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A Model to Manage Smart Devices in  
Mobile Sensing Applications  

Abstract 

The growth in the number and complexity of new smart devices has been exponential in recent 

years. With the increasing understanding and application of artificial intelligence and machine 

learning, smart devices have been used in creating new opportunities for intelligent solutions that 

can enable services suited for smart cities, autonomous systems and ubiquitous systems monitoring 

and control.  

Smart devices, including mobile devices, usually have a small-scale factor and have limited space 

for batteries, computing, and memory resources. This places a demand for such devices to strictly 

manage the use of resources to remain in operation for a longer period. In current and upcoming 

applications of smart devices, such as in the IoT, a network of devices, commonly referred to as a 

wireless sensor network, needs to gather data by sensing, computing the data, and reporting the 

information to a base station. Often these data is huge in size and transmitting all the data to the 

base station would drain the devices of their limited resources. However, the consumption of 

resources within the device is directly related to the communication and routing algorithm used 

across the network by each device. Thus, to improve the network’s performance through extending 

its lifetime and addressing more applications than it was specifically built for, the network needs to 

be sensitive to changes in the context of the application and be able to dynamically select the 

appropriate routing algorithm to apply based on various performance objectives.   

The aim of this research involved the investigation and analysis of the problem, including a study 

of relevant literature and supporting theory, and culminated in the development of such an adaptive 

model that can dynamically manage a set of smart mobile devices. It included the investigation of 

the behaviour of a set of smart devices and their data management approach, while identifying the 

factors that determined their performance metrics. Metrics considered included energy 

consumption, bandwidth, and latency. With this knowledge as foundation, an adaptive model with 

capability to dynamically determine the optimal data management approach in a collection of 

devices was designed, developed, and evaluated. Various unique single and complex scenarios 

(scenarios with more than one application running) were used in an evaluation of the model and the 

results of this process proved that the model outperformed the current state of the art. 

         Oladotun Omosebi 

Date: 25/05/2021 
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1 Introduction 
1.1 Overview  

This chapter provides an introduction and overview of the content of this thesis. It provides a 

high-level discussion of the underlying concepts, which support the theory and practical aspects of 

the research. The background section provides the underlying concepts, theory, and a description of 

the state-of-the-art, which forms a foundation to the main topics of the research. The motivation 

section discusses the conditions which provide the impetus for the investigation carried out in the 

research. The research questions indicate the focus of the investigation. Based on these, the aim and 

objectives describe the tasks that are carried out to address the questions. The contributions 

highlight the innovations in this research, whereas the structure of the entire thesis is discussed in 

the later section of the chapter. 

1.2 Background 

Recent advances in the technology of microelectronic circuits (MEMS) and semiconductor 

device fabrication have paved the way for the manufacturing of small-scale factor smart devices 

that can host internally miniaturised computing, memory, and network components (Bakas et al., 

2019). The reduced sizes of such devices have enabled the establishment of ubiquitous and 

pervasive environments, where several smart devices can be grouped together into networks to 

provide various services, such as group-based sampling and data processing. They are also able to 

provide services to external applications in various use cases. This trend has enabled the 

development of intelligent systems such as smart grids, smart meters, smart vehicles, and smart 

cities (Ganguly et al., 2019; Postránecký and Svítek, 2017; Sun et al., 2016).  

Taking smart cities as an example, the underlying goal of such systems includes the creation 

of smart environments, where shared city resources can be autonomously managed by leveraging 

data collected by various sensor devices. This can be achieved through the exploration of the 

installation of an ecosystem of devices to create intelligent smart virtual sensor systems that can 

autonomously sample phenomena in their environment, process the data internally, and provide 

actionable reports (Sun et al., 2016). For this structure to be viable, there is need for reliable 

communication infrastructure, which enables fast unrestricted connectivity and data flows, while 

also enabling access to the generated data for storage and analysis. This necessary communication 

channel is already provided by the internet network. 

From its inception, the growth rate of the internet has been tremendous over the past few 

years (Behal et al., 2019). However, more network resources are required to achieve the high-end 
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goals of the imminent IoT. The IoT concept is expected to enable new features for communication 

between devices and applications, providing a working environment for smarter and more pervasive 

applications. Sensor devices can detect events and anomalies within their environments and connect 

to the internet autonomously to provide reports (Atlam et al., 2018). The integration of the internet 

with cloud-based resources provides enormous potential for such innovative solutions, enabling 

such sensors to expand their capabilities of sampling, storing and processing more data. Thus, cloud 

computing enables massive-scale computing by providing platforms based on virtualised resources, 

which enable parallel processing and integration of data services with scalable data stores (Zhang et 

al., 2017). The current generation mobile network, 5G, is intended to provide unparalleled fast 

connectivity between devices, creating a truly ubiquitous network of sensors that can gather data for 

near real-time control, low latency smart applications, automated factories, analytics, autonomous 

decision-making, and the provision of various other smart services (Chiang and Zhang, 2016).  

The integration and communications between sensor devices and the internet, occurring via 

the IoT has also recently drawn research interest towards the application of cyber-physical systems 

(CPSs). Such systems compose of sensors, controllers and actuators, with embedded networking 

and intelligent components, designed to interface with the physical world and human users, and 

able to take autonomous decisions based on certain conditions (Sun et al., 2018; Zhang, 2018). This 

sensor-cloud interaction is expected to increase communications between the IoT, Machine-to-

Machine (M2M) communication systems, and the internet cloud, a situation that is expected to lead 

to the production of high volumes of data, which could easily overload current communication 

channels (Tseng and Lin, 2018). To address this expected challenge, Big Data techniques could be 

explored to process the voluminous structured and unstructured data. However, the integration 

point of application of Big Data in the life-cycle of the data stream would also have a huge impact 

on the lifetime of the devices in the IoT/M2M platforms, which usually have minimal computing 

and memory capabilities (Atta et al., 2018; Zhang et al., 2017). 

As mentioned, the ecosystem of the IoT enables the deployment of sensors for monitoring 

various environmental phenomena. The set of sensors communicate via wireless links to share and 

transmit data to a base station. Equipping the sensors with processing and memory capabilities 

could be explored in processing collected data locally before transmission. When a group of sensor 

devices are deployed into a wireless sensor network, their deployment and functioning methods, 

such as the selected sampling rate, are usually dependent on the purpose for the application. 

Examples of applications with specific sensing targets include, for example, in natural event 

monitoring (Alphonsa A. and Ravi G., 2016; Nishikawa et al., 2018; Saputra et al., 2017; Zhu et al., 

2012), manufacturing and construction safety (Pievanelli et al., 2013), space exploration (Razfar et 
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al., 2013), structural planning and monitoring (Patil and Patil, 2017), health monitoring (Al Rasyid 

et al., 2015; Li et al., 2016; Puvaneshwari S and Vijayashaarathi S, 2016), and traffic congestion 

(Abbas and Yu, 2018), among others. Each of these application scenarios represents a different set 

of characteristics, which determine the required sampling rate, sensor type and reporting frequency, 

for example. However, when changes in the environmental characteristics occur within these 

scenarios, the constraint of the unattended deployment of wireless sensors implies that that the 

sensors cannot be upgraded, maintained, or reused (Luong et al., 2017).  

Considering the advancement and growth of the IoT in recent years, several unknown use 

cases and scenarios are expected to be established. Based on this fact, there is a clear need for 

deployed sensors to become more dynamic, adaptive, and self-managed in order to accommodate 

new scenarios without the need for further setup. This needed dynamic, autonomous and adaptive 

nature of such sensors would enable them to be more fault-tolerant and be reusable in new 

applications and scenarios. Thus, a network of sensors, or WSN, consisting of a group of sensor 

nodes, could then be deployed into any region to capture data, process the data effectively, and 

communicate such data to a base station, while configuring itself autonomously and performing 

distributed data aggregation among participating nodes, minimising the use of resources and 

optimising its performance. 

1.3 Motivation 

As the IoT continues to expand, there is a tendency for sensor devices to be deployed more 

often into new environments and applications (Zhang et al., 2019). Now, with the growth in cyber-

physical systems capabilities, more data can be generated and stored for analytics in the cloud. 

Nonetheless, the rate at which the data is being generated will tend towards overloading current 

network systems (Atta et al., 2018). Thus, recent research has focused on the reduction of the 

volume of data generated by sensors in the early stage of the data capture or sensing process. 

In the usual mode of wireless sensor networks (WSNs), sensors are often deployed into 

remote or inaccessible regions without needing further maintenance. They are often built for a 

specific application within a given environment and mostly cannot be reused for a different 

application. In other words, a group of deployed sensors would be inadequate for use for a different 

application due to the need for reconfiguration and/or redeployment (Ayaz et al., 2018; Gupta and 

Quan, 2018; Nishikawa et al., 2018).  

With the knowledge that WSNs tend to generate voluminous data, the reduction of such data 

sizes would tend to require data aggregation approaches to be applied right at the source of data 

capture or within the network of nodes. Such an approach would need to explore various 
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opportunities for reducing the data size by applying various mathematical functions based on the 

characteristics of the phenomena. It would also need to be sensitive to the data content based on the 

spatial and temporal nature of the captured data (Abbas and Yu, 2018; Randhawa and Jain, 2017a). 

Although, this suits most applications as it reduces the amount of data that is sent to the base 

station, it does not address the problem of sensor reuse. To facilitate this essential benefit, the 

working conditions of the sensors need to be dynamically adjusted as well. This would involve 

modifying some variables, such as the routing algorithm and the logical topology of the sensor 

nodes, with respect to the running application (Dahda et al., 2018; Daiya et al., 2016; Pournaras and 

Nikolić, 2017; Sahoo et al., 2017). The logical topology of the sensor nodes in this case implies 

their communication topology across which a data aggregation technique or routing algorithm runs, 

which is quite different from the physical layout of the nodes after deployment. 

Furthermore, although the described approach seems to address the reuse of the sensor nodes, 

it does not address the accommodation of new, perhaps autonomously created, scenarios. The 

establishment of an unknown scenario implies that the sensor nodes are required to interpret the 

objectives of the scenario, and to self-configure their parameters to adjust to the demands of the 

scenario. This implies that the sensor network needs to adapt to new scenarios by changing its 

working parameters to satisfy the requirements of the scenario (Shi and Sha, 2019). 

Based on the above discussion, it is obvious that there is immense benefit in the deployment 

of a WSN into a scenario, where the network is able to manage itself by autonomously detecting the 

environment of its application, building its logical topology, selecting its preferred routing 

algorithm, sampling rate and data transmission approach. This also makes it adaptive to changing 

condition changes in its environment, which require it to make changes to its parameters to 

optimise its performance. Achieving this requires a dynamic selection of the right data aggregation 

technique, which would optimise the network’s working conditions given the running application’s 

set of criteria and priorities (Al-Tabbakh, 2017). 

 

This research is focused on the design and development of a model that is used to manage a 

set of sensor devices in a wireless sensor network, to perform optimally within a given scenario, 

while at the same time, being capable of adapting to a new configuration, based on changing 

environmental conditions. The underlying goal of this set of dynamic configurations is to select the 

most appropriate data aggregation technique which determines the best logical topology and 

optimises the network metrics. 

The process to develop this model will involve the study of literature covering various facets 

of wireless sensor networks, while taking into account the application of experiments to determine 
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relationships between many variables. Data aggregation techniques shall be studied in detail, while 

their determinant contrasting parameters will be identified. Eventually, technique and scenario data 

is be used to determine relationships and develop machine learning models that can predict 

applicable techniques given new event parameters.  

The remaining sections of these chapter shall discuss research questions, aims and objectives, 

contribution, and the structure of the thesis. 

1.4 Research Question 

The main research question is as follows: 

Can we design and develop a robust and efficient model that can dynamically manage sensing and 

computational tasks among a network of sensors, while being adaptive to changes within the 

environment at the same time? 

1.5 Aim and Objectives 

To address the aforementioned research question, the following aim is formulated: 

To design, develop, and evaluate an intelligent and adaptive model that can dynamically manage a 

set of sensor devices within a wireless sensor network. Based on a set of criteria and priorities, the 

model will be able to optimise data aggregation within such sensor networks, by enabling 

adaptation, context-awareness, self-discovery, and self-configuration. 

The following objectives are essential to achieve the above aim: 

1. Perform a critical literature review to determine supporting discussion on the relationship 

between resource characteristics and sensing scenarios. This objective is looking whether a 

set of measurable parameters can be identified to model the resource characteristics of 

different wireless sensor scenarios. 

2. Design and develop models to represent sensor networks, where the characteristics of 

running application can be correlated with the wireless sensor network. This objective is 

looking whether the characteristics of a wireless sensor network can be correlated with the 

characteristics of the application running on the network. 

3. Develop models for data aggregation techniques to be applied in complex wireless sensor 

network scenarios to evaluate their performance. This objective is looking whether different 

data aggregation techniques can be considered optimal for specific application scenarios. 

4. Perform an evaluation of the impact to network performance of making changes to various 

wireless sensor network variables. This objective is looking whether the parameters of a 
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wireless sensor network can be dynamically adjusted to perform optimally based on the 

running application. 

5. Develop an adaptive model to predict the best data aggregation technique based on the 

characteristics of a running application in a wireless sensor network. This objective is 

looking whether a sensor network can adapt autonomously by changing its own set of 

working parameters based on a new scenario or application in order to optimise its 

performance. 

1.6 Contributions 

This study shall provide the following contributions: 

1. Detection Needs Analysis Model 

This includes analysis, design, and establishment of various WSN attributes and 

relationships that were used to develop the intelligent model in this study. 

2. Intelligent Dynamic and Adaptive Model 

An adaptive intelligent model was developed, which was able to determine the best data 

aggregation technique given simple and complex WSN scenarios. This capability enabled 

constrained sensors and mobile devices to improve their performance under the limitation of 

their resources. The model enabled the determination of the right optimal values for the 

network’s parameters, which enabled the wireless sensor network to utilise the appropriate 

data aggregation technique that fitted the context. 

3. Prototype Framework and Source Code 

A framework and source code that could be used in future research to model new data 

aggregation techniques. 

4. Experimental Conclusions 

The conclusions reached based on the study also provide a reference guide to further study 

in the area of WSN. 

1.7 Thesis Organisational Structure 

The structure of the thesis is described as follows. Chapter 2 involves a study of literature, 

which provides the theory underlying the research study. The chapter covers past and current 

studies, which support the motivation and goal of the study, as well as highlighting specific 

hypotheses and theory that relate to the study. Chapter 3 discusses the methodology used to in the 

research, and includes data gathering, tools and proposed simulations. Chapter 4 covers the design 

and provides a needs analysis, which includes identification of concepts and components that are 

required to achieve the objectives. It also presents details on WSN dimensions, the workflow of 
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typical scenarios, and explores the relationship between the components, which make up the WSN 

application. Chapter 5 covers the development of the machine learning model and discusses the 

relevant relationships between various WSN components. It also presents a reference architecture 

and performs a formal analysis of the concepts used throughout the study. It introduces the 

performance metrics used in the study and provides details on the attributes used to generate and 

process data for the study. Chapter 6 discusses the implementation of the machine learning model 

and software prototype. It also discusses the hardware and software environment, and the 

challenges encountered. Chapter 7 discusses the testing and evaluation of the intelligent model. The 

discussion includes analysis of the dataset, the intelligent model training and testing, accuracy plots, 

evaluation using various scenarios, The chapter also discusses the model evaluation based on 

various complex (more than one) scenarios and evaluates these with reference to the state of the art. 

Chapter 8 presents the conclusions of the study, discussing the results, the research outcomes and 

the contributions. It also highlights the limitations and the recommendations for the further research 

based on the study. 
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2 Literature 

2.1 Overview 

This chapter presents the literature review of this study. It discusses sensor devices, their 

evolution, architecture and application scenarios, including their use in the Internet of Things (IoT) 

scenarios are also discussed. The integration of sensors with recent cyber-physical systems are 

explored and the growing challenge with data collection and processing are also discussed. The idea 

of a set of sensors in a network, subsequently referred to as a wireless sensor network, is also 

mentioned. The problem involving the impending overload of data due to continuous collection, 

which is driven by the reducing cost of storage, and how this challenge could be addressed, are 

discussed. The need for data aggregation within wireless sensor networks is highlighted and various 

opportunities to achieving this are explored. The application of data aggregation techniques is 

introduced and discussed, while emphasise on the relationship between their innate attributes 

highlighted. The need for the dynamic selection of data aggregation techniques within the context 

of a dynamic IoT are discussed. This discussion extends to the necessity for an adaptive model, 

which can select appropriate techniques. The chapter ends with a discussion on supporting literature 

for an adaptive, intelligent model, which can detect the context of an event, and based on this 

knowledge, be able to select the right technique to optimise the performance of the WSN. 

2.2 Internet of Things and Wireless Sensor Networks 

The IoT is composed of collections of smart devices, inter-operating to serve one or more 

high-level application requirements (Alnahdi and Liu, 2017). The sensed data can be used for 

various purposes based on the requirements of the running application, such as is applicable in 

vehicle control, factory floor automation, equipment management, and in machine learning for 

weather prediction (Deloitte, 2018; Ghosh et al., 2019).   The increasing number of devices in the 

IoT is expected to generate high volumes of data, having inherent characteristics such as high 

volume, veracity, velocity and variety, and requiring relevant Big Data techniques for processing 

(Benjelloun et al., 2015; Boubiche et al., 2018; Sun et al., 2016). Likewise, new sensor devices are 

being produced with smaller form factors, enabling application deployments at wider scale and 

lower cost. The demerit of smaller size devices includes reduced-size battery packages and a 

constraint on available power sources, which essentially minimizing resources available for normal 

operation (Jyothi and Cholli, 2019). Thus, resource utilization needs to be managed effectively to 

minimize energy consumption during operation, and thus, maximize network lifetime.  
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A typical node (or sensor device) , which samples and generates data, could also be referred 

to as a source node. The last node in the network, which receives the data from the group of 

network nodes is usually referred to as the sink node. The node could also be tasked with 

submitting requests into the network, and to receive the aggregated result from the network. In 

order to provide a useful function, nodes are usually deployed in groups in the form of a network, 

usually referred to as a wireless sensor network (WSN). The objectives of such a network includes 

tasks such as monitoring and detection of physical phenomena (Juneja and Das, 2019). They are 

used in various practical applications such as smart environments (Alnahdi and Liu, 2017), smart 

home and service monitoring (Alnahdi and Liu, 2017; Salunke and Kate, 2017), health (Chatterjee 

et al., 2017), farming (Baldovino et al., 2018), and natural event monitoring (Galappaththi and 

Weerasuriya, 2018; Ozbey et al., 2018), etc. 

While applications are running in a WSN, the WSN exhibits certain characteristics, which can 

be correlated with the requirements of the application. This research includes these characteristics 

to categorise WSN applications while correlating them with data aggregation techniques. Some of 

these characteristics are discussed below (Djedouboum et al., 2018; Jyothi and Cholli, 2019): 

1. Network Topology: this defines the structure of the network of sensors. It refers to the data 

routing approach or algorithm used within the network by the nodes during communication. 

It could fall into one of the following options: Star topology, Mesh topology, Tree topology, 

Cluster topology, Hybrid Topology.  

2. Node Similarity: This identifies the similarity in the capabilities of the sensor nodes. Nodes 

with similar capabilities are described as homogenous, or else they are referred to as 

heterogenous. These are described below: 

a. Homogenous (network): consists of nodes with similar resource capabilities in 

computing, networking, and memory. Also, they usually target the same type of 

phenomena. As an example, weather forecasting would utilize sensors with similar 

settings in a selected area in order to obtain reliable and consistent results. 

b. Heterogenous (network): consists of nodes with varying component capabilities. 

They could measure the same set of phenomena, but at different resolutions due to 

their different resource capabilities. This configuration also introduces settings 

where nodes could hold super-node status to coordinate data aggregation tasks. 

Heterogeneity can be further classified into various types. These include Node-based 

(sub-classified under Layer-based, Hardware-based, Sensor/Actuator-based, and 

management-based), and Network-based (sub-classified under Topology-based, 

Location-based, and Working Model-based (Yıldırım and Tatar, 2017). 
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3. Communication Mode: this specifies the approach used to send reports from all other nodes 

to the sink node and could be one of the following: 

a. One-Hop Communication: nodes transmit directly to the sink node, usually via long 

distances if the sink node is placed far from the network. This tends to increase 

energy consumption for nodes which are far from the sink node. 

b. Multi-Hop Communication: nodes transmit via intermediate nodes to get move to 

the sink node. This tends to reduce transmission distance and thus, minimize energy 

consumption. A relevant network architecture is required in this case and could be 

one of the following: 

i. Flat architecture - where no specific structure exists among nodes, or,  

ii. Hierarchical architecture – where communication hierarchies are relied on 

for communication. 

This research mostly focuses on the multi-hop hierarchical architecture. 

4. Routing Protocol: this determines the communication mode between nodes within the 

network. It could fall into one of the following three classes (Mehta and Saxena, 2018):  

a. Data Centric Protocols: such protocols label sensed attributes and use these to route 

the data across the network. Examples include Directed Diffusion (DD), Sensor 

Protocol for Information via Negotiation (SPIN), etc. 

b. Hierarchical Protocols: such protocols attempt to minimize energy consumption by 

leveraging multi-hop communication between nodes. Examples include Low Energy 

Adaptive Clustering Hierarchy (LEACH), and Power Efficient Adaptive 

Clustering Hierarchy (PEACH), etc. 

c. Location-based Protocols: such protocols rely on the location of nodes in order to 

coordinate data transmission in the network, as well as manage the impact of 

communication on overall network resources. Examples include Geographic 

Adaptive Fidelity (GAF), Minimum Energy Communication Network (MECN), etc. 

This research mostly focuses on the hierarchical routing protocol. 

 

The phenomena being monitored by a WSN usually has certain inherent characteristics, 

which can be used to determine the necessary setup for an applicable wireless sensor network 

(Punniamoorthy et al., 2018). For instance, in a personal area network, the application environment 

dictates the topology. This is because the sensed data will typically be streamed to a central node 

placed somewhere on the body, a strategy best met with use of a star topology (Jung et al., 2016).  
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In normal operation, a WSN is expected to the generate huge amounts of data. The data 

includes features related to WSN characteristics (or attributes), which can be used to evaluate the 

WSN’s performance (Boubiche et al., 2018; Djedouboum et al., 2018). In other words, they can be 

used as performance metrics to evaluate the performance of data aggregation methods currently 

running in the network (Sasirekha and Swamynathan, 2017). The following list consists of 

candidate metrics (also referred to as objective functions), which could be used to evaluate the 

performance of a data aggregation technique in a running WSN. These metrics were considered 

important for the study since they could be used to measure the performance of the WSN when a 

technique is running within it. Such measurements enable the determination of the best technique 

for the selected WSN, and subsequently the data to model the technique’s behaviour. The metrics 

selected for use in the study were dependent on the capability of the NS3 simulator as well in terms 

of what variables in the WSN could be measured:  

1. Energy Consumption: this represents the sum of energy consumption across all nodes within 

the network. Since sensor radio reception and transmission are considered the top energy 

consuming activities of nodes (Rosadi and Sakti, 2017), the attributes of amount and 

distance of transmissions need to be minimised in order to minimise energy consumption. 

This was considered an important metric for the study since the primary objective of data 

aggregation in WSNs is the minimisation of energy consumption. Thus, it is used in the 

evaluation of WSNs and DATs in later chapters. Its unit is in Joules (J). 

2. Latency: this is the time duration from when a request is sent into the network from the sink 

node, to when a report returns the sink node. This is impacted by various attributes, such as 

volume of data transfer, and the number of participating nodes. This metric is also 

considered as an important metric in the study since it represents an obvious differentiating 

factor in the performance of DATs. It is thus included in the metrics used to evaluate WSNs 

and DATs. Its unit is in nanoseconds (ns). 

3. Network Lifetime: this refers to the timespan during which the WSN is capable of 

effectively performing the objectives of the running application. This is based on the WSN 

scenario, where the appropriate definition for Network Lifetime needs to be defined. For 

instance, it could imply using when the first node dies (FND), or percentage of nodes die, 

and also, last node dies (LND). This metric is directly related to the energy consumption 

since a minimisation of energy consumption directly leads to an extended network lifetime. 

It is, thus, considered an important metric. However, it is not represented with a variable in 

the study. Its unit is in seconds (s). 
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4. Bandwidth Utilization: this represents the total bytes used by the network in topology setup, 

through sensing, and to the transmission of data to the sink, and is defined by the attribute – 

number of bytes. The more data is used within these stages, the higher the attribute value, 

and the higher the objective function rises. This also directly correlates with the higher 

consumption of energy since each byte requires a minimum amount of energy for 

transmission. This metric was also considered important for the study. It was measurable 

with the simulation tool and its value could be directly related to the volume of data 

transmitted across the WSN. This it was used further in the study. Its unit is bytes (B).  

5. Scalability: this represents the capability of the network to scale up under demand, while 

maintaining an expected level of quality of service. The term “scale-up” could imply an 

increase in the number of nodes or the network sampling rate. This could occur if the field 

size of the application event increases, or the number nodes grows due to new deployment, 

or more nodes turning themselves online due to increased demand. This metric was not used 

further in the study for various reasons. Its computation was considered more complex, that 

the first four metrics since it required further modelling of the network size and real-time 

spread. It was also discarded to manage the scope of the study.  

6. Fault Tolerance: this represents the capability of the WSN to maintain reliable performance 

in the eventual failure of nodes across the network. Such failure could be due to depleted 

power supplies, isolated nodes, or obstructions to data transmission from node to node. 

Other reasons are possible due to the unpredictable nature of the context of a WSN 

application. The same explanation applies to this metric as does for scalability. It was not 

used further in the study. 

The above list consists of WSN metrics, which are measured across the network during an 

application’s lifetime. Since the values of these functions change dynamically based on the network 

structure and routing algorithm applied across the WSN, they are used in this research to evaluate 

the performance of data aggregation methods used in the network. Given the context of an 

application, and the varieties of algorithms that can be used, the outcome of these variables will 

tend to differ for every data aggregation approach. 

2.3 Wireless Sensor Networks and Data Aggregation 

To address the challenge of managing high data volumes within WSNs, various data 

aggregation methods are usually applied. Within the context of a WSN, data aggregation can be 

described as a distributed processing approach to data spread across several sensor nodes, based on 

a set of rules (Boubiche et al., 2018; Zhang et al., 2018). It involves a decentralized computation of 
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various network attributes that can be consumed by running applications. The characteristics of 

spatial and temporal correlation within the sensed data provides an opportunity for applying this 

method, as it enables the detection and aggregation of duplicates or near-duplicates based on certain 

rules (Yang, 2017). Real-life scenarios where this occurs include carbon monoxide monitoring, and 

the detection and monitoring of seismic vibration in earthquakes. In these applications, sensors in 

proximity could hold consistent values across a wide region, requiring some pre-processing to 

summarize the data.  

Data aggregation techniques (DATs) enable coordination among the sensor nodes by 

providing a logical structure to support the communication between nodes. While specifying the 

routing topology for the network, DATs need to establish a balance between the various WSN 

performance metrics as mentioned in section 2.2, such as energy consumption and network lifetime. 

For optimum performance, the chosen DAT for a WSN needs to be closely aligned with the 

running application on the WSN (Boubiche et al., 2018). The combination of the application 

context and the WSN could be interchangeably referred to as a scenario (AlMansour and Alahmadi, 

2018; Boubiche et al., 2018). The stages of data aggregation are shown in figure 2.1. The figure 

indicates that data is gathered at the sensor nodes, and then aggregated based using one of two 

options. In the first case, the data is aggregated as it is transmitted via intermediary nodes to the 

base station. In the second case, the data is not aggregated until it reaches base station. 

Wireless Sensor Network

Sampled Data from 
Sensors

Data Aggregation 
Algorithm

Result of 
Aggregation

[Sink Node]

Aggregated Data
Base Station

 

Figure 2.1 - Data Aggregation Process - composed from (Randhawa and Jain, 2017a)) 

 

2.4 Classification of Data Aggregation Techniques  

Data aggregation techniques can be classified based on certain attributes. The attributes have 

the same application across all techniques. The following discussion covers these attributes. The 

attributes are important for this study since they represent measurable variables, which can be used 

to estimate the performance of techniques, and thus, providing the capability to compare such 

performance: 
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• Network Architecture and Topology: this refers to the collection of sensor nodes, which 

form a network of sensors. The physical distribution and placement is referred to as the 

network architecture, and captures variables such as the distance between nodes and 

communication interference. The network topology refers to the data communication paths 

between the nodes. A data aggregation technique determines a specific network topology, 

usually based on the network architecture, which enables data routing and aggregation. 

• Routing protocol – this relates to the selected technique and topology and includes protocols 

which are described as chain-based, tree-based, and cluster-based. 

• Objective Goal – this defines the specific purpose of the application and relates directly to 

the WSN’s performance metrics. For example, an application could include an objective of 

minimising latency or maximising network lifetime. This association enables the 

performance of a technique used within a WSN to be evaluated. 

• Optimizing parameters – represents WSN characteristics (or attributes), which have an 

impact on the response of the applied DAT. Changes to these variables tend to affect the 

performance of the DAT during the lifespan of the application. Examples of such attributes 

include node count, field size, and sampling rate. While these attributes could be linked to 

the application, the network, or the overall WSN, DATs perform differently given a 

different vector of a set of values. 

Due to the huge number of data aggregation techniques available for use in WSNs, many instances 

of attempts to categorise techniques was discovered in literature. Table 2.1 documents many of 

these cases where a specific set of dimensions were used in an attempt to categorise various 

techniques. This is important for this study as there is a need to categorise techniques to distinguish 

them based on their behaviour and performance.  

Table 2-1 - Example classification approaches for data aggregation techniques 

No Source Focus of Classification Method of Classification 

1 

A Survey of Distributed 
Data Aggregation 
Algorithms 

(Jesus et al., 2015) 

Data Aggregation in WSNs 

• Function Types - duplicate 
sensitive/insensitive, 

• Communication 
• Routing and network (structured-

hierarchical, unstructured-
flooding/broadcast, etc.),  

• Computation (e.g. decomposable 
averaging/sketches, etc.) 

2 

Data Aggregation in 
Wireless Sensor Networks: 
Previous Research, Current 
Status and Future Directions  

Data Compression in WSNs 
• Topology type  
• Technique Objective. 
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(Randhawa and Jain, 2017a) 

3 

Practical data compression 
in wireless sensor networks: 
A survey  

(Srisooksai et al., 2012) 

Data Compression in WSNs • Data compression by energy 
efficiency  

4 

A Taxonomy of Wireless 
Micro-Sensor Network 
Models  

(Tilak et al., 2002) 

Communication functions in 
WSNs 

• Communication functions 
• Data delivery models  
• Network dynamics with respect to 

power demand 

5 

Issues of Data Aggregation 
Methods in Wireless Sensor 
Network: A Survey  

(Sirsikar and Anavatti, 
2015) 

Data aggregation in WSNs 

• Strategy 
• Delay 
• Redundancy 
• Accuracy 
• Energy consumption 
• Traffic load 

6 

Data-aggregation techniques 
in sensor networks: A 
survey 

(Rajagopalan and Varshney, 
2006) 

Data aggregation in WSNs 

• Network lifetime 
• Latency 
• Data accuracy 
• Security 

7 
A survey on sensor networks  

(Akyildiz et al., 2002) 
Wireless Sensor Networks • Protocol layer 

 

Research initiatives to create new data aggregation techniques usually commence by selecting 

the appropriate network architecture, or topology, such as cluster, star, tree, or mesh topologies. 

The following topology types are discussed below. All the topologies mentioned below are used 

later in the study since they are are fundamental characteristics of the discussed techniques. 

1. Cluster Topology: this topology involves an organisation of nodes in cluster groups, with 

each cluster having a node that represents the cluster head. Other nodes within the network 

must then select the closest cluster head to them as their next communicating node and join 

a cluster as cluster member, with other nodes connecting to the same cluster head. The 

function of the cluster head involves receiving data from the cluster members and 

aggregating these for further transfer to the sink node. The transfer is done via direct 

transmission or via multi-hop routes provided by other cluster heads. 

2. Tree Topology: this topology involves an arrangement of nodes in a tree structure, where a 

node represents the root node, some nodes maintain edge positions as the sensors, while 

other nodes serve as intermediary nodes. The tree is usually built using one of various tree 

construction algorithms such as Kruskal’s minimum spanning tree algorithm (MST). Leaf 
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nodes trigger off the sensing task, sending data to their parent intermediary node. While data 

is being transmitted, data aggregation is taking place to reduce the data received before 

transmitting to the next node in the hierarchy. The intermediary nodes continue to pass the 

data on until it reaches the sink node, which forwards it to the base station.  

3. Chain Topology: this involves an arrangement of nodes in a chain-like structure. The chain 

consists of the end nodes, which are at both ends of the chain, the intermediary nodes, 

which receive data from the end nodes and pass on to the head, and the chain head node, 

which is responsible for sending the aggregated data to the base station. The sensing starts at 

the end nodes and continues to the chain head, while data aggregation occurs as the data 

passes along the chain.  

4. Mesh Topology: this involves a lack of any form of arrangement of the nodes in the 

network. Thus, nodes connect to other nodes in their proximity based on no rule or method. 

This structure provides various multi-links for data routing and maximizes fault tolerance 

within a WSN. 

Figure 2.2 provides a hierarchical classification of data aggregation techniques within the 

context of WSNs. The three main approaches to data aggregation shown in the figure include 

centralized, in-network and hierarchical.  
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(Base Station)

In-Network 
Aggregation

(Node)

Tree-based

Cluster-based

Data Aggregation

Hierarchical
Aggregation
(Topology)

Lossless

Lossy

Chain-based

Flat Networks
(No Structure)

Push/Pull 
Diffusion

Direct Diffusion

Architecture
(Data Aggregation)

Legend

 

Figure 2.2 – Classification of Data Aggregation Techniques, composed from 

 (Al-Doghman et al., 2017; Hiteshreddy et al., 2015; Jesus et al., 2015; Randhawa and Jain, 2017a; Zhang et al., 2018)  

Centralized aggregation implies that data aggregation occurs at the sink node. All network 

nodes sample their environment and send all the data to the sink node, by single or multi-hop 

communication, where final data aggregation is performed. In the In-Network form of data 
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aggregation, the intermediate nodes are responsible for performing internal aggregation of data. 

This applies to the data captured by each node, before being added to data received from other 

nodes (Zhang et al., 2018). This form of aggregation could be sub-divided into lossless and lossy 

aggregation, based on how the packet size is managed. Lossy aggregation involves the use of one or 

more mathematical functions, such as SUM, COUNT, MAX, MIN, and AVE, to compress the 

packet size. This is essential when the volume of data is larger than the capacity of the receiving 

node. In lossless aggregation, all generated packets are sent towards the sink node. The more 

popular Hierarchical aggregation implies that data aggregation is performed based on a hierarchical 

arrangement of nodes using one of the available topologies: Tree, Cluster, and Chain (Randhawa 

and Jain, 2017a). Thus, as data is being transmitted across the network, data aggregation is being 

performed to summarize the data before it reaches the sink node.  

Data aggregation techniques also have various static characteristics, also referred to as 

attributes. Such attributes inherently affect their behaviour and are immutable for the technique, 

even during the lifespan of the scenario (WSN and application). Examples include location 

awareness (of nodes), homogenous vs heterogenous nodes, algorithm types used, etc. The choice of 

homogenous vs heterogenous nodes implies that a technique works mainly on a certain 

configuration of nodes, such as nodes with similar components (homogenous), or otherwise 

(heterogenous). A technique could also require nodes to be location-aware (e.g. PEGASIS), or non-

location-aware (e.g. LEACH, HEED, etc). These attributes are considered important distinguishing 

variables for determining and identifying the behaviour of the DAT while being active in a 

scenario. However, since these attributes are static and inherent in the subsequent behaviour of the 

technique, they might not be considered relevant if the behaviour of the technique can be accessed 

via their performance given specific network configurations. This also relates to other technique 

attributes, which are computed, and relate to the behaviour of the DAT. Such attributes are 

computed based on other attributes tied to either the WSN or characteristics in the application. Such 

attributes include, for example, the active number of nodes in the network, the average distance 

between nodes, or the (instantaneous) sampling rate of the application (Prabha et al., 2018).  

2.5 Types of Data Aggregation Techniques 

Various data aggregation techniques have been proposed over the years. As mentioned in the 

last chapter, while they are mostly classified based on their topology, an important characteristic 

also involves their target working environments, which are also related to the WSN application 

(Dhand and Tyagi, 2016; Jesus et al., 2015; Randhawa and Jain, 2017a). To discuss some of the 

characteristics further, the following sections will cover various example DATs according to their 
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topologies and target network setup. Using these examples, the distinctions between DATs are 

highlighted, their application-specific nature discussed, while the need to apply different DATs 

during the lifetime of a WSN scenario is emphasized.  

A data aggregation technique in a typical WSN determines the data computation and routing 

algorithm for nodes within the WSN. This task is inherently constrained by the need to optimise 

certain objective functions, as defined by the WSN application’s criteria. Various techniques 

typically target specific primary functions for optimization. For instance, some techniques target the 

minimisation of energy consumption. Some of these include:  

• Hybrid Energy-Efficient Distributed (HEED) (Younis and Fahmy, 2004a),  

• Power Efficient Gathering in Sensor Information Systems  (PEGASIS) (Lindsey and 

Raghavendra, 2002),  

• Adaptive Energy Aware Data Aggregation Tree (AEDT) (Virmani et al., 2013),  

• Energy-based Data Aggregation (EBDA) (Huang and Zheng, 2012),  

• Dynamic Balanced Spanning Tree (DBST) (Avid Avokh and Mirjalily, 2010),  

• Low Latency Diffusion of Information (Intanagonwiwat et al., 2003),  

• Energy Efficient Adaptive Data Aggregation using Network Coding (ADANC)   

 The primary techniques discussed in following sections include LEACH, HEED, PEGASIS, 

AEDT, and DBST. 

2.5.1 Cluster Topology-based Techniques 

Cluster topologies arrange nodes in clusters, with a common cluster head per cluster of nodes. 

The topology is usually built to optimise scalability, minimise energy consumption, and thereby 

extend lifetime. However, data accuracy could suffer as the number of the nodes in a cluster 

increase (Jyothi and Cholli, 2019). 

LEACH 

The LEACH technique is considered a classical representation of a WSN data aggregation 

technique. Being among the first techniques developed, it often serves as a primary reference point 

for evaluating new techniques (Handy et al., 2002; Sasirekha and Swamynathan, 2017). LEACH 

uses a cluster topology, where clusters of nodes are created within the network. It works based on a 

process consisting of two stages – Setup, and Steady State, The processes are described using the 

following algorithm: 

 



36 
 

Setup Stage 
i. the technique selects the network head nodes by applying its chosen 

algorithm 

ii. the technique builds the network topology using the heads, and 

applies algorithm to select nodes, e.g., node selects closest head 

node as its next communicating node 

iii. chosen head nodes are notified by nodes connected to them 

iv. node heads allocate time slots for communication to all connecting 

nodes 

Steady State Stage:  
v. sensor nodes start to sense their environment based on the purpose 

of the WSN application 

vi. sensor nodes pass captured data and send to head node, or the next 

adjacent node 

vii. head node or next adjacent node sends node onto the next node, or 

to the base station if the last head node is reached. 

viii. steady state stage is repeated until the energy level of the WSN is 

insufficient to run the application effectively.  

