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Abstract: Woodland planting is gaining momentum as a potential method of natural food manage-
ment (NFM), due to its ability to break up soil and increase infltration and water storage. In this 
study, a 2.2 km2 area in Warwickshire, England, planted with woodland every year from 2006 to 
2012, was sampled using a Mini Disk infltrometer (MDI). Infltration measurements were taken 
from 10 and 200 cm away from the trees, from November 2019 to August 2021. Two individual 
hydrological models were built using the US Hydraulic Engineering Center Hydrological Modelling 
System (HEC-HMS), to model the effects of infltration change on peak fows from the site throughout 
the summer and winter. The models were calibrated and validated using empirical data; the Nash 
and Sutcliffe Effciency (NSE) was used as an indicator of accuracy. Results from this study show 
that woodland planting reduced peak fow intensity compared to impermeable land cover by an 
average of 6%, 2%, and 1% for 6-h, 24-h, and 96-h winter storms, respectively, and 48%, 18%, and 
3% for 6-h, 24-h, and 96-h summer storms, respectively. However, grassland simulations show the 
greatest reduction in peak fows, being 32%, 21%, and 10%, lower than woodland for 6-, 24-, and 96-h 
winter storms, respectively, and 6%, 3%, and 0.5% lower than woodland for 6-, 24-, and 96-h summer 
storms, respectively. 

Keywords: infltration; natural food management; HEC-HMS; hydrological modelling; Nash and 
Sutcliffe Effciency; calibration; validation 

1. Introduction 

Urbanisation and the replacement of permeable and vegetated surfaces to imperme-
able surfaces, such as asphalt and concrete, reduces lag times and increases peak fows in 
receiving watercourses, infuencing the likelihood and severity of high-fow or fooding 
events across the UK [1,2]. Coupled with this, the global climate is predicted to change in 
ways unseen in recorded history [3]. In the UK, sea levels are expected to rise, the frequency 
of extreme weather events will increase, summers will become hotter and drier, and winters 
will become warmer and wetter [3,4]. Consequently, authorities responsible for managing 
food risk in the UK have increased investment in alternative, more sustainable methods of 
mitigating fooding, such as natural food management (NFM) techniques [2,5,6]. 

The design and operation of any NFM feature is based primarily on emulating the 
natural hydrology of a catchment as it was prior to human interaction, with the intention 
of reducing fuvial food risk [1,7]. Common NFM methods can be categorised into those 
that (a) reduce hydrological or hydraulic connectivity; (b) create storage; or (c) increase 
infltration [8]. Examples of these methods include vegetation planting to increase infltra-
tion and interception, changing animal grazing and farming routines to reduce compaction 
and increase lag time, and reconnecting or introducing offine marshlands and mudfat 
areas, to slow the fow of fooding water during a storm event [7,9–11]. 
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Whilst continuous academic investigations into the real-world applicability of NFM 
methods are ongoing, NFM implementation is slow, primarily due to the lack of long-term 
evidence-based studies [1,12]. One method of NFM that is assumed valuable, although 
under-investigated, is woodland planting [4,13,14]. Tree roots break up the surrounding 
soil, increasing infltration rate and water storage capacity, whilst simultaneously offering a 
higher opportunity for interception and evapotranspiration [15,16]. The value of woodland 
planting has been identifed by the UK government, who have allocated GBP 4 million 
to various organizations to increase woodland planting for food risk reduction, and the 
Environment Agency (England), who have been awarded GBP 1.4 million for the same 
purpose [17]. However, whilst some studies have attempted to investigate the link between 
woodland planting and soil infltration characteristics [4,15,18], evidence-based studies 
focusing solely on the impacts of changing infltration as a result of woodland planting are 
sparse, posing a challenge to researchers in this discipline. 

In light of the changing climate, and the predicted increases to food frequency and 
severity, the policy shift towards NFM methods, and the lack of evidence-based studies 
investigating the feasibility of woodland planting as a method of NFM, this study aims to 
determine the extent to which woodland planting has infuenced infltration at a site in 
central England [1–4]. Two hydrological models were built using HEC-HMS, calibrated and 
validated using the NSE method, and simulations were undertaken to predict the ability of 
woodland to increase infltration and reduce peak runoff to the receiving watercourse. 

2. Materials and Methods 
2.1. Infltration Data Collection 

Infltration data were collected once every two weeks from specifc areas of a 2.2 km2 

site in Warwickshire, UK (52.1511◦ N, 1.5139◦ W). The HofE charity began planting wood-
land in 2006, continuing every year until 2012. Infltration data were collected from the 
woodland in plots planted in 2006 (Betula Pendula), 2008 (Populus Tremula), 2010 (Betula 
Pendula), and 2012 (Populus Tremula). Additionally, infltration data were collected from a 
plot planted in cc.1900 (Quercus Petraea), and a control site consisting of a grassland area 
that pre-exists the HofE forest. The grassland area was sampled for comparison with the 
woodland areas, and the cc.1900 area was sampled to provide information on the infltration 
characteristics of mature woodland, and for comparison to more recently planted areas. 
Figure 1 shows the locations of the infltration sample plots and sampling locations. Water 2021, 13, x FOR PEER REVIEW 3 of 22 
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were compared against the UK soil texture triangle to determine the classification name 
of the sample soils. The percentiles and soil texture classifications of the sample area are 
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200 cm proximity was chosen to account for potential root spread due to tree growth [25–

Figure 1. Sample sites, sampling locations, rain gauge, and telemetry locations [19]. Data is repro-
duced under the open government license. 



