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Abstract— This paper integrates human driver factors with
a model-based Collision Avoidance System (CAS) to enhance
the safety of semi-autonomous vehicles. Driver Activity Recog-
nition (DAR) through Driver Distraction States (DDS) has
been used as the key component to trigger the CAS so that
collisions can be averted. DDS has been generated using realistic
normal driving scenarios and suitably integrated with a Full
State Feedback (FSF) controller-based CAS. The integrated
algorithm has been tested using a Hardware in Loop (HiL)
setup, which is interfaced with the vehicle dynamics software
IPG TruckMaker®. The performance of the algorithm has
been evaluated for various on-road scenarios and found to be
effective in avoiding rear-end collisions.

Collision Avoidance, Convolutional Neural Network,
Driver Distraction, Driver Activity Recognition, Hardware
in Loop, Full State Feedback Controller.

I. INTRODUCTION

The rapid growth of the transportation sector demands
safer and more efficient operation of automobiles. According
to the World Health Organisation (Dec, 2018), approximately
1.35 million people die in road accidents each year and on
average 3,700 people lose their lives every day on roads [1],
[2]. The United Nation’s 2030 agenda for sustainable devel-
opment looks forward to halving the number of global deaths
and injuries from road traffic accidents [3]. Technologies that
enhance the safety of automotive and transportation sectors
are hence the need of the hour. Human factors contribute to
more than 90% of road crashes in European Union countries
[4]. According to the Ministry of Road Transportation and
Highways, in India, around 80% of road accidents are caused
due to human errors [5]. In this context, autonomous/semi-
autonomous vehicular operation has gained significant re-
search attention.

Even though autonomous vehicles are promising solutions,
considering the increase in transportation demand, complete
autonomous operation of passenger vehicles still requires
more technological and infrastructural developments. In this
context, semi-autonomous vehicular operation could improve
safety without the need for high-level infrastructure. Ac-
tive safety systems like Collision Avoidance System (CAS)
that would assist the driver through warnings or/and in-
terventions can reduce vehicle crashes due to human er-
rors [6]. CAS algorithms for the autonomous operation of
passenger vehicles have thoroughly been addressed by the

research community in the recent past [7]–[11]. However,
semi-autonomous vehicular operation that involves switching
between human driver and CAS, which is more feasible
from an immediate implementation view point, has not been
adequately accounted for. A collaborative driving scheme
that fuses control inputs from the human driver and CAS, and
allows autonomous and manual driving capabilities has been
presented in [12]. The current paper attempts to integrate
human factors through Driver Activity Recognition (DAR)
technique with the CAS design to enhance semi-autonomous
vehicle safety.

DAR is a challenging task for intelligent vehicles to mon-
itor secondary activity that often causes Driver Distraction
(DD) during driving, such as texting message over phone,
talking to passenger, drinking, etc. [14], [15]. Some recent
studies explore computer vision to recognise DD (a change
in driver’s attention from driving to secondary tasks) by
analysing images or videos of a driver [2], [13], [16]–
[24]. The proposed work advances these ideas further to
avoid fatal consequences by integrating DAR and CAS.
Motivated with a substantial progress in DAR leveraging
attention mechanism [25], this work recognises the Driver
Distraction State (DDS) from image/video contents by solv-
ing a binary classification task i.e., whether the driving state
is a safe/attentive (DDS=0) or distracted/inattentive action
(DDS=1). In this regard, this paper attempts to realise a semi-
autonomous CAS, which primarily relies on the driver for
collision avoidance and makes use of an automatic braking
system in the event of driver inattention. DAR is used as a
key component to synthesise DDS whether CAS should be
triggered. The proposed framework is shown in Fig. 1.