As described in the above algorithm, the completion of the second stage of the LEACH DAT 

signifies the end of a process involving topology setup and transmission, which is similar for many 

other DATs. The process take place in a timespan usually referred to as a Round (Darabkh et al., 

2017; Raghunandan et al., 2017). It is noteworthy that virtually all techniques understudied during 

this research had a similar process. However, the termination of a round could be different for 

various techniques. The concept of “round” can however, be considered as one of the yardsticks for 

evaluating the performance of DAT, and is thus, used in this research. 

The approach used in LEACH to select the cluster head involves a probabilistic random function 

which considers the active nodes that are yet to become cluster heads after a given number of 

rounds. A round within the scope of this technique involves the determination of cluster hears, the 

formation of clusters, the sensing, and the transmission of data. This is a special requirement for the 

LEACH DAT. Although, the goal of LEACH involves the minimisation of energy consumption, it 

does not consider the remaining energy of nodes when selecting new cluster heads. The originally 

designed LEACH DAT defines that all cluster heads should send the aggregated data results 

directly to the sink node. However, other research focused on improving its performance have 

redefined the approach to require that cluster heads use a multi-hop technique to transmit data to the 

sink node (Bongale et al., 2017; Gantassi et al., 2017; Yassein et al., 2017). An additional 
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requirement of the LEACH technique includes the constraint of active number of heads to 5% of all 

nodes in the network. Variants of the LEACH DAT have been developed by numerous researchers 

(Yassein et al., 2017), such as LEACH-EA (Gantassi et al., 2017), and LEACH-C (Tripathi et al., 

2013), with similar research taking place for other DATs as well (Darabkh et al., 2017).  

Similar to the algorithm of LEACH, various other techniques use random head selection as a 

strategy, however combining the attribute of node remaining energy as well. Such techniques, 

commonly referred to as energy-efficient algorithms, include DEEC (Qing et al., 2006), and EEHE 

(Kumar et al., 2009). The DEEC DAT uses a probability function based on the ratio of the residual 

energy of each node, to the average remaining energy of the network. Nodes are split into normal 

and advanced nodes, where advanced nodes have 𝛼𝛼 times more energy than normal nodes. Thus, 

probability P is calculated differently for each node, based on the group it falls into. The EEHE 

DAT assumes a three-level heterogenous network, where each level contains nodes based on their 

energy level.  

HEED 

The HEED DAT uses a similar algorithm to LEACH but differs in the approach to cluster 

head assignment. Instead of using a random function, it considers the remaining energy of the 

nodes to selected candidates for the cluster head role. It also considers node density, formerly 

defined as the ratio of the number of active nodes within a node’s given radius, to the number of 

active nodes across the network (Chand et al., 2014; Pillai and Jain, 2018). HEED is a homogenous 

DAT, relying on a consistent similarity of node components and capabilities. The concept of a 

DAT’s Assumption can be used to define this expectation on node characteristics, a behaviour 

shared by other DATs as well. It is revisited further in the study as a yardstick for differentiating 

DATs. To illustrate further, when a DAT requires location-awareness to operate effectively, it will 

expect, or “assume” that the WSN nodes have location-awareness capabilities. However, HEED 

does not assume (or require) location awareness in the network nodes. 

There are other variants of the HEED DAT, which use the primary algorithm of HEED with a 

few adjustments to attain higher efficiency. Integrated HEED (iHEED) (Younis and Fahmy, 2005), 

for instance, applies the functions AVE and MAX in integrated data aggregation during multi-hop 

routing. Other variants, such as hetHEED-1, hetHEED-2, and hetHEED-3, represent mainly 

heterogenous versions of HEED with nodes distributed across, 1, 2, and 3 levels, based on their 

remaining energy levels. In addition to using the same attributes as used in HEED’s computation, 

they also include the distance between a node and the sink. The values of these attributes are then 
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applied to fuzzy logic to obtain the probability that is used to determine which nodes qualify as 

cluster heads (Chand et al., 2014). 

2.5.2 Tree Topology-based Techniques 

Data aggregation techniques that rely on the tree topology create logical links between 

nodes based on a tree structure. Nodes are assigned roles such as root, intermediary and leaf. The 

leaf nodes are usually at the tail end of the tree and often trigger-off sampling across the network. 

Their data is sent to intermediary nodes, which then pass on the data to the next nodes in the tree 

hierarchy, towards the root node. Data aggregation takes place across all the nodes, and up till the 

data gets to the root node (or sink node), which forwards the results to the base station. Important 

tree constructing algorithms to mention include Kruskal’s Minimum Energy Spanning Tree 

(MEST), which computes routes based on the remaining energy of a node, and Dijkstra’s Shortest 

Path Spanning Tree (SPT), which computes routes based on the shortest distance to the sink node. 

These, and several other algorithms, have different impacts on the behaviour of a DAT and can be 

used as a yardstick to distinguish them (A. Avokh and Mirjalily, 2010). 

AEDT 

The AEDT DAT (Adaptive Energy Aware Data Aggregation Tree) uses a tree topology for 

its logical routing network (Virmani et al., 2013). The root node is selected based on the maximum 

available energy of the node, while communications between two nodes is controlled based on the 

available buffer at the receiving node.  It also applies a common function of keeping only 

interacting nodes awake, based on a TDMA (Time-division multiple access) protocol for network 

communication. All successful communication paths are stored in a memory table, and this is used 

in future communication tasks. Its algorithm also uses the Shortest Path First method for its tree 

topology construction.  

The first step taken by AEDT involves the selection of a parent node. Each node first 

broadcasts it’s energy level 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 across the network. Based on a distributed algorithm, the node 

with the highest energy level is selected as the parent node. The selected node then broadcasts its 

status to the entire network. The available energy for a node is calculated using the following 

formula: 

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝐸𝐸𝑏𝑏 (𝑡𝑡2)−  𝐸𝐸𝑏𝑏(𝑡𝑡2) +  ∫ 𝑃𝑃𝑐𝑐(𝑡𝑡)𝑡𝑡2
𝑡𝑡1

  -  eq2 

Where, 

 𝑃𝑃𝑐𝑐 implies network power consumption (Watt) 

𝐸𝐸𝑏𝑏(𝑡𝑡1) implies the battery level of the node at 𝑡𝑡1 
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𝐸𝐸𝑏𝑏(𝑡𝑡2) implies the battery level of the node at 𝑡𝑡2 

The value of 𝑃𝑃𝑐𝑐 is obtained based on the following equation: 

𝑃𝑃𝑐𝑐 = 𝑂𝑂 (𝑃𝑃𝑡𝑡
𝑑𝑑𝛼𝛼

)       - eq3 

where, 
 α is a constant with a value between the range 2 to 4 

𝑃𝑃𝑡𝑡 implies transmitted power 
d implies distance 

𝑃𝑃𝑐𝑐 implies the power consumption 

While the energy consumed by each node is calculated as follows: 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑉𝑉𝑖𝑖𝑖𝑖
𝑅𝑅 ∫ 𝑉𝑉𝑟𝑟(𝑡𝑡) 𝑑𝑑𝑡𝑡𝑡𝑡1

𝑡𝑡0
    - eq4 

where, 

𝑉𝑉𝑟𝑟(𝑡𝑡) implies voltage across test resistance 

𝑉𝑉𝑎𝑎𝑐𝑐 implies input voltage 

The energy consumed by the network is estimate using a linear equation such as: 

𝑚𝑚 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑_𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓 + 𝑏𝑏      - eq5 

where 𝑚𝑚 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 are linear coefficients. Where two nodes have equal 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , that is the same 

communication capacity, then their buffer size availability (measured in packets/sec), is used to 

determine the referred node. 

Other behaviour of AEDT include the re-assignment of a parent node after a given duration. This is 

synonymous to the concept of a round, as mentioned earlier. However, for AEDT, the duration of a 

round, t in seconds, does not take cognizance of the status of the network, which could be in the 

middle of a transmission process. The parent node is always awake, while the intermediary nodes 

transmitting data remain awake only when receiving and transmitting data. The leaf nodes are only 

awake for the time they are sampling and sending data. 

The objective of AEDT involves the optimisation of network lifetime and energy 

consumption, while it considers attributes such as average end-to-end delay, and the average packet 

delivery ratio. It is noteworthy to highlight the term Objective (or Objective Goal) as used in the 

above description. As mentioned earlier, all DATs usually have a primary objective while running 

within a selected WSN, which could include an intent to minimise energy consumption, or to 
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maximise network lifetime. The term Objective Goal is thus, used in the categorisation of DATs 

later in the study. 

DBST 

The DBST DAT (Dynamic Balanced Spanning Tree) by  (A. Avokh and Mirjalily, 2010), 

uses a tree topology for its logical structure. Its objectives include the minimisation of energy 

consumption across the network, while also attempting to balance load across network nodes. It 

targets especially intermediary nodes, which carry a large fraction of the data across the network. It 

selects a head by combining the values of the remaining energy and the node’s proximity to the 

base station. Once the head is selected, it broadcasts a signal to the network. Based on this 

transmission, the nodes assess their RSSI (Received Signal Strength Indicator), to determine the 

amount of energy required to transmit to the base station. The outcome of this is used in the head 

assignment algorithm in later rounds. 

DBST develops a dynamic cost function that reflects the state of the network at any time 

instant, by monitoring attributes such as average node distance, node density, and residual energy. 

It assumes that all nodes are homogenous, thus using similar packet sizes, that the radio channel is 

symmetric, and nodes can change their transmission power as required. These are common 

assumptions for homogenous DATs. DBST also defines a Round as starting from the point of data 

sampling, data aggregation across the network, to transmission of the data to the sink node. 

Lifetime is defined in one of three ways: when the first node dies (FND), the last node dies (LND), 

and a percent of nodes die (PND). 

2.5.3 Chain Topology-based Techniques 

Chain-based DATs build a logical chain-structure across the network nodes. The nodes at 

the ends of the chain are referred to as end nodes, while the final node which communicates with 

the base station, is referred to as the chain head. Chain topologies attempt to minimize far distance 

transmissions by reducing the distance between communicating nodes. It facilitates equal 

distribution of energy consumption across the network, while each node can only communicate 

with its immediate neighbour node. (Sasirekha and Swamynathan, 2015). 

PEGASIS 

PEGASIS (Power-Efficient Gathering in Sensor Information Systems) is a DAT proposed by Lindsey 

and Raghavendra (2002). It uses a chain-based topology and builds its network using a method 

referred to as a greedy algorithm. A greedy algorithm involves a technique where each node selects 

the closest adjacent node as its next communication node. By using a network-based random process, 
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each node takes turns assuming the position of the chain head. It takes the remaining energy of the 

node into account, and this enhances its energy minisation goals. 

The radio energy model of the WSN, on which PEGASIS relies, is like that on which other DATs 

rely. It is discussed further below and is discussed in more detail in Heinzelman et al. (2000) and 

Panchal and Singh (2018). 

The typical sensor radio dissipates a certain amount of energy when receiving and transmitting a bit 

of data. In the case of PEGASIS (as well as LEACH), this is defined by the following set of 

formulas: 

𝐸𝐸𝑒𝑒𝑎𝑎𝑒𝑒𝑐𝑐 = 50𝑎𝑎𝑛𝑛/𝑏𝑏𝑓𝑓𝑡𝑡 

where 𝐸𝐸𝑒𝑒𝑎𝑎𝑒𝑒𝑐𝑐 implies the energy consumed per bit transmission. A communication consisting of the 

transmission of 50 bytes would consume approximately 2.5mJ (2.5 milli-Joules). The following 

represents the formular for the transmitter amplifier: 

∈𝑎𝑎𝑎𝑎𝑎𝑎= 100𝑝𝑝𝑛𝑛/𝑏𝑏𝑓𝑓𝑡𝑡/𝑚𝑚2 

where ∈𝑎𝑎𝑎𝑎𝑎𝑎 is equivalent to one hundred pico-Joules, per bit, per metre squared and represents the 

energy consumed per bit per meter squared of radio transmission. 

Nodes are assumed to have control over the power of their radio transmitters and can adjust this 

value based on the distance to the destination node. There is an expected loss in channel 

transmission represented by 𝑟𝑟2. The following equations are used to calculate the transmission and 

reception costs for each k-bit message over a distance d. For transmission, the following equation 

applies: 

𝐸𝐸𝑇𝑇𝑇𝑇(𝑘𝑘,𝑑𝑑) =  𝐸𝐸𝑇𝑇𝑇𝑇 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒(𝑘𝑘) +  𝐸𝐸𝑇𝑇𝑇𝑇−𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘, 𝑑𝑑) 

𝐸𝐸𝑇𝑇𝑇𝑇(𝑘𝑘,𝑑𝑑) =  𝐸𝐸𝑒𝑒𝑎𝑎𝑒𝑒𝑐𝑐 ∗ 𝑘𝑘 + ∈𝑎𝑎𝑎𝑎𝑎𝑎∗ 𝑘𝑘 ∗  𝑑𝑑2 

while for reception, the following equation applies: 

𝐸𝐸𝑅𝑅𝑇𝑇(𝑘𝑘) =  𝐸𝐸𝑅𝑅𝑇𝑇−𝑒𝑒𝑎𝑎𝑒𝑒𝑐𝑐 (𝑘𝑘) 

𝐸𝐸𝑅𝑅𝑇𝑇(𝑘𝑘) =  𝐸𝐸𝑒𝑒𝑎𝑎𝑒𝑒𝑐𝑐 ∗ 𝑘𝑘 

where k represents packet length (2000 bytes for PEGASIS), d is distance (𝑑𝑑2 = 500 for PEGASIS), 

and the cost to transmit a packet is twice that needed to receive due to energy being split between 

the amplifier and the transmitter electronics. Just like most other DATs, PEGASIS assumes a 
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symmetrical channel, which implies that transmission in both directions have the same impact on 

resources. 

The following algorithm describes how the behaviour of the PEGASIS DAT while in operation in 

the WSN: 
i. Start 

ii. nodes are deployed into the target area 

iii. the base station queries all nodes for individual energy 

levels and location 

iv. the base station applies a random function to select a head 

node a according to the following rules: 

v. if this is the first round 

vi. select a node in random as the first node, 

vii. else,  

viii. find the node with the largest remaining energy 

ix. transmit to all nodes the id of the head node a, and the 

location of all nodes 

x. the head node a, sends out a signal to determine the closest 

adjacent node b, using the RSSI (Received Signal Strength 

Indicator) signal 

xi. head node a sends a signal to node b to inform it of its role 

as next node to select neighbours  

xii. node a sets node_role = chain_head 

xiii. node_count = total_no_of_nodes 

xiv. repeat while node_count > 0 

xv. node b marks the communicating node as its next_node 

xvi. node b sends out a signal to detect the closes adjacent 

node c  

xvii. if node c is discovered 

xviii. node b marks node c as its pre_node 

xix. node b sets node_role = intermediary_node 

xx. node b sends a signal to node c informing it as the 

next node to determine its neighbouring nodes 

xxi. else 

xxii. node b sets node_role = end_node 

xxiii. node_count = node_count - 1 
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xxiv. signal_received = false 

xxv. await signal to sense from base station 

xxvi. while signal_received = true: 

xxvii. for each node: 

xxviii. if node_role = end_node: 

xxix. transmit to next_node 

xxx. for each node: 

xxxi. signal_received_from_pre_node = false 

xxxii. if signal_received_from_pre_node = true 

xxxiii. aggregate data with incoming data 

xxxiv. transmit data to next_node 

xxxv. if node_role = chain_head: 

xxxvi. transmit to base station 

xxxvii. End 

 

The above algorithm indicates that PEGASIS operates by developing a chain starting from 

the sink node up to the farthest node.  When each node receives data from a preceding node, it 

aggregates the data with its own and transmit it to the next node. When the data arrives at the head 

node, the head node it sends it to the base station.. In the above algorithm, chain formation is built 

with the help of the base station. PEGASIS requires location awareness, that is nodes need to be 

aware of the location of other nodes. Thus, the base station provides this information.  

By choosing only nodes in proximity, PEGASIS is ains to achieve its goal of minimising 

energy consumption. The approach used to build the chain, as described in the above algorithm, is 

referred to as a greedy algorithm. 

Variants of PEGASIS include include: Distributed PEGASIS (DPEGASIS) (Kulshrestha and 

Mishra, 2017), Modified-PEGASIS (Gupta and Saraswat, 2014), Multi-Chain PEGASIS (Jafri et 

al., 2013), MH-PEGASIS (Chen et al., 2011), and many others. Each one has applied a 

modification to the PEGASIS algorithm to attempt to improve its performance.   

 

Most technique variants indicate attempts to improve specific weaknesses of primary 

techniques. In a similar scenario, research attempts have been made to combine two or more 

techniques to leverage the efficiencies of the individual techniques. Such attempts propose various 

combinations of such techniques as hybrids to solve problems encountered with individual 
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techniques (Sasirekha and Swamynathan, 2017, Chen et al., 2011). Such techniques are discussed 

further in section 2.5.5 where the objective of developing them is compared with that of a dynamic 

selection approach. 

2.5.4 Flat Topology-based Techniques 

For completeness, techniques based on a flat topology are also discussed in this section to 

highlight their differences when compared to hierarchical topology-based techniques. Techniques 

using flat topologies do not make use of a hierarchical communication strategies. Each sensor node 

in the network plays an equal role during topology development, sensing, data aggregation, and 

transmission to the base station (Mamun, 2012). Techniques based on flat topologies usually use 

broadcasts as a data communication mechanism, while not considering the energy level of the 

nodes. Common problems encountered in such topologies include implosion (duplicate packets 

being circulated across network with nodes continuously receiving same packets) and overlap (two 

nodes in proximity, sensing and transmitting at same time to other nodes). Benefits include the 

development of good quality routes from source to sink and minimal topology maintenance. Some 

examples of such techniques include Directed Diffusion and SPIN. These are discussed further 

below: 

Directed Diffusion is built on top of a mesh, or flat, topology. It includes concepts such as an 

interest message, which encapsulates the query sent into the network, and contains a set of 

requirements for a sensing task.  

Adaptive Directed Diffusion has been developed by researchers (Sayyad et al., 2010), who 

have highlighted that the route could be lost when the sink node changes location, leading to more 

energy loss. They have suggested using learning automata to solve the problem. The unbalanced 

energy consumption of Directed Diffusion is also targeted by (Hao Qi et al., 2011), who proposed 

EAADD (Energy Aware Adaptive Directed Diffusion), which uses a different approach to building 

reinforced paths across the network. 

SPIN (Sensor Protocols for Information via Negotiation) is based on inter-node negotiation 

for information dissemination within WSNs. Sensor nodes sample data and disseminate the 

information to other nodes in the network, making all nodes potential sink nodes. Eventually all 

nodes gain a view of the entire network state. Its operation is based on negotiation and resource-

adaptation (Kulik et al., 2002). Thus, each node within SPIN negotiates with another node before 

sharing data, using meta-data to describe the data being shared. Each node has a resource manager 

which is consulted before any transfer of data. A node is able to evaluate the costs of sending data 
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and proceed to send without negotiation. Identifying the potential for blind forwarding and data 

inaccessibility in SPIN,  further research (Luwei Jing et al., 2011) has suggested a variant named 

the SPIN-1 algorithm, to improve its performance by extending its metric for the network’s 

lifetime. 

Hybrids involving Directed Diffusion and Cluster topology have also been developed by 

others (Xinhua Liu et al., 2006), with the goal of improving its energy efficiency. They proposed 

DDBC (Directed Diffusion Based on Clustering), which uses a passive clustering strategy, where 

cluster heads are selected based on a trade-off between network lifetime and energy efficiency.  

2.5.5 Dynamic and Adaptive Selection of Data Aggregation Techniques 

Attempts focused on developing variants of standard techniques, as well as hybrids of 

multiple techniques, highlights the fact that every technique or variant has certain undesirable 

shortcomings (Grichi et al., 2017; Kuncoro and Falahuddin, 2014). Nonetheless, such variants are 

still defined by the necessity to optimise target objective functions as defined by the original 

technique (Randhawa and Jain, 2017b). An alternate approach has been used to develop more 

optimised techniques however, by enabling current techniques to become adaptive based on a given 

attribute. This enables such techniques to adjust their behaviour by dynamically modifying such 

attribute based on changes within the environment. For example, considering the remaining energy 

of the node in the LEACH DAT. The LEACH algorithm can dynamically modify its head 

assignment procedure based on the energy level of network nodes, by, for instance, skipping certain 

nodes that could exhaust their energy if selected as heads (Panchal and Singh, 2018). It has been 

emphasized that in order for this approach to be truly effective, the main data aggregation approach 

applied across a WSN must be dynamic and adaptive, by being context aware, and able to adjust 

itself based on the state of the network (Gasmi et al., 2018a; Jiang et al., 2017; Wang et al., 2019). 

Based on this, reconfiguration within a WSN is considered to be achievable on one of three levels, 

which include software, hardware, and data routing (Grichi et al., 2017). In the context of the 

current discussion, configuration is targeted at the software level and data routing. In essence, the 

fundamental modification involves the topology of the nodes, which eventually dictates a 

redirection of data flows when changes take place within the network, and which could be used to 

enhance the performance characteristics of the network (Chniter et al., 2018). Others have argued 

that given the dynamic nature of the IoT, it is essential that WSNs be more dynamic, with a high 

level of adaptability. In the same vein, it has been argued that the most effective dynamic and 

adaptive approach to WSNs should extend to completely modifying the running DAT in near-real-

time, even as the scenario is running (). This could also be extended to running one or more DATs 
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at the same time on the WSN, in order to either optimise objective functions, or to serve more than 

one application at a time (). This behaviour is expected to favour various emerging applications in 

areas such as the IoT (Gasmi et al., 2018b), renewable energy (Abidi et al., 2017), transportation 

systems (Karoui et al., 2017), and smart grids (Meskina et al., 2018). The next sections discuss 

adaptability within various techniques. Then the differences and demerits of the techniques are 

highlighted. Afterwards, the topology differences are discussed. Then the chapter ends with an 

argument to support the dynamic and adaptive selection of DATs used within a WSN during the 

lifespan of a running application. 

Some standard techniques were updated in other research to reflect some form of adaptability 

in order to improve their performance. Adaptability implies that the behaviour of the technique can 

be modified by adjusting one of its attributes, thereby making them adaptive. Being adaptive could 

simply involve awareness of node energy levels while computing routing paths. Table 2.2 presents 

various adaptive techniques that have such features. 

Table 2-2 - Data Aggregation Techniques developed based on other primary techniques for adaptability 

Name Full Name Source Adaptive 
Characteristic Topology Primary 

Technique 

EERDAT 

Adaptive Energy 
Efficient Reliable 
Data Aggregation 
Technique 

(Mathapati et al., 
2012) 

Cluster resized 
based on packet 
loss ratio 

Cluster Primary 

PEACH 

Power-efficient 
and adaptive 
clustering 
hierarchy 

(Yi et al., 2007) 
lower overhead, 
multi-level 
clustering 

Cluster LEACH 

DAPTEEN 

Distance 
Adaptive 
Threshold 
Sensitive Energy 
Efficient SN 

(Anjali et al., 
2015) 

Node proximity 
within cluster for 
data similarity 

Cluster TEEN, 
APTEEN 

CEEC 
Chain routing 
with even energy 
consumption 

(Shin and Suh, 
2011) 

Centralized 
control, even 
energy across 
nodes 

Chain PEGASIS 

AEDT 
Adaptive Energy 
Aware Data 
Aggregation Tree 

(Virmani et al., 
2013) 

Adaptive packet 
reception based 
on buffer size 

Tree Primary 

EAADD 

Energy Aware 
Adaptive 
Directed 
Diffusion 

(Hao Qi et al., 
2011) 

Adaptive 
algorithm for 
building 
reinforced paths 

Mesh Directed 
Diffusion 

LADD 

Learning 
Automata on 
Directed 
Diffusion 

(Sayyad et al., 
2010) 

Learning 
Automata to 
detect sink node 
location 

Mesh Directed 
Diffusion 
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Tables 2.3 and 2.4 present the comparison of various DATs, showing the different values that 

can be held for a series of attributes. The different values affect the behaviour of the DAT when 

used within a WSN. Given that each DAT has a primary objective, it highlights the fact that a 

single DAT cannot be considered optimal across all scenarios. It also implies that during the 

lifetime of an application, which could consist of changing scenarios, a single DAT would not 

perform optimally throughout its lifetime.  
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Table 2-3 - Attribute Analysis for DATs across topologies – composed from (Ari et al., 2018; Mamun, 2012; Talele et al., 2015; Zanjireh and Larijani, 2015) 

Parameter LEACH HEED AEDT DBST PEGASIS Directed 
Diffusion 

Source (Handy et al., 2002) (Younis and Fahmy, 
2004b) 

(Virmani et al., 
2013) 

(A. Avokh and 
Mirjalily, 2010) 

(Lindsey and 
Raghavendra, 2002) 

(Intanagonwiwat 
et al., 2003) 

Topology Cluster Cluster Tree Tree Chain Mesh 

Aggregation 
Method 

Cluster Head, Multi-
hop 

Cluster Head, Multi-
hop 

Intermediary 
Nodes, root node 

Intermediary Nodes, 
root node 

End nodes, chain head 
node In-Network/Node 

Next node 
selection 
method 

Cluster Head Nearest Cluster Head 

MEST 
energy required 
used to select next 
node 

OSPF 
path to sink used to 
select next node 

Least transmission 
energy Flooding 

Head 
Selection / 
Topology 
Build 

Probabilistic 
function,  
Num. of rounds 

Remaining Energy,  
Num. of rounds 

Least energy 
consuming 
transmission 

Shortest path to sink 
node 

Least energy 
consuming 
transmission 

No heads, mesh-
based, all nodes in 
proximity 

Sensor Type Homogenous Homogenous Homogenous Homogenous Homogenous Heterogenous 

Query Type Sink-based Sink-based Sink-based Sink-based Sink/Node-based Node Query-
based 

Algorithm(s) Cluster, threshold Cluster, remaining 
energy Tree MEST Tree, SPT Chain, Greedy 2-Phase Pull 

Diffusion 

Node 
Connectivity 

1 node for CM,  
Multiple for CH 

1 node for CM,  
Multiple for CH 

1 node for leaf 
nodes,  
2 nodes for 
remaining 

1 node for leaf 
nodes,  
2 nodes for 
intermediary and 
root node 

1 node for end nodes,  
2 nodes for 
intermediary and head 
node 

Multiple, 
unlimited 

Location 
Awareness No No No No Yes Yes 
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Objective 
Goal 

Reduce energy 
consumption 

Reduce energy 
consumption 

Reduce energy 
consumption 

Extend Network 
Lifetime 

Optimise Energy 
Distribution/ Network 
Lifetime 

Energy efficiency, 
fault tolerance 

 

Table 2-4 - Impact on performance metric for various DATs based on scenario characteristics – composed from (Ari et al., 2018; Mamun, 2012; Talele et al., 2015; Zanjireh 
and Larijani, 2015) 

Parameter LEACH HEED AEDT DBST PEGASIS Directed 
Diffusion 

Scenario 
Description 

Low 
node 
count/ 
small 
field size 

High 
node 
count, 
large 
field size 

Low node 
count/ 
small field 
size 

High 
node 
count, 
large 
field 
size 

Low 
node 
count/ 
small 
field 
size 

High 
node 
count, 
large 
field 
size 

Low node 
count/ 
small field 
size 

High 
node 
count, 
large 
field 
size 

Low node 
count/ 
small field 
size 

High 
node 
count, 
large 
field size 

Low 
node 
count/ 
small 
field 
size 

High 
node 
count, 
large 
field 
size 

Energy 
Consumptio
n 
Range -1 | -5 

Low (-2) High 
(-4) Low (-2) Mediu

m (-3) 
Low (-
2) 

Mediu
m 
(-3) 

Low (-2) 
Mediu
m 
(-3) 

Low (-2) High 
(-4) 

Low 
(-2) 

Very 
High 
(-5) 

Energy 
Efficiency 
Range +1 | 
+5 

High 
(+4) Low (+2) High 

(+4) 

Mediu
m 
(+3) 

High 
(+4) 

Mediu
m 
(+3) 

High 
(+4) 

Low 
(+2) 

Very High 
(+5) 

Medium 
(+3) 

Mediu
m  
(+3) 

Very 
Low 
(+1) 

Delay 
Range -1 | -5 

Very 
Low  
(-2) 

High (-4) Very Low  
(-3) 

Mediu
m 
 (-3) 

Low (-
2) 

High (-
4) Low (-2) Mediu

m (-3) 
Very Low 
(-1) 

Very 
High (-
5) 

Very 
Low 
(-1) 

Mediu
m 
(-3) 

Bandwidth 
Utilization 
Range +1 | 
+5 

Low 
(+2) 

Medium 
(+3) 

Low 
(+2) 

High 
(+4) 

Low 
(+2) 

Mediu
m (+3) 

Low 
(+2) 

Mediu
m (+3) 

Medium 
(+3) 

High 
(+4) 

Very 
Low 
(+1) 

Very 
Low 
(+1) 



50 
 

Scalability 
Range +1 | 
+5 

High 
(+4) Low (+2) Very High 

(+5) 
Mediu
m (+3) 

Medium 
(+3) 

Low 
(+2) 

Medium 
(+3) 

Low 
(+2) High (+4) Medium 

(+3) 
Low  
(+1) 

Low  
(+1) 

Fault 
Tolerance 
Range +1 | 
+5 

High 
(+4) 

Medium 
(+3) High (+4) Low 

(+3) 
Medium 
(+3) 

Very 
Low 
(+2) 

Medium 
(+3) 

Very 
Low 
(+2) 

Medium 
(+3) 

Very 
Low 
(+1) 

Very 
High  
(+5) 

Very 
High  
(+5) 

Load 
Balancing 
Range +1 | 
+5  

Medium 
(+3) 

Very 
Low (+1) 

Medium 
(+3) 

Mediu
m (+3) 

High 
(+4) 

Mediu
m (+3) High (+4) Low 

(+2) 
Very High 
(+5) 

Medium 
(+3) 

Mediu
m (+3) 

Low 
(+2) 

Complexity 
Range -1 | -5 Low (-2) Low (-2) Low (-2) Low (-2) Very Low (-1) Low (-2) 

Demerits Low 
latency, 
high 
scalabilit
y 

Low 
scalabilit
y as field 
increases 

High 
overhead in 
setup 
phase, 
topology 
maintenanc
e 

 Low 
fault 
toleranc
e on 
failed 
node 

High 
latency 
on 
larger 
trees 

Low fault 
tolerance 
on failed 
node, 
Node 
energy 
exhaustion
, node 
isolation 

 Topology 
maintenanc
e overhead, 
low latency 

Very 
high 
latency 
on long 
chains, 
could be 
replaced 
by 
variant 
techniqu
e 

Very low latency, 
High energy 
consumption in 
large networks  
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Table 2.5 presents the distinctions between the different topologies based on various 

objective functions. The values assigned to the topologies are relative to each other. Thus, 

since there are four topologies presented, the values range between +1 and +4 for positive 

results such as high energy efficiency, and -1 and -4 for negative results such as low energy 

efficiency, or high energy consumption. Underlined values indicate that the specific 

topologies could interchange values based on certain WSN characteristics. 

Table 2-5 - Performance of the four topologies based on various performance metrics – composed from (Ari et 
al., 2018; Mamun, 2012) 

Performance Metric Cluster 
Topology 

Tree 
Topology 

Chain 
Topology 

Flat 
Topology 

Energy consumption 
Lowest  
consumption (+1) 

+2 +3 +1 +4 

Energy efficiency 
Best efficiency (+4) +3 +2 +4 +1 

Load distribution 
Best distribution (+4) +2 +3 +4 +1 

Redundant communication 
Highest  
redundancy (-4) 

-2 -1 -3 -4 

Reliability 
Most reliable (+4) +3 +2 +1 +4 

Scalability 
Most scalable (+4) +3 +2 +1 +4 

Latency 
Lowest Latency (-1) -2 -3 -4 -1 

Lifetime 
Maximum lifetime (+4) +3 +2 +4 +1 

Topology management overhead 
Minimum Overhead (-1) -2 -3 -4 -1 

Communication overhead 
Minimum Overhead (-1) -3 -2 -1 

-4 
Multiple 
messages 

Control overhead 
Minimum Overhead (-1) -2 

-4 
To maintain 

Tree structure 
-3 

-1 
No structure 
maintained 

 

The data presented in table 2.4 indicates the performance of the four selected topologies, 

given certain scenario characteristics such as field size or node count. Various other scenario 



52 
 

parameters could be expected to modify the above presented behaviour. The assigned values 

are relative across all topologies horizontally. As there are four topologies, each topology 

takes on a value between 1 and 4. The value is negative if the objective function is a demerit, 

otherwise it is positive.   

2.6 Problem Identification 

The discussions presented on data aggregation techniques so far have highlighted the 

fact that they are usually designed to perform optimally given certain wireless sensor network 

conditions (Ari et al., 2018; Boubiche et al., 2018). To improve their performance, variants 

have been developed to enable them to adapt to changes within the WSN’s environment, 

while improving their performance. Nonetheless, WSN topologies and techniques are 

projected to perform optimally in specific scenarios. For instance, cluster topology is 

suggested to perform well in real-life emergency situations such as rescue operations and 

traffic monitoring, due to its low latency in small scale applications. Tree-based topologies 

are considered more suited to non-real-time applications targeting energy efficiency. Chain 

topologies are preferred for real-time applications with energy efficiency requirements, above 

latency (Al-kahtani and Karim, 2018; Patil and Kulkarni, 2013), while directed diffusion is 

better suited for distributed target tracking over a wide area (Mamun, 2012). Given these 

strict characteristics, the unpredictable nature of the context in which WSNs are deployed, 

especially in the emerging IoT, motivates the need for dynamic, self-adaptation, to enable 

optimal performance based on different scenarios (Rodriguez-Zurrunero et al., 2018). Robust 

sensing approaches are required when, for example, there are various dynamic factors such as 

multiple information sources (such as sensors), and rapidly changing requirements defined by 

both human and autonomous applications, all demanding near-real-time decision making. 

This need becomes more complex given the various types of heterogenous sensors, 

measuring multiple phenomena, and providing data in various formats, such as numerical, 

textual and images, using different sampling rates (such as sporadic, periodic, or 

asynchronous), and  based off single or multiple running applications, as could be found in 

large disaster management scenarios (Assis et al., 2016; Zikria et al., 2019). In order to 

satisfy these set of criteria, a WSN would be capable of dynamically modify its active DAT 

(or DATs) while the application is still running (Al-Tabbakh, 2017; Daiya et al., 2016). 

While the discussions, thus provided so far, have aimed to support the argument for the 

dynamic, adaptable capacity of WSNs to define the active and appropriate data aggregation 
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technique, given the running application or applications, the next section presents various 

parameters used in various research to understudy the context and behaviour of WSNs. 

2.7 WSN Data Aggregation Context Parameters 

Various research initiatives targeted at developing adaptive WSNs have used several 

attributes, which are considered essential to address the requirement put forward in the last 

section. As discussed earlier in the chapter, several of the attributes are related to the WSN, 

some to the technique, while others relate to the application. Some of these attributes are used 

later in this study to understand the behaviour of various DATs within WSNs (Ari et al., 

2018; Chand et al., 2014; Popov and Kuzminykh, 2018): 

1. Field Size 

2. Active Node Count 

3. Packet Size 

4. Packet Count  

5. Initial Node Energy (Joules) 

6. Total Number of Packets Transmitted by Nodes (Transmit Bandwidth) 

7. Total Number of Packets Received by Nodes (Receipt Bandwidth) 

8. Radio Transmission Power (Watts) 

9. Radio Reception Power (Watts) 

10. Node Remaining Energy (Joules) 

11. Total Network Node(s) Energy (Joules)  

12. Power Consumed per Received Packet (Joules) 

13. Power Consumed per Transmitted Packet (Joules) 

14. Channel Bit Rate (bits per second – bps) 

The values of the WSN features mentioned in the list above change over time during the 

lifetime of an application. In a time instant or round of a WSN application, the values held by 

these features could be used to determine the behaviour of the running data aggregation 

technique. Thus, it is expected that modifying the data aggregation technique will affect the 

instantaneous values of the features, and thus, subsequently impact on the performance of the 

network. 
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2.8 Summary 

This chapter has discussed the rudiments of wireless sensor networks, while 

highlighting the justification and need for the dynamic selection of data aggregation 

techniques in wireless sensor networks. It was emphasised that data aggregation techniques 

are built for specific configurations and would perform optimally when some of those 

conditions are met in a WSN. Since most WSNs are deployed for individual applications, and 

usually into inhospitable environments, their initial configuration is static, and this makes 

them unusable in other applications. Their resources are managed sub-optimally and the 

devices are discarded after the lifespan of the application. In order to improve the value of 

WSNs as well as make them adaptable to new applications, there is need to make WSNs 

more robust to handle changing context and application requirements. This would require the 

inclusion of the capability to modify or adjust the active routing algorithm of the network by 

modifying the data aggregation technique, while the application is running in the network. 

The following chapters. While the next chapter discusses the methodology to achieve this 

objective, the following chapters will also expatiate further on this concept. 
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3 Methodology 

3.1 Overview 

The chapter discusses the methods, tools, techniques, and data required to achieve the 

objectives. The tasks needed to accomplish these are identified and discussed on a high level, 

while the empirical methods that are applied in executing the investigation are also discussed. 

The software components essential to achieve the outcome are identified to enable planning 

for the appropriate set of tools required for development. The available tools that could be 

used for model development, data generation and analytics are also investigated. The various 

steps required in data sourcing and management are also discussed, including the 

identification of probably data sources, and the method of analysis to be used on data for 

model simulation and evaluation. The approach to the evaluation of the outcomes of the 

investigation are also discussed to ensure that the results effectively present expected 

outcomes and support the aim to achieve conclusive results. A summary of the expected 

outcomes of these activities is presented at the end of the chapter. 

3.2 Introduction 

This research involves the investigation of a challenge found in wireless sensor 

networks, which relates the effective aggregation of voluminous sampled data. The research 

is based on a quantitative empirical investigation of the behaviour of data aggregation 

methods used within wireless sensor networks, with a goal to developing a method that 

dynamically selects appropriate data aggregation techniques based on changing wireless 

sensor network application context parameters. It will involve the identification of valid 

control variables values and ranges, which can be used to appropriately represent the context 

of the investigation, as well as to develop models that can represent the system. The results of 

the various experiments contribute to the development of an algorithm that can dynamically 

select the right data aggression technique in active wireless sensor network applications. The 

goal includes enabling context-aware intelligence in wireless sensor network applications that 

can dynamically apply appropriate data aggregation techniques that optimise the active 

application objectives. This implies certain objectives that need to be achieved to accomplish 

the aim as defined in chapter one. These are discussed briefly below, where essential tasks 

are mentioned. 
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Data Sources: the first task involves the identification and definition of data that would be 

required for the investigation. Candidate variables that are essential for analysing data 

aggregation techniques in WSNs are identified, while their data types are defined. Such 

variables are expected to hold important values for the investigation. This step also involves 

lifecycle and range specification, which become essential information during model 

development and data sampling and generation. Generating values for these variables will be 

based on identifying valid tools and techniques that can be used for producing relevant data. 

