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ABSTRACT

Creative rhythmic transformations of musical audio refer to auto-
mated methods for manipulation of temporally-relevant sounds in
time. This paper presents a method for joint synthesis and rhythm
transformation of drum sounds through the use of adversarial au-
toencoders (AAE). Users may navigate both the timbre and rhythm
of drum patterns in audio recordings through expressive control
over a low-dimensional latent space. The model is based on an AAE
with Gaussian mixture latent distributions that introduce rhythmic
pattern conditioning to represent a wide variety of drum perfor-
mances. The AAE is trained on a dataset of bar-length segments of
percussion recordings, along with their clustered rhythmic pattern
labels. The decoder is conditioned during adversarial training for
mixing of data-driven rhythmic and timbral properties. The sys-
tem is trained with over 500000 bars from 5418 tracks in popular
datasets covering various musical genres. In an evaluation using
real percussion recordings, the reconstruction accuracy and latent
space interpolation between drum performances are investigated
for audio generation conditioned by target rhythmic patterns.
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1 INTRODUCTION

Creative rhythmic transformations of musical audio are computa-
tional approaches for manipulation of musical sounds of varying
length (e.g., long, short) and accentuation (e.g., loud, soft) that are
grouped into patterns. Taking inspiration from capabilities offered
in digital audio workstations (e.g., [30]') and plugins (e.g., [4]?),
along with emerging research in the music and multimedia com-
munities, these transformations have become entrenched within
modern music production workflows. Recent advances in powerful
machine learning algorithms have given rise to new modalities of
synthesis and effects processing procedures, which in turn have
afforded new musical supportive systems for pitch, timbre and
rhythm manipulation for music arrangement and sound design.
Although various neural audio synthesis systems have been pro-
posed, the majority of these have focused on generation, interaction
and visualisation of pitched instruments, and relatively few have
explored generation of percussion instruments and transformations
of the underlying rhythmic patterns.
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In this study, an end-to-end model for neural audio synthesis is
created with the intention of performing rhythmic transformation
of drum sounds. System performance is measured in comparison to
three pre-existing algorithms on a new database of 5418 percussion
performances extracted from real music recordings. The aim of
this transformation is to assist musicians and music producers
during the composition and production processes and to develop
an understanding of meaningful low-level features for expression
in generation of target sound qualities.

1.1 Background

Early approaches for rhythmic transformation of audio signals
[23, 28, 45, 55] relied on signal processing techniques for sound
segmentation, pattern matching (i.e., segment alignment between
different metrical levels such as beats or note onsets), and time-
stretching (e.g., using a phase vocoder) to satisfy the target trans-
formation. Such methods rely heavily on the initial analysis of
the recording and are thus prone to artifacts (e.g., transient smear-
ing) caused by incorrect demarcation of temporally-relevant event
positions. In the recent years, deep generative models such as varia-
tional autoencoders (VAE) [33] and generative adversarial networks
(GAN) [22] have seen increasing success in various fields through
targeting the task of learning and manipulation of disentangled
feature representations. Disentangled representations denote tech-
niques that break down each input data feature into narrowly de-
fined variables to be encoded into separate dimensions. Multiple
machine learning models have been proposed in various domains,
such as computer vision (e.g., semantic analysis of images [10]),
natural language processing (e.g., sentiment modification in text
[20]), or speech synthesis (e.g., speaker identity modelling [29]).

In music, deep generative models have been applied to symbolic
music representations in [47, 51, 53, 54]; however, modelling of sym-
bolic music operates within a lower-dimensional space than raw
audio signals and constrains the output generations to sequences
of instructions for a fixed set of sounds. Concurrently, substan-
tial work has been performed in neural audio synthesis, where
the task constitutes modelling of higher-dimensional information
captured in the music content. Approaches to neural audio synthe-
sis can be divided into two categories: (1) time-domain (i.e., raw
audio) based, in which audio samples are optimised directly; and
(2) time-frequency domain (i.e., spectrogram) based, in which log
magnitudes of a short-time Fourier transform (STFT) are used as
input to a network, with the requirement of phase reconstruction
process during the inference time of the model.

