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Abstract

In an era of digital transformation, there is an appetite for automating the monitoring
process of motions and actions by individuals who are part of a society increasingly
getting older on average. ”Activity recognition” is where sensors use motion informa-
tion from participants who are wearing a wearable sensor or are in the field of view of
a remote sensor which, coupled with machine learning algorithms, can automatically
identify the movement or action the person is undertaking.
Radar is a nascent sensor for this application, having been proposed in literature as an
effective privacy-compliant sensor that can track movements of the body effectively.
The methods of recording movements are separated into two types where ’Discrete’
movements provide an overview of a single activity within a fixed interval of time,
while ’Continuous’ activities present sequences of activities performed in a series with
variable duration and uncertain transitions, making these a challenging and yet much
more realistic classification problem.
In this thesis, first an overview of the technology of continuous wave (CW) and fre-
quency modulated continuous wave (FMCW) radars and the machine learning algo-
rithms and classification concepts is provided. Following this, state of the art for
activity recognition with radar is presented and the key papers and significant works
are discussed. The remaining chapters of this thesis discuss the research topics where
contributions were made. This is commenced through analysing the effect of the phys-
iology of the subject under test, to show that age can have an effect on the radar
readings on the target. This is followed by porting existing radar recognition tech-
nologies and presenting novel use of radar based gait recognition to detect lameness in
animals. Reverting to the human-centric application, improvements to activity recog-
nition on humans and its accuracy was demonstrated by utilising features from different
domains with feature selection and using different sensing technologies cooperatively.
Finally, using a Bi-long short term memory (LSTM) based network, improved recogni-
tion of continuous activities and activity transitions without human-dependent feature
extraction was demonstrated.
Accuracy rate of 97% was achieved through sensor fusion and feature selection for dis-
crete activities and for continuous activities, the Bi-LSTM achieved 92% accuracy with
a sole radar sensor.



3

Dedication

To my family.



4

Acknowledgements

I am truly indebted to my supervisors Dr. Francesco Fioranelli and Dr. Julien Le

Kernec for their help and support throughout this endeavour. Without their wisdom

and guidance the research in this thesis and the thesis itself would not have been

possible. I am especially thankful to Francesco for taking a chance on me and to

Julien for checking up on me during certain arduous moments in this journey. I am

thankful also to Prof. Muhammad Imran for his guidance and help with timekeeping.

To Dr. Sevgi Zubeyde Gurbuz I am thankful for opening my eyes to the potential to

the capabilities of radar, to not be intimidated by challenging problems, and for the

research experience in University of Alabama.

My colleagues at Glasgow were also of great help to me, with special mentions for Bruno

Citoni, Jarez Patel, Dr. Paulo Valente Klaine, Dr. Joao Pedro Batistella Nadas, Dr.

Abed Poursharab, Matteo Pepa, Dr. Qiheng Yuan, and my partner at work Dr. Haobo

Li.
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ML machine learning.

MLP multilayer perceptron.

PCA principle component analysis.

RNN recurrent neural network.
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SFS sequential feature selection.

SPHERE sensor platform for healthcare in a residential environment.

STFT short-time Fourier transform.

SVD singular value decomposition.

SVM support vector machine.

TCN temporal convolutional network.

UWB ultra-wideband.
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Symbols

fr radial Doppler frequency

c speed of electromagnetic waves in free space

vr radial target velocity

vs radial and source velocity

fd radial Doppler velocity

f0 centre frequency

λ0 wavelength of the transmitted wave

s(t) frequency modulated signal

s(f) beat-note

f(y) instantaneous frequency

k chirp rate

B bandwidth

T chirp period

(φ0) induced phase shift

r radar range between transmitter and target

sr(t) received modulated signal

I(t) in-phase component

Q(t) quadrature component

rmaxThe maximum unambiguous range

n slow time

Ψ(t) phase component after target movement

φ̄ collection of all terms from the linear phase

δ Dirac delta function

τm maximum travel time from the target



Acronyms and Symbols 24

r range

v velocity

aw scale parameter

bw translation parameter

fm mother wavelet

fc(j) Doppler centroid

Bc(j) Doppler bandwidth

p(x) probability mass function of the histogram

b bias

α hidden weight

β weight

fac activation function

eT exponential positive estimates

ξi slack variable

C penalty parameter

W weight

ht hidden weight

R recurrent weight

o unnormalized log probability

U weight matrix connecting the input to the hidden weight

w weight matrix connecting the hidden to hidden connections forward in time

V hidden to output connection weight matrix

σt sigmoid activation function

ct cell state

Sn(c) loss value for a class

µ mean

σ2 variance
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Chapter 1

Introduction

The world health organisation expects that between 2015 and 2050, the proportion of

people over 60 years will double from 12% to 22% [1]. This growing age group that

continues to live to a more extended age is facing challenges unforeseen in the previous

generations at a grander scale.

By 2020 it was expected that the number of over sixty-year older adults will outnumber

children under five years [2]. Although due to recent world events, this is less true,

there should still be a serious focus on assisting systems and support mechanisms on

this age group. Supporting this demographic shift through health and social systems

is a significant challenge that many societies globally will face, for which they are

unprepared.

These challenges can be summarised as multimorbidity conditions that correlate with

age and present severe consequences to the affected individual and societal and eco-

nomic systems which support the individual [3].

To assist ageing individuals in their private homes, a multitude of sensing methods have

been suggested in the literature and utilised in the industry [4][5]. The most common

and widely used sensors are wearable devices, which have reached market maturity

along with broad acceptance. With these devices providing information such as heart

rate, blood oxygen level and electrocardiogram of the heart, wearable devices on the

market are feature-rich. Ambient sensors, contrarily, provide other advantages such as

privacy, physical comfort, and the ease of compliance, as many wearable sensors can
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be and are left behind by users.

Ambient sensing has its own share of preexisting technologies such as video monitoring

with depth cameras, which use image based techniques and give high fidelity informa-

tion about the environment while maintaining privacy through image filters. On the

contrary, pressure pads or fall detecting floors take information directly from the user

for their specific use case scenarios.

Doppler radar continues to be a challenger to the traditional sensing methods as it

combines the perceived benefits of both systems. It is another example of an ambient

sensor, therefore it is conveniently stored and operated without user interaction, and

it is also easy to implement in different home environments. Also while depth camera

image has visual information relating to the user which can give hints about them,

for example their physical size or height, the data generated by the radar is more ab-

stract, providing no clear information about the user. Therefore it can be considered

to be more secure in terms of privacy. Nevertheless, there are certain drawbacks to

using radar for activity recognition too, as it is not portable; it requires a co-located

processor, and it is limited to indoor environments with a narrow field of view, which

is susceptible to occlusion.

Besides healthcare applications for humans, there is also significant interest for remote

sensing in the animal welfare and agricultural sectors. Musculoskeletal degeneration

is not confined to humans, and its impact on the physical well-being of the animals

can have a financial and emotional strain on owners and the animal themselves. The

benefits of ambient sensing are again useful as setting physical sensors on animals can

be a challenge; furthermore, it can affect their behaviour during diagnostic testing.

Lameness is a significant problem for farmed animals and performance horses and it has

a negative impact on animal welfare and economically, both in terms of lost production

and treatment costs. In dairy cattle, lameness is widely regarded as a major welfare

problem. Difficulties with early identification of lameness in dairy cattle are a well

recognized issue [6].

There is a financial incentive to focus on this specific application as overall economic

losses resulting from lameness have been estimated to be around U.S. $75 per cow per

year [7]. The true extent of lameness in the UK dairy herds is unknown, but the herd
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level incidence has been estimated at 50 limb cases per 100 cow years [8]. Sheep farmers

are faced with a similar problem, with prevalence as high as 10% of the flock [9] and

an estimated cost to the UK sheep industry of £24 million, for the most common cause

of lameness in sheep [10]. For horses, the most frequent disease syndrome recorded in

the UK in 2016 was lameness, accounting for 33% of the reported issues [11].

The most common form of lameness identification is by a subjective visual scoring

method. While subjective gait assessment methods provide an immediate, on-site

recognition and require non-technical equipment, they show a high degree of variation

in reliability and repeatability of and between observers [12], [13]. More objective

kinetic and kinematic methods to identify both lameness and limbic abnormalities have

been studied, such as force plate systems, 3-D-accelerometers, infrared thermography,

and tracking mixed with modelling from vision-based and optoelectronic systems; these

show promise when compared with more traditional methods [14], [15]. In this context,

radar sensing can potentially enable contactless and automatic detection of lameness,

due to its previously discussed benefits such as no need of additional sensors attached

to the body of the animals under test, and sensing capabilities provided in any weather

or lighting conditions, including outdoor farm environments while mitigating the risks

associated with manually attaching sensors on these beings.

1.1 Context

In the start of this project, as it is today, there was no general consensus on the ideal

sensing technology to approach these problems. Although the use of wearable sensors

made the bulk of the literature for classifying activities and monitoring movement, the

use of privacy-oriented ambient sensors were mostly absent.

Between 2005 and 2016, the use of radar was proposed in literature but it remained a

nascent technology for the specific purpose of detecting activities or monitoring people.

Over the last five years however, it has grown as a research topic as interest in this

specific application has increased. The main focus of this research interest can be

summarized in a two-fold manner. Firstly the new research has focused on expanding

the use of radar for activity monitoring by introducing it for novel applications and
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secondly, by introducing methods to improve the accuracy of recognition so the radar

performs comparatively to other competing technologies currently being utilized.

Figure 1.1: Evolution of the state of the art throughout this project.

The state of the art and the contributions provided to it is presented in Fig. 1.1 and

there it can be seen how radar for assisted living has expanded from detecting simple

activities at low rates to complex sequences of activities. There is a contribution here

in made through innovation occurring laterally with new applications like animals and

multi-sensor fusion. While ultimately the focus is innovation for single radar systems

with state-of-the-art machine learning algorithms and complex realistic scenarios.

1.2 Contributions

Based on the state of the art at the commencement and during the project the following

research questions were generated, inspired by papers such as Kim and Ling in [16].

The research providing the answers to these research questions are included below and

are the main contributions of this thesis.

How does the target population and handcrafted feature extraction influ-

ence the accuracy of the classification algorithm?

1) By demonstrating how the variety of subject physiology affects the classification

rates.
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1) Through novel use of radar-based gait recognition to detect lameness in animals

which are physiologically different from humans.

How can the sensing methods be improved to optimize the classification

accuracy in the context of assisted living?

2) Proving that utilizing features from different domains with feature selection increases

activity recognition accuracy.

2) Using different sensing technologies cooperatively to further increase accuracy.

How advances/evolution in machine learning can be leveraged to automati-

cally segment and classify human activity in a continuous data stream with

a single radar sensor?

3) Demonstrating improved recognition of continuous activities and activity transitions

without feature extraction.

The literature has also shown a large variety in the collection of data where in cer-

tain cases the data collected could be considered almost excessive and the element of

privacy would again be critiqued, while in others there is not enough information and

therefore it is difficult to extract meaning or dependency of the participants. This links

together with the research question about how sensing methods and experimen-

tal techniques can be improved to optimise the classification accuracy in

the context of assisted living? Chapter 5 outlines our methodology to develop a

growing data set containing information from multiple sensors and for a diverse range

of participants to help address such question.

A smaller trend noted is the desire to expand the current applications of activity

recognition with radar. Although classifying presence of animals in signatures has

been shown in the literature, we introduced new applications by detecting impaired

gait in domestic animals in [17]. This links together with the research question about

radar based gait recognition to detect lameness in animals which are phys-

iologically different from humans. The contribution here was showing that the

techniques are not limited to human mobility and they can be expanded to other

animals.

As for the overarching trends, the majority of the works generated new methods of



Chapter 1. Introduction 30

extracting salient information from the highly abstract radar data, showing feature

extraction influences the accuracy of the classification. The contribution in this

area is outlined in [18, 19, 20], where the variety of sensed data was utilized to select

optimal features from a wide breadth of sensing methods. These works are covered in

chapters 6 and 7.

There is also a visible trend about utilizing advances/evolution in machine learn-

ing to automatically segment and classify human activity in a continuous

data stream with a single radar sensor. There is definite interest in moving to

automatic methods of feature generation and an end-to-end classification method. The

contribution to this is the use of recurrent networks to classify true continuous sequence

of activities [21] in chapter 8.

1.2.1 Statement of novelty

In this thesis, the micro-Doppler signatures of animals are presented and utilised in the

context of gait monitoring. Furthermore, signature of subjects with different physiol-

ogy are presented to show the effect of the physiology of the subject under test. Then

by using homogeneous fusion with different radar systems and heterogeneous sensor

fusion between inertial measurement units and radar sensors, improvements to activ-

ity recognition with humans with radar fusion is demonstrated. Finally,a recurrent

network is designed using Bi-LSTM layers and a spectrogram sequence of continuous

activity signature with transitions, is used to validate and improved recognition of con-

tinuous activities and activity transitions without human-dependent feature extraction

is presented.

1.3 Elaboration of contributions

This thesis mirrors the focus of the evolving research interest of using micro-Doppler

radar for activity recognition and monitoring. The scope covered by this research

is discussed in the state of the art section and it encompasses hardware,

software and experimental techniques to leverage radar technology with
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micro-Doppler and beyond for healthcare applications. In this rapidly devel-

oping domain, there are central questions this thesis attempts to answer. Included

here-forth are the questions derived from the literature review and contributions made

by this thesis for improving activity recognition through the use of radar sensors.

The first inquires about an issue which is common query in many machine learning

(ML) applications for activity recognition, regardless of the sensor : How does the

target population and handcrafted feature extraction influence the accuracy

of the classification algorithm? This is answered through contributions 1 and 2

which are explained in detail in chapter 6. Specifically this is done:

1. By demonstrating how the variety of subject physiology affects the clas-

sification rates.

In the early stages, the PhD was aligned to the state of the art by using methods

which were common in the literature at the time, so solving simpler activity classifi-

cation problems. In this stage, the subject of interest was remarkably the actual test

subjects as around 2016 the general machine learning community were starting to re-

alise that the input, alongside the algorithm and hyper-parameters controlling them,

were as important for the final outcome. Therefore the effect of variety in age, gender

and physiology of the subjects on the accuracy of activity detection was evaluated,

this was an early contribution as the majority of the research prior had a recognisable

pattern in the demographics of the test subjects.

2. Through novel use of radar based gait recognition to detect lameness in

animals which are physiologically different from humans.

Following that, the use-cases of applying micro Doppler (mD) based radar classifica-

tion to problems such as gait monitoring in animals was introduced. This represented

a shift in interest of the applicability of this technology as the bulk of the research fo-

cused on human-centric applications even though mammalian animals exhibited sim-

ilar problems which required the inception of activity recognition in the first place.

By demonstrating the ability to use mD with equines, we showed that mobility testing

could be automated with results approaching to the level of human experts in detecting

lameness or gait problems.

The second question asks, How can the sensing methods be improved to op-



Chapter 1. Introduction 32

timise the classification accuracy in the context of assisted living?. This is

answered through contributions 3 and 4, explained in chapter 7, and it is done by:

3. Proving that utilizing features from different domains with feature se-

lection increases activity recognition accuracy.

By this point in the literature there were a significant number of features generated us-

ing different properties of the input signal; therefore, the next goal was to utilise these

different methods of generating features for automated activity recognition. By using

them together with feature selection we were able to demonstrate higher accuracy in

activity recognition.

4. Using different sensing technologies cooperatively to further increase ac-

curacy.

In parallel, the question of using different sensors together was arising as the bene-

fit of increased variance through multi-domain inputs were being discussed. Through

heterogeneous sensor fusion, where sensors were measuring different physical signature,

and homogeneous sensor fusion, where sensors were measuring the same physical signa-

ture but at different frequencies, we demonstrated again that the accuracy of activity

recognition could be increased.

The final question inquires about how advances/evolution in machine learning

can be leveraged to automatically segment and classify human activity in a

continuous data stream with a single radar sensor.

This is answered through the final contribution 5 in chapter 8 by:

5. Demonstrating improved recognition of continuous activities and activ-

ity transitions without feature extraction.

Towards the end of the thesis, the research interest had been driven to using edge

artificial intelligence (AI) techniques with transfer learning and deep neural networks

being in the spotlight. In this moment we presented a time-dependent machine learning

(ML) algorithm used together with a whole spectrogram to show the best case single

sensor performance for radar. This was also done with an input spectrogram with-

out specified feature generation with the key challenge of transitions present between

activities mimicking realistic behaviour.
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1.4 Thesis Structure

The thesis is organised as follows:

Chapter 2 and 3 introduce the working principles of frequency modulated continuous

wave (FMCW) radar, its frontend and pre-processing together with the ML backend

required to recognise activities automatically. Note that feature extraction will not be



Chapter 1. Introduction 35

covered in the background as this is explained throughout the thesis as part of the

research development. Chapter 2 serves the basic ideas behind the operation of a

frequency modulated continuous wave (FMCW) Radar and in a step-by-step format,

overviews the hardware and signal processing required to generate a mD signature from

an activity performed by a target. Chapter 3 overviews the machine learning aspect of

this research by discussing the fundamental versions of algorithms and machine learning

architectures used for this thesis. Furthermore, it explains how the input signature

becomes a categorical decision by using the classifier. The genesis of features for

the classification process is discussed in this chapter.

Chapter 4 provides an overview of radar research related to human healthcare un-

til recently. It covers the initial experiments where radars were used on humans for

diagnostic purposes, continuing to the early 2005s where it was first used for activity

recognition and 2015-2020 where the research interest and the innovation of machine

learning techniques together with novel sensing took it to unforeseen levels of interest.