Such tools are identified and justification for their use mentioned. The outcome of these tasks 

will drive further tasks for sourcing, generating, and processing the data.  

Analytical Simulations: this includes the design and execution of various experiments and 

simulations, which lead to the development of the preliminary models used to validate 

various hypotheses, as discussed in chapter one. The expected outcomes are defined, and 

their evaluation approaches are discussed. The various tools used to achieve these are also 

highlighted. 

Intelligent Algorithm: the results from preliminary models developed in the simulations are 

studied and the highly successful models are considered for integration into the intelligent 

algorithm. The tasks here include the evaluation of results obtained from prior simulation and 

experiments, followed by the identification of success criteria and the definition of 

appropriate parameters for evaluation. This stage also involves the definition of appropriate 

benchmarks for the evaluation of the algorithm, and the review of results obtained based on 

research objectives. 

Experimental Testing: at this stage, tasks such as selecting a methodology for the 

experimental evaluation of the model are discussed. The approach used to select and to apply 

various use cases for evaluation are discussed as well. Other discussions include how the 

model could be integrated into an application for user application outside testing. 

3.3 Research Philosophy 

This section discusses the research philosophy underlying the research. As the choices 

made during the research are often based on the chosen research philosophy (Johnson and 

Clark, 2006), this subject is expatiated here to identify the ideologies which underly the 

decisions made during the study. It also serves to highlight the preferred research 
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perspectives that which the relationship between new knowledge discovered and the 

approach used to obtain such knowledge. 

This research investigates a phenomenon, by starting with the declaration of set of 

hypotheses, an aim, and a set of questions. In order to address these questions, investigation 

is carried out with the preliminary study of literature, the identification of useful variables 

suitable enough to address the questions, experimentation, data generation and processing, 

and the development of models to certify the veracity of the phenomenon. Thus, the research 

follows a deductive approach, as opposed to an inductive approach, where the process 

commences with data collection. 

The research was executed based on a positivistic philosophy. This implies that it is 

carried out based on underlying belief that the subject of investigation is separate from the 

researcher and is considered an external entity, as opposed to the realism, interpretivism or 

pragmaticistic views. This definition expressly defines the ontological approach used in the 

research. 

Based on this, the research is carried out with the belief that studied phenomena can be 

reduced to simplest forms to carry out the investigation. The phenomenon is considered 

observable, while data and facts describing the phenomena can be collected and studied. It is 

also assumed that the collected data can be used to arrive at valid conclusions about the 

phenomena (Burrel and Morgan, 1982). 

The research is considered scientific, and thus, maintains a realistic philosophy. In 

contrast to idealism, this philosophy implies that the subject of investigation is realistic and 

explorable through data gathering and experimentation. By applying a direct realism 

philosophy, the underlying assumption is that the data captured, and methods applied to 

process the data have a direct relationship to the results obtained. 

According to Heron (1996), the choice of the research subject is subject to a reflection 

of the values of the researcher. The justification for topic selection for this research is very in 

line with the experience of the researcher. Such experience includes important subjects such 

as systems analysis and design, past academic research in artificial intelligence, and software 

development. These immensely impacted upon the selection of the qualitative analysis 

approach for data gathering and analysis through simulation and experimentation, including 

the conclusions made from experimentation. This axiological stance indicates the bedrock 
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upon which the beliefs guiding the research are based, and that the data gathering process, the 

data processing, simulation, and experimentation will lead to a viable and dependable 

conclusion. 

Based on the above description, the data collection approach will be highly structured, 

with the potential need to collect large samples of data, which would be subsequently 

processed using quantitative techniques. 

The research paradigm used falls within the radical structuralist quadrant. The research 

approaches the investigation from a need for fundamental change in various techniques used 

in the studied phenomena. In contrast to the subjective approach, it applies an objectivistic 

perspective as the study essentially involves an investigation of objective entities. 

The research approach also required the operationalisation of various concepts to 

enable quantitative measurements. Such measurements provided the foundation for 

experiments, simulation, and the generation of outcomes. 

   

3.4 Data Sources and Data Definition 

In order to develop the data required for the investigation, the form and scope of the 

data needed to be defined. The data type is essentially numerical and will be sourced from a 

simulated wireless sensor environment. The application scope of the data shall be confined to 

wireless sensor networks. This section shall discuss the specific methods to identify and 

define the necessary parameters, the data types, rules, ranges, and relationships. It also 

discusses the storage approach to enable further analysis on the data in order to obtain 

interesting patters.  

3.4.1 Investigation Method 

The method of investigation is based mainly on simulation. This is considered the 

preferred approach for various reasons. A larger fraction of literature that was studied early in 

the study used simulation as a preferred tool to perform their investigation and in exploring 

various hypotheses and theories to support their proposal. This is due to the fact that the gains 

from using simulation are numerous and include benefits such as minimal cost to the 

investigation holistically, enablement of a controlled environment, minimal impact from 

external unrelated elements or events, and complete control over the operation of the 
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simulation environment, such as applying configurations to enhancement accuracy, timing 

and behaviour modification (Alduais et al., 2018; Antonopoulos et al., 2018, 2018; Wu and 

Wang, 2018). The model complexity can also be pre-determined, while simulation 

parameters can be stored and reused in later experiments. Development and experimental 

cycles can be done are faster, and there are no instances of lost or unusable sensor equipment. 

Simulation also facilitates the opportunity for exploration of multiple options that could 

enhance the outcome of the research.  

3.4.2 Variable Definition 

Unlike the typical physical scenario, in order to control the outcome of the simulations, 

various assumptions must be made concerning all attributes. Such assumptions determine the 

acceptable values for several attributes and parameters. In the context of this study, the term 

“parameter” can be interpreted as an intrinsic characteristic of the entity being discussed, 

while the term “attribute” is used to represent a selected, interesting characteristic, attribute 

or feature of the entity being discussed. Nonetheless, the two terms are used interchangeably 

in the following discussions. The assumptions that need to be made before simulations 

determine the acceptable data values and ranges used in simulation. The accepted values 

should represent varying levels of realism and should be appropriate to the requirements of 

the simulation. It is expected that the assigned values give adequate experimental accuracy, 

and relevance to the ongoing investigation.  

In order to determine the required attributes for the investigation, a wide set of relevant 

literature on wireless sensor networks was studied. Chapter two has provided some detail on 

how the articles were used to accomplish this task. The articles studied were sourced from 

various online directories. Journal and article portals were used for both general and specific 

search. The online article directories used included the following: 

• IEEE Xplore,  

• SAGE Journals,  

• Hindawi 

• Sciencedirect/Elsevier,  

• Springer,  

• Researchgate,  

• SciTechnol 
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The keywords used during search included wireless sensor networks, data aggregation, 

network topology, and routing protocol.  

Reference Management Tools 

The literature review process involved an extensive study of various related articles and 

journals, sought from various online repositories. The selected articles were systematically 

sought according to their relevance to various aspects of the study and the articles themselves 

maintained in cloud-service virtual folders. A series of tools were also used to facilitate and 

automate the process. They include the following: 

1. Dropbox was used as the primary tool for document storage for articles, research 

documentation, Microsoft Visio files, and for storage of simulation data. This provided 

security for all documents, as well as making it available across different disparate 

systems. Google Drive and Microsoft OneDrive cloud storage tools were also partially 

used for the purpose of article and data storage. 

2. Reference and bibliography management was performed using a reference management 

tool named Zotero (Zotero, 2018). This was selected against various other options such as 

Mendeley and RefWorks, due to its perceived ease of use, enabled by its multiple channels 

for article inclusion including a desktop application and the internet, its integration with 

Microsoft Word via a plugin, and its background automatic synchronisation of document 

storage. It enabled the collection of articles, automatic retrieval from document 

repositories, organization, citing, tagging, bibliography and sharing of articles references.  

Variable Selection and Definition 

A systematic approach was used to determine appropriate variables for use in the 

investigation. From observation of literature studied, it was discovered that most articles 

discussing the subject of wireless sensor networks, focusing mainly on designing or 

proposing a data aggregation technique or routing protocol, presented the designs using 

mostly common pattern. It was assumed that the incentive to apply such a pattern was 

inherently dictated by the nature of the system under investigation, as well as to maintain a 

comparable standard across similar proposals. The recognized pattern is briefly discussed in 

the list below: 

1. Objective Goal: this is often implied in the title of the study and discussed further in 

the introduction. 
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2. Introduction or discussion of problem: current state of the problem and relevant 

studies is discussed. 

3. Network Model: a description of scope of the study, indicating specific variables, 

such as field size and number of nodes are described. These will tend to affect the 

assumptions made. 

4.  Assumptions: assumptions are made, such as defining acceptable values for specific 

variables, given the selected network model.  

5. Variable Definition: selected variables are defined to represent various characteristics 

of the model. 

6. Algorithm: the proposed algorithm is defined based on the given variables. 

7. Parameter or Attribute Specification/ Metrics: performance metrics are specified to be 

used to evaluate the algorithm proposed. This study does not distinguish between the 

two terms of parameter and attribute and uses the term “attribute” mainly.  

8. Simulation: simulations are performed to evaluate the proposed algorithm 

9. Evaluation: the results are evaluated, using results from comparable approaches as 

benchmarks, and presented using analytical and graphical approaches. 

A set of articles, which use recognizable patterns like the list above are presented in table 3.1 

Table 3-1 - Some articles that have used the observed pattern to propose data aggregation techniques in WSNs 

Article Pattern Used 

A Novel Clustering Protocol for 
Wireless Sensor Networks 

(Darabkh et al., 2017) 

Algorithms 

Assumptions 

Parameter/performance metrics 

Simulation  

PEGASIS: Power-Efficient Gathering 
in Sensor Information Systems 

(Lindsey and Raghavendra, 2002) 

Assumptions  

Network model 

Algorithms 

Parameter/ Attribute specification 

Experiments/Simulations 

LEACH: Low Energy Adaptive 
Clustering Hierarchy with 
Deterministic Cluster-Head Selection 

(Handy et al., 2002) 

Assumptions  

Network model 

Algorithms 

Parameter/Attribute specification 

Experiments/Simulations 

 Assumptions 
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AEDT: Adaptive Energy Aware Data 
Aggregation Tree for Wireless Sensor 
Networks 

(Virmani et al., 2013) 

Variable specification 

Algorithms 

Performance metrics 

Simulation 

 

Even though the aim of this research is quite different from the common aim of the 

studies mentioned in table 3.1, the context of the study is similar. Thus, the variable 

definition approach used in this study shall be based on a similar approach used in the 

presented studies, as well as many others that were reviewed. This study, however, trod a 

more holistic approach, which involved the use of common variables across various data 

aggregation approaches. Table 3.2 lists the steps used in the selection and definition of 

variables.  

Table 3-2 – Approach steps used to define variables for study 

Steps Description 

Step 1 Collate all available wireless sensor network variables, irrespective of 
their type, form, or representation. 

Step 2 Identify relevant stages in the process of designing, developing, and 
executing a wireless sensor network simulation. 

Step 3 Categorise variables according to the identified stages. Variables can be 
duplicated at this stage  

Step 4 Determine the ownership of the variables, such as the entities that hold 
such. For instance, entities include network, technique and the application 
or scenario. Variables can also be duplicated. 

Step 5 Determine the types of values, and ranges, acceptable for the variables. 
Thus, classifications such as ordinal, discrete, etc, are used here. 

Step 6  Determine the static and dynamic variables 

Step 7 Define relationships between variables.  

Step 8 Define the typical values for the variables, as well as their acceptable 
value ranges. 

Step 9 Define the workflow for variable assignment and use during the process 
of a simulation. This should define the life cycle of a typical variable and 
determine its impact on the outcome of the simulation. 
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3.4.3 Data Storage 

The data that was generated from simulation was stored using cloud-based services 

such as Dropbox and OneDrive. The benefit of this included that the various tasks that were 

not related to the entire system, such as building the intelligent model and performing an 

initial training, could be carried out on an optimised computer. The strategy also enabled the 

storage of the simulation data in raw form for further analysis, which facilitated automated 

testing and reduced the life-cycle period for generating results and visualisations. 

The data storage strategy included the automation of folder creation directly from the 

simulation tool. Thus, folders were created based on a combination of various settings used in 

an experiment, such as the number of nodes. 

This approach to folder creation and definition enabled the automated selection of data 

generated combined from multiple simulations before plotting in a single graph. 

3.4.4 Storage Format 

Various data formats were used during the study. Primarily, flat files are used to store 

simulation output due to the need to reduce constraints to data storage while the simulation is 

running. For this purpose, the data format was one of CSV and tab-delimited files. Any of the 

two would enable immediate visualisation of the data in graphs. Beyond the simulation, the 

data sharing between components of the algorithm was planned to be in JSON format. This 

format was chosen due to its inherent descriptive features, as well as its ease of application by 

other software and for human interpretation. The data is written into files that are stored using 

the folder structure as described in section 3.4. The output of the simulation is written directly 

into dynamically named files in the local file system. 

No specific experiments are performed at this stage of the study. However, the identified 

variables and attributes will be systematically stored using a relational database, MySQL in 

this case, while visualization is done using multiple mind-mapping tools such as FreeMind, 

and iThoughtsHD. Figure 3.2 presents the flow of tasks in this section and indicates the 

outcome of the process. 
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Figure 3-1 - Variable development process 

 

3.5 Analytical Simulations 

The study involves the specification of various analytical simulations necessary for 

validating the set of hypotheses, as well as for developing models that will be used to build 

the algorithm. This implies the design and execution of various experiments and simulations, 

leading to the development of the first sub models. This step is taken to confirm various 

hypotheses established in chapter one. Expected outcomes are defined, followed by the 

application of the selected tools to develop appropriate simulations. The various tasks are 

discussed in the next two sections: 

Tool Selection 

Various experiments involving exploratory, model development, algorithm, and 

prototype application development needed to be carried out during the study, requiring 

various tools. The available tools for each stage of the study were studied and the appropriate 

ones were selected based on their fit for the purpose of the study. These are discussed in the 

sections that follow:  

Simulation 

To perform simulations, the Network Simulator 3 (NS3) tool was selected. Other tools 

considered for this purpose included NS2, OMNET++, MATLAB, and OPNET. However, 
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NS3 was selected based on various inherent benefits, some of which are discussed in the list 

below (Weingartner et al., 2009): 

1. Its high relevance to research in wireless sensor networks due to the observable immense 

application of its predecessor (NS2) by various research articles, which were studied 

during the investigation. 

2. It is a more recent tool and is being supported by an active academic community.  

3. It is developed in a flexible high-level language, C++, and provides optional bindings for 

the Python language, which enables direct access to simulation data for immediate 

analytics. Its use of the C++ language also enables its interaction with components based 

outside the simulation environment, such as the operating system’s folder management 

system. 

4. It is selected above NS2 because the support for NS2 was no longer active, and the tool is 

based on multiple development languages (C++ and Otcl), one less common and 

minimising its flexibility and future relevance.  

5. Using NS3 provided a strong frame of reference-based literature already studied. New 

studies in wireless sensors networks that relied on references that used NS2, are are more 

recently being performed using NS3.  

6. Finally, the tool is provided with an actively updated set of documentation focusing on 

the goal of using the tool., accessible in PDF and in an online format.  

Data Visualisation 

Data generated from simulation is stored off in a folder located within the simulation 

environment. Visualisation of the data is essential to understand the behaviour of the 

simulation. Two options were considered as follows: 

1. Use the in-built visualization tool within NS3, namely Gnuplot, a common library 

within Linux environments. 

2. Python matplotlib library, which was possible based on the flexibility of NS3 to write 

simulation data to the appropriate directory, without further manipulation. 

Both options were used in the study based on the context. The in-built visualization tool 

enabled immediate assessment of the simulation results, while the python libraries enabled 

further exploration of the data in graphs used in documentation. 
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Intelligent Algorithm  

The intelligent algorithm consists of a related program, whose purpose is to 

determine, from a collection of data for each technique, and given a set of criteria, the best 

technique that fits a scenario. This process involves the consideration of various constraints 

and requirements, with respect to instantaneous time-series values of the related data, to 

select the best dataset that fits and suits the WSN scenario. The data is then used as feature 

data for the machine learning model. This component is supposed to act as a preliminary 

stage to the intelligent model to select accurate data for training.  

Software Interface  

This involves a client software that enabled accessibility to the query interface of the 

model. High-level, object-oriented paradigm-based languages were considered. These 

included Java, Python and C++. As this was considered better implemented using a web 

page, Python was chosen as the development language, since the Django library could then 

be used. The use of Python would also enable the direct integration between the model and 

the web interface in a future upgrade of the model.   

The experiments to be carried out at this stage include the following:  

• Development of models to represent different data aggregation techniques.  

• Simulation to obtain technique behaviour given various environmental attribute 

settings. 

• Evaluation of output from multiple techniques run in simulation, given similar 

environmental conditions 

Expected outcomes include: 

• Validation of need for multiple techniques in single application scenario 

 

Figure 3.3 shows a summary of the tasks performed at this stage of the study. 
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Figure 3-2 - Summary of tasks to be performed at this stage 

 

3.6 Intelligent Algorithm Development 

The approach used to design and develop the algorithm is based on a combination of 

various approaches taken in earlier stages and is thus, driven by the outcome of those stages. 

The process for designing the algorithm was guided by preliminary identification and 

clarification of relevant wireless sensor network attributes, each with a scope and lifecycle 

that is defined by the associated with the WSN context. The various experiments performed 

in earlier stages are used to develop sub-models with predictable outcomes and these are used 

to generate data that can be used in future development. Development is performed using a 



68 
 

stepwise approach, where units of developed sub-models are evaluated and integrated into 

larger units. The results that present highly positive outcomes are afterwards selected to form 

components of the algorithm.  

The variables that are required for the algorithm development were briefly identified in 

the literature review but will need to be selected and revised to select the essential ones that 

will go on to represent the WSN attributes. Such attributes are defined based on relevance to 

the expected outcome of the simulations.  

Based on the variable definition and specification done in earlier stages, the algorithm 

design is also based on the outcome of correlations developed among the identified variables, 

including their range and type specification. This becomes important during the prototype 

testing stage. Variables are classified based on related WSN entities and these inherently 

determine the impact level of the variable to the development of the algorithm. All selected 

variables are defined in a similar way, and are given acceptable value ranges, data types (such 

as ordinal, ratio, categorical, etc.), ownerships within the wireless sensor network, and active 

lifecycle behaviour in a generic WSN scenario. Beyond these, various functions and 

relationship formulas are derived from variable relationships and will fit into design of the 

algorithm. These also fit into validation functions that will be used to develop the 

benchmarks. Essentially, these tasks are guided by studies done earlier in literature and the 

study of real-life use cases. 

The criteria for defining successful outcomes shall be developed in order to establish 

benchmarks that can be used to evaluate the algorithm. The benchmarks will enable 

correlation with the study objectives in order to assess the effectiveness of the algorithm with 

respect to these.  

Preliminary experiments require using the rudiments of object-oriented design and 

programming to encapsulate various elements that can be combined into a model of the 

various components within the area of study. These models will fit into the design and 

development of sub-models, which will be used in the hypothesis validation stage. 

Afterwards, these models are combined, also guided by OOP, into larger models that provide 

higher level functions. The corresponding benchmarks are developed for this and used to 

validate the models. 
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As mentioned earlier, experiments are carried out in the Network Simulator 3 tool 

(NS3), based on the C++ high-level language. The Python-binding ability of NS3 is also 

explored in order to integrate the simulation directly with data analytics, which can be 

performed immediately after each simulation run.  The tools to achieve this include Eclipse 

and Visual Studio Code as the integrated development environments, while the environment 

consists of the Ubuntu operating system, running in the Oracle VirtualBox virtual machine. 

The algorithm development is done in a high-level language, Python being used in this 

study, while PyCharm is used as the integrated development environment. The algorithm is 

developed in components, each representing sub-models, and tested extensively, before being 

integrated into a single unit for training.  

The following experiments and outcomes were planned for this stage: 

• Validation of results of models developed in the analytical simulations stage by 

using benchmarks developed for this purpose. 

• The integration of various highly successful models and the subsequent simulations 

and evaluation of their results. 

System integration and testing of the intelligent algorithm based on the various unit models. 

Evaluation of the system using benchmarks developed based on the objectives of the 

research.   

Figure 3.4 shows a summary of the tasks performed at this stage of the study. 
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Figure 3-3 - Tasks performed under the algorithm development 

 

3.7 Experimental Testing 
The working prototype as defined in this research consists of placing the intelligent 

model in an application mode, which enabled testing by using various scenarios and use 

cases. Thus, the intelligent model would be used directly in evaluation by applying batches of 

use cases for evaluation. A user interface (UI) was designed in this study but however, not 

implemented. The use of the model directly provided opportunity for batch use case testing, 

as well as single scenario testing, which would have occurred via a user interface. The design 

for the user interface was to facilitate a first-hand, user-friendly evaluation of the intelligent 

model. It includes a user interface for data entry and selection, and controls for data input and 

execution of the algorithm. In an application mode, the intelligent model can be queried from 

an external source by another application. Thus, the UI-based application would have 

integrated with this for the same reason of obtaining a recommendation.  
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The execution of the working prototype to evaluate the intelligent algorithm is done 

using a combination of various benchmarks. Standard benchmarks are used for the evaluation 

of the model. Benchmarks defined in literature and obtainable from real-life scenarios are 

also considered as reference benchmarks. The evaluation carried out in earlier experimental 

stages were also collated and reviewed in order to develop new benchmarks for the 

algorithm. This also involved a review of success criteria and evaluation parameters within 

the context of the intelligent model.  

Figure 3.5 presents the plan for the development of the application mode for the model. 

Application 
development 
methodology 
and design

Unit 
Development

Unit Testing

Unit/System 
Integration

System Testing

Intelligent 
Algorithm 

Integration

Prototype 
Execution

Results 
Evaluation

Start

End

 

Figure 3-4 – Process used for building a working prototype for the intelligent model 

 

The following activities and outcomes were planned for this stage: 

• Selection of a design methodology, the design and development of an application 

that will effectively consume the services of the intelligent algorithm. 

• Running of the application based on various selected use cases, including both 

simulated and real-life scenarios. 

• Evaluation of the results obtained from testing of the intelligent algorithm. 
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3.8 Summary 

This chapter has discussed the methodology of the research, which dictates the 

procedure for carrying out the research. The variable specification approach was discussed, 

including how data types will be defined and ranges determined. Since defined within the 

context of wireless sensor networks, variables are assigned to specific wireless sensor 

network entities, which own such data and subsequently define their lifecycle behaviour 

during WSN simulations. The approach to developing specific WSN models is then 

discussed, including methods to simulate the entities and gather data for further analysis. This 

leads to the development of preliminary models whose behaviour are defined by selected 

decision variables. These are then used to develop sub-models for the intelligent algorithm. 

On aggregating several models to form the intelligent algorithm, earlier collected simulation 

data are used in training. The results are obtained and then evaluated based on developed 

benchmarks. Finally, a working software prototype is developed to consume the services of 

the algorithm, and to provide a holistic evaluation of the algorithm. 
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4 Model Design and Needs Analysis 

4.1 Overview 
This chapter discusses the design of the intelligent model as well as presenting the 

needs analysis of the study. The needs analysis consists of the process of analysing and 

identifying the main components needed to accomplish the objectives of the study, and this is 

accompanied by the design of how these components will be combined to achieve the aim of 

the study. The chapter investigates various concepts related to the subject matter, as well as 

relationships between concepts and related WSN entities. It also studies and presents a 

strategy for the development of data aggregation techniques from a few important 

dimensions. It explores the relationships between these dimensions and presents a guiding 

process for using the dimensions to classify techniques and further understand their operation 

within WSNs. This process, otherwise referred to as a Relationship Workflow Model, is 

applied later in the study to guide the execution of various experiments. The chapter also 

covers further discussion on important theoretical entities involved in this study, related WSN 

scenario attributes, and how these relate to understanding the selected techniques. The 

chapter ends with a behavioural analysis of techniques in terms of their application in 

complex WSN scenarios. 

The following sections explore various patterns in the behaviour of data aggregation 

techniques and use the subsequent understanding as a basis to highlight the need to visualise 

such techniques from different dimensions. The selected dimensions are then used to identify 

essential attributes which fit into such dimensions and are considered essential for classifying 

and comparing data aggregation techniques. 

Three major WSN entities that are considered relevant for studying WSN application 

use cases are also identified and their relationships with, and impact on, WSN attributes are 

discussed. This enabled the development of an attribute “lifecycle”, which helped define 

value thresholds and resolution. The developed relationship workflow is then discussed and 

used as a support architecture for further technique behavioural analysis. Beyond this specific 

use case, it was proposed that the workflow is suitable to be used as a generic guide towards 

the selection of appropriate data aggregation methods in complex WSN scenarios. 
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4.2 Preliminary Studies 

Studies, that focused on developing data aggregation techniques for WSNs, have 

proposed new routing methods that build upon old ones in order to improve the performance 

of various network metrics. During the literature review performed in chapter 2, common 

patterns were recognised in the approach used to create new data aggregation techniques for 

WSNs. The initial step involved the selection of an objective function, such as minimising 

energy consumption or increasing accuracy, which becomes the goal of the technique. Other 

steps included identifying the default WSN working model for the technique, its specific 

algorithm(s), attribute definitions, and its method for evaluation. The evaluation of such 

techniques often relied on a base reference consisting of earlier well-known data aggregation 

techniques. Literature supporting these ideas, and the identified phases are discussed in the 

next section. 

4.2.1 WSN Dimensions 

Recall that the goal of data aggregation techniques in WSNs involves the optimisation 

of network metrics to improve the performance of the network. Data aggregation techniques 

are designed to target one or more metrics in a WSN scenario. For this reason, a technique 

requires a “perfect” WSN setting to perform optimally. In realistic WSN scenarios, the 

network model, the set of assumptions and the constraints, could change over the course of 

the running application. This impacts on the conditions in which the WSN operates, which 

could be different from the initial conditions at he start of the application.  Thus, there exists 

an open opportunity to improve the performance of the network by dynamically changing the 

running technique in the WSN. By applying a systematic approach, the most appropriate 

technique can be determined and recommended to improve the WSN scenario’s working 

conditions.  

This section, and others in this chapter, introduce an innovative metho, d which can be 

used to achieve this objective. It includes the definition of a network model, a set of 

algorithms, a set of assumptions and constraints , and a set of metrics used forevaluation. By 

applying the proposed method, it was possible to detect various WSN scenario conditions, 

which hastened the recommendation of appropriate data aggregation techniques for the right 

WSN scenario.  
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4.2.1.1 WSN Dimensions - Assumptions 

For WSN data aggregation techniques (DATs) to perform the task of optimising the 

performance of the WSN, their behaviour needs to be correlated with the state of the network 

while in operation. The primary task of the DAT involves providing a data routing protocol 

for the network, which enables it to perform effective data aggregation. A data routing 

protocol implies the definition of a path through a network of nodes, where data can be 

transmitted. The path is usually built using wireless communications between adjacent nodes. 

The conditions of the network and application have a direct impact on the behaviour of a 

DAT. This affects how well it achieves its primary objective function. 

One important way for WSN networks to optimise their performance is to be context 

aware. This means that they can detect changes in the application environment. A few 

constraints, which affect the performance of a DAT, include the working topology of a WSN. 

Since, topologies are important attributes of DATs, for a technique to perform effectively, its 

default topology (obtained from its “perfect” WSN) must align with the network structure of 

the active WSN. Literature on data aggregation techniques refer to requirements such as 

“expected network states”, where this were referred to as DAT “assumptions”. This could 

also be viewed as the DAT’s pre-set working conditions. For instance, the initial energy level 

of a sensor forms an important operating constraint for a technique (Ghai and Katiyar, 2016). 

Sensor devices are commonly assumed to consist of a single sensor, which specifies the 

resolution capacities of such devices (Harb et al., 2014b). Settings such as these could be 

considered as boundaries to the working conditions of a WSN technique, otherwise referred 

to as Assumptions (Omosebi et al., 2018). 

Assumptions can be used to define the initial network conditions for a technique to 

operate. A technique with an objective to reduce energy consumption in a network could use 

a special algorithm to achieve this objective. Such algorithm could require, for instance, that 

the network nodes have prior knowledge of the logical structure of the network (Huang and 

Zheng, 2012). In another case, sensors are also assumed to all have a fixed compression 

factor, generate fixed-sized data packets, and the network is expected to have a symmetric 

radio channel (two-way communication), to enable a technique to effectively balance energy 

across sensor nodes (A. Avokh and Mirjalily, 2010). Assumptions could also include the state 

of node mobility in the network, i.e., whether the target is moving or not. Others include 

sensor node location awareness, proximity to the base station, etc. Such assumptions indicate 

preferred working conditions for a technique when used within a WSN and could be extended 
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as yardsticks to determine the applicability or effectiveness of a technique in such a network. 

In addition, such assumptions are expected to be immutable for a technique throughout the 

lifetime of a WSN scenario (Omosebi et al., 2018). 

4.2.1.2 WSN Dimensions – Objective Function 

A WSN technique, by expectation of its function, must have a defined objective 

function. The values of the characteristics and attributes of the technique are expected to have 

a direct relationship to its objective function. These also have indirect impact on the technique’s 

behaviour, in relation to its algorithms and performance metrics. Thus, an “Objective 

Function” could be used as a dimension for classifying such data aggregation techniques. An 

objective function is essential for a technique and usually links directly to one of the main 

performance metrics for a WSN. A few examples from literature are highlighted below. 

The Two-Tier Adaptive Data Aggregation technique (TTAMA) aimed to minimize 

energy consumption by applying a coding scheme, which indicates the selected algorithm for 

achieving its objective function (Riker et al., 2016, Huang and Zheng, 2012).  Similarly, the 

objective function of minimising energy consumption by using an “efficient cluster head 

selection scheme” describes both the objective and the algorithm to be applied for achieving 

this purpose (Arshad et al., 2012). The reduction of energy consumption (the objective 

function), and subsequently the extension of network lifetime, described the objective to 

improve a WSN scenario using M2M group communication protocols for multiple scenarios 

(Riker et al., 2016). These and many other proposals essentially classify the technique based 

on the objective, and it was considered an important attribute for specifying the appropriate 

technique to be used in a WSN for this study. 

4.2.1.3 WSN Dimensions – Specifications 

To determine the constraints for a technique’s operation based on the objective 

function, relevant variables are identified. Such variables provide a measurable frame of 

reference for various environment states that impact on the functioning of the technique. Within 

the limits of the values assigned to the technique, these variables also provide the opportunity 

to adjust the behaviour of the technique. Within the context of this study, they are effectively 

referred to as technique “Specifications” (Omosebi et al., 2018). Specifications could be 

extended to cover the entirety of attributes defined under various entities in the WSN, such as 

the network and the scenario.  
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Various research in data aggregation technique development, in the early stages, usually 

specify important variables at the start of defining new techniques. For instance, the number of 

clusters created in a network, or the network size, are often important variables to consider in 

the application of a technique (Harb et al., 2014a). To minimize message overhead, the 2-tier 

aggregation scheme TTAMA (Riker et al., 2016) maintains variables holding values for the 

communication settings of nodes, such as radio range and energy consumption. Other proposals 

include many other attributes, such as number of nodes, simulation area, simulation time, 

number of clusters, channel bandwidth (Rahman et al, 2016). The number of nodes on the 

network could be used to adjust the response of the technique with an objective function of 

low-cost topology construction (Beydoun et al., 2009). Since the objective function indirectly 

determines the important variables for a technique, the initial values for the variables are 

important for defining and selecting appropriate techniques. 

Considering the two concepts, assumptions and specifications, assumptions are 

immutable (i.e., do not change in value), while specifications can be either mutable or 

immutable, based what they measure. Thus, “Specifications” indicates the variables that could 

be changed within the WSN context, and which provide an avenue to change the working 

conditions of the technique, thereby affecting its performance. 

 

4.2.1.4 WSN Dimensions – Algorithms 

The next dimension in defining techniques involves the set of algorithms. As was 

mentioned earlier, the techniques select specific algorithms that enable them to achieve their 

specific objective functions. All techniques apply one or more algorithms, while the set of 

algorithms could also be used as a signature for the type of technique using them. Just as the 

applicable algorithms used by a technique are considered essential, so also is the ability to 

select one or more techniques from a given pool based on the objective function in combination 

with a few other parameters. Examples of algorithms used in a few techniques include the 

following: Shortest Path Tree (Virmani et al., 2013) for tree construction based on the shortest 

path to the root, Minimum Spanning Path (Wang et al., 2011) for route planning that takes into 

consideration the energy level of the node, and Euclidean Distance (Mantri et al., 2013) which 

takes into consideration the nearest target to a node. The sleep and wake algorithm is popular 

in WSNs techniques as well, where nodes can turn themselves off while not transmitting as a 

strategy to reduce energy consumption (Virmani et al., 2013). In another DAT design, the 

computation of a cost-function in combination with the redundant data stored in sensor nodes 
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forms part of the algorithm used to develop the adaptive nature of the DAT (Mohanty and 

Kabat, 2016). Based on the algorithm, the technique dynamically computes the data 

transmission delay for each sensor node using its position as input. Upon reviewing other 

techniques, it was considered that the selected Algorithm(s) used by a technique could be 

considered a reliable yardstick for selecting the right technique for use in a WSN (Omosebi et 

al., 2018). 

 

4.2.1.5 WSN Dimensions – Network Model, Performance and Evaluation 

Based on the above discussions, the combination of the assumptions, objective 

functions, specifications, and algorithms could be used to determine a technique for a target 

WSN. Virtually all technique proposals and implementations provided a target model best fit 

for the technique. In that case, it seemed reasonable that each WSN network model could be in 

some way correlated with a vector of the above components. Various authors proposed the 

expected network models for their technique in order to define the specification of the scope 

for its performance. These are usually presented as a set of formal mathematical equations 

(Riker et al., 2016; Virmani et al., 2013) or based on a textual description of the interactions 

among its components (Nie and Li, 2011). This strategy is demonstrated in many technique 

proposals. 

After reviewing the above findings, it was considered essential to include an evaluation 

component to the proposal of a DAT. This required the selection of a set of performance 

metrics, expected to be associated with the objective function. Thus, a technique with an 

objective function focusing on minimising bandwidth utilisation would have a set of 

performance metrics focusing on measuring the rate of bandwidth utilisation (Randhawa and 

Jain, 2017a). This is an essential component in a technique design as is observable in the 

literature. For instance, in providing an evaluation of LEACH-C, which is an upgrade of the 

LEACH technique, which targets the minimisation of energy consumption, performance 

metrics included the measurement of energy dissipation over time, data received over time, and 

node lifetime (Rahman et al., 2016). Such variables essentially provided a basis for comparing 

the performance between the primary and the updated technique. With an objective to manage 

network lifetime and energy consumption, the AEDT technique used metrics such as the 

average end-to-end delay, average packet delivery ratio, energy consumption and network 

lifetime (Virmani et al., 2013). In addition, the number of communication rounds and the 

remaining node energy after each round, were used as metrics in the TTAMA technique, which 



79 
 

targeted energy consumption and network lifetime (Riker et al., 2016). Other common 

performance metrics include aggregation time, packet generation rate (or throughput), packet 

count, and packet size. It should be noted that some of these metrics also fit into the 

classification of specifications mentioned earlier. Although, they have a direct relationship, as 

a specification, they provide a initial working state for the technique, while as a performance 

metric, they provide a means of evaluating the technique’s performance. On selecting a set of 

metrics for a technique, the outcome of the evaluation of the technique can be compared with 

a benchmark defined by the performance of an equivalent technique with similar objective 

functions and performance metrics.  

 

4.2.1.6 WSN Dimensions – List of Components 

In summary, the identified dimensions are discussed below: 

1. Assumptions: these are variables that are immutable for a technique throughout the 

lifetime of the WSN application. They also represent the immutable variables within 

the application context which affect the performance of the technique. 

2. Objective Function: this identifies the WSN metric that the technique is designed to 

optimise. This subsequently determines various other attributes of the technique, 

including its performance metrics. 

3. Specifications: these represent mutable variables, which hold initial values before the 

WSN application commences operation and are expected to change during the lifetime 

of the application. Their values at any point in time is deemed to impact on the 

performance of the running technique and they provide an opportunity to improve the 

network performance. 

4. Algorithm(s): this represents the special set of rules, algorithms, and procedures that 

the technique applies to perform its function. It also represents the primary 

distinguishing characteristic of a technique. 

5. Network Model: this represents the proposed default network setup for a technique. It 

consists of the combination of the assumptions, objective functions, specifications, and 

algorithms. It forms a vector, which can be used to evaluate the performance of different 

techniques based on a given network.  

6. Performance Metrics: this identifies a set of variables based on a technique’s objective 

function, which can be used to evaluate the performance of the technique.  
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7. Evaluation: this represents the stage where variables could be used to determine an 

evaluation of the technique in each WSN. It is a step beyond determining performance 

metrics and involves applying variables to obtain a value for the performance of the 

technique, as well as comparing to a baseline reference, such as equivalent performance 

of other techniques. This stage allows determining the necessary adjustments to 

enhance the performance of the technique. 
 

The dimensions shown in the list above represent different stages in the specification process 

of a data aggregation technique. This analysis is essential because the aim of this research 

requires that the different components that make of a technique will play a part in determining 

the right technique for a scenario. It also enables the development of a relationship between the 

technique, the network, and the scenario in which they operate. The dimensions are presented 

in figure 4.1. This figure is used as the base representation for the dimensions and shall be built 

upon as the discussion on the dimensions becomes more involved. Note that there are no 

indicated associations between the dimensions. This is because the context in which it is 

applied determines the structure. The relationship workflow that incorporates these dimensions 

is discussed in the next section. 

Objective Functions

Assumptions

Specifications

Algorithm

Network Model

Performance Metrics 

Evaluation

 
Figure 4-1 - Identification of the selected dimensions for defining a WSN data aggregation technique. 
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4.3 Dimensions and High-Level Relationships Workflow 

Based on figure 4.1, figure 4.2 presents a more detailed diagram of the dimensions. Two 

different use cases have been indicated where the dimensions in figure 4.1 can be applied. The 

arrows are used to indicate the direction of activity. The normal flow starts from the top, and 

proceeds to the bottom through the dimensions. After one full loop downwards, the flow could 

optionally return to any of the dimensions above based on the results of the performance 

metrics and evaluation dimensions. Such return paths could be triggered by the integration of 

external factors such as a change in the context of the scenario and could require an update to 

the working algorithm. All dimensions can be revisited during the lifetime of the application. 

The first diagram in figure 4.2, “Process A” indicates that all dimensions are visited until 

the evaluation dimension is processed. The “Process B” diagram highlights the possibilities 

during a loopback to any of the dimensions.  As mentioned, a change in the context of the 

scenario could lead to necessary modifications to the set of assumptions, while a change in 

requirements could impact on the set of objective functions. 