The authors in [13] adapted the WaveNet architecture for raw
audio generation of piano performances at longer timescales across
tens of seconds. More recently, [12] presented a model based on
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vector-quantised variational autoencoder [46] for generating musi-
cal performances in the raw audio domain conditioned on styles
learned from different artists and genres. Engel et al. [19] condi-
tioned an autoregressive WaveNet [52] autoencoder on raw audio
to synthesise meaningful instrument note embeddings as portrayed
in the NSynth dataset.

Approaches operating in the time-frequency domain include
the work by [36] who trained a Gaussian mixture VAE to learn
disentangled representations of pitch and timbre for the synthesis
of concert instruments. Similarly, the authors in [5] synthesised
orchestral instruments through adversarial latent training with
Wasserstein autoencoders (WAE) [48]. A similar approach was used
by [1] for synthesis of short (i.e., one-shot) percussion samples.

Alternatively, GANs have been used to jointly model log magni-
tude spectrograms and phases for a fast neural audio synthesis [18]
as well as for raw audio synthesis of one-shot drum sounds in [17].

1.2 Motivation

The motivation of this work is derived from the popular task of
redrumming [35, 49] that is present in a professional music produc-
tion setting. Here musicians, desiring a certain sound or aesthetic
influenced by the style of artists they admire, replace the rhyth-
mic pattern of drums in their recordings (i.e., source) with that
from an idealised recording (i.e., target). Previous methods used for
achieving this effect relied on signal processing procedures that
would ultimately cascade errors through various stages of the trans-
formation. Modern advances in neural audio synthesis allow for
generation of new audio sequences trained on large quantities of
data; however, not many focus on the rhythmic aspects of such
transformations.

The goal of this work is to extend the possibilities of the cur-
rent redrumming procedure to facilitate the creation of new drum
arrangements from arbitrary audio inputs. The proposed model
achieves redrumming by synthesising the individual drum instru-
ments to imitate the source recordings with the rhythmic pattern
of the target.

To achieve a redrumming effect, the proposed model seeks not
only to synthesise individual drum instruments, but also to extend
neural audio synthesis to include the manipulation of rhythmic
patterns within bar-length segments of arbitrary percussion record-
ings. A major contribution of this paper is the development of a
system that does not require tedious discretised note segmentation
or rhythmic event selection prior to transformation. A user is given
the freedom to manipulate the structure within a bar without re-
liance on discrete identification of rhythmic boundaries towards
a continuous transformation. This is achieved with the proposed
framework based on Gaussian mixture adversarial autoencoders
(AAE-GM) conditioned on rhythmic patterns present in real music
recordings.

The remainder of this paper is structured as follows: Section 2
presents the proposed method for combined drum synthesis and
rhythmic transformation of audio using adversarial autoencoders.
Experimentation methodology and the dataset used for the study
are detailed in Section 3 and results and discussion are provided in
Section 4. Conclusions and future work are presented in Section 5.
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Figure 1: Proposed architecture for joint drum synthesis and rhythm
transformation. Input data x is mapped onto a latent variable z ~
q(z|x). Encoder E tries to trick discriminator D with artificially gen-
erated latent samples and generator G outputs spectrograms x. A
Gaussian prior distribution z ~ p(z) (star) allows the model to juxta-
pose similar rhythmic patterns in the latent space. Solid lines represent
deterministic operations of the network and dashed lines represent
stochastic operations.

2 METHOD

An overview of the proposed method for joint drum synthesis and
rhythmic transformation is presented in Figure 1. The system is
based on adversarial autoencoders introduced in [37] and is in-
spired by adversarial audio synthesis approaches in [5, 16, 18]. To
achieve both drum synthesis and rhythmic transformation in a uni-
fied architecture, the proposed model originally extends adversarial
audio synthesis to include a regularisation based on a Wasserstein
GAN adversarial framework for the transformation of rhythmic
and timbral qualities of drum recordings. It supports an AAE with
gradient penalty and Guassian mixture prior for conditional disen-
tanglement of rhythmic pattern styles.

