
Model reduction and control design of a multi-agent
line formation of mobile robots∗

Adrian-Josue Guel-Cortez, Eun-jin Kim
Centre for Fluid and Complex Systems, Coventry University;

Priory St, Coventry CV1 5FB, UK
guelcortea@uni.coventry.ac.uk

December 20, 2021

Abstract

In this work, a model reduction of a line robotic formation driven by sim-
ple PD-controllers is presented. The proposed mathematical model describes
the control interactions between the agents which permits us to easily design
a decentralised control strategy. To select the PD-controller gains for each
agent, we employ a population-based algorithm that takes into consideration
the formation stability analysis. Finally, we discuss the future work and the
manner the proposed methodology can be used in more complex robotic sce-
narios. Multi-agent systems Line formation Evolutionary algorithms Control
design.

1 Introduction

Control of multi-agent systems (MAS) is currently a trend topic with plenty of dif-
ferent approaches [1, 2]. The study of MAS includes not only physical systems but
cyberphysical systems [3], biological neuronal networks [4], big data [5] and social
networks [6]. This makes MAS a very multidisciplinary and complicated area of re-
search. One of the main issues, where significant efforts have been made is the design
of control techniques. This is because MAS control implies a variety of challenges
including: modelling, scalability and communication [7].

∗To be published in https://www.springer.com/gb/book/9783030820633
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MAS control design can be simplified if we obtain simpler and reliable mathemat-
ical models. For instance, to find a linear representation of the interactions between
agents that also includes the control actions. If every agent is controlled by simple
low-order controllers, we may use well known linear system control design techniques
(see [8, 9]) or new low-order control approaches (see [10, 11, 12]). On the other hand,
there are other approaches that could be explored, for example the use of informa-
tion metrics for guided self-organisation in the MAS formation [13] or the use of a
fokker-planck control approach [14, 15].

Considering the given context and inspired by our previous experience with a
robotic formation experimental setup (see [16]), in this work, we propose a model
reduction of a n-agent line formation driven by simple PD-controllers. Our model
considers that the agents need to keep a desired distance between each other while
being limited to see only the agent in front of them. Besides, the nature of the
proposed model allows us to study its stability by means of simple linear systems
techniques. To solve the control design problem, we use an evolutionary algorithm to
find the set of controller gains that improve the system dynamics. In this regard, a
discussion on some simulation results is included. Finally, a set of conclusions which
include the future work is given.

2 Mathematical model

Consider a system of two robots moving in the x-axis interacting within each other
through a control action that keeps them apart by a desired distance d. The controller
is described as an operator L over the relative error ε as shown in the left of Fig. 1.

q1 q2

m1 m2

fv,1 fv,2

k

bs

q1 q2

m1 m2

fv,1 fv,2

C1 = kp,1 + kd,1s

Lε

F1 F2

Figure 1: Interaction of 2 Robots in 1D.

In our case, the operator L is given by a classical PD controller, L = kp + kd
d
dt

.
Here ε corresponds to the relative error between the position q1 and q2 of the mobile
robots, and Fi represents the control force applied to the i-th robot. Note that we can
use a spring and a damper in parallel to describe our PD’s control action. Specifically,
for the two-robot system, we proceed as follows:
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The time-evolution of m1 and m2 is governed by

m1q̈1 + fv,1q̇1 = F1, (1)

m2q̈2 + fv,2q̇2 = F2. (2)

Since F2 = Lε = L(d− (q2 − q1)) and F2 = −F1 we have

m1q̈1 + fv,1q̇1 = kp(−d− (q1 − q2))− kd(q̇1 − q̇2), (3)

m2q̈2 + fv,2q̇2 = kp(d− (q2 − q1))− kd(q̇2 − q̇1). (4)

Eqs. (3)-(4) give the dynamics of the system shown on the right-hand side of Fig. 1.
In a two robot system, if m2 corresponds to the robot formation leader and it does

not care about the position of m1, the force F2 = 0.