The dimensions enable a classification method for attributes of entities, which include 

the technique, the network, and the scenario. The attribute lifecycle could then be determined 

across three entities. The type of value, or set of values, held by an attribute could also be 

determined by the specific entity and dimension in which it exists. 
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Figure 4-2 - High-level workflow incorporating the dimensions 

 

Each data aggregation technique is defined by a set of attributes. These attributes hold 

values that are important for the behaviour of the technique. Based on this concept, two or 

more techniques can be compared and evaluated based on the value of their attributes. The 

task is illustrated in figure 4.3, where the attributes of two selected techniques, i.e., LEACH 

and DIRECTED DIFFUSION are compared across the dimensions.  
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Figure 4-3 – Comparing two techniques, Leach and Directed Diffusion, based on proposed dimensions 

 

4.4 Entities and Attribute Types 

This section discusses the attributes types available for the entities, i.e., Network, 

Scenario and Technique. The Network entity represents a model of the WSN and includes all 

states and settings. The Scenario entity represents a model of the application, including 

external factors that impact on the functioning of the entire system, otherwise referred to as 

the application context. It represents the application event in which the WSN is being applied.  

The Technique entity models the actual running data aggregation technique. The three entities 

have distinct attributes which determine their working state and behaviour, impacting how 

they interact with each other. Their combined interaction determines the performance of the 

network. The relationships between the entities are discussed in more detail in section 4.4.1. 

4.4.1 Entity Relationships 

A Scenario is a collection of data and information that describe the context of the WSN 

application. It represents the stream of data being generated from a typical event, such as a 

wildfire. It could also be the source of a fixed set of data describing the behaviour of the 

scenario but generated from a computer simulation. 
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Attributes hold values that can be either static or dynamic. Static attributes do not change 

throughout the lifetime of the event, while dynamic attributes can change during an event and 

provide avenues to optimise the performance.  

The Scenario entity represents a WSN application and its attributes. The attribute could be 

defined based on one of two sources: by predefined attributes (such as thresholds for energy 

consumption and latency, which fall under requirements), and event-detected attributes (for 

example sampling rate, which can be computed by time difference in data samples). 

The Technique entity represents the WSN technique and its attributes. Its attributes could be 

static or dynamic. Dynamic attributes describe the changing characteristics of the technique 

during an event. Some of these have relationships with the scenario and network. 

In this context, the Network entity represents the wireless sensor network and its attributes. 

The attributes hold values that represent the state of the network. Some of the attributes that 

fall under the network component, for instance, include the number of nodes, field size, 

sampling rate, etc. Changes to such attributes are expected to impact on the operation of the 

technique, based on its own instantaneous attribute settings. 

Inclusive to the discussions presented so far, the value held by an attribute under a 

particular entity could be affected by one or more external factors, which are represented by 

attributes under the same entity or other entities. Thus, some attributes are considered 

primary or decision attributes, while others are dependent or independent attributes. They are 

discussed further below. 

Given a set of conditions (determined by the scenario and network), the technique 

behaviour (for instance, latency, network lifetime, or energy consumption) can be determined 

within a margin of error. This introduces an opportunity to define relationships between the 

components using some mathematical formula. To improve accuracy however, the technique 

itself needs to be modelled, depending on the values of its various attributes, which 

subsequently define the technique’s network behaviour and performance. Figure 4.4 

illustrates how the entities interact together via the given dimensions above. 

4.4.2 Attribute States and Ownership 

Attributes can be associated with either a technique, network, or scenario. Their data 

type, value range and lifecycle are defined by these entities during an active WSN 
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application. The attributes are defined within the context of the entities since the entity 

strongly determines the value of the attribute at any instance in time. Attributes have a few 

characteristics that determine how they are used during a WSN application, and these are 

presented below: 

1. Static vs Dynamic: static attributes have a default value at the start of an application 

and remain the same throughout the lifetime of the WSN application. Dynamic 

attributes are those which change during the running of the application. 

2. Independent vs Dependent: independent attributes are not based are not based on other 

attributes. They represent a specific quantity that has a direct measure of a raw 

measurement, such as energy consumption. They could be referred to as primary or 

decision attributes. On the other hand, dependent attributes are generated based on 

changes in independent attributes. Thus, they can be represented with functions that can 

be modified based on the values given to their independent attributes.  

Tables 4.1a and 4.1b present associations between dimensions and static vs dynamic 

attributes, and dependent vs independent attributes. The inserted ‘X’ character implies that a 

dimension could contain attributes that have the checked states.  

Table 4-1 - Static/Dynamic Attributes in Dimensions 

Dimension Static Attribute Dynamic 
Attribute 

Assumptions X - 

Objective Function - X 

Specifications X X 

Algorithms X X 

Network Model X X 

Performance Metrics X X 

Evaluation X X 

 

Table 4-2 - Dependent/Independent Attributes in Dimensions 

Dimension Independent 
Attribute 

Dependent 
Attribute 

Assumptions X - 

Objective Function - X 

Specifications X X 
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Algorithms X X 

Network Model X X 

Performance Metrics X X 

Evaluation X X 

 

Figure 4.4 presents the relationship between the entities and the dimensions. It highlights the 

various associations between the entities and different dimensions. The figure indicates that, 

for instance, the technique interacts with all the different dimensions based on its attributes, 

while the scenario and network only interact with specific dimensions based on their 

behaviour during the lifetime of the WSN application. 

Performance Metrics

Algorithms

Network Model

Evaluation

Specifications

The scenario takes 
precedence, determining 
values for the technique

Network is determined by 
the scrnario, and impacts in 
technique

Scenario

Network

Assumptions

Objective Functions

Input

Output

Flow between 
dimensions

Associations between 
entities and attributes

Technique

 

Figure 4-4 – Mid-level relationship workflow model incorporating links between the dimensions 
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The next section discusses in more detail the relationship workflow model based on 

combining the identified entities and attributes. 

4.5 Proposed Relationship Workflow Model 

The last section discussed the relationships between the dimensions, entities, and 

attributes. This section introduces the proposed relationship workflow model, which is 

developed based on these concepts. The interaction between the dimensions and entities, as 

well as attributes were highlighted in previous sections. The set of dimensions, entities and 

attributes can be combined to provide an accurate representation and assessment of a WSN 

application to enable design, execution, evaluation, and enhancement. Figure 4.5 presents the 

proposed relationship workflow model based on the given dimensions. The workflow model 

is applicable in the following scenarios. The content of the figure is discussed afterwards. 

1. A dynamic WSN application, where context changes could occur, and a new technique 

needs to be selected based on the current context 

2. A new technique needs to be selected to optimise a specific WSN metric 

3. The appropriate technique needs to be selected from a set of optional techniques given 

a specific set of context parameters for a WSN application 

4. The classification of techniques based on various assigned attributes 
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Figure 4-5 – Low-level workflow model incorporating links between dimensions 

The relationship workflow model shown in figure 4.5 depicts various interactions between 

the entities and the dimensions. These can be combined for various workflows, one of which 

has been depicted by using the circles with numbers.  The circled points are discussed below: 

1. Scenario / External Factors: represent the scenario of a running WSN application, 

which could involve a simulated or real-life application. It also includes an interacting 

user who needs to select for the best technique-based a given WSN application. The 

common interaction from this box involves being able to update various attributes 

within different dimensions. Changes to higher stages in the dimension impact on the 

behaviour in stages lower down. Because this could be a real-life event, an order of 

interaction is not assumed. However, when the workflow is used to manage user data 

input, the necessary steps would start from top to bottom. A scenario would be 

expected to determine attributes such as the characteristics of the context, 

requirements, dynamic attributes, and these are expected to impact on the network 

model and the performance. 
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2. Network / WSN Settings: the network settings are usually set prior to the event. The 

network specifies certain assumptions, such as field size, weather, etc. Its 

specifications include number of nodes, field size, etc. It primarily defines the 

network model, and its settings have an impact on the performance as well. Several 

attributes are expected to change during the life cycle of the WSN application.  

3. One or more of a set of techniques can be used during the running of a WSN 

application based on the set of requirements and criteria. Only techniques that satisfy 

the instantaneous conditions can be selected to be active during the WSN 

application’s lifetime. Based on figure 4.5, the initial conditions of techniques could 

be taken as their set of assumptions, while their behaviour can be adjusted based on 

their specifications. They would also assume inherent algorithms based on their 

operation, while the measure of various network metrics can be used to evaluate their 

own performance. Based on the results of evaluation, a technique’s performance can 

be improved by modifying its specification values, or otherwise, swapped for a better 

technique when the threshold of such specifications has been reached. This directly 

affects the working condition of the WSN application. 

4. The performance metrics block indicates the attributes that are used to measure the 

performance of the technique. These will be used to hold values within the evaluation 

block, which can then be used to evaluate the performance of the technique and to 

assess required changes to improve the technique's performance. Within the 

evaluation stage, in order to improve performance of a running technique, changes 

need to be made to its settings. This leads to various loop-back flows where changes 

are continuously applied to specifications as the application runs. Beyond a pre-

defined threshold, the technique needs to be modified to achieve better performance. 

The specific threshold could be defined by the computation of a collection of sub-

thresholds. Thus, the results of the evaluation could lead to any of the following 

actions: 

a. Modifications to the specification of the active technique, by making changes 

in the specification dimension. 

b. Change to the active technique, which implies a change to the active set of 

algorithms. 
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This stage of the process requires the presence of an intelligent and dynamic 

algorithm, which can determine the best selection based on various context values 

such as objective and criteria. 

These discussions have covered the relationship workflow for the entities and how it could be 

used in a few scenarios. The workflow is essentially applied throughout the rest of this study 

and shall be revisited in various stages where the discussions presented here will be realised 

in implementation. 

4.6 WSN Models, Attribute Definitions and Entity Relationships 

This section discusses the WSM model, attributes, relationships and the systematic 

experiments carried out. The steps involved in carrying out the experiments includes the 

following: 

• Setup of the environment. 

• Definition and selection of the appropriate set of WSN attributes to represent identified 

entities within the system. 

• Model definition and design for the generic wireless sensor network. This includes the 

selection of default settings for WSN attributes to compare their performance through the 

use of simulation experiments.  

• Model design and development for the selected techniques. This task includes a 

discussion on the available attributes, their association with various techniques, and the 

selection of default values for the selected techniques. 

• Software architecture design, which determines the coordinated execution of the 

simulations, data storage locations, folder and file naming procedure, and the updates to 

wireless sensor default settings. 

• Execution of the simulations based on the above details. 

The next section discusses attribute definitions based on identified attributes in literature. 

These will be used to build the models for the entities within the system, and to define default 

settings for the wireless sensor network, technique, and scenario. 

4.6.1 Identified Attributes 

Attributes representing the properties and characteristics of various entities within the 

wireless sensor network environment have types and states was defined in section 4.4.2 and 
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illustrated in table 4.1. In this section, the various attributes associated with WSN entities are 

introduced and their properties and associations discussed. The selected attributes enable the 

design of the experiments, which are later executed in this chapter. Table 4.3 presents the 

attributes, their characteristics, and association with mentioned entities. The attributes shown 

in table 4.3 can have one of various data types. The available value types include one of 

binary, ordinal, and continuous. Binary attributes can hold a true of false value, indicative of 

a toggle-type variable. Ordinal types can hold one of a set of possible values defined within 

the constraint of the context of the variable. Continuous value attributes hold positive real 

number values that can represent any scale the value of a measurement. These usually also 

have the characteristic of a value range. 

The attributes used in this research have been selected based on literature on data 

aggregation techniques used within wireless sensor networks. Various techniques have used 

variables that are common across other techniques and valid within the context of wireless 

sensor networks. The discussions presented earlier about attributes applies directly to these 

variables. The attributes identify the characteristics of their associated entities. The entities, 

their related attributes, as well as the values assigned to these attributes, all represent the 

holistic WSN application model (interchangeably referred to as a system). The following are 

observed for interpreting the details in table 4.3. The complete table is shown in appendix A: 

1. All values are based on a single lifetime of a WSN application. This period could 

involve the active execution of a single scenario or a complex one (multiple 

scenarios) and could involve one or more techniques. 

2. Concepts such as dynamic and static are defined within the scope of a single WSN 

lifetime. For instance, a variable is considered dynamic when its value changes across 

two or more instances if data capture, or instance of time, occurring within the 

lifetime of the WSN application’s lifetime. 
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Table 4-3 - WSN Attributes selected based on literature on wireless sensor networks 

No Attribute Sample Values Data Type 
Primary/ 

Derived 
Static/Dynamic Technique Network Scenario Comments 

1.  Node Count 
(A. Avokh and Mirjalily, 2010) 

50, 100 no Continuous Primary Dynamic - X - 
Dynamic based on 

active nodes 

2.  
Topology 
(Mantri et al., 2013; Wang et al., 

2011) 
Cluster, Tree Ordinal Primary Static X - - - 

3.  Homogeneity 
(Yi et al., 2007) 

Homogenous, 

heterogenous 
Binary Primary Static  X - - - 

4.  Field Size 
(Beydoun et al., 2009) 

100 metres Continuous Primary Static, Dynamic - X X 

Network nodes 

distribution or Scenario 

event perimeter 

5.  Network Structure 
(Mamun, 2012) 

Hierarchical, 

Flat 
Ordinal Primary Static X - - - 

6.  Node Mobility 
(Gnanasekaran and Francis, 2014) 

True, False Binary Primary Static X X - 

Technique standard 

requirement or network 

specification change 

7.  Location Awareness 
(Al-Karaki and Kamal, 2004) 

True, False Binary Primary Static X - - 
Node has information 

about its location 

8.  Network Awareness 
(Al-Karaki and Kamal, 2004) 

True, False Binary Primary Static X - - 

Node has information 

about other locations of 

all nodes 

9.  Node residual energy 
(Chand et al., 2014) 

10 Joules Continuous Primary Dynamic X X - 

Technique performance 

metric or network 

specification update 
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Table 4.3 presents selected attributes that are used later in the study. To understand the 

strategy for selecting the attributes, in conjunction with the entities, the following discussion 

is presented. 

Figure 4.6 presents a class diagram showing the relationships between the three entities, 

attribute characteristics, and the entire WSN system. It also introduces two more components 

into the system. These are discussed below: 

1. Performance Indicators: these measure the performance of the active technique and 

thus, the wireless sensor network, based on the ongoing scenario. It is determined by 

the attributes under the Performance Metric dimension as discussed in earlier sections. 

2. PriorityList: this provides an input into the decision-making process by identifying the 

priority of the objective functions and other requirements that affect the evaluation of 

the process. 

The two components provide input into the Evaluation dimension within the workflow, and 

thus, provide input to the intelligent model decision making process. The numbers in circles 

within figure 4.6 are discussed below: 

1. There is only one instance of the system, represented by WSN Application. The WSN 

Application consists of one or more Scenarios, one Network, and one or more 

Techniques. Within the same WSN Application, two other components exist. These 

are the PriorityList, and the PerformanceIndicator classes. These satisfy specific 

functionality within the system to enable the execution of the evaluation. 

2. There can be one or more instances of a Scenario within the system. The system 

response is based on a set of requirements, which are linked to a specific scenario. 

However, the inclusion of more scenarios would lead to labelled requirements used to 

identify each scenario. Nonetheless, the response of the system will be based on the 

combined assessment of the requirements and performance metrics. In this case the 

PriorityList would be required to prioritise the decision taken, which would be based 

on the ordering of the objective function. 

3. There can only be one Network at one instance (within the context of this research) 

since the nodes can physically (as well as in simulation) only exist in a single 

network. It is, however, possible for nodes to exist on multiple logical topologies, 

which implies that they run more than one technique at once. However, this is not 
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considered in this study. It is expected that one or more scenarios could be running 

within the single network, and thus, the network would have to respond adequately. 

Scenario Network Technique
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Figure 4-6 - Class diagram showing the relationships between entities, attribute and two components in the 

system (i.e. PriorityList and PerformanceIndicator) 

4. Within the system (WSN Application), there can be only one PriorityList, while there 

exist one or more PerformanceIndicator(s). The priority list provides an order of 

concerns, which defines the order in which the objectives are met, in the case where 

there is more than one objective. This list is expected to change as the system is in 

operation. The PerformanceIndicator would be linked with the Objective Functions 

dimension and should also link to the Evaluation dimension. This class identifies the 

active list of performance indices, and these are used by the Evaluation stage for its 

own task. 

5. Each PerformanceIndicator has a threshold range. This is used to evaluate the level of 

performance of the network. This range can be modified by direct input or by external 

forces within the system. A specific attribute of the PerformanceIndicator will 

however, hold this threshold characteristic. Likewise, the PriorityList consists of a set 
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of PriorityItem(s), which each have a weighting. This entity is not shown in the figure 

in order to enhance clarity. The weighting also determines which priority tops the list 

when the evaluation needs to be performed. 

6. An attribute is defined by three components, which are AttributeType, AttributeState, 

and AttributeValueType. These are defined by the location of the attribute within the 

set of dimensions and its ownership among the entities. The three are considered 

components of the attribute in object-oriented parlance. 

7. The AttributeValueType can have one of a set of options. These consist of 

ContinuousRange, OrdinalList, or Binary. 

The class diagram presented in figure 4.6 serves as input into the development of the 

intelligent algorithm, which selects the right technique based on generated simulation data. 

This is discussed further in chapter 6. 

4.6.2 WSN Model and Diagram 

This section discusses the target WSN model as used for the simulation. It introduces 

these here in order to provide a source of reference for further discussions in later sections. 

The discussion focuses on the settings used in defining the simulation environment. The 

wireless sensor network consists of a starting number of active nodes, distributed randomly 

into an area measuring 50m2 up to 150m2. Each node in the network is expected to be 

homogenous, have the same capabilities in computation, memory, and network 

communications. The nodes have the capability to modify the power of their radio 

transmitters to reach their destination node during communications and they all have the 

same starting energy level. The base station is external to the wireless sensor network and 

located at a certain distance to the network. The default settings of the network are presented 

in table 4.4. These values are not static and could be modified in new simulations, as well as 

being modified during the process of a simulation. The values in table 4.4 are stored within 

the Network WSN entity. The values are reflective of a typical physical WSN application 

scenario. 

 

 

 



96 
 

Table 4-4 - Default values for the WSN model 

Attribute WSN Default Value Conditions for change 

Number of initial nodes 100 nodes Can be modified to affect the response of the 
running simulation 

Field size 50 m x 50 m (meters2) Can be modified based changing event 
coverage 

Initial Node Energy 50J This can change as the nodes start to 
communicate 

Sampling rate 600kbps Can be modified by changes in scenario 
characteristics, such as temperature 

Base station location X = -25m, y = -25  
(based on x, y coordinates) 

This should not change for each simulation 
since only static targets are considered 

Energy consumption per 
bit 50 nJ/bit (nano-Joules per bit) This remains static during the simulation 

Packet size 6kb (kilobytes) This remains static during the simulation 

Network density 0.01 node/m2 
This is determined dynamically by the values 
of the number of active nodes and the field 
size. 

 

4.7 Technique Models 
This section discusses the development approach and behavioural analysis of the 

techniques selected for the study.  

4.7.1 Technique Model Development 

To illustrate the structure of various deployment approaches, figure 4.7 presents two 

snapshots from the simulation environment. Each snapshot shows sensor nodes represented 

with red dots.  The diagram on the left represents random deployment of 48 nodes, consisting 

of 12 major clusters. The diagram on the right represents 100 nodes deployed into a grid 

pattern. 
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Figure 4-7 - Illustration of node deployment in the simulation environment. The left image shows 48 nodes 
deployed in 12 clusters, while the figure on right shows 100 nodes deployed in a grid. 

 

The modelling of techniques in a simulation environment is necessary in order to 

enable controlled running of the techniques to generate essential behavioural data. The 

simulation environment used in this research is referred to as Network Simulator 3 (NS3). 

NS3 is a C++ based development environment and is used to build simulations for wireless 

sensor networks. It also uses various terms quite like those used in this study. For instance, 

the concept of Application in NS3 refers to the running WSN application, while a Node refers 

to a sensor node in the network. The following discussions present the development strategy. 

Afterwards, the behavioural analysis of the techniques is discussed. 

Implemented as methods within topology instances

Topology

ClusterTopology
(CT)

TreeTopology
(TT)

ChainTopology
(CNT)

MeshTopology
(MT)

TT:Technique 1

TT:Technique 2

CT:Technique 1

CT:Technique 2

CNT::Technique 1

CNT::Technique 2

MT::Technique 1

MT::Technique 2

 
Figure 4-8 – A class diagram for the software architecture used to develop technique models in the NS3 simulator 
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Since the NS3 simulator is based on C++, it inherently enables development using the object-

oriented paradigm. According to figure 4.8, a top class called Topology is created. The 

different types of WSN network topologies, i.e., ClusterTopology, ChaiTopologyn, 

TreeTopology and MeshTopology, will then derive from the parent class, Topology. 

Afterwards, each data aggregation technique was developed within the topology classes using 

specific methods. For instance, a LEACH technique was built within the Cluster Topology 

class using a method or function specific to the behaviour of LEACH. This strategy enabled 

the inclusion of new techniques by simply designing their method and inserting in the 

appropriate topology class. All common data aggregation technique behaviour were 

encapsulated in the parent classes, i.e., the Topology class. 

4.7.2 Technique Models Implementation Design 

As discussed in section 4.7.1, according to the strategy used to develop the technique 

models, rather than developing classes for each technique, methods were used to define their 

essential algorithm, and included in the concrete instance of the appropriate topology class. 

This strategy was considered appropriate because the algorithm used by the techniques was 

found to be the main differentiating factor for technique performance. Table 4.5 presents the 

list of selected techniques used further in this study. 

Table 4-5 - Techniques discussed further in the chapter and study 

Technique Topology 

LEACH Cluster 
HEED Cluster 
PEGASIS Chain 
DBST Tree 

 

The following discussions cover the simulation of the various techniques and their graphical 

comparisons. The experiments discussed in the following sections are based off evaluation 

experiments carried out in past research in data aggregation techniques (Meena and 

Manikandan, 2017). 

The order of discussions is as follows: 

1. The simulation and plots for the techniques LEACH, HEED, PEGASIS, and DBST 

are presented, and their specific behavioural characteristics discussed. 
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2. Comparison graphs are presented for all techniques. 

4.7.3 Technique Behaviour Analysis 

This section discusses each technique as introduced in past sections and provides 

some details about their behaviour in simulation using various graphical plots. The graphs 

and analysis presented here reflect the implications of various research which had focused on 

the evaluation of DATs based on various metrics, especially energy consumption. Thus, the 

graphs directly reflect the conclusions reached in those related experiments.  

The term context as used in foregoing discussions implies a, instantaneous combined 

state consisting of the scenario, the network entities, and the application. Once the simulation 

of the technique is performed, the generated data is plotted using the simulation 

environment’s gnu plot graphical tool for instant visualisation, or Python’s matploltlib 

library. The next sections discuss the LEACH technique, focusing more on its algorithm and 

its practical application.  

 

LEACH Technique  

The Leach technique applies various algorithm steps during its operation. It has a few 

assumptions and some of these are mentioned here: the location of the base station could be 

outside the network region, all nodes can communicate directly with the base station, all 

nodes are homogenous and energy constrained, they do not have location awareness, the 

network has a symmetrical propagation channel, i.e. communication can be transmitted both 

ways, and cluster heads are responsible for data aggregation. As with other techniques, 

Leach’s behaviour can be classified into a set of tasks performed in a loop referred to as a 

Round. For Leach, each round consists of two phases: the set-up and steady states. The setup 

phase involves head selection, advertisement, and cluster formation, while the steady-state 

phase involves sensing and transfer of data to the sink. The energy required to transmit a bit 

of information between any two nodes is the same, given the same distance apart. A cluster of 

nodes n has a head node, which compresses data for the entire cluster. The head collects n x 

k-bit of data from the n adjacent cluster nodes and compresses it to cn x k-bit data, 

transmitting this to the sink (otherwise referred to as the base station - BS). Here, c represents 

a compression coefficient, an attribute that determines how much data is sent to the sink, and 

thus, the energy consumed by the node to send the data. LEACH also limits the number of 

heads within the network to 5% of the number of active nodes. The algorithm of LEACH is 

briefly described below: 
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i. Select candidate head nodes based on a probability function 

ii. Candidate head nodes advertise their status as head nodes via a broadcast 

iii. Other nodes receive the broadcast and select the closest head node 

iv. Each node notifies the selected head node with the intention to join the cluster 

v. The head node adds the communicating node to this list of cluster members and 

defines a TDMA slot for it. 

vi. All nodes start to sense their environment and transmit to the head node of the 

respective cluster. 

vii. The cluster head collects all data from cluster members and aggregates the data. 

viii. The head node of each cluster sends the aggregated data to the base station. 

 

Technique Modelling 

The Leach algorithm, as described in the last section, was used as a guideline to 

develop the based technique model. The LEACH technique was implemented under the 

ClusterTopologyApplication class. Figure 4.10 shows the main components of the algorithm 

that were implemented. These consist of the following: 

1. Head selection: based on a randomized function 

2. Topology formation: based on head advertisement, cluster-head selection, and cluster 

head TDMA assignment. 

3. Sensing 

4. Transmission: that is communication from node to node, as defined by the cluster 

topology. 

Once the simulation commences, Leach is assigned as the next technique to run. Thus, on 

each round, during each of the above stages, the LEACH specific algorithm is selected to 

implement the simulation. Whenever nodes transmit data, their energy is depleted. The 

simulator uses an event mechanism to record energy changes based on when a node transmits 

or receives communication from another node. The network-wide energy level could also be 

computed at the end of a communication round by summing the residual energy of all the 

nodes in the network. 
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Figure 4-9 - Leach model algorithm implementation 

Simulations and Results 

The Leach technique is plotted in figure 4.11 based on 100 nodes across 150 rounds, over 

a field size of 50 m2. The curve can be seen to start with a mildly steep curve between round 0 

and about round 5, indicating that the energy consumption starts slowly. Then it becomes 

steeper beyond this stage and towards the top of the graph.  

 
Figure 4-10 - Simulation plot of Leach DAT on Energy Consumption vs Round for 100 nodes and 150 rounds 

HEED Technique 

Heed is a cluster-based technique like Leach, was developed to improve on the 

performance of Leach by taking into consideration the remaining energy of nodes when 

assigned the role of cluster heads. This is combined with the probability function, which then 

determines if the node gets to be selected as the cluster head. Also, Heed has no constraint on 

the number of active heads in a round, leaving the assignment of heads to reach an arbitrary 
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but consistent fraction of the number of active nodes. It assumes that nodes are location 

unaware. Nodes have a fixed level of transmission levels when transmitting to neighbour nodes. 

Heed does not assume any network density or diameter, energy distribution or consumption 

among nodes. All nodes take decisions only on locally available information. Cluster heads 

can also create a parallel multi-hop path to the sink node. 

Technique Details 

The Heed technique attempts to distribute cluster heads evenly across the network field 

to ensure that all nodes are connected. Its main goal is to extend lifetime of the network. A 

high-level description of the algorithm of Heed is presented below: 

1. Perform cluster head candidate assignment based on residual energy of nodes on the 

network. 

2. Candidate cluster heads confirm their status based on their selected probability value 

between 0 and 1. This determines the pre-selected constraint on the possible number 

of heads. 

3. Cluster heads advertise their status to nodes within a defined radius. 

4. Listening nodes compare distances to advertising cluster heads and select the nearest 

cluster head. 

5. Cluster heads add the transmitting node to the list of cluster members and assigns it a 

TDMA transmission slot. 

6. Environment sensing commences. 

 

As discussed earlier, these steps are built into a method in the ClusterTopologyApplication 

class. The next sections discuss the modelling and simulation of the technique. 

 

Technique Modelling 

The software model designed for the Heed technique is shown visually in figure 4.12. 

Head assignment involves taking the node’s remaining energy into account, including a 

function based on as assigned random value for the node. In contrast to Leach, the number of 

acceptable heads is unlimited, and the topology formation also includes head advertisement, 

node selection of heads and cluster setup. 
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Figure 4-11 - Model design for the Heed technique 

Simulation and Results 

Figure 4.13 presents plots of Heed based on configurations of 100 nodes over 150 rounds. 

A similar curve pattern is observed here as seen in figure 4.11 for the Leach technique. 

 
Figure 4-12 - Simulation plot of Heed DAT on Energy Consumption vs Round for 100 nodes over 150 rounds 

PEGASIS Technique 

This section covers the details for the Pegasis technique. It uses a chain-based topology 

where all nodes are aligned to form a single chain. The head can be located anywhere along 

the chain and other nodes need to transmit their data to the next node on the chain until it 

reaches the head node. Thus, transmission is based on reception from another node on the 

chain. Pegasis strives to achieve minimal energy consumption by minimising the distance 

between nodes and the number of nodes that any node needs to communicate with. 
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Technique Details 

The Pegasis technique applies various algorithm steps to build the cluster topology. It 

applies various assumptions like those defined for the Leach technique. Pegasis also applies a 

random function in selecting a “chain head”. It assumes that nodes have global knowledge of 

the network structure. Chain construction starts from the farthest node to the sink node and 

uses a greedy algorithm, where each node finds the nearest unconnected node to serve as its 

“next node”. This will tend to increase the average distance between source and destination 

nodes as the chain grows. The chain is also able to heal by a process of node disconnection, 

where a dying node located between two nodes is dropped and the its two adjacent nodes are 

re-connected. On receiving data from its neighbour, a node aggregates the data with its own 

data and transmits it on to the next node. Randomness is also used as a strategy to build 

robustness to failure. The network communication strategy is based on a “token-passing” 

procedure, where the node that holds the token is the node that transmits to its next node. Lastly, 

Pegasis attempts to maintain even energy consumption among nodes based on its reduced 

distances between nodes and nodes only transmitting once during a round. The high-level 

Pegasis algorithm is described below: 

1. Random selection of the next chain head. This will serve as the sink node. 

2. Identification of the node in the network at farthest distance to the base station. This 

node shall be referred to as the “chain end”. 

3. Chain topology construction starting from the farthest node, the chain end, up to the 

chain head. 

4. Sensing of data starting from the chain end node and transmitting up to the chain head. 

5. Transmission of aggregated data from the chain head to the base station. 

The following sections discuss further the modelling and simulation graphs generated for the 

Pegasis technique. 

 

Technique Modelling 

Figure 5.9 shows the algorithm layout for the Pegasis technique. The areas of emphasis include 

the head selection, topology formation, and transmission stages. This reflects how the 

technique was modelled for simulation. Thus, a method was developed to implement the 

specific functions within the ChainTopology class. The next sections discuss the plots of 

generated data from the model in simulation. 
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Figure 4-13 - Algorithm design for the Pegasis technique model 

 

Simulation and Results 

The simulation of the Pegasis technique was performed on 100 nodes over 150 rounds. 

As shown in the plot in figure 5.16, the technique presents a similar energy consumption pattern 

to the Leach and Heed techniques. However, its improvement is highlighted in figure 5.17, 

where it becomes clear that the technique has an improvement over the Leach techniques 

during the lifetime of the WSN simulation. 

 
Figure 4-14 - Simulation plot of Pegasis DAT on Energy Consumption vs Round for 50 nodes over 30 rounds 

 



106 
 

DBST Technique 

The Dbst (Dynamic Balanced Spanning Tree) technique selects a tree root based on a 

node’s average proximity to the sink, followed by its residual energy. Uniquely it strives to 

dynamically re-arrange the tree based on the minimum energy required to sense and transmit, 

and energy distribution across nodes. This is aimed also at minimizing the rate of transmissions 

involving weak nodes in the network.   

Technique Details 

Under the Dbst technique, lifetime is defined in three different stages which include first node 

death (FND), last node death (LND), and percent node death (PND). These could also be used 

as a yardstick to evaluate this technique. The algorithm of Dbst is described briefly below. 

• The sink node broadcasts its location to all nodes in the network using a “Hello” packet 

transmission 

• All nodes approximate their distance to the sink node based on their Received Signal 

Strength Indication (RSSI) 

• For the first round, the closest node to the sink is selected as the tree head. Then the 

hierarchical tree structure is built using a tree building algorithm. 

• For rounds following the first round, the node with the highest remaining energy is 

selected as tree head. In the rare case where two nodes get selected, perhaps due to the 

resolution of the comparison, the distance to the sink would be used to select the 

preferred node.  

• The RSSI enables all nodes to determine their distance to the sink node in conjunction 

with whether they have residual energy that could enable them to successfully transmit 

to the sink node. This factor is also used to determine the best route from each leaf node 

to the tree head node.  

 

Modelling 

Figure 4.16 illustrates the model design for the Dbst technique. 
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Figure 4-15 - Model design for DBST technique 

 

Simulation and Results 

The plots of Dbst is presented in figures 4.17. In comparison to other plots shown 

earlier, it presents a similar pattern of energy consumption behaviour based on the same 

WSN settings as used for the other techniques. 

 
Figure 4-16 - Simulation plot of Dbst DAT on Energy Consumption vs Round for 100 nodes over 150 rounds 

Directed Diffusion Technique 

Although the Directed Diffusion technique is not considered in the final list of 

techniques used in this study, its performance is included in the following graphs simply as a 
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reference plot compared to the other hierarchical techniques. It was noted that Directed 

Diffusion, being a Flat topology technique, is not included in this study. 

4.8 Technique Behaviour Analysis  

The discussions presented in sections 4.7.3, 4.7.4, 4.7.5, and 4.7.6 covered study of the 

behaviour of a set of techniques based on their energy consumption when run within a 

simulated WSN.. The following conclusions were drawn based on the results in the graphs 

presented: 

1. While wireless sensor networks are in operation, various characteristics and attributes 

will hold different values, some of which are static, while others are dynamic, changing 

according to the progress of the event. Using the values of these attributes, it is possible 

to accurately evaluate the performance of the network, with respect to the application 

requirements and constraints. 

2. DATs operate more effectively within a given range of values for some WSN attributes, 

while their performance can be changed based on the values held by such attributes.  

3. Apart from the network (or WSN), the behaviour of data aggregation techniques is also 

impacted by other attribute settings, such as the scenario (which consists of the 

application running on the network). 

4. Multiple techniques can be used interchangeably within the lifetime of a single WSN 

application, determined by the performance and driven by the objective and criteria of 

the running application. However, in order to ensure this possibility, a method is 

required to change the technique during the lifetime of the WSN application when the 

context is appropriate. 

5. For a technique to be selected during a WSN’s lifetime, it must be assured to be able to 

perform optimally under current conditions. This performance must be justified relative 

to other available techniques. In order to achieve this decision-making process, there 

needs to be a method to assess the technique’s performance in near-real-time during the 

WSN operation, and to take decisions on the selection of a technique when considered 

optimal.  

6. The system to detect the best technique needs to be context-aware in near-real-time and 

be capable of taking decisions given a set of values for specific attributes. 
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7. In order to improve its outcome, the sensing system must be able to learn from the 

outcome of its decisions and be capable of evaluating the best option to take given a 

history of prior outcomes and current system conditions. 

8. An additional benefit and possibility would be to be able to incorporate more than one 

application within the WSN at a time. This would then require one or more techniques 

running at the same time when running applications require different techniques. 

The following sections present more detail, which explain the relevance of these highlights. 

Each section focuses on one performance metric and provides more detail on how the 

differences in technique behaviour can be used to develop a decision-making mechanism. 

4.8.1 Analysis of Energy Consumption Behaviour 

This section discusses the behaviour of techniques based on the comparative network 

energy between rounds. A scenario is presented, which is modified to provide a new response 

from the techniques. The outcome, as shown in two different plots, is discussed in detail in a 

table where the specific values of energy consumption at each round is compared and the best 

value and technique selected.  

The scenario used for this analysis involves a set of 100 nodes within an initial field size of 

50 metres2. The field size is then increased to 100 metres2. A typical realistic scenario, which 

has some semblance to this use case involves a wildfire event. The event could spread into 

more areas, thereby increasing the required sensing field for the WSN. Some nodes could be 

turned off at the start of the event but turned on as the event spreads. The increase in field size 

could imply that nodes are having to transmit longer distances, thereby consuming more 

energy. 

The two graphs shown in figures 4.18 and 4.19 illustrate the state of the network during the 

50m2 field size extending to the 100m2 size. The rate of energy consumption as depicted in 

figure 4.19, is much higher than that depicted in figure 4.18. This is observable from figure 

4.19 by the wider area under the graph after the energy levels off for each technique.  
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Figure 4-17 - Plot of energy consumption for selected techniques in a field size of 50m x 50m 

 

Figure 4-18 - Plot of energy consumption for selected techniques in a field size of 100m x 100m 

 

The implication of the two graphs is that energy consumption changes due to certain 

environmental attributes. For instance, in figure 4.18, Directed Diffusion is observed to 

consume more energy in a field size of 50m2. In the simulation involving a field size of 100m2, 

the Leach technique consumes more energy than Directed Diffusion. Thus, the change in 

behaviour of the techniques based on the value of an attribute in the system supports the need 

to explore various approaches to optimise performance of the network using selected attributes. 
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According to on figure 4.18, it is observed that the Pegasis technique consumes the least 

energy between rounds 0 and about 20,. However, from round 21 up till about round 37, Heed 

consumes the least energy. Afterward, Leach seems to consume the least energy till about 

round 75, after which point its energy consumption flattens, perhaps due to the fact that the 

nodes can no longer transmit using their residual energy across longer distances caused by 

nodes that have turned off. After this stage, Heed takes on the best technique until about round 

82, after which Dbst takes on the least energy consuming technique. Table 4.6 presents a 

selection analysis of the graph based on the best- and worst-case scenarios. The dash (“- “) 

indicates that the technique does not comply to the requirement of minimum energy 

consumption. 

Table 4-6 - Selecting the best technique based on energy consumption by round taken from figure 4.18 

No 
Rounds LEACH HEED PEGASIS DBST 

DIRECTED 
DIFFUSION 

1.  2 - 20 - - Best - - 

2.  21 - 37  Best - - - 

3.  38 - 75 Best  - - - 

4.  76 - 100 - Best - - - 

 

Table 4.7 presents the selection strategy for the best technique based on the energy 

consumption plot shown in figure 4.18. it indicates the selection of techniques based on the 

energy consumption in comparison to the remaining techniques. Table 4.7 provides more 

detail on the impact of selecting the best case against every other technique. The loss in 

percentage of selecting the best technique against each other technique is placed in a bracket 

as a negative number, after each energy consumption value in the form of XX (-YY%), 

where XX is the energy consumption of the technique at the specific round, and YY is the 

loss in percentage obtained by comparing the value of the least value technique to the 

technique with the XX value. 
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Table 4-7 - Analysis of the selection process of selecting the best technique based on energy consumption (in 
Joules) and loss encountered with the each of the remaining techniques (in bracket) with reference to figure 5.16. 

Round LEACH HEED PEGASIS DBST DIRECTED 
DIFFUSION 

19 1616.35 (-42.911%) 1022.89 (-9.790%) 922.75 (0%) 1139.58 (-19.027%) 1449.13 (-36.324%) 
21 2906.2 (-36.586%) 1842.94 (0%) 1849.7 (-0.365%) 2062.1 (-10.628%) 3481.54 (-47.065%) 
38 4009.35 (0%) 4021.06 (-0.291%) 4282.07 (-6.369%) 4379.63 (-8.455%) 4615.04 (-13.124%) 
76 No reading 4543.67 (0%) 4808.85 (-5.514%) 4845.14 (-6.222%) 4650 (-2.287%) 
83 No reading 4637.22 (0%) 4927.11 (-5.884%) 4922.95 (-5.804%) No reading 

* the hyphen (-) indicates that the specific value for the technique cannot be used in the computation because the technique 
has stopped transmitting due to a loss of node energy across the network. 