2.1 Adversarial Autoencoders (AAE)

While similar in design to VAE [33], adversarial autoencoders (AAE)
appropriate the additional discriminator network D from GANS,
which aims to distinguish between real and fake (i.e., synthesised)
samples. Real samples are sampled from an assumed prior distri-
bution p(z) imposed on the latent variables z, while fake samples
are generated through the use of an encoder E conditional distri-
bution g(z|x). The decoder (i.e., generator network G) conditional
distribution is denoted by p(x|z). In practice p(x|z) and g(z|x) are
parameterised with neural networks and sampling from q(z|x) is
performed using a reparameterisation trick [33]. Let p;(x) be the
data distribution of data sample x, and py(x) be the distribution of
data generated by the model. The encoder defines an aggregated
posterior distribution q(z) on the z as follows:

4(2) = jq(zmpd(x). W

Following the more general formulation for GANs [40], the adver-
sarial component of an AAE can be trained as:



minmax V(E, D) = E;.p(z) /(D)
+ B0 f (CDE)],

where E[-] denotes expectation and objective V is optimised by
alternating parameter updates of encoder E and discriminator D in
a min-max game characteristic of GAN models. When the concave
function f : R — Ris set to f(x) = —log(1 + exp(—x)), the formu-
lation resembles that of the GAN by [22]. The Wasserstein GAN
(WGAN) criterion [2] can be obtained by setting f(x) = x.

The parameters of the autoencoder are optimised by the recon-
struction error, while the adversarial network guides the encoder
to match the imposed prior. Thus, the encoder plays the role of
the generator during the adversarial part of training, while the dis-
criminator represents the adversarial network of GANs. After train-
ing, decoder G acts as a generative model that maps the imposed
prior to the data distribution. Training of an AAE is performed in
two phases: (1) the reconstruction phase and (2) the regularisation
phase. In the reconstruction phase the reconstruction error of E
and G is minimised together and in the regularisation phase, the
parameters of the discriminator D are first updated by minimis-
ing Lp = -V(E, D) (i.e., to distinguish true samples generated by
the prior from the generated codes processed by the autoencoder).
The adversarial network then updates the encoder to confuse the
discriminator. When combined, the two terms represent L;,;4; as
follows:

@)

Liotal = BCE(pg, pg) + BLwGAN-GP (3)
where BCE denotes binary cross-entropy reconstruction cost be-
tween the original data samples |S| (i.e., magnitude spectrograms
in this study) and their reconstructions 1] as:

BCE(S, S) = —[Slog$ + (1 — S)log(1 — 5)]; S| < 1. @)

The second term in Equation (3) is the WGAN with gradient penalty
(WGAN-GP) loss with weighting f from [25], proposed as an im-
proved solution to gradient clipping in adversarial training of the
discriminator, computed as:

Lwean-cp = LD + B, [(||V2DEX))||-1)], (5)
where % represents a randomly weighted average between real
and generated samples. Following [25], we set A = 10. During the
regularisation phase, this term imposes regularisation on latent
variables z and can be trained end-to-end with gradient descent.

2.2 Implementation

Details for the proposed adversarial autoencoder with Gaussian
mixture prior (AAE-GM) are presented in this section. All neural
network models are implemented using the TensorFlow Python
library.3

2.2.1 Input Features. Following the approach in [5], input audio
(16-bit 22.05 kHz mono WAV files) is transformed with short-time
Fourier transform (STFT) using a Hanning window with a window
length of 2048 samples and a hop size of 324 samples to facilitate the
desired temporal resolution of the network input. Mel-spectrograms
are created from audio inputs of length of 41344 samples correspond-
ing to a bar segment of 1.87s duration at 128 beats per minute (BPM),

3https://www.tensorflow.org/

resulting in the network input S of size 512 bins by 128 STFT frames.
Every bar is normalized to this duration by a time-stretching algo-
rithm. Magnitudes of S are floored to 1e-3 and log-scaled in [0,1]
according to the BCE range. Rhythmic pattern styles ¢ = 11 (i.e.,
classes as clustered attributes of S) are used in supervised training
and are defined in Sections 2.3 and 2.3.4.

