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Abstract—In this paper, we study joint adaptive M-
QAM modulation and power adaptation for a downlink
two-user non-orthogonal multiple access (NOMA) network.
Without sacrificing bit error rate (BER), joint adaptive
transmission can fully utilize the time-varying nature of
wireless channels, by allowing both power and rate to adapt
to channel fading. Two adaptive power allocation strategies,
namely, Scheme 1 and Scheme 2, each of which guarantees
the minimum target rate for one user while supporting
the highest possible rate for the other, are first proposed.
Then, based on the two power schemes, the performance
of joint adaptive transmission in terms of average spectral
efficiency (SE) is studied for continuous-rate and discrete-
rate modulation, while guaranteeing the minimum required
rate and BER requirements. With the focus on practical
discrete-rate M-QAM modulation, it is proved that for the
strong user in Scheme 1 and the weak user in Scheme 2,
their average SEs converge to the minimum target rates.
In order to further increase the total transmission rate,
we then propose a dynamic rate and power adaptation
(DRPA) algorithm, aiming to increase the rate of one user
without sacrificing the rate of the other. It is shown that
at high SNRs, the DRPA algorithm allows the strong user
in Scheme 1 and the weak user in Scheme 2 to continue to
increase their transmission rates until reaching the highest
modulation order that the system can support. Hence, the
total transmission rate can be greatly increased at high
SNRs due to the adoption of DRPA, by allowing both users
in each scheme to reach the highest transmission rate in
the system.

Index Terms—Adaptive modulation, power adaptation,
M-QAM, NOMA, spectral efficiency.

I. INTRODUCTION

Due to its high spectral efficiency (SE) performance
by simultaneously serving multiple users within the same
radio resource, power-domain non-orthogonal multiple
access (NOMA) has been viewed as a promising multiple
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access technique for future communication networks
[1]. For power-domain NOMA1, superposition coding
is the key technology at the transmitter to perform
user-multiplexing, while multiuser separation techniques
such as successive interference cancellation (SIC) are
required at the receiver to decode the message [2].
In the literature, there are many research efforts de-
voted to improving SE and energy efficiency [3]–[5],
studying security performance [6]–[8], analyzing delay-
constrained rate [2], [9], investigating user scheduling
[10], and enhancing computation efficiency in NOMA-
aided mobile edge computing [11]. Furthermore, driven
by the heterogeneous service requirements in beyond
5G era, NOMA can be beneficial by enabling flexible
scheduling and leveraging diversified Quality of Service
(QoS) requirements across services to ensure perfor-
mance guarantees [12]. Another popular research direc-
tion in NOMA in recent years is the NOMA-enabled
random access (NOMA-RA). With the ability to accom-
modate multiple transmissions on one resource block,
NOMA appears to be an attractive solution to support
massive machine type communication (mMTC). Many
research articles study how to incorporate code-domain
NOMA or power-domain NOMA into contention-based
random access techniques such as pure ALOHA and
slotted ALOHA [13]–[17]. It has been found that when
there are four power levels, the maximum throughput
of NOMA-RA achieves over three times that of the
conventional slotted-ALOHA [17], which is seen as a
substantial improvement.

However, most research studies on NOMA are based
on Shannon theory, without placing any restriction on
the complexity or delay of the multiplexed transmis-
sion scheme [18]. Shannon capacity only serves as a
theoretical upper bound on the data rates that can be
achieved. Instead of studying Shannon limit, in this
paper, we focus on the average SE with bit error rate
(BER) guarantees and practical modulation methods for
a downlink NOMA network. Furthermore, in most of the

1The power-domain NOMA is hereafter referred to as NOMA for
simplicity.



performance analysis studies on NOMA, the fixed power
coefficients are assumed for simplicity. For example,
in [10], a user scheduling scheme was investigated to
achieve full diversity and scheduling fairness. With fixed
power coefficients assumed, outage probabilities were
derived in closed-from expressions. In [7], the achievable
delay-guaranteed secrecy rate was studied for a downlink
NOMA network with two eavesdropping scenarios: 1) an
internal eavesdropper in a purely antagonistic network;
and 2) an external eavesdropper in a trustworthy net-
work. In [19], with fixed power coefficients considered,
the performance of adaptive modulation was investigated
for a two-user NOMA network with a family of M-
QAM modulations. It was found that at high signal-to-
noise ratios (SNRs), the strong user’s modulation order
converges to the highest order the system can support,
but the weak user’s constellation size is bounded by the
BER requirement and the ratio of power coefficients of
the users. Further, it was shown that with the fixed power
coefficients, the uncoded M-QAM modulation has an
effective power loss of K relative to Shannon rate, where
K is a function of BER requirement.

Although fixed power coefficients are commonly used
in performance analysis studies, it is still critical to
study the performance of joint adaptive transmission
including both adaptive modulation and power adapta-
tion strategies. Without sacrificing BER, joint adaptive
transmission can improve spectrum efficiency by fully
utilizing the time-varying nature of wireless channels,
which allows to transmit data at high rate under favorable
channel conditions and to reduce rate under poor channel
conditions [18]. It is, however, challenging to investigate
the performance of joint adaptive transmission that al-
lows both power and rate to adapt to channel fading. In
this paper, the main focus is on practical adaptive M-
QAM modulation and power adaptation strategies for a
downlink two-user NOMA network in which the average
SEs will be studied while guaranteeing minimum target
rates and BER requirements. We consider a downlink
transmission where a base station transmits the superim-
posed signals to both users. According to [18], with a
family of M-QAM modulations, the BER for a Rayleigh
fading channel is bounded by a function of constellation
size and received SNR. This indicates that for each
user, the maximum constellation size for a given BER
requirement can be found, which is a function of received
SNR. We first propose two adaptive power allocation
strategies, each of which guarantees the minimum target
rate for one user while providing the highest possible
rate for the other. Then, joint adaptive transmission in-
cluding the two power adaptation strategies and adaptive

modulation is studied. Based on the proposed power
schemes, a dynamic rate and power adaptation algorithm
is also proposed with the aim to further push up the total
rate. Note that the considered two-user model can be
extended to multiple NOMA clusters by performing user
pairing, where each cluster is composed of two users.
By allocating orthogonal frequency bands to different
NOMA clusters, each NOMA pair can be managed
independently. The main contributions of this article are
summarized below.

• Two adaptive power strategies are proposed for a
downlink two-user NOMA network, i.e., Scheme
1 and Scheme 2. Scheme 1 aims to guarantee
the minimum target rate for the strong user while
the weak user maintaining a transmission rate as
high as possible. Meanwhile, Scheme 2 guarantees
the minimum target rate for the weak user while
providing the highest possible rate for the strong
user.

• Consider adaptive continuous-rate modulation
where the constellation size continuously adapts to
channel fading. It is proved that for the strong user
in Scheme 1 and the weak user in Scheme 2, their
average SEs converge to the minimum target rates,
while the average SEs for the weak user in Scheme
1 and the strong user in Scheme 2 are unbounded
and monotonically increase with transmit SNR.

• Considering practical discrete-rate M-QAM modu-
lation where the constellation sizes are restricted
to integer values, the joint adaptive transmission
including both discrete-rate modulation and power
adaptation schemes are studied. It is proved that for
the strong user in Scheme 1 and the weak user in
Scheme 2, their average SEs converge to the min-
imum target rates. For the weak user in Scheme 1
and the strong user in Scheme 2, their constellation
sizes are bounded by the highest modulation order
in the system.

• Finally, a dynamic rate and power adaptation
(DRPA) algorithm is proposed with the aim to fur-
ther increase the rate of one user without sacrificing
the rate of the other. The Pseudocode of DRPA is
illustrated in Algorithm 1. Simulations show that at
high SNRs, for the strong user in Scheme 1 and
the weak user in Scheme 2, the adoption of DRPA
allows the average SEs continue to increase until
they reach the highest transmission rate the system
can support. The percentage increase in average SE
for each user at high SNRs due to the adoption of
DRPA can be quantified.

The remainder of this paper is organized as follows.
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System model is introduced in Section II. In Section
III, we analyze the average SEs for the joint adap-
tive transmission including both power adaptation and
adaptive M-QAM modulations for a downlink two-user
NOMA network. The DRPA algorithm is also proposed
in Section III. Simulation results are included in Section
IV, followed by conclusions summarized in Section V.

