
Freehand Grasping: An Analysis of Grasping for Docking Tasks in Virtual
Reality

Figure 1: Virtual environment for grasp patterns elicitation study. Equant, Prolate, Oblate, Bladed virtual objects were randomly
positioned on the table, each of the objects having a corresponding target object (highlighted in green). At the end of the docking
task all objects had to be in the target position and rotation.

ABSTRACT

Natural and intuitive interaction in VR as grasping virtual objects,
is still a significant challenge and while recent studies have begun
to explore interactions that aim to seamlessly create virtual envi-
ronments that mimic reality as closely as possible, the dexterous
versatility of the human grasp poses significant challenges for usable
and intuitive interactions. At present the design considerations for
creating natural grasping based interactions in VR are usually drawn
from the body of historical knowledge presented for real object
grasping. While this may be suitable for some applications, recent
work has shown that users in VR grasp virtual objects differently
than they would grasp real objects. Therefore, these interaction
assumptions may not be directly applicable in furthering the natural
interface for users of VR, presenting an absence of knowledge on
how users intuitively grasp virtual objects. To begin to address this,
we present two experiments where participants (N=39) grasped 16
virtual objects categorised by shape in a mixed docking task explor-
ing rotation, placement and target location. We report on a Wizard of
Oz methodology and extract grasp types, grasp category and grasp
dimension. We further provide insights into virtual object categori-
sation for assessing interaction patterns and how these could be used
for developing natural and intuitive grasp models by parameterizing
grasp types found in these experiments. Our results are of value to
be taken forward into a framework of recommendations for grasping
interactions and thus begin to bridge the gap in understanding natural
grasping patters for VR object interactions.

Keywords: Hand Interaction, Grasping Virtual Objects, Virtual
Reality Interaction

1 INTRODUCTION

Virtual Reality (VR) headsets are currently experiencing an un-
precedented growth in consumer availability [56], changing the way

people communicate [58], play [46], work [47] and learn [40] via
achieving high levels of user immersion [6].

These applications aim to achieve high user performance, and
therefore need to mimic reality as closely as possible and enable
highly immersive environments and natural interactions [36]. To
achieve this, researchers have focused on developing VR interactions
that use the human hand as an input tool [1], taking advantage of its
multiple degrees of freedom [63] and the human ability to use hands
for acquiring and manipulating objects with ease [57].

Hand interactions relying on predefined gestures have been ex-
tensively explored during the past years [25], however, researchers
showed that these interactions are predominantly designed for opti-
mal recognition rather than for naturalness, often not being intuitive
enough [59]. Considering this, researchers focused on interactions
that act physically on the virtual objects [68], also known as grasp-
ing.

Grasping is the primary form of manual interaction between
humans and the physical world [2] and is defined as every static
posture at which an object can be held securely with a single hand
[33]. While grasping real objects has been highly explored before
[61], grasping virtual objects in a natural manner is still a challenge
[60].

Tasks have been explored in the context of real object grasping,
showing that grasping patterns are primarily influenced by object
characteristics [32] and the task to be performed [31]. Moreover, it
has been shown that the task to be performed also plays an important
role for virtual hand interactions, researchers designing a variety of
tasks such as pointing, reaching and tilting [53] or moving, rotating
or scaling [3] were used to assess user performance and patterns for
interaction and showed that different tasks require different interac-
tion approaches when manipulating virtual objects [7, 59]. However,
the influence of task properties on freehand grasping interaction pat-
terns has not been yet defined. Furthermore, a rich understanding of
virtual object categorisation inspired by Zingg’s methodology [76]
is also novel for this work.

To define intuitive gestural preferences, researchers conducted
elicitation studies [28] to get insights into how to achieve interac-
tions that are natural and intuitive to the users [74]. Following this
approach, and aiming to begin to address the gap previously men-



tioned, we conduct two elicitation experiments and involve the user
in defining grasp patterns for virtual object manipulation docking
tasks in VR. We ask users to intuitively grasp virtual objects and
perform mixed docking tasks (placement and orientation).

We further discuss our results which provide insights for designers
of interactive 3D hand interactions for determining the most suitable
grasp type that should be used for triggering interaction based on
the virtual object characteristics and the task to be performed. We
contribute by providing insights into virtual object categorisation
using Zingg’s methodology [76] for assessing interaction parameters
as well as the influence of object characteristics on grasping patterns
and how these could be further developed into natural and intuitive
grasp models.

