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Portable UWB RADAR Sensing System for
Transforming Subtle Chest Movement into

Actionable Micro-Doppler Signatures to Extract
Respiratory Rate Exploiting ResNet Algorithm

Umer Saeed, Syed Yaseen Shah, Abdullah Alhumaidi Alotaibi, Turke Althobaiti, Naeem Ramzan, Qammer
H. Abbasi, Senior Member, IEEE, Syed Aziz Shah

Abstract— Contactless or non-invasive technology for the moni-
toring of anomalies in an inconspicuous and distant environment
has immense significance in health-related applications, in par-
ticular COVID-19 symptoms detection, diagnosis, and monitoring.
Contactless methods are crucial specifically during the COVID-19
epidemic as they require the least amount of involvement from
infected individuals as well as healthcare personnel. According to
recent medical research studies regarding coronavirus, individuals
infected with novel COVID-19-Delta variant undergo elevated respi-
ratory rates due to extensive infection in the lungs. This appalling
situation demands constant real-time monitoring of respiratory pat-
terns, which can help in avoiding any pernicious circumstances.
In this paper, an Ultra-Wideband RADAR sensor “XeThru X4M200” is exploited to capture vital respiratory patterns. In
the low and high frequency band, X4M200 operates within the 6.0-8.5 GHz and 7.25-10.20 GHz band, respectively. The
experimentation is conducted on six distinct individuals to replicate a realistic scenario of irregular respiratory rates.
The data is obtained in the form of spectrograms by carrying out normal (eupnea) and abnormal (tachypnea) respiratory.
The collected spectrogram data is trained, validated, and tested using a cutting-edge deep learning technique called
Residual Neural Network or ResNet. The trained ResNet model’s performance is assessed using the confusion matrix,
precision, recall, F1-score, and classification accuracy. The unordinary skip connection process of the deep ResNet
algorithm significantly reduces the underfitting and overfitting problem, resulting in a classification accuracy rate of
up to 90%.

Index Terms— COVID-19, UWB RADAR Sensor, Contactless Healthcare, Respiratory Monitoring, Deep Learning, ResNet.

I. INTRODUCTION

Coronavirus is a broad family of viruses that can infect
individuals and spread among humans in a variety of ways,
including MERS-CoV, SARS-CoV, and the novel SARS-CoV-
2 (COVID-19) [1]. COVID-19 infections have an extensive
clinical spectrum, from asymptomatic contagion to mild upper
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respiratory tract sickness to acute viral pneumonia with respi-
ratory collapse and even mortality [2]–[4]. Pulmonary function
testing is a means to quantify COVID-19 impacts such as res-
piratory rate. The association between the respiratory pattern
and COVID-19 symptoms is a known issue right now. The
rate of respiration is the number of breaths per minute that a
person takes while at rest [5]. Counting the number of breaths
for one minute depending on how many times the chest rises
is all that is required for respiratory rate. Fever, asthma, and
other medical conditions can also cause respiratory rate to
rise [6]. In COVID-19 instances, the respiratory rate is critical
for determining the patients’ pulmonary activity since aberrant
values might suggest patient worsening [7], [8].

Measuring respiratory rate normally needs the assistance
of a health professional, hence it is normally done at a
hospital. The respiratory rate and pulmonary function study
of the identified patients, however, raises the danger of con-
tagiousness due to the clinical urgency produced by COVID-
19 [9]. Because the majority of patients do not show signs
of pulmonary distress at first, healthcare practitioners must
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make the tough decision to send them home and hope that
they will be able to self-monitor. Some individuals with a
moderate clinical presentation may deteriorate in the second
week of sickness, according to the Centers for Disease Control
and Prevention (CDC) [10], [11]. Patients in self isolation
whose pulmonary functions and respiratory rate are unaffected
and do not require hospitalisation should be followed utilising
telemedicine technology [12], [13]. The significant risk of
diagnosed individuals developing severe respiratory distress
necessitates real-time respiratory rate monitoring of these in-
dividuals [14]. The Food and Drug Administration (FDA) has
even approved the use of gadgets that can remotely monitor
a patient’s vital signs. However, there are few instruments
available for real-time monitoring at home and the majority
of them involve intrusive technologies such as cameras or
wearable devices, for instance, watches, cuffs, belts, etc [15]–
[17].