II. SYSTEM MODEL

In this paper, a downlink transmission is considered
where a base station (BS) transmits signals to two
NOMA users. The wireless channels from the BS to
NOMA users are assumed to be block fading, i.e., the
channel gains remain constant within each fading-block
and independently vary from one block to the next.
Each fading-block duration Tf is equal to the frame
size, which is an integer multiple of the symbol period.
Rayleigh fading is considered to reflect the channel vari-
ations due to the constructive and destructive addition of
multipath signal components [20]. Without any loss of
generality, the time-varying channel gains are assumed
to be stationary and ergodic. Moreoever, it is assumed
that

√
g1(i) >

√
g2(i)

2, where
√

g1(i) and
√
g2(i)

represent the channel gains of user 1 and user 2 at time
i, respectively. The user with a higher channel gain,
i.e., user 1, is called the strong user, while user 2 is
called the weak user in this article. The BS transmits the
superimposed signal to both users, where the allocated
power coefficients for NOMA users can be fixed or
adaptive. With fixed power coefficients considered, the

BS transmits the signal
2∑

m=1

√
amPsm to both users,

where am is the power coefficient for user m, P is
the total transmission power, and sm is the message
for the user m. According to NOMA principle, the

users’ power coefficients should satisfy
2∑

m=1
am = 1,

and 0 < a1 < a2 < 1. We consider a family of M-QAM
constellations with a fixed symbol rate Ts, where M
denotes the constellation size. Ideal Nyquist transmission
symbol rate is assumed to be satisfied, i.e., Ts = 1/B,
where B refers to the bandwidth. Then, the spectral
efficiency equals log2(M) for a given constellation size
M [18]. According to [18], the BER for a fading
channel with M-QAM is related to the constellation size.
The BER for Rayleigh fading channel with M-QAM

2Please note that the two users’ channel conditions can be different
when they locate at very different distances from the BS. In this paper,
to simplify the analysis, we assume a uniform distance for both users
but their channel gains satisfy

√
g1(i) >

√
g2(i). The time index i

will be omitted because the channel gains are assumed to be stationary
and ergodic.

modulation is bounded by

BER ≤
∫

2e−1.5γ/(M−1)f(γ)dγ, (1)

where f(γ) indicates the probability density function
(PDF) of the received SNR γ. From (1), it can be noticed
that we can adjust constellation size M to maintain a
required BER.

III. JOINT ADAPTIVE MODULATION AND POWER
ADAPTATION

In this section, we study the joint adaptive trans-
mission including both adaptive modulation and power
adaptation for a downlink two-user NOMA network.
Firstly, we propose two adaptive power allocation strate-
gies in Section III-A. Then, based on the adaptive power
schemes, the performance of adaptive continuous-rate
modulation in terms of average SEs is analyzed in
Section III-B, followed by the analysis of average SEs
for adaptive discrete-rate modulation in Section III-C.
Finally, we propose a dynamic rate and power adaptation
algorithm in Section III-D.

A. Adaptive Power Allocation Strategies

In order to apply adaptive power allocation strate-
gies, the BS needs to know the perfect channel state
information (CSI) of forward links. The BS first sends
known pilot signals to both users on the forward link.
We assume that each user can get the perfect estimate
of forward link CSI and then feedback the obtained
CSI estimation to the BS without delay [21]. It is also
assumed that the feedback path does not introduce any
errors [20]. Since we consider that NOMA users’ power
coefficients can adapt to the channel fading, they can
be written as a1(g1, g2) and a2(g1, g2), respectively.
According to NOMA principle, the two users’ power

coefficients should satisfy
2∑

m=1
am(g1, g2) = 1 and

0 < a1(g1, g2) < a2(g1, g2) < 1. The received signals
at both users are corrupted by additive white Gaussian
noise. Therefore, the instantaneous received SNRs at
time i can be expressed as

γ1(i) = γta1(g1, g2)g1(i), (2a)

γ2(i) =
γta2(g1, g2)g2(i)

1 + γta1(g1, g2)g2(i)
, (2b)

where γt is the total transmit SNR, i.e., γt = P/N0B,
and N0 denotes the noise density.

As mentioned in Section II, the BER for a Rayleigh
fading channel with M-QAM modulation is bounded
by the constellation size. Hence, in order to guarantee
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a required BER, the constellation size is bounded. By
rearranging (1) and applying the received SNRs given
in (2a) and (2b), the maximum constellation size for a
given BER can be given by

M1(g1, g2) = 1 +
−1.5

ln(0.5BER)
γta1(g1, g2)g1, (3a)

M2(g1, g2) = 1 +
−1.5

ln(0.5BER)
γta2(g1, g2)g2

1 + γta1(g1, g2)g2
,

(3b)

where M1(g1, g2) and M2(g1, g2) are the maximum
constellation size satisfying the BER requirements for
the strong user and the weak user, respectively. Then,
the instantaneous SEs for both users, in b/s/Hz, can be
respectively expressed as

R1(g1, g2) = log2(M1(g1, g2))

= log2 (1 +Kγta1(g1, g2)g1) , (4a)
R2(g1, g2) = log2(M2(g1, g2))

= log2

Å
1 +K

γta2(g1, g2)g2
1 + γta1(g1, g2)g2

ã
, (4b)

where K = −1.5
ln(0.5BER) .

By applying the SIC technique, the strong user, i.e.,
User 1, first decodes the weak user’s message and
eliminates it before decoding its own message. In order
to guarantee successful SIC at the strong user, it is
required that R2→1(g1, g2) ≥ R̂2, where R2→1(g1, g2)
is the rate for the strong user to detect the weak user’s
message and R̂2 is the target rate for User 2 [22].
Otherwise, the strong user cannot correctly decode the
weak user’s message to remove interference. Also, each
user’s transmitting rate needs to be larger than or equal
to the minimum required rate, i.e., Rm(g1, g2) ≥ R̂m,
m = 1, 2. This guarantees that each user can successfully
decode their own messages. The above rate requirements
need to be all satisfied, otherwise outage may happen.
We note that R2→1(g1, g2) can be given by

R2→1(g1, g2) = log2

Å
1 +K

γta2(g1, g2)g1
1 + γta1(g1, g2)g1

ã
.

(5)

Since we have g1 > g2, by comparing (4b) with (5), we
can find that R2→1(g1, g2) > R2(g1, g2). Therefore, it
indicates that if R2(g1, g2) ≥ R̂2 is met, the requirement
R2→1(g1, g2) > R̂2 is also satisfied. We now list
below all the requirements on rate, power coefficient and

channel gain.

0 < a1(g1, g2) < a2(g1, g2) < 1, (6a)
a1(g1, g2) + a2(g1, g2) = 1, (6b)

R1(g1, g2) ≥ R̂1, (6c)

R2(g1, g2) ≥ R̂2, (6d)
g1 ≥ g2. (6e)

We set θ1 = 2R̂1 , θ2 = 2R̂2 where θ1 > 1 and θ2 > 1.
Then, (6c) and (6d) can be rewritten as

θ1 ≤M(g1, g2) = 1 +Kγta1(g1, g2)g1, (7a)

θ2 ≤M(g1, g2) = 1 +K
γta2(g1, g2)g2

1 + γta1(g1, g2)g2
. (7b)

Since power coefficients are adaptive to the channel
gains, the above inequalities can be rewritten to get the
lower bounds of power coefficients:

a1(g1, g2) ≥
θ1 − 1

Kγtg1
, (8a)

a2(g1, g2) ≥
θ2 + θ2γtg2 − 1− γtg2

(θ2 +K − 1)γtg2
, (8b)

where (8b) is obtained by replacing a1(g1, g2) in (7b)
with (1 − a2(g1, g2)). Then, by considering the power
coefficient constraint (6b), we can get the upper bound
of each power coefficient:

a1(g1, g2) ≤
Kγtg2 − θ2 + 1

(θ2 − 1 +K)γtg2
, (9a)

a2(g1, g2) ≤
Kγtg1 − θ1 + 1

Kγtg1
. (9b)

We can then define the four boundary values in (8a)-(9b)
as follows:

a1low(g1) =
θ1 − 1

Kγtg1
, (10a)

a1upper(g2) =
Kγtg2 − θ2 + 1

(θ2 − 1 +K)γtg2
, (10b)

a2low(g2) =
θ2 + θ2γtg2 − 1− γtg2

(θ2 +K − 1)γtg2
, (10c)

a2upper(g1) =
Kγtg1 − θ1 + 1

Kγtg1
. (10d)

From the above analysis, it is clear the two power co-
efficients satisfy a1low(g1) ≤ a1(g1, g2) ≤ a1upper(g2)
and a2low(g2) ≤ a2(g1, g2) ≤ a2upper(g1). Also, it
is easy to find that a1low(g1) + a2upper(g1) = 1 and
a1upper(g2) + a2low(g2) = 1. Hence, we obtain two
adaptive power coefficient schemes. Scheme 1, in which
a1low(g1), a2upper(g1) are chosen as coefficients, guar-
antees that the strong user stays at the minimum target
rate while the weak user has a transmit rate as high as
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possible. Scheme 2 uses a1upper(g2), a2low(g2) as power
coefficients to guarantee the minimum required rate for
the weak user while providing the highest possible rate
for the strong user. To make Scheme 1 and Scheme 2
applicable, (6a)-(6e) all need to be satisfied. Hence, we
need to find the necessary conditions that guarantee the
rate, power and channel gain requirements for Scheme 1
and Scheme 2.