This paper is structured as follows: Section 2 presents the back-
ground and related work, notably literature on interaction in VR,
grasping virtual objects and elicitation studies. Section 3 presents
the methodology for the first experiment and Section 4 presents the
methodology for the second experiment. Section 5 presents metrics,
namely labelling the grasps methodology along with the grasping
metrics. Section 6 presents the results in terms of grasp types and
grasp dimension, Section 7 presents discussion around the results
and design recommendations and conclude in Section 8.

2 BACKGROUND

2.1 Interaction in Virtual Reality

With VR being highly used for training [54] or simulations [67],
creating highly immersive environments with high visual and inter-
action fidelity is now of huge interest for researchers [36]. Interac-
tions in VR were initially focused around using physical props [37],
however, more recent work focused around achieving high fidelity
interactions, that are known to play an important role in increasing
immersion in virtual environments [39].

Recent VR systems use the hand, the most powerful tool through
which we interact with the surrounding world, as the main interaction
tool [1]. However, when creating bare hand interactive systems,
aiming to provide seamless and intuitive interactions, researchers
have focused on a natural approach known as grasping [2].

This natural interaction with objects in VR plays an important
role in increasing immersion in virtual environments [39], however
is still one of the ongoing interaction challenges in VR [60]. The
next section introduces studies that used docking tasks to assess
interaction in virtual environments.

2.1.1 Docking Tasks

Target acquisition is one of the most elementary interactions in 3D
environments [29]. However, the interaction choice, a critical factor
in usability and performance of VR systems, is highly influenced by
the task to be performed after target acquisition stage [52]. There-
fore, researchers have used variations of tasks such as placement,
orientation and docking to assess aspects of virtual object manipula-
tions [30, 52]. Docking is a more sophisticated task that combines
point or volume matching with orientation matching [64] and has
been highly used by researchers for assessing interaction metrics
under different experiment conditions in VR environments. Vuib-
ert et al. [71] used a docking task to assess gross motion and then
fine-tuning once near the target and compare different interaction
methods based on accuracy and completion time. Bai et al. [4]
implemented rotation and translation tasks for mid-air object 3D
manipulation and proposed a comprehensive repertoire of 3D ma-
nipulation operations to manipulate objects. Boritz et al. [9] created
placement and orientation tasks to assess different visual feedback
modes and showed that target position and orientation on a docking
task have a significant effect upon user performance in VR.

While we show that docking tasks have previously been used in
VR interaction studies, grasping interaction patterns while perform-

ing docking tasks were not explored before. Next section presents
grasping literature.

2.2 Grasping Virtual Objects
Researchers have investigated human’s approach to grasping real ob-
jects, aiming at understanding certain aspects of human hand usage
[61], as well as classifying grasps in a discrete set of types [23, 34].
However, this knowledge cannot be directly applied to grasping
virtual objects, as it has been identified that users interact with
virtual objects differently than they interact with real objects [51].
Therefore, virtual grasping has been explored as a technical chal-
lenge [10, 11], with the aim of enabling users to manipulate virtual
objects as if they were real [2, 13]. However, current approaches
predominantly rely on computed grasps, not taking into account
humans’ grasping actions [41]. However, these limitations can be
addressed by closely analysing human actions while grasping ob-
jects in VR [69]. Accordingly, Blaga et al. [8] analysed human
actions while grasping virtual objects by investigating the influence
of thermal visual cues on grasping in VR, to understand how vir-
tual environments influence grasping approaches. However, this
study only investigated one virtual object (the mug) and was only
looking at thermal visual cues. To understand how other interaction
metrics that are known to influence grasping in real object manipu-
lation, such as object characteristics [32] and task properties [31],
we conduct two elicitation experiments. The next section introduces
elicitation studies and how they play a key role in defining interaction
patterns.

2.3 Elicitation Studies
Gesture elicitation methodology [73, 75] has proven immensely
resourceful for designers to form an understanding of users’ men-
tal models of gesture interaction. Since its first implementation
for multi-touch gestures [75], the methodology has been reapplied
for a variety of gesture types and applications [18], focusing on
involving the user and revealing their preferences for interactive
gestures, therefore accumulating important interaction design knowl-
edge. Wobbrock et al. followed this methodology to define gestures
for tabletop interactions, conducting an elicitation study that assesses
users’ gesture when executing specific tasks. Before the study be-
gan, the three authors independently designed their own gestures,
and proved that, even combined, authors only covered 60.9% of
the set proposed by the users, showing the impact of elicitation on
understating interaction patterns. Elicitation studies have also been
used to define intuitive gesture-based interfaces for applications such
as: multi-touch gestures for mobile devices [55], communicating
between multiple devices, such as mobile-phones, public displays,
tablets and tabletops [45] or interactive storytelling in VR scenar-
ios [44].

