margin of the Kish Bank Basin where 17 metres of coal were 379 

encountered with associated methane gas being detected within these coal horizons (Thomas, 1978). 380 

These coal-bearing horizons are interpreted throughout the Kish Bank Basin and are observed as the 381 

high-amplitude reflectors visible beneath the Base-Permian Unconformity (Fig. 3). Analysis of vitrinite 382 

reflectance data at the 33/22-1 borehole  indicates these gas-prone source rocks have reached the 383 

pressure and temperature conditions to generate gas at present-day, suggesting that these same 384 

horizons at deeper, down-dip positions have generated hydrocarbons (Thomas, 1978). The Bowland 385 

Shale Formation has not been encountered in the 33/22-1 borehole, where the Pennine Coal Measures 386 

Group sits unconformably upon Lower Palaeozoic metasediments, although erosional outliers may be 387 

preserved elsewhere in the study area. 388 

In addition to the presence of gas-prone source rocks, several indicators of an active petroleum system 389 

have been encountered in the vicinity of the Kish Bank Basin, in the form of both liquid and gaseous 390 

hydrocarbons. Both the previously mentioned 33/22-1 borehole and the 33/17-1 borehole on the 391 

eastern margin of the Kish Bank Basin encountered residual oil, the former in Carboniferous sandstones 392 

and the latter in Triassic sandstones (Charterhouse, 1986; Thomas, 1978). The 33/22-1 borehole 393 

reported tentative oil-staining in Lower Pleistocene sands which may indicate the remigration of liquid 394 

hydrocarbons from within the bedrock to these shallow, unconsolidated sediments. Previous authors 395 

have also presented a proprietary seep dataset which shows the location of present-day oil seeps, with a 396 

strong correlation between the location of seeps and distribution of both large faults and where source-397 

rocks sub-crop at the seabed (e.g. Anderson, 2013; Dunford et al., 2001). 398 

Remigration of hydrocarbons from the bedrock to the shallow seabed can be facilitated by recent 399 

tectonic activity, which creates fluid conduits in the form of faults, which either breach existing 400 

hydrocarbon accumulations at depth or allow hydrocarbons to migrate directly from source rocks to 401 

seabed sediments (Anka et al., 2012; Corcoran and Doré, 2002).  In the study area, the Codling Fault 402 

Zone is the most recent tectonic feature, being a NNW-SSE trending strike-slip fault and offshore 403 

extension of the Newry and Camlough Faults of Northern Ireland (Fig. 1). Kilometre-scale dextral motion 404 

on the fault has been recorded by several previous studies  (e.g. Dunford et al., 2001) with the most 405 

recent research indicating displacement of 8.7 kilometres, incorporating up to 2 kilometres of normal 406 
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movement on the basin-bounding fault along the northern margin of the Kish Bank Basin (Anderson, 407 

2013). The timing of this fault activity is poorly constrained due to the attenuated Cenozoic section 408 

preserved in the study area but has been inferred to have a component of both Paleocene and 409 

Oligocene movement (Anderson, 2013; Dunford et al., 2001).  410 

Several observations from 2D multichannel seismic data recorded in this study correlate spatially with 411 

the location of the Codling Fault Zone. Within the confines of the Kish Bank Basin, amplitude brightening 412 

is observed above the fault zone within the Quaternary units, with a sharp western boundary directly 413 

above the trend of one of main fault splays and a more diffuse contact to the east (Fig. 3). Additionally, 414 

reverse polarity anomalies are observed in the Cenozoic section directly above the fault zone. While 415 

none of the available boreholes penetrate these anomalies, correlation with those seismic intervals 416 

along-strike indicate these sediments consist of poorly consolidated sandstones interbedded with thin 417 

layers of mudstone (Charterhouse, 1986; Thomas, 1978).Theseand these anomalies may represent local 418 

charging of these sands with re-migrated gaseous hydrocarbons which have migrated up the main fault 419 

plane of the Codling Fault Zone (e.g.(e.g. Løseth et al., 2009).Other authors have presented proprietary 420 

single-channel seismic data from this area which supports this interpretation, such as  reverse-polarity 421 

anomalies and flat spots reported by Dunford et al., (2001). However, these anomalies will remain a 422 

speculative interpretation until ground truthing is done by geochemical sampling.  423 