2.2.2 Architecture. The selected models are based on architec-
tures used by [5, 16, 18], and are modified accordingly to facilitate
modelling of rhythmic patterns studied in this work. All convolu-
tion layers are 2-d with square kernels and zero-padding of half
the kernel size (i.e., same padding) and 2-d feature normalization.
All fully-connected layers are followed by 1-d feature normaliza-
tion. All normalizations use the batch normalization algorithm
by [31]. The non-linear activations are leaky rectified linear units
(LeakyReLU with slope of 0.2). The deterministic encoder has 5 con-
volution layers with [16, 32, 64, 128, 256] output channels, a kernel
size of 7 and stride 2. This downsampled representation with 256
feature maps of the input spectrograms is reshaped to 16384 values
and followed by a bottleneck of 3 fully-connected dense layers with
output sizes [2048, 1024, 512]. Two fully-connected layers y and o
are used for sampling z with the reparametrisation trick [33], thus
mapping the input to the latent space z € RNz, where N, = 64. The
decoder mirrors the structure of the encoder with 3 linear layers of
output sizes [512, 1024, 2048] and a layer reshaping the vector into
256 feature maps. The following convolution layers use nearest-
neighbour upsampling, a fast solution that was demonstrated to
mitigate the creation of known checkerboard artifacts of transposed
convolutions [42]. These maps are processed through 5 layers with
an upsampling factor set to 4 and convolution layers with [128, 64,
32, 16, 1] output channels, kernel sizes [7, 7, 7, 9, 9] and stride 2. The
last layer reconstructs the input shape of S (128x512) followed by a
sigmoid activation function bounding the output to the BCE range.
The adversarial discriminator consists of 3 fully-connected layers
with output channels [2048, 2048, 1], where the last linear layer
outputs the final score used to compute a scalar measure of how
well the latent variable resembles the imposed prior distribution.

2.2.3 Representation of Prior Distribution. The authors in
[37] observed that VAEs are largely limited by the Gaussian prior,
and thus relaxed this constraint by allowing p(z) to be any dis-
tribution by replacing the KL divergence with an adversarial loss
imposed on the encoder output. Thus the latent variable z is re-
quired to have the same aggregated posterior distribution as the
prior p(z). The AAE framework makes it possible to leverage any
prior knowledge that may be specific to the studied application.
In this work, an isotropic Gaussian with 0 mean and I variance
is used as a baseline, and compared against a prior distribution
that is a mixture of £ N,-dimensional Gaussians, where ¢ denotes
the number of rhythmic pattern styles as defined in Section 2.3.
This distribution can be depicted with a 2-d flower-like shape and
allows modelling of a variety of similar rhythmic styles by pushing
their latent codes to the center of the N,-dimensional distribution.
Following the notation by authors in [51], the means of £ Gaussians
are placed on a 2-d circle as:

i = [cos (@) sin(@) 0 0] (6)
i = § s f ,0,..,0],
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Figure 2: Rhythmic transformation of source (left) with intermediate pattern (middle) and resulting output transformation
(right). Rhythmic envelopes (bottom) show changes to the rhythmic pattern as the latent code is manipulated via parameter q.

where y; has a total of N, dimensions. The covariance matrix ¥; is
calculated as:

[ cos(¥Z)  sin(2Z),
_ ’ &

vi »—sin(% cos(%) ’ @)
>vl.T 0

Ui = 0 I]’ ®)

_ al 0
A= | 0 diag(az)] ’ ©)
3 = UAU Y, (10)

where U; and A are N, X N, matrices. The variance a; = 0.1 for the
radial (i.e., center-to-outer) dimension, and variance az = 0.001 for
the remaining dimensions. The matrix Uj is used to rotate A with
respect to the position of the specific Gaussian. Thus, each of the
& rhythmic pattern styles is associated with a separate Gaussian
where patterns that are more similar are still able to be organised
closer to each other.

