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Abstract 35 

Cows’ milk is a relatively poor source of vitamin D but figures listed in UK food composition 36 

tables may be outdated. Samples of milk were collected for 1-year and vitamin D3 37 

concentrations analysed using HPLC. Milk consumption data were obtained from the National 38 

Diet and Nutrition Survey (Years 1-4). A theoretical model applied vitamin D3 fortifications of 39 

1μg, 1.5μg and 2μg/100g to simulate improvements in vitamin D intakes. Mean±SD vitamin D3 40 

in whole milk was 0.06±0.02μg/100g. No seasonal differences were apparent. Fortification of 41 

cows’ milks with 1μg, 1.5μg and 2.0μg/100g, theoretically increased median vitamin D intakes 42 

from 2.0μg/day to 4.2μg, 5.1μg and 5.9μg/day, respectively. Higher vitamin D3 in milk from 43 

this study than that currently in food composition tables, suggests further analysis is warranted.  44 

This model suggests vitamin D fortification of cows’ milk is an effective strategy to help more 45 

of the population achieve recently revised RNIs for vitamin D. 46 

 47 

Keywords: Vitamin D; fortification; cows milk; food composition; dietary intake; model; 48 

NDNS   49 



  

Introduction 50 

Vitamin D plays an essential role in the metabolism of calcium by increasing its absorption 51 

in the small intestine (COMA 1991) and for this reason vitamin D has an important role 52 

to play in musculoskeletal health (Lanham-New 2008; Pojednic & Ceglia 2014; Todd et al. 2015). 53 

Vitamin D deficiency has been known for many years to be a factor in sub-optimal bone 54 

health and to lower bone mineral density (Thacher & Clarke 2011). Moreover, poor vitamin 55 

D status has been more recently associated with many other non-skeletal chronic conditions 56 

such as cardiovascular disease, certain cancers, decline in cognitive function, type II diabetes, 57 

and rheumatoid arthritis (Martini & Wood 2009; Kostoglou-Athanassiou et al. 2012; Autier et al. 58 

2014; Feldman et al. 2014). Vitamin D insufficiency (25-hydroxyvitamin D [25(OH)D] 59 

concentration of <50nmol/l) and deficiency (25(OH)D concentrations of <25nmol/l) (IOM 60 

2011) are prevalent, with an estimation that 1 billion people could be classed as insufficient 61 

or deficient worldwide (Holick 2007). The Irish Adult Nutrition Survey (NANS), reported 62 

that approximately one third of adults aged 18–84 y were classed as vitamin D insufficient 63 

during the summer, while in the winter this increased to over half of the adult population 64 

(IUNA 2011; Cashman et al. 2013). Similar findings regarding vitamin D insufficiency have 65 

been noted in the UK National Diet and Nutrition Survey (Public Health England 2014). 66 

The majority of vitamin D required by humans is derived by ultraviolet (UV)-B radiation 67 

of the 7-dehydrocholesterol in the skin (COMA 1991; Webb & Holick 1988), although a 68 

number of factors negatively influence the skin’s ability to synthesise the vitamin (Hagenau 69 

et al. 2009). Such factors include increasing age, skin pigmentation, clothing, 70 

sedentary/indoor lifestyles, the use of sun protection and geographical location (i.e. 71 

latitude). It has been long established that the northerly latitude of the UK and Ireland [50-72 

60°N] means UVB intensity is inadequate to promote the dermal synthesis of vitamin D 73 

during the winter months (approximately October-March) (Webb et al. 1998; Hill et al. 74 

2008), causing the population to be solely reliant on dietary sources during this time to 75 

maintain the body’s stores of the vitamin. Despite this reliance on dietary sources, previous 76 

literature from the UK and Ireland more often than not report low intakes of vitamin D 77 

(<5µg/d), because naturally occurring food sources are so limited (IUNA 2011; Public Health 78 

England 2014). More worryingly, these figures are considerably lower than the revised 79 

reference nutrient intake (RNI) suggested by the Scientific Advisory Committee on Nutrition 80 

(SACN) of 10µg/d of vitamin D daily for the general population aged 4+ y (or the safe intake 81 