Water 2021, 13, 3039 3 of 22 

Infltration rates are infuenced by soil texture [20–22]. Therefore, soil samples were 
extracted from the surface (~5 cm depth) of the soil surrounding the area of MDI mea-
surement using a trowel. The soil texture of these samples was then determined using a 
LaMotte soil texture testing kit [23]. The percentiles of sand, silt, and clay for each soil were 
compared against the UK soil texture triangle to determine the classifcation name of the 
sample soils. The percentiles and soil texture classifcations of the sample area are shown 
in Table 1. 

Table 1. Soil percentiles and texture classifcation of each sample site. 

Sample Site Sand % Silt % Clay % UK Soil Classifcation 

Control 
Pre-1900 

2006 
2008 
2010 
2012 

53 
47 
20 
13 
53 
33 

20 
40 
20 
20 
33 
13 

27 
13 
60 
67 
14 
54 

SaCL 
SSL 
C 
C 

SaL 
C 

Sandy clay loam 
Sandy silt loam 

Clay 
Clay 

Sandy loam 
Clay 

Infltration measurements were collected (10 and 200 cm away from the base of 
the sample trees) using a Mini Disk infltrometer (MDI) [24]. The 10 cm proximity was 
chosen to represent the infuence of the tree on infltration directly adjacent to the trunk, 
and the 200 cm proximity was chosen to account for potential root spread due to tree 
growth [25–27]. As the MDI required a watertight seal with the sample soil, vegetation 
was removed from the surface of the soil before infltration measurement proceeded. See 
Figure 2a,b. 
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Collecting infltration data from two proximities allowed for the comparison and 
representation of both proximities in hydrological modelling. Infltration measurements 
were carried out until three consecutive volumes were recorded (~10 min) and replicated 
three times at both proximities around the sample tree [15,28]. 

It is acknowledged that, in addition to infltration, woodland can infuence hydrology 
through interception and evapotranspiration, which is also accounted from in this study 
(and discussed in Section 2.5.3) [7,9,10]. These additional factors are important for justifying 
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the use of woodland as a method of NFM, and are accounted for throughout the modelling 
and results of this study (this is discussed further in Section 2.5.3). A total of 1617 individual 
infltration measurements were collected from October 2019 to August 2021; 888 from the 
10 cm proximity (including a grassland control), and 729 from the 200 cm proximity. 
Infltration data were not collected from March to July 2020 due to the UK national COVID-
19 lockdown. 

2.2. Hydrometric Data Collection and HEC-HMS Modelling 

Rainfall data (in mm) were collected via a tipping bucket rain gauge (accuracy ±4% 
between 0.2 and 50 mm) located at the NextGen (2020) waste water treatment plant, 1 km 
north of the HofE site (see Figure 1). Whist not located directly on the HofE site, the rain 
gauge is the only one located within eyeshot of the study site and is representative of local 
rainfall [29–32]. The stage (in mm) of the study site tributary was recorded every 15 min 
via a pressure transducer (accuracy ± 0.05% FS) located at the downstream end of the site 
watercourse (Figure 1). Upon instillation, the transducer was calibrated to a fow meter, 
enabling the generation of a ratings curve to determine watercourse fow (in L/s) relative 
to measured water pressure [33,34]. 

The US Hydrologic Engineering Center Hydrological Modelling System (HEC-HMS) 
allows the application of various numerical methods to each stage of the rainfall–runoff 
process, meaning a model can be tailored to serve a very specifc purpose dependent on 
the required output [35–38]. The software is also capable of modelling simple hydraulic 
elements, allowing watercourses to be inputted as either user-defned open channels, or 
specifed-shape culvers/pipes. 

For this study, ArcMap 10.6.1 was used in conjunction with a 1 m resolution digi-
tal terrain model (downloaded from the Department for Environment, Food and Rural 
Affairs) [39], and the shapefle of the study site tributary to delineate the watershed and 
generate a fow accumulation fle. The area defned by the watershed delineation was 
overlain with HofE feld boundaries. Each feld boundary was treated as a separate sub-
catchment model input, and these were individually digitised to represent the 10 cm 
woodland proximity, the 200 cm proximity, and the grassland areas individually. This was 
implemented so that the model would account for the collected infltration data of both the 
10 and 200 cm proximities and the grassland (taken from the control site) data separately. 

The watercourse of the HofE site was added to the model in a series of reaches and 
junctions, the dimensions of which were validated from cross-section measurements taken 
on site. After the watercourse, sub-catchment nodes were added. Each node represented a 
different land cover type of each sub-catchment, meaning there were up-to three nodes for 
each catchment (10 cm proximity, 200 cm proximity, grassland, and impermeable). ArcGIS, 
the fow accumulation, and personal knowledge of the site (feld visits, observations of 
fow paths during storm events, topography) were used to determine where the nodes 
representing the different plots should connect to the tributary. The HEC-HMS model is 
shown in Figure 3. 
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The Muskingum-Cunge routing method (Equations (1)–(6)) was used for modelling 
tributary fow [38,40,41]: 

Qn
j+
+
1
1 = C0Qn

j 
+1 + C1Qn

j + C2Qn
j+1 (1) 

where Q is discharge, j is a spatial index, n is time index. C0, C1, and C2 are calculated as 
follows [42]: 