Furthermore this chapter highlights the gaps in the literature which provided opportu-

nities for the research presented in this thesis to be conducted, answering the question

on what techniques can improve activity recognition performance using radar.

Chapter 5 discusses the setup of the various experiments conducted for this thesis.

It clearly provides the reasoning behind the sensor and environmental setup whilst

explaining why it is necessary to have a demographic of the participants that is diverse.

Chapter 6 explains the initial use of handcrafted features for activity recognition with

a single sensor. It specifically mentions two applications one relating to animal welfare

[30, 17] and the other regarding dependency of variety in human subjects [29, 18] for

activity recognition applications.

Chapter 7 shows the strength of leveraging different types of information from differ-

ent sources through sensor fusion in activity recognition. This can be done in the form

of homogeneous sensor fusion where the both sensors are ambient radar sensors [24] or

heterogeneous sensor fusion [19, 20, 32] where one or many sensors measuring different

information to the radar can be applied. Both of these techniques are explored in this

chapter while the effect of classification models having prior information of the target

on the recognition accuracy is evaluated.
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Chapter 8 specifies how automatic feature generation methods are utilized for activity

recognition by generating salient features for classification of complex and continuous

activity sequences. Using a time dependent neural network design, a radar signature

of sequences of five activities are classified without feature selection or handcrafted

feature extraction [21] seamlessly.

Chapter 9, lastly, presents the concluding remarks of this thesis and discusses future

ideas and perspectives for activity recognition with radar.
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Chapter 2

Radar background

The detection of human motion with radar has two fundamental technical components:

the radar subsystems and the cognitive machine learning systems. As the physical

hardware comes first in the overall detection scheme, we will look at this first in this

thesis as well.

This chapter serves the basic principles behind the operation of radar and, in a step

by step format, overviews the hardware and signal processing required to generate

signature from an activity performed by a target. Firstly, a brief overview of the

history of radar is given and the operating of radar presented. Following on, the

extraction of the range and Doppler information, the structures and types of radar

systems, micro-Doppler and, the radar hardware used in this thesis is discussed.

2.1 A brief history of radar

The foundation of Radio detection and ranging (Radar) was set when James Clark

Maxwell revealed his theory on electromagnetism; then Heinrich Hertz, using this the-

ory, experimented in 1888 to produce radio waves and demonstrate how metallic bodies

could reflect and collate them.

As a first in the direct application for this technology, it was applied by Christian

Huelsmeyer [33] for detecting ships in fog. Furthermore, Dr A. Hoyt Taylor et al

[34]. from the United States Navy noticed that radio signals were interrupted when
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large metallic ships crossed the antennas. Furthermore, at this time, Marconi endorsed

the use of radio waves for detection. It can be seen that even in the early days, the

application of radar was the main driver of this technology. As with other technologies

ahead of their time, radar was unused. It changed in the 1930s where it had a resurgence

due to the looming threat of war. In the arms race before World War Two, Sir Robert

Watson-Watt and his scientific assistant Arnold Wilkins theorized the use of radio

interruptions based on his experience of Radio based meteorology. They added a key

innovation and using BBC radio antennas, demonstrated that aeroplanes could be

detected at up to 13 km. Known as the Daventry experiment, it was the preliminary

demonstration which resulted in the mainstream adaption of radar for defence and an

appropriate application to show how useful the technology can be.

The innovation Watson-Watt and Wilkins made is the use of pulse modulation, where

short pulses were transmitted and received, and this information could then be used

to detect the angular velocity of a target.

Figure 2.1: The basic operation of a radar detector. The transmitted wave is denoted

as Tx and the received wave is Rx. In this example the target is a airborne target with

high reflectivity.

2.2 Radar basic principles

In this section, the basic principles behind the operation of radar will be over-viewed

with focus on aspects such as modulation, range extraction and micro Doppler extrac-
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tion. This will provide a basis for the underlying processes in 2.1 and the composite

technologies and methods required for target detection such as the frequency modula-

tion, range and Doppler estimation, and the micro-Doppler effect in radar.

2.2.1 Continuous wave

Taking the examples of the pioneers of radar, by using targets in fig.2.2, the basic radar

equation is used to deduce the radial velocity.

fr =

(
c+ vr
c+ vs

)
f0 (2.1)

Eq. 2.1 is the Doppler equation as popularised by Christian Doppler, which applies to

all waves. Here, fr is the radial Doppler frequency, c is the speed of electromagnetic

waves in free space, while vr and vs are the radial target and source velocities, respec-

tively [35]. In the case of radar targets, however, since their velocity is much smaller

compared to electromagnetic waves, the target Doppler can be defined by:

fd =
−f0(vs − vr)

c
(2.2)

fd in Eq. 2.2 shows the radial Doppler velocity of a target and f0 denotes the centre

frequency.

Figure 2.2: Detecting the radar target’s radial velocity
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Since the electromagnetic wave travels twice, once from the transmitter to the target

and then from the target to the receiver, therefore the relationship becomes:

fd =
−2f0(vs − vr)

c
(2.3)

Finally, if the radar is considered to be stationary then the following relationship occurs:

fd =
−2f0(vr)

c
= −2vr

λ0

(2.4)

where the λ0 is the wavelength of the radar. Eq. 2.2-2.4.

2.2.1.1 Frequency modulated continuous wave

With advancements in computing and processors becoming faster and smaller, new

modulation methods compared to the previous pulse-Doppler methods could now be

employed. Furthermore, an alternative modulation pattern, which does not require the

transceiver to operate in a duty cycle, unlike pulse modulation was introduced. This

alternative modulation method was frequency modulated continuous wave (FMCW).

In addition to radial velocity, similar to pulse-Doppler radar, the FMCW radar can

also give the range of the target.

The frequency modulated signal is given by eq. 2.5, where f(y) is an instantaneous

frequency:

s(t) = Acos

(
2π

t∫
0

f(y)dy

)
(2.5)

For the commonly used linear modulation, considering k to be chirp rate while B being

bandwidth and T being the chirp period, the equation becomes:

s(t) = Acos

(
2π(f0t+

k

2t2
)

)
(2.6)

where:

k =
B

T
(2.7)
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Assuming a phase shift (φ0) is introduced during transmission, the relationship be-

comes:

st(t) = Atcos

(
2π(f0t+

k

2
t2) + φ0

)
. (2.8)

For the received wave, assuming the target is at a distance there will be a time delay

before the signal is received which can be characterised as:

τ =
2r

c
(2.9)

where, r is the range between the radar and the target and c is the speed of electro-

magnetic wave in a vacuum.

Considering eq. 2.9, the received signal is represented by:

sr(t) = Arcos

(
2π(f0(t− τ) +

k

2
(t− τ)2) + φr

)
(2.10)

To demodulate it, the signal is duplexed to first give the in-phase (I) component:

I(t) = stsr = Ab(

(
cos(2π(f0(t− τ) +

k

2
(t− τ)2) + φr

)
(2.11)

where the total amplitude Ab is:

Ab =
AtAr

2
(2.12)

while the phases φ1 and φ2 are:

φ1 = φr + φ0

φ2 = φr − φ0

(2.13)

I(t) is then low pass filtered to suppress the first harmonic close to the double of the

centre frequency, finally giving:

I(t) = Ab

(
cos(πkτ 2 − 2πktτ − 2πf0τ + φ2

)
(2.14)
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The quadrature component(Q) is given by mixing the received signal shifted by 90◦

which results in:

Q(t) = −Ab
(
sin(2πt(2f0−kτ)+2πkt2 +φ1−2πf0τ)+sin(πkτ 2−2πktτ−2πf0τ+φ2)

)
(2.15)

After filtering it in a similar manner to I, Q becomes:

Q(t) = Absin(−πkτ 2 + 2πktτ + 2πf0τ − φ0) (2.16)

Mixing the I and Q components leads to the generation of the beat note or the beat

frequency which is given as:

s(t) = I(t) + jQ(t) = Abe
2πktτ−πkτ2+2πf0τ−φ2 = AeΨ(t).

The maximum unambiguous range can then be estimated using the derivative of Ψ(t)

:

rmax =
ckτ

2k
=
cτ

2
, (2.17)

due to :

fb =
1

2pi

dΨ(t)

dt
= kτ. (2.18)

For a moving target, the range changes over time:

τ(t) =
2(τ + vnTcosθ)

c
, (2.19)

where θ is the aspect angle between the radar and the target while the v is the velocity.

Considering a target moving away between consecutive chirps, where the period of each

chirp is denoted as T , τ can now be given as:

τ(n) =
2(τ + vnTcosθ)

c
=

2vnTcosθ

c
+ τ0 (2.20)

Here, n is the slow time, which is time between the chirps and t is the fast time over

which the sweep of the chirp is completed.
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With the centering in the middle of the pulse, to offset the linear component (t =

T/2nt = L∆T/2), the phase Ψ(t) from 2.2.1.1 therefore changes to:

Ψ(t) = (2πkτ0 +
2πkvcosθ

c
LT )− (2πfd)nT − φ̄, (2.21)

where φ̄ is the collection of all terms from the linear phase.

Figure 2.3: FMCW signals in time domain, frequency domain and the beat-note.
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2.2.1.2 Double Fourier transform processing for range and Doppler estima-

tion

There are now two frequency elements in the phase term in eq.2.21. They are:

wf = 2πkτ0 +
2πkvcosθ

c
LT

ws = 2πfd

(2.22)

Applying the 2-D fourier transform to eq. 2.21 gives:

S(p, q) =
L∑
q=1

( T∑
t=τm

s(t)e−j2πpt/(T−τm)

)
e−j2πqt/L = Âδ(p− wf , q − ws), (2.23)

where δ is the Dirac delta function, τm is the maximum travel time from the target.

From here, the Doppler frequency and velocity can be estimated from S(p, q) and wf

can be used to find the range.

For slow moving targets, the second frequency component of wf may be ignored there-

fore:

wf = 2πff = 2πkτ0

ws = 2πfs = 2πfd

(2.24)

The range and velocity can now be derived with:

r =
cff
2k

v =
fsλ

2

(2.25)

To summarise, in a linear modulated FMCW radar, the chirped signal is transmitted

then received, then received at which point it is demodulated and stacked in the rep-

resentation shown in eq.2.23. A 2-D Fourier transform can then be applied to estimate

the range and velocity cells.
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2.2.2 Radar system structure

A CW radar is composed of one or more transmitter and receiver antennae to transmit

and receive the radar signal, an oscillator to generate the base signal and a demodulator

to separate I and Q data. Low pass filters are present in the chain to remove the centre

and first harmonics, amplifiers to increase the baseband information and finally, an

analog to digital converter to convert the baseband information into data which can

be processed further digitally.

Figure 2.4: Block diagram of a typical FMCW radar system.

An FMCW radar differs from a CW radar due to the presence of a ramp generator

in the system, usually in the form of a voltage controlled oscillator. Since the chirps

are required to be mixed with the centre frequency generated by the signal generating

oscillator, a mixer is also required. Therefore, these additional parts can make FMCW

radar systems more expensive commercially, however due to their ubiquitous nature for

different radar applications, economies of scale mean this issue is not of great concern.
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2.2.3 Micro-Doppler

In a high frequency system, small vibrations can induce a large phase change, which

induce detectable Doppler shifts. Mechanical systems, biological or otherwise, often

have components with oscillatory movement which is broadly referred to as micro-

motion. As opposed to the bulk or macro movement of a system, micro-motion refers to

smaller oscillatory movements which would normally be occluded with a radar detector.

In aircraft, this could be the fixed rotor or an engine turbine, while in humans, this

would be swinging and rotating arms and limbs.

Micro Doppler therefore, is the small scale Doppler shifts generated by micro motions.

mD appears in radar signatures as sidebands, and with these modulations, aforemen-

tioned movements such as rotation of rotors and swinging of limbs can be detected,

and the corresponding kinematic properties can be identified.

The unambiguous detection of a Doppler shift is related to the centre frequency and mD

too has this fundamental property. [36] discusses the displacement change required for

an X-band and an L-band radar. A motion with a vibration of 15 Hz being detected

by an X-band radar requires a 0.3 cm displacement. For an X-band system (3cm

wavelength), it induces a 18.8 Hz m-D shift. However, for an L-band system, a 1

cm movement is required to induce the same 18.8 Hz shift. This means that radars

with a higher carrier frequency can detect smaller m-D signatures and that the centre

frequency is an important property to consider for m-D applications.

Chen in [36] further characterises the mD shift as a time-varying frequency shift which

can be extracted from the complex output of a quadrature detector. However for a

monotonic radar system where a single component is present, the Hilbert transform

can be used to reconstruct the real and imaginary part of the signal. This allows any

radar system to be used to generate a mD signature, through the joint time frequency

analysis method.

2.2.4 Joint time frequency representation

As mD shifts are aperiodic and non-stationary effects, they require joint time-frequency

analysis due to the inability of the Fourier transform to convey time-varying spectral
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information. Due to computational advances again, the possibility of performing large

numbers of successive Fourier transforms became real which in turn allowed the ex-

pansion of mD research.

The short-time Fourier transform (STFT) is the prominent joint time frequency method

used due to its simplicity and efficiency.

STFT (t, ω) =

∫
x(τ)w(τ − t)e−jωtdτ, (2.26)

where τ − t is a time lattice.

As shown by equation 2.26 it is in essence, a rolling windowed Fourier transform mean-

ing it can now show time-varying information.

The spectrogram is a method to visualise the coefficients of the STFT, it is given by:

Spectrogram(t, ω) = |STFT (t, ω)|2 (2.27)

and it is the squared magnitude of the STFT without the phase information of the

signal [36].

Due to the time based limitation of the window function, it means there is a trade off

between the time and the frequency resolution. A longer time window means increased

Doppler resolution while a smaller integration time means increased time resolution.

Overlapping windows can help with edge discontinuities, to generate a smooth signature

at the cost of increased computational load.

For radars capable of ranging, the joint time-frequency method can be performed for

individual range bins. As range profiles will have less sampling points than a raw

quadrature signal, zero-padding can be necessary to increase the resolution. Using zero

padding has two benefits, the resulting spectrogram will have increased resolution, and

subjects or targets can be isolated by selecting specific range bins.

Wavelet transform (WT) has been proposed. Unlike STFT, which has a fixed frequency

resolution, WT has multi-resolution capability. A ’mother’ wavelet is used and its

scaled and translated versions in order to detect frequencies at multiple resolutions.

There is a variety of choices including, but not limited to: Haar, Coiflet, Mexican Hat,
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Morlet, Symlet and Daubechies etc. Its expression is shown below, aw is the scale

parameter, bw is the translation parameter and fm is the mother wavelet.

WT (aw, bw) =
1
√
aw
x(t)f ∗m

(
t− bw
aw

)
dt (2.28)

While WT overcomes the shortcomings of the STFT, the frequency bands for human

micro-Doppler are limited to a 150 Hz window where the simplicity and the computa-

tional efficiency of the STFT is more desirable. The kernel based nature of the WT

also provides further complexity (i.e. which wavelet to choose etc.). Both WT and

STFT are examples of linear transforms. In addition to these, bilinear and quadratic

transforms have also been used in literature.

A high resolution TF technique is the Wigner-Ville Distribution (WVD) which requires

a time dependent autocorrelation function for signal s(t) and a Fourier transform to

be performed on it to give:

WVD(t, f) =

∫
s(t+

t′

2
)s∗(t− t′

2
)exp(−j2πft′)dt′ (2.29)

It has a better joint time frequency resolution than any linear transforms but it has a

weakness which appears in the form of cross term interference which means the sum of

two signals (s = s1 + s2) does not equal the sum of their WVD. A residual component

would be present and to reduce this, filtered WVD have been used. This reduces the

time-frequency resolution but also reduces, significantly, the cross term components.

With a linear low pass filter, the WVD belongs to the Cohen’s class (Cohen’s class

being generalised forms of time frequency distributions):

C(t, f) =

∫ ∫
s(t+ τ/2)s∗(t− τ/2)φ(t− u, τ)exp(−j2πfτ)dudτ (2.30)

φ(t, τ) is the Fourier transform of the filter and is called the kernel function. Selection

of different kernels can be used to reduce cross terms with a variety of choices which

changes the properties of the transform. Other non-linear TF methods have been

applied: Hilbert Huang Transform (HHT) have also been used. Firstly, Empirical

mode decomposition (EMD) is performed on a signal to decompose it into components.
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Hilbert transform is then utilised to analyse the instantaneous frequency of each of these

components. The methods have been listed in the order of complexity, with a trade-off

between resolution and processing present and given the multiple drawbacks of these

methods the simplest and the fastest method of STFT was used in this research.

2.2.5 Human micro Doppler

A person performing motions in front of radar can be illustrated through the spec-

trogram and this is shown in fig. 2.5 and 2.6 where examples of mD signatures are

provided for human activities for walk and a punch-retract action while the subject

remains stationary. The difference in the dynamic range of the modulations from the

torso (normalised at 0 dB) and the limbs (around -23 dB) are identifiable, and these

motions are central behind the idea of using mD signatures for classifying different

activities. The dynamic range was clipped at -40 dB.

Figure 2.5: Micro Doppler signature of a person walking forwards and backwards. The

signatures from the torso and the limbs are annotated describing the movement the

signature is derived from. The intensity of the signature around the torso movement

gives a stronger reflection than the limbs.