One of the outcomes of these elicitation studies, is a set of recom-
mendable gestures together with an estimation of users’ consensus
or agreement [73], playing an essential role and being a first step
into improving natural interactions. However, elicitation studies
for grasping patterns when performing docking tasks have not been
performed yet. We therefore conduct two experiments to under-
stand the influence object characteristics and task properties have on
grasp patterns. The next section introduces the methodology for the
experiments.

3 EXPERIMENT 1 [E1]
3.1 Apparatus
We built a custom experimental framework using the Oculus DK2
VR headset and the Leap Motion device. Additionally, we used a
Logitech Pro 1080p HD webcam positioned on top of the Oculus
DK2, based on the methodology of [8] to record participants’ hand
from the user’s perspective at all times. The system was developed
using C#, Unity 2018.2 and Leap Motion 4.0 SDK. The Leap Motion



(a) Apparatus (b) Hand Model

Figure 2: System configuration, with (a) displaying the overall test
configuration and (b) displaying the virtual hand used for interaction

Controller was attached to the HMD, facing the user’s hands. The
virtual interaction space was 60 cm×60 cm×60 cm and the starting
position was the same for each participant. The setup and equipment
are shown in Figure 2 (a).

3.2 Hand Representation

The use of avatars and avatar representation in VR has received
significant attention from the research community exploring how
it affects the sense of body ownership and agency [43]. While
additional visual aspects such as human-likeness [48], or gender [65]
of the virtual representation have shown to influence ownership
illusion as well as user performance, when comparing between
androgynous human 3D models for grasping virtual objects, no
significant differences were found [8]. Therefore, we chose an
androgynous model, following Schwind et al. recommendation for
avoiding noticeable gender characteristics in human hands [65] as
shown in Figure 2 (b).

3.3 Referents

Previous user elicitation studies have used pictorial [74] or animated
[59] referents to encourage participants to develop their own set of
gestures based on showing the effects (referents) these will have on
the system. When grasping a real objects, humans know how an
object should be grasped based on its characteristics and the task to
be performed [32]. Therefore, we present known real life object in
VR, along with orientation and placement tasks as referents in our
elicitation experiments, as they inherently provide insights into how
the object should be grasped.

3.3.1 Virtual Objects

A representative set of 16 daily life virtual objects from the
“Yale–Carnegie Mellon University–Berkeley Object and Model Set”
[16], a reference for objects of daily life [19] were used. We fol-
lowed the methodology of [31,32] for investigating grasping patterns
when manipulating real objects and categorised our subset of virtual
objects in four categories by applying Zingg’s methodology [76].

Zingg defined “A” as the longest dimension of an object and “C”
the shortest, being “B” the remaining dimension. He defined a con-
stant R to define the relationship between dimensions and categorise
the object; determining that the value at which one typically regards
two axes to be different is about R=3/2 [76]. Based on these parame-
ters, he defined four shape categories: Equant, Prolate, Oblate and
Bladed. We applied this methodology and categorised objects from
our subsets in these four categories, based on their dimensions in
the virtual environment. Zingg’s methodology with each category’s
definition along with the selected objects are presented in Figure 3.

(a) Equant shaped objects

(b) Prolate shaped objects

(c) Oblate shaped objects

(d) Bladed shaped objects

Figure 3: Selected objects from [16] divided by Zingg’s categories and
object characteristics [76] : Equant, Prolate, Oblate and Bladed

To our knowledge this is the first example of Zingg’s methodology
in VR objects.

3.3.2 Task
Task intention has shown to influence grasp patterns when interacting
with real objects, presenting different grasp choices for the same
object when the task to be performed changes [32]. Moreover,
VR systems where natural interactions have an impact on overall
performance are task-oriented [50].

When manipulating virtual 3D content, placement, orientation
and docking (6 Degrees of Freedom) are fundamental tasks for
which the choice of interaction gestures is critical for usability and
performance [52]. Therefore, to understand the pattern of grasp
choice in VR, we designed a task for 3D object manipulation, which
consisted in a docking task (placement and orientation of a virtual
object to a target position and rotation) to understand the intuitive
grasp choices users take when performing docking tasks in VR.

Virtual Object Rotation: Research shows that there are some
limitations to rotating virtual objects compared to real objects, and
that a simple task can exceed 20 seconds whereas the same kind
of rotation can be accomplished with real objects and with some
VR interfaces in less than two seconds [72]. To assess if this has
an influence on grasping patterns, we rotated the virtual objects on
the horizontal plane (azimuth) by a value of 30°to create a realistic
effect in the virtual environment (objects positioned and rotated on
Y axis on the virtual table, not floating on the table as in the case of
them being rotated on X or Z axis) with objects being ergonomically
reachable by the hand.