Evidence for shallow gas is also observed in Quaternary sediments (i.e. the PF and SSF) from shallow, 424 

sub-bottom acoustic data in the Lambay Deep causing enhanced reflection (Fig. 8). The PF has also been 425 

observed to be gas-bearing in the CFZ (Van Landeghem et al., 2015). Whilst we infer a thermogenic 426 

origin for the gas/fluids in this area, a biogenic component cannot be discounted. Isotope analysis of 427 

MDAC at the CFZ SAC by O’Reilly et al. (2014) suggests possible mixing of biogenic and thermogenic 428 

sourced gas. Based on the present data, it is not possible to estimate the timescales for the migration of 429 

these fluids. The Croker Carbonate Slab SAC is located 12-15 kms NE of the CFZ SAC area (Fig. 1). Judd et 430 

al. (2019) place the formation of MDACs in the Croker Carbonate Slab SAC at between 17 ka BP to 5 ka 431 

BP, with evidence for present day gas seepage. The MDAC cements the PF, which is inferred as being 432 

deposited in a glaciomarine environment between approximately 20 ka and 10 ka BP (Judd et al., 2019). 433 

It is also assumed that, prior to the deposition of the PF as the ISIS retreated, gas accumulated beneath 434 

the ice sheet (Judd et al., 2019). Gas accumulations below ice-sheets has also been proposed for other 435 

locations globally during the Devensian (Crémière et al., 2016; Fichler et al., 2005; Portnov et al., 2016). 436 

This spatial correlation of seabed features with the Codling Fault Zone implies that at least a portion of 437 
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the fluids responsible for their formation will be bedrock-sourced thermogenic gas, with the Codling 438 

Fault Zone acting as the main conduit for the migration of hydrocarbon fluids to the shallow subsurface.  439 

Western Irish Sea Mud Belt (including Queenie Corner) 440 

Shallow gas accumulations have been observed in the MF in the WISMB, acoustically blanking the layers 441 

below (Coughlan et al., 2019) (Fig. 10). Similar accumulations of shallow gas in the WISMB have 442 

previously been linked with a biogenic origin, given the organic rich nature of the MF sediments (Yuan et 443 

al., 1992). Stable isotope data in Woods et al. (2019) presents evidence for methane seeps in the WISMB 444 

during the Mid Holocene age (post 8.2 ka). Considering the Holocene age of the MF and the estimated 445 

volume of gas present (Supplementary Material; S2), it is difficult to envision a solely biogenic source. 446 

This study has provided credibleclear evidence of shallow gas accumulation directly above a Permo-447 

Triassic infilled basin with its boundaries defined by the graben-bounding faults (Fig. 3 and Fig. 1415). 448 

These faults, which were reactivated during the Cenozoic and are observed offsetting the Base-Cenozoic 449 

Unconformity, would provide pathways for fluid flow from the Carboniferous source rocks below (Fig. 450 

1415). The gas is seen to be hosted in the PF, below the base of the MF (Fig. 10). This suggests upward 451 

fluid migration through the underlying CF (glacial outwash sediments) and UT member (subglacial till). 452 

Whilst the UT in the Irish Sea is often over-consolidated, it is highly heterogeneous comprising a range of 453 

sediment classes that would facilitate fluid migration through it (Fig. 1415) (Coughlan et al., 2019; Van 454 

Landeghem et al., 2015). The top of the shallow gas is typically within 10-12 m of the seabed-surface and 455 

has a sharp boundary with the surrounding non-gas bearing sediments (Fig. 10). Pockmarks P14, P15, 456 

P16 and P17 were found to coincide with the lateral extent of underlying shallow gas accumulation, 457 

previously identified by Coughlan et al. (2019) (Fig. 9 and Fig. 1516). Episodic or continuous migration of 458 

this shallow gas accumulation to the seafloor would allow for fluid seepage at the seafloor, and the 459 

formation of features such as mounds and pockmarks, which will be discussed in more detail in the next 460 

section. Pockmarks occurring outside this accumulation of shallow gas form a strong, linear trend 461 

coincident with the prognosed extension of the Codling Fault Zone (Fig. 15), implying that fluid migrating 462 

from deeper source rocks along the main fault of CFZ possibly seep out from these pockmarks.16).        463 

 464 

Formation mechanisms of seep-related seafloor features 465 

 466 

We can classify seep-related seafloor morphological features observed in this study into two different 467 

types: mounds and pockmarks (Fig. 1516). Mounds can be further classified into mounds formed from 468 
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MDACs and mounds formed due to mud-diapirism. Mounds described here in association withfrom the 469 