10µg/d for children aged 1-4 y) (SACN 2016). 82 



  

Fortified foods are increasingly contributing to the dietary intake of the population, 83 

especially in those who do not also consume dietary supplements (Black et al. 2012). 84 

Although milk and dairy products are sources of naturally occurring vitamin D (McCance & 85 

Widdowson 2002; BDA 2007), without fortification, the vitamin D content of milk is minimal 86 

and has also been known to vary considerably from winter to summer (Kurmann & Indyk 87 

1994; Jakobsen & Saxholt 2009). ‘The Composition of Foods’ series by McCance and 88 

Widdowson (2014) provides extensive nutritional data on a number of foods. Although these 89 

tables have been updated several times since their inception, the most recent 7th edition 90 

(published in 2014), has reported the lowest vitamin D content for whole, semi-skimmed 91 

and skimmed milk (i.e. as trace) compared to earlier editions, based on limited sampling. 92 

One possible strategy to increase vitamin D intakes within the population is through the 93 

fortification of milk, which is a staple dietary component for a large proportion of the UK and 94 

Irish population. In Canada, the fortification of liquid milk is mandatory at concentrations 95 

ranging from 0.875µg–1.125µg/100ml (IOM 2011). Indeed, numerous studies have reported 96 

the effectiveness of dairy fortification in increasing vitamin D intake in other countries (Calvo 97 

et al. 2004; Harika et al. 2016; Jaaskelainen et al. 2017). Within the UK, however, mandatory 98 

fortification with vitamin D is limited to a few foods only, including margarine, energy-99 

restricted foods for diets intended for weight loss and infant formula (Hypponen & Power 100 

2007; Allen 2015). Vitamin D is only added to a small number of other foods at the discretion 101 

of the food industry (e.g. yogurts, cereals and breads). 102 

Owing to the low dietary intakes previously reported, and the relatively low uptake of food 103 

fortification in the UK/Ireland, alternative food-based strategies to improve consumers’ 104 

vitamin D intakes, and status are warranted.  Therefore, the aims of the current study are to, 105 

(1) determine the concentrations of vitamin D3 in cows’ milk produced in Northern Ireland 106 

(NI), and; (2) simulate how fortification of cows’ milk could theoretically improve overall 107 

dietary vitamin D intakes of the UK population using a dietary modelling scenario. 108 

Materials and methods 109 

Study samples 110 

The sampling protocol was designed to be representative of cows’ milk on retail sale in 111 

NI. Monthly 1L samples of raw and whole pasteurised milk (standardised to a minimum 112 

fat content of 3.5%) were collected for a period of 1 year (May 2013 – May 2014) from two 113 

dairy processors. All milk samples were collected by staff based within the processing 114 



  

plants. Raw milk samples were collected immediately pre-pasteurisation. Owing to the well 115 

documented seasonal variation in vitamin D content, milk samples collected during October–116 

March are referred to as winter milk, while those samples collected between April and 117 

September are referred to as summer milk hereafter. Samples were stored at -20°C prior to 118 

analysis. Quantification of vitamin D3 content in stored samples were analysed by HPLC 119 

(Agilent 1200 Series) (method adapted from Trenerry et al. (2011).  Samples were run with a 120 

99% acetonitrile: 1% methanol mix at a rate of 1.5ml per min for 50mins.  Vitamin D3 was 121 

quantified at the 265/280 wavelengths. 122 

 123 

Population dietary data 124 

The NDNS Rolling Programme Years 1-4 (2008/09–2011/12) dataset was used to provide 125 

nationally representative data on both current vitamin D intakes (µg/d) and typical milk 126 

consumption (g) of the UK population (UK Data Service 2014). The dataset comprises of 3- 127 

or 4-d food diaries from 4,156 individuals [2,174 adults (18–94 y) and 1,982 children (1.5–128 

17 y)]. Consumption of whole, semi-skimmed, skimmed and 1% milks were included in the 129 

current analysis. The theoretical impact of vitamin D fortification was evaluated for the 130 

entire study population and by age group [children (1.5-17 y old and adults (≥18 years)]. 131 