This paper utilises a model-based approach using a Full
State Feedback (FSF) controller [9], [26] that would brake
the vehicle when the relative spacing and relative speed
between the host vehicle and the obstacle (the lead vehicle)
reduce beyond certain predefined safe limits. To realise semi-
autonomous vehicular operation, the CAS has been activated
based on the binary DDS output (safe or distracted, as
defined above). The schematic representation of the semi-
autonomous CAS operation is shown in Fig. 1b. DAR
determines when CAS should be triggered and the FSF
controller-based CAS implements braking when the inter-
vehicular distance is below the threshold spacing. The major
contributions of this study are:



Fig. 1. Proposed integrated framework using image or video-based Driver Distraction State (DDS) to trigger the collision avoidance algorithm (CAA). a)
A simplified schematic diagram of the keypoints-based attentional deep convolutional neural networks (CNN) [13] to determine driver distraction (DDS=0
or 1). The input frame extracted from a video scenario is used to localise the informative regions within the frame. Next, these salient regions (smaller to
larger in size) along with the input frame are passed through the attention module to focus on the most discriminative region to make the final decision
(DDS=0 or 1) by the classification module. b) The main components of the CAA are shown. CAA comes into action when DDS=1 and the algorithm
detects an impending collision. Depending upon the relative speed and spacing between the vehicles, the FSF based CAA controller finds the required
deceleration to stop the vehicle at a predefined standstill spacing.

• An integrated framework that uses human driver be-
havioural factors to trigger collision avoidance algo-
rithm automatically, if necessary, to enhance vehicular
operation through certain level of semi-autonomy.

• Image or video-driven automatic driver distraction state
recognition using attention-based deep networks, which
is integrated with a FSF controller-based CAS.

• Evaluation of the integrated approach through Hardware
in Loop (HiL) experiments.

The rest of the paper is organised as follows. Driver
activity recognition through DDS classification is described
in Section II. Section III explains the vehicle dynamics
model and the CAS design principle. Section IV presents
HiL results and discussions. Section V concludes the paper.

II. DRIVER ACTIVITY RECOGNITION (DAR)

DAR plays a key role in CAS as it decides when the CAS
should be triggered. It is regarded as a sub-category of human
action recognition. The advancement of Convolutional Neu-
ral Networks (CNN) facilitates robust solutions to recognise
the driver distraction state [2], [15], [20], [23], [27]. Recently,
a CNN via neural architecture search (NAS) is proposed to
detect various types of DDS including cognitive, emotional,
and sensorimotor distractions [2].

In addition with the attention mechanism [25], deep net-
works achieve superior performance to discriminate subtle
variations in driver’s secondary activities [18], [21], [22].
Attention mechanism is originally introduced in natural lan-
guage processing [25], [28]. It has been recently explored in
self-attention mechanism that efficiently captures long-range
dependencies between image regions for visual recognition

[29]. A few methods have been developed for DAR using
attention mechanism [18], [21], [22]. In [18], the channel-
level and spatial-level attentions are applied for DDS classi-
fication. The results in [30] imply that an LSTM (long short-
term memory) network with attention can achieve better
performance to estimate DDS. Regional Attention Network
(RAN) [21] combines multiple attention mechanisms over
different image-regions for DDS recognition. Recently, AG-
Net [22] implements a keypoints-based attention mechanism
for image recognition. It localises a set of semantic regions to
learn contextual information from smaller to larger patches to
full image. The regions are derived using the Scale Invariant
Feature Transform (SIFT) [31] keypoints and a Gaussian
mixture model. These informative regions are further guided
by the attention mechanism to discriminate subtle variations
of activities in images. It achieves state-of-the-art perfor-
mance (accuracy: 94.56%) to recognise ten common driving-
related activities in Distracted Driver V2 (AUC-V2) dataset
[15] using ResNet-50 as a backbone [32]. Likewise, RAN
[21] introduces a hybrid attention mechanism by exploring
regions and achieves very competitive accuracy (94.27%)
with the same backbone. In this study, driver’s inattentiveness
is monitored as a binary (attentive or inattentive) classifica-
tion problem by adapting AG-Net [22] framework.

A. Driver Distraction State (DDS)

DDS can be caused by several ways and in different
forms such as visual, auditory, cognitive, etc., [2], [16], [33].
In [34], seven different distractions (e.g., mirror checking,
texting using a phone, etc.) are considered for experiments.
In [19], eight different states are defined as distractions. Ten



driving states are selected in AUC-V2 [15] (image-based)
dataset, and example images are shown in Fig. 2 (top-row).
These ten unique driving activities are: C0: driving safely,
C1: texting right-side, C2: talking over phone right-side,
C3: texting left-side, C4: talking over phone left-side, C5:
operating radio, C6: drinking, C7: reaching behind, C8: hair
and makeup, and C9: talking to passenger. Moreover, this
dataset follows a driver-wise split, i.e., the driver distribution
is mutually exclusive for training (36 drivers; 12,555 images)
and testing (8 drivers; 1,923 images) purposes, and thereby
represents a more challenging and realistic driving scenario
[17]. The drivers are selected across seven countries, and
more details about the dataset are given in [15].