Certain smart contactless technologies have been proposed
in the past to eliminate the inconvenience caused by wearables
and other invasive gadgets to monitor crucial signs [18]–[20].
Continuous monitoring, even at night, is one of the benefits of
contactless sensing [21]–[24]. During sleep, when wearable
gadgets might be a distraction for the patients, they do not
need to be aware of the contactless devices. Force sensor
[25], multi-channel infrared sensor arrays [26], load cells
[27], vibration sensor [28], pressure sensor [29], and Radio-
Frequency (RF) are the most common contactless monitoring
devices [30]. One of the most intriguing technologies among
all is RF, which takes use of the electromagnetic waves that
can be retrieved using RADAR technology. However, none
of the existing RADAR-based techniques for aberrant respira-
tory rate estimation contains a comprehensive framework for
analysing the patients in real-time and transferring the data to
a healthcare practitioner for rapid action.

In this paper, we look at the prospect of adopting con-
tactless (non-invasive/non-contact) technology to monitor real-
time respiratory in COVID-19 patients. We present a system
for monitoring COVID-19 patients that utilises off-the-shelf
Ultra-Wideband (UWB) RADAR sensor (XeThru X4M200
Respiration Sensor) created by NOVELDA [31]. The details
about RADAR are provided in Section III and a complete
framework of the proposed scheme is presented in Figure 1.
This type of RADAR sensor is capable to monitor several dis-
eases’ symptoms through recognition of abnormal respiratory
rates such as apnea, dyspnea, hyperpnea, tachypnea, hypop-
nea, bradypnea, orthopnea, platypnea, biot, cheyne-stokes, and
kussmaul. However, we have focused primarily on tachypnea
in this study. The normal and abnormal types of respiratory
discussed in this paper are defined as follows:

1) Eupnea: Eupnea is the normal/regular respiratory pattern
caused by healthy living and nutritious diet. Eupnea includes
a respiratory rate of 12-20 breaths per minute in general. The
pattern, rhythm, and depth of eupnea is regular as the wave
form of this respiratory go up and down at normal rate.

2) Tachypnea: Tachypnea is an abnormal/irregular respi-
ratory pattern, which is usually greater than 20 breaths per
minute. In general, tachypnea is caused by pain, fever, hy-
poxia, or central nervous system issue. However, recently due

Fig. 1: Framework of the proposed scheme.

to COVID-19-Delta variant, it has been noticed that patients
may highly suffer from tachypnea and eventually lungs failure.
Therefore, the timely monitoring and detection of patients’
abnormal respiratory is of extreme significance, especially in
the time of COVID-19.

II. RELATED WORK

Acute Respiratory Distress Syndrome (ARDS) accounted
for 10-15 percent of ICU admissions and 5 percent of gen-
eral hospitalisations prior to the effects of the COVID-19
pandemic. ARDS is a kind of respiratory collapse due to
extensive infection in the lungs that develops quickly. Symp-
toms comprise bluish skin coloration (cyanosis), fast breathing
(tachypnea), and shortness of breath (dyspnea). During the
early phases of the COVID-19 pandemic, data on the phys-
iopathology of the infections emerged from asymptomatic,
badly affected individuals, and even deceased persons. Accord-
ing to the available evidence, the lung damage is associated
with a distinctive pulmonary vascular dysfunction in the early
stages of infection [32], [33].
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Further, this section provides information on cutting-edge
work in the area of human action recognition, where RADAR-
based sensing technologies were effectively employed in com-
bination with intelligent machine learning and deep learning
algorithms. In [34], to classify the data, the researchers em-
ployed Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), and Google-Net algorithm. The accuracy provided by
these algorithms was 78.25 percent for SVM, 77.15 percent
for KNN, and 74.70 percent for Google-Net. Authors in [35]
incorporated RADAR spectrograms of actions including walk-
ing, sitting, falling, and leaning down. For data preprocessing,
spectrograms were employed classification task and images
were transformed to greyscale. On the preprocessed data, the
SVM and Deep Neural Network (DNN) algorithms were used.
SVM attained an accuracy score of 78 percent, whereas DNN
reported 87 percent accuracy.