Δt− 2KX 
C0 = (2)

2K(1− X) + Δt 

Δt + 2KX 
C1 = (3)

2K(1− X) + Δt 

2K(1− X) − Δt
C2 = (4)

2K(1− X) + Δt 

K and X are calculated as follows [42]: 

Δx
K = (5)

c 

1 q
X = (1− ) (6)

2 So c Δx

where Δx is reach length, c is food wave celerity, q is unit width discharge, and So is 
channel bed slope [42] 
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The initial and constant loss method (Equation (7)) was used to simulate the collected 
infltration data (Section 2.1), the constant rate element is calculated as follows: ⎧ ⎨ 0 i f ∑ pi < Ia 

pet p1 − fc i f ∑ pi > Ia and pt > fc (7)⎩ 0 i f ∑ pi > Ia and pt < fc 

where pet is excess overland fow, p1 is precipitation depth, fc is the maximum potential 
rate of precipitation, and Ia is initial loss. The initial and constant method (equation) was 
chosen for use in this study due to the nature of collected infltration data; however, it is 
acknowledged that other authors have modifed the Richards equation to account for root 
water uptake in soils [43–45]. Whilst these physics-based infltration models can account for 
variations in soil texture, the wetting front and unsaturated hydraulic conductivity [45–47]; 
they can be prone to error and require in-depth data of the soil column for accurate 
execution compared with the initial and constant method used here. 

The Snyder unit hydrograph transform (Equations (8) and (9)) was used to simulate 
the observed runoff and lag times of the catchment areas, Snyder’s equation for lag time 
is [48]: 

0.2Tlag = Ct(LLc) (8) 

where Tlag is the catchment lag time (hours), Ct is the catchment gradient coeffcient, L 
is fow path length (km), and Lc is length of fow path from outlet to closest point of the 
catchment centroid (km). 

For peak discharge, is [48]: 

2.78 × Cp × A 
Qp = (9)

Tlag 

where Qp is peak discharge related to 1 cm of effective rainfall (m3 s−1), A is catchment 
area (km2), and Cp is an empirical coeffcient of peak intensity. 

The constant monthly basefow method was used to simulate antecedent basefow 
of the site, which applied a user-defned constant fow to all models as required (see 
Section 2.5.4) [40,49,50]. 

Two identical models, ‘winter’ and ‘summer’ were constructed and independently 
calibrated and validated (see Sections 2.3 and 2.4) to generate the results for this study. This 
approach was decided as a result of observed hydrological variations across the site from 
dry-to-wet seasons. The winter model is representative of hydrological data (infltration, 
telemetry, rainfall) from October to March (2019/2020 and 2020/2021), and the summer 
model from April to September (2019/2020 and 2020/2021). These timeframes are based 
on UK average annual rainfall and temperature data, as defned by the Met Offce (2021). 

2.3. Model Calibration 

Model calibration involved setting the initial basefow to match that of the observed 
tributary value for the selected event, then gradually adjusting unobserved model parame-
ters until the modelled output best simulated those of the observed values [35,37,51,52]. 
Regarding the observed model parameters, infltration was the key parameter for the 
hydrological model, it had been collected from October 2019 to August 2021 (with a break 
from March to July 2020 due to COVID-19), and this parameter could not be changed 
during the calibration process. The same applied to rainfall and basefow, as these had 
been observed through use of the rain gauge and in-channel telemetry. This meant the 
only adjustable parameters were the lag times and peaking coeffcients of the Snyder unit 
hydrograph transform (Equations (8) and (9)), so these parameters were adjusted through 
trial-and-error until one set of Snyder values (based on site observations and observed and 
simulated model output) could be used across all events and produce a similar outcome to 
the observed fow. This process was undertaken for both the summer and winter models, 
using available data from the time periods specifed in Section 2.2. 
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The Nash and Sutcliffe (1970) Effciency (NSE) method was used to determine the 
closeness-of-ft between the simulated and observed values in calibration. The NSE equa-
tion is displayed as follows: " # 

i=1 (Y
obs − Ysim ∑n ) 

2 

NSE = 1− i i (10)2
∑i

n 
=1 (Y

obs − Ymean)i 

where Yobs is the observed discharge, Ysim is the simulated discharge, and Ymean is the i i 
mean of observed discharge. Table 2 shows the timeframes of the model calibration for 
winter and summer models, in addition to the individual and mean NSE values. The NSE 
method produces a value between 0 and 1, as an indication of how well the simulated 
dataset (Ysim ) fts the observed dataset (Yobs ) [53,54]. A value of 1 indicates a perfect ft i i 
between the two datasets, whereas a value of 0 (or a negative value) indicates a poor ft. 

Table 2. Calibration events for winter and summer models. Note that the start and end time describes the time at which 
modelling began, not the start of the storm event. 