Recently, in addition with the C0-C9 (AUC-V2) driving
activities, 3 more activities (reaching side, hands free and
switch gear) are included in the video-based Driver Mon-
itoring Dataset (DMD) [23]. It uses similar view-point of
the camera and driver’s secondary activities with respect to
AUC-V2. DMD represents the RGB, depth, and IR videos
from 3 cameras capturing face, body, and hands of 37
drivers. However, a lite version of this dataset is available
for research, representing the actions of 5 drivers [24]. More
details about DMD are given in [23].

B. Driving Scenarios

Videos showing a natural driving scenario involving nor-
mal driving as well as some secondary activities are not
widely available (except the lite version of DMD), to the
best of the authors’ knowledge. Many of the existing driving
datasets are created in a simulated and/or laboratory envi-
ronment for the sake of feasibility, efficiency and low cost,
focusing on the image/video-based recognition of various
distraction categories by exploring deep learning techniques.
Due to the unavailability of such realistic driving scenarios
publicly, this work combines the attentiveness and distrac-
tions of a driver to simulate a driving video imitating a
naturalistic manner for a longer duration (> 60 seconds (s)).
Recently, a shorter video-clip (e.g. duration 3 s) representing
ten driving activities is evaluated on AUC-V2 dataset in [17].
Inspired by this, new driving scenarios with the aforesaid
alternate driving characteristics are created in this work
using the AUC-V2 dataset (Table I). Each video represents
a specific driving action, performed by a particular driver
(shown in Fig. 2). The video-clips of a person involved in
different actions are randomly selected to create a longer
video sequence, illustrating a normal driving situation fol-
lowed by other random combination of secondary activities
(C1-C9), and safe driving. For example, a generated scenario
is composed with a driver involved in a secondary activity
such as texting or talking on the phone, and followed by
other distractions like drinking and talking to passengers,
etc., and finally normal driving activity. In this way, different
scenarios that are random combinations of a few distractions
are created, but, not all distracted activities are selected in a
single scenario from a realistic perspective. However, DAR
is regarded as a binary classification, therefore, it has trivial

TABLE I
DETAILS OF THE DDS IN DRIVING SCENARIO USING AUC-V2 WITH

RESPECT TO TIME AND CLASSIFICATION ACCURACY (%)

Time (s) Action Ground-truth Accuracy (%)

0.0 - 16.4 s safe-driving DDS=0 100.0
16.5 - 52.0 s distracted DDS=1 96.6
52.1 - 62.0 s safe-driving DDS=0 100.0

Fig. 2. Example images from [15] showing driver’s state. Left: safe
driving (DDS=0); mid (talking over phone) and right (drinking): distracted
(DDS=1).

impact in selecting the specific distraction category (i.e. fine-
grained) in this study.

Next, a given video scenario V , the frames are sampled at
a time interval t = 100 ms (10 fps) to extract a set of images
N from V , i.e., I = {It|t = 1 . . . N} with the associated
labels y = {yt|t = 1 . . . N}. Safe driving (C0) is labelled
with 0, and all the secondary activities (C1-C9) are grouped
together as distraction and labelled with 1. However, the
original image-labels as provided with the dataset [15] are
followed for initial categorisation of the driver’s ten fine-
grained actions in simulating a longer video scenario. Next,
the fine-to-coarse modeling of those extracted frames (i.e.,
depicting the distracted actions) is performed as a simplified
binary classification (shown in Fig. 1a). The attention-driven
CNN model classifies a given frame It in the end as attentive
driving (DDS=0) or inattentive driving (DDS=1) state.