1) Scheme 1:
Let us first focus on Scheme 1 and list all the required

constraints below.

0 < a1low(g1) < a2upper(g1) < 1, (11a)
a1low(g1) + a2upper(g1) = 1, (11b)

R1(g1, g2) |a1low(g1)≥ R̂1, (11c)

R2(g1, g2) |a2upper(g1)≥ R̂2, (11d)

g1 ≥ g2. (11e)

Apparently, (11b) and (11c) are already satisfied. By
inserting (10a) and (10d) into (11a), we can get that

0 <
θ1 − 1

Kγtg1
<

Kγtg1 − θ1 + 1

Kγtg1
< 1, (12)

which indicates that the following constraint needs to be
satisfied:

g1 >
2θ1 − 2

Kγt
. (13)

Then, in order to satisfy (11d), we have that

θ2 ≤ 1 +K
γta2upper(g1)g2

1 + γt(1− a2upper(g1))g2
. (14)

By inserting (10d) into (14) and after doing some basic
algebraic operations, we get that

(Kγtg1 − θ1 + 1)Kg1 ≥ g2(θ1 − 1)(K + θ2 − 1).
(15)

From (12), we know that Kγtg1−θ1+1 > 0 is definitely
guaranteed. Hence, we get that in order to satisfy (11d),
the following constraint needs to be satisfied:

g1 ≥
g2(θ2 − 1 +K)(θ1 − 1)

K(Kγtg2 − θ2 + 1)
. (16)

Since now we have two lower bounds of g1, i.e., (13)
and (16), we need to find the tighter one. Let us assume
that 2θ1−2

Kγt
< g2(θ2−1+K)(θ1−1)

K(Kγtg2−θ2+1) . Then, this means that
(K−θ2+1)γtg2 < 2θ2−2. When the BER requirement
is 10−3, K ≈ 0.2. Hence, it is acceptable to assume that
θ2 > K + 1. Then, it can be noted that the constraint
is definitely satisfied: (K − θ2 + 1)γtg2 < 2θ2 − 2.
Therefore, we can find that (16) is a tighter bound.
Finally, we can conclude that for Scheme 1, the required

constraints on rate, power and channel gain, i.e., (11a)-
(11e), can be all guaranteed by just satisfying the two
constraints: (11e) and (16).

2) Scheme 2
Now let us focus on Scheme 2 and list all the required

constraints below.

0 < a1upper(g2) < a2low(g2) < 1, (17a)
a1upper(g2) + a2low(g2) = 1, (17b)

R1(g1, g2) |a1upper(g2)≥ R̂1, (17c)

R2(g1, g2) |a2low(g2)≥ R̂2, (17d)
g1 ≥ g2. (17e)

Similarly, (17b) and (17d) are already satisfied. By
inserting (10b) and (10c) into (17a), we get that

0 <
Kγtg2 − θ2 + 1

(θ2 − 1 +K)γtg2
<

θ2 + θ2γtg2 − 1− γtg2
(θ2 +K − 1)γtg2

< 1.

(18)

By assuming that θ2 > K + 1, we have that

g2 >
θ2 − 1

Kγt
. (19)

Then, in order to guarantee (17c), we have that

θ1 ≤ 1 +Kγta1upper(g2)g1. (20)

By inserting (10b) and after doing some basic algebraic
operations, we end up with (16). Hence, we can conclude
that for Scheme 2, in order to guarantee all the required
constraints on rate, power and channel gain, i.e., (17a)-
(17e), the two constraints, (17e) and (16), need to be
satisfied.

3) Necessary Conditions for Scheme 1 and Scheme 2

In the above discussions, we consider Scheme 1 and
Scheme 2 separately. In order to guarantee that both
schemes are applicable, we put all the requirements
together as shown below.

g1 ≥
g2(θ2 − 1 +K)(θ1 − 1)

K(Kγtg2 − θ2 + 1)
, (21a)

g1 > g2, (21b)

g2 >
θ2 − 1

Kγt
. (21c)

Note that there are two lower bounds of g1. In order to
further investigate the ranges of g1 and g2, let us first
assume that

g2(θ2 − 1 +K)(θ1 − 1)

K(Kγtg2 − θ2 + 1)
> g2. (22)
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Since (21c) guarantees that Kγtg2 − θ2 + 1 > 0,
rewritting (22) shows that

g2 <
(θ2 − 1 + k)(θ1 − 1) +K(θ2 − 1)

K2γt
. (23)

Furthermore, we can easily obtain that
(θ2−1+k)(θ1−1)+K(θ2−1)

K2γt
> θ2−1

Kγt
.

Lemma 1: In order to guarantee the minimum rate re-
quirements and power coefficients constraints for Scheme
1 and Scheme 2, the following necessary conditions need
to be satisfied:

(i) When θ2−1
Kγt

< g2 < (θ2−1+k)(θ1−1)+K(θ2−1)
K2γt

, the
lower bound of g1 is

g1 >
g2(θ2 − 1 +K)(θ1 − 1)

K(Kγtg2 − θ2 + 1)
. (24)

(ii) When g2 ≥ (θ2−1+k)(θ1−1)+K(θ2−1)
K2γt

, the lower
bound of g1 is

g1 > g2. (25)

Proof: The proof follows the above discussions and
is omitted here.

B. Performance of Continuous-Rate Modulation

In this subsection, we consider that we can benefit
from exploiting continuous-rate modulation. In other
words, we place no restrictions on the constellation sizes,
i.e., M1(g1, g2) and M2(g1, g2), where the sizes are not
restricted to integer values. Thus, the instantaneous SE,
varying with the constellation size, in turn continuously
varies with the instantaneous channel gain. We analyze
the average SEs for the downlink two-user NOMA net-
work with joint adaptive transmission including adaptive
power strategies and continuous-rate modulations.

The average SEs for the strong user and the weak
user can be respectively expressed as (26a) and (26b),
shown at the top of the next page. where E[·] indicates
the expectation and f(1)(2)(g1, g2) is the joint PDF of
g1 and g2. Since the channel gains of the two users are
ordered, the theory of order statistics needs to be used to
obtain the joint PDF [23]. For the unordered independent
channel gains that are Rayligh distributed with a unit
variance, the PDF f(g) and the cumulative distribution
function (CDF) F (g) are respectively given by f(g) =
e−g , F (g) = 1 − e−g . According to [23], we can get
that f(1)(2)(g1, g2) = 2e−g1e−g2 . Hence, we provide the
following theorem.

Theorem 1: Consider adaptive continuous-rate M-
QAM modulation and adaptive power coefficients. For
Scheme 1, the average SEs for the strong user and the
weak user are respectively given by (27a) and (27b)

shown at the top of the next page, where l1 = θ2−1
Kγt

,
l2 = (θ2−1+K)(θ1−1)+K(θ2−1)

K2γt
, l3 = g2(θ2−1+K)(θ1−1)

K(Kγtg2−θ2+1) ,
and l4 = g2. For Scheme 2, the average SEs for the
strong user and the weak user are respectively given by
(28a) and (28b) shown at the top of the next page, where
t = K(Kγtg2−θ2+1)

(θ2−1+K)g2
.

Proof: See Appendix A.
The accuracy of the above analytical results will be

validated in Section IV. We also provide the following
Lemma 2 which provides the limits as the transmit SNR
approaches infinity.

Lemma 2: Consider adaptive continuous-rate M-
QAM modulation and adaptive power coefficients. For
Scheme 1, when transmit SNR γt → ∞, lim

γt→∞
R̄1 =

log2(θ1), lim
γt→∞

R̄2 →∞. For Scheme 2, when transmit

SNR γt →∞, lim
γt→∞

R̄1 →∞, lim
γt→∞

R̄2 = log2(θ2).