Fig. 2.5 shows a mD signature for a person walking, where they are moving towards

the radar (positive Doppler), turning (zero-Doppler crossing), and walking away from
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the radar (Negative Doppler). From 0 to 2.5 s, the subject moves towards the radar.

The deep red trace represents the mean speed of the subject with the torso as the

main reflection contributor and surrounding the red trace yellow-green fluctuations

that represent the Doppler of limbs relative to the torso main Doppler component.

From 1.5 to 2.5 s, the subject decelerates; therefore the main Doppler component and

relative-Doppler components swing range decreases too. The person reaches a stand-

still position at approximately 2.5 s, where they turn away from the radar and start

walking in the other direction. mD signatures have visually recognisable properties

that can help identify different states of the human body. It can show if a person is

walking or moving slowly, if they are turning or moving their limbs in a certain manner,

and together with sequences of these smaller motions if they are performing specific

activities.

Figure 2.6: Micro Doppler Spectrogram of a person punching/retracting while staying

stationary normalised to 0dB.

Fig. 2.6 shows the mD signature of a subject punching/retracting spectrogram while

standing still. Initially, at time 0.5 seconds a sinusoidal-shaped mD signature starts

appearing around the torso; this is due to the movement of the arm in the radial

direction of the radar, which is accelerating until approximately 1s where it is brought

to rest causing the mD curve to return to 0 m/s. Then negative Doppler is observed

between 1 and 1.5 s as the arm is slowly retracted toward the main body, after which the
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same activity is repeated at time 2 s. In this activity, the torso movement is restrained

compared to walking, and the shape of the mD curves of the arm are not occluded by

the motion of the torso or legs as in the walking action. The lower intensity of the limb

motion in the mD signature correlates correctly with the relative size of the arm which

has a lower radar cross-section than the legs or torso. It is also explained by the nature

of the motion, which presents a lower reflective surface compared to the walking action

where the arms move along the body.

Therefore, to summarise these simple examples, differences in micro-motions of the

body parts can be identified through mD signatures, and the different signatures for

different activities shown are perceptibly different. The aspect angle, i.e. the angle

between the radar line-of-sight and the trajectory of the target’s movement, can also

be a significant parameter, affecting how the mD signatures appear and the accuracy

obtainable for classification problems.

2.3 Summary

As privacy oriented sensors radar is becoming an emerging technology choice and gain-

ing mainstream focus as a solution. The basic functionality of radar has not changed

significantly and it is described by the radar equations. Signal processing advance-

ments, such as the use of micro-Doppler effect and time frequency transforms has

allowed analysis of micro-motion of targets with increased fidelity.

This high degree of fidelity with Doppler data has allowed micro-motions of humans

and animals to be observed in the radio-frequency electromagnetic spectrum. To realise

potential real-life uses of this system, a few off the shelf radar systems are readily

available in the market, such as: the Xethru UWB system and the RFbeam portfolio

of radar sensors. Together with these hardware and signal processing solutions, radar

can be considered a strong challenger for motion sensing for human and animals and

in the next chapter the other component of this system, machine learning, will be

explored.
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Chapter 3

Machine Learning Background

Radar sensors can give rich information from a target, and through joint time-frequency

methods, they can deliver a visual description of the time varying motions the target

performs or undergoes. However, without ML, the optimal use of this information

is not possible. To meaningfully identify the movements from the radar, automatic

classification algorithms are essential.

As the current advances in computing continue, with speed, memory capacities and par-

allelism previously unheard of, increasing applications with classification are utilising

ML algorithms adapted specifically to these types of challenges. With this increasing

computational prowess, there is an opportunity to make operator-centric applications

automatic, thereby reducing human reliance and errors in a cognitive system capable

of detecting the motions performed in front of the sensor.

In the context of radar for humans, the ulterior goal is a system capable of distinguish-

ing targets and their movements automatically and using or adapting ML algorithms

for radar is seen to be a solution.

Hill [37] states the diverse applications ML covers, which everyone encounters on a

daily basis. Learning tasks, such as spam detection and image recognition, together

with control tasks such as operating ”intelligent” machinery are given as ML examples.

To explicitly describe a machine learning problem, it could be stated as the problem

of improving a measure of performance P when executing a task T, through a type

of training experience E. Specifically, in learning for an email spam filter, the task T
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is to learn a function, which maps any given input email to an output label of spam

or regular email. The performance metric P to be improved would be the accuracy of

this spam classifier, and the training experience E would be composed of a collection

of emails with labels. Alternatively, penalties and weightings could be introduced to

obtain performance metric P, for example an algorithm that assigns a higher penalty

when non-spam is labelled spam, than when spam is labelled regular. One might

also define a different type of training experience, for example by including unlabelled

emails along with those labelled as spam and not-spam [37]. In the context of the

research conducted in this thesis, the experience would be labelled movement data

collected through sensors, the performance metric P to be improved would still remain

the accuracy of the classifier and the ultimate goal would be the categorisation of the

different activities performed by a human or an animal, automatically.

This chapter overviews the machine learning aspect of this research by framing the

activity recognition as an ML problem, then discussing the fundamental versions of

algorithms and machine learning architectures used for the solution. By doing so, it

explains how the input signature becomes a categorical decision by using the classifier.

3.1 An overview of Machine Learning

To take the description above and generalise it, for any system where an ML algorithm

is applied, the sensor information, which can be a sample denoted as xi and the ob-

servation is a denoted as y. xi is a member of a real set, which referred to as inputs.

ML tasks often require an input and an observation and the ML algorithm processes a

library of these samples/observation to find a relationship between them.

3.1.1 Disciplines

The dichotomy of machine learning algorithms are defined by the presence and use of

prior labels and they are presented as useful approaches for different cognitive appli-

cations.
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3.1.1.1 Supervised Learning

If an ML algorithm uses available labelled data during the training process then these

types of algorithms are considered to be supervised learners. Supervised learners use

the labelled data to attempt to minimise the error between the self-generated prior

generated, and the metric derived from the ground truth/observation. Simply speaking,

it is learning by example [38].

A general element of supervised learning algorithms are that they are often used to

predict or identify objects using past patterns such as using historical weather data to

predict solar energy usage is an example of regression. This is an example of a super-

vised learner and similarly so are the classification of activities using prior knowledge,

which is the main focus of this thesis.

3.1.1.2 Unsupervised Learning

In instances where labelled data is not available and the observation is simply the

distribution of the data, clustering algorithms can be used to separate them. These al-

gorithms, which show the distribution or cluster data are considered to be unsupervised

learners [38].

With unsupervised learning the main benefit is that labelled data, which often has to be

labelled and verified with significant effort, is not required. This means the data does

not need to be overseen meaning the process can be completely automatic. Clusters

are not limited to a specific number of classes for example, as in this case the symbolic

relationships and the distribution of the data dictate their grouping. However, this can

be a problem too as outlying data or data distributions with broad spread can mean a

high degree of error for these algorithms.

As there is a focus on high classification accuracy with this work, these algorithms were

not utilised but they have promise in future research, particularly with the open class

/ open set problem.
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3.2 Review of physical features from spectrogram

The physical features from the spectrogram are traits extracted from the visible spec-

trogram image. These are often identifiable with the human eye and have origins in

the computer vision or audio recognition literature and communities.

3.2.1 Doppler centre of mass

The Doppler centre of mass, referred to as centroid is the intense peak point of the

spectrogram map expressed in frequency native to the radar. It translates to the sum

of movements made by the torso and limbs of bodies under the observation of the radar

and is expressed as:

fc(j) =

∑
i f(i)S(i, j)∑
j S(i, j)

, (3.1)

3.2.2 Doppler bandwidth

Linked with the centre of mass, the bandwidth represents the range of movements

made by the limbs. It is defined as :

Bc(j) =

√∑
i(f(i)− fc(j))2S(i, j)∑

i S(i, j)
(3.2)

Decomposition based features

Decomposition based features reduce the overall data by mimicking a compression.

These methods often extract a large proportion of the input variance using a small

proportion of the decomposed elements to form a low rank approximation.

3.2.3 Singular value decomposition

Singular value decomposition has also been applied [39] in efforts to minimise feature

selection. SVD decomposes the spectrogram into spectral and temporal content, with
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the left and the right singular vectors [40][41]. The first vectors carry the data that

contain salient information, but here the extracted subspace has time and Doppler

frequency information [41]. This means, depending on the specific nature of the data

analysed, which may have greater temporal or spectral variety, one subspace can influ-

ence the inputs to the classification model. In the current applications, this approach

has been used to increase feature space diversity.

M = USV T (3.3)

The first left and right singular vectors contain the spectral projection of the frequency

and time axes respectively. The vectors on higher orders contain information on the

spectrogram: its shape and possible symmetries.

3.2.4 Features from classic image recognition

As the spectrogram can be considered as a bitmap array, classical image-based feature

extraction can provide useful features. Treating the spectrogram as a greyscale image,

the different dynamic ranges could be interpreted as different shades of grey. This

means the intensities of the torso and limbs now translate to different segments of the

grey spectrum and that a histogram can accurately map the amplitude of the movement

by those parts of the body.

3.2.5 Image entropy

Closely linked to Shannon’s entropy, entropy of a histogram of an image equates to the

intensity of the signature. It could also be defined as the average information within

an image. It is expressed as:

H = −
∑

p(x)logp(x) (3.4)

where p(x) is probability mass function of the histogram of the image. Complex motions

such as clapping or pushing (which involve many joints and rotations about an axis) will

be expected to return a higher value of entropy relative to activities such as drinking.
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3.2.6 Image skewness

Skewness is also a parameter that could be derived from histograms. Statistical

moments (mean, standard deviation and higher-order moments) for images have a

standard form given as:

fm = mean[p(r)] (3.5)

Mn =
i=0∑
L−1

(ri − fm)np(ri) (3.6)

3.2.7 Transform based features

Transform based features require a further Fourier transform in the time domain to

extract more detailed temporal information. These features utilize the transformed

domain to easily extract and assess properties such as repetition and frequency of

motions within the original spectrogram signature.

3.2.8 Cadence velocity diagram

By taking the Fourier transform of the spectrogram in time, the repetition or the ca-

dence of the activity is exposed [42][43]. The cadence velocity diagram (CVD) gives the

frequencies at which the different velocities repeat and, by using this, the information

about the shape, size and frequency of the curves and shapes in the spectrogram created

by the moving parts of the target. The features extracted from the CVD are largely

peak based. The step repetition frequency is derived from finding the local maxi-

mum of the CVD, then ranking them in the order of prominence and using the cadence

frequency of the prime peak, and the energy curve is extracted by approximating

the cumulative area under the curve of the CVD.

3.3 Legacy Classification algorithms

As with the features, a diverse plethora of options are present for classification. How-

ever, since human m-D provides non-linear distribution of features, the classifiers would
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need to be able to utilise this property of the input data. The classifiers in this section

have been largely superseded by other more advanced and resource intensive algo-

rithms. However they remain relevant due to their smaller footprint and compatibility

with smaller training sets, which is the case with radar datasets.

3.3.1 K nearest neighbour

A simple option is the K- nearest neighbour classifier. It is defined as:

Ŷ (x) =
1

k

∑
xi⊂Nk(x)

yi (3.7)

Based on the k closest points, Nk(x), a subset of the training matrix is formed. In

order to classify, k observations are taken with the closest neighbours in Euclidean or

Mahalanobis distance taken into account [44]. Using these neighbours margins can be

generated to segment the data points into different classes.

3.3.2 Linear Discriminant

Diagonal linear discriminant analysis assumes that the samples of classes fit a multi-

variate Gaussian distribution. This is built on the original Fisher’s discriminant rule

and in modern applications, during the initial training phase, the mean and the covari-

ance matrix of the distribution is estimated [45]. To expand on the binary theorem,

for a multiclass problem a single covariance matrix Σk is calculated instead and an

assumption is made that only the mean values alter between classes [46]. The feature

space is then split into segments depending on the expected classification cost C, which

is linked to the posterior probability P̂ :

ŷ = argmin
∑K

k=1
P̂ (k|x)C(y|k) (3.8)
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3.3.3 Naive Bayes

Naive Bayes classifier also expects a Gaussian distribution for each class [46]. It models

posterior probabilities with the Bayes rule:

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(3.9)

where p(Ck|x) is the probability of class k given x; p(Ck) is the probability of classes

and p(x) is for the samples; p(x|Ck) is the probability of samples given the class.

3.3.4 Support Vector Machine

Another more modifiable classification method is the Support Vector Machine (SVM).

SVM can be used for separating data into two different classes with a vector containing

specific points close to the separating hyperplane. This hyperplane could be defined

as:

f = x′β + b = 0 (3.10)

and the consequent minimisation function could be expressed as:

minβ,β0
1

2
||β||2 + C

N∑
i=1

ξi (3.11)

ξi is the slack variable and C is the penalty parameter.

If a separation margin, which separates the classes in the given space is not present,

a ”kernel trick” can be utilised to map features to a higher dimension (where a linear

boundary is present). Choices for the kernel are based on the desired hyperplane:

gaussian, cubic, quadratic and Radial Basis Functions (RBF) are common choices.

SVM is used mostly in binary classification, as it only allows a single hyperplane within

each problem set. To classify multiple activities, error coding needs to implemented.

In the one-vs-one coding utilised, each class is comparatively classified with another

resulting in an outcome with a certain vote of confidence. The outcome with the
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biggest overall vote is deemed the predicted class. In short, an ensemble of support

vector machines are required to solve a multi-class classification problem.

3.4 Neural Networks

In a biological brain, within the neurons, the ions from the membrane permeates

through an action potential to induce a response. This is thought to be the back-

bone behind intelligent thinking and it led to early efforts in the 1950s to mimic this

process electronically. Similar to how a brain process inputs from different senses, the

artificial neural network (ANN) was intended to use salient information from different

inputs to make decisions.

This section overviews the different approaches to achieve that end goal with specific

focus on the workings of the artificial neuron, the different types of networks and

current methods utilised together with radar [47].

3.4.1 Artificial Neuron

An ANN consists of a cascade of layers composed of artificial neurons, which are the

fundamental building blocks of an ANN, and connections between these layers. The

artificial neuron can be defined as:

y = f

(∑
i

wixi + b

)
, (3.12)

where w is the weight for inputs, b is the bias, and f is the activation function while x

and y are the gate input and output, respectively.

Classically, sigmoid and tanh have been used as the primary non-linear activation func-

tions but since 2010, rectified linear unit (ReLU) have become more prominent. This is

due to the sigmoid saturating between [0,1] and and tanh, between [-1,1], meaning they

both encounter vanishing gradient problems. Using an unlimited activation function

means this issue isn’t encountered by ReLU. The activation functions are defined as
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below and shown in figure 3.1:

sigmoid : f(x) =
1

1 + e−x
(3.13)

tanh : f(x) =
e2x − 1

e2x + 1
(3.14)

ReLU : f(x) = max(0, x) (3.15)

Figure 3.1: Activation functions

To mimic neural behaviour, these non-linear activation functions are necessary as they

allow non-linear relationships in the input domain to be mapped.

3.4.2 Multilayer perceptron and Neural Network Training

To learn even more complex non-linear relations, the stacking of neural network layers

to create a type of feedforward neural network called a multilayer perceptron is possible.
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As the name suggests, a multilayer perceptron (MLP) is composed of a sequence of

layers of artificial neurons, as shown in Fig. 3.2. The initial layer is a linearly activated

input layer, which is connected to a ’hidden’ layer, composed of neurons with non-

linear activation functions. This network is concluded with an output layer, which has

a linear activation similar to the input layer. The layers themselves are ’fully connected’

meaning each neuron is mapped to every other neuron in the subsequent layer. This

property allows the MLP to approximate shapes in the input domain making it a

suitable architecture for image recognition.

The general form of the network remains as approximated in eq. 3.12, however if the

specific classification application is considered, as opposed to regression, which the

MLP can be used also be used for, then for k classes the following relation occurs:

Zm = fac(α0m + αTmx)

Tk = β0k + βTk Z,
(3.16)

Z is the hidden layer, fac is the activation function, and α is the hidden weight. For

the output layer T , β is weight while m is the number of hidden layers.

Figure 3.2: Network architecture of an MLP neural network.

The output T of eq. 3.16 is a target measurement which is passed through a softmax

layer which takes a vector of T and produces a vector of positive estimates (eT ) summing
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to 1, it is represented as:

gk(T ) =
eTk∑max(k)

l eTl
, (3.17)

With gk the class identity can then be extracted from the network.

3.4.2.1 Training neural networks with back-propagation

Reviewing eq. 3.12, the weight parameter(w) is the critical element which requires

optimal values to fit the training data well.

From eq. 3.16 it can be inferred that the individual layers of the neural network will

have sets of weight, α and β and these are linked to the number of hidden neurons M

and output classes k. To measure the fit of data, the sum of squared error loss can be

calculated using these components:

R(w) =
N∑
i=1

max(k)∑
k=1

(yik − fk(xi))2, (3.18)

where yik is the observation and fk(xi) is the classifier prediction. minimisation is

the goal here with a desire to avoid the global minimum to prevent over-fitting of the

training data. This minimisation of R(w) is commonly performed through gradient

descent, also referred to as back-propagation.