Spectrograms obtained through RADAR technology were
utilised in [36] for images classification and the SVM tech-
nique was then used to classify. For feature selection, the
authors devised a sequential forward selection technique. De-
pending on the number of instances employed, the classifi-
cation results were accurate up to 95 percent. In [37], deep
learning techniques such as Recurrent Neural Network (RNN)
with Long Short-Term Memory (LSTM) and Convolutional
Neural Network (CNN) were used to identify six distinct
human activities using Doppler images acquired through a
RADAR. The activities include clapping, boxing, waving,
walking, piaffe, and running. As per the findings of this paper,
the RNN algorithm with LSTM obtained an accuracy rate of
up to 92 percent, while the CNN reached an accuracy rate of
up to 82 percent.

The authors of [38] integrated range maps and spectrograms
of distinct human actions for classification purposes. This
research article explored five different human actions: falling,
sitting, bending, walking, and kneeling. Using KNN and Prin-
cipal Component Analysis (PCA) algorithm, the simulations
yielded an accuracy rate of up to 82 percent. Using the fusion
technique, the authors in [39] were able to enhance the accu-
racy from 82 to 91 percent for diverse human actions using
KNN and PCA. In [40], authors employed Impulse Radio
Ultra-Wideband (IRUWB) RADAR to record twelve different
types of human movements. The features in the spectrograms
were defined using KNN algorithm in the data processing
stage. The Doppler shifts and power spectrum were then
extracted and classified using a CNN. The detection of human
movements was obtained with up to 98 percent accuracy. The
proposed scheme in [41] utilised IRUWB RADAR with CNN
to identify daily living activities and falling. This research em-
ployed a binary classification technique to distinguish between
the fall and any other form of activity in residence. The CNN
technique was able to achieve up to 96 percent accuracy rate.

In [42], the authors used UWB RADAR to construct a
dataset with ten participants ranging in age from 22-39 years,
undertaking 15 distinct activities. The data were gathered
while other people were still active inside the building. This
was done to mimic a real-life care home setting where other
residents live in nearby apartments. Using the random forest
approach, the experiment obtained an overall accuracy of 80

Fig. 2: XeThru X4M200 UWB RADAR sensor.

percent. The authors in [43] employed a UWB RADAR to
observe 7 people performing 4 different activities: standing,
sitting, falling, and walking. With a result of 94 percent
accuracy, the obtained data were processed through 10-fold
cross-validation technique and it was discovered that KNN
performed better. In [44], authors acquired data for binary
classification of non-falling and falling incidents using UWB
RADAR. Ten volunteers were used to collect data in three dis-
tinct areas within the proposed residence. To test their findings,
the authors intentionally left one subject out and discovered
that utilising a deep learning architecture CNN–LSTM, the
proposed scheme was able to reach an accuracy rate of up to
90 percent.

III. PROPOSED SCHEME

A. UWB RADAR Sensor

In this study, UWB RADAR sensor (XeThru X4M200) is
employed in order to develop a system, which can efficiently
monitor irregular respiratory in COVID-19 patients or indi-
viduals suffering from ARDS. The UWB sensor is basically a
respiration sensor based on RADAR technology consisting of
built-in transmitter and receiver antennas. It is an industrialised
sensor that meets international norms and is ready to be inte-
grated into a product. The UWB sensor, which is in accordance
with Novelda’s proprietary X4 system-on-chip (SoC) with high
integration, delivers very precise measurements of individuals
respiratory rate as well as distance and movement details. This
type of sensor is capable to monitor respiratory rate up to 5
meters when individual is still. The UWB RADAR sensor
is revealed in Figure 2 and its complete block diagram is
exhibited in Figure 3 - https://novelda.com.

B. RADAR Signal Processing

The UWB X4M200 sensor runs all firmware algorithms
for motion detection and respiratory measures. The X4 UWB
RADAR SoC can output 17 baseband data frames per second,

https://novelda.com
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Fig. 3: Block diagram of UWB X4M200 RADAR sensor.