According to the method in [22], this work adopts a
similar implementation protocol in selecting the hyper-
parameters, data augmentation, and data distribution (i.e.,
training samples of AUC-V2 dataset). A simple transfer-
learning approach with fine-tuning on the target dataset is
implemented for testing the driving scenario V . The frame-
set (containing 620 images in V ), which is obtained from
a specific driver’s behavior (as described earlier), is used
for experiment. Thus, the current frame-set is a subset of
AUC-V2 test-set. The details about the frames as extracted
with respect to a given time interval are given in Table I. It
is evident that the model can classify the safe-driving state
(DDS=0) with 100% accuracy, and the prediction accuracy
of distractions alone (DDS=1) is 96.60%. The attentional
deep network provides an average accuracy of 98.06% for the



TABLE II
DETAILS OF THE DDS IN DRIVING SCENARIO USING DMD WITH

RESPECT TO TIME AND CLASSIFICATION ACCURACY (%)

Time (s) Action Ground-truth Accuracy(%)

0.0-17.1, 30.5-40.1
safe-driving DDS=0 98.6957.5-63.4, 65.8-68.6

72.1-75.2 s

17.1-30.4, 40.2-57.4 distracted DDS=1 98.7563.5-65.7, 68.7-72.0 s

Fig. 3. Example images from [23] showing driver’s state. Left: safe
driving (DDS=0); mid (talking to passenger) and right (drinking): distracted
(DDS=1).

binary classification using the ResNet-50 backbone CNN. A
pictorial representation of the simulated scenario is shown at
the bottom-row of Fig. 2. Mainly, the frames are misclassified
during the transition from safe/attentive driving state to a
distraction/inattentive state, i.e., from DDS=0 to DDS=1 at
around 16 s. There is also wrong prediction momentarily
at around 31 s and 42 s, which are shown in red in Fig.
2. DDS=1 is initially detected at 16.5 s which effectively
triggers the CAS. Thus, the later wrong predictions do not
affect adversely in the performance to avoid a collision.
Hence, initial detection of DDS=1 plays a vital role to initiate
the CAS. The correct classification states are overlapped with
the ground-truth labels (shown in green) in Fig. 2. We
have also tested the scenario created with DMD [23] using
transfer learning which is actually trained on one dataset
(AUC-V2) and tested on other dataset (DMD). In this cross-
dataset testing, the model performs very well (≈ 98.7%)
in recognising different states (DDS=0 or 1) of the driver.
The performance is given in Table II. Sample images of the
DMD are shown in Fig. 3. We have simulated a scenario
for 1.14 minutes from actual RGB video of a driver. This
longer scenario is a combination of safe driving followed
by distraction for multiple times and the duration of each
sub-interval is given in Table II. The average accuracy of
these sub-intervals are reported here (Table II). A similar
trend is observed as stated above in misclassifying the frames
during the transition from distracted state to safe-driving
state and vice-versa. For example, the frame representing
the transition state at 65.8 s is misclassified. Therefore, a
similar characteristic during classifying the frame sequence is
observed in driving scenarios, generated using both AUC-V2
and DMD datasets. It simply considers that every distraction
is equally important to be recognised to trigger urgently the
collision avoidance algorithm. This is a safe and conservative
strategy for vehicle maneuver, where the trigger of the brake
does not mean that a collision is happening, but be more

cautious to avoid the case that it is too late to trigger the
brake. The DAR module is subsequently integrated with the
CAS for driving safety enhancement, described next.

III. COLLISION AVOIDANCE SYSTEM (CAS)
This work utilises a model-based CAS, which makes use

of a FSF controller to calculate the deceleration required for
collision avoidance. The longitudinal vehicle model that has
been used for CAS design is described next.

1) Longitudinal Vehicle Model: This work considers
straight-line braking scenarios. The equation of motion rep-
resenting the longitudinal motion of a vehicle is

Ma(t) = −Fbf (t)−Fbr(t)−Ra(t)−Rrf (t)−Rrr(t), (1)

where, Fbf and Fbr represent the braking force developed
at the front and rear tyre-road interface, respectively. Ra is
the aerodynamic drag force, Rrf and Rrr are the rolling
resistance forces corresponding to front and rear wheels of
the vehicle. The weight of the vehicle is represented by W .
Acceleration due to gravity, acceleration, and mass of the
vehicle are represented by g, a, and M , respectively.

The load on the front wheels (Wf ) and the rear wheels
(Wr) are given by

Wf (t) =
W

L

(
Lr −H

a(t)

g

)
,

Wr(t) =
W

L

(
Lf +H

a(t)

g

)
, (2)

where, Lf and Lr, represent the longitudinal distance of the
front axle and rear axle from the center of gravity (C.G.) of
the vehicle, respectively, and L = Lf + Lr, H is the height
of the C. G. of the vehicle. The maximum longitudinal brake
force that the tyres can sustain is given by

Fxf (t) = µmaxWf (t),

Fxr(t) = µmaxWr(t), (3)

where, µmax is the maximum tyre-road friction coefficient.