Attention was also given to sub-groups considered to be at- risk of vitamin D deficiency: 132 

young children (aged 1.5–3 y); adults over the age of 65 y (COMA 1991); women of 133 

childbearing age (16–49 y) (Public Health England 2014). 134 

Dietary modelling 135 

The vitamin D content of milk as listed in the McCance and Widdowson (2002) was used 136 

in the most recent NDNS analysis and therefore acted as the baseline for the current 137 

dietary model. Vitamin D fortification concentrations of 1µg/100g, 1.5µg/100g and 138 

2µg/100g were selected based on the American and Canadian fortification levels and 139 

those of enriched ‘super-milks’ which are commercially available in the UK and Ireland. 140 

These fortification concentrations were then applied to the consumption of whole, semi-141 

skimmed, skimmed and 1% milk to estimate the effect fortification at these concentrations 142 

would have on the overall vitamin D intakes of the population. As part of this dietary model, 143 

the current tolerable upper limits (UL) for daily vitamin D intake were considered to 144 

determine if the fortification scenario would subsequently give rise to consumer intakes 145 

exceeding the UL. The ULs used were those provided by European Food Safety Authority 146 



  

(EFSA) at 100µg/d for individuals aged 11+ y, 50µg for children between 1 and 10 y, and 147 

25µg for infants <1 y (EFSA 2012). 148 

Statistical analysis 149 

The Statistical Package for the Social Sciences (IBM SPSS Statistics 22, Chicago, IL, 150 

USA) was used for analysis of all data. Values of P<0.05 were regarded as statistically 151 

significant throughout. Normality of the data was assessed using Kolmogorov-Smirnov tests, 152 

and where data could not be normalised, the results are expressed as medians (25th and 75th 153 

percentiles). Descriptive statistics and t-tests were used to describe the study sample and to 154 

compare the concentrations of vitamin D present within the different forms of milk between 155 

seasons (summer and winter) and between milk types (raw and pasteurised whole) and to 156 

compare intakes to the current reference nutrient intake (RNI) (SACN 2016) and tolerable UL 157 

(EFSA 2012). The comparison of vitamin D intakes at baseline and post-fortification were 158 

tested using non-parametric tests, Wilcoxon Signed Rank test. 159 

Results 160 

Vitamin D analysis of milk 161 

The average year-round mean ± SD vitamin D3 content of Northern Irish raw and 162 

pasteurised whole milk collected as part of this study was 0.08 ± 0.04µg/100g and 0.06 ± 163 

0.02µg/100g respectively, with a range of 0.01–0.16µg/100g for raw milk (Figure 1) and 0.03–164 

0.12µg/100g for pasteurised whole milk (Figure 2). The mean ± SD vitamin D3 content per 165 

100g between summer vs. winter milk was not significantly different for either raw (0.07 ± 166 

0.03µg vs. 0.08 ± 0.04µg per 100g; P=0.479) or pasteurised whole milk (0.07 ± 0.03µg vs. 167 

0.05 ± 0.01µg per 100g; P=0.227). A significant difference was noted when comparing the 168 

vitamin D3 content of raw and pasteurised whole milk throughout the year (P=0.037). When a 169 

seasonal comparison of the vitamin D3 content of raw and pasteurised whole milk was 170 

investigated, a significant difference was noted in winter (P=0.033) but not in summer 171 

(P=0.506).  172 

NDNS data 173 

A total of 16,539 recorded dietary days were available for analysis from the raw NDNS 174 

dataset [32] of which, 13,962 dietary days (84.4%) reported an intake of milk. Survey 175 



  

population data can be found in Table 1. Daily milk intakes (portion size per eating 176 

occasion) ranged from 2.5g to 2850g. On average, a larger portion size of whole milk was 177 

consumed compared to the other three milk types (Figure 3). Semi-skimmed milk was the 178 

most commonly consumed milk (Figure 4) in the total study population (53.1% of dietary 179 

days). A higher proportion of children (aged 1.5 to 17 y) were consumers of whole milk 180 

compared to adults (P<0.001), and the opposite was true for the other three milk types; 181 

however, significant difference was only seen in skimmed milk consumption P<0.001 (semi-182 

skimmed P=0.509; 1% fat P=0.505) (Figure 4). 183 

Mean dietary vitamin D intake at baseline for the entire study population was 2.50µg/day 184 