2.24 Training. The model is trained using Adam optimiser [32]
with an initial learning rate of 1e—4. All model weights use Xavier
uniform initialisation [21]. The model is trained for around 100000
iterations for approximately 2 days using 4 Tesla V100 GPUs with
a total batch size of 128. When training AAE-GM, the f§ parameter is
gradually increased by 0.1 every 5000 iterations.

2.2.5 Signal Reconstruction. Mel-spectrograms generated by
the trained model can be approximated back to the linear frequency
scale and iteratively inverted with the Griffin-Lim algorithm [24]
for 100 to 300 iterations.

2.3 Rhythmic Transformation

An overview of the rhythmic transformation is shown in Figure 2.

A source recording is reduced to rhythmic-timbral representation
output from a deterministic encoder and is passed to the generator
together with a target pattern label. This latent code can be used
to manipulate metrically relevant positions of drum instruments
within a bar with mixing parameter a.

2.3.1 Representation of Rhythmic Patterns. Information related to
rhythmic patterns is introduced during model training in order to
guide the output generations towards particular target patterns.
Audio tracks are first separated into a drums component and music
parts (e.g., vocals, bass, other) with the Spleeter source separation
library [26].# Next, audio tracks are segmented into bars b using
the state-of-the-art beat and downbeat tracking algorithm [9] in-
cluded in the madmom Python library [7].> Rhythmic patterns
are represented with rhythmic envelope features processed with
LogFiltSpecFlux from madmom, which performed well in onset
detection function comparisons conducted in [8], for N (N = 3)
frequency bands representing low (lowpass: 120 Hz), mid (band-
pass: 120-2500 Hz) and high (highpass: 2500 Hz) contents of drum
performances in each bar b. Following the authors in [14, 28], b
features are resampled to a length of 144 time steps t and nor-
malised to ranges between 0 and 1. The resulting M number of
patterns is represented by a template matrix r € RMXNxt, Figure 3
shows an example bar-length drum recording with the proposed
representation of three rhythmic envelopes plotted together.

2.3.2  Clustering of Pattern Styles. Building on past research for
rhythmic pattern modelling [15, 34, 43], an unsupervised cluster-
ing strategy via X-means [44] algorithm is proposed in this work.
X-means is an unsupervised extension of the popular K-means
algorithm, which does not require the predetermined K number
of clusters prior to classification. The framework requires spec-
ification of the range within which K reasonably lies, and then
jointly outputs the number of centroids together with a value for
K that scores best by a model selection criterion such as Bayesian
information criterion (BIC).

Centroid initialisation is known to influence clustering results
in both K- and X-means algorithms, and as such results can be
improved through informed initialisation. All experiments in this
study incorporate K-means++ initialisation [3] with prior knowl-
edge of rhythmic patterns extracted from transcriptions of the 50
most frequent kick, snare and hi-hats patterns from over 4.8 million

“https://github.com/deezer/spleeter
Shttps://github.com/CPJKU/madmom
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Figure 3: Bar-length drum pattern definition using three fre-
quency bands (low, mid and high).

bar-length drum patterns [38].% Patterns are resampled to satisfy
the structure of rhythmic template matrix r € R30X3%144,

2.3.3  Pattern Conditioning and Interpolation. In order to introduce
conditioning based on rhythmic pattern styles, each input feature
S used during training is assigned a categorical variable taking one
of the & number of style states found through X-means clustering.
During the reconstruction phase, one-hot encoded conditioning
vectors for £ rhythmic styles are concatenated with inputs to the
generator G. The basis for a suitable £ number of rhythmic pattern
styles is presented in Section 2.3.4.