Target Categories: In Section 3.3.1 we present the criteria
for selecting the virtual objects based on their shape. The chosen
objects span a variety of manipulation applications and challenges
so we further categorised the objects based on their daily use, as in
the work of Calli et al. [15]. While the objects to be grasped were
randomly positioned on the virtual table, the target objects were
categorised based on their daily use as follows:



(a) Tools (b) Groceries (c) Fruits

Figure 4: Target categories Tools, Groceries, Fruits as presented in
Section 3.3.2 showing the object targets categorised by their daily
usage.

• Tools: hammer, scissors and clamp targets were positioned in
this target zone (left side shown in Figure 1).

• Groceries: crackers, mustard, cleanser, gelatin, spoon, brick,
marker, lego, mug and meat can targets were positioned in this
target zone (centre of the scene as shown in Figure 1).

• Fruits: banana and orange targets were positioned in this
target zone (right side as shown in Figure 1).

In Figure 5 we show an example docking task for the Cracker
Box virtual object. The object needs to be rotated and placed at the
target position and rotation highlighted in green colour. This task is
applied to each of the 16 virtual objects used in the experiment.

3.3.3 Environment
The experiment was conducted in a controlled environment under
laboratory conditions. The test room was lit by a 2700k (warm
white) fluorescent with no external light source. While VR tasks can
be associated with simulator sickness, docking tasks are designed
to be completed in a static scene with the user focusing on a sin-
gle object at a time [64]. Accordingly, the virtual environment in
this scene is static, showing a virtual desk with its surface aligned
to a seating position, and objects positioned on the virtual table,
randomly arranged and at a distance from each other of 10cm in
each direction in the virtual space, mimicking reality as closely as
possible (see Fig. 1)

(a) Docking task before completion (b) Docking task after completion

Figure 5: Example of one of docking task for the Cracker Box virtual
object from Equant category. (a) Docking before completion shows
the task before the user grasps it and translate + rotate it to the target
position (highlighted in green); (b) Docking task after completion
shows the task after the target was translated and rotation to the
target position (overlaying the green area).

3.4 Participants
A total of 39 participants (25 male and 14 female) from a population
of university students and staff members volunteered to take part
in this study. Participants ranged in age from 19 to 47 (M=27.69,
SD=6.66). All participants were right-handed, to ensure they inter-
acted with the virtual objects under the same conditions.

All participants performed all the experiment tasks. Participants
completed a standardised consent form and were not compensated.

Visual acuity of participants was measured using a Snellen chart,
each participant was also required to pass an Ishihara test to check
for colour blindness. Participants with colour blindness and/or non
corrected visual acuity of < 0.80 (where 20/20 is 1.0) were not
included in this study.

Participants were asked to self-assess their level of experience
with VR systems and gesture recognition systems. Regarding VR
systems, 21 reported being novice to the technology, 16 reported
having an average level of experience and 2 self-labelled themselves
as experts. Regarding gesture-recognition systems, 27 reported
being novice to the technology, 10 reported an average level of
experience and 2 self-labelled themselves as experts.

3.5 Protocol
A Wizard of Oz method is defined as the experiment approach where
the interaction is mediated by a human operator to allow the user
more freedom of expression or constrain the interaction in a system-
atic way [24]. These approaches proved useful for gathering data as
a basis for theories in human-computer interaction studies [20]. In
order to collect grasp data during docking tasks in VR, we need to
follow a Wizard of Oz approach to trigger interaction with virtual
objects for every grasping action performed by the user. This way
we allow the user to choose how to grasp the virtual object and the
interaction will be triggered for every grasp pose to complete the
task.

3.5.1 Pre-test

Prior to the study, participants were given a written informed consent
where the test protocol and main aim of the study was described.
Additionally, participants completed a pre-test questionnaire enquir-
ing about their background level of experience with VR systems and
hand recognition sensors.

3.5.2 Training

Participants underwent initial hand interaction and task training to
familiarise themselves with the VR environment and hand interaction
space. This training task was a representative version of the tasks in
the user study, where they were asked to grasp and translate a cube
object in the 3D space.