Calibration Events 

Winter 

Duration (h) Start Date Start Time End Date End Time Rainfall (mm) NSE 

24 
72 
96 
120 

16 January 2021 
17 January 2021 

30 November 2019 
08 October 2020 

04:00 
16:00 
04:00 
07:00 

17 January 2021 
20 January 2021 

04 December 2019 
13 October 2020 

04:00 
16:00 
04:00 
07:00 

1.8 
10.60 
0.80 
6.70 

0.41 
0.30 
0.92 
0.98 

Summer 

24 
72 
96 
120 

09 September 2020 
19 August 2020 
01 August 2020 
28 August 2020 

03:00 
07:00 
01:00 
07:00 

10 September 2020 
22 August 2020 
05 August 2020 

02 September 2020 

03:00 
07:00 
01:00 
07:00 

1.20 
19.60 
7.90 
13.40 

0.62 
0.80 
0.29 
0.89 

The mean NSE of both the winter and summer calibrations are 0.65. Seen from Table 2, 
the shorter duration events (24- and 72-h) showed a lower calibration NSE output compared 
with longer duration events (96- and 120-h). Across the summer calibration events, the 
lowest NSE value of 0.29 was produced by the 96-h duration, infuencing the average NSE. 
Figures 4 and 5 show the observed and simulated discharge fow graphs for winter and 
summer model calibration events. 
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2.4. Model Validation 

The model was validated, again, using the NSE method for determination of relation-
ship; however, different storm events were used to those used in calibration (using the 
same durations) (Table 3) [37,55]. Table 3 shows the timeframes of model validation for 
winter and summer models, in addition to the individual and mean NSE values. 

Table 3. Validation events for winter and summer models. Note that the start and end time describes the time at which 
modelling began, not the start of the storm event. 

Validation Events 

Winter 

Duration (h) Start Date Start Time End Date End Time Rainfall (mm) NSE 

24 
72 
96 
120 

14 January 2021 
06 December 2020 
02 November 2020 

13 October 2020 

04:30 
07:00 
01:00 
07:00 

15 January 2021 
09 December 2020 
06 November 2020 

18 October 2020 

04:30 
07:00 
01:00 
07:00 

1.10 
2.70 
6.70 
4.50 

0.90 
0.81 
0.87 
0.88 

Summer 

24 
72 
96 
120 

04 September 2020 
09 September 2020 
04 September 2020 

30 August 2020 

02:00 
22:00 
22:00 
02:00 

05 September 2020 
12 September 2020 
08 September 2020 
04 September 2020 

02:00 
22:00 
22:00 
02:00 

0.70 
1.00 
4.20 
8.00 

0.35 
0.23 
0.74 
0.42 

The mean NSE of the winter validations is 0.87, and summer 0.44. The NSE average 
for validation events in the winter is high (0.87) indicating that the winter model is very 
effective at modelling the observed response from the site; whereas the summer validation 
NSE is 0.44, indicating that the output from the summer models is less accurate than the 
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winter model. Figures 6 and 7 show the observed and simulated discharge fow graphs for 
winter and summer model validation events. 
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Figure 6. Observed and simulated discharge for winter model validation events; (a) is the 24-h duration, (b) is the 72-h 
duration, (c) is the 96-h duration and (d) is the 120-h duration. 
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scarcity of collected telemetry data from the study site and the timescales from which the 
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data needed to be collected. Therefore, replication of calibration and validation events for 
the purposes of accuracy was not possible in this instance. Data scarcity for calibration and 
hydrological modelling is a common occurrence in the feld of hydrological modelling. The 
methods presented throughout this section could be adopted by other researchers in the 
discipline aiming to simulate similar scenarios to those presented here. 

2.5. Model Boundary Conditions 
2.5.1. Precipitation and AEP Events 

The Flood Estimation Handbook (FEH) was used to generate the design storms used 
in simulations [56]. Annual exceedance probabilities (AEPs) representing 50% (1 in 2), 10% 
(1 in 10), 2% (1 in 50), and 1% (1 in 100) rainfall intensities were simulated over 6-, 24-, and 
96-h durations [56–58]. The 24- and 96-h durations were chosen to test the short-to-medium 
scale impacts of woodland planting on infltration. The 6 h duration was chosen due to the 
requirement of all UK sustainable drainage systems (SuDS) to be tested to this level [59,60]. 
The rainfall intensities were chosen for similar reasons: the modelled results would enable 
further understanding regarding the true ability of woodland planting to mitigate runoff 
from low intensity (50% AEP) to very high intensity (1% AEP) storms, offering insight in to 
their use as a method of NFM. 

2.5.2. Infltration Data 

The collected infltration data (Section 2.1) were interpreted and included as a primary 
focus of the modelling process. As this study focuses on the impacts of woodland planting 
on runoff, the mean infltration rate (in mL) from every sample site at 10 and 200 cm 
proximities through both winter and summer (see Section 2.1) were compiled and averaged. 
The HofE forest planted new woodland every year from 2006 to 2012, but infltration data 
were only collected every other year from 2006 (plus a control and the cc.1900 woodland 
area). To account for the infltration values of woodland areas planted in the years between 
the sample plots (2007, 2009, 2011), which needed to be included in the model to fully 
represent the land cover of the study site, the median value of observed data in both years 
before and after was calculated. For example, the infltration value for the unobserved 2007 
areas were calculated using the median of the average 2006 and 2008 infltration data (etc.). 
Given the lack of observed data and supporting literature in this area, this method is based 
on mathematical extrapolation and the observation of similar soil texture across the site 
(Table 1). 