Proof: See Appendix B.
Lemma 2 proves that the average SE for the strong

user in Scheme 1 and that for the weak user in Scheme
2 converge to the minimum target rates, when adaptive
continuous-rate M-QAM modulation and adaptive power
coefficients are considered. On the other hand, for the
weak user in Scheme 1 and the strong user in Scheme
2, their average SEs are unbounded and monotonically
increase with transmit SNR.

C. Performance of Adaptive Discrete-Rate Modulation

In Section III-B, adaptive continuous-rate modulation
is considered, where the modulation method continu-
ously adapts to the channel fading. However, in practice,
the modulation technique in cellular networks works in
discrete rate and the constellation sizes are restricted
to integer values. In this subsection, we consider adap-
tive discrete-rate modulation for the downlink two-user
NOMA network with a family of M-QAM modulations.

M-QAM constellation sizes are represented by M0 =
0,M1 = 2 and Mj = 22(j−1), j = 2, . . . , N .
Specifically, M0 indicates the deep fading channel that
no data is transmitted and MN refers to the maxi-
mum modulation order in the communication system
[20]. At each symbol time, a constellation from the
set {Mj : j = 0, 1, . . . , N} is transmitted, where
the choice of constellation depends on the fade level
over that symbol period [18]. More specifically, the
constellation size associated with an instantaneous fading
level is determined by discretizing the range of channel
fade levels. For each user, the range of channel gain
is divided into N + 1 fading regions, where the j-
th region is associated with the constellation Mj . To
obtain the constellation size, we need to find j such
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R̄1 = E[log2(M1(g1, g2))] =

∫∫
log2 (1 +Kγta1(g1, g2)g1) f(1)(2)(g1, g2)dg1dg2, (26a)

R̄2 = E[log2(M2(g1, g2))] =

∫∫
log2

Å
1 +K

γta2(g1, g2)g2
1 + γta1(g1, g2)g2

ã
f(1)(2)(g1, g2)dg1dg2, (26b)

R̄1 = E[log2(θ1)] =

∫ l2

l1

2e−g2−l3 log2(θ1)dg2 + log2(θ1)e
−2l2 , (27a)

R̄2 =

∫ l2

l1

∫ ∞

l3

log2

Å
1 +K

γta2upper(g1)g2
1 + γta1low(g1)g2

ã
2e−g1e−g2dg1dg2

+

∫ ∞

l2

∫ ∞

l4

log2

Å
1 +K

γta2upper(g1)g2
1 + γta1low(g1)g2

ã
2e−g1e−g2dg1dg2, (27b)

R̄1 =

∫ l2

l1

2e−g2

∫ ∞

l3

log2(1 + tg1)e
−g1dg1dg2 +

∫ ∞

l2

2e−g2

∫ ∞

l4

log2(1 + tg1)e
−g1dg1dg2, (28a)

R̄2 = E[log2(θ2)] =

∫ l2

l1

2e−g2−l3 log2(θ2)dg2 + log2(θ2)e
−2l2 , (28b)

that log2(Mj) ≤ Ri < log2(Mj+1), j = 0, 1, . . . , N ,
i = 1, 2. Thus, for an instantaneous fade level, the largest
constellation in the set {Mj : j = 0, 1, . . . , N} that
is smaller than 2Ri is transmitted. For the constellation
Mj > 0, the data rate is thus log2 Mj .

Let us consider Scheme 1 first. Note that in Scheme
1, the strong user is kept at the minimum required rate
R̂1. Its constellation size is also fixed, which equals θ1.
Thus, the average SE for the strong user in Scheme 1
is E[log2(θ1)] or E[R̂1]. Similar to Theorem 1, with the
necessary conditions given in Lemma 1 considered, the
analytical expression for R̄1 in Scheme 1 will be given
in Theorem 2. Then, we only need to investigate the
average SE for the weak user. For the weak user in
Scheme 1, the rule of selecting constellation size Mj

is

Mj ≤ 1 +K
γta2upper(g1)g2

1 + γt(1− a2upper(g1))g2
< Mj+1.

(29)

Let us first consider the lower bound. By rewriting
this inequality, we get that

a2upper(g1) ≥
(Mj − 1)(1 + γtg2)

γtg2(K +Mj − 1)
. (30)

By setting Nj =
(Mj−1)(1+γtg2)
γtg2(K+Mj−1) and inserting

a2upper(g1) into (30), we find that when g2 >
Mj−1
Kγt

,

g1 ≥
θ1 − 1

Kγt −NjKγt
. (31)

Similarly, the upper bound of (29) can be rewritten as

a2upper(g1) <
(Mj+1 − 1)(1 + γtg2)

γtg2(K +Mj+1 − 1)
. (32)

By setting Nj+1 =
(Mj+1−1)(1+γtg2)
γtg2(K+Mj+1−1) and inserting

a2upper(g1) into (32), we find that when g2 >
Mj+1−1

Kγt
,

we get that

g1 <
θ1 − 1

Kγt −Nj+1Kγt
. (33)

On the other hand, when g2 <
Mj+1−1

Kγt
, we get that

g1 >
θ1 − 1

Kγt −Nj+1Kγt
. (34)

We now jointly consider the lower bound and upper
bound of (29). As can be noticed from the discussions,
the lower bound of (29) is now converted into (31), while
the upper bound of (29) is now transformed into (33)
and (34). Combining (31) with (33) yields that when
g2 >

Mj+1−1
Kγt

, then θ1−1
Kγt−NjKγt

≤ g1 < θ1−1
Kγt−Nj+1Kγt

.

Combining (31) with (34) implies that when Mj−1
Kγt

<

g2 <
Mj+1−1

Kγt
, the inequality g1 ≥ θ1−1

Kγt−NjKγt
holds.

Hence, by inserting Nj and Nj+1 into the above inequal-
ities, we conclude that the rule of selecting constellation

7



size Mj , i.e., (29), can be finally converted into the
following two conditions:

(i) When g2 >
Mj+1−1

Kγt
, the following condition must

hold.
g2(K +Mj − 1)(θ1 − 1)

K(Kγtg2 −Mj + 1)
≤ g1

<
g2(K +Mj+1 − 1)(θ1 − 1)

K(Kγtg2 −Mj+1 + 1)
. (35)

(ii) When Mj−1
Kγt

< g2 <
Mj+1−1

Kγt
, the following

condition must hold.

g1 ≥
g2(K +Mj − 1)(θ1 − 1)

K(Kγtg2 −Mj + 1)
. (36)

Recall that in order to guarantee all the requirements
on rate, power and channel gain, some necessary con-
ditions need to be satisfied, which are summarized in
Lemma 1. Therefore, (35) and (36) need to be con-
strained by the conditions given in Lemma 1. After doing
some basic set operations and by assuming3 j < N and
θ1 ≥ 2, we finally conclude that for the weak user in
Scheme 1, the constellation Mj is chosen if the following
conditions are satisfied:

(i) When Mj+1−1
Kγt

< g2 <
(K+Mj−1)(θ1−1)+K(Mj−1)

K2γt
,

we have that
g2(K +Mj − 1)(θ1 − 1)

K(Kγtg2 −Mj + 1)
≤ g1

<
g2(K +Mj+1 − 1)(θ1 − 1)

K(Kγtg2 −Mj+1 + 1)
. (37)

(ii) When (K+Mj−1)(θ1−1)+K(Mj−1)
K2γt

< g2 <
(K+Mj+1−1)(θ1−1)+K(Mj+1−1)

K2γt
, we have that

g2 < g1 <
g2(K +Mj+1 − 1)(θ1 − 1)

K(Kγtg2 −Mj+1 + 1)
. (38)

(iii) When Mj−1
Kγt

< g2 <
Mj+1−1

Kγt
, we have that

g1 ≥
g2(K +Mj − 1)(θ1 − 1)

K(Kγtg2 −Mj + 1)
. (39)

The average SE for the weak user in Scheme 1
adopting adaptive discrete-rate modulation is defined as
the the sum of data rates associated with each fading
region multiplied by the probability that channel gain
falls into that region [18]. Therefore, when j < N , the
average SE for the weak user in Scheme 1 can be written
below, based on the above analytical results.