3.5.3 Test

Once participants were comfortable with the interaction space and
the overall VR environment, they were presented with the main
experimental task. Each participant completed 16 grasps, with a
total of 624 grasps recorded during the study (16 grasps × 39 partici-
pants). Participants were seated on a chair placed at the centre of the
virtual environment to allow them to focus on the hand interaction
exclusively. The objects presented in were randomly positioned on
the virtual table for each task, but were consistent across participants.
Participants were instructed to grasp the virtual object they way they
felt most intuitive, notifying the test instructor when they were happy
with their grasp.

Hence, the trigger for the interaction was controlled by the test
coordinator, thus, allowing the capture of intuitive user grasps that
were not constrained by an automatic interaction trigger. The task
was completed when all the objects from the virtual table were
arranged at their target location and rotation. Hand tracking data
was then recorded from the Leap Motion device, while an image
was captured of both the VR scenario and of the real hand (from
the webcam). The position of the objects on the virtual table was
randomised and each participant was presented with the same setting.

4 EXPERIMENT 2 [E2]
Repeat studies are often conducted to confirm a study’s findings
in conditions similar to the original study [42]. Accordingly, we



(a) Experiment 2 - Condition 1 (E21) (b) Experiment 2 - Condition 2 (E22)

Figure 6: Experiment 2 conditions: (a) Experiment 2 - Condition 1
[E21] where the target objects position is changed: Fruits to the left,
Tools centered and Groceries to the right, with interaction objects
rotated at 60°; and (b)Experiment 2 - Condition 2 [E22] where the
target object position is changed: Groceries to the left, Fruits centered
and Tools to the right, with interaction objects rotated at 90°.

conducted a second experiment consisting of two similar tasks, fol-
lowing the methodology presented in Section 3, to confirm our
findings from the first experiment and understand if our approach is
repeatable under different conditions:

4.1 Virtual Object Manipulation - Placement:

We change the placement of our target objects based on categories
(see Section Target Categories) as follows; In [E21] we position the
Fruits at the left, Tools in the centre and Groceries at the right of the
virtual scene. [E22] had the Groceries at the left, Fruits in the centre
and Tools at the right of the virtual scene.

4.2 Virtual Object Manipulation - Rotation:

We change the rotation of our interaction objects as follows; In [E21]
we rotate the virtual objects placed on the virtual table by 60°while
in [E22] we rotate them by 90°.

5 METRICS

5.1 Labelling

To label the grasps collected (images from the virtual and real cam-
era) (39 participants× 16 ob jects× 3 tasks = 1872 grasps) we
followed the methodology of Feix et al. [31, 32]. Two academic
members of the staff with background in grasping literature were
trained to annotate the 1872 grasps collected during the series of ex-
periments. The metrics used for labelling are grasp type (see Section
5.2) and grasp dimension (see Section 5.3) For the first stage, two
trained rater academics labelled all grasps individually; following
the methodology described in [31, 32]. The raters came from a com-
puter science background and were familiar with human grasping
literature. Raters were asked to label images with the real and virtual
hand collected during the experiments. Raters were given the option
to rate grasps as “cannot classify”. The difference in the parameters
between raters were analysed by rater 1, who made a final decision
about which rater’s assignment was correct as in [31, 32].

5.2 Grasp Type

The full set of grasps used for labelling are those by Feix et al. in
the Human GRASP taxonomy [14]. This taxonomy divides grasp
types in three main categories: Power, Intermediate and Precision,
with each category then subdivided according to the thumb position
into Thumb Abducted and Thumb Adducted.

Power grasps: Power grasps are linked to stability and secu-
rity. These grasps are distinguished by large areas of contact between
the hand and the object [23]. Grasp types under this category are
shown in Figure 7.

Figure 7: Grasp types from Power grasp category, subdivided in
Thumb Adducted and Thumb Abducted as presented in the Human
Grasp Taxonomy for real objects [14].

Precision grasps: In these grasps the object is commonly
held between the finger tips. While this allows an increased level of
manipulation by movement of the fingertips, the object cannot be
gripped firmly [49]. The set of Precision grasps used for labelling is
displayed in Figure 8.

Intermediate grasps: These grasps present elements of
Power and Precision roughly in the same proportion, enabling a
finer representation of grasp types [14]. Representative examples of
the grasps in this category are displayed in Figure 9.

5.3 Grasp Dimension
Grasp dimension (GDisp) is defined as the part of the object that
lies between the fingers when grasped [32]. Three grasp dimensions
are defined in the literature: A (longest), B and C(shortest) For each
grasp, raters assigned a grasp dimension, based on the object axes.

5.4 Statistical Analysis
The Shapiro-Wilk [66] normality test found the data to be not nor-
mally distributed. We test for significance between the conditions
and the metrics described using a non parametric Friedman test [35].