For back-propagation, the derivatives of the subset weights α and β are calculated and

used to find the current model ”errors” δki and smi:

∂Ri

∂β
(r)
km

= −2(yik − fk(xi))g′k(βTk zi)zmi = δkizmi

∂Ri

∂α
(r)
km

= −
max(k)∑
k=1

2(yik − fk(xi))g′k(βTk zi)βkmf ′(αTmxi)xil = smixil,

(3.19)

then these errors:

smi = f ′(αTmxi)

max(k)∑
k=1

βkmδkizmi (3.20)



Chapter 3. Machine Learning Background 65

are used to update the model at steps (r + 1) together with the learning rate γ:

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Ri

∂β
(r)
km

,

α
(r+1)
km = α

(r)
km − γr

N∑
i=1

∂Ri

∂α
(r)
km

,

(3.21)

Eq. 3.21 used to satisy eq. 3.20. This is performed as a two pass process, firstly, the

current weights are fixed and the output from the network is computed. Then, during

the backward pass phase, δki is computed and back-propagated to calculate the error

smi then these errors are used to calculate the gradient.

3.4.3 Convolutional Neural Network

Although MLPs were initially popular for image classification, the ubiquitous image

classifier currently is the Convolutional Neural Network (CNN).

As opposed to the vectorisation of the image which MLPs require, the CNN has a

filter which sweeps the image, taking a moving average as it moves across the input

image grid. The filter has a stride length S which corresponds to the number of pixels

covered by the window during each convolution. This layer of the CNN is called the

convolutional layer and it outputs the activation map. A sketch of this layer’s behaviour

is shown in fig. 3.3.

This process is defined in [38] as:

s(t) = (x ∗ w)(t) =
inf∑
inf

x(a)w(t− a),

S(i, j) = (x ∗ w)(i, j) =
∑
m

∑
n

x(m,n)w(i−m, j − n).

(3.22)

for the one dimenional and two dimensional cases, where x is the input, and s(t) or

S(i, j) are the activation maps.

CNNs have further layers which make the architecture more complex. Specifically, the

pooling and fully connected layer are present in CNNs to downsample and vectorise

the image data. These layers are notably absent from primitive neural networks.
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Figure 3.3: Overview of Convolutional layer.

The max pooling layer performs a similar scan of the data at the input however, instead

of performing convolutions, this layer takes the maximum value of each segment of the

activation map. The output of the pooling layer is converted into a vector by the fully

connected layer, flattening the input image into a a single dimensional highly salient

information.

The remainder of the network performs similarly to a MLP however there are other

architectures utilising further layers and regularization methods such as Dropout.

3.4.4 Regularization and Dropout

Earlier, the importance of optimally getting weights and the updating processed was

mentioned and this section will review approaches to ensure the model does not over-

fit to the training data. In other words, this means for good general performance,

additional steps are required otherwise there is a risk of the algorithm working with

high rates with the small training set however with new general data it will not work

well.

The simplest methods used in literature are the L1 and L2 regularization [38]. These

are introduced as penalties to the cost function when updating the gradient so that

with every update the learning algorithm the penalties of certain weights become zero.
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To formulate this relationship, take the loss equation for updating a weight β (eq. 3.18)

and add the L1 and L2 regularization:

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Ri

∂β
(r)
km

+ λ

N∑
i=1

β
(r)
km, (3.23)

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Ri

∂β
(r)
km

+ λ
N∑
i=1

(β
(r)
km)2, (3.24)

where λ is the strength of the regularization being applied.

Another method to achieve this push away from the global minimum is Dropout.

As opposed to penalizing the loss function with a direct term, Dropout stochastically

eliminates neurons from the various layers in the network. This means the updates

are ’harder’ as the loss increases in noise due to the absence of reliable weights. To

represent this, the set i = 1 : N can be taken from (eq. 3.21) then remove certain

elements so the set itself is smaller. This reduced set acts as a penalty again as the

negative update term (γr
∑N

i=1
∂Ri

∂β
(r)
km

) is minimised.

3.4.5 Recurrent Neural Network and Long Short Term Memory

cell

For time varying data, although image MLP are utilised, there are other networks

that exploit this temporally variant nature better. Recurrent neural networks retain

repeating information in the data and updates when a change is detected meaning

temporal dependencies between the input and the output can be used for improved

classification when the data supplied to it changes in time [38].
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Figure 3.4: Computational graph behind the Recurrent neural network. The unrolling

shows the updates as they occur in time.

The RNN, shown in Fig. 3.4 relies on the updates of the y, L,O, and h states. The

graph form provides a view of how the input sequence(x) is mapped to the output

sequence(y) in this network architecture. The loss(L) maps the difference between the

expected output for a given time and it implicitly calculates the softmax loss internally.

o is the unnormalised log probability which is the target for the softmax function. U is

the weight matrix connecting the input to the hidden weight, whereas w is the weight

matrix connecting the hidden to hidden connections forward in time, and finally V is

the hidden to output connection weight matrix. When unfolded each of these nodes

constitutes as a observation in one time instance.

The forward propagation for this network occurs with the following equations:

a(t) = b+Wh(t− 1 + Ux(t), (3.25)
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h(t) = tanh(a(t)), (3.26)

o(t) = ct + V h(t), (3.27)

ŷ(t) = softmax(o(t)), (3.28)

Assuming the hyperbolic tangent activation function, as one is not specified in the

diagram, for each time step from t = 1 to t = τ , the equations above are applied with

every update. The softmax operation is used as a post-processing step to generate

a vector ŷ of normalised probabilities over the output. Forward propagation h(0) is

specified.

The implementation of this theoretical process differs from the ones used in various

libraries and iterative advancements have been made to the basic RNN to improve its

functionality. One of these networks is LSTM.

The LSTM network only implements a forward based dependency in analyzing the

data from the sequential timesteps. 3.29-3.32[48].

ft = σg(Wfxt +Rfht−1 + bf ) (3.29)

it = σg(Wixt +Riht−1 + bi) (3.30)

gt = σc(Wgxt +Rght−1 + bg) (3.31)

ot = σg(Woxt +Roht−1 + bo) (3.32)

The inner process of the gates in an LSTM layer are given by equations above. Equa-

tion 3.29 shows the operation of the forget gate and is based on an activation function

applied on the sum of the weighted input (with weight W and input x ) with the prod-

uct of recurrent weights R and the hidden states h from the previous iteration, and a
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bias term b. The other gates perform in a similar manner, with differences occurring

from the input and recurrent weights, together with the bias being unique to each gate.

The sigmoid activation function, cell state output, and hidden states output are rep-

resented by equations:

σ(x) = (1 + e−x)−1 (3.33)

ct = ft � ct−1 + it � gt (3.34)

ht = ot � σc(ct) (3.35)

To understand how the use of LSTM based networks for time-dependent data is bene-

ficial, the LSTM cell behavior can be empirically described. Fig. 8.1 presents a sketch

of the LSTM cell showing the two outputs at the current timestep t: the hidden state

ht and the cell state Ct. ht−1 is the hidden state at the previous timestep while Ct−1

the cell state at the previous timestep.

These two signals, together with the input data at the current timestep Xt, are the

input signals to the LSTM cell. Meaning, the outputs at the current timestep depend

on the hidden state and cell state from previous timesteps, therefore, the memory of

the network is utilised. This process mirrors the transition which are presented in the

previous set of equations.

The original recurrent neural network architectures, before the development of LSTM,

did not have states. Therefore temporally pertinent information across many timesteps

was not retained; the cell state changed this, as longer time-based dependencies could

now be memorized.

Four components control the two outputs:

• f is the forget gate which resets the state of the cell making it forget prior

information from the previous cell state.

• g is the cell candidate which provides input to the cell state keeping memorable

or recurrent information and providing it to the cell state.
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• i is the input gate which co-ordinates with g.

• o is the output gate to control the addition of the cell state to the hidden state.

In terms of radar data, this means that the information on human movements can be

memorized and correlated over a relatively long time. In the Doppler-time representa-

tion (spectrograms), an activity in a sequence of movements is perceived by the radar

as a specific pattern of active Doppler bins over time. The network can learn this

pattern in its internal parameters to recognize this activity even when it has different

lengths of ’activation’ or delays.

3.5 Machine Learning Concepts

Machine learning related techniques include the algorithms discussed in the previous

section, with many more available in the literature. However, they all follow concepts

which are uniformly present for all types of classifiers and estimators, and this section

delves into some of these shared ideas that are essential in machine learning.

3.5.1 Fitting

Figure 3.5: Intuitive overview of underfitting, good fit and overfitting.

The concept of fitting derives from the weights and biases discussed in this chapter.

Excessive bias can change the margin where two independent classes are detected. In
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fig. 3.5 a two dimensional example is given where a detector for the circle class draws

the separating margin for three potential outcomes of the fitting process.

When the classifier underfits, the margin will exclude observations which are outlying

the primary cluster of points. This means that some observations will not accurately be

detected while observations of the other class will be incorrectly identified as belonging

to the class of interest. This occurs due to a relaxed bias parameter and it can lead to

a low classification accuracy with high false positives.

Instead, when the classifier has a good fit although the primary cluster will remain

the main segment of interest for the separation margin, the margin itself will be tighter

around the class of interest. This means points which are outwith the primary cluster

will not be detected similar to the case when it is underfit, however false positives will

occur less due to the new tighter margin.

In cases where the classifier is overzealous with the coverage of the separation margin

and it attempts to cover outlying points, this is called overfitting. Overfitting is

special case which is of concern as it initially often leads to high rates of detection for

the class of interest. However, there is an increase in the number of false positives as

the margin is wider and overlaps with the cluster of the other class. Notably, the model

will not necessarily cover outliers.

In machine learning applications, during the initial part of the training process the

classifier usually is either overfitting or underfitting with a large number of training

iterations required to converge to a good fit. This iterative fitting process, together

with the gradient update process is what is understood as training the classifier.

3.5.2 Validation

The fitting process requires a test with a-priori data to establish how successfully the

data can be classified and there are two methods of validation, or testing, which fitting

is performed through: k-fold validation and holdout validation.

Holdout validation is the most common method of validation in literature where a ratio

of the total data is selected to be the test set. The indices of this test group is selected

randomly and over the entirety of the data set, meaning all of the classes will have
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a similar number of observations in the testing set which corresponds to their overall

numbers in the dataset. This is performed randomly to avoid bias and it provides

representative results when the number of samples in the data set is large.

In K-fold validation however, the data-set is split into K groups, an ensemble of learners

are used to train on K − 1 groups, with the last group used for testing, as shown in

Fig. 3.6. This is useful in cases where the total dataset has observations in the terms

of hundreds (hence small, like in many radar-based classification problems), instead of

the thousands which is the volume commonly encountered in classical machine learning

applications.

Group 1

Group 2

Group 3

Group 4

Group 5

Total number of datasets

Training folds

Testing fold

Figure 3.6: K-fold grouping illustrated. At every step the active testing fold is changed

while the remaining folds are used for training.

The methods of validation is decided by the abundance of data and in many of the

forthcoming sections there will be different approaches of validation used and an insight

will be provided behind their use.

3.5.3 Measures of success

To evaluate the performance of the classifiers, metrics can be derived from the correct

classification and misclassifications events in confusion matrices, as shown in the simple

binary example in table 3.1. The diagonal elements indicate the correct identification

for a given class of interest (e.g. A). This is represented as a True Positive (TP) and
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when the other class which is not of interest is classified correctly (e.g. B or C ),

whereas a false negative (FN) indicates a ‘missed detection’ and a false positive a ‘false

alarm’(FP).

Table 3.1: Multi-class classification confusion matrix example

Class A B C

A TP FN FN

B FP TN TN

C FP TN TN

In addition to the rate at which the classifier accurately detects an activity or label,

there are further metrics which are used to assess the quality of the classification.

Precision =
TP

TP + FP
(3.36)

Recall/Sensitivity =
TP

TP + FN
(3.37)

Specificity =
FP

TP + TN
(3.38)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.39)

Precision (eq. 3.36) denotes the correct classification rate with respect to false positives.

Recall (eq. 3.37), also known as sensitivity, is related to the ratio of correct class

detection with respect to false negatives and specificity (eq. 3.38) is calculated to

measure the ‘false alarm rate’ of the classifier for that specific class. Accuracy (eq.

3.39) is the balanced correct classification rate considering all classes.
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3.6 Summary

ML is necessary to infer information from radar sensors for automatic recognition as it

removes the central component of radar operation in the processing chain, the opera-

tor. In the classical interpretation of machine learning problems, a radar classification

could be defined as the task; the rate of classification as the performance and the human

operator having the training experience. When it is applied for activity or condition

recognition, it is an example of supervised learning as the abstract detail, be it move-

ment such as walking or condition such as gait, is a categorical concept which requires

past labelled data and the experiments and research done for this thesis consist of this

discipline of machine learning.

Over the course of this research, the state of the art has rapidly changed from algorithms

such as linear discriminant and SVM, algorithms which could be considered to be

legacy, to holistic algorithms such as artificial neural networks, to intelligent state

tracking algorithms as LSTMs.

Although the algorithms and architectures have changed dramatically, with newer al-

gorithms requiring increased amount of computational power and long duration of

training time, the basis for performance has remained constant. This is usually done

through the bulk accuracy of classes identified although there is a renewed focus on

the resulting metrics such as precision, recall, and specificity.

As with the general machine learning community however, recently the focus is shifting

on from the architectures to the type and quality of input data which will be the focus

of the upcoming chapters.
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Chapter 4

State of the Art: Monitoring activity

using Radar and Micro Doppler

Since the early days of radar, initial experiments were performed to assess if radar could

be used on humans for diagnostic purposes. However, half a century later in the early

2005s, radar began to be used for activity recognition and other human position and

movement-related applications. Since then, between 2015 and 2020, due to advances

in sensing, machine learning techniques and experimental design, activity recognition

with radar has attracted significant interest. This chapter provides an overview of the

literature in this timeline and it focuses on techniques to improve activity recognition

performance using radar. It also shows the gaps in the current knowledge, where

opportunities to contribute to the overall activity recognition with radar are present

and open.

4.1 Radar’s place in the activity detection paradigm

In Chapter 1, we discussed the maturity of established sensors in the space of activity

recognition, which then led to the question: why use radar?

In general the activity recognition hardware is categorised into two groups: wearable

and non-wearable sensors [49]. The former are either affixed to the body parts of the

monitored subject, or they are worn and carried in pockets. These sensors take fine
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resolution data from the inertia of the human torso and limbs, characterised through

their namesake sub-sensor: acceleration with the accelerometer and magnetic field with

the magnetometer, with the addition of gyroscopes for angular movements. They are

also capable of direct measurement of the surface temperature, arterial movement for

vital signs.

Non-wearables on the contrary are at a distance from the targets, being less invasive

regarding interaction and requiring less management and effort by the end-users and

deployers, who may often be older people with impaired cognition [49, 50, 51]. Further-

more, they are also less reliant on temporary power sources such as batteries, which is

an added benefit management-wise.

Among non-wearable sensors, radar has had increased attention as a possible alterna-

tive to established sensors such as video-cameras, due to its insensitivity to light con-

ditions and easy integration into the end-users’ home environment, as modern radar

systems can be inconspicuous in the modern smart home (for example, just like a

common Wi-Fi router).

Furthermore, radar may present less privacy issues than cameras, as plain images or

videos of the end-users and their private environments are not collected [52, 53, 54, 55,

16].

In summary, radar is a viable home monitoring device for activity recognition with a

long list of benefits. However, the question remains about how to leverage radar

technology with micro-Doppler and beyond for healthcare applications,

specifically activity recognition?

This chapter encompasses the state of the art attempts at hardware, software and

experimental research and innovations to answer this question.

4.2 Early experiments involving Humans and animals

with radar

Since V. Chen coined the term mD [36] , the study of using radar with micro-Doppler

for detecting, tracking and monitoring activities from living beings has steadily grown
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over the recent years. However, there was interest in human detection with radar as

far as 1958 [56] where Schultz et. al. identified the radar cross section of a ”man” with

both the monostatic and the bistatic radars at different frequencies ranging from 410

to 937 MHz, and both horizontal and vertical polarisation. In this experiment, a CW

radar was used to detect the cross section of a man who weighted 200 pounds and was

six feet tall. Then other men were ’measured’ and ultimately it was found that the

man’s cross section was approximately proportional to the weight of the target with

polarization having an effect on the measurements. This experiment was the earliest

indicator of physiology affecting the radar signature of a subject setting out a research

theme which would be influential in the far future: how the subject physiology

affects the detection of the target, which we attempted to address in [29].

In [57], utilising the principals used in eq. 2.1, a radiometer was used to detect the

reflectivity of different targets. Specifically, a pedestrian, a cyclist, and a car were

measured to have a varying level of returns as targets.

Until the millennium, experiments such as these were the limited examples where radar

was used with humans however this changed with the advances in computation which

allowed processing required for time frequency transforms, the mD effect and more

accessible commercial off the shelf radar systems.

One of the earliest examples of using time frequency with a radar system was done in

[58] in 2002, where Geisheimer et. al. used a CW radar to record the signature human

gait. They recorded the legs, arms, and torso which motions have different relative

velocities through the gait cycle and most notably, used STFT to parameterise the

human gait. This was seminal in the development future research in that field. Other

works focused on the angle of arrival [59] and through the wall detection of individuals

[60].

Between 2005 and 2012, the focus was mainly on detecting the target but it is also a

significant period of time where interest in radar for human applications were beginning

to attract interest in the wider radar community. An important advent during this

period was the introduction of the mD effect [61].

Otero assessed the presence of participants using a radar in [62]. In this instance it

was a simple classification problem of identifying the presence of a male subject and a
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female subject and their overall absence from the line of sight of the homebrew radar

system. Notably, the mD signature of a dog was compared with in this paper but not

utilised for experimentation or classification. This shows that there were early interest

in the applications of radar based activity recognition for domestic animals.