(SD 1.87) with a range of 0.00–20.96µg (Table 2). Mean daily vitamin D intakes were 185 

significantly higher for males compared to females (2.71 ± 2.09µg vs. 2.31 ± 1.65µg; 186 

P<0.001). Adults also had a significantly higher daily vitamin D intake compared to 187 

children (2.92 ± 2.13µg vs. 2.04 ± 1.42µg; P<0.001). Baseline vitamin D intakes in at-risk 188 

groups are shown in Table 3 and also increased with age. 189 

Dietary modelling scenario 190 

Of the 4,156 individuals surveyed as part of the NDNS, only 37 (0.89%) met the new 191 

RNI of 10µg/d, but following the fortification scenario applied in this dietary model these 192 

figures increased. When a fortification of 2µg/100g was applied 511 (12.29%) of the study 193 

population achieved the new RNI (Table 2). 194 

Prior to applying the fortification scenario, six women of childbearing age (0.74%) met 195 

the RNI of 10µg/d (SACN 2016), following theoretical fortification at 2µg/100g this figure 196 

increased to 41 (5.04%) participants. The same increase was seen in those over 65 y, with a 197 

total number of individuals reporting an intake of 10µg/d or above increasing from seven 198 

(1.65%) to 76 (17.76%). The greatest effect of fortification was seen in children (aged 1-3 199 

y). At the highest fortification, 99 (25.65%) children would be meeting their recommended 200 

intake, compared to baseline where only eight (2.12%) were meeting recommended intakes. 201 

Up to the highest fortification (2µg/100g), no participants exceeded the age-specific 202 

tolerable UL (EFSA 2012), either in the total population (Table 2) or in at-risk groups (Table 203 

3). 204 

When looking at diary days, fortification was shown to increase the vitamin D intake of 205 

the entire population with median intakes increasing from 2.3µg/d to 6.1µg/d for semi-206 

skimmed milk. For whole milk a similar increase was seen, with a median intake of 1.8µg/d 207 



  

at baseline and 7.4µg/d following fortification at the highest concentration (2µg/100g). 208 

The effect of simulated fortification at each concentration is shown in Table 4, and 209 

fortification at all three concentrations (1µg, 1.5µg and 2µg per 100g) resulted in 210 

significantly increased vitamin D intakes for all milk types (P<0.001). 211 

Discussion 212 

Results from this study clearly demonstrate that a vitamin D fortification policy for milk 213 

could potentially help increase the percentage of the population (>12%) achieving the revised 214 

RNI/safe intakes of 10µg/day vitamin D (SACN 2016). Moreover, even with the highest 215 

fortification scenario (2µg/100g), no participant within the current fortification model had a 216 

vitamin D intake that exceeded EFSA’s tolerable UL (100µg/d for 11+ y; 50µg/d for 1-10 y) 217 

(EFSA 2012), suggesting that fortification of milk with vitamin D would be safe in this 218 

respect. 219 

A RNI/safe intake of 10µg/d was proposed to ensure that a year-round serum 25(OH)D 220 

concentration of ≥25nmol/l is achieved by the 97.5% of the population (SACN 2016). In the 221 

current study, a large proportion of those individuals considered to be ‘at-risk’ (young children 222 

aged 1.5-3 y, women of childbearing age (16-49 y), and those aged 65+ y) fell short of the 223 

RNI. Although the fortification model was able to successfully increase the proportion of 224 

individuals meeting the RNI, the problem was not completely eliminated. This finding 225 

emphasises the importance and need for further strategies to increase vitamin D awareness 226 

and intake among these groups, particularly in those who may avoid milk/dairy products as 227 

part of their habitual diets. 228 

Dietary modelling results similar to those reported by the current study have previously 229 

been shown by some (Jayaratne et al. 2013; Harika et al. 2016; Ejtahed et al. 2016; Moyersoen 230 

et al. 2019) but not others (Allen et al. 2015). In an Iranian population, Ejtahed and colleagues 231 