CFZ have collectively been described extensively in the literature as carbonate mounds formed from 470 

MDACs (Judd et al., 2019; O’Reilly et al., 2014; Van Landeghem et al., 2015). Alternatively, the mound 471 

located within Lambay Deep was described by Croker et al. (2005) as the Lambay Deep Mud Diapir 472 

(LDMD). Judd and Hovland (2007) defined a mud diapir as a sediment structure that has risen through a 473 

sediment sequence due to upward migrating fluids, piercing or deforming younger sediments. Mud 474 

diapirs can be recognised on seismic profiles as an acoustically amorphous piercement structure, as 475 

documented in the East China Sea (Xing et al., 2016), SW Taiwan (Chen et al., 2014), and the 476 

Mediterranean Ridge (Camerlenghi et al., 1992). In this section we focus on the formation mechanisms 477 

of the remaining seabed features in the WISMB, which are poorly understood in an Irish Sea context.  478 

 479 

The pockmarks identified in this study are concentrated in the western part of the WISMB (Fig. 1516). 480 

Within this set of pockmarks (P1-P17) there are two different morphologies: pockmarks with a central 481 

mound and pockmarks without a central mound. All the pockmarks are located in an area of sandy-mud 482 

to muddy-sand according to the British Geological Survey DigSBS250 database (Fig. 1516). This 483 

differentiates them from pockmarks previously documented by Yuan et al. (1992), which were located in 484 

areas dominated by mud class sediments and were related to a zone of “acoustically turbid sediments” 485 

(ATZ) (Fig. 1516). Yuan et al. (1992) offers no explanation for the mechanism for their formation, 486 

although Croker et al. (2005) does highlight the requirement of clay- to silt-grade substrate for the 487 

formation of pockmarks. The fluids escaping from these pockmarks could either be biogenic- or 488 

thermogenic-sourced or of mixed origin. We further suggest that pore-water escape from the shallow 489 

glacimarine deposits could have also led to the formation of pockmarks, as suggested in other 490 

glacimarine settings (Harrington, 1985; Roy et al., 2019), however, pore-water escape would not support 491 

the formation of mounds within pockmarks.   492 

 493 

Low-relief seabed mounds are found in Queenie Corner in the eastern part of the WISMB, which is 494 

characterised by sandy-mud seafloor sediments (Fig. 1516). Mounds mapped by Croker et al. (2005) 495 

occur in areas of mud and sandy mud (Fig. 1516). The near surface sediments in the WISMB are often 496 

under-consolidated, and so likely to be highly permeable (Coughlan et al., 2019; Mellet et al., 2015), 497 

which is unsuitable for the mechanism of formation proposed by Croker et al. (2005). In this study, 498 

described mounds and pockmarks are located in distinct areas and separated from each other.  499 

 500 
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The distribution of these seep-related seafloor morphological features varies over differing seafloor 501 

sediment types, which indicatestherefore, requires differing formation mechanisms. Based on previous 502 

studies (Brothers et al., 2011; Crémière et al., 2018; Hammer et al., 2009; Hovland, 2002; Loher et al., 503 

2018) and observations made in this study, we discuss two conceptual models for: 504 

(i) The(i) the formation of central mounds within pockmarks in muddy sediment areas with a sand-505 

component, and;  506 

(ii) The(ii) the formation of seabed mounds in muddy sediments, leading to the formation of 507 

collapsed pockmarks. 508 

 509 

The formation of central mounds within pockmarks in sediments with a sand component 510 

 511 
Initially fluid seepage at a relatively flat seafloor facilitates the development of microbial mats and an 512 

initial MDAC crust, which reduces the seepage rate at thatthe location (Fig. 16A 17A; Stage 1). Over 513 

time, this MDAC crust develops further, forming a consolidated seal at the seafloor (Fig. 16A 17A; Stage 514 

2). A combination of seepage of fluids from, and bottom currents at, the seafloor around the mounds 515 

preferentially erodes the surrounding un-cemented seafloor sediments, partially exposing the MDAC 516 

crust (Fig. 16A 17A; Stage 3). Further seepage of fluids around the perimeter of the carbonate crust 517 

along with reworking and winnowing of sediments finally exposes the mound completely, which 518 

resembles a mound at the centre of a pockmark (Fig. 16A 17A; Stage 4). This is in agreement with the 519 

formation mechanism of carbonate mounds within pockmarks on a relatively flat seabed whereby a 520 

combination of fluid seepage and bottom currents erode the surrounding un-cemented seafloor 521 

sediments, partially exposing the mound in the centre of the pockmarks as has been suggested by 522 