2.1 1D model for n robots

q1 q2

. . .

qn−1 qn

m1 m2 mn−1 mn

fv,1 fv,2 fv,n−1 fv,n

u(t)L1ε1 L2ε2 Ln−1εn−1

Figure 2: Interaction of n Robots in 1D.

We can generalise the previous procedure to the case of n mobile robots. If the
robots can only spot the robot in front, they form a line moving in one dimension
and are controlled by a classical PD controller as shown in Fig. 2. Then, considering
the change of variable qi,1 = qi and qi,2 = q̇i, the operator Li = kp,i + kd,i

d
dt

and
εi = −di− (qi− qi+1), the mathematical model describing the interaction between the
n robots is given by

q̇ = Aq + Bu, (5)
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where

A =
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[
q1,1 q1,2 q2,1 q2,2 q3,1 q3,2 · · · qn−1,1 qn−1,2 qn,1 qn,2

]T
,

Bu =
î
0 −kp,1d1

m1
0 −kp,2d2

m2
0 −kp,3d3

m3
· · · 0 −kp,n−1dn−1

mn−1
0 u(t)

óT
. (6)

Or in the form of the recurrence equations

q̇i,1 = qi,2

q̇i,2 =
1

mi

(−kp,iqi,1 − (fv,i + kd,i)qi,2 + kp,iqi+1,1 + kd,iqi+1,2 − dikp,i) ,

q̇n,1 = qn,2

q̇n,2 =
1

mn

(−fv,nqn,2 + u(t)) . (7)

where i = 1, 2, . . . , n− 1.

Remark 1 Eq. (5) models the interactions between the robots but not to fully de-
scribe the dynamics of each robot individually. We consider that Eq. (5) is a good
approximation to the dynamics of the robotic formation when the robots move with
low velocities. This is a feasible assumption in some practical scenarios.

3 Stability Analysis

Since our process is a simple linear model, we can use any linear systems stability
analysis methodology. For instance, by defining the system’s output as Y = Cq+D,
we can use the expression G(s) = C(sI −A)−1B + D to find a transfer function to
do the analysis in the Laplace domain.
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To clarify this idea, let us consider the case where we have three mobile robots.
Then, for n = 3 in Eq. (5) we have
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Specifically, let us assume that we can write the system’s output as

Y =

y1y2
y3

 =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



q1,1
q1,2
q2,1
q2,2
q3,1
q3,2

 , (9)

i.e. by measuring the position of every agent in the system.
Then, we can obtain the MIMO transfer function

G(s) =

0 G12 0 G14 0 G16

0 0 0 G24 0 G26

0 0 0 0 0 G36

 , (10)
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where

G12 = − kp,1
s(fv,1 + kd,1 +m1s) + kp,1

,

G14 = − kp,2(kd,1s+ kp,1)

(s(fv,1 + kd,1 +m1s) + kp,1)(s(fv,2 + kd,2 +m2s) + kp,2)
,

G16 =
m3(kd,1s+ kp,1)(kd,2s+ kp,2)

s(fv,3 +m3s)(s(fv,1 + kd,1 +m1s) + kp,1)(s(fv,2 + kd,2 +m2s) + kp,2)
,

G24 = − kp,2
s(fv,2 + kd,2 +m2s) + kp,2

,

G26 =
m3(kd,2s+ kp,2)

s(fv,3 +m3s)(s(fv,2 + kd,2 +m2s) + kp,2)
,

G36 =
m3

fv,3s+m3s2
. (11)

As we can see from Eq. (11), the stability of our process can be studied by the
characteristic polynomial of G16 which is given by

P (s) = s(fv,3 +m3s)(s(fv,1 + kd,1 +m1s) + kp,1)(s(fv,2 + kd,2 +m2s) + kp,2). (12)

Note that the polynomial (12) contains the roots of the rest of the transfer functions’
characteristic polynomials.

Since all the parameters in the system are positive, by taking kp,1, kd,1, kp,2, kd,2 > 0
we would make the system stable (Hurwitz polynomial). We could further add time
delays to the process to use more elaborated stability analysis methodologies (for
instance, see [12]).