In table 4.7, the selection strategy is shown with the values of energy consumption under 

each technique at each round. The gain obtained by selecting the better technique over the 

technique in a column is indicated in the bracket as a percentage. For example, at round 16 

(falling between rounds 1 and 19), Pegasis would be a better choice to run the network on since 

it has the lowest level of energy consumption. However, at round 21 the best technique would 

be Heed. Back in round 16, the loss of selecting Pegasis over Leach would be 43% (shown in 

brackets). Thus, from table 4.7, it becomes obvious that it is beneficial to select the most 

optimal technique based on the energy consumption across the network. The next section 

provides a similar analysis based on the bandwidth consumption of the network. 

4.8.2 Analysis of Bandwidth Behaviour 

This section discusses the comparative behaviour of the techniques based on the 

bandwidth consumption per round. The same scenario used for the energy consumption 

analysis is used here. However, various WSN attributes were modified to obtain the 

responses, as shown in figures 4.20 and 4.21. As was the case for the energy consumption, 

the plots are discussed on a high-level in table 4.8, while a more detailed discussion is 

presented in table 4.9.  

The field size used for the plot in figure 4.20 was 50m2, while that used for the plot in 

4.21 was 100m2. This consists of a similar use case to the plots presented in figures 4.18 and 

4.19, where field size is modified based on an event. The bandwidth can be impacted by 

channel loss leading to lost packets, and insufficient energy to transmit packets on the 

network.  

The plot in figure 4.20 shows the bandwidth consumption for the selected techniques. 

Directed Diffusion consumes the maximum bandwidth due to its multi-node communication 

strategy. In terms of the preferred technique, the first technique that fits this requirement is 

Dbst, which remains the best technique, until about round 47. Afterwards, Heed is considered 
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best as it consumes less bandwidth from that point on. Heed remains best until about round 

80, when Pegasis becomes better than the rest. When this plot is compared to the plot in 

figure 4.21, a different selection process takes place. This time, Pegasis is considered the best 

technique at start. At about round 25, Heed becomes the best technique, and continues to 

remain so until round 80, after which Dbst takes on the best technique. Further discussions on 

this follow, based on data in tables 4.8 and 4.9, and using figure 4.20 as the reference plot. 

 
Figure 4-19 - Plot of Bandwidth consumption for selected techniques in a field size of 40m2 

 

 

Figure 4-20 - Plot of Bandwidth consumption for selected techniques in a field size of 100m2 
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From the two graphs, it can be observed that the behaviour of techniques based on their 

individual bandwidth consumption is different for different scenarios based on a change in 

characteristics, which in this case, involves the field size.  

Table 4.8 presents the technique selection strategy based on the bandwidth consumption of 

selected techniques, as plotted in figure 4.20. The dash (-) indicates a technique that does not 

have interesting data considered enough for the purpose of this experiment. 

Table 4-8 – Selecting the best technique based on bandwidth consumption by round taken from figure 5.4.20 

No Rounds LEACH HEED PEGASIS DBST 
DIRECTED 
DIFFUSION 

1.  2 - 48 - - - Best - 

2.  48 - 82  Best - - - 

3.  82 - 100 - - Best - - 

Table 4.9 illustrates the selection process for a technique based on the calculated bandwidth 

consumption plot shown in figure 4.20. The values of bandwidth consumption are indicated 

in the cell under the technique, while the loss involved in selecting other techniques are 

indicated in bracket as negative numbers under the appropriate technique. 

Table 4.9 - Analysis of the selection process of selecting the best technique based on bandwidth consumption (in 
bytes) and the loss encountered with the each of the remaining techniques (in bracket) with reference to figure 
4.20. 

Round Leach HEED PEGASIS DBST DIRECTED 
DIFFUSION 

5 31600 (-12.658%) 30450 (-9.360%) 32000 (-13.750%) 27600 (-0%) 52000 (-46.923%) 

48 309680 (-17.703%) 254856 (-0%) 256192 (-0.521%) 255800 (-0.369%) 379080 (-32.770%) 

82 372801 (-16.473%) 318528 (-2.242%) 311388 (-0%) 375246 (-17.018%) 449696 (-30.756%) 

98 384651 (-14.428%) 336168 (-2.087%) 329152 (-0%) 389610 (-15.518%) 472784 (-30.380%) 

 

In table 4.9, the value of bandwidth consumption is used as a selection strategy. The 

comparison of each technique to the optimal technique at each time instant is also computed. 

This is indicated as the loss in brackets (-YY%) and represents the probable gain in bandwidth 

- though indicated as a negative due to its impact - by selecting alternative techniques other 

than the best technique.   
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4.8.3 Analysis of Latency Behaviour 

This section covers the latency behaviour of the techniques during each round of the 

simulation. A similar scenario as used for energy consumption is applied here. The simulation 

is run first on a field size of 40m2, and then on a field size of 100m2. The plots generated from 

both simulations are shown in figures 4.22 and 4.23.  

 
Figure 4-21 – Plot of latency for selected techniques in a field size of 40m x 40m 

 

 

Figure 4-22 - Plot of latency for selected techniques in a field size of 100m x 100m 
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The differences between the two plots in figures 4.22 and 4.23 indicate that the latency 

experienced across the WSN with different techniques could be different based on different 

WSN settings. In figure 4.22, latency grows highest for Pegasis, while the lowest latency occurs 

for both Dbst and Directed Diffusion. While in figure 4.23, with a field size of 100m2, the 

Directed Diffusion technique has the highest latency.  

Focusing on figure 4.22 the plot shows that Dbst started with the lowest latency of all the 

techniques, and this trend continues till about round 48, where Directed Diffusion takes over 

and continues till the end of the simulation. This behaviour and others are discussed further 

with the support of data in tables 4.9 and 4.10. 

Table 4-9 - Selecting the best technique based on latency by round taken from figure 4.22 

No Rounds LEACH HEED PEGASIS DBST 
DIRECTED 
DIFFUSION 

1.  2 - 48 - - - Best - 

2.  48 - 100 - - - - Best 

 

Table 4.9 illustrates the selective preference of a technique based on its low latency 

performance in the network, while table 4.10 presents the same analysis as was done for 

energy and bandwidth consumption, this time, showing details for latency at specific rounds. 

Table 4-10 - Analysis of the selection process of selecting the best technique based on latency (in msec) and the 
loss encountered with the each of the remaining techniques (in bracket) with reference to figure 5.22. 

No Round LEACH HEED PEGASIS DBST 
DIRECTED 
DIFFUSION 

1.  5 801 (-30.462%) 661 (-15.734%) 626 (-11.022%) 557 (0%) 889 (-37.345%) 

2.  47 8547 (-21.856%) 7843 (-14.841%) 10365 (-35.562%) 6679 (0%) 6741 (-0.920%) 

3.  90 14406 (-47.140%) 11449 (-33.488%) 17171 (-55.652%) 
11564 (-
34.149%) 

7615 (0%) 

 

Table 4.10 indicates that the best technique from the start was Dbst, considering latency 

comparisons from round 5. Thus, selecting Dbst at this stage would provide a gain of 

approximately 30% over Leach, for instance.  

Based on the above analysis, it is shown that the best performing techniques can be selected 

from a pool of techniques given a performance objective. 
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4.9 Summary 

This chapter has discussed various concepts which serve as a foundation for the further 

analysis, experiments and development that continue in the following chapters. The chapter 

discussed attributes and variables according to the definitions required for this study. It also 

introduced the concept of WSN dimensions, which can be used to distinguish WSN techniques 

as well as evaluating their performance. The main WSN components consisting of the 

Technique, Network and Scenario, were introduced, while their relationships with the WSN 

dimensions were also discussed, including how a relationship workflow could be used as a 

guide in applying their interrelationships towards analysing a WSN application. Beyond these, 

the chapter also discussed WSN models for the selected techniques. The chapter also covered 

a behavioural analysis of the techniques using complex scenarios and presented the fact that 

based on the specific objective of a WSN application, there is most often a technique that 

performs better than the rest. These concepts shall be used as a foundation for further 

discussions in this thesis.  

The next chapter discusses further formal analysis of the various concepts introduced so 

far in the study, including further discussions about the simulation environment. 
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5 WSN Data Aggregation Recommender Machine Learning 
Model Analysis 

5.1 Overview 

This chapter covers the formal analysis of the concepts introduced in past chapters. In 

discussing these, various aspects of the system are presented while their relationships are 

discussed using mathematical models. 

The chapter first presents discussion on relevant concepts presented in earlier chapters, 

such as Attributes, Techniques, Network and Scenario. The interaction between these 

components is revisited to emphasise their relevance to discussions in this chapter. A huge 

section of the chapter focuses on the formal definition of various components using 

mathematical equations to highlight their relationships. This definition step provides input 

into a more holistic analysis of the intelligent algorithm, which applies the components to 

determine various factors which are considered important for its decision-making process. 

The intelligent algorithm involves the data processing stage of the system, where the optimal 

technique is selected, whose outcome is pre-processed ahead of being used to train the 

machine learning model. The chapter then discusses the architecture of the intelligent model, 

and this is used to illustrate the workflow of the system, serving as a reference point for 

further analysis and development of the model. The “reference” architecture is also used to 

highlight the components that implement various equations based on the formal analysis 

performed earlier.  

Following this, further design of the intelligent model is discussed. This involves the 

review of various attributes that have been presented in past chapters including their 

corresponding data types. On determining the shape of the input for the machine learning 

model, the architectural details of the model are discussed and presented based on similar 

machine learning experiments for WSNs in the literature. The implementation of the 

architecture is discussed, and its initial hyper-parameters are provided.  

5.2 Overview of Relationship Between WSN Components and the Intelligent 
Model 

Figure 5.1 provides an overview of the relationship between the WSN components and 

the intelligent model and provides a high-level flow between the components. The main areas 

are delineated by the coloured green and red boxes. The green box encompasses the 
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components that have been introduced earlier and discussed in detail in chapter 4 and 

illustrates how the components are combined to form the feature definition and subsequently, 

the feature extraction process. The green box contains the primary WSN components, which 

include the Technique, Network and Scenario. Each component has its own set of attributes, 

which are also classified based on various variables. The green box helps to define the 

expected shape of the data that will be provided as input to the red box. The red box 

encompasses elements that are discussed, designed, and implemented in this chapter, and 

showcases the high-level representation of the intelligent algorithm and machine learning 

model. 

The green box essentially represents the feature extraction process, which involves the 

determination of the form of data that are necessary for the algorithm. The red box, consisting 

of the rule-based algorithm and intelligent model, applies rules to determine data input for the 

intelligent model. The input of the algorithm consists of data about application requirements 

(application objective(s), criteria, and weighting), a set of techniques, a network component, 

a scenario component, and their associated attributes. The resulting data serves as training 

data for the intelligent model. This is discussed in more detail in subsequent sections. The 

intelligent model is trained based on this data. The recommendations of the intelligent model 

(ML model) are stored within a knowledge base and are used as new training for the ML 

model. 

WSN Data Aggregation Recommender 
Machine Learning Model

Rule-based 
Intelligent 

Algorithm (IA)

WSN Simulation 
Composed of Data from One or more sources

 (Feature Extraction)
TechniqueAttributes

(Independent/
Dependent)

(Static/Dynamic)
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(Vector of n values)
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Scenario

Technique
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(Static/Dynamic)

Input
(Vector of n values)
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3b

5

6
1b

Recommendation

2b

IA Output
(Vector of n values)

Requirements
(Objectives / 

Criteria)

3a

2a
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4

Machine 
Learning 

Intelligent 
Algorithm 

(MLIA)

Performance 
Criteria

 
Figure 5-1 - High level overview of the relationship between the concepts of WSN components and the intelligent 
machine learning model. The numbers indicate the flow of the process. It starts from the output coming out of the 

green box. The lines differentiate the environment of the process flow, i.e. Feature Extraction, Requirements 
Input, Rules-based Algorithm, and the Intelligent Machine Learning Model. 
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The workflow presented in figure 5.1 is discussed below: 

1a and 1b: Data consisting of techniques, scenarios, and networks are compiled and 

combined with application requirements, which consist of the objectives, criteria and 

priority. These are provided as input into the rule-based algorithm. The outcome of the 

algorithm consists of the best technique based on the data submitted. 

2a: The input data used to perform the decision consists of the application requirements, with 

various environment settings (represented by the network and scenario components) 

and serve as input into the intelligent machine learning model (ML model). The output 

consists of the recommended technique based on the input data. 

2b: The machine learning model provides its recommendation in the form of a vector of 

binary values, the number of which is defined by the set of techniques under 

consideration. 

3a: The rule-based algorithm is used as an evaluation tool to validate the output of the ML 

model, enabling the ML model’s recommendation to be compared with the ground 

truth. 

3b – The ML model’s recommendations are channelled into a component that enables some 

form of evaluation, and which continuously measures the accuracy of the prediction. 

This can be used to obtain a measure of accuracy of the model over time.  

4 – The ML model’s prediction is provided as a recommendation based on the submitted 

query. 

5.3 Description of the Reference Architecture  

This section discusses a process that covers the steps used throughout the study, which 

includes the initial investigation, up to the development of the intelligent model. The stages, 

shown in figure 5.2, are identified as (1) research and design, (2) identification of system 

components (such as technique, network and scenario), (3) identification of features, (4) 

definition of data collection requirements, (5) design of data pre-processing steps, (6) rule-

based algorithm design and development, (7) definition of input and output vectors for 

intelligent model, (8) data generation for model training, (9) data processing through the rule-

based algorithm, (10) intelligent model training, (11) intelligent model evaluation. These 

steps are illustrated in figure 5.2. 
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Figure 5-2 - Process flow for study starting at initial investigations, up to the intelligent model development. 

The following sections cover the formal definition of the WSN components involved in the 

study. 

5.4 Formal Discussion of WSN Components 

This section provides a formal analysis of the system consisting of the intelligent 

algorithm and the machine learning model. This analysis serves as input into the development 

of the intelligent algorithm and the machine learning model. The content in this section 

consists of the discussion of the symbols used in the various mathematical equations, which 

are later used to describe the relationships between various components of the WSN model. 

Such relationships are later used to define the computation of the various performance 

metrics. These discussions are later used to define other equations, which illustrate the 

workings of the intelligent model. 

  The discussion commences with the WSN model, and progresses into attributes and 

the WSN components, including their sub-component attributes. Afterwards, it proceeds to 

discuss the WSN as a system consisting of one Scenario, one Network and multiple in-active 

Technique components. Finally, the relationships are used in defining the optimization goals 
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of the intelligent model based on various equations. Table 5.1 provides a reference for the 

collection of symbols used within the equations. 

 

Table 5-1 - Symbols used in the formal analysis discussions 

Symbol Definition Description 

W Wireless sensor 
network 

This represents the wireless sensor network model in 
consideration. 

A WSN Attribute This represents an attribute as discussed in section 3.3.2 

T WSN Technique 
This represents a technique entity, as discussed in 
section 4.4 as one of the primary components of a WSN 
model. 

S WSN Scenario 
This represents a scenario entity as discussed in section 
4.4 as one of the primary components of a WSN model. 
The scenario encapsulates the specific WSN application 
context outside the network. 

N, K WSN Node, 
Network 

N represents a network entity as discussed in section 4.4 
as one of the primary components of a WSN model. 
However, in certain equations and discussions, N could 
be used to represent a node as well. When this is the 
case, K is used to represent the network of nodes. 

TD Technique domain This represents the collection of techniques that are 
available during a WSN simulation. 

SD Scenario domain This represents the optional scenario contexts in which 
the WSN model can be placed during the simulation. 

ND Network domain 
This consists of the domain of network entities and 
represents optional network settings that can be applied 
to the WSN model during a simulation. 

G, V, E Graph, Vertex and 
Edge. 

Directed graph, vertices, and edges of the graph. These 
are used to provide a theoretical description of the 
structure of the WSN and are only used for this purpose 
and not applicable in further discussions beyond that 
point. Please refer to Appendix C for a more detailed 
introduction to Graph Theory 

R Rounds 
This represents the total number of rounds performed in 
a WSN simulation, comprising of several rounds each 
represented by r. 
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BS  Base station 

This identifies the final target for communication and 
could be physically represented by a gateway or sensor 
node. It is usually located in proximity to the network, 
either within the network or external to the network. It 
could also be responsible for the final stages of data 
aggregation. 

L 
Size of one edge of 
a virtual square 
field region 

This represents the length of a field region. A square 
area is used as the default field size where nodes are 
deployed. Thus, an L value of 50 implies a 50m x 50m 
wide field area. 

I/D 
Independent / 
Dependent 
attribute 

This represents the types of attributes defined as 
dependent and independent attributes. 

Av Attribute value This represents the value held by an attribute. 

Tv Type of an 
attribute value 

This defines the type of the value held by an attribute, 
indicating either real, ordinal or binary value type. 

Wv Attribute weight  
This holds the weight assigned to an attribute and is 
applicable in the specification of WSN application 
objectives and criteria. 

Thv 
Attribute value 
threshold 

This represents the threshold assigned to an attribute 
(especially of a metric), which determines its cut-off 
point based on whether it is being minimized or 
maximised. 

Mmin, Mmax 
Maximum and 
minimum 
threshold values 

These represent the maximum and minimum value that 
can be held by certain attribute value types such as 
those holding real numbers. This is also applicable in 
the specification of WSN application objectives and 
criteria. 

r Round This represents the round in a WSN simulation. 

O, C, P 
Application 
Objective, Criteria, 
Priority 

These represent the set of application objective(s), 
criteria and set of priorities, which are used to 
determine the appropriate technique that fits the context 
and requirements. 

E Energy consumed This represents energy consumption. This could be by a 
technique (T), a node (N), or the network (K). 

dE Change in energy 
consumption 

This represents the change in energy consumption 
across two rounds. This can be measured on a node by 
node basis, or across the network. 

B Bandwidth 
consumed 

This represents bandwidth consumption. This could be 
by a technique (T), a node (N), or the network (K). 
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dB 
Change in 
bandwidth 
consumption 

This represents the change in bandwidth consumption 
across two rounds. This can also be measured per node 
or across the network. 

n, m, p Instance counter These are used to specify count of instances of an 
object in a collection, such as the number of nodes. 

i, j, k Index counter These are used to perform counting in an enumeration, 
such as indicating unique instances of an object class. 

The symbols presented in table 5.1 are used in the equations discussed in sections that follow, 

and thus, can be used as a reference point in understanding the definition of the symbols. 

5.4.1 WSN Model 

The WSN model used in this research is formally defined as consisting of a network 

topology represented as a directed graph G = (V, E), where V represents the vertices or set of 

nodes, and E represents the edges or communication links between the nodes. The Graph 

Theory on which this discussion is based is discussed in more detail in Appendix C.  

The physical topology consists of n number of sensor nodes, with each node having 

computing resources, memory and networking. The nodes are randomly distributed in a 

square region defined as LxL, where L is in metres, and a base station (BS), such as a 

gateway, located outside the perimeter of the network. 

The instance of a WSN model is represented as Wi, and contains instances of the three 

primary components, that is Scenario (Si), Network (Ni), and a collection of Techniques (T1, 

… Tn). The WSN can be considered to compose of a collection of attributes (A1, …, An), all 

defined under one of these components. This enables a WSN to can be represented as either 

of the two equations: 

 𝑊𝑊𝑎𝑎  = { 𝐴𝐴1 … .𝐴𝐴𝑐𝑐 } Equation 1 

 𝑊𝑊𝑎𝑎  =  �𝑆𝑆𝑎𝑎,𝑁𝑁𝑎𝑎 , {𝑇𝑇1, … ,𝑇𝑇𝑎𝑎}� 

 

Equation 2 

where i is an index identifier for the WSN, Wi is the WSN instance, A1 .. An represent the 

collection of attributes, with n being the total number of attributes. In equation 2, Si, Ni, and Ti 

all represent instances of the scenario, network, and techniques respectively, while the value 

of i in each instance does not indicate any relationship. Also, T1 .. Tm represent the set of 

available techniques in a WSN simulation, where m represents the total number of 
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techniques. Both equation 1 and equation 2 represent two alternative approaches to stating the 

relationship between the WSN and it’s set of attributes. The discussions presented in this 

chapter (and this study) use the form presented in equation 2. The next section discusses the 

Attribute of the WSN. 

5.4.2 Attribute Component 

An Attribute defines the smallest component of the WSN. All other components are 

built based on a set of attributes. An attribute consists of various components, which can hold 

various values throughout the lifespan of the WSN application. The WSN attribute consist of 

a set of parameters as indicated in equation 3: 

 𝐴𝐴𝑎𝑎  = { 𝑣𝑣,𝑇𝑇𝑎𝑎,𝑊𝑊𝑎𝑎,𝑇𝑇ℎ𝑎𝑎,𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎 ,𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎,𝐷𝐷, 𝑆𝑆} Equation 3 

where v represents the value, vt refers to the type, vw refers to the weight, and vth refers to the 

threshold. The parameters d and s represent the attribute’s dependence and static/dynamic 

states respectively. Mmin and Mmax, both representing minimum and maximum values for the 

attribute, are relevant when the attribute is used as an application requirement. Thus, when 

the attribute vt indicates a real number, Mmin, and Mmax, will hold the extreme values for the 

value in vv, thus providing a criterion for the attribute’s value. Similarly, vth and vw will both 

hold values that define how much the impact of including the attribute in computation affects 

the outcome. Using the first letters of the states, vt can hold one in the set of states for the 

lifespan of a WSN application, as indicated in equation 4. 

 𝑣𝑣𝑡𝑡  = { 𝑂𝑂 | 𝑅𝑅 | 𝐵𝐵 } Equation 4 

where O represents Ordinal, R represents Real, and B represents Binary. Also, in another 

dimension, an attribute can either be dynamic or static, and either dependent of independent. 

These two classifications are represented in equations 5a and 5b. The concepts of Dependent 

and Independent in equation 5a relates directly to discussions on the same concepts held in 

section 4.4.2 and discussed earlier in this chapter. The concepts of Static and Dynamic as 

presented in equation 5b also determine whether vv of the attribute changes or remains static 

throughout the lifespan of the WSN application (or applications). These were also discussed 

in section 4.4.2 and reviewed earlier in this chapter. 

 𝑣𝑣𝑑𝑑  = { 𝑀𝑀 | 𝐷𝐷𝑎𝑎 } Equation 5a 
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 𝑣𝑣𝑠𝑠  = { 𝑆𝑆 | 𝐷𝐷𝑏𝑏 } Equation 5b 

where d represents the attribute’s dependent state with respect to other attributes, s represents 

the attributes static/dynamic state. In equation 5a, I represents Independent, Da represents 

Dependent, while in equation 5b, S indicates Static, and Db represents Dynamic. Thus, an 

attribute must have both vd and vs defined based on the options indicated in equations 5a and 

5b. The next section discusses the three primary components of the WSN model, i.e. the 

Technique, Network, and the Scenario. These components are defined by a specific set of 

attributes that define their characteristics. 

5.4.3 Technique Component 

The technique referred to in this section corresponds to the technique definition 

presented in section 4.4 and indicates the same technique discussed earlier in this chapter. 

The technique represents a single WSN data aggregation technique Ti, one instance in the set 

of techniques, which are available for selection during a WSN application. The corresponding 

equations are defined in relation 1 and equation 6 below. 

 𝑇𝑇𝑎𝑎  ∈  𝑇𝑇𝐷𝐷 Relation 1 

 𝑇𝑇𝑎𝑎 = { 𝐴𝐴𝑎𝑎1,𝐴𝐴𝑎𝑎2, … ,𝐴𝐴𝑎𝑎𝑐𝑐}  Equation 6 

where i is an index used to identify a technique instance Ti, and TD represents the techniques 

domain.  

Equation 6 defines a technique composing a set of attributes {Ai1, …, Ani}, where Ai1 refers to 

the first attribute of Ti, and n indicates the total number of attributes of the technique. The 

value held by these attributes determine the behaviour of the technique while operating 

within a given WSN application. The process involved is discussed in more detail in further 

sections. The next section discusses the Network component. 

5.4.4 Network Component 

A Network instance, Ki, represents one of the primary components of the WSN, and is 

an element in the domain of networks KD. The network concept was introduced in section 4.4 

and earlier in the chapter. The possibility of changing network attributes is determined ahead 

of a WSN application event and should determine if there are more than one network 
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instance. The network domain and attribute relationship are both defined in relation 2 and 

equation 7 below. 

 𝐾𝐾𝑗𝑗  ∈  𝐾𝐾𝐷𝐷 Relation 2 

 𝐾𝐾𝑗𝑗 = { 𝐴𝐴𝑗𝑗1,𝐴𝐴𝑗𝑗2, … ,𝐴𝐴𝑗𝑗𝑎𝑎 }  Equation 7 

 

where j is used as an index to represent an instance of a network K, and KD is the domain of 

Network instances. Equation 7 defines the relationship between the network Ki and the set of 

attributes, where Aj1 represents the first attribute of the set attributes for network Ki and m 

indicates the total number of attributes. As discussed earlier, the combined values of these 

attributes define the state of the network instance Kj.   

5.4.5 Scenario Component 

The Scenario represents the third main component in the WSN model, an element in 

the scenario domain SD, where SD represents the domain of scenarios. This term relates to the 

same concept as introduced in section 4.4 and discussed earlier in this chapter. This 

component encapsulates the details of the environment of the WSN to enable manipulation 

during the WSN event. This contributes to the specification and comparison of application 

use cases. Its domain relationship and attribute relationships are shown in relation 3 and 

equation 8. 

 

 𝑆𝑆𝑘𝑘  ∈  𝑆𝑆𝐷𝐷 Relation 3 

 𝑆𝑆𝑘𝑘 = { 𝐴𝐴𝑘𝑘1,𝐴𝐴𝑘𝑘2, … ,𝐴𝐴𝑘𝑘𝑎𝑎 }  Equation 8 

 

where k is used as an index to identify the scenario instance Sk, SD represents the domain of 

scenarios, 𝐴𝐴𝑘𝑘1 represents the first attribute in the set of attributes for the scenario instance, 

and p represents the total number of attributes.  

Equations 6, 7, and 8 are needed to represent the main components within a WSN 

application. They are used together to define the running network and to be able to determine 

the impact of the network on the selection of the best technique for optimum performance. 

However, the relationship between the attributes across the various components needs to be 

discussed further and this is done in the next section. 
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5.4.6 Similarity in WSN Entity Attributes 

According to equations 6, 7 and 8, the three WSN components, i.e., Technique, 

Network and Scenario, have sets of attributes that are part of a larger collection of attributes. 

The attributes chosen by each component do not have any relationships across component 

boundaries. Event though, a minimal number of cases exist where components have attributes 

with similar names, their function is isolated under the component. The only occasion where 

a relationship exists is with techniques, which all share the same set of attributes. The values 

of the attributes contribute to evaluating the performance of the technique. The attribute 

relationship equations for the technique and the network are re-represented below. 

 𝑇𝑇𝑎𝑎 = { 𝐴𝐴𝑎𝑎1,𝐴𝐴𝑎𝑎2, … ,𝐴𝐴𝑎𝑎𝑐𝑐}  Equation 6 

 𝐾𝐾𝑗𝑗 = { 𝐴𝐴𝑗𝑗1,𝐴𝐴𝑗𝑗2, … ,𝐴𝐴𝑗𝑗𝑎𝑎 }  Equation 7 

where Ai1 in equation 6 represents the first of the attributes for technique 𝑇𝑇𝑎𝑎, and Aj1 in 

equation 7 represents attributes for network 𝐾𝐾𝑗𝑗. Based on the discussion on similar attributes 

across components, if Ai1 = Aj1, there is not meaning attached to this equation when it occurs 

during the lifespan of a WSN application. The attributes are defined under the entity that 

owns them and are not transferable or replaceable as the corresponding attribute under 

another component. Likewise, the number of attributes for both components, i.e., n and m, 

could hold the same value but do not, in such cases, imply any meaning.  

5.5 Discussion on WSN Metrics 

5.5.1 Definition of Energy Consumption 

The WSN energy consumption model’s corresponding equations are presented in this 

section. The derivation of the essential component-to-energy equations are discussed, while 

these are used to define the optimal value equations for the energy consumption metric. 

As a reminder for discussions presented here, the WSN can be assumed to consist of a 

network K consisting of n nodes, each labelled as Ni. where i represents the identifier for the 

node i. To calculate the cumulative energy consumption of the nodes within a network during 

a simulation, otherwise referred to as the network energy consumption, the following 

equation can be used: 

 
𝐾𝐾𝐸𝐸 =  �𝑁𝑁𝑎𝑎𝐸𝐸

𝑐𝑐

𝑎𝑎=1

 Equation 9 
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where E represents energy, KE represents the network energy consumption, i is used as an 

identifier for each node instance, and n represents the counter of the number of nodes 

involved in the network. Thus, 𝑁𝑁𝑎𝑎𝐸𝐸 represents the energy consumed by a node instance Ni. 

This equation applies to a round and measures the total energy consumed by all nodes at the 

end of the round. However, the energy consumption in round r can be clearly defined as KEr, 

where r is used as an identifier for the round. Based on this and the discussions presented so 

far, KEr will be different for different values of r, and different based on the technique applied 

in the simulation. The energy consumption for a technique Ti in round r can be represented 

as: 

 𝑇𝑇𝑎𝑎 =  𝐾𝐾𝑎𝑎𝐸𝐸𝑟𝑟 Equation 10 

where the i is used as an index identifier for the technique instance, E is energy, r is round 

and 𝐾𝐾𝑎𝑎𝐸𝐸𝑟𝑟 represents the sum of energy consumption for the technique Ti in round r. The 

energy represented by 𝐾𝐾𝑎𝑎𝐸𝐸𝑟𝑟 needs to be minimized. Taking into consideration all possible 

rounds R, the total energy consumption in a simulation by a technique can be calculated as a 

sum of the consumption in each round r, and be defined as follows: 

 𝑇𝑇𝑎𝑎𝐸𝐸𝑅𝑅 = �(𝐾𝐾𝑎𝑎𝐸𝐸𝑟𝑟 −  𝐾𝐾𝑎𝑎𝐸𝐸(𝑟𝑟−1))
𝑅𝑅

𝑟𝑟=0

 Equation 11 

where 𝑇𝑇𝑎𝑎𝐸𝐸𝑅𝑅  represents the energy consumption for technique instance across R rounds, KiEr 

represents the energy consumption in round r for technique with identifier i, and 𝐾𝐾𝑎𝑎𝐸𝐸(𝑟𝑟−1) 

representing the previous round. Based on prior arguments the best technique proposed by the 

system for each round r, i.e. TBr, will change as the context of the WSN changes throughout 

the lifespan of the application. The best technique after round r would be determined by 

comparison based on the application of equation 10 to all available techniques after round r, 

in order to obtain TBr. If the change in energy consumption is represented as dKEr, then 

equation 11 can be re-written as follows: 

 𝑇𝑇𝑎𝑎𝐸𝐸𝑅𝑅 = �𝑑𝑑𝐾𝐾𝑎𝑎𝐸𝐸𝑟𝑟

𝑅𝑅

𝑟𝑟=0

 Equation 12 

which then represents the summation of energy consumption for a technique Ti in each round 

r of the simulation, which runs a full length of R rounds. Typical values obtained for this 
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equation were presented earlier and plotted for five techniques back in chapter 4 in figure 

4.18.  

Assuming that four techniques are available for selection within a simulation of R 

rounds, each technique would have its own energy consumption for each round based on 

equation 12. The data generated per technique for similar runs across the same network 

settings (including rounds) will be collated pre-processed and passed as input into the 

intelligent model. Figure 5.3 provides an illustration of the process used by the system to 

determine the best technique during a WSN application event.  

 

WSN Simulation 
Composed of Data from One or more 

sources
 (Feature Extraction)

WSN Data Aggregation Recommender 
Machine Learning Model

Simulation 
Round (0)

T1

Ti

Tn

Simulation 
Round (i)

T1

Ti

Tn

Simulation 
Round (n)

T1

Ti

TnSelected 
technique 
to run

WSN Simulation or 
Event Data

Inputs

Feedback 
loop

WSN WSN WSN
WSN 

Attributes

f(x)f(x)

Application 
Requirements

Knowledge Base

Process Loop Back

External 
Events

(Expert data input via 
configuration)

Machine Learning 
Intelligent 
Algorithm

(MLIA)

Performance 
Metrics

(energy, latency, 
bandwidth, etc)

Separate 
Query Input

 
Figure 5-3 - High-level illustration of the entire system integrated with the intelligent model for providing 

recommendations. It shows the inputs, computation, output, knowledgebase, and feedback loop.  

In figure 5.3, the box with symbol f(x) represents the machine learning intelligent 

algorithm (MLIA), which performs the selection and learning process. The green boxes 

indicate the set of techniques in the simulation, while the black lines connecting the green 

boxes to the f(x) boxes contain the attribute values being passed to the intelligent model. The 

intelligent model combines the application requirements, consisting of the objectives and 

criteria, with these to compute the best technique suited to the current state of the simulation. 

A feedback loop exists to provide an avenue to feedback the recent changes to the intelligent 

model. The integrated knowledge base can be used to determine the results of past 
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recommendations before querying the ML model. Once the ML model is sufficiently trained, 

it is used to recommend techniques based on provided data. 

Continuing further with the formal analysis, based on equation 12, the function f(x) 

needs to process a set of performance metric quantities, in this case, energy consumption, as 

defined by equation 13. 

 𝑓𝑓(𝑥𝑥) =  { 𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐸𝐸𝑟𝑟 ,𝑇𝑇𝑎𝑎+1𝑑𝑑𝐾𝐾𝐸𝐸𝑟𝑟 ,𝑇𝑇𝑎𝑎+2𝑑𝑑𝐾𝐾𝐸𝐸𝑟𝑟 ,𝑇𝑇𝑎𝑎+3𝑑𝑑𝐾𝐾𝐸𝐸𝑟𝑟 ,𝑇𝑇𝑎𝑎+4𝑑𝑑𝐾𝐾𝐸𝐸𝑟𝑟} Equation 13 

The machine learning intelligent algorithm (MLIA or intelligent model from here on) takes 

into consideration much more metrics than just energy consumption, including the 

requirements, such as objectives, criteria and priorities. Other metrics are discussed in the 

following sections. The application requirements input consist of the following: 

1. Objective(s) (e.g., minimize energy consumption) 

2. Criteria (constraints such as minimum/maximum values for metrics, maximum sensor 

node energy, etc.) 

3. Priority (ordering of metrics at decision point, defined as using the weight value 

assigned to metric attributes) 

Assuming that these requirements are symbolised as a set of Objective(s) – {Oi , ..., On }, set 

of criteria - {C1, …, Cn), and a list of priorities – {P1, .., Pn }, then equation 13 an be exploded 

as defined in equation 14. 

𝑓𝑓(𝑥𝑥) =  �{𝑂𝑂1, . . ,𝑂𝑂𝑐𝑐}, {𝐶𝐶1, . . ,𝐶𝐶𝑐𝑐}, {𝑃𝑃1, . . ,𝑃𝑃𝑐𝑐},𝑇𝑇𝐸𝐸𝑟𝑟,𝐾𝐾, 𝑆𝑆 � Equation 14 

where, 𝑇𝑇𝐸𝐸𝑟𝑟 =  � 𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐸𝐸𝑎𝑎𝑟𝑟,𝑇𝑇𝑎𝑎+1𝑑𝑑𝐾𝐾𝐸𝐸(𝑎𝑎+1)𝑟𝑟,𝑇𝑇𝑎𝑎+2𝑑𝑑𝐾𝐾𝐸𝐸(𝑎𝑎+2)𝑟𝑟,𝑇𝑇𝑎𝑎+3𝑑𝑑𝐾𝐾𝐸𝐸(𝑎𝑎+3)𝑟𝑟,𝑇𝑇𝑎𝑎+4𝑑𝑑𝐾𝐾𝐸𝐸(𝑎𝑎+4)𝑟𝑟�, K represents 

the network, S represents the scenario, and the others (application requirements) are as discussed 

above. 

Computation of Minimal Values 

The goal of the function defined in equation 13 involves obtaining optimal values for 

the specified objectives. In order to reduce the complexity of the calculations, a single 

technique, Ti, is used in this discussion. According to equation 6, Ti has a set of attributes {A1, 

…, An}, each having a value and type. If an attribute of energy consumption is selected. This 

attribute could be selected to also serve as a metric to evaluate the technique.  In the 

application requirements, a criteria definition includes the acceptable range of values defined 
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by extreme values Mmin and Mmax. With this, the function in equation 15 would use the 

following definition to compute the compliance of a technique based on the requirements: 

𝑓𝑓(𝑡𝑡) =  { 𝑇𝑇𝑓𝑓𝑑𝑑𝐾𝐾𝐸𝐸𝑟𝑟 < 𝑀𝑀𝑎𝑎𝑎𝑎𝑇𝑇 |  𝑇𝑇𝑓𝑓𝑑𝑑𝐾𝐾𝐸𝐸𝑟𝑟 >  𝑀𝑀𝑎𝑎𝑎𝑎𝑐𝑐 } Equation 15 

where Ti represents the technique, dKEr represents the energy consumption after round r, Xmax 

and Xmin both represent the minimum and maximum extremes for the attribute. 

In the normal case, the definition of equation 14 applies to all real number attributes, and for 

all participating techniques, throughout the lifespan of the WSN application. 

5.5.2 Definition of Bandwidth Consumption 

The evaluation of bandwidth consumption is performed in a similar sense to that done 

for energy consumption. Bandwidth is a typical technique attribute, which also qualifies as a 

metric to evaluate the technique’s performance.  

Assuming a WSN which consists of a network K of n nodes. The bandwidth consumed 

by the network consists of the number of bytes transmitted during communication, from the 

sensor node, across other nodes, towards the sink node. Other variables that are not included 

in this discussion, but which affect the results in the simulation, include the channel’s data 

rate – the rate at which bytes are transmitted, and path loss – the loss function of the channel, 

which determines how many packets are lost in transit. The bandwidth consumption for each 

node can be defined as in equation 16: 

 
𝐾𝐾𝐵𝐵 =  �𝑁𝑁𝑎𝑎𝐵𝐵

𝑐𝑐

𝑎𝑎=0

 
Equation 16 

   

where KB represents the total bandwidth consumption across the network in a given time, i 

represents an index identifier for the nodes on the network, n is the number of nodes, and NiB 

represents the bandwidth consumed by node instance Ni. This equation can be used to 

represent bandwidth consumption in a round using KBr. A new value is generated for KBr at 

the end of every round, with the value increasing in subsequent rounds. The bandwidth 

consumption for a technique in round r can be defined as: 

 𝑇𝑇𝑎𝑎𝐵𝐵𝑟𝑟 =  𝐾𝐾𝐵𝐵𝑟𝑟𝑎𝑎 Equation 17 

where the Ti represents the technique instance, TiBr represents the techniques bandwidth 

consumption in round r, and 𝐾𝐾𝐵𝐵𝑟𝑟𝑎𝑎 represents energy consumption across the network for 
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round r. Based on this relationship, the cumulative bandwidth consumption of a technique 

across a WSN simulation, over a set of rounds R, can be defined as follows: 

 𝑇𝑇𝑎𝑎𝐵𝐵𝑅𝑅 = �(𝐾𝐾𝑎𝑎𝐵𝐵𝑟𝑟 −  𝐾𝐾𝑎𝑎𝐵𝐵(𝑟𝑟−1))
𝑅𝑅

𝑟𝑟=0

 Equation 18 

where Ti is the technique instance, TiBR represents the bandwidth consumption over a set of 

rounds R, and KBr is the bandwidth consumption in round r. This equation is relevant for 

selecting the best technique from a set of techniques based on their bandwidth consumption. 