Crémière et al. (2018). Similar carbonate crusts have been observed within pockmarks in the Harstad 523 

Basin in the Barents Sea (Crémière et al., 2018) and offshore Norway (Hovland et al., 2010), where 524 

several satellite pockmarks surrounding the 'mother pockmark' have been documented with a 525 

carbonate mound in the centre.  526 

 527 

The formation of seabed mounds, leading to pockmarks in muddy sediments 528 

 529 
Initially, prolonged seepage of methane gas at the seafloor leads to the formation of thin fragments of 530 

MDAC, followed by cementation of these thin MDAC fragments just beneath the seabed (Fig. 16B 17B; 531 

Stage 1). The thin MDAC crust beneath the seabed acts as an impermeable seal at the seabed sediment-532 
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water interface and redirectsdiverges fluid seepage around the MDAC crust perimeter (Fig. 16B 17B; 533 

Stage 2). Gas starts to accumulate and build up pore-pressure beneath the crust, while also increasing 534 

theas well as leads to increase in pore-volume. The build-up of pore pressure and increase of pore 535 

volume within the unconsolidated sediments underlying the MDAC crust is facilitated by the combined 536 

effect of upward fluid migration and sealing capacities of mud-rich sediments and the MDAC crust. The 537 

sealing effect of the MDAC crust, along with the buoyant force of the upward migrating gas and increase 538 

in pore-volume, results in the bulging outward of the unconsolidated sediments and the MDAC crust 539 

(Fig. 16B 17B; Stage 3). At this point, the MDAC crust has been modified to a carbonate mound due to 540 

the outward bulging of the sediments underneath, such as the mounds at Queenie Corner (Fig. 1314). 541 

The gradual increase in the buoyant force of the gas further leads to the formation of fractures within 542 

the deformed MDAC mound, to the point when the MDAC mound ruptures and collapses under its own 543 

weight after the underlying pressurised gas has dissipated (Fig. 16B 17B; Stage 4). The collapsed mound 544 

resembles a crater-like depression like a pockmark. A single grab sample taken from the area of seafloor 545 

mounds in the southwestern section of Queenie Corner revealed cemented muds, with a strong odour, 546 

which would suggest hardened substrates caused by oxidation of methane forming carbonate 547 

precipitates (Supplementary Material; S3). However, this hypothesis assumes that the initial MDAC crust 548 

formation is thin enough to be deformed by the increase in pore pressure and volume due to the 549 

upward migrating fluids.  550 

 551 

Data interpretation and geological model limitations 552 
 553 
The identification, characterisation and assessment of geohazards such as shallow gas, fluid flow and 554 

seepage involves a multidisciplinary approach utilising a range of site investigation techniques 555 

(Cevatoglu et al., 2015; Clare et al., 2017; Vanneste et al., 2014). This study aims to integrate multi-scale 556 

geophysical datasets in order to develop a geological framework to study potential fluid migration 557 

pathways from deeper stratigraphy or source rocks to shallow gas accumulations, and thereafter 558 

seepage at seafloor in the Irish Sea. Characterising and describing shallow gas acoustic features on 559 

shallow seismic data in particular depends on the acquisition system and frequencies used (Tóth et al., 560 

2014). The shallow sub-bottom data used to characterise shallow sub-seabed features were gathered as 561 

part of regional surveys, without the express intention of studying shallow gas and fluid flow. The 562 

systems used to gather shallow sub-bottom  data (i.e. sparker and pinger) transmit a signal within a 563 

frequency range of 0.5 – 4 kHz, which can be attenuated through scattering by fluid bubbles in gas 564 
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charged sediments, the result of which is acoustic turbidity and  blanking (Tóth et al., 2014). Both these 565 

phenomena are recognised in this study (Fig. 10) and are common at depth in such areas of mud to 566 

sandy mud on single-channel datasets (e.g. Laier and Jensen, 2007). As a result, only the top of the gas 567 

front is identified on shallow sub-bottom data, and there is ambiguity with regards to the depth of 568 

shallow gas and details of the underlying geology. However, low-frequency 2D-multichannel seismic 569 

provides information on underlying bedrock geology and tectonics. Ultimately, some studies show 570 