It is important to notice that a selection of gains that stabilises the process does
not guarantee a proper behaviour. For instance, we consider the pair of simulations
shown in figure 2. Here, even though, both simulations use stabilising gains, one of
them shows a crashing between the robots. In such robotic formations, the more
robots in the process the more susceptible the system is to transmit oscillations.
Therefore, to design proper controller gains, we must select the transfer function
from Eq. (11) that provides us with the most useful transient dynamical information.
For the case of three robots, this corresponds to G14(s) because it relates the distance
d2 with the mobile’s position q1. In other words, G14(s) relates the dynamics of the
mobiles next and farthest to the leader. Let us recall that every agent can only see
who is in front and not who is behind of itself.
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(a) Undesired behaviour. There exist crash-
ing between the robots. The values kp = 8,
kd = 1 are used in every robot.
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(b) Desired behaviour. There is no crashing
between the robots. The values kp = 50,
kd = 10 are used in every robot.

Figure 3: System of 3 robots. u(t) = 100 sin(t), all masses mi = 1, fv,i ∈ (0, 2) and
all di = 10.

4 Algorithm for the controller’s design

Designing a good controller depends on the goal to be achieved. Thus, our problem
can be described as an optimisation problem in a parameters’ hyperspace (the space
of the controllers gains). We can formulate the optimisation problem as

min
k

[J (t)] s.t. k ∈ S (13)

where k ∈ Rn is the set of control parameters inside the stability region S and J
is our cost function. In this work we use the Root-Mean-Square Deviation (RMSD)
given by:

J =

 ∑T
t=1(ut − ŷt)2

T
. (14)

Here, ŷt is the output of the transfer function with the characteristic polynomial P (s)
using a set of control parameters k with an input equal to the desired response ut. T
is the total number of iterations.

4.1 Solution to the optimisation problem

Due to the complexity of the optimisation problem formulated by Eq. (13), in this
section, a evolutionary algorithm is proposed as an starting point. We describe it as
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Figure 4: Diagram of the optimisation problem. Finding the vector k inside the
stability region S, that minimise the RMSD J in a 3rd order problem.

a pseudocode in Algorithm 1.
Some important features of this algorithm are the way in which we compute

the score of each element in the population and the way in which we create the
new population. For the latter, we use a Blend crossover operator (BLX) [17]. The
fitness/score is computed by using the exp(−RMSD) in order to normalise the RMSD
while penalising big RMSDs.

5 Results

In this section, we discuss results of some simulations of system (5) for the case n = 3
subject to a set of controller gains k designed by means of Algorithm 1. For the present
simulations, we have computed the RMSD of the time response of G14(s) using two
different reference signals u(t) = 1 (regulation) and u(t) = 30 sin(2t) (tracking) in
Algorithm 1. Besides, we have used all mi = 1 and fv,i = 0.5 while keeping all agents
desired distance between each other di = 10 in our simulations. Additionally, we have
kept the maximum number of iterations of Algorithm 1 equal to 100. The simulation
results are given in Figs. 5 to 8.

First, the results of the case u(t) = 1 are shown in Figs. 5 and 6. Here, Fig.
5 presents the case when the elements ki of the controller gains vector k are in the
range 0 < ki < 500, this large range of values allow us to have a faster step response
of G14(s) as it is depicted in Fig. 5a (fast an overdamped response). Let us recall
that by using the RMSD as a cost function, we force Algorithm 1 to find the set
of gains k that minimise the difference between u(t) and y(t) for a given time. In
our simulations, we have used a final simulation time tf = 1 to get a fast response.
Using a larger tf would make our algorithm computationally more expensive. In
addition, Fig. 5b shows that every agent lasts at least 2 seconds to reach to the
desired separation between each other. This agrees with the step response of G14(s)
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Algorithm 1: Control design algorithm.

Data: Consider the initial population
P0 := {k1, . . . ,kN |ki ∈ S∀i = 1, . . . , N} where S ⊂ Rn is the stability
region of the parameter space k, the input u(t) and the total
simulation time tf .

Result: The value of the gain vector kî for which J is minimum over the
time t ∈ (0, tf ) for the input u(t).