If the change in bandwidth consumption is represented as dKBr, then the change in bandwidth 

can be defined as follows: 

 𝑇𝑇𝑎𝑎𝐵𝐵𝑟𝑟 = �𝑑𝑑𝐾𝐾𝑎𝑎𝐵𝐵𝑟𝑟

𝑅𝑅

𝑟𝑟=0

 Equation 19 

where 𝑇𝑇𝑎𝑎𝐵𝐵𝑟𝑟 represents the technique instance identifier, 𝑑𝑑𝐾𝐾𝑎𝑎𝐵𝐵𝑟𝑟 represents the change in the 

bandwidth as defined by a round, r represents the round, and R represents the total number of 

rounds. Typical values for equation 19 for five different techniques were presented and 

plotted in figure 5.20 back in section 5.7.2. 

The bandwidth consumption can also be assessed using the diagram in figure 4.20 to 

illustrate how the intelligent model operates on this attribute. Thus, this figure is used as a 

reference in the discussions that follow. 

Based on equation 18, the function f(x) takes as input each technique’s bandwidth 

consumption value, as defined in equation 19: 

 𝑓𝑓(𝑥𝑥) =  { 𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟 ,𝑇𝑇𝑎𝑎+1𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟 ,𝑇𝑇𝑎𝑎+2𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟 ,𝑇𝑇𝑎𝑎+3𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟 ,𝑇𝑇𝑎𝑎+4𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟} Equation 20 

where i represents the index identifier for each technique, and  𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟represents the 

bandwidth consumption for technique instance  𝑇𝑇𝑎𝑎. Just as was done for energy consumption, 

with equation 13, with respect to bandwidth consumption, the intelligent model’s function 

computes the best technique based on equation 20: 

𝑓𝑓(𝑥𝑥) =  �{𝑂𝑂1, . . ,𝑂𝑂𝑐𝑐}, {𝐶𝐶1, . . ,𝐶𝐶𝑐𝑐}, {𝑃𝑃1, . . ,𝑃𝑃𝑐𝑐},𝑇𝑇𝐵𝐵𝑟𝑟  � Equation 21 

where, 𝑇𝑇𝐵𝐵𝑟𝑟 =  � 𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐵𝐵𝑎𝑎𝑟𝑟 ,𝑇𝑇𝑎𝑎+1𝑑𝑑𝐾𝐾𝐵𝐵(𝑎𝑎+1)𝑟𝑟 ,𝑇𝑇𝑎𝑎+2𝑑𝑑𝐾𝐾𝐵𝐵(𝑎𝑎+2)𝑟𝑟 ,𝑇𝑇𝑎𝑎+3𝑑𝑑𝐾𝐾𝐵𝐵(𝑎𝑎+3)𝑟𝑟 ,𝑇𝑇𝑎𝑎+4𝑑𝑑𝐾𝐾𝐵𝐵(𝑎𝑎+4)𝑟𝑟� 

Computation of Minimal Values 



134 
 

The formula defined in equation 21 defines the intelligent model’s function 

components, which are used to determine the optimal values for the given objective(s) in  

{𝑂𝑂1, . . ,𝑂𝑂𝑐𝑐}. Assuming a single technique Ti, which has a set of attributes {A1, …, An}, one of 

which represents bandwidth consumption, and which can hold values constrained by a 

criterion that defined by the extremes Mmin and Mmax. If the main application objective were 

bandwidth consumption, the function f(t) applies the following formula to determine the best 

technique from a set based on their bandwidth consumption, 

𝑓𝑓(𝑡𝑡) =  { 𝑇𝑇𝑓𝑓𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟 < 𝑀𝑀𝑎𝑎𝑎𝑎𝑇𝑇 |  𝑇𝑇𝑓𝑓𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟 >  𝑀𝑀𝑎𝑎𝑎𝑎𝑐𝑐 } Equation 22 

where Ti represents a technique instance,   𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟represents differential bandwidth 

consumption, and both Xmin and Xmax define the constraint extremes for the value of the 

bandwidth consumption. 

5.5.3 Definition of Latency  

Latency is defined as the time duration starting from when data is captured by the 

sensor, up to the point when the aggregated data is submitted to the sink node. Its 

measurement is in divisions of seconds based on the speed of the network. Latency tends to 

increase with the number of nodes involved and the size of the network. It represents one of 

the metrics that can be used to evaluate the performance of a WSN technique.  

As discussed for both energy and bandwidth consumption, assuming a WSN network K 

of n nodes, where Ni represents node I, latency across the network in a round can be 

calculated using equation 23. This equation is based on the definition of latency to be 

equivalent to the duration between the moment of data reception on node Ni, to the moment 

of data reception on node N(i+1), where Ni and N(i+1) are adjacent nodes within the same WSN 

network, and N(i+1) is already determined, based on the active technique algorithm, to be the 

next transmission node to Ni : 

 
𝐾𝐾𝐿𝐿 =  �𝑁𝑁(𝑎𝑎+1)𝐿𝐿

𝑐𝑐

𝑎𝑎=1

−  𝑁𝑁𝑎𝑎𝐿𝐿 
Equation 23 

where i is the index identifier for each node instance, KL represents the network latency in a 

defined time period, n is the total number of nodes, NiL is the latency of node instance Ni, and   

N(i+1) L is the latency for node N(i+1). defines. The implication of equation 23 includes that 

both Ni and N(i+1) both have a latency reading. This would be the case only after data 

transmission from Ni to N(i+1). Usually, this measurement is obtained automatically by the 

simulation tool via its logging component. Based on the algorithm of the active technique, 
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which is based on the topology (i.e. cluster, tree, chain or mesh), the two nodes, Ni and N(i+1), 

apart from being in close proximity, must be related by being in the same phase of data 

transmission towards the sink within the same simulation round, and the data transmission 

between them is in one direction, and must be from Ni to N(i+1).  

Equation 23 could be redefined to associate the latency to each node, by implying that the 

latency of communication from Ni to N(i+1) is owned by one of the nodes, i.e. Ni, which is 

responsible for send the data towards the sink node. Based on this rule, equation 23 can be 

redefined as follows: 

 
𝐾𝐾𝐿𝐿 =  �𝑁𝑁𝑎𝑎𝐿𝐿

𝑐𝑐

𝑎𝑎=1

 
Equation 24 

where KL indicates the network latency in the specific time period, i is the index identifier for 

each node instance, n is the total number of nodes, and NiL is the latency of node instance Ni. 

This way, latency is directly related to the number of nodes within the network, thereby 

simplifying the formulas to arrive at differential latencies across the network for different 

techniques. Equation 24 could also be used to represent the latency across the network in a 

round by simply associating it with the round r. Re-writing this to indicate the latency for the 

technique, equation 24 can be re-defined as follows: 

 
𝑇𝑇𝑎𝑎𝐿𝐿𝑟𝑟 =  𝐾𝐾𝑎𝑎𝐿𝐿𝑟𝑟 =  �𝑁𝑁𝑎𝑎𝐿𝐿𝑟𝑟

𝑐𝑐

𝑎𝑎=1

 
Equation 25 

where i represents an index identifier for the technique, Ti represents the technique instance, 

TiLr represents the techniques latency in round r, 𝐾𝐾𝑎𝑎𝐿𝐿𝑟𝑟 represents latency, under technique Ti, 

across the network for round r, while n is the total number of nodes. p represents the index 

identifier for each node instance, and NpLr represents the latency for node instance Np. Based 

on this relationship, the latency within the WSN for a given technique across the entire length 

of rounds can be defined based on equation 26: 

 𝑇𝑇𝑎𝑎𝐿𝐿𝑅𝑅 = �𝑑𝑑𝐾𝐾𝑎𝑎𝐵𝐵𝑟𝑟

𝑅𝑅

𝑟𝑟=0

 Equation 26 
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where i represents the index identifier for the technique, Ti is the technique instance, TiLR 

represents the latency over a set of rounds R, and dKiBr is the latency, under technique Ti, in 

round r. This equation is relevant for selecting the best technique based on latency. 

Just as with energy and bandwidth consumption, the latency can be assessed based on 

figure 4.22 to illustrate the behaviour of the intelligent model while taking decisions based on 

the attribute. To select best technique based on latency, equation 27 is defined: 

 𝑓𝑓(𝑥𝑥) =  { 𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐿𝐿𝑟𝑟 ,𝑇𝑇𝑎𝑎+1𝑑𝑑𝐾𝐾𝐿𝐿𝑟𝑟 ,𝑇𝑇𝑎𝑎+2𝑑𝑑𝐾𝐾𝐿𝐿𝑟𝑟 ,𝑇𝑇𝑎𝑎+3𝑑𝑑𝐾𝐾𝐿𝐿𝑟𝑟 ,𝑇𝑇𝑎𝑎+4𝑑𝑑𝐾𝐾𝐿𝐿𝑟𝑟} Equation 27 

where i represents the index identifier for each technique, and  𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐿𝐿𝑟𝑟represents the latency 

for technique instance  𝑇𝑇𝑎𝑎.  

Computation of Minimal Values 

Equation 25 indicates in part the set of techniques that would be considered (assuming 

five techniques involved) when the best technique would be selected based on their latency. 

As was discussed for energy and bandwidth consumption, the intelligent algorithm will 

consider the application requirements in order to arrive at a decision. The intelligent 

algorithm would apply equation 28 to compute the best technique based on this metric.  
𝑓𝑓(𝑡𝑡) =  { 𝑇𝑇𝑓𝑓𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟 < 𝑀𝑀𝑎𝑎𝑎𝑎𝑇𝑇 |  𝑇𝑇𝑓𝑓𝑑𝑑𝐾𝐾𝐵𝐵𝑟𝑟 >  𝑀𝑀𝑎𝑎𝑎𝑎𝑐𝑐 } Equation 28 

where i is used as an index identifier for a technique, Ti represents a technique instance,  

 𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐿𝐿𝑟𝑟represents latency for the technique within a round r, and both Xmin and Xmax specify 

application constraints which indicate acceptable limits for the latency. 

The next section will combine discussions presented in the section 6.3 and 6.4 to formally 

analyse the intelligent algorithm. 

5.6 Formal Discussion of the function of the Intelligent Algorithm and Machine 
Learning Model (IAML) 

This section presents the formal definition of the intelligent algorithm and machine 

learning model. The content presented in past sections have covered the analysis of the WSN 

components, their relationship to WSN attributes, and the classification of attributes. The 

discussion starts with section starts with the formal analysis of the intelligent algorithm. This 

is followed by an overview of the machine learning model, where the structure, methods and 

parameters are discussed. Afterwards, the section concludes with the analysis of the machine 

learning model behaviour is presented. The input and output attributes discussed in the 

following major section. 



137 
 

5.6.1 Discussion on the function of the Intelligent Algorithm 

This section covers the analysis of the intelligent algorithm relies on equations 

presented in section 5.4. Equation 14, drawn from section 5.4.1 and shown below, defines the 

input parameters to the intelligent algorithm, given a round r and technique Ti. This equation, 

though developed for energy consumption, is applicable to all metric attributes. 

𝑓𝑓(𝑥𝑥) =  �{𝑂𝑂1, . . ,𝑂𝑂𝑐𝑐}, {𝐶𝐶1, . . ,𝐶𝐶𝑐𝑐}, {𝑃𝑃1, . . ,𝑃𝑃𝑐𝑐},𝑇𝑇𝐸𝐸𝑟𝑟,𝐾𝐾, 𝑆𝑆 � Equation 14 

where, 𝑇𝑇𝐸𝐸𝑟𝑟 =  � 𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐸𝐸𝑎𝑎𝑟𝑟 ,𝑇𝑇𝑎𝑎+1𝑑𝑑𝐾𝐾𝐸𝐸(𝑎𝑎+1)𝑟𝑟 ,𝑇𝑇𝑎𝑎+2𝑑𝑑𝐾𝐾𝐸𝐸(𝑎𝑎+2)𝑟𝑟 ,𝑇𝑇𝑎𝑎+3𝑑𝑑𝐾𝐾𝐸𝐸(𝑎𝑎+3)𝑟𝑟 ,𝑇𝑇𝑎𝑎+4𝑑𝑑𝐾𝐾𝐸𝐸(𝑎𝑎+4)𝑟𝑟�, {Oi , 

..., On } represents the set of objectives, {C1, …, Cn) represents the criteria, {P1, .., Pn } 

represents the priority list, K represents the Network entity, and S represents the Scenario 

entity. Each  𝑇𝑇𝑎𝑎𝑑𝑑𝐾𝐾𝐸𝐸𝑎𝑎𝑟𝑟 variable also consists of other attributes as defined earlier in equation as 

shown below. 

 𝑇𝑇𝑎𝑎 = { 𝐴𝐴𝑎𝑎1,𝐴𝐴𝑎𝑎2, … ,𝐴𝐴𝑎𝑎𝑐𝑐}  Equation 6 

This equation similarly applies to the Network and Scenario components, as shown below. 

 𝐾𝐾𝑗𝑗 = { 𝐴𝐴𝑗𝑗1,𝐴𝐴𝑎𝑎2, … ,𝐴𝐴𝑗𝑗𝑐𝑐}  Equation 7  

 𝑆𝑆𝑘𝑘 = { 𝐴𝐴𝑘𝑘1,𝐴𝐴𝑘𝑘2, … ,𝐴𝐴𝑘𝑘𝑐𝑐}  Equation 8  

where the relationships between the attributes of the technique, network and scenario was 

discussed in section 5.3.6. Each attribute is defined using the equation 3 below section 5.3.2. 

 𝐴𝐴𝑎𝑎  = { 𝑣𝑣,𝑇𝑇𝑎𝑎,𝑊𝑊𝑎𝑎,𝑇𝑇ℎ𝑎𝑎,𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎 ,𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎,𝐷𝐷, 𝑆𝑆} Equation 6  

where m represents the index identifier for the attribute 𝐴𝐴𝑎𝑎,  v represents the value, Tv refers 

to the type, Wv refers to the weight, and Thv refers to the threshold. The parameters D and S 

represent the attribute’s dependence and static/dynamic states respectively. The parameters of 

MINv and MAXv are applicable when the attribute is used as a metric and provide the 

opportunity to define constraint limits to the value being held by the attribute. Based on this 

overview of the essential equations, the algorithm for the intelligent algorithm is discussed 

below.  

Application Requirements 

 The application requirements determine the rules that the intelligent algorithm applies 

in its computation. These consists of the objectives, criteria and priority list, as highlighted in 

equation 14. The components are defined in equations 29, 30 and 31. 
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 𝑂𝑂 = { 𝐴𝐴1, … 𝐴𝐴𝑎𝑎 , … ,𝐴𝐴𝑎𝑎}  Equation 29 

 𝐶𝐶 = { 𝐴𝐴1, … 𝐴𝐴𝑗𝑗 , … ,𝐴𝐴𝑐𝑐}  Equation 30 

 𝑃𝑃 = { 𝐴𝐴1, … 𝐴𝐴𝑘𝑘, … ,𝐴𝐴𝑎𝑎}  Equation 31 

Where i, j and k is used as an attribute index identifier for all components, n, m, and p 

indicate the number of attributes, O, C, and P, represent the objective(s), criteria, and priority 

list, and { 𝐴𝐴1, … 𝐴𝐴𝑎𝑎, … ,𝐴𝐴𝑐𝑐}, represent the attributes that these components consist of. 

Objectives: Attributes for objectives cannot be replaced with attributes for criteria and these 

are incomparable. The attributes under objectives only identify the name of the attribute, for 

instance, energy consumption. No other attribute is needed to define the objective. 

Criteria:  The criteria include more detail and needs further attention. Its attributes include the 

values for the threshold Thv, the weight Wv, the MINv, and the MAXv. The criteria are defined 

by equation 32: 

 𝐶𝐶𝐴𝐴𝑖𝑖 = { 𝑇𝑇ℎ𝑎𝑎,𝑊𝑊𝑎𝑎,𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎,𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎}  Equation 32 

where i is used as an index identifier for the attribute and the corresponding criteria,  

𝐶𝐶𝐴𝐴𝑖𝑖represents the Criteria defined for a given attribute 𝐴𝐴𝑎𝑎, 𝑇𝑇ℎ𝑎𝑎 is the threshold defined by the 

criteria, 𝑊𝑊𝑎𝑎 is the weight, and both 𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎 and 𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎 specify the valid range of values. This 

definition is used by the intelligent algorithm to determine whether, based on the priority of 

an attribute, a technique qualifies to be included in a decision phase.  

Priority: The priority list in the application requirements consists of the attributes ordered 

according to importance. The order is defined based on the assigned weighting, 𝑊𝑊𝑎𝑎.  

Objectives, criteria, and a priority list will be used as input into an  algorithm.   

The algorithm referred to above is responsible for combining data generated by 

simulations, with the set of application objectives, the criteria, and the set of priorities, to 

select data on right DAT for a given WSN scenario. This algorithm is referred to as an 

“intelligent algorithm” from here on. It is different from the “intelligent model”, which 

consists of the machine learning model that is built based on the data created by the 

intelligent algorithm.  

Technique Simulation Data 

Once the application requirements have been validated, the other data required by the 

algorithm consists of data generated by the set of techniques. These data will consist of 

values of the various technique attributes, some of which are static and non-changing, and 
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others dynamic and changing for every round of the simulation. From here on, two 

techniques, T1 and T2 are selected in order to simplify the discussion. Both techniques have 

their own set of attributes, which will be processed by the intelligent algorithm in order to 

determine the preferred technique. The computation approach can be applied similarly to a 

scenario consisting of more than two techniques and the outcome is expected to be the same, 

in which case, the best technique will be determined. The two techniques are defined as 

follows: 

 𝑇𝑇1 = { 𝐴𝐴1, . .𝐴𝐴𝑎𝑎 , … ,𝐴𝐴𝑐𝑐}  Equation 33 

 𝑇𝑇2 = { 𝐴𝐴1, . .𝐴𝐴𝑎𝑎, … ,𝐴𝐴𝑐𝑐}  Equation 34 

where the attributes, 𝐴𝐴1, . .𝐴𝐴𝑎𝑎 , … ,𝐴𝐴𝑐𝑐, for both techniques bear the same attribute name but 

hold different values. If the attribute 𝐴𝐴1represents energy consumption, it can be defined as 

follows: 

 𝐴𝐴1  = { 𝑣𝑣,𝑇𝑇𝑎𝑎,𝑊𝑊𝑎𝑎,𝑇𝑇ℎ𝑎𝑎,𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎 ,𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎,𝐷𝐷, 𝑆𝑆} Equation 35 

where the variables are as defined before. The criteria would have defined values for the 

parameters 𝑊𝑊𝑎𝑎,𝑇𝑇ℎ𝑎𝑎,𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎 ,𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎. The attribute would inherently have a type 𝑇𝑇𝑎𝑎, which is a 

real number in this case. It would have values for 𝐷𝐷, 𝑆𝑆 as well, which are independent and 

dynamic in this case. With assumption that the criteria for the WSN application has been 

defined, to determine the best technique, the intelligent algorithm would perform the 

following computations. It is essential to note that the attribute parameters consisting of 

{ 𝑇𝑇𝑎𝑎,𝑊𝑊𝑎𝑎,𝑇𝑇ℎ𝑎𝑎,𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎 ,𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎,𝐷𝐷, 𝑆𝑆} are application-specific, meaning that their values apply 

across all participating techniques in an application. Only the { 𝑣𝑣} attribute is different for 

each technique and is expected to carry a new value at the end of each round. Nonetheless, a 

use case that would enable multiple definitions for these other parameters would involve 

more than one application.  

Firstly, the intelligent algorithm considers the objective with the highest priority by weight. 

To simplify the analysis, two objectives are considered in this discussion, energy 

consumption AE, and latency AL, each having weights pre-assigned in the application 

requirements. This determines their ordering based on the current application. This discussion 

assumes that energy consumption carries more weight than latency, a result that can be 

achieved by the intelligent algorithm by using equation 36: 
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 𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎𝑐𝑐𝑟𝑟𝑎𝑎𝑡𝑡𝑝𝑝 =  𝑀𝑀𝐴𝐴𝑀𝑀(𝐴𝐴𝐸𝐸𝐸𝐸,𝐴𝐴𝐿𝐿𝐸𝐸)  Equation 36 

where  𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎𝑐𝑐𝑟𝑟𝑎𝑎𝑡𝑡𝑝𝑝 implies the function to determine the objective with highest priority, MAX 

being the mathematical maximum determining function, 𝐴𝐴𝐸𝐸𝐸𝐸 and  𝐴𝐴𝐿𝐿𝐸𝐸 represent the weights 

assigned to the energy consumption attribute and latency attributes respectively. As noted 

earlier, these apply to all techniques. Assume that this equation places 𝐴𝐴𝐸𝐸𝐸𝐸 before 𝐴𝐴𝐿𝐿𝐸𝐸, that is 

energy consumption before latency. Then the intelligent algorithm will need to determine 

which techniques fall into the range defined by the criteria parameters 𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎 ,𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎. This 

computation is applied to the attribute values for both techniques (and to others if there are 

more). The following equations are used by the algorithm: 

 𝑓𝑓𝑟𝑟𝑎𝑎𝑐𝑐𝑟𝑟𝑒𝑒 = {𝑥𝑥: 𝑥𝑥 > 𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑥𝑥 <  𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎} Equation 37 

where 𝑓𝑓𝑟𝑟𝑎𝑎𝑐𝑐𝑟𝑟𝑒𝑒 specifies the range validation function, x is the value of the attribute, that is any 

of energy consumption and latency in this case, and 𝑀𝑀𝑀𝑀𝑁𝑁𝑎𝑎, 𝑀𝑀𝐴𝐴𝑀𝑀𝑎𝑎 are the criteria defined 

value constraints for the attribute. The equation is applied to the relevant attributes of all 

participating techniques. Equation 38 shows this being applied to technique T1’s energy 

consumption attribute value: 

 𝑓𝑓𝑟𝑟𝑎𝑎𝑐𝑐𝑟𝑟𝑒𝑒 = {𝐴𝐴𝐸𝐸𝑎𝑎𝑇𝑇1:𝐴𝐴𝐸𝐸𝑎𝑎𝑇𝑇1 > 𝑀𝑀𝑀𝑀𝑁𝑁𝐸𝐸𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝐴𝐴𝐸𝐸𝑎𝑎𝑇𝑇1 <  𝑀𝑀𝐴𝐴𝑀𝑀𝐸𝐸𝑎𝑎} Equation 38 

where 𝑓𝑓𝑟𝑟𝑎𝑎𝑐𝑐𝑟𝑟𝑒𝑒 represents the range validation function, 𝐴𝐴𝐸𝐸𝑎𝑎𝑇𝑇1 represents the energy 

consumption value for technique T1, after a specific round r (not identified in this equation 

for simplicity),  𝑀𝑀𝑀𝑀𝑁𝑁𝐸𝐸𝑎𝑎 and 𝑀𝑀𝐴𝐴𝑀𝑀𝐸𝐸𝑎𝑎 both specify the criteria range. Equation 36 is also 

applied to the energy consumption attribute of technique T1, as well as the latency attributes 

of both techniques. The outcome of the function includes a collection of the techniques 

whose attributes satisfy the condition of the equation. 

The final stage of the intelligent algorithm’s function involves comparing attribute values for 

all participating techniques. This is based on the form of the objective. For instance, energy 

consumption would involve a minimisation function, while network lifetime would involve a 

maximisation function. Continuing with the energy consumption attribute selected earlier, 

equation 37 would be used by the algorithm to determine the best technique based on the 

current round and application: 

 𝑓𝑓�𝑇𝑇𝑐𝑐𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� = 𝑀𝑀𝑀𝑀𝑁𝑁(𝐴𝐴𝐸𝐸𝑎𝑎𝑇𝑇1 ,𝐴𝐴𝐸𝐸𝑎𝑎𝑇𝑇2) Equation 39 
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where 𝑓𝑓(𝑇𝑇𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡) defines the function to select the best (optimal) technique given the 

conditions, 𝑀𝑀𝑀𝑀𝑁𝑁 is the mathematical minimum function, and 𝐴𝐴𝐸𝐸𝑎𝑎𝑇𝑇1 ,𝐴𝐴𝐸𝐸𝑎𝑎𝑇𝑇2 represent the 

energy consumption values for techniques T1  and T2. The outcome of this equation is the 

selected best technique to be applied in the subsequent simulation round. 

Combination of Application Requirements and Technique Simulation Data 

The last two sections present an analysis of the intelligent algorithm’s functions and 

describes the approach used to select the best technique given the WSN context. The 

attributes that contribute to concluding on this decision are discussed in detail in section 

5.5.3. Only energy consumption and latency are discussed. The same discussion applies to 

bandwidth consumption and other such attributes. However, other attributes, not mentioned, 

such as bandwidth consumption, are valid for inclusion as well. The equations above apply to 

all WSN techniques and attributes, beyond those mentioned. For the intelligent algorithm to 

perform this function, the technique attribute data is needed for all participating techniques 

based on the same WSN conditions. Figure 5.4 illustrates the data exchanged in the interface 

between the intelligent algorithm and the machine learning model. These include a scenario 

S1, network N1, the application requirements, and the best selected technique T1 based on this 

combination. 

Intelligent Algorithm

Scenario Data
All attribute values for S1

Network Data
All attribute values for K1

Techniques Data
Attribute data for 

selected technique

Applications Data
All attributes data for 

Objectives, Criteria, Priority List

Machine 
Learning 
Model

1

2

3

4

 
Figure 5-4 -  Interface between the Intelligent Algorithm and the Machine Learning Model 

 



142 
 

The attributes identified in figure 5.4 form the input vector for the machine learning model. 

The details of these input attributes are discussed further in section 5.5.3, where the number 

of input nodes (or units) to hold the data is computed for the machine learning model. 

5.6.2 Discussion on the Machine Learning Model 

This section presents design details of the machine learning model and follows on with 

the formal definition of its operation. Once the intelligent algorithm has completed the data 

processing, the next stage in the process involves the machine learning model (ML model). 

The output data from the intelligent algorithm is used to train the ML model, which 

subsequently recognises the patterns in the data. Once trained, the model is used to make 

predictions and recommendations based new application scenarios.  

The ML model is expected to discover patterns representing relationships between the 

three components consisting of (1) the provided application requirements, (2) the WSN 

settings, represented by the Network and Scenario entities, and (3) preferred WSN data 

aggregation technique based on the combination (represented by the Technique entity). The 

output of the ML Model provides the relative probability that a specific technique is the best 

option for the given application requirements. The input data to the ML model is summarised 

in table 5.2. Since the pattern needs to be discovered and learned, a multi-layer artificial 

neural network (ANN) had been preselected as the preferred machine learning model for this 

purpose.  

 
Table 5-2 - Input data to the ANN, which is provided in the output of the Intelligent Algorithm 

No Data Description 

1.  Application 
Requirements 

This consists of the application or scenario 
objectives, criteria (or constraints), and priority 
list 

2.  Network data This consists of network related data, such as the 
number of nodes, their location and distribution. 

3.  Scenario data This consists of scenario or event details, such as 
event type, sampling rate, etc.  

4.  Technique Data This consists of the attributes of the technique 
considered appropriate for the given scenario. 
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The ANN consists of various layers, which consist of the input, multiple hidden 

layers, and the output layer. The shape of its input layer is discussed further in this chapter. 

Its output is defined by the number of techniques considered in the training session. Further 

details on the layers are also discussed in following sections.  

 

Description of the function of the Artificial Neural Network  

Figure 5.5 presents a high-level structure of the ML model and serves as a reference 

point for the following discussions. The configuration of each layer is discussed in more 

detail in subsequent sections. The input layer is labelled I, the hidden layers H1, H2, H3, the 

SoftMax layer S, and output layer O. Three layers were pre-selected for this model based on 

common standards used in similar experiments found in literature. The SoftMax layer, applies 

the SoftMax activation function, being a multi-class predictive model. 

Input 
Layer

Output 
Layer

Hidden Layers Softmax 
Layer

H1 H2 H3 S OI

 
Figure 5-5 - Structure of the Artificial Neural Network (ANN) 

The number of units in the input layer is equivalent to the shape vector of the input 

data to be used for training. The number of units in the hidden layers are modified until exact 

numbers are obtained to achieve optimal output from the model. While the hidden layers 

apply the ReLU activation function, the SoftMax layer provides a probability value for each 

of the techniques. However, ahead of discussing the internal details of the ML model, the 

formal discussion on the final stage of the intelligent algorithm/machine learning model 

system (interchangeably referred to as Intelligent Model from here on) is presented below. 

ML Model Selection for Best Technique (Final step of process) 

The final step of the operation involves the training of the ML model, which enables it 

to select and recommend the best technique given the set of requirements and WSN context. 

In discussions presented in prior sections, two techniques were selected for simplicity. Here, 

the two techniques are assumed to be the available techniques in the simulation and only one 

of these can be the best technique. Equation 38 defines the function of the ML model and 

highlights the variables it accepts as input from the intelligent algorithm to perform the 

technique selection function. 
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 𝑓𝑓𝑎𝑎𝑐𝑐𝑎𝑎𝑖𝑖𝑡𝑡(𝑥𝑥) = { 𝑂𝑂𝐴𝐴,𝐶𝐶𝐴𝐴,𝑃𝑃𝐴𝐴,𝑇𝑇𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡} Equation 38 

where 𝑓𝑓𝑎𝑎𝑐𝑐𝑎𝑎𝑖𝑖𝑡𝑡(𝑥𝑥) implies input function to the ML model, 𝑂𝑂𝐴𝐴 refers to the set of objective 

attributes, 𝐶𝐶𝐴𝐴 refers to the set of attributes that form the criteria, 𝑃𝑃𝐴𝐴 refers to the priority list, 

defined by the weights assigned to the attributes, and 𝑇𝑇𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 identifies the best technique 

selected by the intelligent algorithm. It is noteworthy that the two techniques, 𝑇𝑇1𝐴𝐴  and 𝑇𝑇2𝐴𝐴  , 

were candidate techniques in this scenario and only one of them was selected to become 

𝑇𝑇𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡. Equation 38 represents the high-level structure of the input vector that serves as input 

into the ML model. A separate query channel to the ML model for prediction or 

recommendation results is defined in equation 39. The vector as illustrated here lacks data on 

any specific technique, since this information would be provided by the ML Model. 

 𝑓𝑓𝑞𝑞𝑖𝑖𝑒𝑒𝑟𝑟𝑝𝑝(𝑥𝑥) = { 𝑂𝑂𝐴𝐴,𝐶𝐶𝐴𝐴,𝑃𝑃𝐴𝐴} Equation 39 

where 𝑓𝑓𝑞𝑞𝑖𝑖𝑒𝑒𝑟𝑟𝑝𝑝(𝑥𝑥) represents the query input function to the ML model, 𝑂𝑂𝐴𝐴 refers to the set of 

objective attributes, 𝐶𝐶𝐴𝐴 represents the set of criteria attributes, and 𝑃𝑃𝐴𝐴 represents the priority 

list. The ML model provides output defined by equation 40, and this represents the proposed 

recommendation for the best technique provided by the ML model. 

 𝑓𝑓�𝑇𝑇𝑐𝑐𝑖𝑖𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡� = {𝑇𝑇1𝑝𝑝1 , … ,𝑇𝑇𝑎𝑎𝑝𝑝𝑖𝑖 , … ,𝑇𝑇𝑐𝑐𝑝𝑝𝑖𝑖} Equation 40 

where 𝑓𝑓�𝑇𝑇𝑐𝑐𝑖𝑖𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡� represents the output vector of the ML model, 𝑇𝑇𝑎𝑎𝑤𝑤𝑖𝑖 represents the 

probability assigned to the ith technique, while n represents the number of candidate 

techniques in the simulation. The component parts of 𝑇𝑇𝑎𝑎𝑝𝑝are defined in equation 41. 

 𝑇𝑇𝑎𝑎𝑝𝑝 = {𝑇𝑇𝑎𝑎,𝑝𝑝 } Equation 41 

where 𝑇𝑇𝑎𝑎 represents the technique, and 𝑝𝑝 represents the probability assigned to the technique 

based on the input vector data. The ML model’s intricate learning process takes place 

between equations 38 and 40. However, by the time equation 40 is performed, the ML model 

should have provided a recommendation, based on its learning rate, the best recommended 

technique, application requirements, WSN context, and the participating techniques.  

The next section presents the details of the machine learning model, its methods and 

activation function. The following section discusses the format of the input and output 

attributes and provides detail on the transformations necessary to pre-process the raw data for 

ML model. 
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5.7 Further Description on the Reference Architecture  

The discussion in this section continues from section 5.2, and convers the reference 

architecture from an implementation viewpoint. Section 5.2 discussed the design of the 

process for building the intelligent algorithm and machine learning model. This section 

provides details on the relationship between those discussions and highlights how the 

equations discussed so far relate to the architecture. This is represented in figure 5.6. The 

equations are shown in circles with one of two labels: Ex, for equations, where x implies the 

equation number, and Rx, for relations, where x represents the relation number. 

 

Figure 5-6 – Placement of equations in corresponding components in the intelligent model. 

5.7.1 Discussion of Input and Output Attributes 

This details of the input and output data for the intelligent algorithm and machine 

learning model are discussed in this section.  The deliverables from this discussion is used to 

determine the attributes that will provide data to the intelligent algorithm, and after encoding, 

the number of input nodes to the ML model. Once the number of the input nodes are 

determined, the ML model’s input vector shape can be well-defined.  

Definition of Input and Output Features 

Some of the WSN attributes discussed in this section were defined earlier in section 

2.5, and further in table 2.2. Many of the attributes serve as input parameters for the 
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intelligent model. The guideline discussed in prior sections is used here to categorise the 

attributes as falling under one of the WSN entities.  

Figure 5.7 provides an overview of encoding methods used in pre-processing of the 

input data. The data types are categorised under classes (A, B and C) as illustrated in the 

figure.   

 

Binary OneHotEncoder 2 units
(0 or 1)

Categorical OneHotEncoder

Real Number MinMaxScaler

No of units = 
Category count

Class A

Class B

Class C

StandardScaler 1 unit
(Value between 0 and 1)

Data 
Type 
Class

Data 
Type Transformation Number of Units 

after encoding

 
Figure 5-7 - Illustration of the feature types, their required encoding, and the equivalent input node requirements 

5.8 Identification of Data Sources 

In this section, final set of attributes, and the data sources used for data collection are 

discussed. The definition of the attributes relates back to discussions held in sections 2.7 and 

4.6 but includes the introduction of new (derived) attributes. These are used later in 

determining the type of training data required for the intelligent model. The following 

primary sources were selected for collection of data: 

• Articles and journals 

• Expert sources 

• Simulated data generated based on settings obtained from relevant expert, real or 

experiment sources 

• Simulated data generated strictly within simulation 

The above sources are further explained in table 5.3. While the data collected from these 

sources could be categorised into those collected from realistic scenarios and those generated 

from simulation, others could be classified into simulation-generated but based on real-

scenario settings. 
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Table 5-3 - Data Source Categorization 

Data Purpose 
Articles and Journals These consist of published articles and journals that 

have investigated various WSN data aggregation use 
cases. Such experiments identify relevant WSN 
attributes and metrics that can capture and evaluate the 
WSN’s performance. Some of the attributes selected 
from such sources are presented in table 6.8. For 
example, they include the attributes such as energy 
consumption, bandwidth, throughput, and latency. 

Expert sources 
 

Expert sources include practical applications of WSNs 
in real-life scenarios. Such sources identify attributes 
that are relevant for monitoring and evaluating real-life 
events and some of these attributes are also shown in 
table 6.8. Some of such sources include the United 
States Geological Survey (USGS), British Geological 
Survey (BGS), and European-Mediterranean 
Seismological Centre (EMSC). For example, physical 
node distribution based on the scenario could dictate the 
appropriate topology in many use cases, as well as the 
sampling rate. 

Simulated data, 
based on expert-
driven settings 

These consist of data generated from simulation with 
environment settings dictated by either article, journal 
or expert settings. For instance, WSN experimental 
setups usually rely on a common power supply model, 
radio configuration, range of node energy levels, and 
radio transmission rates. 

Strictly Simulated 
data  

This consist of data that can only be obtained from the 
simulation environment. These include specific network 
attributes such as network coverage, latency, energy 
consumption, etc. 
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Figure 5.8 presents a high-level architecture of the interaction between data sources and 

other components of the system, which includes the collected data, the intelligent model and 

model evaluation components. The squared numbers are used to enable reference to various 

components. The boxes numbered 1, 2, 3, and 4, identify the four data sources. The extracted 

data from these sources are indicated in the second column titled “Data”, which include data 

on the scenario, the application/scenario requirements, the network, and technique attributes. 

The third column titled the “Intelligent Model”, identifies the intelligent model, while the 

fourth column named “Evaluation” identifies the subsequent evaluation and testing of the 

model after training. The box numbered 5 identifies benchmark data and provides data that is 

used later for model evaluation. Tasks such as data pre-processing are not indicated in this 

figure but are discussed later following the specification of attribute fields. 

 

 
Figure 5-8 - High-level Intelligent Model Architecture – shows the identified data sources, the type of data 

obtained from the sources, the intelligent model, evaluation and testing and recommendation. 

The selection of many features used for the intelligent algorithm and machine learning 

model was based, or directly related to, similar attribute selections made in research focused 

on the optimization of WSNs. In the past several years, machine learning had been explored 

as a method to optimise WSN performance in various scenarios and many of these studies 

have been referenced in this study (Hooda et al., 2018; K. and Vaidehi, 2018; Praveen Kumar 

et al., 2019). The relevant attributes considered in this study are discussed in table 5.4. the 

attributes are categorised based on their type (numeric, binary, or categorical), and the 

categorical values (if data type is categorical).  



149 
 

Table 5-4 - Data source attributes identified for the intelligent model. Some of the data are collected from 
experiments and real scenarios, while others are generated from simulation, in a few cases, based on settings 
collected from real scenarios. Only the relevant features are used to train the ML model.  

S.No. Attribute Data Type Category Values Comments 

1.  EnergyObjective Numeric Not Applicable Objectives are passed 
as real numbers on 
separate inputs with 
their values 
determining their 
priority. 

2.  BandwidthObjective Numeric Not Applicable 

3.  LatencyObjective Numeric Not Applicable 

4.  ConnectionsInRound Numeric Not Applicable Computed from 
simulation 

5.  AvgDistanceToSink Numeric Not Applicable Computed from 
simulation 

6.  ShortestPathToSink Numeric Not Applicable Computed from 
simulation 

7.  LongestPathToSink Numeric Not Applicable Computed from 
simulation 

8.  MinEnergyConsumption Numeric Not Applicable 

Criteria values are 
either submitted 
manually, or 
autonomously 
detected based on the 
scenario 
characteristics 

9.  MaxEnergyConsumption Numeric Not Applicable 

10.  MinBandwidthConsumption Numeric Not Applicable 

11.  MaxBandwidthConsumption Numeric Not Applicable 

12.  MinLatency Numeric Not Applicable 

13.  MaxLatency Numeric Not Applicable 

14.  EnergyConsumption Numeric Not Applicable Obtained from 
simulation 

15.  Latency Numeric Not Applicable Obtained from 
simulation 

16.  BandwidthConsumption Numeric Not Applicable Obtained from 
simulation 

17.  NetworkConnectivityRadius Numeric Not Applicable 

Value determines the 
radius used to 
compute various 
parameters: 
NetworkCoverage, 
NetworkConnectivity, 
etc.  