6 RESULTS

We collected and labelled a total of 1872 grasps for which we present
the results in this section. Figure 10 shows the overall results for
each experiment condition [E1], [E21] and [E22] and each object
category Equant, Oblate, Prolate and Bladed. We present main
grasps which show the top three grasps in percentages and number
of instances (Grasp types can be found in Figures 7,8 and 9) as well
as grasp dimension in percentages and number of instances.

6.1 Most Used Grasp Types
The most used grasps for [E1] and [E2] were: Large Diameter [P1]
(28.09%, 526 instances), Small Diameter [P2] (11.11%, 208 in-
stances), Medium Wrap [P3] (10.30%, 193), Power Sphere [P6]
(9.77%, 183 instances), Precision Disk [PC10], (8.01%, 150 in-
stances) Thumb 2-Finger [PC4] (5.34% , 100 instances), Stick [I5]
(4.54%, 85 instances) and Thumb 3-Finger [PC5] (4.27%, 80 in-
stances), with the first four most used grasp types being from the
Power category, accounting for 59.59% and 1110 instances. This is
presented in Figure 12.



Figure 8: Grasp types from Precision grasp category, subdivided in
Thumb Adducted and Thumb Abducted as presented in the Human
Grasp Taxonomy for real objects [14]

Figure 9: Grasp types from Intermediate grasp category, subdivided
in Thumb Adducted and Thumb Abducted as presented in the Human
Grasp Taxonomy for real objects [14]

6.2 Grasp Type Categories

Our results show that out of a total of 1872 grasps, 1168 instances
(62.39%) were grasped with a Power grasp, 614 instances (32.79%)
were grasped with Precision grasps and 90 instances (4.80%) with
Intermediate grasps. We statistically analysed the experiment condi-
tions for each object category (Equant [E1], Equant [E21], Equant
[E22]) in terms of grasp category and found no significant differ-
ences: Equant (χ 2̂ = 1.41, p-value = 0.49), Prolate (χ 2̂ = 5.58, p =
0.06) Oblate (χ 2̂ = 0.03, p = 0.98), Bladed (χ 2̂ = 0.1827, p = 0.91).
Further, we statistically analysed the object categories for each ex-
periment condition (Equant [E1], Prolate [E1], Oblate [E1], Bladed
[E1]) in terms of grasp category and found significant differences
between object categories for all conditions. [E1] (χ 2̂ = 12.31, p
0.01), [E21] (χ 2̂ = 30.19, p 0.01), [E22] (χ 2̂ = 12.46, p 0.01)

The overall results in percentages and number of instances for
each object category are the following: Equant category was grasped
using Power grasps in 71.79% (336 instances), Precision grasps in
27.56% (129 instances) and Intermediate grasps in 0.64% (3 in-
stances). Prolate objects were grasped using Power in 58.11% (272

instances), Precision in 23.50% (110 instances) and Intermediate in
18.37% (86 instances). Oblate objects were grasped using Power in
64.74% (303 instances), Precision in 35.04% (164 instances) and
Intermediate in 0.21% (1 instance). Bladed objects were grasped
using Power in 54.91% (257 instances), Precision in 45.08% (211
instances) and no instances using Intermediate grasps. Further, we
present overall results for each experiment condition: [E1] showed
59.93% (374 instances) for Power, 34.93% (218 instances) for Pre-
cision and 5.12% (32 instances) for Intermediate. [E21] showed
62.01% (387 instances) for Power, 31.89% (199 instances) for Pre-
cision and 6.08% (38 instances) for Intermediate. [E22] showed
65.22% (407 instances) for Power, 31.57% (197 instances) for Pre-
cision and 3.20% (20 instances) for Intermediate.

6.3 Grasp Dimension
We statistically analysed the experiment conditions for each object
category (Equant [E1], Equant [E21], Equant [E22]) in terms of
grasp dimension and found no statistical differences between ex-
periment conditions: Equant (χ 2̂ = 0.73, p = 0.69) Prolate (χ 2̂=
0.37, p = 0.82), Oblate (χ 2̂ = 0.87, p = 0.64) Bladed (χ 2̂ = 5.11,
p = 0.07). Further, we statistically analysed the object categories
for each experiment condition (Equant [E1], Prolate [E1], Oblate
[E1], Bladed [E1]) and found significant differences between object
categories in terms of grasp dimensions: [E1] (χ 2̂ = 30.10, p ¡ 0.01),
[E21] (χ 2̂ = 20.59, p ¡ 0.01), [E22] (χ 2̂ = 39.67, p ¡ 0.01)