amplitude versus offset (AVO) analysis on 2D-multichannel seismic data to further affirm the presence 571 

of gas in the sediments (e.g. Kim et al., 2020) 572 

 573 

At the seafloor, geomorphological features synonymous with fluid migration and seepage can be 574 

mapped using multibeam echosounder (e.g. Roelofse et al., 2020). In this study pockmarks have been 575 

identified, characterised and discussed within the context of fluid migration and seepage. However, 576 

there is a current lack of geochemical data from these pockmarks to ascertain the nature of fluids 577 

seeping from them. Analysis of cores taken in the vicinity of the pockmarks in the WISMB and the LDMD 578 

discussed here proved inconclusive in terms of determining the composition of sub-surface fluids due to 579 

a lack of depth penetration (O’Reilly, S. pers. Comms.). As this study has identified several areas within 580 

the northern Irish Sea where there is compelling evidence for the presence of gas in the shallow 581 

subsurface, we anticipate future research cruises will acquire sediment and pore-water samples to 582 

confirm the nature of origin or fluids seeping from these locations.  583 

 584 

Implications of shallow gas and fluid seepage 585 

  586 

The presence of gas accumulations in shallow sub-surface sediments can have engineering implications 587 

for the construction of offshore infrastructure and is considered a geohazard within the hydrocarbon 588 

and maritime industry (Evans, 2011; Hovland et al., 2002; Sun et al., 2017) as well as for renewable 589 

energy developments (Society for Underwater Technology, 2005). When gas occurs in solution in the 590 

pore-water, or free gas-filled voids between sediment grains, it can affect the compressibility of the 591 

sediment and negatively influence the engineering properties (Sills and Wheeler, 1992; Sultan et al., 592 

2012). Where fluid seeps to the seafloor, it can impact the ground-conditions by: (i) forming a hard 593 

surface (i.e. MDAC), which may be difficult to pile or penetrate, or; (ii) causing changes in seabed 594 

bathymetrytopography (e.g. doming or pockmarks), which would create seabed instability. Hence, it is 595 

vital to do a marine baseline study of an area of interest before installation of submarine engineering 596 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

structures. This study, inter alia, has mapped a widespread occurrence of shallow gas throughout the 597 

north Irish Sea as well as included previous studies in the area, which overlies a variety of geological and 598 

tectonic settings (Fig. 1 and 1516). More research is required to better understand the migration of 599 

fluids along proposed fault-routes, their sealing versus leaking capabilities, and the true nature and 600 

timing of the seeping fluids. At the very least, it is possible to anticipate where certain shallow gas and 601 

fluid escape structures may be encountered based on regional geology and mitigating site investigation 602 

techniques planned accordingly.   603 

 604 

Studies have shown that MDAC harbours different benthic communities to surrounding sediments in the 605 

Irish Sea: whether this is due to the formation of complex three-dimensional reef-like structures in 606 

otherwise fairly homogeneous sedimentary habitats, thereby allowing colonisation by taxa common on 607 

hard rocky substrates, or due to the unique characteristics of MDAC which are as yet unclear (Judd et al., 608 

2019; Noble‐James et al., 2020). Pockmarks have been shown to harbour exclusive fauna in the North 609 

Sea (Webb et al., 2009), characterised by species with endosymbiotic sulphur-oxidising bacteria, as well 610 

as the structures providing shelter for specific fish species (Dando, 2001). (Dando, 2010) reviewed 62 611 

shallow-water hydrothermal vent and cold seep sites and found that obligate species are rare at such 612 

sites, however higher species diversity was often found in the immediate vicinity of seeps often due to 613 

the heterogeneity of the bathymetrytopography, compared with surrounding more homogeneous 614 

areas.  As yet, the pockmarks and seabed doming in this study have not had targeted biological 615 

sampling, but at Queenie Corner cemented sediment was retrieved by Day-grab from one seabed dome 616 

area with faunal excavation of the cemented sediment by bivalves and gastropods (Supplementary 617 

Material; S3). Whether the fauna in such structures is unique compared to surrounding sedimentary 618 

areas would require further investigation; however, substrata-boring fauna could be viewed as a 619 

functionally significant component of the local ecosystem (Noble‐James et al., 2020).  An understanding 620 

of this, coupled with accurate mapping of the extent and potential ecological connectivity of such 621 

features throughout the Irish Sea, is required to underpin effective management of these habitats.   622 