R̄2j =

N−1∑
j=µ2

(
Φ̄1j + Φ̄2j + Φ̄3j

)
, (40)

3The assumption θ1 ≥ 2 is acceptable since it requires that at least
BPSK is guaranteed.

where Φ̄1j , Φ̄2j , and Φ̄3j are respectively given by (41a),
(41b), and (41c) shown at the top of the next page. In
(40), µ2 refers to the modulation order related to the
minimum required rate R̂2. For example, if the minimum
required rate is 1 b/s/Hz, at least BPSK is required, i.e.,
µ2 = 2.

The above analysis is valid when j < N . The case
of j = N needs to be considered separately. It is noted
that MN = 22(N−1) and MN+1 = ∞. Hence, for the
weak user in Scheme 1, the condition of choosing MN

is given by

MN ≤ 1 +K
γta2upper(g1)g2

1 + γt(1− a2upper(g1))g2
<∞. (42)

After doing some algebraic operations, we can also ob-
tain the ranges of g1 and g2 resulting in the constellation
size MN . Similar to the analysis above, we can obtain
that when j = N , the average SE for the weak user in
Scheme 1 can be given below.

R̄2N = Φ̄1N + Φ̄2N , (43)

where Φ̄1N and Φ̄2N are respectively given by (44a) and
(44b) shown at the top of the next page. Hence, for both
users in Scheme 1, we can finally provide the following
theorem.

Theorem 2: Consider adaptive discrete-rate M-QAM
modulation and adaptive power coefficients. For Scheme
1, the average SEs for both users are respectively given
by

R̄1 = E[log2(θ1)]

=

∫ l2

l1

2e−g2−l3 log2(θ1)dg2 + log2(θ1)e
−2l2 ,

(45a)
R̄2 = R̄2j + R̄2N

=

N−1∑
j=µ2

(
Φ̄1j + Φ̄2j + Φ̄3j

)
+ Φ̄1N + Φ̄2N , (45b)

where l1 = θ2−1
Kγt

, l2 = (θ2−1+K)(θ1−1)+K(θ2−1)
K2γt

, and
l3 = g2(θ2−1+K)(θ1−1)

K(Kγtg2−θ2+1) . Φ̄1j , Φ̄2j , Φ̄3j , Φ̄1N , and Φ̄2N

are respectively given in (41a), (41b), (41c), (44a), and
(44b).

Proof: The proof follows the above analysis.
Now let us consider Scheme 2. Note that in Scheme 2,

the weak user remains at the minimum required rate R̂2.
Its constellation size is equal to θ2. Thus, the average
SE for the weak user in Scheme 2 is E[log2(θ2)] or
E[R̂2]. With the necessary conditions given in Lemma 1
considered, the analytical expression for R̄2 in Scheme
2 will be given in Theorem 3. Thus, we only need to
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Φ̄1j =

∫ (K+Mj−1)(θ1−1)+K(Mj−1)

K2γt

Mj+1−1

Kγt

∫ g2(K+Mj+1−1)(θ1−1)

K(Kγtg2−Mj+1+1)

g2(K+Mj−1)(θ1−1)

K(Kγtg2−Mj+1)

log2 (Mj) f(1)(2)(g1, g2)dg1dg2, (41a)

Φ̄2j =

∫ (K+Mj+1−1)(θ1−1)+K(Mj+1−1)

K2γt

(K+Mj−1)(θ1−1)+K(Mj−1)

K2γt

∫ g2(K+Mj+1−1)(θ1−1)

K(Kγtg2−Mj+1+1)

g2

log2 (Mj) f(1)(2)(g1, g2)dg1dg2, (41b)

Φ̄3j =

∫ Mj+1−1

Kγt

Mj−1

Kγt

∫ ∞

g2(K+Mj−1)(θ1−1)

K(Kγtg2−Mj+1)

log2 (Mj) f(1)(2)(g1, g2)dg1dg2, (41c)

Φ̄1N =

∫ (K+MN−1)(θ1−1)+K(MN−1)

K2γt

MN−1

Kγt

∫ ∞

g2(θ1−1)(K+MN−1)

K(Kγtg2−MN+1)

log2 (MN ) f(1)(2)(g1, g2)dg1dg2, (44a)

Φ̄2N =

∫ ∞

(K+MN−1)(θ1−1)+K(MN−1)

K2γt

∫ ∞

g2

log2 (MN ) f(1)(2)(g1, g2)dg1dg2. (44b)

study the average SE for the strong user. For the strong
user in Scheme 2, the rule of selecting constellation size
Mj is

Mj ≤ 1 +Kγta1upper(g2)g1 < Mj+1. (46)

Similar to the analysis for the weak user in Scheme 1,
we can obtain that for the strong user in Scheme 2, the
constellation Mj is chosen if the following condition is
satisfied:

(i) When g2 > θ2−1
Kγt

, we have that

g2(K + θ2 − 1)(Mj − 1)

K(Kγtg2 − θ2 + 1)
≤ g1

<
g2(K + θ2 − 1)(Mj+1 − 1)

K(Kγtg2 − θ2 + 1)
. (47)

Recall that Lemma 1 summarizes the necessary condi-
tions for the requirements on rate, power and channel
gain. To provide valid analysis, (47) needs to be con-
strained by the conditions given in Lemma 1. Hence,
we can conclude that for the strong user in Scheme 2,
by assuming j < N , the average SE is given by

R̄1j =

N−1∑
j=µ1

(
Λ̄1j + Λ̄2j

)
, (48)

where Λ̄1j and Λ̄2j are respectively given by (49a) and
(49b) at the top of the next page. In (48), µ1 refers to
the modulation order related to the minimum required
rate R̂1. Then, we consider the case of j = N . For the
strong user in Scheme 2, the condition of choosing MN

is given by

MN ≤ 1 +Kγta1upper(g2)g1 <∞. (50)

By doing similar mathematical operations, we can obtain
the ranges of g1 and g2 in which the constellation size
MN will be chosen. Hence, for the case of j = N , the
average SE for the strong user in Scheme 2 can be given
below.

R̄1N = Λ̄1N + Λ̄2N , (51)

where Λ̄1N and Λ̄2N are respectively given by (52a) and
(52b) shown at the top of the next page. Hence, for both
users in Scheme 2, we can finally provide the following
theorem.

Theorem 3: Consider adaptive discrete-rate M-QAM
modulation and adaptive power coefficients. For Scheme
2, the average SEs for both users are respectively given
by

R̄1 = R̄1j + R̄1N =

N−1∑
j=µ1

(
Λ̄1j + Λ̄2j

)
+ Λ̄1N + Λ̄2N ,

(53a)

R̄2 = E[log2(θ2)] =

∫ l2

l1

2e−g2−l3 log2(θ2)dg2

+ log2(θ2)e
−2l2 , (53b)

where l1 = θ2−1
Kγt

, l2 = (θ2−1+K)(θ1−1)+K(θ2−1)
K2γt

, and
l3 = g2(θ2−1+K)(θ1−1)

K(Kγtg2−θ2+1) . Λ̄1j , Λ̄2j , Λ̄1N , and Λ̄2N are
respectively given in (49a), (49b), (52a), and (52b).

Proof: The proof follows the above analysis.
The accuracy of the above derived analytical results

in Theorem 2 and 3 will be confirmed in Section IV, by
comparing with Monte Carlo results. We further provide
the following Lemma 3 which provides the limits as the
transmit SNR approaches infinity.

9



Λ̄1j =

∫ (K+θ2−1)(Mj−1)+K(θ2−1)

K2γt

θ2−1
Kγt

∫ g2(K+θ2−1)(Mj+1−1)

K(Kγtg2−θ2+1)

g2(K+θ2−1)(Mj−1)

K(Kγtg2−θ2+1)

log2 (Mj) f(1)(2)(g1, g2)dg1dg2, (49a)

Λ̄2j =

∫ (K+θ2−1)(Mj+1−1)+K(θ2−1)

K2γt

(K+θ2−1)(Mj−1)+K(θ2−1)

K2γt

∫ g2(K+θ2−1)(Mj+1−1)

K(Kγtg2−θ2+1)

g2

log2 (Mj) f(1)(2)(g1, g2)dg1dg2, (49b)

Λ̄1N =

∫ (K+θ2−1)(MN−1)+K(θ2−1)

K2γt

θ2−1
Kγt

∫ ∞

g2(K+θ2−1)(MN−1)

K(Kγtg2−θ2+1)

log2 (MN ) f(1)(2)(g1, g2)dg1dg2, (52a)

Λ̄2N =

∫ ∞

(K+θ2−1)(MN−1)+K(θ2−1)

K2γt

∫ ∞

g2

log2(MN )f(1)(2)(g1, g2)dg1dg2. (52b)

Lemma 3: Consider adaptive discrete-rate M-QAM
modulation and adaptive power coefficients. For Scheme
1, when transmit SNR γt → ∞, lim

γt→∞
R̄1 = log2 (θ1),

lim
γt→∞

R̄2 = log2 (MN ). For Scheme 2, when transmit

SNR γt → ∞, lim
γt→∞

R̄1 = log2 (MN ), lim
γt→∞

R̄2 =

log2 (θ2).