Fig. 4: Signal processing flow of UWB X4M200 RADAR sensor for respiratory detection.

as shown in the steps of Figure 4. A buffer is used to hold
the RADAR data frames. Simultaneously, two Range-Doppler
(RD) matrices are operating. Data from distinct times of
RADAR frames is used in the fast and slow RD matrices. The
lengths of the fast and slow phases vary by profile. Individual
noise maps are used in both RD matrices to detect if a reflec-
tion at a specific distance and frequency exceeds a threshold.
Enabling a noise map will provide multiple threshold values at
various frequencies and distances. The noise maps will adjust
to changes in the environment unless the noise map adaptation
setting is off. Noise map adaptation is a continuous process
that gradually eliminates the presence detection of reflectors
with little movement at a certain distance. The noise map
will not adjust, if a motionless individual is identified with
a respiratory frequency matching the specified RPM range.

When an individual approaches the detection region, the
fast RD matrix with its fast motion detector will identify the
presence rapidly. Motion or motionless are the two states of
the fast motion detector. These states are used by the fast

M/N connector to determine the Local-State-Fast. An M/N
connector decides for the output to change, M out of N
detections must have a specific value. All detection algorithms
are executed once every second, which means that all outputs
such as RPM, distance, state, and so on are updated once every
second. When the target individuals are motionless, the slow
RD matrix’s slow motion detector and respiratory detector
will identify their existence and estimate their respiratory
rate and distance to the breathing target. Motion, motionless,
and respiration are the three states of the respiratory detector
and slow motion detector. These states are used by the slow
M/N connector to calculate the Local-State-Slow. An M/N
connector decides for the output to change, M out of N
detections must have a certain value.

C. RADAR Micro-Doppler Signature
The periodic motion of any structural element of an entity

produces Micro-Doppler (MD) [45]. Micro-motion is created
by the periodic motion, which causes side-bands around a
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Fig. 5: Respiratory data acquisition in a static environment through diverse individuals.

bulk Doppler frequency. Consequently, the phase of such
an object’s RADAR return signal will change, for instance,
human walking, human standing, or human chest movement.
As a result, if the RADAR is coherent, variations in the phase
values of successive pulses in pulsed RADAR or successive
chirps in Frequency-Modulated Continuous-Wave (FMCW)
RADAR would immediately correlate to changes in Doppler.
To observe and evaluate the MD features, a velocity time
spectrogram or the RD intrigue could be generated based on
the data. The 2D Fast Fourier Transform (FFT) is used based
on the data in FMCW RADAR to get Doppler information
[46]. At first, every chirp is subjected to an FFT, which yields
the range profile. Then, a second FFT is conducted on a
certain number of successive chirps for a specific range bin. In
general, Short-Time Fourier Transform (STFT) is employed to
create these charts because, dissimilar to Fourier Transform,
it gives temporal as well as frequency details [47]. This is ac-
complished by segmentation of data and applying the Fourier
Transform of the segment in sequence. The temporal and
frequency resolution are simultaneously affected by changing
the window length, for instance, one increases when the other
decreases. In RADAR data, the amount of Doppler detail is
determined by the sampling capabilities of the hardware. In
FMCW RADAR, the highest unequivocal Doppler frequency
is fd,max = 1/2ts, where ts is the chirp time.

In this work, we consider a human respiratory monitoring
scenario where a targeted point such as chest is located at a
distance D(t). The point of target movement in front of the
RADAR is determined as V (t), and the transmitted signal is
represented as S(t),

S(t) = A cos(2πft) (1)

The received signal is provided by R(t),

R(t) = A′ cos

(
2πf

(
t− 2

D(t)

c

))
(2)

A′ is the reflection coefficient and c is the speed of light.
If the signal is reflected off a target point at an angle θ to
the direction of RADAR, then the reflected signal can be
expressed as,

R(t) = A′ cos

(
2πf

(
1 +

2V (t)

c

)
t− 4πD(θ)

c

)
(3)

The Doppler shift that corresponds to it can be written as,

fd = f
2V (t)

c
(4)

When dispersion of the entire human body is taken into
account, the signal return becomes a composite of various
moving parts such as hands, torso, arms, and head. Each
component has its own acceleration and velocity of motion.
Let j be the various moving components of the body, then
received signal can be written as

R(t) =

N∑
j=0

Aj cos

(
2πf

(
1 +

2Vj(t)

c

)
t− 4πDj(0)

c

)
(5)

Consequently, the Doppler shift is the result of a com-
plicated interaction of several Doppler shifts caused by the
motion of distinct human body parts. Detection and diagnosis
of human respiratory in a reliable fashion clearly depends upon
the characteristics of the Doppler signatures.