18.  NetworkCoverage Numeric Not Applicable 

Computed from 
simulation. Should 
reflect target 
coverage of scenario 

19.  NetworkConnectivity Numeric Not Applicable 

Metric based on 
node-to-node 
connectivity in the in 
a round 

20.  SamplingRate Numeric Not Applicable 

Captured from 
scenario or assumed 
for simulation 
environment 

21.  CommunicationAlgorithm Categorical 
Hierarchical, 

Flooding, 
Diffusion 

Determined from 
scenario 
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22.  FieldSize Numeric Not Applicable Data is available 
from either the real-
life scenario or the 
simulation 
environment. In 
recommendation 
state, it would be 
required as an input. 

23.  HomogenousNodes Binary True, False 

24.  AggregationNode Categorical 
Sink, 

Intermediary, 
Heads 

25.  SensingTrigger Categorical Query, Event,  
Continuous 

Determined from 
scenario 

26.  PeriodicBasedReporting Numeric Not Applicable These values are 
based on the value 
held by 
AggregationType 

27.  EventBasedReporting Numeric Not Applicable 

28.  RealtimeMonitoring Numeric Not Applicable 
This field is 
represented as real 
since a scenario 
could involve a 
fraction of both 

29.  QueryMonitoring Numeric Not Applicable 

30.  PysicalSensorTopology Categorical Star, Bus, Linear, 
Ring, Mesh 

Determined from 
scenario 

31.  RateOfSpread Numeric Not Applicable Determined from 
scenario 

32.  PrimaryMedium Categorical Solid, Liquid, 
Gas 

Determined from 
Scenario 

33.  TransmissionRange Numeric Not Applicable Computed 

34.  InitialNodeEnergy Numeric Not Applicable Computed 

35.  LocationAwareness Binary True, False Determined from 
scenario 

36.  SinkReportingMode Categorical 

One-to-One 
One-to-Many 
Many-to-One  

Many-to-Many 

Determined from 
scenario 

37.  NodeMobility Binary True, False N/A 

38.  NodeDistributionRatio Numeric Not Applicable 
Metric based on 
nodes per square 
meter2 

39.  FractionOfHeads  Numeric Not Applicable N/A 

40.  NumberOfPackets Numeric Not Applicable N/A 

41.  PacketSize Numeric Not Applicable Computed from 
simulation 

42.  NumberOfNodes Numeric Not Applicable Computed from 
simulation 

43.  ActiveNodesInRound Numeric Not Applicable Computed from 
simulation 

44.  TotalSentPackets Numeric Not Applicable Computed from 
simulation 

45.  MinNextNodeDistance Numeric Not Applicable Computed from 
simulation 

46.  MaxNextNodeDistance Numeric Not Applicable Computed from 
simulation 

47.  AvgNode2SinkDistance Numeric Not Applicable Computed from 
simulation 
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48.  AvgNextNodeDistance Numeric Not Applicable Computed from 
simulation 

49.  AvgHeadsCoverage Numeric Not Applicable Computed from 
simulation 

50.  HeadsToNodesRatio Numeric Not Applicable Computed from 
simulation 

51.  BestTechnique Categorical Leach, Heed, 
Pegasis, Dbst 

Best technique is 
provided by expert 
scenario 

 

Table 5.5 provides an example of typical settings assigned to some attributes in a typical 

WSN experiment. 
Table 5-5 - Example WSN experiment showing sample values that are assigned to specific attributes. With 
respect to these set of attributes, other attributes such as energy consumption, are considered dynamic 
attributes, which change based on a behaviour defined by the values assigned to the attributes in this table 
(including others not mentioned here). The last column in the table explains how the attributes behave in an 
event or simulation. 

Attribute Typical Experimental 
Value Conditions for Change 

Number of initial nodes 100 nodes 

The initial number of nodes when the event of 
simulation starts. This number could reduce as 
the event proceeds as nodes start to exhaust 
their energy level. At that point the number of 
active nodes will become relevant. 

Field size 50 m x 50 m (meters2) 
This value could change as the event proceeds 
if such event is considered spatially dynamic, 
such as a wildfire. 

Initial Node Energy 2J or 50J 
This changes as nodes transmit in each round. 
The sum of this value for every node in a 
round provides the network energy 

Sampling rate 600kbps 

Realistically, this could change based mainly 
on the states of monitoring, detection and 
tracking. The scenario or event type, such as 
earthquake, or wildfire, also impacts on this 
value. 

Base station location X = -25m, Y = -25m 
This is usually relative to a reference point of 
(0m, 0m), and usually remains static 
throughout an event. 

Energy consumption per 
bit 

50 nJ/bit (nano-Joules 
per bit) 

This also remains static throughout an event 
and hardly changes unless there is a change to 
the node hardware 

Packet size 6kb (kilobytes) This remains static throughout an event 

Network density 0.01 node/m2 This is determined dynamically by the number 
of active nodes within a given field size. 

 

Table 5.6 and table 5.7 both further illustrate how the attributes can be combined to achieve 

the goals of this research, by highlighting the possibility of training of the ML Model. Table 
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5.6 shows the attributes for a selected technique, where Leach is chosen in this case. Table 

5.7 shows typical data for a selected event; a forest fire is chosen in this case. The attributes 

shown in table 5.7 indicates typical event characteristics, highlighted from expert sources, 

which could affect the behaviour of the appropriate event. The attributes, which include 

latency and location awareness, could be considered inherent characteristics of the event, 

while the values of the attributes could be considered as inherent requirements for the event. 

The need to monitor the event defines the need for a minimum level of latency, while also 

requiring an awareness of the location of the event, or the sensor nodes themselves. Without 

indicating that the Leach technique is considered the best technique for data aggregation in 

this case, it becomes obvious that the same attributes can be compared with those of various 

techniques in order to select the best technique (considering various other attributes, or 

parameters). 

Table 5-6 - Sample attribute values for a WSN technique. The Leach technique is used in this case. 

Technique Attribute Value 

Leach 

Primary Objective(s) Energy Consumption,  
Network Lifetime 

Location Awareness False 
Energy 250J (All nodes) 
Latency 0.05 seconds 

 

Table 5-7 - Sample scenario or event data indicating possible values for a forest fire event 

Event Attributes Setting or Requirement 

Forest Fire 
Primary Objective(s) Network Lifetime, Latency 

Location Awareness True 
Latency (Minimum) 10 mins 

 

In the next few pages, analysis of typical WSN use case data is presented. Table 5.8 provides 

some of the captured data for various WSN events and scenarios. It represents an extended 

version of table 5.7, which was discussed above. It contains the data captured for various 

scenarios, across various attributes, composed mainly from multiple research sources. The 

attributes are used to specify or model various characteristics of the events. Most of the 

events are classified under monitoring and detection, since these two states have a huge 

impact on some characteristics, such as sampling rate and active node count (some nodes are 

kept off during monitoring for instance). 
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Table 5-8 – Various WSN use case data collected from multiple sources including real-life and experiments. Some of the data can only be determined in simulation since they 
are considered dynamic. The tick indicates that the feature is relevant for the specific event. 

 
Events 

Features ForestFire 
Monitoring 

ForestFire 
Detection 

OilGasPipeline 
(Surface) 
Monitoring 

OilGasPipeline 
(UnderWater) 
Monitoring 

AirQuality 
(CO, CO2, NO2, O3, 
H2S) 
Monitoring 

Earthquake 
Monitoring 

Earthquake 
Detection 

Objectives 
       

Maximize Network 
Lifetime ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Minimize Latency ⨉ ✓ ⨉ ⨉ ⨉ ⨉ ⨉ 

Maximize Accuracy ⨉ ⨉ ⨉ ⨉ ⨉ ✓ ✓ 

Minimize Energy ⨉ ✓ ⨉ ⨉ ⨉ ⨉ ⨉ 

Minimize Bandwidth ⨉ ✓ ⨉ ⨉ ⨉ ⨉ ⨉ 

Sampling Rate (SR) 
       

SR1 - Very Low (x > 1 
min) ✓ ⨉ ⨉ ⨉ ⨉ ✓ ✓ 

SR2 - Low (x > 10 sec) ⨉ ⨉ ⨉ ⨉ ⨉ ⨉ ⨉ 
SR3 - Medium (1 sec < 
x < 10 sec) ⨉ ✓ ⨉ ⨉ ⨉ ⨉ ✓ 

SR4 - High (x < 1 sec) ⨉ ⨉ ⨉ ⨉ ⨉ ⨉ ⨉ 
SR5 - Very High (x < 1 
msec) ⨉ ⨉ ⨉ ✓ ⨉ ✓ ⨉ 

Field Size (FS) 
       

FS1 - (10m < x < 30m) ⨉ ⨉ ⨉ ⨉ ⨉ ⨉ ⨉ 
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FS2 - (30m < x < 50m) ⨉ ⨉ ✓ ✓ ⨉ ⨉ ✓ 
FS3 - (50m < x < 
100m) ⨉ ✓ ⨉ ⨉ ⨉ ✓ ⨉ 

FS4 - (100m < x < 
150m) ✓ ⨉ ⨉ ⨉ ⨉ ⨉ ⨉ 
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The foregoing discussions have provided a design and reference guide for the next stage of 

the research, which involves the data collection process, data pre-processing, machine 

learning model development, training, and evaluation. The next section covers the 

development of the machine learning model. 

5.9 Justification for Intelligent Model Framework 

As highlighted earlier, machine learning is used in this study to build the model to 

intelligently determine a data aggregation technique given event conditions. This choice is 

essentially driven by the need to process a high volume of data to detect patterns in current 

WSN scenarios. Also, via various experiments, the unpredictable nature of the environments 

into which WSNs are deployed, and their subsequent behaviour, cannot be determined using 

ordered or mathematical means (Bangotra et al., 2018; Praveen Kumar et al., 2019).  

 

The use of machine learning in WSNs has included the use of algorithms within the 

three main categories, i.e. supervised, unsupervised and reinforcement learning. Algorithms 

that have been used include Support Vector Machines (SVMs), Bayesian statistics, Decision 

Trees, Neural Networks, and K-Nearest Neighbour (supervised), k-means clustering, 

Principal Component Analysis (Unsupervised), and Q-learning technique (reinforcement 

learning), Restricted Boltzmann Machine (either supervised or unsupervised), (Bangotra et 

al., 2018; K. and Vaidehi, 2018; Khan and Samad, 2017; Otoum et al., 2019; Praveen Kumar 

et al., 2019). Various machine learning algorithms have been used for specific WSN 

scenarios, while research has also been done to assess their suitability to different WSN use 

cases (Kumar Dwivedi et al., 2018; Praveen Kumar et al., 2019). As stated earlier, this 

research will apply a multi-layer artificial neural network (ANN) for the target machine 

learning model. The details of the model are discussed further in subsequent sections. 

 

The next few sections of this chapter cover more practical aspects of the study. These 

include the simulation environment design, attribute details, class relationships, 

implementation details, and benchmark specification. 

5.10 Simulation Environment Description 
This section provides some details about the simulation environment, and default 

settings used during the simulations.  
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5.10.1 Details of Simulation Environment 

The simulation environment was based on the version 3.30 of the NS3 simulator, i.e.  

Network Simulator 3 (Nsnam, 2020). NS3 is a discrete-event network simulator targeted 

mainly at research and development in wired and wireless network simulations. It is an open-

source tool and is actively being supported by a collection of organizations grouped under the 

University of Washington NS-3 Consortium. The tool provides an environment that 

facilitates simulation, configuration, execution, trace collection and analysis of a network of 

nodes.  Being developed in the C++ language, it provides facilitates the development of 

complex models and protocols for experimentation in wireless sensor network simulations.   

5.10.2 Software Environmental Settings 

In order to perform the simulations under the NS3 tool, the environment was setup 

according to the following details: 

• Hosting Environment: Oracle VirtualBox/Linux, a virtual environment, was created to 

install a Linux-based operating system (Ubuntu), which was the suggested environment 

for using NS3. The installation platform had a RAM of 32GB, and a hard drive space of 

over 40GB. 

• Development Environment: the development environment consisted of a combination of 

PyCharm and Eclipse. PyCharm enabled use of Python to perform data pre-processing 

and building the intelligent model. Eclipse enabled development of complex models 

within the NS3 tool using C++.  

In their default settings, the above tools were used to achieve the task of developing and 

running the simulations and training the intelligent model. 

5.11 Metrics  

This section discusses selected performance metrics that are used to evaluate the 

techniques in specific WSN scenarios. Two groups are defined: Standard metrics, which 

inherently represent the performance of techniques in WSNs, and are calculated from primary 

attributes; and Non-standard metrics, which are relevant when considered with standard 

attributes, and are derived from a collection of attributes. The non-standard metrics are 

developed based on the outcome and learning from experiments performed on the techniques. 
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5.11.1 Standard Performance Metrics 

A few specific wireless sensor network attributes were selected to study the 

comparative behaviour of the different techniques. This information provided insight into the 

performance of the WSN during the technique modelling and experimentation and a 

foundation for further comparative analysis in given scenarios. While the values of 

independent variables are affected directly by changes in the network, their values contribute 

to generating the values for the metrics. Thus, the metrics can be used to evaluate the 

behaviour of the technique. Table 5.9 presents details of the selected metrics. The details 

discussed in table 5.9 was carried out in section 4.8. 

Table 5-9 – Selected metrics used to evaluate the performance of techniques. They are referred to as Standard 
metrics and computed by reading a single attribute during simulation. 

No Standard  
Metric Name Description 

Independent Attributes 
(based on a single 

independent attribute) 
1.  Energy 

Consumption 
WSN nodes transmit and receive data, 
and by this activity, consume energy. 
Given the active technique, different 
energy consumption trends were 
recognised and was used to evaluate the 
performance of different techniques. 

Node Energy (Joules) 

2.  Bandwidth 
Consumption 

Bandwidth is consumed by the nodes 
when they transmit across the network. 
Based on the technique, different 
consumption trends were recognised, 
and this was plotted for various 
techniques. this characteristic was also 
used to evaluate the performance of the 
techniques. 

Node bandwidth (bytes) 

3.  Latency The duration of packet transfer between 
two nodes can be referred to as the 
latency of the communication. 
Summation of this across the network 
was also used as a yardstick to evaluate 
the performance of various techniques.  

Packet delivery and 
Network-wide Latency 
(milliseconds or 
nanoseconds) 

 

5.11.2 Derived Performance Metrics 

A few other derived attributes were defined and are described in table 5.10. These are 

dependent variables and computed based on a set of independent variables. They provided a 

computational metric to facilitate the evaluation of techniques during simulation as well as 
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during the model development. However, these are not featured in the training data for the 

intelligent model. Their values were captured throughout the simulation to provide guidance 

towards understanding the relationship between various standard attributes such as how the 

standard attributes relate to the field size. Here, they are referred to as Non-standard attributes 

since they do not measure the primary characteristics of the network. They are listed in table 

5.10. 

Table 5-10 – Additional sub-metrics used to evaluate the performance of techniques – referred to as non-

standard metrics, and computed based on a collection of standard attributes. 

Non-Standard 
Metric Name Description 

Dependent Attributes 
(resulting attributes based on 

combining independent 
attributes) 

Distribution Factor This represents an attribute that was 
planned to model the distribution of 
nodes. The location of nodes with respect 
to other nodes directly affects their 
transmission load, and thus, their energy 
consumption.  

It was calculated by taking into 
consideration the location of a node, 
either with respect to the location of the 
sink node, or to the set of adjacent nodes 
based within a radius of the node. This 
value is not expected to change 
throughout a single simulation of many 
rounds. 

• Average node 
distance to sink 
node or head node 
(metres) 

• Node density – 
number of nodes in 
a radius around the 
node (constant) 

• Number of heads 
within node radius 
(nodes/metres2) 

• Distance between 
closest head and 
sink node(metres) 

Proximity Factor This defines the distance between a node 
and its next transmission node. This 
attribute was used to create a proximity 
factor for each node, which affected its 
energy consumption.  

• Average distance 
between a node and 
its target 
transmission node 
(metres) 

• Average node 
distance to all 
nodes within a 
radius (metres) 
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Communication 
Factor 

This network metric was used to 
represent the overall communications 
capability of the network of nodes. It is 
expected to reduce over the lifetime of 
the WSN application. It was computed by 
taking into consideration the combined 
transmission range/energy of all nodes, 
the distance between the closest two 
nodes, the path distance from each node 
to its head, and the distance of the nearest 
head to the sink.  

• Distance between a 
node and its next 
node (metres) 

• Required energy 
for transmission 
between a node and 
its next node 
(Joules) 

• Distance between a 
node and either the 
sink or head node 
(metres) 

Coverage This metric was used to model the 
effective area covered by a sensor based 
on a given radius. It was computed by 
taking into consideration the transmission 
range of each node, and alternatively by 
considering a radius around the node, 
including the proximity of the closest 
node to a primary node.  

• Node transmission 
radius (metres) 

Node coverage 
based on a given 
radius 
(nodes/metres2) 

• Combined node 
perimeter between 
two or more nodes 
(metres) 

• Node coverage 
based on given 
radius of network 
(nodes/metres2) 

 

5.12 Summary 

This chapter covered various topics concerning the design and development of the 

intelligent model. It discussed extensively the mathematical model for the behaviour of the 

entire system, covering how the WSN entities, their attributes, and metrics, how these relate 

to the application requirements, and how they are integrated to facilitate the intelligent model. 

Then it discusses the data design, the system interfaces, and the system overview, where 

system integration with external components are discussed. It concludes with details of the 

simulation environment, as well as various additional attributes that were computed during 
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simulation to help with understanding the data. However, its testing and implementation are 

carried out in subsequent chapters. 

 The next chapter discusses the intelligent model and its prototype implementation 

design. 
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6 Implementation of the Intelligent Model and Software 
Prototype 

6.1 Overview 

This chapter discusses the implementation of the intelligent model, as well as the 

software prototype. The last chapter discussed the analysis and design of the intelligent 

model, where various supporting concepts were introduced. These concepts are used in this 

chapter to develop an implementation of the model. The software prototype consists of a 

client-facing application, which includes the source code developed within the simulation 

environment, the data generated, as well as a client interface.  

Relevant hardware and software tools are also discussed. The software prototype, as well 

as how it is applied I towards evaluating the intelligent model is discussed. A process design 

for using the software prototype is also discussed.  From here on, the chapter refers to 

parameters in the term “hyper-parameters” as meaning the parameters used to configure the 

machine learning model. 

6.2 Hardware and Software Tools 

This section covers details of the hardware and software used in the development of the 

intelligent model and the prototype used in evaluation. 

6.2.1 Hardware Description 

The hardware details used in the development of the system are stated in table 6.1. The 

development and simulation environment involved a Windows 10 64bit platform running an 

Oracle VirtualBox virtual machine. The virtual machine provided the environment to install 

and run the NS3 network simulation software, which was used to simulate the wireless sensor 

network scenarios. 

Table 6-1 - Details of the hardware used in development of the intelligent model and prototype 

Specification Detail 

Intelligent Model & Prototype  

Platform/Operating System Windows 10, 64-bit (x64) 

Processor Intel Core i5-6440HQ CPU @ 2.60 GHz 2.59 GHz 

RAM 32.0 GB  

Hard Disk Drive 250 GB (70 GB Free) 
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Web Server Linux 4.16.10-300.fc28.x86_64 x86_64 

  
 
 
 

 

Simulation Software  

Platform/Operating System Windows 10 – 64-bit (x64) /  
Ubuntu 18.4 LTS (Virtual Machine in Oracle VirtualBox) 

Processor Intel Core i5-6440HQ CPU @ 2.60 GHz 2.59 GHz 

RAM 32.0 GB  

Hard Disk Drive 250 GB (70 GB Free) 

 

6.2.2 Software Tools Description 

The details of software tools used for the development of various software components 

of the system are described briefly in table 6.2, categorised according to the software 

component. The flexibility of simulation environment, i.e., NS3, enabled the development of 

WSN models and automatic parsing of output data based on specific formats, which required 

minimal pre-processing before ML model training.  

Table 6-2 - Details of the software used in development of the intelligent model and software prototype 

Specification Detail 

Intelligent Model & Prototype  

Development Environment PyCharm 2020.2.3 (Community Edition) 

Programming Language Python 3.6 

Software Frameworks/Modules TensorFlow 2.3.1, Keras 2.4.3, NumPy 1.19.4, Pandas 1.14, 
Matplotlib 3.3.2, CSV, Scikit-learn 0.23.2  

Programming Language, Scripting HTML, CSS, JavaScript, Python Django 

Simulation Software  

Simulation Environment Network Simulator (NS3) 

Simulator Version NS3.29 (ns-allinone-3.29) 

Programming Language C++ (gcc), Python 

Development Environment (IDE) Eclipse, Visual Studio Code 

Frameworks/Namespaces C++ standard libraries, ns3 libraries (NS3) 
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The software prototype stands as a separate component of the system and only queries 

the intelligent model for recommendations based on single sample use cases. Though useful, 

its evaluation was already captured in the various evaluations that are captured in the 

following chapter. Nonetheless, it’s design and development were included in order to 

provide an initial stage to future integrations to the intelligent model via REST APIs for 

instance. It was designed to be hosted on a web server, which was based on the Python 

Django framework. Based on this implementation, an interface could be created for a human 

user to directly query the intelligent model for its recommendation. However, it is important 

to note that the typical scenario that would consume the services of the model would be more 

of machine-to-machine (M2M) communications. 

6.2.3 Development Challenges and Constraints 

With regards to the software details presented in table 6.2, a few constraints were 

encountered during the simulation and data gathering process and this are discussed below: 

• NS3 Simulation Environment:  

o Installation Environment: the prescribed installation platform for the NS3 simulation 

tool as a Linux environment. Though, a few other equivalent simulation tools were 

discovered, NS3 was chosen for its single language platform and ease of data 

manipulation within the same environment. It was also a preferred simulation tool in 

wireless sensor networks research. 

o Programming Language: the programming language of the tool is C++. Its 

predecessor, NS2, included two different developing models, one based on C++, and 

the other a scripting environment, enabled automation of certain parts of model 

development. NS3, being based on C++, required some of such components to be 

developed manually, increasing its complexity. However, further support for NS2 had 

been stopped, and it was advisable to use NS3 instead in order to ensure the relevance 

and usability of the experiments. 

o Steep Learning Curve: use of the NS3 tool required preliminary knowledge of certain 

radio technology theory, such as the workings of TCP/UDP sockets and their 

lifecycle, and the technical differences between 2.4 GHz and 5 GHz WIFI bands with 

respect to transmission distance, etc. This requirement caused a few delays in the 

simulation phase of the study. 
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6.3 Source Code Framework 

Based on the simulation environment, i.e. NS3, the source code development language 

was C++, and thus, was inherently based on the object-oriented programming methodology 

(OOP). The high-level class diagram was presented in figure 4.9. Topologies are developed 

as classes and inherit from the top Topology parent class. Thus, common characteristics of 

topologies, such as fieldSize, samplingRate, topologyType etc, and behaviours, such as 

buildTopology and startTransmitting, were built into the parent Topology class. The sub-

classes, such as ClusterTopologyApplication and TreeTopologyApplication, were then 

developed to hold specific topology and technique behaviour. For instance, the techniques of 

Leach and Heed, both cluster-based topologies, were implemented in the 

ClusterTopologyApplication class using methods, which defined their different behaviours. 

Thus, when the Leach technique was simulated, its constraints were applied and its specific 

methods called, such as including its limitations of the percentage of cluster heads in the 

network, as well as its random heads selection approach, which are quite different from the 

approach of the Heed technique, whose cluster heads select considers the remaining energy of 

the sensor nodes. In this way, new techniques could be implemented by simply adding in 

their specific algorithms as methods, and setting their unique property values, which have 

already been inherited from the parent Topology class. The source code thus enables the 

following capabilities, both for this study and future study by other researchers. 

1. It provides a framework that enables the inclusion of an unlimited number of WSN data 

aggregation techniques easily by simply setting values for the parameters and creating a 

new method to define the behaviour of the technique. This provides a possible solution to 

a problem that was realised during literature study, where it was discovered that there was 

a lack of source code for ordinary techniques, such as Leach, Heed and Pegasis. 

2. The source code provides a ready-made environment for further study within the context 

of this research subject. This becomes useful for the sake of enhancing the model 

developed in this study to enhance its results by generating more data or to extend its 

capabilities by including more techniques.  

3. In addition to 2, due to the capabilities of development environment, it is also possible to 

integrate the intelligent model (or other model) directly to the simulated WSN 

environment, in order to directly apply the recommendation of the intelligent model into 

the network, while also providing a real-time visualisation component to show the impact 

of the recommendation. 
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4. It uses a popular wireless sensor network research environment, that is NS3, for 

implementation of the framework, which especially stands out of the available simulators 

because it uniquely enables parameterised experiments, which run within a fast 

development environment, that is C++. 

6.4 Intelligent Model 

This section covers the intelligent model’s implementation based the tools mentioned in 

the last section. It covers the implementation, data pre-processing stages, training, testing and 

evaluation. 

6.4.1 Implementation 

This section discusses the implementation details of the intelligent model. The ML 

model consists of a multi-layer artificial neural network (ANN), which initially had three 

hidden layers, including its input and output layers and applies ReLU and SoftMax activation 

functions on appropriate layers. The initial configuration of the ML model was guided by 

values used in corresponding experiments (Almiani et al., 2020; Diro and Chilamkurti, 2018, 

2018; Hasan et al., 2019; Otoum et al., 2019).  

Table 6.3 provides some detail on the initial settings for various hyper-parameters of 

the model.  

Table 6-3 – Initial configuration for the hyper-parameters for the machine learning model. the eventual settings 
are discussed in the next chapter. 

No Parameter Description 

1.  MLAlgorithm Multi-layer Artificial Neural Network (ANN) 

2.  Programming Language Python 3.6 

3.  Modules and Frameworks TensorFlow 2.0 / Keras 

4.  Input layer units 10 (this was modified based on the included attributes, thus 
serving as features) 

5.  Output Layer Units 4 

6.  Number of hidden layers 3 

7.  Hidden layer neuron count Layer 1 – 340, Layer 2 – 512, Layer 3 - 240 

8.  Activation Functions ReLU (Hidden Layers) 
SoftMax (Output) 

9.  Optimizer Adam, RMSProp 

10.  Number of samples 216,000 samples 

11.  Epochs 1,000 

12.  Batch Size 10,000 

13.  Learning Rate 0.03 
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6.5 Accuracy Tests 

A few accuracy tests and benchmark metrics were selected for evaluating the intelligent 

model. The separate instruments are discussed the following section. 

6.5.1 Accuracy Score 

The accuracy score methods are described below. A transformation of this is used to evaluate 

every step of the training process. These instruments are included by standard in the Keras 

framework (Bangotra et al., 2018). 

• Root Mean Square Error (RMSE) - represents the standard deviation of the prediction 

errors. This indicates the spread of correct predictions with respect to the right 

predictions. It is represented by the following equation. 

 
𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 =  

1
𝑎𝑎�

� �𝑦𝑦𝑎𝑎 −  𝑦𝑦𝚥𝚥��
2𝑐𝑐

𝑗𝑗=1
 

Equation 42 

where n is the sample size, j is used as a counter, 𝑦𝑦𝑎𝑎 represents the right prediction, 𝑦𝑦𝑗𝑗 

represents the prediction, and �𝑦𝑦𝑎𝑎 −  𝑦𝑦𝚥𝚥��
2
 represents the squared difference between 

the right prediction and the predicted value.  

• Mean Absolute Error (MAE) represents the error between the predicted and the right 

prediction. It is represented by the following equation. 
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Equation 43 

where n is the sample size, j is used as a counter, 𝑦𝑦𝑎𝑎 represents the right prediction, 𝑦𝑦𝑗𝑗 

the predicted value, and �𝑦𝑦𝑎𝑎 −  𝑦𝑦𝚥𝚥� � represents the absolute value of the difference 

between the right and predicted values.  

 

The accuracy plots of the machine learning model, based on a set of hyper-parameter 

settings, are discussed in more detail in the next chapter, where the values generated are 

plotted in a graph for easier assessment. 

6.6 Evaluation Metrics 

The evaluation of the intelligent model is performed in the next chapter. It is performed 

by submitting various selected application scenarios, while the recommendations are 

evaluated based on the ground truth. In the next chapter, various metrics shall be used in the 
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initial evaluation of the performance of the intelligent model. This section discusses the 

details of some of these metrics. The confusion matrix as well as the Precision and Recall, 

are two common benchmarks used in the evaluation of machine learning models (Bangotra et 

al., 2018; Hooda et al., 2018). The confusion matrix metric classifies model responses into 

TP (true positive, FP (false positive), TN (true negative, and FN (false negative, a 

combination that dictates the performance of the model (Otoum et al., 2019). The equations 

used for defining these benchmarks are obtained by the following computations: 

 

𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝑟𝑟𝑎𝑎𝑒𝑒𝑦𝑦 =
𝑇𝑇𝑟𝑟𝐴𝐴𝑓𝑓𝑃𝑃𝑇𝑇𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑣𝑣𝑓𝑓 + 𝐹𝐹𝑎𝑎𝑓𝑓𝑠𝑠𝑓𝑓𝑁𝑁𝑓𝑓𝐹𝐹𝑎𝑎𝑡𝑡𝑓𝑓𝑣𝑣𝑓𝑓

𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑓𝑓 𝑁𝑁𝐴𝐴𝑚𝑚𝑏𝑏𝑓𝑓𝑟𝑟 𝑇𝑇𝑓𝑓 𝑆𝑆𝑎𝑎𝑚𝑚𝑓𝑓𝑓𝑓𝑠𝑠  Equation 7.1 

The Precision and Recall metrics are also computed using equations 7.2 and 7.3. 

𝑃𝑃𝑟𝑟𝑓𝑓𝑒𝑒𝑓𝑓𝑠𝑠𝑓𝑓𝑇𝑇𝑎𝑎 =
𝑁𝑁𝑇𝑇 𝑇𝑇𝑓𝑓 𝐶𝐶𝑇𝑇𝑟𝑟𝑟𝑟𝑓𝑓𝑒𝑒𝑡𝑡 𝑃𝑃𝑇𝑇𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑣𝑣𝑓𝑓 𝑅𝑅𝑓𝑓𝑠𝑠𝐴𝐴𝑓𝑓𝑡𝑡𝑠𝑠
𝑁𝑁𝑇𝑇 𝑇𝑇𝑓𝑓 𝐶𝐶𝑓𝑓𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟 𝑃𝑃𝑇𝑇𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑣𝑣𝑓𝑓 𝑅𝑅𝑓𝑓𝑠𝑠𝐴𝐴𝑓𝑓𝑡𝑡𝑠𝑠 Equation 7.2 

𝑅𝑅𝑓𝑓𝑒𝑒𝑎𝑎𝑓𝑓𝑓𝑓 =
𝑁𝑁𝑇𝑇 𝑇𝑇𝑓𝑓 𝐶𝐶𝑇𝑇𝑟𝑟𝑟𝑟𝑓𝑓𝑒𝑒𝑡𝑡 𝐶𝐶𝑓𝑓𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟 𝑃𝑃𝑇𝑇𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑣𝑣𝑓𝑓 𝑅𝑅𝑓𝑓𝑠𝑠𝐴𝐴𝑓𝑓𝑡𝑡𝑠𝑠

𝑁𝑁𝑇𝑇 𝑇𝑇𝑓𝑓 𝐴𝐴𝑓𝑓𝑓𝑓 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎𝑡𝑡 𝑆𝑆𝑎𝑎𝑚𝑚𝑝𝑝𝑓𝑓𝑓𝑓𝑠𝑠  Equation 7.3 

 

The next section discusses the software prototype application.   

6.7 Software Prototype  

This section covers the design of the software prototype and discusses its architecture 

and implementation, including its UI and process flow. As discussed earlier, the evaluation of 

the intelligent model already captures the functionality that would have been performed via 

the prototype, since it also intrinsically covers for singular scenarios.  

6.7.1 Software Implementation 

A high-level illustration of the software prototype workflow is shown in figure 6.1. It 

shows the important components and the flow of communications between them. The user 

interface provides specific fields with drop downs based on a set of expected values for a 

specific scenario.  

Figure 6.1 illustrates the flow of the application. The circled numbers represent the different 

stages of the process and enable a step-by-step interpretation of the process flow.  This figure 

contains other components that the current user interface does not include, such as an 

integration with a live or virtual WSN network. Circle 1 (stage 1) represents the reporting or 

user monitoring station, where queries or requests are submitted to the ML model. Stage 2 



168 
 

represents the set of requirements that have been submitted by the user, or that have been 

collected from an application’s context. Stage 3 represents the intelligent model. The details 

of the appropriate input parameters are discussed in table 6.4. The output of stage 3 is the 

recommended technique.  

The Recommended Technique box holds the best technique for consumption by the 

network or the user interface. It could be represented by publish/subscribe system, or as a 

distributed service across the nodes in the network. However, the diagram illustrates that a 

user can enter the details of a selected WSN network application, and the model can 

dynamically predict the best technique for the scenario. The diagram also indicates that the 

user should be able to visualize the impact on the network based on the entered details for the 

scenario and based on the selected network objective (i.e., energy, bandwidth, or latency in 

this case). In the figure, box 5 represents the network of nodes. These are expected to receive 

an update for the best technique given the conditions and being smart devices, are expected to 

self-configure themselves to use the recommended technique. 

 

Figure 6-1 - Architecture of the prototype software application. This includes the intelligent model being used in a 
typical scenario query situation to obtain a recommendation for the best data aggregation technique. 
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6.7.2 Application User Interface 

The user interface of the software consists of a web interface with certain fields, where 

a user is expected to select options to submit a query to the model. The user is also able to 

visualize the recommendations from the model. The expected fields on the interface are 

discussed in table 6.4. Rows 10 to 30 are alternative fields that could also be included in 

future improvement to the model where more features could be added to improve the training 

of the model. These are not included in the training feature list. 

Table 6-4 - Description of fields shown on the ML model query UI (and used in intelligent model training). The 
table includes all fields identified as applicable for training the model, while the selected fields used to train the 
model are shown in bold. The selected fields were found to have high correlation to the technique, as well as 
being measurable easily for entering into the user interface. 

S/N Field Name Description Included for 
Prototype UI 

1.  Scenario Name Enables a label for the submitted scenario or 
sample. Included 

2.  Number of nodes 

This represents the average number of nodes in a 
scenario. It is expected that the number of nodes 
should be equivalent to the size of the network, 
unless the nodes have high-powered sensors or 
otherwise, the network consists of heterogenous 
nodes with various capabilities 

Included 

3.  Sampling Rate / Interval 

The average sampling rate or interval represents 
the expected the sampling rate expected in a 
selected scenario. This could change based on 
the event state or classification as defined in 2. 

Included 

4.  

Objectives 
(Energy Consumption, 
Bandwidth Consumption, 
Latency) 

Accepts a value that indicates the importance of 
each attribute to the application context. Included 

5.  Packets  This represents the number of packets sent in 
communication between the sensor nodes Included 

6.  Packet Size This represents the size of the packets send 
between nodes in the network Included 

7.  Initial Energy This represents the initial energy of the nodes in 
the network Included 

8.  Field Size This represents the size of the deployment field 
of the network of nodes Included 

 

The next set of variables were also identified as plausible entry values for the model, however for 
future enhancements to the model. They represent valid data that could be used to train as well as 
query an intelligent model serving the same purpose as that developed in this study.  
This study does not, however, include them. 

9.  Classification 

Indicates one of two states in which the scenario 
can be categorised – Detection or Monitoring. 
An event moves from monitoring to detection 
when a trigger threshold has been reached. 

Not Included 
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10.  Physical Sensor Topology 
Selection of the physical distribution of the 
sensors (i.e. Random Sparse, Random Dense, 
and Ordered Linear)  

Not Included 

11.  Physical Network 
Topology 

Selection of the closest physical network 
topology to the scenario (i.e. Star, Mesh, Bus, 
etc.) 

Not Included 

12.  Physical Network Size 

Represents the average size of the network. 
Values used include Room, Apartment Block, 
City, in order to provide an average size 
representation to the user 

Not Included 

13.  Sink/Base Station Distance 

Represents the distance of the reporting station 
or base. Like physical network size, the values 
used include Room, Apartment Block, City, in 
order to provide an average size representation to 
the user. This feature could also be referred to as 
sink reception distance. 

Not Included 

14.  Environment 

This determines the immediate environment of 
the network. For instance, it attempts to 
distinguish deep sea monitoring from ground-
surface or in-space monitoring, which all have 
different characteristics. 

Not Included 

15.  Variable 

This attempts to identify commonalities between 
scenarios, such as gas for CO2, NO2, CO 
monitoring, temperature for body temp, air temp 
monitoring, etc. 

Not Included 

16.  Location Awareness  
This toggle indicates whether the application or 
scenario requires location awareness, thus, 
requiring location awareness among nodes 

Not Included 

17.  Aggregation Type 

Selection of one of the prominent aggregation 
functions (i.e. ADD, DIV, COUNT, MAX, etc.). 
This is usually defined by the scenario or 
application use case. 

Not Included 

18.  Minimum Energy 
consumption 

Defines the relevance of energy consumption as 
an objective to the scenario, thereby highlighting 
this to the ML model 

Not Included 

19.  Minimum Bandwidth 
consumption 

Defines the relevance of bandwidth consumption 
as an objective to the scenario, thereby 
highlighting this to the ML model 

Not Included 

20.  Minimum Latency 
Defines the relevance of latency as an objective 
to the scenario, thereby highlighting this to the 
ML model 

Not Included 

21.  Required Connectivity 

Represents a binary list of connectivity 
requirements (i.e. Partial, and Full). Some 
scenarios require partial connectivity among 
nodes (e.g. earthquake) especially when they are 
homogenous nodes, while others require full 
connectivity (health monitoring) especially when 
they are heterogenous nodes. 

Not Included 

22.  Communication Algorithm 

Represents the structure of communication, i.e. 
one of Hierarchical, Flooding or Diffusion. This 
is a characteristic of the DA technique used in a 
scenario. 

Not Included 
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23.  Sensing Trigger 

Represents the type of trigger relied on to trigger 
data collection in the scenario. It could have 
values o Query, Event, Real-time or Hybrid. 
This is characteristic of the scenario. 

Not Included 

24.  Homogenous Nodes 
The binary toggle indicates if the set of notes are 
of whether the network consists of homogenous 
nodes. This is default for this study 

Not Included 

25.  Periodic Reporting  Indication of whether periodic reporting is used Not Included 

26.  Event Reporting Indication of whether event reporting is used Not Included 

27.  Location Awareness Indication of whether location awareness is 
required 

Not Included 

28.  Node Mobility Indication of whether node mobility is required Not Included 

29.  Sink Reporting Mode 

Selection of the physical mode of reporting to 
the sink (for instance, Many-to-one in 
earthquakes via sensor to satellite links, and one-
to-one in undersea monitoring systems via linked 
sensor networks) 

Not Included 

 
Figure 6.2 presents a snapshot of what the web-based client would look like. It features only 

the selected fields, which will need to be filled in by the user. 
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Figure 6.26-2 - Web-based user interface for the prototype application, which consumes services from the 
intelligent model. 