The overall results in terms of grasp dimension for each object
characteristics are the following: Equant objects were grasped in
A (0), B = 16.66% (78 instances) and C = 83.33% (390 instances).
Prolate objects were grasped in A = 0.21% (1 instance), B = 35.04%
(164 instances) and C = 64.74% (303 instances). Oblate objects were
grasped in A = 1.28% (6 instances), B = 23.93% (112 instances)
and C = 74.78% (350 instances).Bladed objects were grasped in A
= 0.85% (4 instances), B = 53.20% (249 instances) and C = 45.94%
(215 instances). Further, we present results for each experiment
condition: [E1] showed 68.42% (427 instances) for C dimension,
31.25% (195 instances) for B dimension and 0.32% (2 instances) for
A dimension. [E21] showed 70.67% (441 instances) for C dimension,
28.52% (178 instances) for B dimension and 0.80% (5 instances) for
A dimension. [E22] showed 61.69% (385 instances) for C dimension,
37.66% (235 instances) for B dimension and 0.64% (4 instances) for
A dimension.

7 DISCUSSION

Considerable effort has been made in determining how certain param-
eters influence human grasping when manipulating real objects [31]
and it was found that grasp choice is at least 43% influenced by
object properties and 31% influenced by the task properties assigned
in the study [31]. Therefore, in this section we discuss how these
parameters influence grasp choice when manipulating 3D objects in
VR.

7.1 Grasp Types
When analysing grasping real objects, a total of 13 different grasp
types accounted for 82.80% of the data [32]. Our results show that
in VR only 8 grasps account for 81.34%, suggesting that fewer
grasp types are required when manipulating virtual objects, which
might be due to the lack of sensory feedback in VR [21] which
allows for a less constrained (by the mass and shape of the object)
interaction in VR. Additionally, out of the 34 available grasp types,
our experiments revealed that only 19 were used. We therefore
contribute to the community by showing that more than 80% of the
virtual objects could be grasped using only 8 grasp types in VR.

7.2 Grasp Aperture
Grasp aperture, which is the distance between thumb and index
finger tips [27], has shown to be influenced by size and shape in real



Figure 10: Results showing top three grasps used (Main Grasps), grasp dimension (GDim) for each object category (Ctg), each object type
(Obj) and each task from [E1], [E21] and [E22]. For each grasp type we show the grasp code (please see Figures presented in Section 5.2), the
percentage and the number of instances. Grasp types are colour coded based on their category: Power, Precision and Intermediate. Grasp
dimension is shown as percentages and number of instances for each grasping dimension available (A, B or C)

object grasping [31].
Studies looking at grasping patterns in real environments showed

that the Medium Wrap [P3] grasp type from the Power grasp cat-
egory is the most common grasp used when manipulating real ob-
jects [31]. However, our results show that when grasping virtual
objects for docking tasks the most used grasp type is Large Diameter
[P1] from the Power grasp category. Comparing the two grasp types,
Large Diameter [P1] is characterised by a larger grasp aperture than

Medium Wrap [P3], therefore suggesting that users grasp virtual
objects with a larger grasp than they grasping real objects. This
finding correlates to previous work that showed that hand aperture
is wider when grasping objects in a virtual environment compared
to a physical environment [51]. Moreover, this could also imply
that as opposed to grasping real objects when the shape of the hand
evolves gradually to conform the contours of the object [62], when
grasping virtual objects users focused less on the contours of the



Figure 11: Grasp categories (Power, Precision, Intermediate) percentages based on object categories (Equant, Prolate, Oblate, Bladed) for (a)
Experiment 1 [E1], (b) Experiment 2 - Condition 1 [E21] and (c) Experiment 2 - Condition 2 [E22].

objects which might be due to the lack of haptic feedback.
In real object interaction, the grasping of an object depends on

different conditions, such as: the behaviour of the object under the
influence of gravity and the surface material of the object and the
geometrical conditions at the point of contact between the object
and the grasping hand [70].

7.3 Object Categories
While this methodology has not been applied before for virtual
objects, we applied Zingg’s [76] methodology to categorise objects
based on their virtual shape. We then compared these categories
across grasping metrics for each experiment condition and show
that there are significant differences between object categories for
grasp metrics, showing that virtual object shape influences grasping
approach in VR. A similar result was observed in Mixed Reality,
namely that object shape and size influenced the grasping approach
[2]. Further, we compared experiment conditions for each object
category and found that there were no differences between conditions
for grasp metrics. This shows that grasp patterns for each object
category was consistent for different positions and orientations. Our
results along with this method for categorising virtual objects can
then be taken forward to assess other virtual objects and parameterize
our findings for achieving a natural and intuitive grasp model for
interactions in VR.