Interpolations in the latent space allows for the mixing of two
different drum patterns. As the transformation is continuous, a
gradual change is achievable from the source rhythmic pattern
to the target pattern. The intermediate latent codes are produced
using a linear interpolation between source and target latent codes
such that:

zZ= AZtarget + (1 - @)zsource (11)

where « is an interval between [0,1]. The interpolated codes z are
fed into the generator, which outputs the mixed bar-length drum
performances.

2.3.4  Pattern Style Definition via X -means. Determination of a
suitable number of rhythmic patterns ¢ is achieved through the
X-means algorithm using BIC scores calculated across K = [5, 50]
with a maximum number of clusters set to 100. As in [14], a pattern
resolution of ¢t = 144 is used. Rhythmic envelopes are smoothed for
different standard deviations ¢ = [0.2, 0.6, 0.8] covering a range of 4
timesteps at a time. Convergence was most frequently observed at
K =11 with¢ = 0.2.

3 EXPERIMENTS

The model proposed in Section 2 is assessed through an experiment
to determine (1) the rhythmic pattern organisation in the latent
space structure, (2) an evaluation of the audio reconstruction per-
formance compared with similar AE models, and (3) an evaluation
of the transformation quality between source and target patterns
through latent space interpolation. In this section the dataset, exper-
imental methodology and baseline systems under evaluation are
presented.

Shttp://isophonics.net/ndrum

3.1 Data

This project makes use of three publicly available datasets: (1) DALT
(4116 tracks) [39], (2) Harmonix (HMX 807 tracks) [41], and (3) HJDB
(227 tracks) [27], as well as a private collection of 268 jazz, funk
and R&B (JFRB) recordings. The resulting dataset contains 5418
musical pieces of polyphonic sound mixtures having various kinds
of instruments and represents a wide variety of genres and rhythmic
patterns. All audio recordings are in 16-bit mono WAV format and
resampled to 22.05 kHz. To facilitate modelling of rhythmic patterns,
those tracks are segmented into bars using the state-of-the-art
downbeat tracking algorithm by [9].

In order to model rhythmic patterns from percussion instruments
present in the dataset, source separation is performed with the
pre-trained 4stems model provided in the Spleeter library [26] to
extract drum sounds from music sound mixtures. The resultant
drum parts are used in two ways: (1) as training inputs described
in Section 2.2.1, and (2) for rhythmic pattern modelling described
in Section 2.3. In both scenarios, tracks with time signatures other
than 4/4 or with an amplitude < 0.2—due either to empty bars or
poor source separation—are excluded. After filtering, the data is
represented by 5418 tracks with a total of 510859 bars. Assessment
of the dataset tempi results in a median tempo of 128 BPM. To
facilitate appropriate representation of a wide range of rhythmic
patterns, all bar-length segments are time-stretched to a fixed tempo
of 128 BPM with the Rubberband library.” The dataset samples are
distributed among training (80%), validation (10%) and test sets
(10%) with an equal distribution of bars per & rhythmic pattern
styles throughout all sets during training.

3.2 Experimental Methodology

In order to view the organisation of the learned latent space, its
structure is visualised with 2-d and 3-d plots for each of the rhyth-
mic classes ¢ with principal component analysis (PCA) portraying
differences between two different prior distributions.

The ability of the proposed model to generate spectrograms is
evaluated using both timbral and temporal reconstruction metrics:
root-mean squared error (RMSE), log-spectral distance (LSD) and
cosine similarity (CS). The LSD is calculated as follows:

LSD = [ >[10 Tog,(Is1/ISDI?. (12)

Following [11, 50], temporal reconstruction of the generations is
evaluated with cosine similarity (CS) between rhythmic envelopes R
(see Section 2.3) extracted from source y and generated v recording
as follows:

Ry Ry
IR MIRVII

CS will be close to unity for very similar patterns and nearer to
zero for dissimilar patterns. All reported experiments in the follow-
ing sections use 1000 patterns from each ¢ rhythmic pattern style,
resulting in a total of 11000 evaluation audio examples.