 623 

CONCLUSIONS AND FUTURE WORK 624 

High-resolution geophysical datasets from the Irish Sea reveal sub-seabed shallow gas accumulations in 625 

Quaternary sediments and a range of seafloor expressions of fluid seepage. Based on the integrated 626 

geophysical investigation of seafloor geomorphologies, shallow sub-surface sediments and deeper 627 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

geological and tectonic features, this study generated a geological framework from which the following 628 

can be made summarised.:  629 

In both the Codling Fault Zone and Western Irish Sea Mud Belt, there is compelling evidence linking 630 

shallow gas accumulation within Quaternary sediments with major structural lineaments (i.e. faults) in 631 

the bedrock geology. These faults can act as pathways for hydrocarbon fluids to migrate from deeply 632 

seated potential source rocks to shallow stratigraphic layers. This supports earlier geochemical studies 633 

which found a thermogenic component to the shallow gas and seafloor seepage features in both these 634 

areas.  635 

In the Western Irish Sea Mud Belt, both pockmarks and seabed mounds were recorded in areas of mud 636 

with a varying sand component. Pockmarks display two morphologies consisting of regular, circular 637 

types and pockmarks with a central mound, typically less than 0.5 m in relief. Pockmark centres often 638 

exhibit high backscatter reflectance values suggesting some degree of sediment consolidation due to the 639 

formation of MDAC. Mounds are typically 1 m in height above the regular seabed and are associated 640 

with gas chimneys rooted to an underlying shallow gas accumulation. These mounds, and surrounding 641 

seabed, exhibit high back backscatter reflectance values, again, suggesting the formation of MDAC. This 642 

is supported by a grab sample from a mound containing cemented, MDAC-like material.  643 

We propose two mechanisms for the formation of pockmarks; one in muddy seafloor settings with a 644 

sand component, which accounted for the formation of a central mound, and one for the formation of 645 

thin MDAC mounds as pre-cursors to pockmarks in muddy seafloor settings.  646 

Based on our findings, we make the following concluding statements and recommendations for future 647 

work: 648 

● The revised geological models for the Codling Fault Zone and Western Irish Sea Mud Belt allow 649 

for a better understanding of the role of existing and re-activated faults as a potential pathway 650 

for fluid (e.g. gas) migration from kilometre-scale depth to the shallow sub-seabed. In future, 651 

this will help quantify the contribution of thermogenic-sourcedorigin gas to ongoing shallow 652 

sub-seabed gas accumulation and seafloor seepage in these areas. Geochemical analysis of 653 

targeted seabed seepage and shallow gas accumulation locations from the Western Irish Sea 654 

Mud Belt is required to constrain the origin of shallow gas definitively and is a proposed area of 655 

further work.  656 
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● To validate the model linking the creation of MDAC to pockmark formation, repeat survey data 657 

over the mounds at Queenie Corner is required to record their evolution over time.  658 

● The presence of shallow gas accumulations in the Western Irish Sea Mud Belt, along with gas 659 

chimneys and mounds, suggests that fluid seepage at the seafloor is an on-going process. This 660 

has significant implications for seabed infrastructure development and seabed ecological and 661 

conservation efforts.  Based on the results of this study and models presented, our 662 

understanding of the geological controls on fluid migration and seafloor seepage is greatly 663 

improved, making it increasingly possible to predict the extent of shallow gas and location of 664 

certain gas seepage structures in the Irish Sea. Future data collection surveys (e.g. INFOMAR) 665 

will further improve this understanding.  666 

● To better constrain gas content and extent of gas front in areas of acoustic blanking, we 667 

recommend the acquisition of multichannel seismic data and the application of AVO analysis. 668 

● Ground-truthing and further geotechnical analysis of Quaternary sediments is required to better 669 

understand how fluids migrate through, and are hosted in, these sediments. 670 

● Biological data available from the Western Irish Sea Mud Belt pockmarks and mounds are 671 

limited in determining the range of biodiversity at these sites at present. Epibenthic surveys 672 

consisting of drop-frame or towed camera platforms or ship-based grab sampling are typically 673 

unable to spatially target and sample chemoautotrophic communities, so it is recommended 674 

that ROV techniques are used for such purposes. 675 
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 886 

Figure Captions 887 

Figure 1 Overview of the location of study areas (A-D) within the Irish Sea along with 2D reflection 888 

seismic lines and borehole locations referred to in the text superimposed on previously mapped areas of 889 

sub-cropping Carboniferous rocks, Mesozoic sedimentary basins (both accessed from EMODNet) and 890 

structural lineaments (Anderson, 2013; Anderson et al., 2016). Also included are Special Areas of 891 