2.5.3. Interception 

As the sampled woodland is deciduous, interception needed to be considered as it 
would vary seasonally across the study site [61–63]. Interception loss was not empirically 
monitored for this study; however, it was accounted for, considering the interception loss 
for grassland to be negligible (<10%) [11,64], and the interception from broadleaves to be 
between 10–34% (mean 24.25%) [65,66]. FEH values were adjusted in the summer model 
to account for the rainfall loss due to interception, as simulating the site in both winter and 
summer with uniform rainfall would not account for any interception loss encountered. 
This method allows for the inclusion of interception loss in the model without the use of 
specialised equipment or continuous monitoring, and was an important process, as the 
infuence of interception loss would vary seasonally across the site, both at present and in 
the future. 

2.5.4. Basefow 

Antecedent basefow had to be calculated, as neglecting to consider this parameter 
could result in the total discharge from each simulated storm being inaccurate, and not 
represent true site conditions [67,68]. To calculate the basefow, telemetry data from both 
winter and summer periods (Section 2.2) were averaged, the average basefow for winter 

s−1models is 0.284 m3 s−1 and for summer models is 0.239 m3 . 

http:area).To
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2.6. Hydrological Simulations 

Three scenarios were simulated using both the winter and summer models with the 
intention of simulating the peak outfow of the site dependent on varying observed infltra-
tion. Infltration values for the frst simulation scenario were derived from the collected 
infltration data from the HofE site (Section 2.1); these data were simulated to refect the 
“current HofE (woodland) land cover” as it is at present, and would allow a representation 
of current site peak discharge. Infltration values for the second simulation scenarios were 
altered to represent sites discharge if it was impermeable land cover (developed). The 
rationale for this originates in Section 1, where it is acknowledged that urbanisation is a key 
infuence of rising food risk in the UK [1,2]. Infltration for scenario three were adjusted 
to represent infltration collected from the grassland control site (Figure 1). This was to 
enable a comparison (Section 3) between peak fows from current woodland cover, imper-
meable land cover, and grassland land cover. It was decided to use the above scenarios as 
they could be based on collected infltration data from the site, and provide an accurate 
representation of the hydrological variations of the sampled study site compared to using 
published values. 

3. Results 

Figure 8 shows the peak discharge of the 6-h summer and winter simulations, 
Table 4 shows the tabulated data with the discrepancy between land cover types shown in 
comparison to the current HofE site as a percentage. 
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Figure 8. Output peak fows from all simulated land cover types. 
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Table 4. Peak discharge of all simulated land cover types over a 6-h duration rainfall event. 

6-h AEP % 
HofE (Wooded 
Land Cover) 

(m3 s−1) 

Impermeable 
Land Cover 

(m3 s−1) 

Change from 
HofE (as %) 

Grassland 
Land Cover 

(m3 s−1) 

Change from 
HofE (as %) 

Winter 

Peak volume 

50 
10 
2 
1 

0.61 
0.84 
1.14 
1.31 

0.67 
0.89 
1.19 
1.36 

9.84 
5.95 
4.39 
3.82 

0.32 
0.55 
0.85 
1.02 

−47.54 
−34.52 
−25.44 
−22.14 

Summer 

Peak volume 

50 
10 
2 
1 

0.55 
1.05 
1.72 
2.09 

1.07 
1.55 
2.2 
2.56 

94.55 
47.62 
27.91 
22.49 

0.49 
0.99 
1.65 
2.02 

−10.91 
−5.71 
−4.07 
−3.35 

Figure 8 and Table 4 show that peak runoffs from the impermeable land cover simula-
tions are higher than current and grassland simulations across all modelled storm events 
in both summer and winter; however, the discrepancy in the winter was slight. Peak fows 
from HofE land cover were 9.84%, 5.95%, 4.39%, and 3.82% lower than impermeable for a 
50%, 10%, 2%, and 1% AEP events, respectively. However, in the summer this difference 
was higher, with peak fows being 94.55%, 47.62%, 27.91%, and 22.49% greater across 50%, 
10%, 2%, and 1% AEP events for impermeable land cover compared to HofE. Grassland 
peak fows for winter and summer differ signifcantly, with summer peak fows being 
84.71%, 41.67%, 23.52%, and 18.67% higher for 50%, 10%, 2%, and 1% AEP events, respec-
tively. In the winter, grassland shows a 47.54%, 34.52%, 25.44%, and 22.14% reduction 
in peak fows compared to HofE land cover; this reduction is less in the summer, being 
10.91%, 5.71%, 4.07%, and 3.35% for 50%, 10%, 2%, and 1% AEP storms. 

Figure 8 and Table 5 show that impermeable cover produces the highest peak fows, 
compared to the HofE and grassland simulations, over both summer and winter. Current 
HofE site values are similar to impermeable values throughout the winter; however, this 
trend is not seen in the summer, where HofE site values are much lower. Grassland 
produces the lowest peak fows overall; however, grassland values are more similar to 
current HofE site values in the summer. 

Table 5. Peak discharge of all simulated land cover types over a 24-h duration rainfall event. 

24-h AEP % 
HofE (Wooded 
Land Cover) 

(m3 s−1) 

Impermeable 
Land Cover 

(m3 s−1) 

Change from 
HofE (as %) 

Grassland 
Land Cover 

(m3 s−1) 

Change from 
HofE (as %) 

Winter 

Peak volume 

50 
10 
2 
1 

0.61 
0.84 
1.14 
1.31 

0.67 
0.89 
1.19 
1.36 

9.84 
5.95 
4.39 
3.82 

0.32 
0.55 
0.85 
1.02 

−47.54 
−34.52 
−25.44 
−22.14 

Summer 

Peak volume 

50 
10 
2 
1 

0.55 
1.05 
1.72 
2.09 

1.07 
1.55 
2.2 
2.56 

94.55 
47.62 
27.91 
22.49 

0.49 
0.99 
1.65 
2.02 

−10.91 
−5.71 
−4.07 
−3.35 

Figure 9 shows the peak discharge of the 24-h summer and winter simulations, Table 5 
shows the tabulated data with the discrepancy between land cover types shown in compar-
ison to the HofE site as a percentage. 
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Figure 9. Output peak fows from all simulated land cover types (24-h). 