Proof: For the strong user in Scheme 1, we can first
find that when γt →∞, l1 → 0, l2 → 0, l3 → 0. There-
fore, similar to Appendix B, we can get that lim

γt→∞
R̄1 =

log2 (θ1). For the weak user in Scheme 1, we can find
that when γt →∞, lim

γt→∞
1+K

γta2upper(g1)g2
1+γt(1−a2upper(g1))g2

→
∞. Therefore, in this extreme case, the largest modu-
lation order in the system is chosen, i.e., lim

γt→∞
R̄2 =

log2 (MN ). For the strong user in Scheme 2, when
γt →∞, lim

γt→∞
1+Kγta1upper(g2)g1 →∞. Therefore,

the largest modulation order is chosen, i.e., lim
γt→∞

R̄1 =

log2 (MN ). For the weak user in Scheme 2, we have that
when γt → ∞, l1 → 0, l2 → 0, l3 → 0. By inserting
them into the analytical expression of R̄2, we finally get
that lim

γt→∞
R̄2 = log2 (θ2).

Lemma 3 proves that the average SEs for both users
in both power schemes are bounded, when adaptive
discrete-rate M-QAM modulation and adaptive power
coefficients are considered. This is different from the
conclusion given in Lemma 2 for adaptive continuous-
rate modulation. It is because when continuous-rate
modulation is considered, the constellation size continu-
ously adapts to channel fading and is unbounded, while
for the practical discrete-rate modulation, the available
constellation sizes are discrete and there exists a highest
modulation order, due to system limitations. Lemma 3
also indicates that for the strong user in Scheme 1 and

the weak user in Scheme 2, their average SEs converge
to the minimum target rates. Meanwhile, for the weak
user in Scheme 1 and the strong user in Scheme 2,
their constellation sizes are bounded by the highest
modulation order the system can support.

D. Dynamic Rate and Power Adaptation Algorithm

In Section III-A, we proposed two adaptive power
allocation strategies, i.e., Scheme 1 and Scheme 2. Then,
in Section III-C, the joint adaptive transmission including
both discrete rate and power adaptation was studied
for both power allocation schemes. In this section, we
propose a dynamic rate and power adaptation scheme,
which is based on the two power schemes proposed in
III-A but aims to further increase the rate of one user
without sacrificing the rate of the other.

The total average SE is R̄1 + R̄2, which equals
E[log2(M1(g1, g2))] + E[log2(M2(g1, g2))] where
M1(g1, g2) and M2(g1, g2) are the constellations chosen
from the set {Mj : j = 0, 1, . . . , N}. Recall that in
Scheme 1, a1low(g1) and a2upper(g1) are the adaptive
power coefficients for the strong user and the weak
user, respectively. In Scheme 1, the total average SE
is R̂1 + R̄2, which means the strong user always
remains at the minimum target rate R̂1. Hence, we
cannot decrease a1low(g1) because it will violate the
rate constraint. However, we can decrease the power
coefficient of weak user which in turn increases the
power allocation of strong user. Then, the strong user’s
power coefficient may be large enough to increase its
constellation size while the weak user’s modulation
remains the same. Similarly, in Scheme 2, a1upper(g2)
and a2low(g2) are the adaptive power coefficients,
which indicates that a2low(g2) for the weak user cannot
be decreased. However, we can decrease the power
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Fig. 1: Principle of DRPA algorithm for Scheme 2.

coefficient of strong user in Scheme 2, which may leads
to a higher modulation order for the weak user, without
sacrificing the strong user’s rate. To sum up, we aim to
carefully adjust the adaptive power coefficients to push
up the total average SE further. The principle of DRPA
algorithm for Scheme 2 is given in Fig. 1.

Let us use Scheme 2 as an example and introduce
the DRPA algorithm4. But it can also be applied to
Scheme 1, where the details are explained later. For
Scheme 2, the current modulation orders for both users
are initially known, i.e., M1 and M2, where M2 is
related to the minimum target rate. We first decide a new
constellation size for the weak user in each iteration, e.g.,
M

(n+1)
2 , which is the next higher modulation order in

the set {Mj : j = 0, 1, . . . , N}. Based on the updated
M

(n+1)
2 , the new power coefficients for both users can be

calculated, as well as the corresponding SEs. Since we
aim to push up the weak user’s rate without sacrificing
the strong user’s rate, the loop terminates when the newly
updated power coefficients result in a lower SE for the
strong user. The final constellation sizes, i.e., M∗

1 and
M∗

2 , are obtained respectively. The Pseudocode of DRPA
algorithm is illustrated in Algorithm 1.

For Scheme 1, the DRPA algorithm shown above
needs to be adjusted. Firstly, for Scheme 1, we first
decide a new constellation size for the strong user in
each iteration, e.g., M

(n+1)
1 , which is the next higher

modulation order. Then, the power coefficients can be
updated using the expressions below. Finally, the loop

4Since each user has a positive minimum required rate, we omits
the case of no data transmission, i.e., choosing constellation M0.

Algorithm 1 Dynamic Rate and Power Adaptation
(DRPA)
Input:

M1, M2, a1upper(g2), a2low(g2), MN

1: Set iteration index n = 0;
2: Set M

(0)
2 ← M2, R

(0)
1 ← log2(M1), a

(0)
1 (g2) ←

a1upper(g2), a
(0)
2 (g2)← a2low(g2);

3: while a
(n)
1 (g2) <= a

(n)
2 (g2) && a

(n)
2 (g2) < 1 do

4: if R
(n)
1 ≥ log2(M1) then

5: M∗
2 ← M

(n)
2 , a∗1(g2) ← a

(n)
1 (g2), a∗2(g2) ←

a
(n)
2 (g2);

6: else
7: Break;
8: end if
9: if M

(n)
2 = 2 then

10: Update M
(n+1)
2 ← 4;

11: else if M (n)
2 ≥ 4 then

12: Update M
(n+1)
2 ← 4M

(n)
2 ;

13: end if
14: Calculate the new power coefficients in Scheme 2:

a
(n+1)
2 (g2)←

Ä
M

(n+1)
2 −1

ä
(1+γtg2)Ä

K+M
(n+1)
2 −1

ä
γtg2

, a(n+1)
1 (g2)←

1− a
(n+1)
2 (g2);

15: Calculate the corresponding SEs R
(n+1)
1 , R(n+1)

2

by inserting a
(n+1)
2 (g2), a

(n+1)
1 (g2) into (4a) and

(4b);
16: if M

(n+1)
2 = MN then

17: Break;
18: end if
19: Update n← n+ 1;
20: end while
Output: M∗

1 ←M1, M∗
2 , a∗1(g2), a

∗
2(g2)

ends when the weak user’s SE is sacrificed.

a
(n+1)
1 (g1)←

M
(n+1)
1 − 1

Kγtg1
, (54a)

a
(n+1)
2 (g1)← 1− a

(n+1)
1 (g1). (54b)

The effectiveness of the proposed DRPA algorithm will
be validated in Section IV.

IV. NUMERICAL RESULTS

In this section, the accuracy of the developed an-
alytical results will be validated by comparing with
Monte Carlo simulation results. The performance of
the proposed DRPA algorithm will also be investigated.
The channel gain from BS to each user is assumed to
be Raleigh fading with unit variance. The strong user
always has larger channel gains than the weak user. The
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Fig. 2: Average SE versus transmit SNR, with adaptive
continuous-rate modulation and power adaptation strate-
gies.
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Fig. 3: Outage probability and total average SE versus
transmit SNR, with adaptive continuous-rate modulation,
power adaptation strategies and fixed power coefficients
(a1 = 0.1, a2 = 0.9).

BER requirement is assumed to be 10−3 for each user,
unless otherwise indicated. The choices of constellation
size in the system are BPSK, 4-QAM, 16-QAM, 64-
QAM, and 256-QAM.