Conservation (SAC) and Marine Conservation Zones (MCZ) related to gas features and the extent of the 892 

Western Irish Sea Mud Belt. Please note that the Carboniferous potential source rock is present in the 893 

Permian-Triassic basins. 894 

 895 

Figure 2 (A) Simplified lithostratigraphic column of the bedrock geology of the Western Irish Sea. (B) 896 

Simplified lithostratigraphic column of the Quaternary section discussed in this study. 897 

 898 

Figure 3 2D multichannel seismic line E95IE18-03 and accompanying geoseismic interpretation. Image 899 

quality degrades significantly within the Codling Fault Zone due to a combination of structural 900 

complexity and shallow gas-related features. Inset: Several shallow gas related features are identified 901 

within the Codling Fault Zone, including seabed brightening with a sharp boundary above a major, near-902 

seabed splay of the Codling Fault Zone, and reverse polarity anomalies with associated seismic blanking 903 

and signal dispersion.   904 

 905 

Figure 4 2D multichannel seismic line IS-12 and accompanying geoseismic interpretation. The graben fill 906 

is predicted to be of Permian-Triassic sediment, similar to the stratigraphy of the along-strike Peel Basin. 907 
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The faults bounding the graben are observed to offset the Base-Cenozoic Unconformity, indicating 908 

recent tectonic activity and representing possible fluid-migration pathways.  909 

 910 

Figure 5 2D multichannel seismic line JSM92-30 and accompany geoseismic interpretation. Several 911 

minor faults are observed offsetting the Base-Cenozoic Unconformity in the Queenie Corner area.  912 

 913 

Figure 6 Seabed mounds observed at the southern part of the study area (within the Codling Fault Zone) 914 

are interpreted as carbonate mounds which form as a result of prolonged seepage at the seafloor. 915 

Sediment waves are predominant in this region of the study area. A and B highlight the mound 916 

structures in close up (note different water depth scales for better visualization of the mounds). High 917 

backscatter is evident at these two locations. Refer to Fig. 1 for location.  918 

 919 

Figure 7 (A) High-resolution bathymetric data illustrating seafloor morphology at Lambay Deep, along 920 

with (B) vertical profile across the 1 km wide depression. (C) Zoom-in of the bathymetric high which is 921 

characterized by high-backscatter (D). Refer to Fig. 1 for location.  922 

 923 

Figure 8 Lambay Deep as imaged by sparker seismic data with interpreted units. Highlighted is the 924 

mound referred to as the Lambay Deep Mud Diapir (LDMD) and acoustic evidence for shallow gas 925 

(acoustic turbidity and enhanced reflections). ‘M’ denotes seabed multiple. Unit names are referenced 926 

from Figure 2. Yellow line is the top of UT (Upper Till member), blue line is top of PF (Prograded Facies), 927 

SSF is Surface Sands Formation. Red line denotes the edge of the LDMD. Dashed black line is the top of 928 

the shallow gas. 929 

 930 

Figure 9 Depth to the top of the gas accumulation (interpreted on a grid of 2D sparker seismic lines 931 

shown in Fig. 1 of Coughlan et al., (2019), identified in the Western Irish Sea Mud Belt superimposed on 932 

water depth from MBES data. Highlighted are the pockmarks described in Supplementary Material, the 933 

location of seismic lines presented in Fig. 10 and the pockmarks presented in detail in Fig. 11.  and Fig. 934 

12. 935 

 936 

Figure 10 Sparker seismic lines highlighted in Fig. 9 from the WISMB with interpreted units. Also 937 

presented is evidence for shallow gas accumulation (enhanced reflection, acoustic turbidity, acoustic 938 

blanking). ‘M’ denotes seabed multiple. Unit names are referenced from Figure 2. Full black line 939 
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indicates the top of bedrock. Yellow line is the top of UT (Upper Till member), green line is the top of CF 940 