(2016) reported an increase in vitamin D intakes from 2.5µg to 3.3µg/d after simulated 232 

fortification of milk, which is in line with that reported in the current study for the same 233 

fortification (1µg/100g). Jayaratne et al. (2013) also reported a positive effect of a fortification 234 

model, with higher increases in intakes shown (3.6µg to 6.3µg/d), albeit this was achieved by 235 

fortifying both milk and breakfast cereals so the bigger effect on daily intake is not 236 

unexpected. 237 

In contrast, negative effects of a milk fortification model on vitamin D intakes were 238 

reported in another recent study using UK population dietary survey data. Allen and 239 



  

colleagues (2015) found that fortification at certain concentrations put a number of 240 

participants at risk of exceeding the tolerable UL which is at variance to the current study, 241 

even following the highest fortification scenario (2µg/100g). This study, however, used older 242 

NDNS results collected in fewer participants than used in the current study, and also failed to 243 

justify the considerably higher fortification concentrations chosen. Furthermore, the lower 244 

values quoted for the tolerable UL of vitamin D intakes were those of the older European 245 

Committee report (European Scientific Committee on Food 2002), as opposed to the more 246 

recent guidelines from EFSA (2012). 247 

The fortification model used in the current study demonstrated an increased vitamin D 248 

intake for the entire population, with whole milk having the largest impact on vitamin D intake 249 

as a result of the larger portion size consumed per eating occasion. Despite this larger portion 250 

size, as semi-skimmed milk was the most frequently consumed milk in the population overall, 251 

its fortification would benefit a greater number of people and therefore have the greatest 252 

impact on the vitamin D intake at a population level. 253 

The vitamin D3 concentrations in milk reported in this study are at variance with the results 254 

published in some of the latest editions of the McCance and Widdowson (2002; 2014). The 255 

7th edition (2014) lists vitamin D for all types of cows’ milk as ‘trace’ with the exception of 256 

milk from the Channel Islands which is listed at 0.01µg/100g (McCance & Widdowson 2014). 257 

The previous edition listed the average vitamin D content of whole, semi-skimmed and 258 

skimmed milk as 0.03µg, 0.01µg and trace per 100g, respectively (Holland et al. 1989; 259 

McCance & Widdowson 2002). The increases in vitamin D3 content of raw and whole milk 260 

found in this study, may be as a result of improvements in laboratory methods (Weir et al. 261 

2017). Earlier methods of laboratory analysis presented numerous methodological challenges 262 

owing to vitamin D’s complex structure, often causing complications when extracting the 263 

vitamin from the food matrix (Byrdwell et al. 2008) which may also have contributed to the 264 

differences in vitamin D3 content reported. Seasonal variation in vitamin D content in milk 265 

across the world has been well documented in the literature (Kurmann & Indyk 1994; 266 

Jakobsen & Saxholt 2009) but is not supported by the current study and may be a result of 267 

poor weather patterns. In recent years the weather has become more over-cast during the 268 

summer months (Sweeney 2016), and this decreases the opportunity for dermal synthesis of 269 

vitamin D3 not only in humans, but also in cattle which synthesise the vitamin in a similar 270 

manner (Hymoller & Jensen 2010).  Subsequently, the vitamin D status of the cattle influences 271 

the vitamin D concentration of the milk produced (Hollis et al. 1981) and therefore, animal 272 

husbandry in future should be adapted to ensure a more consistent vitamin D supply 273 



  

throughout the year. 274 

Whilst interpreting the current results, a number of limitations should be noted. First is the 275 

use of self-reported dietary intakes, as misreporting in the form of under- or over-reporting of 276 

certain foodstuffs is a commonplace in participants (Willet 2013). During the NDNS Rolling 277 