The next notable contribution was by Kim and Ling in [16] where experimental and

analysis techniques presented were adopted by a large number of future works. In this

paper the analysis ranged from feature extraction, non-direct line of sight and through

the wall performance to difficulty in classifying sequential data and cross validation

options.

The experimental makeup contained the use of a single CW radar at 2.4 GHz with

which seven activities were classified with the data from 12 participants.

In certain ways, this paper highlighted the potential research avenues for mD activity

recognition. These formative topics ended up being the focus of research over the next

decade, including this work.

4.3 Specialisation into classification and discrimina-

tive applications

After these clear opportunities were outlined in literature, the research focus began to

diverge and propel into the newer realms of discriminative applications such as activity,

person and gait recognition.

4.3.1 Feature extraction for recognition

Feature extraction was an important focus during this period and methods of extract-

ing salient features were explored in the literature. Starting from the generation of

fine handcrafted feature which extracted direct movements, the process was refined

over time so features were generated automatically and in this segment overviews this

iterative process which was ultimately superseded by deep learning methods.

One of the main features utilised for activity classification is the Doppler centroid

which was generated in [63] to identify armed and unarmed personnel. Similarly, in
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[43] Seifert et.al. used features generated from [62] to classify three different gaits to

check presence of assistance from a cane. These two works were an early example of not

only generating fine handcrafted features but also using them together with component

analysis or decomposition based feature generation methods.

An early example of these methods was from Chen, who used independent component

analysis (ICA) to extract features in [64]. Using another component analysis technique,

in [65], Clemente et. al. used robust principle component analysis (PCA) to improve

classification accuracy and as a tool for dimensionality reduction. The singular value

decomposition (SVD) of the spectrogram was also an innovative method to generate

features and reduce the components of the spectrogram to isolate salient ones. Earlier

examples of this method were synthesised and applied by De. Wit in [66] and Fioranelli

in [63].

None of these aforementioned methods, i.e. ICA, PCA and SVD, require precise deriva-

tion of information and modifications. Furthermore, they do not require fine-tuning

of the algorithm to specifically suit a set of radar data. They are resilient to various

levels of signal-to-noise ratio and produce salient features in most cases. It is notable

that these works innovated or generated new methods of extracting useful information

from the highly abstract radar data, showing that feature extraction influences

the accuracy of the classification. It becomes clear that there are many methods

of generating features which are distinctly different from each other. This thinking was

behind [18, 19, 20], where the variety of sourced data was utilised to select optimal

features from these vastly different sources.

4.3.2 Gait analysis

In 2014, Wang et. al. in [67] conducted one of the most comprehensive experiments

regarding gait monitoring using radar for the elderly. In this work, they highlighted

the current lab based methods and expressed the difference between these locations

and the home environment. This is one of the few examples where the location of the

test is considered as although this is an important factor, it is not highlighted upon.

In this experiment, they generated gait parameters from radar spectrogram signatures

and classified four types of gaits from 13 participants. In [43], as mentioned before,
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three gaits were assisted, and similarly in [68], the authors considered five different

classes of gaits.

In [69], pseudo-Zernike moments derived from spectrograms were used to classify firstly,

between gaits of individuals and groups then secondly, between horse riders and indi-

viduals.

The topics of detecting maligned gait and classifying presence of animals in signatures

showed how in this period, new applications were continually introduced. Using these

two overarching topics in [17], we utilised radar based gait recognition to detect

lameness in animals which are physiologically different from humans.

Gait monitoring and activity recognition with radar both started to catch up to the

state of the art methods like deep learning around in this time and considerations such

as number of participants began to be important as researchers pushed to increase the

significance of their experimental results.

One of these examples is in [70], Le et. al used autoencoders together with spectrograms

and scalograms to identify the gait of participants who were walking. While in another

example [71], an LSTM was used to classify the walking gait of small groups of people

vs individual persons in an outdoor scenario. As for experimental improvements, [72]

who validated mD gait signatures as precursors of cognitive ability using data from 74

people. This was one of the larger scale evaluations which truly tested the aspect of

participant physiology for gait recognition.

4.3.3 Activity recognition/ gait monitoring with deep learning

After the initial focus on feature oriented classification the development of deep learning

[73] and related classification methods based on neural networks, attracted significant

interest for their application to radar-based monitoring of human activities [74]. Their

main advantage was the ability to extract salient features automatically within the

network, without explicit inputs or fine-tuning of parameters preventing features which

may be prone to overfitting.

There are numerous contributions in the literature using deep neural network (DNN)

based architectures to process the radar data as images. The work in [75] used DNN
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where they classified specific individuals and groups of individuals based on their walk-

ing gait. They also provided comparison with conventional supervised-learning classi-

fiers such as Näıve Bayes and SVM were provided, demonstrating better performances

when using the deep networks. A DNN was also used in [55] for human gait recognition,

exploiting a dual-channel architecture where the network had two separate branches at

the input, in order to accept spectrograms calculated with different temporal resolu-

tions. A specifically designed DNN was also used in [52] to identify specific individuals

in different rooms based on their walking gait, with the additional complexity of the

subjects following free-form, unconstrained trajectories.

Then on, even more complex DNN architectures began seeing use in literature and [32]

provides examples of these works.

In [76], DNNs were used to classify human activities from their spectrograms, and

in [77], a novel DNN based architecture was proposed to specifically account for the

diversity induced by the different aspect angles on the radar signatures of human

movements, especially with respect to their Doppler signature. Modifications to the

conventional architectures of DNNs were proposed in [74, 78, 79], exploiting convo-

lutional auto encoder (CAE) to perform unsupervised pre-training of the weights of

the network.CAE and DNN were also combined with a novel technique to augment

the amount of available data in the training set by using Kinect-based motion caption

simulations, enhanced by a diversification technique to improve the life-likeness of the

simulated synthetic data.

Our application of deep learning was focused on the unique challenge of using data from

a variety of radar sensors. In [28], we used transfer learning to classify activities but also

showed that transplanting weights generated with a radar with one centre frequency

can be used to classify data from another independent radar system operating at a

different frequency.

4.3.4 Multi-sensor fusion with radar

Due to the maturity perhaps, the other sensors have seen the adoption of sensor fusion

in numerous cases. One of the factors behind this is that inertial sensors, which are
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often commensurate and co-sampled at the same interval, has multiple co-sensors which

are weak on their own but strong when combined.

Particularly the combination of ambient and wearable sensing is not present in the liter-

ature. There were initiatives such as the sensor platform for healthcare in a residential

environment (SPHERE) project which utilised a sensing environment containing sen-

sors measuring traditional activity monitoring [80] but also unique information such

as: ambient temperature, ambient kitchen cooking temperature and network allocation

used by the participants living in the SPHERE house. In these data-sets the individual

sensors are the mature conventional heavyweights such as stereo cameras and wearable

sensors. This combination of data collected could be considered almost excessive and

the element of privacy would again be critiqued. A common question asked is How

can the sensing methods be improved to optimise the classification accu-

racy in the context of assisted living? However, in this question is not limited to

the literal sensing methods but also the optimal number of them and the type of data

recorded. It means to ask what type of data and how much of it should be collected

while maintaining the privacy of the test subject.

In [20], we give an overview of the different opportunities for data fusion and showing

improvements for our set of daily activities. Although radar performance at different

frequencies has been thoroughly evaluated by [74] the co-operation of radar at different

frequencies did not appear in literature. We also addressed this secondary issue in [20]

by demonstrating co-radar fusion.

4.3.5 Continuous activity sequences

It is apparent that activity classification and gait recognition was a popular topic in

literature, the use and classification of lifelike sequences or activities with transitions

were missing from the literature.

Notably during this time, LSTM was minimally discussed in the literature as a stand-

alone tool for radar-based human activities classification. Therefore it represented

an under-explored approach compared to the established deep neural network based

approaches.
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In [81, 82], recurrent networks had been used to classify six different human activities.

An LSTM was used in [82] and a stacked gated recurrent unit network, based on

a simplified architecture of the LSTM cell, was used in [81]. Although these works

addressed the absence of the LSTM cells, for these experiments the data was collected

as separated individual discrete recordings which were then concatenated to generate a

sequence. This conventional snapshot data collection was also applied in [83] and [84],

where LSTM networks were applied respectively to raw IQ radar data and to range

profiles to classify separated human activities.

In short there was a gap in the literature where attempts at utilising advances/evo-

lution in machine learning to automatically segment and classify human

activity in a continuous data stream with a single radar sensor had been

performed. However they had the shortcoming of not having genuine sequential data,

and in certain cases not addressing activity recognition.

In [21], we address this by taking genuine sequence of activities then using a novel

bidirectional LSTM based network to demonstrate improved recognition of con-

tinuous activities and activity transitions without feature extraction using a

single radar sensor.
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4.4 Summary

This chapter discussed the state of the art regarding how to leverage radar technol-

ogy with micro-Doppler and beyond for healthcare applications, specifically activity

recognition.

In table 4.3.5 previous works discussed in the chapters are identified and summarised.

There are a series of trends which appear in this table with the first being the pre-

dominant use of the CW radar with other systems either used for comparison or as

alternative. Secondly there is a lack of information about the participants for the ma-

jority of the works with age and physical information being the most absent traits in

the papers. Finally, there is no clear correlation between the number of classes and the

type of classifiers used and the set of activities are different depending on the authors.

A positive trend is that the current methods already show exceptional performance

with the specific subset of activities they are applied to. There is also a general in-

crease in the number of classes which means the classification challenge is progressively

increasing. However, besides these observations, the cumulative works up to now have

generated a few research questions of contention.
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Chapter 5

Methodology and datasets

Given the breadth of experimental variations in the activity recognition with radar

literature, there are many potential activities which could be the focus of any study.

However, certain types of activities are more challenging to solve at a distance with an

ambient sensor. This chapter will look at the initial selection of these activities and

the iterative changes of the discrete activity set to reach the maximum complexity in

the form of continuous activities analysed in this thesis.

Additionally, this chapter will also overview the setups of the experiments conducted for

this thesis and discuss the differences between previous experiments in the literature.

It will also explain the operational similarity between these independent experiments

while addressing their evolution towards lifelike environments.

5.1 Activity decomposition of initial set of Activities

The categorisation of the activities had a specific purpose, as in most activity detection

system, there are certain actions which are more important to be classified. The initial

set of activities was inspired by this line of thinking together with previous data sets

such as the ones presented in [16]. The set should represent activities, which use

specific parts of the body as well as also include movements from the whole body. This

means commonly made movements would be included in the set together with rare

but dangerous activities such as falls. False alarms are a key concern in fall detection
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systems as valuable resources could be unnecessarily used up following a false fall

identification, therefore the broadness in the number and types of activities was a key

desire.

There was also a desire to keep consistency between the activities; therefore similarity

between sets was ideally maintained. Although the initial focus was on activity recog-

nition of discrete type, the focus at the end changed to continuous activities which was

a shift that was present in the literature too towards more realism.

5.2 Experimental design decisions

Although there is a difference in the sensors, participants and at times, activities be-

tween the activities, the experimental setup remains uniform between the experiments

considered in this thesis.

The experiments involve a single participant performing activities in the field of view

of a radar sensor located at a close distance. In all the experiments, a time window was

provided where the participant could decide to start and finish their activity, meaning

there was an intrinsic variation between the recordings. Furthermore, the participants

performed the activities with repetitions to ensure multiple recording samples were

present from one individual. Finally, no specific instructions were provided to the

participants, meaning the movement made was based on their interpretation of the

activity stated.

The reasoning behind these decision comes from factors which activity recognition

applications would face in a real world scenario. For example, the sensors were lo-

cated in a close distance from the participants as the application of ambient sensors

are predominantly indoors. Similarly, for the open time window, different individuals

depending on age, capacity, and physical state perform movements and activities at

different speeds. In addition, as the activities are often a sequence of smaller motions,

individuals can have ”quirks” or unique patterns which could be hard to replicate, yet

an activity recognition system would need to identify this in the real world. Finally,

the lack of prescribed movements for the activities would further add to this variety.
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5.3 Experiment details

This section will detail the variables in the experiments such as sensors, number, and

gender of participants and operational parameters of the radar systems.

5.3.1 Radar sensors setup

The main radar system used for the experiments was an FMCW radar system from

Ancortek operating at 5.8 GHz, an instantaneous bandwidth of 400 MHz and a pulse

repetition frequency of 1 kHz. This radar was connected to separate transmit and

receive Yagi antennas with transmitted power of 100 mW, with an antenna gain equal

to 17 dBi approximately and beam width of 24◦ in azimuth and elevation.

A colocated radar was also used in certain experiments, and this was the RF-beam st100

with K-MC1 transceiver unit that transmits approximately 18 dBm EIRP (Effective

Isotropic Radiated Power) at 24 GHz. The transmitter and receiver antennas were

micro-strip patch antennas (gain 18.5 dBi) with beam aperture 25° in elevation and

12° in azimuth. This system is a CW radar therefore it has no instantaneous bandwidth.

5.3.2 Inertial sensors setup

Other sensors were also used cooperatively as these they either measured parameters

which were different from the ambient sensors such as inertial sensors, or they measured

higher fidelity information such as depth cameras. The main counterpart were wearable

sensor-based devices. Compared to contactless sensing methods, wearable devices use

the fact of being directly attached to the user to map the motions by recording the

variation in physical characteristics of the body under movement. These characteristics

are quantified as acceleration, angular speed and magnetic field strength by recording

through an Inertial Measurement Unit (IMU). Classically, inertial and magnetic sensors

are placed on the wrist of the body to measure the acceleration, angular speed and

magnetic field change in the different axes with respect to different human activities.

However there are instances where they have also been placed along the waist or aside
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the legs. This is a benefit that radar systems do not have as there is a potential to be

selective about sensor placement.

The accelerometer acts like a displaced mass on a string, where upon acceleration of the

monitored body it experiences a fall and the corresponding acceleration recorded is esti-

mated by the displacement of the string [85] and proportional to the overall movement.

In the commercial market, piezoresistive, piezoelectric, and capacitive components are

used to convert mechanical displacement into an electric voltage [86]. Piezoresistive

materials are ideal at measuring sudden changes of high acceleration, whereas piezoelec-

tric materials are sensitive to the upper frequency range and are temperature tolerant.

On the contrary, capacitor-based accelerometers are sensitive to low frequencies.

Gyroscopes estimate the angular speed and maintain the direction to the poles [87][88].

The gyroscope is typically used together with the accelerometer, constructing the in-

ertial navigation system. The main gyroscope frame consists of a gimbal and a rotor,

where the spin axis is free to represent any orientations without interference from

tilt and rotation. Modern gyroscopes are made of Micro-electromechanical systems

technology, which allows packaging multiple gyroscopes for different axes in a single

physical chip.

Magnetic sensor or magnetometer, often categorized into magnetic Hall Effect sensor

and magnetoresistance sensor, can detect weak bio-fields inside the human body. It

can be further categorised into anisotropic magnetoresistance , giant magnetoresistance

and tunnel magnetoresistance [89].

Hall sensor is widely used for human activity recognition due to its sensitivity range,

whereas magnetoresistance sensors can capture subtle variation of magnetic field (10-

6- 10-12 Tesla) via an array structure. The magnetometer moves across the earth

magnetic field when part of the human body is moving in a 3-D space; different voltages

are produced from the conductor according to the amplitude of the motion and aspect

angle to the earth magnetic field [19]. This is known as Hall-effect, where the applied

magnetic field can be expressed through applying a floating electric current on the

conductor to produce a hall voltage. This allows the hall-effect sensor to convert

different human activities into difference in output voltage and turn it to the magnetic

information accordingly. The magnetometer is a single Bosch BMM150 Hall sensor
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sampling at 20 Hz with a ±1300 µT range and resolution of approximately 0.3 µT. It is

a sub-component of the IMU produced by X-IO technologies containing other inertial

sensors.

The use of these sensors in the experiments was due to the desire for uniformity be-

tween the experiments. To a certain extent, this meant that the main radar sensor

was a control variable central to this research, while the other sensors were explored

as avenues to assist the main radar in improving the activity recognition rates in a

multimodal fashion.

5.3.3 Hardware considerations

Power requirement is an important parameter for the different sensors. As the wearable

sensors are located away from the processor, they require a battery-based supply to

operate the sensors and transmit the data. However, the radar system does not have

this detriment as it is connected to a computer for operation and recording, therefore

the power source and consumption is less important compared to the inertial sensors.

For regulatory compliance, radars are powered by USB operating at 2.5 Watt maxi-

mum. The operational transmit and receive power are in the order of +10dBm which

is within the range of wireless electromagnetic networks such as WIFI.

5.3.4 Environmental, participant and activity setup

This section discusses the composition of the experiments and how one set of experi-

ments influenced the next.

Dataset 1

The first datasets for this thesis were generated in 2016 in two different locations.

Dataset 1 was performed in an indoor meeting room at the School of Engineering at

the University of Glasgow.

The environmental setup mimicked a normal living area containing several pieces of

office furniture such as desks, chairs, cupboards, computers while maintaining radar
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line-of-sight to the targets. The radar itself was located at a height of approximately

1.2 m pointing at the torso of the subjects.

The makeup of the participants had six different volunteers who took part to the data

collection. 3 were males and 3 were females, with their age between 20 and 30 years.

For this collection there were seven different actions recorded:

• walking towards and away from radar,

• sitting on and standing up from a chair,

• bending to pick up an object from the floor and standing up,

• circling one arm while standing,

• clapping while standing,

• pushing: extending an arm towards the radar fast, and then slowly retracting,

• pulling: retracting arm quickly then slowly extending.