(Chaotic Facies), blue line is top of PF (Prograded Facies). Dashed black line denotesis the top of the 941 

shallow gas front. 942 

 943 

Figure 11Figure 11 (A) The largest irregular elongated pockmark (P12) is shown on high-resolution 944 

bathymetric data. A smaller circular pockmark is located NE of P12. (B) High-backscatter at the centre of 945 

the pockmark is indicative of possible carbonate precipitates or coarse sediments due to prolonged 946 

seepage. (C) Bathymetric contour lines illuminated the rim of the irregular elongated pockmark (P12), 947 

string pockmarks at its centre and the surrounding seafloor morphology. Vertical profiles across the 948 

short and long-axis of the elongated pockmark (P12) illustrate the small depth change (1 - 1.2 m) across 949 

the P12 pockmark. Refer to Fig. 9 for location. WD: Water depth. 950 

 951 

Figure 12 High-resolution bathymetric data illustrating (A) a central mound within pockmark P15, and 952 

(B) morphology of a circular pockmark P13 without a central mound along with their vertical profiles. (C) 953 

Central mounds within pockmarks P10 and P11, which are separated by approximately 1 km. Refer to 954 

Fig. 9 for locations.   955 

 956 

Figure 1213 High-resolution multibeam bathymetric data (top) and backscatter data (bottom) of the 957 

Queenie Corner area seafloor. Refer to Fig. 1 for location. A closer illustration of the seabed mound 958 

structures of various sizes and shapes (sub-circular to elongated) have been shown along with their 959 

vertical profiles.  960 

 961 

Figure 1314 Pinger profile highlighted in Fig. 1213 from Queenie Corner illustrates acoustic evidence for 962 

shallow gas in the form of gas chimneys (a) and acoustic blanking (b). Seabed mounds are observed at 963 

the top of gas chimneys (a).   964 

 965 

Figure 1415 Conceptual model proposed for fluid migration from deeper thermogenic source rocks via 966 

recently reactivated fault conduits to shallow gas-charged Quaternary sediments in the Western Irish 967 

Sea Mud Belt. Subsequently, some of the gas migrates upwards to the seafloor, leading to the formation 968 

of pockmarks (due to fluid seepage) and seabed mounds (due to increase of pressure and volume within 969 

sediment pores). 970 

 971 
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Figure 1516 Overview map of shallow gas accumulations and fluid seepage features identified in this 972 

study along with similar features identified from other referenced studies. This information is 973 

superimposed on the British Geological Survey DigSBS250 database, which maps seabed sediment 974 

distribution. according to the Folk Classification, in the Irish Sea at a scale of 1:250,000. Some pockmarks 975 

from this study are seen to form above a mapped shallow gas accumulation with mud-dominated 976 

sediments, generally pockmarks (this study) are concentrated in areas with a sandier component. 977 

Seabed mound features in this study were found in areas where the seabed sediment is mud-978 

dominated.  979 

 980 

Figure 1617 Conceptual models proposed for (A) the formation of mounds at the centre of pockmarks in 981 

sand-rich sediments and (B) seabed mounds in mud-rich sediments as a precursors to collapsed 982 

pockmarks, , adapted from previous studies (Hovland, 2002; Crémière et al. 2018; Loher et al. 2018). 983 

 984 

Table Captions 985 

Table 1 List of surveys from which data were used in this study. 986 
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Survey Year Area Data 

CV09_05 2009 WISMB/Lambay Deep MBES (EM3002D) bathymetry & backscatter 

CV09_26 2009 WISMB MBES (EM3002D) bathymetry & backscatter, 
Geo-Source 400 sparker 

CV10_01 2010 WISMB/Lambay Deep/CFZ MBES (EM3002D) bathymetry & backscatter 

CV11_10 2011 Queenie Corner SES 5000 pinger 

CE14_01 2014 Lambay Deep Geo-Source 400 sparker 

CO24_18 2018 Queenie Corner MBES (EM3002) bathymetry & backscatter 

 

Table 1



  

Pockmark Table
Click here to download Supplementary Material (for online publication only): S1_Pockmark_table.docx

http://ees.elsevier.com/jmpg/download.aspx?id=497878&guid=a594d7ca-80e5-4a42-a6f5-83f2120ec59a&scheme=1


  

Gas Parameters Table
Click here to download Supplementary Material (for online publication only): S2_Gas_table.docx

http://ees.elsevier.com/jmpg/download.aspx?id=497879&guid=bff33cf5-da81-4657-9b3f-21ed9ae8f3ff&scheme=1


  

Queenie Corner Grab Sample
Click here to download Supplementary Material (for online publication only): S3_Queenie_Corner_grab.jpg

http://ees.elsevier.com/jmpg/download.aspx?id=497880&guid=f728b133-81a5-4359-addc-b043d6391896&scheme=1
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