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Abstract

Background: We have previously reported on the poten-
tial of patch-based ECG leads to observe changes typical
during ischaemia. In this study we aim to assess the utility
of patch-based leads in the detection of these changes.
Method: Body surface potential maps (BSPM) from sub-
jects (n=45) undergoing elective percutaneous coronary
angioplasty (PTCA) were used. The short spaced lead
(SSL), that was previously identified as having the great-
est ST-segment change between baseline and peak balloon
inflation (PBI), was selected as the basis for a patch based
lead system. A feature set of J-point amplitudes for all
bipolar leads available within the same 100 mm region
were included (n=6). Current 12-lead ECG criteria were
applied to 12-lead ECGs for the same subjects to bench-
mark performance.
Results: The previously identified single SSL achieved
sensitivity and specificity of 87% and 71% respectively
using a Naive Bayes classifier. Adding other combina-
tions of leads to this did not improve performance signifi-
cantly. The 12-lead ECG performance was 62/93% (sensi-
tivity/specificity).
Conclusion: This study suggests that short spaced leads
can be sensitive to ischaemic ECG changes. However, due
to the short distance between leads, they lack the specificity
of the 12-lead ECG.

1. Introduction

The 12-lead ECG remains the most common tool in the
detection of ST-elevation myocardial infarction (STEMI)
[1]. It has high specificity in STEMI detection, however,
it is often insensitive [2]. Additionally, the placement of
electrodes across the torso is inconvenient compared to
other systems designed for longer term monitoring that use
fewer electrodes. Machine learning (ML) might be an ef-
fective method for detecting STEMI when trained using
ECG data, particularly when applied to pre-hospital ad-

mission [3]. ML has allowed more diverse methods of
classifying cardiac abnormalities than the 12-lead ECG
[4]. STEMI can occur in different coronary arteries of the
heart. Vessel-specific leads (VSL) have been introduced,
however, these may be inconvenient when used in a clini-
cal setting [5]. Furthermore, reduced-lead systems such as
smartphone-based devices are limited by systematic error
between electrodes [6]. A practical and more convenient
recording system with high sensitivity in the detection of
STEMI has the potential to reduce door-to-balloon time
[7]. Patch-based lead systems have been introduced for
cardiac arrhythmia monitoring however there has been less
emphasis on the development and reporting of systems de-
signed for ischaemic heart disease [8]. Such devices are
prone to placement errors, however, ML can detect mis-
placement [9]. We have previously introduced an SSL
based on the greatest ST-segment changes across patients
with ischaemic-type ECG changes [10]. The aim of this
study is to assess the performance of an SSL-based system
using machine learning in the classification of STEMI.

2. Method

2.1. Data

Data were described by Horacek et al. [5]. Data were
collected from patients (n=45) undergoing PTCA. Two
ECG recordings were taken from each patient, one dur-
ing rest and one during peak balloon inflation (PBI). A to-
tal of 90 recordings are available. Inflations were carried
out in one of three coronary arteries: LAD (n=15), LCX
(n=15) and RCA (n=15). Each recorded lead were aver-
aged to provide one cardiac cycle. Recordings were taken
from 120-lead BSPMs at a sample rate of 500 Hz. Three of
the leads were distal limb leads of the 12-lead ECG. The
BSPMs were expanded to the 352-node Dalhousie torso
[11] using Laplacian interpolation. The fiducial points
(QRS onset, J-point and end of the T-wave) were deter-
mined by an automated algorithm and reviewed manually.



2.2. Feature Extraction

Our lead system was based on the previously introduced
SSL sensitive to ST-segment changes [10]. In that work,
a single bipolar lead with electrodes spaced 100 mm apart
was proposed. This lead was selected based on the fact that
exhibited the greatest J-point amplitude change between
baseline and PBI across all subjects studied. The 100mm
distance was chosen to be compatible with the amount of
space that would typically be occupied by a single self con-
tained patch. In the current work we have explored adding
additional leads to the previously chosen SSL. Electrodes
were positioned on the anterior torso. Specifically, be-
tween a region in the left precordium and a more inferior
abdominal region. To increase spatial resolution, all possi-
ble bipolar leads within 100 mm of the SSL were added. A
total of six bipolar leads were used: ST-sensitive (SSLST ),
spatially orthogonal (SSLorth) and four complementary
(SSL3−6). The purpose of this was to develop the basis
for an ambulatory patch lead system.

The amplitude at the J-point was extracted as the feature
for each SSL based on its importance in standard STEMI
criteria [1]. This resulted in six features for each record-
ing, one for each SSL. Recordings at rest were annotated
as healthy (false), whereas PBI were annotated as STEMI
(true).

2.3. STEMI Detection

Given that no criteria exist for the new leads, we em-
ployed a machine learning based approach to assess the
performance of the extracted J-points at distinguishing be-
tween STEMI and ECGs recorded at rest. We also used the
standard STEMI detection criteria, as applied to the stan-
dard 12-lead ECG that were extracted for the same patient.
12-lead ECG channels were extracted from each recording
at both rest and PBI. Currently accepted STEMI criteria
were employed based on J-point amplitudes, age and sex
[1]. The criteria used did not include new Q-wave, ST-
slope or T-wave changes. This was performed in MAT-
LAB R2020a.