In this experiment the actions were performed repeatedly over 60 s long recordings for

each activity. They were repeated once for each subject meaning a large number of

repetitions of the particular movement was recorded under test.

Furthermore, additional data were collected with two of the six subjects facing different

aspect angles, namely 30°, 45° and 60° away from the line-of-sight of the radar. This

was done to test the effect of the aspect angle parameter on the signatures and on the

classification algorithms.

Dataset 2a/2b

The recording of the second dataset, Dataset 2a was performed in the laboratory of the

Telecommunication Systems Group at the Università Politecnica delle Marche, Ancona,

Italy.

The height of the sensor in this case was approximately 1-1.1 m from the floor and

targets were located approximately 2 to 4 m away from the radar depending on the

activity.
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For this set, ten different actions were recorded:

• walking (A1),

• walking while carrying an object (A2),

• sitting down on a chair (A3),

• standing up from a chair (A4),

• bending to pick up a pen (A5),

• bending to tie shoelaces (A6),

• drinking multiple sips from a glass while standing (A7),

• take out a mobile phone from pockets and pick up a call (A8),

• simulated tripping with frontal fall (A9),

• and crouching to check underneath then standing (A10).

Three different recordings were collected per person for each of the 10 activities. In

each recording only one repetition of the particular movement considered was collected

meaning compared to the previous dataset the actions had a finite start and stop time.

The recordings had different durations depending on the activity, from 5 s to 10 s.

The participants in this experiment were seven individuals between the ages of 23 and

40 years old.

For these data, simultaneous recordings of the activities were also collected using the

RGB-D sensor Kinect, located in frontal position with respect to the subjects. The

layout of these sensors are shown in 5.1.
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Figure 5.1: Laboratory setup for dataset 2.

Additional data in the form of Dataset 2b was then recorded for the same activities in

a residential environment with two subjects: one 62 years old male whose signature is

presented with younger participants 5.2 and another 58 years old female. The purpose

here was to investigate differences between signatures of younger and older subjects,

in order to assess the robustness of classification approaches, which are usually devel-

oped on data from younger and able bodied subjects in laboratory environments. The

distance from sensor and the height of the radar were maintained from Dataset 2a,

making this a counterpart set for this experiment.

The patterns and use of dataset 1 and 2a/2b are discussed in chapter 6, but the

classification results of these sets highlighted the increased difficulty of classification of

activities presented in the format of dataset 2a. Therefore, the future datasets from

this point used it as a basis.
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Figure 5.2: Activitiy A10: ”crouching to check underneath then standing ” as per-
formed by four participants of different ages for dataset 2a.

Dataset 3

For Dataset 3, after deciding to maintain the activities in Dataset 2a (5.3.4) measure-

ments were collected at the James Watt South building, University of Glasgow in 2017.

In this experiment, in addition to the main FMCW radar, the colocated CW radar was

used simultaneously. The antennas were set up at 0.6 m, in line with the torso of the

participants.

Both systems were located close to each other and they were set up as shown in Fig

5.3. The distance between the antennas and the participant in this set of recordings

was 1 m.

The activities are categorised and ordered into three central movements: dynamic

movement, torso traversal, and limb based activity.

Dynamic movements have a wide range of motions involving translation of the torso

and all limbs as seen in activities A1 and A2. While torso traversal activities have a

central component of movement of torso, as seen in activities A3 to A8. Forelimb based

activities mainly involve the movement of arms interaction with secondary objects such

as A9 and A10. The categorisation here also helps in specifying activities similar to

high risk activities such as A8: fall. These are similar to the main signature of interest,

and referred to as confusers. A5: bending to pick up objects, A6: checking under bed
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Figure 5.3: Sensor setup for dataset 2.

and A7: tying shoelaces, are considered as confusers for fall.

The participants in this case were twenty males between the ages of 21 and 34 years.

This was also a litmus test to understand the case where variety in gender/sex was

absent in the data, while physiological differences were present as variety in the form

of body height and body shape.

As for the additional sensor in this experiment, a magnetometer was also recording

data in parallel. As for the list of activities, they were held consistent with Dataset 2

with the main difference being the inclusion of an extra sensor.
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Dataset 4

Figure 5.4: Pictograms of activities performed by the participants.

Radar sensors were collecting data simultaneously with the wearable sensor. The sys-

tem was used with one transmit and one receive yagi antennas with gain of 17db, with

transmit power of 100 mW. The antennae have a 48-degree beam-width in azimuth;

they were 0.5m apart therefore operating in a monostatic configuration. 80 cm height

means the radar’s main lobe would encompass the human body with the increased

backscatter coming from the torso of the participant.

Three repetitions for each of the 10 activities were taken for each volunteer with 600

samples in total taken for each sensor.

Inertial measurement unit was the co-opted sensor in this experiment. The data anal-

ysed in this work were collected with a group of 20 volunteers aged between 22 and 32

years. A pictorial representation of these activities is given in Fig 5.4.

Dataset 3 and 4 are part of a bigger database which is publicly available [31].
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Figure 5.5: Environment of the experimental setup with radar antennas mounted on
tripods and sources of static clutter (furniture) shown.

Dataset: Continuous

In this dataset, the challenge evolved from preventing confusers to not only correctly

identifying activities within a sequence, but also transitions between activities and the

whole sequence of activities.

The participants in this experiment were 14 male and 1 female aged between 21 and

35 years, collected at the University of Glasgow in July 2018.

The participants recreated daily life activities/movements in this room, where an area

under observation was set for them to perform their movements. This area and the

radar setup, together with the environmental setup with the clutter and furniture which

are visible in Fig. 5.5. The height of the radar in this case was 0.8 m and the distance

between the sensor and the area where the subjects were performing the activities was

between 1 and 2 m. One male participant provided data twice, and these data from the

repeated recordings have been used as the validation set for the networks for improved

generalization of the classifier.

The data include six human activities:
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Figure 5.6: A pictorial list of activities; these six activities were performed in a different
order in three different continuous sequences

• walking (A1),

• sitting on a chair (A2),

• standing up (A3),

• bending to pick up an object (A4),

• drinking a glass of water (A5)

• simulating a frontal fall (A6).

These activities are shown in Fig. 5.6 where the individual activities shown as discrete

actions, however they were performed sequentially, with each action performed in suc-

cession, with varying duration and unconstrained transitions between them. The time

length of each sequence was 35 seconds, and three different sequences were recorded

for each participant. They were:

• A1: A2: A3: A4: A5: A6

• A5: A4: A2: A3: A1: A6

• A4: A5: A1: A2: A3: A6

For the 15 participants, the three different sequences of continuous activities culminated

in 45 different recordings for the main dataset, with an additional 3 recordings for the

validation set with a repeated participant.
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Table 5.1: Summary of the datasets generated from experiments used in this thesis.

Dataset Type
No. of
Participants

No. of
Actions

age
Sensors
used

Dataset 1 discrete 6, 3f 3m 7 20-30 FMCW
Dataset 2a discrete 7 10 23-40 FMCW, RGBD
Dataset 2b discrete 2, 1f 1m 10 62,58 FMCW
Dataset 3 discrete 20 10 21-34 FMCW, Magnetometer
Dataset 4 discrete 20 10 22-32 FMCW, CW, Inertial
Dataset 5 continuous 15, 14m 1f 6 21-35 FMCW, CW, Inertial

5.4 Summary

This chapter overviewed the procedure of the experimental setup and the different

datasets that were generated and used in this thesis. Taking inspiration from the

previous works in the literature, a set of activities which represented common actions

performed daily while making the body use a variety of motions. Notably, although

the initial set of activities composed of repeated simple motions, the subsequent activ-

ities were a more refined set encompassing the complex problem of continuous action

sequences. The intention behind this was to reflect the progression of the experimental

design towards life-like or realistic scenarios.

Aside from the physical design, there was also a careful setup of the background.

Different to earlier experiments where reflection and back scatter was attempted to be

mitigated using anechoic chambers or materials, the experiments were conducted in

a room full of static clutter such as furniture. This made the scenario more similar

to an ordinary home environment which these types of experiments in the literature

attempt to replicate. Finally, this collection of data was designed from the beginning

to be a growing dataset with the intention of making it publicly available. A subset

of these data are part of a bigger database which is publicly available [31]. Using

this data-set few exploratory works have already been generated thanks to the Radar

Challenge “Human Activity Classification with Radar” which was hosted by 2020 IET

International Radar Conference in Chongqing, China, with [90, 91, 92, 93] as some

examples among others.
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Figure 5.7: Map of location of the 147 researchers who entered the radar challenge

available at : https://humanactivitiyclassificationwithradar.grand-challenge.org/

For many researchers there is a barrier that is present regarding the subject of activity

recognition with radar. In the past it required bespoke hardware and time and effort

to formulate experiments and find willing participants. By releasing this data-set

we removed this barrier while also providing additional data to researchers in our

field. Furthermore, there are other events expected where this dataset will be used

for outreach and to increase the attention to this topic. One of these events will be

a hackathon at the 2021 Electromagnetics Special Interest Group (EMSIG) available

at :https://www.emsig.org.uk/emsigradarchallenge. Together with the hackathon and

the previous challenge the goal was to make research in activity recognition with radar

a global topic. Fig. 5.7 shows our current progress in this regard with a map of the

countries from which researchers used our dataset for the radar challenge.



Chapter 5. Methodology and datasets 110



111

Chapter 6

Features extraction for activity and

animal lameness recognition

Any cognition from intelligent beings requires identification of special properties of the

object or action that is observed. In nature this is visible with animals where they rely

on the transmitted signal for survival, for example using the sense of smell to track

prey and measuring darkness to optimise timing for hunts. However on the primitive

level, finding notable elements in the object, in other words its defining traits, is the

key task behind many of these advanced activities. Therefore for computer cognition,

the question about how things can be identified arises. The answer however is the same

as observed in nature, through features.

Unlike biological features however, the features found in radar signals are abstract;

therefore derivation and processing of the received signals is necessary to obtain them.

Furthermore, referring back to nature, the properties observed by animals can be rather

specific, such as the colour of the animal and the gait, and often they are used to identify

if the target observed is a prey, predator or competitor. Although the exact categories

may be different, this concept is fundamental in ML when feature based classification

is performed.

This chapter explains the initial use of handcrafted features for activity recognition with

a single sensor, specifically mentioning two applications one relating to animal welfare

[30, 17] and the other regarding dependency on variety in human subjects [29, 18]

for activity recognition applications. First the effect of variety in age, gender and
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physiology of the subjects on the accuracy of activity detection is discussed, followed

by the novel use of radar based gait recognition to detect lameness in animals which

are physiologically different from humans.

First, the radar-based activity recognition is performed to assess the effectiveness of

the then-current methods on a broad range of participants of different genders and age.

Following this, the use-cases of applying micro Doppler (mD) based radar classification

to problems such as gait monitoring in animals was explored. By porting the features

used for the first application and demonstrating the ability to use mD with animals,

mobility testing could be automated with results approaching to the level of human

experts in detecting lameness or gait problems.

In the absence of end to end classification which are more commonplace currently, the

initial efforts required extraction of interesting properties of the spectrogram or other

input data from the radar as described in Chapter 3. These initial set of features

are a few amongst many in the radar literature and are categorised into three groups:

physical features, decomposition based features and transform based features. In this

chapter their application for classification of biological movements will be discussed.

6.1 Activity classification for broad test subjects

For the first experiment, the activity recognition for a diverse set of participants is

performed to address the initial topic of interest, the ambient monitoring of humans at

risk of falling. Using the various feature extraction methods described then assessed

their effectiveness on a variety of subjects of different ages and physical build with the

dataset described in 5 as dataset 1, 2a and 2b. This experiment was also an opportu-

nity to observe the differences between a radar spectrogram in an elderly participant

compared to an able bodied participant.
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Figure 6.1: Spectrograms for 6 activities performed by the same subject: (a) sitting on

a chair, (b) standing up from a chair, (c) bending and picking up a pen, (d) bending

and staying low to tie shoelaces, (e) frontal fall, and (f) crouching to look below a piece

of furniture and standing back up.

Figure 6.1 shows an example of spectrograms for six different actions performed by the

same subject from dataset 2a. The temporal duration of the signature and the change

and extension in positive/negative Doppler appear to differentiate the actions, with

the challenge of finding suitable features that can capture these differences effectively

and be robust to the variability from one subject to another. Some actions are more

similar than others, e.g. the frontal fall in Figure 6.1e is very similar to the bending

action in 6.1d, presenting a challenge for false alarms in fall detection. Furthermore,

the signatures in Figure 6.1c and 6.1f could be confused with the actual fall (6.1e) as

well, if the classification algorithm only considers the initial part of the signature.

Figure 5.2 in the previous chapter shows four spectrograms for the same action (crouch-

ing to look below a piece of furniture and coming back up) performed by four different

subjects, one of which (Figure 5.2d) was significantly older than the other 3. One can

also observe in Figure 5.2 how the same action produces rather different signatures for

different subjects, and the fact that the signature for the older subject (Figure 5.2d)

appears to be more limited in Doppler frequency extent than for the younger subjects.
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This may highlight the importance of collecting data from actual older subjects for

effective development and validation of classification techniques. This needs to be vali-

dated through the collection of a large number of signatures, including older volunteers,

to validate the statistical significance.

The feature samples were then processed using different classifiers implemented in

MATLAB. These were: Näıve Bayes, diagonal-linear version of the discriminant analy-

sis, Nearest-Neighbour with 7 neighbours, binary classification tree, support vector ma-

chine with radial basis functions, and ensemble method based on random forest/bagged

tree.

Table 6.1: Confusion matrix for SVM classifier (cubic kernel) for dataset 1

Accuracy [%] Walk Push Pick up item Pull Circle arms Clap Sit/Stand

Walk 95.9 0.5 0.2 0.7 1.3 0.5 0.7

Push 0.2 94.7 0.3 1.8 1.2 0.3 1.1

Pick up item 0.4 0.6 94.2 1.5 1.9 0.2 0.9

Pull 0.3 4.2 0.3 91.9 1.6 0.2 1.2

Circle arms 0.3 1.7 1.6 2 91.4 1.2 1.3

Clap 0.3 0.6 0.1 0.1 1.7 96.5 0.3

Sit/Stand 0.3 1.5 0.3 1.6 1.6 0.3 94

When analysing dataset 1, the 60 seconds long spectrograms were partitioned in 3 sec-

onds long segments and one feature per data sample was extracted from each individual

segment. For this dataset, ten features were considered as input to the classifier: mean

and standard deviation of the centroid and bandwidth of the signature, entropy and

histogram skewness, and the six other features based on SVD. This generated a total

of 2460 feature samples and from the samples set, the data was randomly partitioned

in two equal subsets for training and samples; this process was then repeated 50 times

to test the validity of the classification approach. After this, the average accuracy was

calculated and the results per class were reported as shown in the confusion matrix in

Table 6.1. The classifier used to generate this confusion matrix is an SVM with cubic
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Table 6.2: Confusion matrix for SVM classifier (RBF kernel) for dataset 2

[%] A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1 68 26.4 0 0 5.6 0 0 0 0 0
A2 29.2 70.4 0 0 0.4 0 0 0 0 0
A3 0 0 86 0 2.4 0 4.8 0 0 6.8
A4 0 0 0 80.8 4 2.4 9.6 3.2 0 0
A5 1.6 0 5.6 8.8 56 22.4 4 0 0.4 1.2
A6 5.6 0 0 0 19.6 66.4 3.2 0 0 5.2
A7 0 0 0 8.8 8.8 4.4 71.2 6.8 0 0
A8 0.8 0 0 4 3.6 0 9.6 82 0 0
A9 0 0 0 0 0 0 0 0 91.2 8.8
A10 0 0 0.4 2 0.4 2.4 0 0 2.4 92.4

kernel, implemented in MATLAB with one-vs-one approach for multiclass problems.

The average accuracy across the seven activities was approximately 94%. The classi-

fication accuracy is higher than 90% per activity, with misclassification events spread

fairly consistently across the other activities, meaning there are no visible pairs of ac-

tivities misclassified one with each other. This suggests that periodic motions can be

classified with relative ease. For this dataset the recordings were collected at different

aspect angles (0, 30, 45, and 60 degrees) and these have been used jointly for both

training and testing. These results used the ten available features jointly, and this in-

spired future works to assess methods to explore the diversity in performance obtained

with different combination of optimal features.

For dataset 2a, one feature sample was extracted from each spectrogram, generating

270 samples for each feature in total, as there were 10 activities repeated in 3 recordings

from 9 volunteers. For this dataset 6 features were used as inputs to the classifier based

on centroid and bandwidth and the textural features described earlier in this chapter.

To test the validity and the robustness of this approach 80% of the data were used to

train the classifier and 20% for testing, repeating this process 50 times with different

randomly selected samples for the training and testing process. The final accuracy

shown is the average across the 50 iterations in Table 6.3 which presents the summary

of the classification accuracy obtained with the different classifiers.

Table 6.2 instead shows an example of confusion matrix obtained for the SVM classi-
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fier.The best classification accuracy of around 76-77% is obtained with the bagged tree

and SVM classifiers, whereas simpler classifiers such as LD or KNN yield reduced ac-

curacy. It is notable to assess where misclassification events happened in the confusion

matrix, especially because the activities in dataset 2a were chosen to be confusers for

other, and to test the effectiveness of false alarms detection. For example, A1 and A2

(walking and walking carrying an object) are confused one with each other often, and

the fall (A8) is mostly confused with bending and sitting activities (A4,A5 and A7).