Figure 9 and Table 5 show the highest peak runoff of all simulated land cover types 
over both winter and summer to be generated by the impermeable land cover; being on 
average 2.07% higher than HofE land cover in the winter, and 18.31% higher in the summer 
over all AEPs. The impermeable cover, however, produces the same peak runoff as the 
HofE site for the 50% AEP in the winter, and peak fows for the impermeable land cover for 
10%, 2%, and 1% AEPs in the winter are on average higher than that of the HofE site land 
cover by only 1.39%. A similar trend is seen in the summer, where peak fows from HofE 
land cover are only 0.24% lower than impermeable values for all AEPs. All 24-h events 
show less of a discrepancy between the HofE and impermeable land covers in the winter 
compared to the 6-h simulations, showing that, as storm duration increases, the fows from 
impermeable and HofE land cover become more similar in the winter months. Similar to 
the 6-h duration, grassland peak fows are lower than impermeable and HofE site land 
cover throughout the winter, however HofE site and grassland peak fows vary less in the 
summer. In the winter, grassland peak fow is 32.10%, 23.15%, 16.78%, and 14.29% lower 
than HofE land cover for 50%, 10%, 2%, and 1% AEPs; however, in the summer, grassland 
is only 4.65%, 2.99%, 2.08%, and 1.79% lower than the current site for all respective AEPs. 

Results from the 24-h simulations are similar in trend to those of the 6-h simulations. 
Impermeable cover produces the highest peak fows over both summer and winter. These 
values are similar to HofE site discharge in the winter, but not the summer. Grassland 
produces the lowest peak fows; however, grassland values are more similar to HofE site 
values in the summer. Summer peak fows for all land cover types are higher than winter 
values. 

Figure 10 shows the peak discharge of the 96-h summer and winter simulations; 
Table 6 shows the tabulated data with the discrepancy between land cover types shown in 
comparison to the HofE site as a percentage. 
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Figure 10. Output peak fows from all simulated land cover types (96-h). 

Table 6. Peak discharge of all simulated land cover types over a 96-h duration rainfall event. 

96-h AEP % 
HofE (Wooded 

land Cover) 
(m3 s−1) 

Impermeable 
Land Cover 

(m3 s−1) 

Change from 
HofE (as %) 

Grassland 
Land Cover 

(m3 s−1) 

Change from 
HofE (as %) 

Winter 

Peak volume 

50 
10 
2 
1 

0.61 
0.84 
1.14 
1.31 

0.67 
0.89 
1.19 
1.36 

9.84 
5.95 
4.39 
3.82 

0.32 
0.55 
0.85 
1.02 

−47.54 
−34.52 
−25.44 
−22.14 

Summer 

Peak volume 

50 
10 
2 
1 

0.55 
1.05 
1.72 
2.09 

1.07 
1.55 
2.2 
2.56 

94.55 
47.62 
27.91 
22.49 

0.49 
0.99 
1.65 
2.02 

−10.91 
−5.71 
−4.07 
−3.35 

As apparent from Figure 10 and Table 6, the results from the 96-h simulations show 
similar trends to 6- and 24-h simulations; however, the discrepancy in peak fow between 
land cover simulations are less notable, as are the seasonal variations in peak fows. Im-
permeable cover exhibits the highest peak fows compared to HofE and grassland cover; 
however, this difference is marginal. Impermeable peak fows are 1.25%, 0.99%, 0.80%, 
and 0.72% higher in the winter, and 5.13%, 2.94%, 1.54%, and 1.39% higher in the summer 
than HofE land cover for 50%, 10%, 2%, and 1% AEP events, respectively. There is more 
variation between HofE land cover and grassland in the winter than the summer. Peak 
fows from the grassland cover are 16.25%, 10.89%, 7.20%, and 6.52% higher than the 
HofE site in the winter for 50%, 10%, 2%, and 1% AEP events, respectively; however, only 
showing a difference of 1.28%, 0.98% for 50% and 10% AEP events, and 0 change for the 
2%, and 1% AEPs in the summer. Peak fows show less variation between summer and 
winter for all land cover types, compared to the trends seen in the 6- and 24-h duration 
simulations. 



Water 2021, 13, 3039 15 of 22 

The results displayed in Figure 10 and Table 6 show that the 96-h duration simulations 
show less variation in peak fows across all land cover types. There is very little variation in 
peak fows between land cover types; however, impermeable is slightly higher compared 
to both current HofE land cover and grassland cover over both summer and winter. 

Overall, Figures 8–10 and Tables 4–6 show that, at present, impermeable cover pro-
duces the highest peak fows over all durations and storm intensities compared to other sim-
ulated land cover types. However, this is somewhat expected as it is known that the increase 
in impermeable surface cover is driving the push towards NFM (see Section 1) [1,2,10]. 
The current land cover of the site shows less of a peak fow compared to impermeable; 
however, the discrepancy is small and reduces with increased storm duration and intensity. 
The grassland simulations result in the lowest peak fows, regardless of season or storm 
scenario. The summer simulations show signifcantly higher peak fows compared to win-
ter values across all land cover types in the lower duration storms (6- and 24-h); however, 
this is less signifcant in the higher duration simulations (96 h). 