Lead Vehicle Host Vehicle

Fig. 4. The variables used in the Collision Avoidance Algorithm (CAA).

2) Collision Avoidance Algorithm (CAA): The variables
used in CAA design are presented in Fig. 4. Here, xl, vl and
al(t) represent lead vehicle position, speed and acceleration,
respectively. Corresponding host vehicle variables are xh, vh
and ah. In order to detect any impending threat, the relative
spacing (xr(t)) and the relative longitudinal speed (vr(t))
between the two vehicles are used. The position, and the
speed of the vehicle are assumed to be available.

The spacing between the vehicles, xr is given by

xr(t) = xl(t)− xh(t). (4)



Fig. 5. HiL experimental setup.

The relative longitudinal speed between the lead vehicle and
the host vehicle is given by

vr(t) = vl(t)− vh(t). (5)

The desired safe distance (sd) that is to be maintained
between the vehicles is

sd(t) = hvh(t) + so. (6)

Here, h denotes the time headway and so represents the
standstill distance between the two vehicles when the host
vehicle comes to rest. Now, the spacing error between the
vehicles is denoted by

e(t) = xr(t)− sd(t). (7)

The controller for collision avoidance should work in such a
way that, the desired spacing and zero relative longitudinal
speed between the vehicles have to be maintained. In order
to incorporate this aspect, the variable δ(t) is defined as
δ(t) = e(t)+hvr(t) = xr(t)− (hvh(t)−hvr(t)+ so). (8)

Automatic braking would happen when δ(t) < 0.
A Full State Feedback (FSF) controller has been designed

in [26] to obtain the desired control input for collision
avoidance. The control structure u(t) is given by

u(t) = ah(t) = k1vr(t) + k2δ(t). (9)

Here, k1 and k2 are the feedback gains. The tuning procedure
for these gain selection has been detailed in [26]. From
u(t), the brake force required for collision avoidance can
be obtained using Eq. (1). In this algorithm, brakes would
be applied only when the control input, u(t) takes negative
values (deceleration).

IV. RESULTS AND DISCUSSIONS

The performance of the presented DDS integrated with
CAS scheme has been evaluated through Hardware-in-Loop
(HiL) experiments. The HiL setup used in this study is shown
in Fig. 5. The setup consists of a 4X2 axle assembly of a
16-tonne truck which uses an Electro-Pneumatic Regulator
(EPR). The hardware is interfaced with a high fidelity vehicle

dynamic simulation software, IPG TruckMaker®, through
which virtual vehicles, the road and collision scenarios
have been simulated. The FSF-based collision avoidance
algorithm has been programmed in MATLAB/Simulink®.
It is then imported to a real-time controller (IPG Xpack4),
which is interfaced with the IPG/TruckMaker® and the brake
system hardware.

A. DDS and CAS Integration

In this work, the DDS output (Section II) is used to decide
when to trigger the designed CAS. The integrated framework
has been designed in such a way that whenever DDS is 1
and the CAA detects a potential threat, autonomous braking
would be applied to stop the vehicle. Here, DDS states
corresponding to the time series data for 62 s (provided
using 620 images) are used in the experiments. The window
between 16.5 s and 52 s (refer to Table I) during which
DDS=1 has been used to introduce a collision threat. Hence,
the HiL experiment is implemented from the 16th second of
the DDS data. The integrated algorithm was implemented
on a vehicle of 16,200 kg, moving with a higher initial
speed (90 km/h) on a dry (friction coefficient = 0.8) straight
road. The efficacy of the integrated algorithm has been tested
using two standard test maneuvres such as lead vehicle at
rest and vehicle following scenarios, which are common test
cases for evaluating a Collision Avoidance Algorithm. Lead
vehicle at rest which can be experienced when the host
vehicle observes any static object or a vehicle parked on
the road. Vehicle following situation that happens when the
lead vehicle suddenly begins to decelerate until it stops. This
is a common scenario due to traffic condition or adverse
weather condition. Both of these scenarios can cause fatal
consequence or forward collision if the driver of the host
vehicle is inattentive due to distractions.