This highlights the importance of developing feature extraction techniques capable of

rejecting these false alarms and characterising the differences between confusers. The

activities A9 and A10 performed on the spot (drinking, mobile phone call) present the

highest classification result, and they are confused one with another often.

Table 6.3: Classification accuracy for dataset 2a with different classifiers

Classification accuracy [%]

Naive Bayes 67.88

Linear Discriminant 58.28

K-Nearest Neighbors 60.4

Binary Tree 66

Bagged Tree 77.8

Support Vector Machine 76.44

6.1.1 Gait abnormality identification for animals

The second application of this initial feature oriented activity recognition was with

animals. Extensive literature already exists on the use of radar signatures to analyze

human gait and activities in the assisted living context and security/surveillance [94],

[63]. However, there is very limited work on radar for lameness detection of animals,

to the best of our knowledge, with the exception of a few papers where the signa-

ture of quadrupeds is treated as a potential “confuser” for human detection [95], [96].

This section expands the preliminary results in [30] by providing an initial validation

of the use of radar sensing to detect lameness in dairy cows, sheep, and horses. Ex-
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perimental data was collected at the facilities of the Veterinary School, University of

Glasgow, Glasgow, UK, and analysed with techniques inspired from radar automatic

target recognition. Promising results were achieved using the aforementioned radar

features: mean and standard deviation of the center of mass and bandwidth of the

micro-Doppler signatures, and classifiers such as SVM and KNN, again being similar

to human application. The choice of features appears to have greater impact than that

of the classifier, as similar accuracy is achieved with the same combinations of features

for SVM and KNN. The rest of this chapter describes in more detail the experimental

setup, data collection, and results.

6.1.2 Data composition and mD signature of farmed animals

The data analyzed here were collected using a commercial FMCW radar operating at

5.8 GHz [63]. The radar signal had 400-MHz bandwidth and 1-ms duration, provid-

ing an unambiguous Doppler range of ±500 Hz. This is equivalent to a maximum

recordable velocity of approximately 12.9 m/s (46 km/h) which is sufficient to capture

the movements of the animals. The transmitted power was approximately +19 dBm,

and Yagi antennas with 17 dBi gain were used for the transmitter and receiver, in a

monostatic radar configuration. The range resolution of the radar was 37.5 cm (related

to 400-MHz bandwidth), and the 3-dB beamwidth of the antennas was approximately

24° in azimuth and elevation. The data were collected in three different environments

at the Cochno Farm and Weipers Equine Hospital, University of Glasgow, one for each

species of animals.

There were small differences between the data collection campaigns for the different

animals. Dairy cows were walked individually along a narrow corridor adjacent to

the milking parlor with radar recordings collected for both the anterior view and the

posterior view of each cow. For sheep, individual animals were gathered in a small

fenced zone near the radar, and allowed to walk away along the narrow fenced corridor

to rejoin the rest of their flock while recording with the radar.
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Figure 6.2: View of the experimental setup at the test corridor at the University

Weipers Equine Hospital

Figure 6.3: Examples of micro-Doppler signatures of farmed animals: (a) healthy dairy

cow, (b) lame sheep, and (c) mildly lame horse

Horses were led by a groom back and forth along the corridor shown in Fig. 6.2 while

the radar was recording, at both walking and trotting pace, and for both anterior and

posterior views on the horses being tested. During each recording, the animals had

their lameness assessed by veterinary clinicians to provide ground truth for comparison
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with the radar data. For sheep and cows a binary scenario of detecting lame versus

non-lame animals is considered here, considering mild lameness cases as part of the

“non-lame class”, and medium and severe lameness cases as “lame class.” This is done

to match the empirical assessment provided by veterinary clinicians during the data

collection. For horses, a more elaborate scenario with three classes (lame, non-lame,

and mildly lame) is considered, to include the borderline cases when some signs of

lameness were present, but difficult to confirm definitively due to uncertainty from

the experts. Micro-Doppler signatures were generated by short-time Fourier transform

with 0.3s Hamming window and 95% overlap. The data were pre-filtered to remove

static clutter at 0 Hz. Three examples of micro-Doppler signatures are shown in Fig.

6.3 for the animals: a healthy dairy cow walking toward the radar in Fig. 6.3(a), a lame

sheep walking away from the radar in Fig. 6.3(b), and a mildly lame horse trotting

in Fig. 6.3(c). The signatures appear similar to those recorded for humans [94][39].

However, the main contribution from the body of the animal occupies the middle of

the signature - for example, at about 75–80 Hz at 5 s in Fig. 6.3(a) - and periodic

contributions from the legs at higher Doppler/velocity around the main component,

which is clearly visible above 100 Hz and up to about 200 Hz in Fig. 6.3(a). The

signatures for sheep present more frequent limb movements compared with the cow

signature, and this is as expected because they were moving much faster during the

data collection.

Fig. 6.4 presents the signatures for two dairy cows, one which was healthy and another

which was severely lame, showing both anterior view when the animals were walking

towards the radar, and posterior view when the animals were walking away from the

radar. Although an empirical visual comparison is not straightforward to make, the

main Doppler contribution tends to have lower values for the lame animal, correspond-

ing to reduced walking pace at approximately 30–40 Hz compared with the 70–80 Hz

of the healthy cow. Furthermore, the pattern of Doppler contribution from the legs

are less intense for the lame animal. Each micro-Doppler signature was divided into

segments of 1.5–2 s for the time intervals when the animals were present in the radar

beam, and numerical features were extracted from each segment. Four simple features

previously used for human micro-Doppler analysis [63] were considered for these ex-

periments. These are the mean and standard deviation of the Doppler centroid and
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Figure 6.4: Examples of Micro-Doppler signatures of dairy cows: (a) healthy cow
walking towards the radar, (b) healthy cow walking away from the radar, (c) lame cow
walking towards the radar, and (d) lame cow walking away from the radar
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bandwidth, as described earlier in this chapter. In practical terms, the centroid can be

related to average Doppler component in the signature, meaning the bulk velocity of

the animal body, and the bandwidth can be considered as a measure of the signature

spread due to the patterns of leg motions.

For classification, results for SVM and KNN with three neighbors are presented in

this chapter. Classification results were cross-validated using 80% of the samples for

training and 20% for testing, repeating the process 20 times with randomly selected

subsets for training and testing and providing the average accuracy across all the tests.

This process was repeated for each combination of features considered.

6.1.3 Results for animals

Dairy Cows

Five dairy cows were considered for this test, with radar recordings taken looking at the

posterior and anterior views. The cows were scored for lameness on a 0: no lameness,

up to 3: severe lameness, by two veterinary clinicians while walking, independently for

the anterior and posterior tests [97]. This scoring system is a standard approach used

in veterinary practice in the UK, although other scoring methods there exist worldwide

[98]. Three of the five cows were classified as lame with scores of 3, 2.5, and 2 present on

average, and two as healthy who scored 0.5 and 1 using a binary classification. These

scores were grouped from the 0–3 scoring system into a binary non-lame (score 0–1)

versus lame (2–3) classification was done to match the overall empirical assessment of

the veterinary clinician who assisted with the data collection, which is also a possible

approach in veterinary literature [99]. A total of 53 samples were obtained, with 18

samples for the “non-lame class” and 35 for the “lame class.” This class imbalance

depends on the time each cow was visible to the radar sensor, as their speed cannot be

controlled while recording data.

Fig. 6.5 shows the classification accuracy as a function of feature combinations for

dairy cows in anterior and posterior view. These feature combinations include: 1)#1–4:

Individual features, where 1 and 2 are the mean and standard deviation of the centroid,

respectively, and 3 and 4 are the mean and standard deviation of the bandwidth. 2)
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Figure 6.5: Classification accuracy as a function of feature combinations for dairy cows,
front and back view

Table 6.4: Confusion matrix for best prediction for cows

Accuracy [%] Predicted Healthy Predicted Lame
True Healthy 70% 30%
True Lame 8.60% 91.40%

#5–10: Six possible pairs of features combining the aforementioned four individual

features. 3) #11–14: Triplets of features (combinations of three features). 4) #15: All

four features used jointly.

SVM-Quadratic (SVM-Q) and KNN appear to provide similar levels of accuracy as a

function of features, for the posterior view at least. This suggests that the choice of

features has a great impact on the final performance, far more than the type of classifier

for the classification problem considered here. Accuracy of 80% is achieved with the

two features, mean of centroid and bandwidth, with a maximum of 85% adding the

standard deviation of the centroid as a feature. Accuracy for the anterior view is

lower than that for the posterior view, and this is expected as lameness in dairy cows

tend to be more significant in the hind limbs, which are less visible from an anterior

perspective. An example of confusion matrix for the highest accuracy case in posterior

perspective for SVM-Q classifier with three features as input is shown in Table 6.4.

There are more “false positives” meaning healthy cows which were predicted as lame

than “false negatives” where lame cows were predicted as healthy. This trend also
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appears for the anterior perspective. Evaluating what is more penalizing in practical

and economic terms between false positives and false negatives depends on the context

and implications of the lameness diagnosis for the affected cows and is a future aspect

of interest. For instance, predicting a healthy cow as lame can have a significant

logistic/economic impact, if the animal is taken away from the herd and removed from

the dairy production cycle for treatment. Furthermore, if it is assumed that a veterinary

clinician will check every case flagged as lame by the automatic detection system, then

false positives will increase time and cost of the procedure. As for false negatives,

they are also undesirable for the long-term well-being of the animals and the overall

effectiveness of the proposed system, especially if lameness cases are systematically

missed until the health of the animals affected are seriously compromised.

Sheep

Measuring sheep is more challenging, as they generally dislike being separated from

other sheep and tend to stick together with the herd, nose to tail with other sheep.

For this test, six sheep were used, three of them presenting healthy/normal gait and

three of them presenting some form of lameness. The sheep were normally marked on

a binary 0/1, non-lame/lame scale by veterinary clinicians which were categorised into

the different classes.

A total of 42 samples were considered for classification, 19 samples for the “non-lame

class” and 23 for the “lame class” and the radar was deployed to look at the hind

limbs of the sheep. Fig. 6.6 presents accuracy as a function of feature combinations,

for both SVM-Q and KNN classifiers. Very high classification accuracy approaching

100% was achieved with just a single feature, mean of centroid, using both SVM-Q

and KNN with a pair of features. Essentially, in this case, the classification appears to

be strongly related to the mean velocity of the sheep meaning the mean of the main

body velocity from the micro-Doppler signature. For sheep, the average velocity can

be considered in the first instance a good proxy for lameness in sheep as lame animals

cannot move as fast as healthy ones although they all try to run to rejoin their flock.
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Figure 6.6: Classification accuracy as a function of feature combinations for sheep in
posterior view.

Table 6.5: Confusion matrix for horses

Accuracy[%] Predicted Healthy Predicted Lame Predicted Min. Lame
True Healthy 94.2 5.8 0
True Lame 11.6 87.7 0.7
True Min. Lame 1.4 3.4 95.2

Horses

For this test, four horses were recorded for both walking and trotting gait patterns

and of the four horses, one had no visible lameness while another had severe lameness

in the anterior, and two others had mild lameness in the proximal front limb. These

horses were labeled into three groups: “healthy,” “lame,” and “minimal lame”, and

overall they generated 162 samples with 54 samples for the “healthy,” 36 samples for

“lame,” and 72 samples for “minimal lame” classes with both walking and trotting

recordings considered together. The classification results from this three-class set are

shown in Fig. 6.7 and Table 6.5. The trend here is similar to the cows and the

sheep meaning there is no distinct difference between the classification algorithms’

performance. The only change from the previous instances was a difference with the

SVM, where a cubic kernel was used, which provided improved results compared with

the quadratic kernel of approximately 12% higher on average. This may be due the
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Figure 6.7: Classification accuracy as a function of feature combinations for horses

more complex distribution of features, the problem being a three-class classification.

However the suitability of centroid-based features remains significant even in this case

as shown by peaks of accuracy in Fig. 6.7 when centroid-based features are added

to the feature set during testing all the possible combinations, similarly to what was

recorded for sheep in Fig. 6.6. The most suitable combination gives classification

accuracy of up to approximately 92% and although the classifier correctly identifies

the “healthy” and “minimal lame” to very high rates in Table 6.5, there is a relatively

high false negative for the “lame” class, as approximately one out of ten “lame” horses

are incorrectly classified as “healthy.”

6.2 Conclusions

In this chapter, the results from using feature extraction with human activity detection

are presented. Following this results are presented after using the same and extended

features to detect lameness in a variety of domestic/farmed animals using radar mD

signatures, where promising classification rates have shown to be achieveable for both

use cases with simple features and classifiers.

The work in this chapter was conducted in the initial part of the research and therefore

it is inspired heavily by the techniques at the time where features and classification

algorithms were the main focus. However compared to the works in the literature, a
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deeper view is provided into the differences between the state of the art which was

conducted either with simulations or with actors. This provided insight into the differ-

ent problems a real system would encounter while attempting to automatically detect

a daily activity or a harmful activity such as a fall. By this, activities in this case

could be detected at rates between 68% to 92.4%, but individual discrete activities

were more challenging to classify compared to segmented of repeated discrete activities

which could be identified above 91.9%.

The other part of this chapter focused on the porting of techniques and classifiers

to identify gait abnormalities in animals. This was an innovation on the classic gait

analysis with radar as now the domestic animals were the focus of the classification.

The fact that the feature extraction and classification algorithm worked well suggested

an element of ubiquity in this sensor and method, for this application even when the

species of animals under test is different. This showed that lameness in dairy cows can

be identified to 80%, up to 100% in sheep, and up to 92% in horses for a three-class

problem of classifying severe, mild, and absence of lameness. It is interesting to note

that these promising proof of concept results presented here led to a larger experiment

with many more animals, specifically dairy cows and sheep, with results reported in

[100].

Ultimately, by introducing this new domain of problems to be solved with radar and

demonstrating the feasibility using feature based classification, this broadened the

scope of what is possible with radar concerning activity classification.
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Chapter 7

Sensor fusion for discrete activity

recognition

This chapter introduces the second novelty of this thesis which is the use of homo-

geneous sensor fusion and heterogeneous sensor fusion are used together to improve

activity recognition accuracy.

In general machine learning applications, improvements come through the increased

variation of the input data type where, the more diverse the inputs are, the easier it is

to identify an object or an action. Taking the example of nature again, the information

received by a single sense can be confirmed by another. For example, noticing a fruit

falling from a tree through audiovisual cues, or determining the type of fruit through

visual and tactile confirmation, these all rely on a multitude of sensors. In this chap-

ter, this concept is used to show the strength of leveraging different information from

varying sources through sensor fusion for activity recognition in the form of hetero-

geneous sensor fusion, where one sensor is a radar sensor and the other is an inertial

measurement unit [19, 20, 32], and homogeneous sensor fusion, where both sensors are

ambient radar sensors [24]. Both of these techniques are explored in this chapter with

an additional analysis on the effect of classification models having prior information of

the target on the recognition accuracy.

The research conducted for this chapter intended to address the problem of how to im-

prove sensing methods to optimise the classification accuracy in the context of assisted

living. This was addressed in a twofold manner:
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Firstly by showing the usefulness of features from different domains with feature se-

lection to improve activity recognition accuracy. Previously, in the literature there

were a number of features using different properties of the input signal being used for

radar based activity monitoring. Therefore, the next goal was to unify these different

methods to generate a varied feature set for automated activity recognition. By using

them together with feature selection we were able to demonstrate higher accuracy in

activity recognition.

Secondly, cooperative use of varying sensing technologies was found to further increase

accuracy when compared to single sensor results. Although this was a lateral research

direction to the aforementioned feature selection work, it was a result of the question

of using different sensors together arising as the benefit of increased variance through

multi-domain inputs being observed.

These two research opportunities were separated and solved through heterogeneous

sensor fusion, where sensors were measuring different physical quantities and signatures,

and homogeneous sensor fusion, where radar sensors were measuring the same physical

signature but at different frequencies. With both these techniques, improvements to

the accuracy of activity recognition were demonstrated.

7.1 Review of multi-sensor fusion

As individual sensors has certain limitations to the scope of information it can record

[101]. For example, the aspect angle problem is an open challenge for healthcare appli-

cations as the returned signature may be attenuated if the sensor is not in the direct

line of sight [102]. Usually there is a decrease in the returned signature proportional

to the cosine angle relative to the direct line of sight, this ultimately means the re-

turned mD signature is weaker . This means the movements derived from it will be

inaccurate, therefore feature space derived from the radar in this case would therefore

be erroneous. This is a scenario where a different type of sensor can be introduced to

mitigate the error from the radar spectrogram and to ensure maximum variety from

leveraging a different domain.
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7.1.1 Sensor fusion typologies

The term information fusion is applied to combinations of any types of data or original

sources. As different sensors have strengths in different domains, the main reason for

sensor fusion is to effectively utilise variety and having commensurate information.

Depending on the types of information sources or sensors available, existing types

fusion can be applied as sensor fusion networks. These configurations can be be either

co-operative, competitive or complementary [101].

Cooperative sensor networks use data from two independent sensors receiving the same

type of information from different perspectives. This type of fusion network uses spatial

variety to use commensurate data from different points in space to generate new types

of data [101]. An example of this would be stereoscopic depth perception through

numerous cameras observing the same scene with different focal lengths.

Competitive fusion networks leverage the same data with a spatial and temporal vari-

ation to make the system more robust [101]. In this scenario, the information fused is

from the same type of sensors, but the location or timing changes.