D. Deep ResNet for Respiratory Classification
Machine learning-based approaches have previously proved

effective in a variety of applications [48]–[51]. In this article,
we utilised a deep learning-based method known as Residual
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TABLE I: Parameters used to train the deep ResNet algorithm.

Algorithm Parameters

Residual Neural Network

epochs = 50
activation = relu
optimizer = adam
loss = categorical-crossentropy

TABLE II: Subjects details who participated in acquiring
respiratory data.

Gender Age Weight
(Kg)

Height
(cm)

Physique Type

Male 25 61 168 Ectomorph
Male 30 85 170 Mesomorph
Male 25 60 165 Ectomorph
Female 28 52 158 Ectomorph
Female 29 55 163 Ectomorph
Female 26 65 166 Mesomorph

Neural Network or ResNet to classify normal and abnormal
human respiratory using the acquired spectrograms. The skip
connection technique is used to train such a network. The input
used to feed a layer is also used to feed the output of a layer
higher up the stack. The goal of training a ResNet is to get it
to model the target function f(x). If the network’s output and
input are linked, such as by establishing a skip connection,
the network is strained to model h(x) = f(x)− x rather than
f(x). This is stated as “Residual Learning” [52].

When a typical DNN is first initialised, the weights are
almost zero, thus the network only outputs values that are close
to zero. When a skip connection is introduced to the resultant
network, it outputs a duplicate of its input, or to put it another
way, it first models the identity function. If the objective
function is near to the identity function, as is often the case,
the training process can be greatly expedited. Furthermore,
even though many layers in the network have yet to learn, the
network can begin to improve by adding a high number of skip
connections. Due to the skip connection approach, the signal
can efficiently traverse the entire network. In other words, the
ResNet can be regarded as a stack of residual units, all of
which are a diminutive neural network with a procedure of skip
connections. In this study, the hyperparameters used to train a
ResNet algorithm in order to classify respiratory spectrograms
are provided in Table I.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data Acquisition

For this research study, the dataset was acquired using
off-the-shelf UWB RADAR sensor. The details about the
RADAR sensor are provided in Section III. To obtain distinct
respiratory information, six human subjects were asked to sit
on a chair in front of the UWB RADAR sensor at a distance of
approximately 1 meter, nevertheless XeThru X4M200 UWB
RADAR sensor has the ability to capture vital signs up to
5 meters. The UWB RADAR sensor was placed on top of
the laptop at a fixed position, as shown in Figure 5. The
experiments were conducted in a controlled environment.
Moreover, the details about the subjects who participated in
the experiment are given in Table II.

(a)

(b)

Fig. 6: Obtained spectrograms sample (a) normal/eupnea res-
piratory (b) abnormal/tachypnea respiratory.

As shown in Figure 6, the subject was asked to perform
each respiratory pattern for 15 seconds, Doppler[Hz] on the
y-axis and Time[s] on the x-axis. In the case of normal
respiratory, the subject was asked to perform regular breathing
pattern for straight 15 seconds. As can be seen in Figure
6(a), the normal respiratory lies between 8 to -8 in terms of
Doppler[Hz]. In the case of abnormal respiratory, the subject
was asked to perform a regular or normal breathing pattern for
first 5 seconds (approximately) and an irregular or elevated
breathing pattern for the rest of the 10 seconds. This was
done in order to replicate a realistic scenario. The elevated
(or rapid breathing) was performed by inhaling and exhaling
air through nose fastly. As can be seen in Figure 6(b), the
elevated respiratory has an immense impact on the acquired
spectrograms as Doppler[Hz] shifts between 10 to -10.

Every motion of the body generates a unique pattern on the
spectrogram that can be used to discriminate between different
types of human body motions. On the RADAR sensor, the
RF signal is transmitted and received within the range when
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TABLE III: Classification report of ResNet.