A. Adaptive Continuous-Rate Modulation and Power
Strategies

In this subsection, we start to study the performance
of adaptive continuous-rate modulation and the two
proposed power strategies, via simulations. Fig. 2 is first
illustrated showing the average SE versus transmit SNR,
in which Monte Carlo results, analytical results and the
limits at high SNRs are plotted for Scheme 1 and Scheme

2. The minimum required rates, i.e., R̂1 and R̂2, are
set to 2 b/s/Hz and 1 b/s/Hz, respectively. Fig. 2 first
shows that the analysis given in Lemma 1 and Theorem 1
are accurate, since the analytical results match well with
Monte Carlo simulations. Further, Fig. 2 confirms that
when the transmit SNR approaches infinity, the average
SE for the strong user in Scheme 1 converges to the
maximum limit log2(θ1), i.e., R̂1, which equals 2 b/s/Hz
according to our parameter settings. On the other hand,
Lemma 2 proves that for the weak user in Scheme 2,
the average SE converges to log2(θ2), i.e., R̂2. This can
be confirmed by Fig. 2. This figure also confirms the
other conclusions provided in Lemma 2, i.e., for the
weak user in Scheme 1 and the strong user in Scheme 2,
their average SEs are unbounded. Lemma 2 is thus fully
confirmed.

Fig. 3 is plotted to compare the performance of
Scheme 1, Scheme 2 and fixed power coefficients in terms
of outage probability and total average SE. According to
the guarantees on rate, power and channel gain for the
two adaptive power strategies in Section III-A, one can
note that the average SEs analyzed in Sections III-B and
III-C guarantee the minimum target rate for both users.
Hence, to make sure a fair comparison, in Fig. 3, the
average SE plotted for the fixed power coefficients is
also the achieved average SE with the minimum target
rates guaranteed for both users. Fig. 3 shows that when
the transmit SNR is smaller than 15 dB, the outage
probability is close to 1 for all three approaches, resulting
in almost zero b/s/Hz in terms of total average SE.
From Fig. 3, one can also notice that the two adaptive
power schemes provide much smaller outage probability
than the fixed power allocation scheme. For example,
when transmit SNR is 20 dB, the outage probability of
adaptive power schemes is 16.04% smaller than that of
fixed power allocation. It shows that at high SNRs, e.g.,
≥ 30 dB, Scheme 2 achieves the highest total SE, while
Scheme 1 obtains the smallest total SE. This can also
be confirmed by Fig. 2 since it shows that based on the
parameter settings, at high SNRs, the difference between
R̄1 in Scheme 2 and R̄2 in Scheme 1 is larger than the
difference between R̄1 in Scheme 1 and R̄2 in Scheme
2. Fig. 3 also shows that the fixed power allocation with
a1 = 0.1 and a2 = 0.9 achieves larger total average SE
than Scheme 1 at high SNRs. But this does not always
hold. If the minimum target rates are set to 2 b/s/Hz
for both users, we can find that the total average SE for
the fixed power allocation with a1 = 0.1 and a2 = 0.9
reduces to zero and the outage probability remains at 1.
This means that in this case, this fixed power allocation
scheme cannot guarantee the minimum required rates.
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On the contrary, the adaptive power strategies, i.e.,
Scheme 1 and Scheme 2, still provide positive average
SEs and outage probability values less than 1.

B. Adaptive Discrete-Rate Modulation and Power
Strategies

Then, we investigate the performance of adaptive
discrete-rate modulation and power adaptation schemes,
i.e., Scheme 1 and Scheme 2. The minimum target rates,
i.e., R̂1 and R̂2, are set to 2 b/s/Hz and 1 b/s/Hz.
To validate the accuracy of the proposed analytical
expressions for R̄1 and R̄2 given in Theorem 2 and
Theorem 3, we depict Fig. 4, which plots the average SE
versus transmit SNR for both power adaptation schemes.
By comparing with Monte Carlo simulations, Fig. 4
confirms that the analytical expressions are accurate. Fur-
thermore, different from Fig. 2 obtained with continuous-
rate modulation, Fig. 4 shows that the average SEs
achieved with discrete-rate modulation converge to the
maximum limits for both users. This is because of the
practical system limitations on the modulation order.
More details are shown in Fig. 5.

For the discrete-rate modulation, Fig. 5 is plotted to
compare the performance of Scheme 1, Scheme 2 and
fixed power coefficients with a1 = 0.1, a2 = 0.9. The
minimum required rates, i.e., R̂1 and R̂2, are set to 4
b/s/Hz and 1 b/s/Hz, respectively. Fig. 5 shows that in
Scheme 1, when the transmit SNR approaches infinity,
the average SE for the strong user converges to 4 b/s/Hz,
while that of the weak user converges to 8 b/s/Hz. This
is because, as proved in Lemma 3, for the strong user in
Scheme 1, its average SE converges to log2(θ1) or R̂1.
Meanwhile, for the weak user in Scheme 1, its average
SE converges to log2(MN ) where MN is the highest
modulation order, i.e., 256 according to our settings.
On the other hand, Fig. 5 also shows that in Scheme
2, the average SE for the strong user approaches 8
b/s/Hz, while that of the weak user approaches 1 b/s/Hz,
as the transmit SNR increases. This also confirms the
proved conclusions in Lemma 3. Furthermore, this figure
indicates that R̄1 and R̄2 with a1 = 0.1, a2 = 0.9
are smaller than that obtained in Scheme 2, when the
transmit SNR is not very large. However, when the
transmit SNR approaches infinity, the average SEs with
fixed power coefficients and that in Scheme 2 converge
to the same limits. But this is not always the case. Fig.
6 is plotted where the fixed power coefficients are given
by a1 = 0.06 and a2 = 0.94. It is shown that as the
transmit SNR approaches infinity, the average SE for the
weak user with fixed power coefficients converges to 2
b/s/Hz. This is because, with fixed power coefficients, the
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Fig. 4: Average SE versus transmit SNR, with adaptive
discrete-rate modulation and power adaptation strategies.
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Fig. 5: Average SE versus transmit SNR, with adaptive
discrete-rate modulation, power adaptation strategies and
fixed power coefficients (a1 = 0.1, a2 = 0.9).

average SE for the weak user at high SNRs is bounded
by log2(Mz2), which is the maximum constellation size
that is smaller than 1 +K

a2
a1

. When the ratio of power

coefficients becomes larger, i.e., a1 = 0.06, a2 = 0.94,
we have 1 + K

a2
a1

= 4.0917 > 4, indicating that for

the weak user, 4-QAM is transmitted and the average
SE is therefore equal to 2 b/s/Hz. Hence, with fixed
power coefficients, the maximum limit of the weak user’s
average SE is bounded by the BER requirement and the
ratio of power coefficients. More details can be found in
our previous paper [19].

C. Dynamic Rate and Power Adaptation Algorithm

In this subsection, we check the performance of the
DRPA algorithm proposed in Section III-D. The mini-
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Fig. 6: Average SE versus transmit SNR, with adaptive
discrete-rate modulation, power adaptation strategies and
fixed power coefficients (a1 = 0.06, a2 = 0.94).
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Fig. 7: Average SE versus transmit SNR, for Scheme 1
with and without DRPA.

mum target rates, i.e., R̂1 and R̂2, are set to 2 b/s/Hz and
1 b/s/Hz, unless otherwise stated. Fig. 7 is first plotted
to compare the performance of average SE for Scheme
1 with and without DRPA algorithm. It is shown that
the adoption of DRPA does not change the weak user’s
average SE in Scheme 1. This is because, as discussed
in Section III-D, the DRPA algorithm for Scheme 1
aims to push up the strong user’s rate while keeping the
weak user’s rate unchanged. From Fig. 7, we can easily
notice that with DRPA applied, the strong user’s average
SE in Scheme 1 is larger than that without DRPA,
especially at high SNRs. For example, when the transmit
SNR is 70 dB, the average SE achieved with DRPA
for the strong user in Scheme 1 is 4 times larger than
that obtained without DRPA. This is because, without
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Fig. 8: Average SE versus transmit SNR, for Scheme 2
with and without DRPA.

DRPA algorithm, R̄1 in Scheme 1 is bounded by the
minimum target rate, i.e., R̂1 or log2(θ1). However, with
DRPA applied, the strong user’s average SE continues to
increase until its modulation order reaches the maximum
limit in the system, i.e., MN . In other words, with DRPA
applied, the percentage increase in average SE for the
strong user at high SNRs is (MN − R̂1)/R̂1.