 
6.7.3 Application User Process Flow 

This section discusses the proposed workflow of the software prototype from the 

user’s perspective, and according to figure 6.2. This is split into two flowchart diagrams in 

figure 6.3 to enhance visualisation. The flows include the query submission and subsequent 

recommendation.  
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Figure 6.3 – Flowchart diagrams 1 and 2 showing the user experience process flow for the application.  
In the left flowchart, the user selects options provided on the interface. A background thread runs to collect the 

current entries and submits to the ML model for recommendation. The results are presented in the 
recommendation results interface. 

The above flows are prescriptive process flows for the prototype software that runs above the 

intelligent model, enabling a human user to query the model for a technique recommendation. 

This could be adjusted for real-time query from a realistic wireless sensor application where 

the services are provided via REST APIs. 

6.8 Summary 
This chapter has covered the implementation design of the intelligent model and 

software prototype. It presented the details of the hardware and software used in the 

implementation, highlighting the constraints and challenges faced with the tools. The 
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contribution of the source code, which forms a framework for the exploration based on this 

study, was also highlighted. Then it discussed the implementation of the machine learning 

model, discussing in detail how the training data was computed. Then it presented the 

training hyper-parameters and the actions taken to obtain optimum values for the training. 

Then architecture of the software prototype, its user interface, and process flows are also 

presented. The next chapter covers the build, testing and evaluation of the intelligent model. 

In summary, this chapter accomplishes the contribution of Prototype Framework and Source 

Code. 
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7 Intelligent Model Testing and Evaluation 

7.1 Overview 
This chapter discusses the evaluation of the intelligent model based on various single 

and complex scenarios. The design and development of the intelligent model was discussed 

in chapters 4, 5, and 6. The last chapter covered the implementation design of the intelligent 

algorithm, the hardware and software environment and the software prototype. This chapter 

discusses the evaluation of the intelligent model based on several WSN application scenarios 

and presents these results in corresponding graphical plots.  
 

7.2 Scenario Use Cases and Features 
The training of the intelligent ML model was based on a set of features. For 

completeness, these features are also listed below: 

• Objective: the objective of the WSN application 

• Number of Nodes: the number of participating nodes in the application 

• Field size: the field size of the application  

• Packet size: the size of packets used in communication  

• Packets: the number of packets transmitted between nodes  

• Time: the time instance of the data sample  

• Technique: he best technique applicable to the instance  

• Benefit Value: the benefits value for selecting the best technique over the rest 

During the lifetime of wireless sensor network application, a few features could remain 

constant, such as the number of packets and the packet size. However, due to various 

environmental factors, such as a change in sapling rate requirements, any of these could 

change mid-lifetime. The intelligent model is expected to detect these changes and to make 

recommendations dynamically. The benefit feature in the data, as shown in the list above, 

represents the benefit of selecting the best technique, if compared to the selected technique in 

the data. This implies that while a non-optimal technique is in operation, this field represents 

the value or benefit of switching onto the best technique for that scenario.  

7.3 Intelligent Model Testing and Evaluation 

This section discusses the training process of the model and provides certain 

benchmark scores. As a reminder, it was mentioned in the last chapter that the Python Keras 
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framework was used to build the intelligent model using an Artificial Neural Network 

(ANN).  

 

7.3.1 Dataset Details 

Table 7.1 describes the statistics of the data used in training, testing and evaluating the 

intelligent model. This refers to the unique data samples, and the number of scenarios that 

were represented in the data. The distribution of the dataset is described in table 7.2. 

 
Table 7-1 - Intelligent Model Training Data Information. The data used for the various test and evaluation use 
cases represent unrepeated data from the data that was withheld from the original data sample, and that was not 
used in the training process. 

Data Summary / Use Case Value 

Total Data Samples 43,179 samples 

Total Unique Scenarios 905 scenarios 

Data Per Scenario Approximately 50 records per scenario 

Model Development 41,117 (of total 43,179 samples) 

Model Training Samples 32,890 samples (of 41,117 samples) 

Model Testing Samples 8,227 samples (of 41,117 samples) 

Evaluation Samples 2,062 samples (of total 43,179 samples) 
   

Table 7-2 - Set of experiments carried out to evaluate the performance of the intelligent model 

No Experiments Description 

1 
Single Scenario/Metric 
Evaluation  
(Energy Consumption) 

50 samples – a single scenario that was evaluated 
based on a WSN application objective of energy 
consumption 

2 
Single Scenario/Metric 
Evaluation 
(Bandwidth Consumption) 

50 samples – a single scenario that was evaluated 
based on a WSN application objective of bandwidth 
consumption 

3 
Single Scenario/Metric 
Evaluation 
(Latency Consumption) 

50 samples – a single scenario that was evaluated 
based on a WSN application objective of latency 

4 
Multiple Scenario 
Evaluation 
(3 scenarios) 

150 samples (50 x 3) – a scenario of 3 combined 
scenarios used to evaluate the model 

5 Model Performance 
Evaluation 

980 samples – large sample used in evaluation to 
compare the model performance to the state of art 
and the use of a single technique throughout the 
WSN lifetime. 
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6 Realistic Scenario 
Evaluation 

3 unique scenarios representing realistic 
environments used to evaluate the model as done in 
No. 5 

 

The rest of the chapter covers the details of the experiments carried out to evaluate the 

intelligent model as discussed in table 8.3. 

 

7.3.2 Hyper-Parameters Details and Model Topology 

Table 7.3 presents the final hyper-parameter values used to train the machine learning 

model. These were finalised after applying a grid search process using Python Keras’ 

GridSearch. The hyper-parameters used to train the model are presented in table 7.3 below: 

 

Table 7-3 - Final hyper-parameters used for the intelligent model 

No Parameter Description 
1.  Input layer units 11 

2.  Output layer units 4 - (4 binary units used to represent the four 
techniques – Leach, Heed, Pegasis and Dbst) 

3.  Number of hidden layers 3 

4.  Hidden layer nodes 
specification Layer 1 – 500, Layer 2 – 1000, Layer 3 - 400 

5.  Activation Functions ReLU (Hidden layers) 
SoftMax (Output layer) 

6.  Optimizer Adam 
7.  Number of samples 41,117 samples 
8.  Epochs 600 
9.  Batch Size 1000 
10.  Learning Rate 0.1 
11.  Initializer uniform 

 

Table 7.4 presents the details of the model after the build process.  

Table 7-4 - Details of the model after build, later used in the training process 

Layer (type) Output Shape Param # 

Input layer (11 nodes)  

dense_1 (Dense) (None, 500) 6000 

dense_2 (Dense) (None, 1000) 501000 
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dense_3 (Dense) (None, 400) 400400 

dense_4 (Dense) (None, 4) 1604 

Total params: 909, 004 
Trainable params: 909, 004 
Non-trainable params: 0 

 

7.3.3 Model Training, Accuracy and Benchmark Measurements 

Once training was performed based on the above specifications, an accuracy trend 

graph was generated. This is presented in figure 7.1. the graph represents a starting gradual 

learning phase, which became steeper in the middle stage of the training process. Beyond the 

middle stage, the training process started to level off to a plateau albeit a few perturbations. 

Noticeable are frequent spikes in the training process that indicate a sudden drop in accuracy. 

It was suspected that the reason for this was based on the use of a feature that was 

uncorrelated with the rest of the data, or perhaps an outlier. However, the subsequent 

performance of the model was considered enough for the purposes of this study. 

 

 
Figure 7-1 - Training accuracy progression plot for the intelligent model.  

Training starts slowly and gradually climbs into a plateau with a few sharp perturbations. 

 

The following tables present various benchmark metrics of the intelligent model. Table 7.5 

presents the confusion matrix of the model and indicates that the model does have high scores 

for predictions for each class, compared to wrong predictions. 
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Table 7-5 - Model evaluation by the Confusion Matrix with 980 samples (using Python Scikit-learn library) 

Benchmark  Dbst Heed Leach Pegasis 

Dbst 221 7 11 5 

Heed 7 224 5 8 

Leach 11 8 219 9 

Pegasis 5 12 7 221 
 

Table 7-6 - Computations based on Confusion Matrix 

Benchmark / 
Evaluation Computation Algorithm Result 

Accuracy (TP + TN) / Total 
(221 + 224 + 219 + 221) / 979 0.903 

Error Rate (FP + FN) / Total 
95 / 979 0.097 

Classification 
Report Not applicable 0.870750273145905 

 

Table 7.7 shows the Cohen’s Kappa score, which depicts a measure of how well the model performed 

compared to how well it would have performed simply by chance. These scores were generated from 

the Python Scikit-learn library. The scores shown in table 7.7 indicate that the model does perform 

well in terms of accuracy, which corresponds to the accuracy score in table 7.6. The scores for the 

precision shows that the model has a high score for correctness when the recommended technique 

happens to be the ground truth. The recall scores also indicate a high accuracy for the model when it 

recommends the exact class when this happens to be the ground truth. 

Table 7-7 - Model evaluation based on Cohen's Kappa Score (Python Scikit-learn library) 

Class Precision Recall F1-Score Support 

Leach 0.90 0.89 0.90 247 

Heed 0.89 0.92 0.91 244 

Pegasis 0.91 0.90 0.91 245 

Dbst 0.91 0.91 0.91 244 

     

Average 0.90 0.90 0.90 980 

Macro Avg. 0.90 0.90 0.90 980 
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Weighted Avg. 0.90 0.90 0.90 980 
 

The rest of the chapter presents plots illustrating the performance of the model.  

7.4 Model Evaluation 
This section discusses the evaluation of the model with respect to selected scenarios. The 

plots of the evaluations using the selected scenarios are shown later in this chapter. Most of 

the test data used in the following experiments are non-repeating. The experiments were 

carried out by submitting scenario data to the model in a “input-stream” form, while the 

model provided recommendations in an “output-stream” form, which could then be scored 

based on accuracy.  

 

7.4.1 Baseline Performance 

The following evaluations shall rely on a base performance defined by state-of-the-art. 

As a reminder, the state of the art consists of the current data aggregation approach used in 

WSNs. which consists of the use of a single DAT through the lifespan of an application, 

irrespective of changing context. Thus, the base performance is that obtained in such 

scenarios where the “preferred” technique is used across the WSN for a given scenario. This 

shall be used as reference in the following evaluations and usually be presented in 

comparison to the performance obtained from the application of the intelligent model.  

 

7.4.2 Energy Consumption, Bandwidth Consumption and Latency 

This section covers the evaluation of the model based on chosen network metrics, 

which include energy consumption, bandwidth, and latency. The dataset used in this 

experiment consisted of 3 randomly selected scenarios from the dataset. The accuracy scores 

represent the score obtained based on data from the scenarios. The experiment is used to 

represent random ubiquitous application scenarios where the objective changes over time 

during the lifetime of the application. The plots are based on the timescale of the event. The 

flat tops of the graphs indicate accurate prediction, while drops indicate inaccurate 

predictions. Thus, the graphs were plotted based on accurate vs inaccurate predictions, where 

accurate predictions were given a value of 1, while inaccurate predictions were given a value 

of 0. 
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Figure 7.2 shows the model’s performance based on the metric of energy consumption. 

The figure indicates that an accuracy of 79.310% was obtained for this evaluation. Following 

this, figure 7.3 shows similar evaluation for bandwidth consumption with an accuracy score 

of 83.33%, while figure 7.4 shows the same evaluation for latency with a score of 77.083%. 

 
Figure 7-2 - Plot of model performance for single scenario for energy consumption. 

Accuracy: 79.310% 

 

 
Figure 7-3 – Plot of model performance for single scenario for bandwidth consumption.  

Accuracy: 83.33% 
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Figure 7-4 – Plot of model performance for single scenario for latency.  

Accuracy: 77.083% 

 

Figure 7.5 shows the performance of the model based a combination of three different 

scenarios, consisting of a change in the number of nodes and a change in the interval or 

sampling rate. Such scenario data could be used to represent a change in the number of nodes 

while the event is active, and then a change in the sampling rate, such occurs when a lower 

frequency event (an Earthquake for instance) triggers need for a higher frequency event (a 

Tsunami). As is observable from the accuracy score, the model performs substantially better 

than the base performance. 

 
Figure 7-5  - Plot of model performance for multiple scenarios with changing data: nodes (10, 20),  

intervals (0.01, 0.001, 0.0001), packets=20, packet size=64, initial energy=1J, field size=50  
Accuracy: 86.046% 
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Figure 7.6 presents the performance of the model based on a different set of random 

selection of the dataset consisting of four different scenarios specifically selected based on 

varying scenario objectives. The model achieves an accuracy of 90.306% in detecting the 

best technique based on a combination of all the objectives. Only a subset of the data is 

shown in this figure to reduce the clutter and to present a visual representation of the 

performance. 

 
Figure 7-6 - Model performance for selected evaluation data.  
X-axis indicates scenario time instances. Accuracy: 84.5% 

Figure 7.7 summarises the performance of the model based on the five discussed use 

cases, i.e., energy consumption, bandwidth consumption, latency, changing characteristics 

and set of random scenarios. None of these use cases used repeated data selected from the 

testing data pool. Each bar in figure 7.7 includes the accuracy of the model given the use 

case, as shown in the past graphs. It can be observed that the model performs better with 

bandwidth consumption than it does for both energy consumption and latency. However, with 

a score of 74.509% for energy consumption, it is assumed that its use would immensely 

minimise the waste in resources in using a technique that does not perform optimally in 
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mixed scenarios. 

 
Figure 7-7 - Model performance across various use cases:  

(i) energy consumption as objective, (ii) bandwidth as objective, (iii) latency as objective,  
(iv) combined dynamic scenarios, and (v) separate larger random evaluation data.  

 

7.4.3 Model Performance Compared to State-of-the-Art Approaches 

The following graphs illustrate the performance of the model as compared to the 

current state of the art. In the state-of-the-art approach, a single technique is applied 

throughout the lifespan of an application. To recap discussions presented earlier in the study, 

this constraint is usually due to the environment in which WSNs are deployed, which could 

be inaccessible or uncontrollable by humans. However, during the lifespan of an application, 

various characteristics could change, such as the number of active nodes and the sampling 

rate. A single active technique used throughout the lifespan could, in different states, be 

found to be ineffective or to perform sub-optimally. 

The following graphs present a comparison between the performance of the state-of-

the-art approach against performance of the intelligent model (ML). In order to provide a 

visual representation of the performance, the plots are shown in bar charts. 

 

The objective of the next set of graphs is to evaluate the model based on three specific 

use cases, as listed below: 

• The performance based on an application of a single technique (each of Leach, Heed, 

Pegasis and Dbst) across the entire dataset 

• The performance based when the best technique is selected for each of the scenarios 
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• The performance based on when the intelligent model is used to determine the best 

technique 

Based on the above list, the plots in figures 7.8, 7.9, 7.10, 7.11, 7.12 and 7.13 represent six 

out of 111 scenarios, which were selected from 980 sample records. These are shown to 

provide a representation of the performances obtained from scenarios when the best 

techniques are used. 

 
Figure 7-8 - Single scenario selected from dataset illustrating best technique performance for given scenario 

(nodes:10, packets:20, packet_size:128 bytes, field_size: 30.0 m2, interval: 0.1s, initial_energy: 10J) 

 

 
Figure 7-9 - Single scenario selected from dataset illustrating best technique performance for given scenario 

(nodes:100, packets:100, packet_size:256 bytes, field_size: 100.0 m2, interval: 0.001s, initial_energy: 1J) 
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Figure 7-10 - Single scenario selected from dataset illustrating best technique performance for given scenario 

(nodes:30, packets:50, packet_size:128 bytes, field_size: 50.0 m2, interval: 0.01s, initial_energy: 10J) 

 

 
Figure 7-11 - Single scenario selected from dataset illustrating best technique performance for given scenario 

(nodes:100, packets:100, packet_size:128 bytes, field_size: 150.0 m2, interval: 0.0001s, initial_energy: 10J) 
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Figure 7-12 - Single scenario selected from dataset illustrating best technique performance for given scenario 

(nodes:100, packets:100, packet_size:512bytes, field_size: 150.0 m2, interval: 0.001s, initial_energy: 1J) 

 

 
Figure 7-13 - Single scenario selected from dataset illustrating best technique performance for given scenario 

(nodes:50, packets:50, packet_size:1024 bytes, field_size: 100.0 m2, interval: 0.01s, initial_energy: 10J) 

 

It is obvious from figures 7.8, 7.9, 7.10, 7.11, 7.12 and 7.13 that the best techniques hold a 

higher score than the rest of the techniques in the scenarios. However, it is not in all cases 

that they perform at a 100% score for each scenario. This gap is one aspect that is supposed 

to be improved by the intelligent model. 

Figure 7.14 shows the combined performance of the above graphs (based on the entire data), 

the application of single techniques across the entire data, and the performance obtained 
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when the intelligent model is used. It indicates the techniques provide on average a quarter 

performance across the dataset, while the use of the best techniques performs as high as 

70.74% combined. This represents the state of the art, where the preferred technique is 

selected at the start of a scenario. In retrospect, the additional limitation in the state of the art 

includes that the active technique cannot be changed when scenario characteristics change, a 

capability provided by the intelligent model.  

The intelligent model provides a performance of 90.306%, which is approximately 20% 

higher than the performance of the state-of-the-art approach. But in addition to this 

performance, there is the additional benefit of dynamism and speed of selection based on 

using the intelligent model. 

Figure 7.14 shows a combined overview of the comparative performance of all approach’s 

above, including with the intelligent ML model. 

 
Figure 7-14 -  Plot showing a comparative visualisation of the performance of various use cases –  

(i - iv) single technique approach (v) state of the art approach, (vi) intelligent model approach. 

 

7.4.4 Realistic Multiple Use Case Scenario and Performance Comparison with Best 

Performing Technique 

This section investigates the evaluation of the model based on a selected realistic use 

case. A similar analysis is performed as done in the last section. The term “realistic use case” 

as used here describes the set of values assigned to certain features, which replicate the 

typical situation in a realistic scenario. These consist of sampling rate (or interval), number of 
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nodes and the field size. Other scenario parameters (i.e., initial energy, packet size, number of 

packets) are included to ensure that single scenarios are used in each case. 

Table 7.8 presents the pre-selected values for the WSN features, which are used to model 

three realistic use cases. These are selected to represent three scenarios that have a 

relationship described by a progression of events, which change the scenario characteristics 

over time. The linked multiple-scenario use cases include an earthquake event, which triggers 

a wildfire event, and subsequently also triggers a tsunami event. It is assumed that the same 

nodes are deployed and exist within all scenarios, but also expanding in number as the multi-

event widens in field size. it is also assumed the nodes can individually query a source for the 

preferred technique and select this in their configuration. Thus, table 7.8 summarises the 

features which represent a change in circumstances while each event transcends into the next 

event. Specifically, the dynamic features include the number of nodes, interval (or sampling 

rate), and the field size. 

Table 7-8 - Realistic Use Case Analysis (Cells in light grey indicate that the values do not change) 

Event Description Nodes Interval Field Size Packets Packet 
Size 

Initial 
Energy 

Earthquake 
An earthquake requires a 
low sampling rate and slow 
changing field size 

30 0.1 sec 100 m2 50 128 1 

WildFire 

A wildfire involves quick 
spread of the event with 
increasing node 
involvement and increasing 
field size and increased 
sampling rate 

50 0.01 sec 100 m2 50 128 1 

Tsunami 

A tsunami could be 
triggered by an earthquake 
and would involve 
increased field size, 
sampling rate and more 
nodes. 

100 0.001 sec 150 m2 50 128 1 

 

Figures 7.15, 7.16 and 7.17 present the performance based on selecting techniques 

using the state-of-the-art approach, where a dedicated technique is used in the scenario. Thus, 

figure 7.15 shows the performance in the earthquake event. In this figure, the Heed technique 

is considered the best technique and performs better than the remaining techniques with an 

accuracy of 71.42%.  Figure 7.16 shows the same graph for the wildfire event with a score of 

64.286%, while figure 7.17 shows the performance for the tsunami event with a score of 

66.67%. 
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Figure 7-15 - Scenario Earthquake - Best Performing technique – Heed 

 

 
Figure 7-16 - Scenario Wildfire - Best Performing technique – Pegasis 
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Figure 7-17 - Scenario Wildfire - Best Performing technique - Dbst 

 

Similar to the presentation shown in figure 7.14, figure 7.18 shows the combined plots for the 

use cases where the performances are compared between the case where only one technique 

is applied across the entire 3-scenario dataset, when the best technique is applied, as shown in 

figures 7.15, 7.16, and 7.17, and when the intelligent model is applied across the 3-scenario 

dataset. It can be observed here that the intelligent model has a 24.665% improvement over 

the state of the art. As mentioned, this performance comes with related automated ubiquitous 

technique selection and handling of new scenarios. 
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Figure 7-18 - Evaluation of performance of the intelligent model vs the use of initially selected techniques, and 

combined use of best performing technique across realistic use case scenarios 

7.5 Summary 

This chapter has covered the testing and evaluation of the intelligent model. The 

chapter commenced with a discussion of the statistical analysis of the dataset used in training 

the model, as well as the final the hyper-parameters used in training the model. Then the 

training accuracy plot was presented, while the model’s performance based on various 

benchmarks was discussed. The model was evaluated based on various single and complex 

WSN scenarios and the results were plotted in various bar charts. These included the model’s 

performance in recommending techniques given various network performance metrics, such 

as energy consumption, bandwidth consumption and latency.  These were plotted against the 

corresponding performances based on the state of the art, where a single technique was used, 

and when the best technique was selected and used across the entire scenario. The model was 

also evaluated using data that modelled a near-realistic scenario. Substantial model 

performance was observed through-out the evaluations, and this implied enough justification 

for the effectiveness of the intelligent model. 
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8 Conclusions 

8.1 Introduction 
This chapter discusses the study’s aim, and how the results obtained have been able to 

address the questions and objectives. Wireless sensor networks were introduced in early 

chapters, while their limitations with respect to data aggregation, was discussed extensively. 

This research explored ways to optimise the data aggregation performance in such networks 

by exploring their behaviour and identifying the important characteristics to be considered in 

addressing these problems. The research then proceeded to design and develop an intelligent 

model that could accomplish this objective.  

Wireless sensor networks are established to sense and capture data from various 

phenomena in mostly inaccessible environments. The lack of the capacity to adjust based on 

changes within the environment forms a challenge. The aim of this research involved the 

development of a dynamic and adaptive intelligent model that would be able to manage a set 

of smart devices (such as smart sensors) within wireless sensor network applications.  The 

research has explored ways by which intelligence can be integrated into wireless sensor 

networks in order to predict the optimal technique that is best suited to simple and complex 

scenario based on changing characteristics. The significant benefit of this includes being able 

to instantly select the best technique based on the current situations, as well as addressing 

new unseen scenarios, where optimal techniques can also be applied. Inclusive to these 

benefits is the fact that the network requires low maintenance, is self-organising and self-

optimising. 

The rest of this chapter discusses results obtained after various experiments as discussed in 

chapter 7 and relate these to the aim and objectives of the research. It also discusses various 

issues and challenges encountered during this process.  

8.2 Results  
The following results were obtained following this research: 

1. The state of the art consists of the use of a DAT per scenario. This research was able 

to confirm that the existing approach was limited to selecting only one technique for 

the duration of the application scenario. It was discovered the selected technique did 

not perform optimally in all situations. 
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2. It was concluded that there was a strong relationship between the performance of a 

WSN, and the data aggregation technique applied across the network. This implies 

that given an application, with a set of requirements and objectives, there existed an 

opportunity to optimise the network by determining and applying optimal network 

setting.  

3. Wireless sensor network applications (or scenarios) could be defined based on a set of 

characteristics (or features), the values of which directly affect the performance of the 

network while the application is running. This implied that the set of features could be 

used to model the state of a wireless sensor network application or scenario at any 

instant. This fact was important for this research because it supports the need to be 

able to evaluate the performance of the intelligent model, which was expected to be 

able to predict the optimal technique for a given scenario. 

4. Given a scenario, and a set of techniques modelled within a simulation environment, 

it was proven that a single technique may not perform optimally across complex 

wireless sensor network scenarios. This implied that each scenario required a specific 

technique that performed optimally throughout the lifetime of the application. This 

fact was considered important for the research because the association of the data 

aggregation technique with a wireless sensor network was essential for the training of 

a machine learning model to predict a technique given new scenarios consistent with 

the method used in the state of the art, however, more dynamic. 

5. The performance obtained from training a machine learning model with data on 

scenarios and the best techniques appropriate for such scenarios validated the fact that 

an intelligent model could be trained to learn these associations and to predict more 

accurately the right technique for a given scenario. This observation confirmed the 

objective of this research, which had the aim of designing and developing an 

intelligent model, which could dynamically manage a set of smart devices within a 

wireless sensor network application with the objective of optimising the performance. 

This also proves the hypothesis that there exist opportunities for the improvement the 

performance of wireless sensor networks by using an intelligent model which could 

predict optimal data aggregation technique in dynamic WSN scenarios. 

8.3 Research Outcomes 
The objectives of this research were approached systematically, and various 

conclusions were made. These are discussed below: 
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1. Research: after extensive study of literature, it was observed that there was a gap in 

the application of WSNs within various scenarios. The state of the art involved 

selecting a data aggregation technique, which was inherently infused in the hardware 

infrastructure of the network. Because wireless sensor networks are built for single 

unique applications, after deployment, WSNs are left unattended until their batteries 

run out. In this time, the networks are fixed on their data aggregation approach, 

independently of whether it performs optimally or not. Thus, there was a lack of a 

means to optimise the devices once deployed into the field. This provided justification 

to proceed with the research in order to investigate a new approach to optimise the use 

of WSNs within such dynamic environments. 

2. Data: after extensive literature review, it was discovered that WSN applications 

required specific non-changeable techniques to determine their communication 

protocol. This fact was realised during the research and validated via experiments. It 

also formed the fundamental basis by which the new approach could be investigated. 

Thus, an appropriate set of features for this purpose were identified and data 

subsequently generated for a large set of single scenarios, which could be used to 

model various WSN complex scenarios. 

3. Models: Based on data generated in objective 2, models were developed in a 

simulation environment to simulate the behaviour of WSN data aggregation 

techniques. Such models were used to simulate the performance of various 

techniques, which could then be used to assess the performance of the network.  

Based on this combination, various experiments were carried out to select best 

techniques given various complex scenarios. The resultant data was then collected as 

samples for training a machine learning model. This achievement implied that the 

appropriate data could be collected towards training a machine learning model to 

accurately predict optimal techniques for a given WSN scenario.  

4. Intelligent Model: Based on objective 3, an intelligent machine learning model was 

designed and developed based on data generated in simulations involving the already 

developed data aggregation models. These were combined in various algorithms to 

develop a complete WSN network, where the required data could be generated for the 

machine learning model. The data collected at this stage was stored in a database for 

later dynamic querying to train the machine learning model. Afterwards, the model 

was built using a deep learning model.  
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5. Prototype: A working prototype of the model was developed to be able to evaluate its 

performance based on various use cases. It was shown that the model performs 

substantially better than the state-of-the-art approaches. Additionally, it provides an 

opportunity to explore more avenues of creating larger multipurpose systems for 

similar purposes. 

8.4 Contributions 

The following contributions where made based on the aim and objectives of the study:  

1. Detection Needs Analysis Model 

A new methodology was developed for the management of wireless sensor network 

devices within numerous application scenarios which enabled the use of optimal 

algorithms for data aggregation based on the changing characteristics of the 

application. This was developed as a detection needs analysis model, which could be 

applied in future investigations in wireless sensor networks to identify the main 

components and attributes essential for the investigation. 

2. Intelligent Dynamic and Adaptive Model 

A machine learning model was developed that was able to predict the best technique 

given various wireless sensor network application scenarios. The model was designed, 

tested, and evaluated to determine its accuracy, which was found to be impressive 

with respect to the state of the art. As discussed further in the recommendations, this 

model could serve in its current form as a viable recommendation solution, as well as 

providing the opportunity for enhancement by including more data on more 

techniques based on the aim of further studies. 

3. Software Prototype, Framework and Source Code 

A framework that could be used to model new data aggregation techniques within the 

Network Simulator 3 simulation environment. This becomes important for the fact 

that there were limited sources for written code for the implementation of primary 

data aggregation techniques. the contributions consist of the following. 

a. Source code framework for the dynamic development of new WSN data 

aggregation techniques in NS3 simulation environment 

b. Dataset generated from experiments can be reused by other researchers 

c. Software prototype design for integration of the intelligent model for a web-

based single query interface via RESTful API integration. 
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d. Data generation approach based on NS3 simulator 

4. Research Study’s Experiments 

The conclusions of this research study are made based on the experimentation. These 

have provided further understanding about the development of an intelligent model to 

dynamically optimise wireless sensor networks. is The implementation and evaluation 

are also important contributions to the field in terms of exemplifying control 

automation and optimisation.  

5. Applicability of Research Study’s Outcome and Deliverables 

The outcome of this research contributes to the knowledge base, which supports that 

devices can be manufactured with sufficient intelligence to be able to self-optimise in 

any given wireless sensor-driven environment.  This has far reaching impact within 

academia and industry, where the minimisation of resource consumption is an 

important factor to the system’s operation.  

  

8.5 Limitations and Recommendations 

8.5.1 Limitations 

This study presented an intelligent model for the improvement of the performance of WSN 

applications in terms of data processing. However, a few limitations are identified in the 

implementational of this study in the field. Some of these are discussed below: 

1. Inclusion of more Techniques: the current study has only included only four 

techniques, which are LEACH, HEED, PEGASIS, and DBST. For the model to be 

considered as fit for use in the field, there is need to enable flexible training based on 

data collected from more scenarios and more DATs. Essentially, the intelligent model 

would need to be sufficiently dynamic to autonomously incorporate more data from 

more DATs, which perhaps have been dynamically detected by an external system. 

This ensures that the entire system remains ubiquitous and self-learning, requiring 

minimal maintenance. 

2. Limitations of Current Sensors: currently produced sensor devices, including sensors 

already in operation, lack the infrastructure to collaboratively determine or 

recommend the best technique for the WSN network.  In order for the results of this 

research to be useful in new applications, there is need for the inclusion of 

infrastructure to process data in order to determine the best technique in a method that 
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did not exist before and this is the innovative aspect of the proposed work herein. This 

could include that the sensors are able to host the recommendation model, or else, 

query a central source for the recommendation. This would also require preplanning 

and manufacturing design to incorporate hardware and software, which would be able 

to perform these tasks.   

3. Maintenance of in-operation Sensors: irrespective of the application of the outcomes 

of this research, sensors deployed into operation would still require hardware 

maintenance. This consists of repair to damaged or comprised parts, including battery 

replacement. This is unavoidable since the devices would, at some stage, run out of 

power or be damaged based on their location. A new approach to address this problem 

needs to be investigated further to ensure that the sensors are completely autonomous 

and will no longer require physical maintenance once deployed into the field.  

8.5.2 Future Recommendations 

The following four recommendations have been identified: 

1. Inclusion of More Techniques: The study has applied only four data aggregation 

techniques, which include LEACH, HEED, PEGASIS, and DBST. There is a potential to 

improve the performance of the model by enabling the model to become autonomous in 

the acquisition of new techniques. This would involve various steps, which include the 

determination of the objective of the technique, developing the technique model, data 

generation for the technique based on its best fit scenarios, and use of the data to improve 

the model. In this way, the model can improve itself as new complex scenarios arise. Such 

complex scenarios consist of more than one application running as the same time.  

2. Integration with Physical Sensors: The research was implemented using a simulation 

environment, which has in-built models with capability to integrate with real physical 

sensors. This capability enables the data generated from the simulator to also include data 

from physical sensors. In this way, the model could be improved by enabling such 

integration, while using a stepwise improvement process to make the model more capable 

of managing physical devices with the appropriate internal infrastructure. 

3. Use of Virtual Machines in Sensors: The study has used a simulation environment that 

enables models and other complex software to be infused into sensors, which are basically 

software as well. This makes it possible to improve the system by having sensors host 

virtual machines, which could run to host separate applications. This capability would 
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enable the sensors to run more than one data aggregation technique at a time and thus, 

more than one application at a time. This would improve the WSNs effectiveness and 

performance, while providing the flexibility for entertaining multiple scenarios.  

4. Model Integration with Cloud Computing: As the research has focused on developing the 

model locally, that is without interaction with the internet, there is potential to have the 

model deployed into a cloud computing environment such as Amazon Web Services or 

Microsoft Azure. By developing a query interface to the model, this would allow the 

model's recommendations to be accessible via RESTful APIs to multiple consumers, both 

simulated and real. It would also enable the model to learn from new scenarios at greater 

scale. 

8.6 Summary 

This chapter has presented and discussed the results of the research study. These were aligned 

with the research aims and objectives under the research conclusions and were highlighted to 

have achieved the stated aim and objectives. The contributions were also discussed in terms 

of both academic relevance and contribution, as well as industrial innovation and impact to 

new wireless sensor-based systems. The limitations encountered and the those expected in the 

use of the model were also highlighted while future research and developments in the area of 

study was discussed.  

In summary, this chapter concludes that the objectives and aims of this research have been 

met, while providing recommendations for the enhancement and improvement of the 

intelligent model.  

 

 

 

 

 

 

  



200 
 

Appendices 

Appendix A 
 

WSN Attributes selected based on literature on wireless sensor networks (referred to from section 4.6.1 and table 4.2) 

No Attribute Sample 
Values 

Data 
Type 

Primary/ 
Derived Static/Dynamic Technique Network Scenario Comments 

1.  Node Count 
(A. Avokh and Mirjalily, 2010) 50, 100 no Continuous Primary Dynamic - X - Dynamic based on 

active nodes 

2.  
Topology 
(Mantri et al., 2013; Wang et al., 
2011) Cluster, Tree Ordinal Primary Static X - - - 

3.  Homogeneity 
(Yi et al., 2007) 

Homogenous, 
heterogenous Binary Primary Static  X - - - 

4.  Field Size 
(Beydoun et al., 2009) 100 metres Continuous Primary Static, Dynamic - X X 

Network nodes 
distribution or Scenario 
event perimeter 

5.  Network Structure 
(Mamun, 2012) 

Hierarchical, 
Flat Ordinal Primary Static X - - - 

6.  Node Mobility 
(Gnanasekaran and Francis, 2014) True, False Binary Primary Static X X - 

Technique standard 
requirement or network 
specification change 

7.  Location Awareness 
(Al-Karaki and Kamal, 2004) True, False Binary Primary Static X - - Node has information 

about its location 

8.  Network Awareness 
(Al-Karaki and Kamal, 2004) True, False Binary Primary Static X - - 

Node has information 
about other locations of 
all nodes 
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9.  
Node residual 
energy 
(Chand et al., 2014) 

10 Joules Continuous Primary Dynamic X X - 
Technique performance 
metric or network 
specification update 

10.  Event Type 
(Kim et al., 2016) 

Detection / 
Monitoring Ordinal Primary Static - - X Event type 

classification 

11.  Node distribution 
(Bonomi and Milito, 2012) Nodes / region Continuous Derived  - X - - 

12.  
Node transmission 
Range 
(Mishra et al., 2017) 

3 metres Continuous Primary Dynamic - X - 

Nodes can modify their 
transmission range 
based on distance of 
destination node 

13.  
Simulation Rounds 
(Sasirekha and Swamynathan, 
2015) 

100 Continuous Primary Dynamic X X - - 

14.  
Maximum Distance 
between nodes 
(derived) 

Max (distance 
btw nodes) Continuous Derived Dynamic - X - - 

15.  
Average distance 
between nodes 
(derived) 

Sum(distance) 
/ node count Continuous Derived Dynamic - X - - 

16.  
Transmission 
reliability 
(Villas et al., 2013) 

Sampled by 
message sent Continuous Derived Dynamic X - - 

Sampled message by 
message submitted to 
sink 

17.  Energy distribution 
(Nie and Li, 2011) Energy / area Continuous Derived Dynamic X - - - 

18.  Energy efficiency 
(Du et al., 2016) 

Energy / 
packet Continuous Derived Dynamic X - - - 

19.  Throughput 
(Zhang and Guo, 2017) 

Bytes / 
message Continuous Derived Dynamic X - - - 

20.  Latency 
(Bonomi and Milito, 2012) m/sec Continuous Derived Dynamic X - - - 

21.  Stability 
(Gantassi et al., 2017) 

Packets by 
active nodes / 
field size 

Continuous Derived Dynamic X - - 
Packets sent by drop in 
active nodes, or change 
in field size 

22.  Accuracy 
(Jesus et al., 2015) 

bytes sensed / 
bytes sent Continuous Derived Dynamic X - - - 
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23.  
Bandwidth 
Utilization 
(Sahoo et al., 2017) 

bytes Continuous Derived Dynamic X - - - 

24.  Computation time seconds Continuous Derived Dynamic X - - - 

25.  
Sampling Rate 
(reporting frequency) 
(derived) 

count/secs Continuous Primary Dynamic - X X 
Network setting or 
scenario event 
generated 

26.  Control overhead 
(Al-Karaki and Kamal, 2004) bytes / energy Continuous Derived Dynamic X - - 

Bytes transmitted 
during topology 
construction by energy 
consumed 

27.  
Packet Delivery 
Ratio 
(Virmani et al., 2013) 

Packets 
generated / 
submitted 

Continuous Derived Dynamic X - - 
Packets generated by 
packets submitted to 
sink 

 
Legend 

 Derived attributes used in computations 

 Attribute classification under WSN entities 

 Candidate attributes for performance indicators 

X There exists a link between the row/column elements  
- There is no connection between the row/column elements 
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Appendix B 
 

Software Prototype Contents 
The software prototype referred to severally in the study consists of the following items. Some of 

these were provided as attachments with the thesis document. 

1. Software Prototype Software: a description of this was provided within the thesis. No extra 

content was made available for this 

2. Wireless Sensor Data: this consists of the data generated from the NS3 simulator and was 

provided as an attachment with the thesis. 

3. Source Code Framework: this consists of the code developed to model the WSN data 

aggregation techniques. The source code was provided as an attachment with the thesis. 
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Appendix C 
 

Graph Theory 

The following brief discussion introduces the concepts of Graph Theory as used in 

section 5.4 and other sections within the document (Rahman, M.S., 2017). 

A graph can be defined to consist of a set of vertices, connected by a set of edges. When 

a graph theory is applied to a problem, vertices are usually used to represent objects, while 

edges are used to represent the relationship between two objects. Thus, a graph could be used 

to model the structure of the relationship between the two objects, including their 

communication method. In order words, graph theory can be applied to problems where 

objects and their relationships can be identified. 

Formally, a graph G is a tuple (V, E), which consists of a finite set V of vertices, 

including a finite set E of edges. Since an edge could only be formed by the connection of 

two vertices, an edge could be an unordered pair of vertices. 

 The set of vertices in a graph G can be denoted as V(G), while the set of edges in G 

can be denoted as E(G). Two vertices u and v, could be said to be adjacent if an edge e = (u, 

v), and e is an edge in graph G. likewise, the edge e is said to be incident to u and v. The 

vertices u and v are also considered to be neighbours in G. 

 Graph theory is applied to numerous science and engineering problems and is used to 

systematically determine solutions to the problem addressed. Examples of problems it can be 

applied to include detecting the best path to deliver services to locations connected by road, 

gas supply network, wireless sensor networks, frequency assignment, floor planning, social 

networks, and bioinformatics (Rahman, M.S., 2017). 
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