Programme, the doubly-labelled water technique was used to validate the reported energy 278 

intake (Public Health England 2014) and improves confidence in the data. Moreover, the use 279 

of dietary data from the largest nationally representative survey in the UK was the most 280 

appropriate to test our hypothesis and such data was considerably more reliable than that 281 

collected from smaller surveys. Current results are also strengthened by the successful vitamin 282 

d fortification programme in Finland (Raulio et al. 2017), and add to the rationale to 283 

incorporate fortification in a wide range of food types. Secondly, it was beyond the scope of 284 

this project to measure the vitamin D3 content of all milk types (e.g. semi-skimmed and 285 

skimmed), but up-to-date results for the vitamin D3 content of raw and whole milk from NI 286 

have been quantified using a more advanced laboratory technique. Although these values are 287 

specific to NI milk, this approach provides novel data on a specific region of the UK, rather 288 

than using values from a more widespread and varied pool of data. Owing to the higher 289 

vitamin D3 content of milk reported compared to that in the most recent UK Composition of 290 

Foods (McCance & Widdowson 2014), a more widespread update of the vitamin D content 291 

of UK milk is warranted. It would also be advantageous to use an alternative analytical 292 

technique, such as liquid chromatography mass spectrometry (LC-MS) (Trenerry et al. 2011) 293 

in future studies. This more sensitive method would also enable the quantification of the 294 

concentrations of other vitamin D metabolites present within milk, e.g. vitamin D2 and 295 

25(OH)D, which contribute to the total vitamin D content (Cashman 2012). Finally, this study 296 

has highlighted the potential beneficial effect of fortifying cows’ milk with vitamin D on 297 

vitamin D intakes across the UK population. Further analysis should determine how this 298 

approach would impact the vitamin D contribution from other dairy products (made from the 299 

fortified milk), as well as the vitamin D status of the consumer. 300 

Conclusion 301 

This study suggests that the fortification of UK cows’ milk with vitamin D (up to a 302 

concentration of 2µg/100g) could be an effective dietary strategy to increase consumer’s 303 

vitamin D intake, helping more of the UK population to achieve the newly revised RNI for 304 

vitamin D of 10µg/d. Importantly, this strategy could translate into a beneficial effect on 305 



  

consumer’s vitamin D status, without putting anyone at risk of exceeding the tolerable UL for 306 

the vitamin. Based on the results from this dietary modelling scenario, fortification of all types 307 

of milk (whole, semi-skimmed, skimmed and 1% milks) is recommended to maximise the 308 

impact to consumers of all ages and make progress towards eradicating vitamin D deficiency 309 

among the UK population.  310 
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Fig. 1. Vitamin D3 content (μg/100g) of raw milk produced in Northern Ireland over a 

year period. Bars show mean vitamin D3 of samples collected from two processors 

across Northern Ireland. *Results available from one processor only. 
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Fig. 2. Vitamin D3 content (μg/100g) of pasteurised whole milk produced in Northern 

Ireland over a year period. Bars show mean vitamin D3 of samples collected from two 

processors across Northern Ireland. *Results available from one processor only. 
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Fig. 3. Mean portion size (g) of milk consumed by participants (n 4,156) per eating 

occasion for each milk type. *Typical fat content of each milk type. 
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Fig. 4. Frequency of consumption of each milk type by adults (18-94 years; dark bars n 

2,174) and children (1.5-17 years; light bars, n 1,982). *Refers to average fat content 

of each milk type.  P-values indicate a significant difference between the number of 

diary days each type of milk was consumed between adults and children (P<0.05). 
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Table 1: National Diet and Nutrition Survey (NDNS) population data 
(Public Health England, 2014) 

Sample size (n 4,156) 

Age (yrs) Male Female Total 

1.5 - 3 207 179 386 

4 - 10 414 389 803 

11 - 15 278 265 543 

16 - 18 167 174 341 

19 - 49 471 640 1111 

50 - 64 239 305 544 

≥ 65 191 237 428 

Total 1967 2189 4156 

Table prepared using the demographic information provided in the 
NDNS report (2014) 



Table 2: Theoretical impact vitamin D fortification of milk on vitamin D intakes of the population based on the NDNS data (n 4,156) 

Total Population 
Vitamin D intake (μg/day) Population percentage (%) 

Vitamin D concentration Mean ± SD Median Minimum Maximum Meeting RNI† Exceeding UL‡  