7.4 Grasp Dimension
We show that users predominantly grasped the virtual objects along
the C dimension which is the shortest, followed by the B dimen-
sion, with few or no instances presented for A dimension. When
comparing object categories for grasp dimension, significant dif-
ferences were observed for all experimental conditions, showing
that object shape had an influence on grasp dimension.This result

Figure 12: Overall most used used grasp types for Experiment 1 [E1],
Experiment 2 - Condition 1 [E21] and Experiment 2 - Condition 2
[E22] shown in percentages.

is consistent with real object grasping research [32], showing that
there are takeaways that users take when grasping virtual objects
from real life experience of grasping objects. However, different
orientation or placement of the object did not show any difference
in terms of grasping dimension, which confirms findings from real
object grasping literature, showing that the grasped dimension is
defined in conjunction with the object dimensions, inherently linked
to object properties [22]. While Equant, Prolate and Oblate pre-
sented a higher number of instances for C dimension, Bladed objects
showed a more balanced approach, with both B and C dimensions
being preferred. This might be due to Bladed objects presenting a
long and thin shape, with both B and C being easily grasped by the
human hand. This is consistent with real object grasping literature,
where long objects are grasped along B/C dimension [32].

7.5 Docking Tasks
Our results show that grasp metrics did not change for different
orientations and positions of the virtual objects. This is consistent
with real object grasping research showing that grasping is highly
influenced by the task to be performed [31].

7.6 Recommendations
Current limitations in equipment lead to physical forces missing
in most immersive scenarios [38], which has shown to induce a
shift from natural towards pantomimed grasps [26]. This has shown
to affect the naturalness of interaction and forcing users to change
their approach when grasping objects in VR [12]. Our experiments
provide an insight into how users intuitively grasp virtual objects,
presenting grasp patterns and how they are influenced by object
characteristics and task properties. To understand grasping patterns
in VR we categorise virtual objects using Zingg’s [76] methodology
for categorising real objects, which has not been previously done in
VR. This methodology could be further replicated for other virtual
objects to further investigate interaction patterns and how they are
influenced by object characteristics.

Further, we present grasping patterns based on object category
and task properties, showing that grasp type metric shows that users
grasp virtual objects differently than they grasp real objects, while
grasp dimension shows that users interacted with the virtual objects
using the knowledge from real object manipulation. Therefore,
a natural grasp model based on our findings would parameterize
the grasp types used for interacting, however the grasp dimension
will remain the same as for real object grasping. Our grasping
patterns are useful for designers creating VR environments that
require direct interaction with objects, specially for training (i.e.
VR training environments in construction and manufacturing [5],
surgical training techniques [54]) where the user experience could



be vulnerable [17]. In these scenarios, the shape of the objects
needs to be considered, with objects being designed to specifically
encourage this user selection of precision grasps and thus facilitating
a more precise and finer manipulation. Therefore, categorising the
object and designing the interactions accordingly would encourage
the design of more natural interactions. Additionally, our results
can be further used to parameterize grasp types and develop natural
and intuitive grasp models, where each of the grasps here can be
defined by core parameters relating to hand tracking sensor data.
This alongside Zingg’s methods for categorizing object type, will
lead toward a more natural and reliable interaction for freehand
grasping.

8 CONCLUSION

We conducted two elicitation experiments to understand how task
properties and object characteristics influence grasp patterns in VR.
For this, we asked users to grasp 16 virtual objects categorised by
shape using Zingg’s [76] methodology, in a mixed docking task
exploring rotation, placement and target location. The virtual ob-
jects employed are representations of real objects and thus used as
referents of intuitive grasping from real life. We followed a Wizard
of Oz methodology for freehand grasping extracting grasp types,
grasp category and grasp dimension. We show grasping patterns
for each experiment condition and object category and discuss their
implications for 3D interaction design. We found that only 8 grasps
account for more than 80% of the data when grasping in VR, which
shows users’ choice for grasp types vary less in VR compared to
real object manipulation. Moreover, we show that users grasp virtual
objects with a larger grasp aperture than real objects. However,
while grasp type metric showed a difference in grasping approach
in VR, grasp dimension showed that there are takeaways from real
life experience that users take when grasping virtual objects, namely
grasping objects on the shortest dimension. We then provided recom-
mendations VR interaction design, showing that our results can be
furthered to apply this categorisation methodology for other virtual
objects when assessing interaction paradigms, and parameterize the
identified grasp types for development of a natural and intuitive
grasp models.
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