To evaluate the continuity of the transformations, latent space
interpolations between rhythmic patterns are performed using
Equation (11). Scores for each metric are calculated between the

CSyv=1- (13)

https://breakfastquay.com/rubberband/
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Figure 4: PCA visualisations of the baseline AAE-IS0 (top)
and the proposed AAE-GM (bottom) with 2 PCs (left) and 3 PCs
(right) for 11 rhythmic styles.

source recording and the resulting rhythmic transformation. Re-
construction scores for all examples are scaled to range [0,1] and
averaged for different a.

3.3 Baseline Systems

In addition to the proposed Gaussian mixture AAE (AAE-GM) archi-
tecture, three additional models are implemented for comparisons:
(1) AAE using isotropic Gaussian prior distribution (AAE-IS0), (2)
variational autoencoder (VAE), (3) a Wasserstein autoencoder with
maximum mean discrepancy (WAE-MMD) regularisation. All models
share the same architecture implementations and are trained in a su-
pervised manner. The proposed AAE-GM uses a regularisation based
on a WGAN adversarial framework—including a gradient penalty
with Guassian mixture prior for conditional disentanglement of
rhythmic pattern styles—for the transformation of rhythmic and
timbral qualities of drum recordings. As a comparison for the rhyth-
mic transformation capabilities of the presented AAE-GM model,
the audio synthesis framework using WAE-MMD [5] is here modi-
fied to act on longer timescales as present in bar-length patterns.
We follow the WAE-MMD implementation without the conditioning
module proposed by the authors in [5]. In the case of VAE, the model
minimises the evidence lower bound objective [33] with isotropic
Gaussian latent distribution. The WAE-MMD uses BCE reconstruc-
tion loss where the regularisation from Equation (3) is replaced
with maximum mean discrepancy (MMD). MMD represents a dis-
tance measure between the samples of the distributions x ~ p(x)
and y ~ q(y) and was proposed as a more flexible regularisation
to Kullback-Leibler divergence used in a vanilla VAE [5]. MMD
defines a differentiable divergence and was developed as a distance

VAE WAE-MMD AAE-ISO AAE-GM

LSD | 34.26 34.23 34.28 34.37
RMSE | 0.39 0.38 0.38 0.38
CS 0.67 0.84 0.84 0.82

Table 1: Reconstruction scores shown for three baseline models
and the proposed AAE-GM.

between probabilistic moments ¢, 4 that map to a general repro-
ducing kernel Hilbert space as follows:

18p — dqllZ= (bp — bq: $p — B¢
= Ep pk(x, x") + Eq qr(y. y") (14)
—2Ep gk (x, y),

where E,, 4 is the expectation that is evaluated with a radial basis
kernel function «:

[lx + yll?

K(x,y) = exp (W) . (15)

4 RESULTS AND DISCUSSION

4.1 Latent Space Structure

The 64-d latent spaces for AAE-GM and VAE are visualised in 2-
and 3-d in Figure 4 using PCA. PCA ensures that the visualisation
is a linear transform of the original space, and thus preserves the
real distances inside the latent space. As can be seen, it is not pos-
sible to distinguish between the different rhythmic pattern styles
in AAE-IS0 without the Gaussian mixture prior. The effect of the
proposed AAE-GM with Gaussian mixture prior can be clearly seen
with more visibly organised clusters in both 2-d and 3-d PCA repre-
sentations. When analysing mean rhythmic pattern representations
as clustered by the X-means algorithm, pattern types 0 (purple) and
6 (green) represent disparate rhythmic styles—style 0 is typified by
a clear 16th-note pattern and style 6 is an 8th-note pattern with an
accent on the second beat of the musical measure.