Fig. 8 depicts the average SE versus transmit SNR
for Scheme 2 with and without DRPA algorithm. It is
shown that the strong user’s average SE in Scheme 2
is unaffected by the DRPA algorithm. However, with
DRPA applied, the weak user’s average SE in Scheme
2 is larger than that without DRPA, especially at high
SNRs. For example, when the transmit SNR is 70 dB,
the average SE achieved with DRPA for the weak user
in Scheme 2 is 8 times larger than that obtained without
DRPA. This is because, when there is no DRPA, the
weak user’s average SE in Scheme 2 is bounded by the
minimum target rate, i.e., R̂2 or log2(θ2), which equals 1
b/s/Hz according to our parameter settings. Nevertheless,
Fig. 8 shows that when the DRPA algorithm is utilized,
the weak user’s average SE in Scheme 2 continues to
increase until it reaches the highest rate due to practical
system limitations on modulation order. With DRPA
applied, the percentage increase in average SE for the
weak user in Scheme 2 at high SNRs is (MN −R̂2)/R̂2.

Fig. 9 depicts the total average SE versus transmit
SNR for Scheme 1 and Scheme 2, with and without
DRPA algorithm, compared with the fixed power allo-
cation scheme. The minimum target rates, i.e., R̂1 and
R̂2, are set to 2 b/s/Hz and 1 b/s/Hz. Fig. 9 shows that
the fixed power allocation scheme achieves the smallest
total average SE among all the schemes, while with
the proposed DRPA algorithm applied to the two power
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Fig. 9: Total average SE versus transmit SNR, for
Scheme 1, Scheme 2 with and without DRPA and fixed
power coefficients (a1 = 0.1, a2 = 0.9), where R̂1 = 2
b/s/Hz and R̂2 = 1 b/s/Hz.

10 20 30 40 50 60 70

SNR (dB)

0

2

4

6

8

10

12

14

16

T
o
ta

l 
a
v
e
ra

g
e
 s

p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
 (

b
/s

/H
z
)

Fig. 10: Total average SE versus transmit SNR, for
Scheme 1, Scheme 2 with and without DRPA and fixed
power coefficients (a1 = 0.1, a2 = 0.9), where R̂1 = 2
b/s/Hz and R̂2 = 2 b/s/Hz.

adaptation schemes, they achieve the largest total average
SE at high SNRs. Although Fig. 9 shows that at high
SNRs, the fixed power allocation scheme and the Scheme
2 without DRPA converge to the same average SE value,
this is not always the case.

Finally, Fig. 10 is plotted to show the performance of
total average SE for Scheme 1 and Scheme 2, with and
without DRPA algorithm. The total average SE for the
fixed power coefficients with a1 = 0.1, a2 = 0.9 is also
illustrated. The minimum target rates, i.e., R̂1 and R̂2,
are set to 2 b/s/Hz and 2 b/s/Hz. Firstly, it can be noticed
that the total average SE for the considered fixed power

coefficients scheme is zero. Since the average SE consid-
ered in this paper is the rate satisfying the minimum rate
constraint, this indicates that the considered fixed power
coefficients, i.e., a1 = 0.1, a2 = 0.9, cannot guarantee
the minimum required rates. This actually reflects the
benefits of adaptive power strategies which can take
advantage of favourable channel conditions and adapt
to flexible rate guarantees. Fig. 10 also shows that with
DRPA applied, both power adaptation schemes achieve
much better performance in terms of total average SE,
especially at high SNRs. When the transmit SNR is
70 dB, the total average SE achieved with DRPA is
1.6 times larger than that obtained without DRPA. It
validates the effectiveness of our algorithm.

V. CONCLUSIONS

Joint adaptive transmission considering practical adap-
tive M-QAM modulation and power adaptation strategies
was investigated in this paper for a downlink two-user
NOMA network. It is noted that for a given BER require-
ment, the constellation size, as a function of channel
fading and power allocation, can be adjusted. Hence,
we proposed two adaptive power allocation schemes
that take advantage of favourable channel conditions
and guarantee the minimum rate constraints. The perfor-
mance of joint adaptive transmission was then studied,
by considering adaptive continuous-rate modulation and
discrete-rate modulation. It was found that for discrete-
rate modulation, the average SEs for both users in both
power schemes are bounded, while for the weak user
in Scheme 1 and the strong user in Scheme 2, their
average SEs are unbounded. This is because for practical
discrete-rate modulations, commonly used in cellular
networks, the available constellation sizes are discrete
and there exists a highest modulation order due to system
limitations. With the aim to further increase the total
transmission rate, a DRPA algorithm was proposed. Sim-
ulation results validated the effectiveness of the proposed
algorithm, allowing both users in each scheme to reach
the highest modulation order at high SNRs.

APPENDIX A

PROOF FOR THEOREM 1

From III-A1, it can be noted that in Scheme 1, the
instantaneous transmitting rate of strong user is always
kept at the minimum required rate, indicating that R̄1 =
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E[log2(θ1)]. Based on (24), (25), and (26a), we have that

R̄1 =

∫ l2

l1

∫ ∞

l3

log2(θ1)2e
−g1e−g2dg1dg2

+

∫ ∞

l2

∫ ∞

l4

log2(θ1)2e
−g1e−g2dg1dg2, (55a)

=

∫ l2

l1

2e−g2−l3 log2(θ1)dg2 + log2(θ1)e
−2l2 .

(55b)

Then, based on (24), (25), and (26b), the average SE for
the weak user in Scheme 1 can be expressed as

R̄2 =

∫ l2

l1

∫ ∞

l3

log2

Å
1 +K

γta2upper(g1)g2
1 + γta1low(g1)g2

ã
× 2e−g1e−g2dg1dg2

+

∫ ∞

l2

∫ ∞

l4

log2

Å
1 +K

γta2upper(g1)g2
1 + γta1low(g1)g2

ã
× 2e−g1e−g2dg1dg2, (56)

where l1 = θ2−1
Kγt

, l2 = (θ2−1+K)(θ1−1)+K(θ2−1)
K2γt

, l3 =
g2(θ2−1+K)(θ1−1)
K(Kγtg2−θ2+1) , l4 = g2.
Now let us consider Scheme 2. From III-A2, it can be

noted that in Scheme 2, the instantaneous transmitting
rate of weak user always stays at the minimum required
rate, which means that R̄2 = E[log2(θ2)]. Similar to the
above analysis, it can be then written as

R̄2 =

∫ l2

l1

2e−g2−l3 log2(θ2)dg2 + log2(θ2)e
−2l2 . (57)

Based on (24), (25), and (26a), the average SE for the
strong user in Scheme 2 can be expressed as

R̄1 =

∫ l2

l1

∫ ∞

l3

log2 (1 +Kγta1upper(g2)g1)

× 2e−g1e−g2dg1dg2

+

∫ ∞

l2

∫ ∞

l4

log2 (1 +Kγta1upper(g2)g1)

× 2e−g1e−g2dg1dg2. (58)

By inserting a1upper(g2) and by defining t =
K(Kγtg2−θ2+1)

(θ2−1+K)g2
, (58) can be written as

R̄1 =

∫ l2

l1

2e−g2

∫ ∞

l3

log2(1 + tg1)e
−g1dg1dg2

+

∫ ∞

l2

2e−g2

∫ ∞

l4

log2(1 + tg1)e
−g1dg1dg2. (59)

APPENDIX B
PROOF FOR LEMMA 2

From the definitions of l1, l2, l3, l4 in Theorem 1, we
can find that when the transmit SNR γt → ∞, l1 → 0,
l2 → 0, l3 → 0, l4 = g2. Therefore, for the strong user
in Scheme 1, we get that

R̄1
γt→∞−−−−→

∫ ∞

0

∫ ∞

g2

log2(θ1)2e
−g1e−g2dg1dg2

= 2 log2(θ1)

∫ ∞

0

e−2g2dg2 = log2(θ1). (60)

By inserting a2upper(g1), when γt →∞, the average SE
for the weak user in Scheme 1 becomes

R̄2
γt→∞−−−−→

∫ ∞

0

∫ ∞

g2

log2

Å
1 +K

g2 (Kγtg1 − θ1 + 1)

Kg1 + g2(θ1 − 1)

ã
× 2e−g1e−g2dg1dg2

γt→∞−−−−→∞. (61)

Hence, we prove that for Scheme 1, when γt → ∞,
lim

γt→∞
R̄1 = log2(θ1), lim

γt→∞
R̄2 →∞. For Scheme 2, the

analysis can be done in a similar way, which is omitted
here.
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