Three classifiers were used to detect STEMI. The C4.5
(J48) decision tree [12], multi-layer perceptron (MLP) and
Naive Bayes (NB)[13] classifiers. These were performed
using the WEKA 3.8.4 software. Three different combi-
nations of SSLs were used for each classifier. The first
involved all SSLs (n=6). The second omitted the four com-
plementary SSLs, leaving only the SSLST and SSLorth

leads. The third involved only SSLST . 10-fold cross vali-
dation was used to validate classifier performance.
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Figure 1. SSLST and SSLorth plotted for one recording.
PBI during RCA inflation

3. Results

The sensitivity (Se), specificity (Sp) and F1 score (F1)
were calculated for each SSL combination and classifier.
Table 1 shows the results. The highest overall performance
was using only SSLST with a Naive Bayes algorithm. The
sensitivity and specificity were 86.7% and 71.1% respec-
tively.

The chosen classifiers generally exhibited greater sensi-
tivity than specificity. It should be noted that these clas-
sifiers do not offer the facility to easily adjust thresholds
towards either sensitivity or specificity. Further work is re-
quired to facilitate this or a ROC curve based approach.
The C4.5 and Naive Bayes classifiers had similar perfor-
mances across lead combinations. Overall, sensitivity and
specificity were higher when only SSLST was used. The
MLP is an exception to this. Performance was consider-
ably reduced when a single SSL was used with MLP. This
classifier is a feed-forward classifier that relies on back-
propagation. A lack of input features may negatively affect



Table 1. Classifier performance for each combination of SSLs
Short Spaced Lead (SSL) Combination

Classifier SSLST SSLST & SSLorth All SSLs

C4.5 (J48)
Se (%) 86.7 86.7 80.0
Sp (%) 68.9 66.7 60
F1 (%) 79.6 78.8 72.7

MLP
Se (%) 53.3 80.0 75.6
Sp (%) 46.7 68.9 68.9
F1 (%) 51.6 75.8 73.1

Naive Bayes
Se (%) 86.7 84.4 82.2
Sp (%) 71.1 66.7 66.7
F1 (%) 80.4 77.6 76.3

Figure 2. Sensitivity (Se), specificity (Sp) and F1 score (F1) for different combinations of short-spaced leads (SSL)

its performance [14].

The 12-lead ECG classifier based on current diagnostic
criteria had a sensitivity and specificity of 62% and 93%,
respectively. This is comparable to the known 12-lead di-
agnostic capability [2]. Unlike the SSL-based classifiers,
the specificity is higher than sensitivity. The 12-lead ECG
has a higher spatial resolution than an SSL patch which
may increase specificity to ischaemic-type ECG changes.

Compared to the 12-lead ECG, the SSLST -based Naive
Bayes classifier was more sensitive. The bipolar lead of
the SSL is across the highest amplitude gradient on the
torso during the ST-segment. This will emphasise J-point
changes in this lead during ischaemia. The SSL is unspe-
cific in comparison. There is a lower distance between
electrodes compared to the 12-lead ECG. The 12-lead cri-
teria used age, sex and J-point changes, however, the SSLs
only used J-point changes.

Electrode placement errors affect the diagnostic capabil-
ity of lead systems. An SSL patch may be affected more
than the 12-lead ECG by misplacement. This may reduce
the sensitivity of STEMI detection.

3.1. Utility

An SSL patch is more convenient than the 12-lead ECG.
An unskilled operator could fit the patch prior to paramed-
ical intervention and recording of the 12-lead ECG. Addi-
tionally, such a device could be complementary to the 12-
lead ECG to increase performance. One proposed design
for such a device is using a four-electrode, two-lead patch.
SSLorth can be used for QRS detection while SSLST is
used for ST-segment monitoring. Figure 1 shows two SSLs
during PBI in the right-coronary artery.

There is no doubt that the performance of the 12-lead
ECG will be superior to that with a greatly reduced num-



ber of leads. Nevertheless, our work has indicated that
there is potential to greatly reduce the recording complex-
ity of the 12 lead ECG towards a patch based system. This
may greatly streamline the acquisition process. Our work
has introduced machine learning techniques and further re-
finement of these methods could bring the performance of
the patch based system closer to that of the 12-lead sys-
tem. Further work is required to allow us to tune the ML
techniques so that a better comparison can be made, in
terms of the sensitivity and specificity balance, with the 12-
lead ECG. A larger dataset of ischaemic-type ECGs will
also strengthen this comparison. Specifically we believe
there is a need to further evaluate the proposed patch based
leads in more complex MI disease cohorts, e.g. those with
multi-vessel disease. In addition we envisage that our fu-
ture work will also investigate the variations in placement
that may be encountered in the use of such a patch based
system whose application is not based on the well known
anatomical landmarks associated with 12-lead precordial
lead placement.

4. Conclusion

We have used ML techniques to evaluate the use of a
patch-based SSL system in the detection of myocardial
ischaemia. Out of nine different combinations of leads
and classifiers, a single SSL coupled with a Naive Bayes
classifier yielded the highest sensitivity/specificity combi-
nation (86.7%/71.1%). 12-lead ECG recordings and cur-
rent diagnostic criteria were used for comparison purposes
(62%/93%). Further research into patch placement, fea-
ture extraction and classification methods must be carried
out to truly evaluate the lead system.
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