4.2 Reconstruction Performance

The reconstruction performance scores of the proposed and baseline
models are shown in Table 1. The mean LSD and RMSE scores
describe the spectral reconstruction quality of generated audio
spectrograms with regard to the original. The results for mean LSD
and RMSE indicate that the proposed AAE-GM model achieves a
similar level of reconstruction quality as the other approaches. The
CS score quantifies how similar are the rhythmic envelopes of the
newly synthesised audio in comparison to the original. Although
the reconstructions from the AAE-GM, WAE-MMD and AAE-ISO all
contain a degree of noise, the results of these three systems achieve
comparable CS (>0.8). The CS for the VAE is considerably lower,
likely due to the reconstructions being generated with a more
substantial amount of noise.

The reconstruction CS score shows high similarities of the gen-
erations in the temporal domain, whereas LSD and RMSE scores
outline the challenging aspects of synthesising realistic audio with
neural networks. It is anticipated that reconstruction quality would
also be improved with audio that has not been manipulated through
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Figure 5: Example of interpolations between two rhythmic
patterns.

time-stretching, improved filtering of noisy patterns, and larger
architectures with dilated convolutions with skip connections to
help consolidate more information into the network. To mitigate
the artifacts of the time-stretching effect, it would be useful to in-
vestigate the potential of variable-length features for training of
neural networks. The transformation would also benefit from addi-
tional drum placement information provided by automatic drum
transcription.

4.3 Latent Space Interpolation

One of the chief characteristics of a well-trained latent represen-
tation is its ability to generate meaningful samples based on em-
beddings created by performing linear interpolation (Section 2.3.3).
Smooth transitions in the latent space are desired in a user-controlled
sound transformation [5, 6]. Figure 5 demonstrates a transforma-
tion between two different types of rhythmic patterns and different
instruments (e.g., purple kick drum transforms into a red snare
drum at around 0.5s). Notably, the temporal positions of the last
two events in the source audio (i.e., purple kicks after 1.0s) are
gradually shifted in time as they are morphed into a single softer
and higher pitched sound event at « = 0.5 before it disappears
completely at a = 0.75.

To analyse the effect of the rhythmic transformation for the
intermediate « values, all audio examples in the test set are inter-
polated to randomly chosen target patterns. Figure 6 depicts the
reconstruction scores for all 11000 transformations. As expected,
the CS decreases as the transformation moves output audio further
away from the source. As the transformation operates on audio con-
taining percussion only, the intention is not to adjust the spectral
content by a large margin. The scores for RMSE reflect that charac-
teristic by not varying considerably throughout the interpolation,

0.8
0.6
o o—o—o——w
0.2
—e— LSD
—o— RMSE
0.0 cs

source 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 target
o

Figure 6: Reconstruction scores for interpolations between
source and target rhythmic patterns. The results are calcu-
lated as mean of 11000 transformations per each interpolated
value for a.

indicating that the spectrogram reconstruction quality remains sim-
ilar. On the other hand, LSD mirrors the behaviour of CS indicating
change in the spectral contents moving towards a novel target spec-
trogram after transformation. This can be equivalent to moving and
removing an event in one position or transforming it into another
instrument.

Audio examples and additional experiments are available on a
supplementary website.?

5 CONCLUSIONS AND FUTURE WORK

We propose a novel method for combined drum synthesis and
rhythmic transformation akin to the popular task of redrumming.
We provide user control to continuously navigate among complex
rhythmic possibilities by interpolating through a low-dimensional
latent space. This is achieved by integrating Gaussian mixture latent
distributions for rhythmic pattern conditioning with state-of-the-
art adversarial autoencoders. To train and evaluate the system, we
collected and annotated a dataset of over 500000 bars from 5418
audio tracks from a variety of musical genres. Our experiments
confirmed the importance of the structure of the disentangled latent
distributions that relate to rhythm and timbre. In future work, we
will investigate evaluation metrics for latent space organisation
and rhythmic transformation, as well as the effects of additional
musical conditioning techniques for different prior distributions.
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