4. Discussion 

The results of the HEC-HMS models presented throughout Section 3 show that wood-
land planting across the HofE site has reduced peak runoff compared to if the entire site 
was impermeable, by an average of 6% for 6-h, 2% for 24-h, and 1% for 96-h duration 
events in the winter; and 48%, 18%, and 2.7% for 6-, 24-, and 96-h durations in the summer. 
This fnding reinforces the beneft that woodland planting can have on increasing the 
surrounding soils infltration potential, storage potential, resultantly reducing peak fow 
from the study area. Whereas the current HofE site does reduced peak fow compared to 
the impermeable scenario, an entirely grassland catchment shows the greatest reduction 
in peak fow, being 32%, 21%, and 10% lower than the current site in the winter, and 6%, 
2%, and 0.5% lower than the HofE site in the summer for 6-, 24-, and 96-h duration storms, 
respectively. 

It is worth considering that the reduction in peak fows exhibited by grassland com-
pared to both the impermeable and current HofE site reduces as storm duration and 
intensity increases. This can be explained through considering both the age, and relative 
root spread of the woodland species sampled [69,70]. As discussed in Section 2.1, aside 
from the cc.1900 (Quercus Petraea) woodland, the oldest trees sampled were planted in 
2006 (Betula Pendula) and the youngest in 2012 (Populus Tremula). Therefore, the 2006 
trees have only been developing for 15 years, and the 2012 trees for 9. Betula Pendula 
reaches its ultimate height at around 60 years from planting, and can live for up to 100 
years in total, meaning that the infltration data collected and simulated in this study 
is only representative of the beginning of the likely effects that this tree will have, and 
infltration will only improve as the tree (and its root system) develop, as the tree ap-
proaches maturity [71–74]. A similar rationale can be applied to the Populus Tremula (2012) 
tree; the growth of Aspen in the UK slows at around 30 years, and trees can live for 
100–120 years [75–77]. Thus, if this project was to be replicated in 20 years, tree roots would 
have developed, breaking up the surrounding soil, and infltration would likely be greater 
due to the increased porosity [15,16]. Consequently, the modelled data show that, whilst 
some reduction in runoff is possible during the growth phase of trees, it will not be until 
they mature that the total potential reduction is demonstrated in comparison to grassland 
peak fow reduction. 

4.1. Woodland Planting Mentality 

The fndings of this project are signifcant when considering the way in which wood-
land areas are currently managed, regarding the growth and felling of trees and the removal 
of mature woodlands to make way for either newer areas of woodland or, more signif-
cantly, impermeable developments [4,15,78]. It is not uncommon for mature(ing) woodland 
to be removed to make way for impermeable developments, which signifcantly alters 
the local hydrology of an area, sealing-off once permeable areas and excluding them from 
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participating in infltration processes [4,15,79,80]. Felled trees as a result of development 
are commonly ‘balanced out’ by planting saplings in alternate locations, however newly 
planted saplings will not have a comparable moderating impact on food risk compared 
with the felled mature trees [18,74,80,81]. This project has demonstrated the above through 
presenting modelled results, showing that young trees, whilst they do reduce peak fows 
compared to impermeable land cover, have not yet developed the root systems, and 
infuenced surrounding infltration rates, to the extent they will with maturity. 

4.2. The Infuence of Precipitation, Interception, and Model Calibration 

Apparent throughout Section 3 is that summer peak fows over all simulated land 
cover types are higher than the corresponding winter values, this discrepancy reduces in 
the 96-h duration storm; however, it is more apparent in the 6- and 24-h duration storms. 
As discussed in Section 2.5.3, the hydrological effects of interception were accounted 
for in the summer through reducing the precipitation received. Therefore, it would be 
assumed that summer peak fows would be reduced; however, this is not the case. A reason 
for this output may be effect of surface pooling (as discussed above); however, another 
explanation may be due to the parameters used in calibration. The summer and winter 
models were calibrated individually (Section 2, Table 2), and a set of parameters used for 
each. The purpose of calibration is to align the observed and simulated outputs as closely 
as possible over varying events, leaving a fnal set of values that will produce a reliable 
output [82,83]. In this case, the only variables that could be adjusted were the components 
of the Snyder transform method, and the summer model had a quicker lag and a higher 
peaking coeffcient than the winter model. It is possible that this caused the variation seen 
between summer and winter; however, the calibration was comprehensive, resulting in a 
fnal calibration and validation NSE of 0.65 and 0.44 for summer. 

4.3. Antecedent Conditions and Results 

Grassland continually showing the greatest reduction in peak fow may have been 
infuenced by several external factors. The grassland control site comprises of a sandier 
soil texture than the pedology of the other sample sites (with the exception of 2010, see 
Table 1), making it more permeable [84]. This means that when the grassland infltration 
data are applied to the whole site to the represent grassland coverage, it is not accounting 
for variations in soil texture across the site [85–87]. Additionally, Table 1 shows that the 
cc. 1900, 2008, and 2012 sites are comprised of a clay-heavy soil texture, meaning that 
they are naturally less permeable due to the smaller particle sizes of clay compared with 
sand [84]. This may be an indication as to why the current HofE site peak fow is higher 
than that of grassland, particularly in the winter. The winter of 2020 was the ffth wettest 
on record (329.4 mm/143% higher than the 1981–2010 baseline), and February of 2020 was 
the wettest ever recorded, with 155 mm of precipitation (258% higher than the 1981–2010 
baseline) [88,89]. These dates are within the time periods that winter infltration data 
were collected, and the excess rainfall received would have contributed to the study site 
saturation, infuencing infltration data collection. See Figure 11. 