/* Score the initial population P0 */

1 F := [F1, . . . ,FN ]T // Vector with computed fitness of each element

in the population.

2 E := [E1, . . . , EN ]T // Vector with computed RMSDs of each element in

the population.

/* Compute the fitness value. */

3 for i← 1 to N do
4 Ei = J (ki ∈ P0, u, tf )
5 Fi = e−Ei

6 end
7 fb = min(|1− F|) // Find the best score fb in the initial

population and compare it with a desired goal dg.
/* Repeat the process until the desired goal is accomplish */

8 while fb > dg do
9 PN = BLX(P0) // Create a new population PN using the BLX

algorithm on the old population P0.

10 for i← 1 to N do
11 Ei = J (ki ∈ PN , u, tf )
12 Fi = e−Ei

13 end
14 P0 = PN // The new population replaces the old one.

15 fb = min(|1− F|)
16 end

17 î = find(|1− F| = fb) // Find the position î of kî ∈ PN with the

best score.

18 return kî ∈ PN

subject to the designed controller gains k (see Fig. 5a). On the other hand, Fig. 6
represents a similar scenario although here we have diminished the range at which
ever element ki of the set of controller gains k is generated. This gives us a smooth
but slower step response as indicated in both the step response of G14(s) (see Fig.
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5b) and the time response of the robotic formation (see Fig. 6b).
For the case when u(t) = 30 sin(2t), we have again implemented our design algo-

rithm by changing the range of possible values that every element ki of our controller
k can take. Fig. 7 shows the case when the elements ki of the controller gains vector
k are in the range 0 < ki < 50. This gives a set of gains that does not completely
reduce the value of RMSD, as it is shown in the time response of G14(s) (see Fig. 7a).
Nonetheless, for this set of values the robotic formation shows a good performance
(see Fig. 7b). On the contrary, Fig. 8, shows the case when the elements ki are in the
range 0 < ki < 500. This allows us to obtain a smaller RMSD value, as we can see
from the time response in Fig. 8a, but it also adds small oscillations at the beginning
of the robotic formation experiment (see Fig. 8b).
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(a) G14(s) step response.
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(b) Formation behaviour.

Figure 5: System of 3 robots. u(t) = 0, all mi = 1, fv,i = 0.5, di = 10 and the
elements ki of the controller gains vector k are in the range 0 < ki < 500. We
iterate Algorithm 1 one hundred times. The final value of k = [kp,1, kd,1, kp,2, kd,2]

T =
[291.2359, 103.4591, 229.6364, 9.0647]T .

6 Conclusions

This work presents a linear model reduction for a line formation of mobile robots
driven by classical PD-controllers. This model permits us to easily design stabilising
controllers for each agent in the formation. The proposed model can be generalised
to study systems in higher dimensions by considering the particles in a plane. We
have also analysed the use of an evolutionary algorithm to find the best set of control
parameters that improves the network performance. The results of our algorithm are
discussed together with some simulations.

Future work includes exploring several novel and well known linear control design
techniques (for instance, see [9, 10]), the generalisation of the model to a multidimen-
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(a) G14(s) step response.
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Figure 6: System of 3 robots. u(t) = 0, all mi = 1, fv,i = 0.5, di = 10 and the
elements ki of the controller gains vector k are in the range 0 < ki < 50. We
iterate Algorithm 1 one hundred times. The final value of k = [kp,1, kd,1, kp,2, kd,2]

T =
[37.8257, 33.5179, 48.2762, 9.5010]T .
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(a) G14(s) time response.
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(b) Formation behaviour.

Figure 7: System of 3 robots. u(t) = 30 sin(2t), all mi = 1, fv,i = 0.5, di = 10
and the elements ki of the controller gains vector k are in the range 0 < ki < 50.
We iterate Algorithm 1 one hundred times. The value of k = [kp,1, kd,1, kp,2, kd,2]

T =
[31.4295, 32.2729, 45.6248, 0.7629]T .

sional framework and the improvement of the optimisation method for the controller’s
design.
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