DDS goes

   high

Threat is 

detected

Desired spacing =10 m

Fig. 6. Lead vehicle at rest case - Spacing and longitudinal speed profiles.

B. Lead Vehicle at Rest Scenario

In this test case, the host vehicle is assumed to be travelling
at a speed of 25 m/s and it approaches toward a lead vehicle
that is stationary. The DDS state goes high at 16.5 s of the
time series data. The CAA detects the stationary vehicle as



Fig. 7. Lead vehicle at rest case - Brake pressure (absolute).

DDS goes

   high
Threat is 

detected

Desired spacing =10 m

Fig. 8. Vehicle following case - Spacing and longitudinal speed profiles.

Fig. 9. Vehicle following case - Brake pressure (absolute).

a threat at 17 s and since the DDS is still high, automatic
braking is triggered and the host vehicle is brought to rest.
The plots showing the spacing between the vehicles and the
longitudinal speed are shown in Fig. 6. The CAA has been
designed such that the standstill spacing (so) between the
vehicles is 10 m. It can be observed from the spacing profile
that, the standstill spacing of 10 m has been maintained
when the host vehicle came to rest. The corresponding brake
chamber pressure profiles (control inputs) for all the four
wheels are shown in Fig. 7. In this plot, FL, FR, RL and RR
correspond to front-left, front-right, rear-left, and rear-right

brake chambers, respectively. It is clear from Fig. 7 that the
brake chamber pressure profiles reach the maximum value
during this period i.e., from the threat detection (17 s) until
the host vehicle comes to rest (≈ 21.5 s). It is also evident
that the host vehicle can successfully maintain the desired
safe distance within 5 s since the threat is detected (Fig. 6).
A similar result is also observed in the next test-scenario.

C. Vehicle Following Scenario

In this test case, the host vehicle is assumed to follow a
moving lead vehicle. Both vehicles are assumed to have the
same initial speed of 25 m/s, maintaining an initial distance
of 100 m approximately between the two vehicles. Now,
the lead vehicle has started decelerating at 16.5 s of the
time series data. The DDS is also high at 16.5 s. The CAA
detects the threat at 19 s and automatic braking is activated to
decelerate the host vehicle. The corresponding spacing and
speed profiles are shown in Fig. 8. In this test scenario also,
the integrated algorithm could ensure the desired standstill
spacing of 10 m. The corresponding brake chamber pressures
for all the four wheels are shown in Fig. 9. The characteristics
of brake chamber pressure profiles of the host vehicle from
the threat detection (19 s) to come rest (≈ 23.5 s) are similar
to Fig. 7, as stated earlier.

In summary, the HiL experimental results on both bench-
mark scenarios show that the collision can be prevented
by stopping the host vehicle maintaining the desired safe
distance (so =10 m) which is constrained by the head-
way offset. This safe distance measure is considered as an
assessment criterion of the proposed technique to avert a
collision. The results clearly imply the practical feasibility
of integrating DDS data with CAA to trigger autonomous
braking, if necessary, for safer semi-autonomous vehicular
operation.

V. CONCLUSION

A novel integrated approach using the human driving
behavioral states and collision avoidance algorithm has been
presented in this paper. The proposed approach could en-
hance the safety in intelligent transportation systems, espe-
cially for semi-autonomous vehicles. The distraction state
of a driver is automatically assessed using an attention-
driven CNN to initiate the CAS. The HiL experimental
results demonstrated that the proposed system can be an
effective measure to avert rear-end collision on different
road scenarios using different states of the driver’s in-vehicle
activities.

The current study proposed a methodology to integrate
CAS and DDS recognition and the efficacy of this method-
ology has been tested by evaluating two common test ma-
neuvers for CAS such as lead vehicle at rest and vehicle
following scenarios. However, realistic driving situations
often involve more complex scenarios such as lane changing
maneuvers, high traffic density operation, and also inclement
environmental conditions. These would be explored as an
interesting further enhancement of this integrated technique
to evaluate its wider applicability. For example, the road



curvature and traffic conditions can influence the speed and
acceleration of the vehicle. Also, other fine-grained distrac-
tion states would be incorporated and the computational
efficiency of this approach would be analysed as another
possible future direction.
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