As seen in Figure 11, the variation between antecedent rainfall and clay-saturation 
throughout winter, and cracking and drying-out throughout summer may have led to infl-
tration rates being signifcantly higher than the grassland for the current site simulations 
in the winter. These effects may also explain the higher peak fows observed throughout 
summer compared with winter; the increase in surface pooling of the sample sites in the 
winter (Figure 11a,b) held water in place across the study site. Infltration would have 
been slowed due to the clay-geology and antecedent conditions of the site [90,91], meaning 
runoff was slowed, creating more of a lag between precipitation and peak fow in the winter. 
Whereas in the summer, the cracking of the ground (Figure 11c,d) reduced infltration, with 
the dry clay acting similarly to an impermeable surface. Due to this, rainfall was able to 
runoff into the watercourse, causing a quicker lag time and a higher peak. 
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4.4. Study Applications 

Whilst antecedent weather conditions and soil texture have infuenced the trends seen 
between woodland and grassland land cover (see Section 3), the clay-heavy soil textures of 
the sample site are representations of the conditions of many sites around the UK. With the 
woodland sites being clay, and the ongoing comprehensive infltration data collection, this 
project provides an assessment of the impact of NFM (woodland planting) over one of the 
most impermeable soil types throughout the UK. 

Area calculations regarding the coverage of superfcial alluvium, clay, peat, and fuvial 
deposits throughout the UK show that 15% (39,269.24 km2) of UK superfcial geology is 
similar in infltration to the geology of the HofE site [92]. This demonstrates that the results 
of this study are signifcant, and are representative of 15% of UK geology, demonstrating 
that the results found throughout this study with regard to woodland planting and their 
runoff reduction capabilities can be extrapolated, furthering the usage of NFM across the 
UK. This therefore shows that woodland planting can be considered as a method of NFM 
throughout other areas of the UK, and once could expect to fnd similar positive results to 
those found in this study. 

5. Conclusions and Future Work 

The results from the simulations undertaken in this study have shown that woodland 
can reduce peak fows when compared to impermeable cover; however, at present, grass-
land reduces peak fow most in both winter and summer. The values of the data collected 
throughout is that; if woodland can reduce peak fows at present over a predominantly 
clay (impermeable) geology, then the value of woodland planting on a site with slightly 
more permeable geology would show greater results than this study. This presents an 
opportunity for this research to be extrapolated and applied to other geologies and soil 
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textures, to potentially aid in justifying the use of NFM (woodland planting), as a viable 
method of increasing infltration and reducing ruff peaks to watercourses. 

Woodland planting is gaining momentum as a method of NFM due to its ability 
to break up soil and increase infltration and water storage. This study took infltration 
measurements at 10 and 200 cm away from woodland planted at a 2.2 km2 area in Warwick-
shire, England, from November 2019 until August 2021. Infltration data were incorporated 
into two calibrated and validated HEC-HMS models, and the reductions in peak fow for 
woodland, grassland, and impermeable land cover were quantifed. Results of this study 
show that, across a predominantly clay-site: 

• Woodland planting across the HofE site shows less of a peak fow compared to 
impermeable land cover simulations; however, the discrepancy is small and reduces 
with increase storm duration and intensity. 

• The grassland simulations result in the lowest peak fows, regardless of season or 
storm scenario. 

• Impermeable land cover produces the highest peak fows throughout all durations and 
storm intensities compared to woodland and grassland; however, this is somewhat 
expected as it is known that the increase in impermeable surface cover is aiding the 
push towards NFM) [1,2,10]. 

• The summer simulations show signifcantly higher peak fows compared to winter 
values across all land cover types in the lower duration storms (6- and 24-h); however 
this is less signifcant in the higher duration simulations (96-h). 

The quantifed results of this study show woodland to have a positive impact on peak fow 
reduction after only 15 years (since 2006), and indicate that the impacts will become more 
signifcant with root spread as the site matures [16,93]. This study is also representative of 
a clay-textured site, the same soil texture as 15% of the UK, indicating that if woodland can 
show a reducing in peak fow across this study site, similar results will be seen in other 
similar sites. Further to this, the results will likely be more signifcant in areas inherent of a 
more permeable soil texture [84]. 

Additionally, this study has provided insight into how to collect and extrapolate 
infltration data and model such information in HEC-HMS. Additionally, it has provided 
a methodology regarding the calibration and validation of HEC-HMS models where 
empirical data are sparse. This will enable other authors in the feld of hydrology to use 
this project as a framework when contributing to the knowledge base regarding infltration, 
NFM, woodland planting, and hydrology as a whole. 

Future work will involve developing a method of projecting the collected infltration 
data, with the intention of using the HEC-HMS model to project the ability of woodland 
planting to mitigate fow and overland runoff into the future, regarding precipitation and 
basefow increases in light of climate change. 
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