No fortification* 2.50 ± 1.87 2.03 0.00 20.96 0.89 0 
1μg/100g 4.20 ± 2.48 3.69 0.02 23.94 2.96 0 
1.5μg/100g 5.06 ± 3.08 4.42 0.02 33.98 6.88 0 
2μg/100g 5.91 ± 3.77 5.11 0.02 44.01 12.29 0 

NDNS, National Diet and Nutrition Survey, dataset available from the UK Data Archives (2014) 
†RNI, Reference Nutrient Intake (or safe intake) for vitamin D of 10μg/day for those aged >1 year (SACN 2016) 
‡UL, upper limit of 50μg/day for those ages 1-10 years and 100μg/day for those over 11 years (EFSA 2002) 
*Vitamin D content of milk as listed in the McCance and Widdowson (2002)



Table 3: Theoretical impact of vitamin D fortification of milk on vitamin D intakes of those individuals deemed to be at risk of vitamin 

D deficiency (COMA 1991) based on the NDNS data 

Children aged 1 - 3 years (n 386) Women of childbearing age (n 814) Adults aged over 65 years (n 428) 

Vitamin D intake Population Vitamin D intake Population Vitamin D intake Population 

(μg/day) percentage (%) (μg/day)  percentage (%) (μg/day)  percentage (%) 

Vitamin D 
concentration 

Mean ± 
SD Median 

Meeting 
RNI†

Exceeding 
UL‡

Mean ± 
SD Median 

Meeting 
RNI†

Exceeding 
UL‡

Mean ± 
SD Median 

Meeting 
RNI†

Exceeding 
UL‡

1.96 ± 2.28 ± 3.40 ± 
No fortification* 2.05 1.41 2.12 0 1.65 1.82 0.74 0 2.39 2.75 1.65 0 

4.80 ± 3.44 ± 5.25 ± 
1μg/100g 2.59 4.42 4.15 0 2.03 2.99 1.60 0 2.79 4.69 6.07 0 

6.21 ± 4.01 ± 6.18 ± 
1.5μg/100g 3.42 5.53 12.18 0 2.39 3.50 2.70 0 3.20 5.50 13.08 0 

7.63 ± 4.59 ± 7.10 ± 
2μg/100g 4.39 6.87 25.65 0 2.80 3.99 5.04 0 3.70 6.40 17.76 0 

NDNS, National Diet and Nutrition Survey, dataset available from UK Data Archives (2014) 
†RNI, Reference Nutrient Intake (or safe intake) for vitamin D of 10μg/day for those over 1 year (SACN 2016) 
‡UL, upper limit of 50μg/day for those ages 1-10 years and 100μg/day for those over 11 years (EFSA 2002) 
*Vitamin D content of milk as listed in the McCance and Widdowson (2002)



Table 4: Theoretical impact of vitamin D fortification of milk on the dietary vitamin D intake of the population based on reported diary days (n 16,539) 

Total vitamin D intake (μg/day) 
Fortification of milk 

Consumption of milk and baseline vitamin D intake as found in the National Diet and Nutrition Survey, dataset available from UK Data 
Archives (2014) 
* Vitamin D content of milk as listed in the McCance and Widdowson (2002) Percentiles (25th-75th)
a,b,c,d Values within a row with different superscript letters are significantly different (P<0.001, Friedman Test and Wilcoxon Signed 
Rank test)

Not Fortified* 1μg/100g 1.5μg/100g 2μg/100g 
Milk Type Median Percentiles Median Percentiles Median Percentiles Median Percentiles 

Whole 2.0a 1.0-3.6 4.9b 3.1-.7.3 6.2c 3.9-9.2 7.4d 4.5-11.2 
Semi-skimmed 2.3a 1.2-4.0 4.3b 2.9-6.6 5.3c 3.5-8.1 6.1d 4.0-9.5 
Skimmed 2.6a 1.2-5.1 4.2b 2.4-7.5 5.2c 2.9-8.5 6.0d 3.1-9.4 
One percent 2.7a 1.4-8.5 4.6b 2.8-9.0 5.5c 3.1-9.1 6.5d 3.8-9.2 
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