Respiratory
Class

Precision Recall F1-score

Normal 91% 89% 90%
Abnormal 89% 91% 90%

Overall Accuracy: 90%

encountering any motion such as chest movement whilst
breathing. The received signal on UWB RADAR sensor can
be utilised to generate distinct spectrograms. In this work, each
respiratory pattern were repeated several times by the subjects
in order to record a dataset. A total of 230 spectrograms were
generated for normal and abnormal respiratory, out of which
120 were used for training, 20 for validation, while 90 for
testing purposes.

B. Results and Discussion
The ResNet approach used in this work to classify different

human respiratory was written in Python with the TensorFlow
and NumPy libraries. The confusion matrix, precision, recall,
F1-score, and classification accuracy metrics were used to
evaluate the performance of a trained model in this study (see
Equation 6, 7, 8, 9). The proportion of correctly recognised
human respiratories to the total number of human respiratories
can be described as classification accuracy. Moreover, F1-score
or F-measure is the harmonic mean of recall and precision. F1-
score is an important metric since it gives a better measure of
the incorrectly classified data samples than the classification
accuracy metric.

Precision =
True Positives

Predicted Positives
(6)

Recall =
True Positives

Actual Positives
(7)

F1− score = 2×
(

Recall × Precision
Recall + Precision

)
(8)

Accuracy =
Number of respiratories recognised

Total number of respiratories
(9)

The optimal parameters for training the ResNet model was
achieved using the grid search approach. Taking size of the
acquired dataset into consideration, the number of epochs were
set to 50 while training the model. Once trained, the model
performance was evaluated using distinct metrics. As revealed
in Figure 7, the ResNet classifier was able to exceed an
accuracy rate of 0.90 as the number of epochs increased, while
the model loss was recorded less than 0.4. Moreover, Figure
8 shows a confusion matrix of normal and abnormal human
respiratory classified by the trained deep ResNet algorithm. As
can be seen, only few percent of misclassifications occurred
between normal (eupnea) and abnormal (tachypnea) respira-
tory. Lastly, a complete classification report of the ResNet
model in terms of percentage is exhibited in Table III. As can
be noted, the normal respiratory class unveiled a precision
rate of 91%, recall 89%, and F1-score 90%. Whereas the

(a)

(b)

Fig. 7: The ResNet model (a) loss and (b) accuracy against
distinct number of epochs.

Fig. 8: Confusion matrix of normal and abnormal respiratory
class through trained ResNet.

abnormal respiratory class attained a precision rate of 89%,
recall 91%, and F1-score 90%. The deep ResNet model for
both normal and abnormal respiratory classes procured an
overall classification accuracy up to 90%.
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V. CONCLUSIONS AND FUTURE WORK

A global epidemic COVID-19 is presently underway and
the latest technology’s role in aiding in this unwelcome
scenario is significant. Abnormal respiratory is one of the
most common symptoms of COVID-19 infection, especially
among elderly people at the latter stages, nevertheless with the
novel COVID-19-Delta variant, it is common to see more cases
with abnormal respiratory problems amongst young adults.
Therefore, a lightweight sophisticated system is required for
real-time monitoring of the human respiratory. In this paper,
a contactless or non-invasive approach is proposed based
on an off-the-shelf UWB RADAR sensor merged with an
intelligent deep neural network technique called ResNet. The
proposed scheme is intended to detect and monitor abnormal
respiratory patterns such as elevated breathing or tachypnea,
which is common amidst coronavirus infection. Using the
UWB RADAR sensor, the spectrograms of distinct human
respiratory patterns were acquired and then used as image
data to train, test, and validate the ResNet algorithm. Once
trained, the ResNet model was put to the test by identifying
between normal and abnormal human respiratory patterns. The
simulation outcome revealed that ResNet obtained an overall
accuracy of 90%.

Certain limitations are related to this research study that
we aspire to address in future research work. For instance, in
a static and controlled setting, the proposed scheme can be
employed for a specific subject at a time. Other than that, the
investigations were not carried out on actual COVID-19 in-
fected individuals due to several complications. Consequently,
future research work suggestions would be to include multiple
individuals’ respiratory patterns in a non-controlled environ-
ment with different limb motions. In addition, employing self-
learning advanced machine learning algorithms and utilising
the flexibility of the UWB RADAR-based platforms. Apart
from that, other respiratory patterns including biot, bradypnea,
sighing, and kussmaul will be investigated to improve the
reliability of the proposed scheme.
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