Complementary fusion networks use independent sensors to receive data with maximum

variety from different domains to get a bigger overall picture [101]. An example of this

would be using an electrocardiogram and electroencephalogram to detect vital signs

as they are utilizing information from the same observation but two different domains,

electric pulses in the chest and voltages in the brain, to come to a decision where the

person is identified as alive or not.

Assuming the sensors follow the requirements of these networks and have a common

goal, either to measure the different movements or to classify a certain activity, fusion

can be performed at different levels with varying amounts of complexity through three

methods [101][27][19]: signal level fusion, feature level fusion and decision level fusion.

These are illustrated in fig. 7.1, where the different points in the processing stage fusion

can be applied to are highlighted. The sensor is the initial step in the chain where the

data is pre-processed into digital data. Following this, other processes including feature

extraction and fusion are performed.

The point at which fusion occurs defines the level or order of the fusion where lower
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level fusion methods utilize the correspondence between the data, whereas higher-level

methods use confidence metrics for decisions or labels from the classifier.

Figure 7.1: Stages and types of sensor fusion algorithms

Signal level fusion is the deepest method of fusion and in the context of human activ-

ity recognition [101] it takes place between sensors recording the same quantities from

different locations on the body of the monitored subject. It is a complementary fusion

method where commensurate data from the sensors is directly combined through mix-

ing or Kalman filtering. The benefit of signal level fusion comes from fusion of data
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prior to processing individually. This means instead of processing many sensor output

chains, they can be combined and processed in an efficient manner. However, signal

level fusion also has limitations as data from different domains are usually sampled

at different rates and they can have opposite information causing the fused data to

become redundant. To mitigate this, down sampling, where segments of data are re-

moved, or up converting, where data points are resampled, need to be used with this

method in most cases. The caveats with these methods are that the removing and

resampling can either remove information or make it redundant.

Feature level fusion is a simpler method that combines the features generated after post

processing the signal to generate dimensionally reduced, representative information

[19]. As features are generated in a uniform observation or time step, the features from

the different sensors can be concatenated into a single, larger feature matrix. This has

the drawback of increasing the size and dimensionality of the feature space but also

it also brings diverse information together. The main benefit of feature fusion is that

since the features extracted are originally useful, the new feature subspace will have

useful relevant data and minimal noise. In the context of images, feature level fusion

can be used for different domains of analysis such as multi-view, multi-temporal and

multi-modal analysis.

Multiview analysis, as the name suggests, uses different viewpoints requiring informa-

tion from complementary, cooperative and competitive sensor networks, which provide

a spatially larger observation of the target scene or activity [101]. Multi-temporal anal-

ysis acquires the data at different time steps from complementary networks to detect

changes in the time signature. Multimodal analysis integrates information from the

same event acquired by different sensors to construct a more complex and dynamic

representation of the observation and this is the focus of the experiments in this chap-

ter.

Decision level fusion is a higher level information fusion method which considers the

confidence or output from the classifiers [27]. In a classification problem, the output

of the process chain is the final label provided by the classifier and a measure that

expresses the level of confidence in this decision, given as a form of ’loss’ as explained

in 3. If the fusion is performed on the confidence metric, then it is called a soft fusion.
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Figure 7.2: Breakdown of decision level fusion methods

In soft fusion, each sensor data, raw or pre-processed, is fed into individual classifiers.

Due to the separation of the data the classification complexity is reduced, as there is no

need for tuning the parameter again for a new feature set. For all the classes of the set,

the classifier detects the likelihood of the detected class by selecting the label with the

lowest ‘loss’ parameter. When there is insufficient or invariant data, the loss parameter

for two classes might be close causing an error in the motion or activity detected. In

this instance, the ‘loss’ parameter can be extracted from the two different classifiers,

scaled logarithmically, and then added together to correct the classification error. The

loss can be mixed in two ways, pooling (soft fusion) and voting (hard fusion).

Logarithmic opinion pool (LOGP) scales the log loss exponentially to a measure of

probability in Bn which is a mass Gaussian function [103]. Using a distribution factor

d which is 1/N , the number of classifiers or sensor sources, B(α|y) gives the most

likely class and in most cases the correct class.

Bn = e−Sn(c) (7.1)

B(α|y) =
∏

Nn = 1Bn(a|y)d =
∏

Nn = 1e−Sn(c)d (7.2)

Fuzzy logic uses the confidence metric as a fuzzy set as described in equation 7.3. SRadar
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and SInertial are two sets of negated binary loss values which include 10 elements related

to the 10 activities, as generated from the two SVM classifiers. SFused is the new binary

loss set which represents the sum of errors. The final decision is made by finding the

least errors in this set.

Sfused(c) = min(SRadar(c), SIntertial(c)) (7.3)

Rather than merging the confidence level of different sensors in the second stage of

hierarchical model, the hard fusion of radar and inertial sensor occurs between the

prediction labels through a probability combiner. There are several potential combiners

in the literature, such as the majority voting system or weighted voting system, Recall

combiner and Näıve Bayes combiner. However, a simple voting-based system as the

first three are not suitable due to the decision clashes in most complex scenarios whereas

Recall combiner is not ideal for binary classes problems since the performance of Recall

combiner is proportional to the number of classifiers.

Näıve Bayes combiner calculates the posterior probability of each class through the

prediction label and confusion matrix of individual sensor. The probability of a certain

class after fusion is obtained by the equation 7.4 below:

logP (Ck|d) ∝ logP (Ck) +
N∑
m=1

log(pm, cm, k) (7.4)

Where logP (Ck|d) is the probability of interest, denoted for the likelihood of class Ck

being the true class. P (Ck)represents the number of classifiers suggesting Ck as the

prediction label. The classifier belonging to a classifier ensemble whose length is equal

to N. pm, cm, k refers to the confusion matrix element corresponding to classifier pm,

row cm and column k. The final prediction label is the class with highest posterior

probability after this process. Compared with soft fusion, hard fusion requires less

computational load being more efficient with selecting the optimal weight function.
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7.2 Review of feature selection

A high degree of accuracy requires features which are discriminative and provide con-

fidence and reliability in the classification results [104, 105]. The main requirement for

a well performing classifier in most cases is the input to the model. The size of the

input is often a concern, therefore starting with a low sized input set can be helpful

especially as the number of sensory information increases the feature space can be-

come orders of magnitude larger, spatially and dimensionally. This makes the feature

space redundant due to ’the curse of dimensionality’. To avoid this and to maintain

the input size, performing feature selection has been advocated in literature and there

is evidence it can reduce the number of features considerably. For modern complex

classifiers however, there are intrinsic methods to reduce redundancy.

There are two classes of methods utilised for selecting optimal features: filter methods,

based on feature space metrics such as euclidean distance, entropy, correlation coeffi-

cients. These metrics are used to find the distance between feature clusters and rank

them accordingly. On the contrary, wrapper methods test different combinations in

the feature space and for each of them a classifier, in order to find the best performing

feature set. Wrapper methods require more iterations and exhaustive search within

the feature space, to find the optimal input features for the classifier, therefore they

are more resource intensive than the filter methods.

F-score (7.5) [105] finds a feature subset by calculating and ranking the score deter-

mined by the distance between data points. The distance between data points belong-

ing to different groups is as large as possible while the distance between data points

belonging to the same group or class is as small as possible. It is defined as:

F (X i) =

∑c
j=1 nj(µ

j
i − µi)2∑c

j=1 nj(σ
i
j)

2
(7.5)

Where F (X i) is the fisher score of ith feature; the parameters nj and µj are the size

of the jth class and the mean value respectively; σi and µi indicates the standard

deviation and mean value of the feature subset regarding to the ith feature.

Relief-F is a modification of the original algorithm, the Relief algorithm, to fit multi-
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class classification problems [105]. An observation corresponding to a row of feature

data set is selected randomly, where the nearest hit belonging to the target class and the

nearest miss belonging to the opposite class are generated. The input of the algorithm

should be normalized to [0, 1] by dividing the weight with the product of number of

features and classes, and the output is a weight between -1 and 1 given for each feature.

The weight of features is updated iteratively by the type of nearest miss, weighted by

prior probabilities of each class. The Relief-F algorithm is explained in the pseudo-code

below.

Algorithm 1: Relief-F Algorithm

Result: Obtain feature set with minimal distance

Set all the weight W(F) to 0;

for i = 1 : n (n equates to the number of instances) do

Select one observation Bi randomly ;

Find k nearest hit h for each Class C = Bi;

Find k nearest miss m for each Class C 6= Bi ;

for F = 1 : number of features do

W (F ) = W (F )−
∑k

j=1

diff(F,Bi, hj)

n ∗ k
+
∑
C 6=

class(Bj)

=
P (C)

1− P (class(Bi))

∑k
j=1 diff(F,Bi,mj)

n ∗ k
.;

Update the weight;

end

end

Where the diff function denotes the difference between the values of features for two

observations and k is the class. In this case P(C) is equal to 1/10 due to equal numbers

of observations being present in each class.

The best combinations of features by using a classifier can be found through sequential

feature selection (SFS) [105]. Forward SFS adds features according to classifier perfor-

mance iteratively increasing the input subspace of the classifier. In backward search

it begins with the original feature subset and reduces the dimension one-by-one. Of

the feature selection methods, SFS is the most computationally intensive method as

it runs (No. of features-1)*No. of features/2 times multi-class SVM. The pseudo-code
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below shows the steps of the SFS algorithm.

Algorithm 2: The SFS Algorithm:

Result: find one feature combination which yields the best classification

accuracy

Initialized with an empty feature set F(θ) ;

while While Accuracy is not stagnating or all features have not been used do

Find feature X which yields the best performance with F(θ) ;

The new feature subset selected becomes F(θ)=F(θ)+X ;

Update the new feature set iteratively ;

Until accuracy saturates or stagnates ;

end

7.3 Heterogeneous data fusion

Using a singulars sensors has been attractive in the biomedical field to measure precise

information such as muscle movements, heart movements and brain activity perception

[106]. Pressure sensor arrays, together with barometers have been recently explored as

complementary sources of information. However, the richness of the data coming from

the inertial measurement unit and its components: accelerometer, magnetometer and

gyroscope have been the focus of research for activity recognition.

7.3.1 Feature extraction from inertial and radar sensors

In cases where the target is a body with multiple sources of micro motion, the overall

movement of the limbs is extracted by generating a spectrogram with a radar sensor.

The spectrogram and the perceptible data within it need to be in a format that can be

interpreted by a machine learning algorithm to classify different activities instead of a

human operator [107, 108, 109].

Feature extraction is defined as deriving properties of measured data that are informa-

tive and representative of the source information. As discussed for radar in Chapter 6

they can be highly varied [110] and they are also methods of dimensionality reduction

as the features contain identifiable information for a certain class but are usually orders
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of magnitude smaller than the input [107]. Yet, features express the salient property

of the class despite the smaller amount of information compared to the source.

Even though the spectrograms have visually perceptible movements to the human eye,

to translate this for an activity recognition application, the properties that define these

two distinct movements must be extracted.

Two types of feature extraction methods encompass the features currently used in

literature, both discussed in Chapter 6: automatic features and handcrafted features.

The prior uses established dimensionality reduction methods such principle components

analysis or singular value decomposition to reduce the input into smaller dimensions

with highly varied data. The latter on the other hand use a functional pattern within

the input to characterize the signal.

Automatic features for radar data are extracted from decomposition of the data where

the maximally variant or the most diverse features are identified and extracted. These

have been discussed in more detail in Chapter 6. They include PCA , SVD and ICA.

These methods do not require precise derivation of information and modifying or fine-

tuning the algorithm. They are resilient to different levels of signal to noise ratio and

produce salient features.

Handcrafted features for radar data are functional properties of the input, which are

commonly identifiable. These features enumerate these noticeable properties which

match between different samples of the same class. For micro-Doppler radar, the

prominent handcrafted features used in this research are Doppler centroid , Doppler

bandwidth , entropy and grey level of histograms, Spread spectrum shape and Cadence

peaks as displayed in table 7.1.

Features in Table 7.2 can be used to characterize the temporal and spectral information

of the raw inertial data. Temporal inertial features include mean, variance, standard

deviation and other statistical components like skewness and kurtosis,together with

cross-correlation between different axes. Spectral inertial features are extracted to

capture the energy distribution of the signal and include the magnitude of the power

spectral density at three different frequency bands, at 0.5-1 Hz, 1-5 Hz and 5-10 Hz;

the sum of Fourier Transform coefficients, and the spectral entropy based on the power

density function normalized between 0 and 1 of the power spectral density. The mean
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Table 7.1: Features for radar sensor

Feature Category Radar Features #
Image based Entropy of spectrogram 1

Skewness of spectrogram 1

Physical Centroid of spectrogram (mean & variance) 2
Bandwidth of spectrogram (mean & variance) 2
Energy curve of spectrogram 3

Transform based Singular Value Decomposition 13
Range Doppler velocity 1
Range Doppler displacement 1
Range Doppler dispersion 1
Energy curve of spectrogram 3
Step repetition frequency 1
Step repetition frequency band peak 2

Number of features 28

Table 7.2: Features for intertial sensor separated by temporal and spectral properties.

Temporal # Spectral #
Norm of XYZ 1 Spectral Power 9
Mean 3 Coefficients Sum 3
Standard Deviation 3 Spectral Entropy 3
Autocorrelation(Mean,STD) 6
Cross Correlation(Mean,STD) 6
Variance 3
RMS* (Root Mean Square) 3
MAD (Median Absolute Deviation) 3
Inter-quadrature Range 3
Range 3
Minimum 3
25th percentiles 3
75th percentiles 3
Skewness 3
Kurtosis 3
Number of features 49 Number of features 15
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and variance of specific signal is derived by the equation 7.6 and 7.7, where x(i) is the

input signal and N denotes the number of samples.

µ =
1

N

N∑
i=1

x(i) (7.6)

σ2 = (
1

N

N∑
i=1

(x(i)− µ)2)2 (7.7)

The correlation function is significant in classifying activities with signal magnitude

change along two dimensions, such as the activities where the body modulates back

and forth. The correlation between X and Y axis, which equals to the ratio of covariance

between two inputs and the product of their standard deviation is one of the correlation

features utilised here.

Spectral features also approximate the energy burst of different activities and the trend

visible suggests that activities with fast movement provide a high response in a short

frequency band, especially for the falls.

Classifiers

All the training and testing procedures are performed in Matlab utilising the SVM

library: libSVM. The dataset was stochastically divided into two parts, with 70% data

for training and 30% data for testing on a per class basis, and the per class basis was

set for stratification in the test set to prevent class imbalance.

Table 7.3: Comparison of classifiers for activity monitoring.

Classifier Complexity Classification time (s) Accuracy

Linear discriminant small 0.37 68-70%

K nearest neighbour small 0.48 75-78%

Support vector machine large 1.4 84-90%

Artificial neural network large 2.38 86-92%

Deep neural network1 Very large >1200 88-95%
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By using this deterministic approach, we minimised unwanted bias in the results, which

may occur in cases of imbalance between classes in the training and test sets. This

process is repeated 10 times [65] for each test, and the average results across all the

repetitions are presented [27]. A comparison of all the classifiers are presented in Table

7.3 where approximate accuracy, time taken to generate a classification result and

complexity is shown.

7.4 Discrete assisted living activity detection with

fusion

In the two key experiments presented in this chapter, a combination of non-contact

and wearable sensors were used for monitoring ten daily activities [27, 19]. In the first

experiment, a single magnetometer embedded within an inertial sensor was used in

parallel with a FMCW radar. In a second experiment, a smartphone with its multiple

degree of freedom was used together with FMCW radar to assess the effect of having

acceleration and gyroscope information available.

Experimental and hardware setup

The main hardware components in the experiments are the Magnetometer, the IMU

and the FMCW radar. While the FMCW radar produced by Ancortek inc mentioned

in Chapter 2 operates with a center frequency of 5.8 GHz and has an instantaneous

bandwidth of 400 MHz and a pulse repetition frequency (PRF) of 1 kHz. A distance of

two meters from the target would replicate real life conditions where the target would be

a short distance away from the radar. Variations in movement were present depending

on the person and the activity being performed to replicate life-like movement.

In both experiments, the wearable was attached to the participant’s wrist with a

bracelet on the dominant hand. Considering the inertial sub-sensors, magnetic sensors

are either used in conjunction with accelerometer and gyroscopes for activity recogni-

tion or ignored, instead favoring data from the other two inertial units. Therefore, the

use of magnetic sensors on their own with a non-contact sensing method is intriguing.
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This in turn reduces the computational complexity of the processing chain since it has

less overall number of sources, which reduces battery consumption.

Radar sensors were collecting data simultaneously with the wearable sensor. Three

repetitions for each of the 10 activities were taken for each volunteer with 600 samples

in total taken for each sensor [19]. For the second experiment, the data analysed

were collected with a group of 20 volunteers aged between 22 and 32 years. Each

activity was recorded for three repetitions for each volunteer, generating a dataset

of 600 simultaneous readings from each sensor. The radar sensors were placed on a

wooden table at approximately 80cm height, pointing to the area where the subjects

were performing the different activities at about 1-2 m. The smartphone was held

with a Velcro-strap on the wrist of the dominant hand of the participating subjects to

keep parity with the other experiment while recording data. The radar system and its

antennas were placed on a box, facing the area with the subjects in the direct line of

sight. The separation between the antennas was approximately 30 cm and the distance

from them to the subjects was approximately 1.5 m; furthermore, vertical polarisation

was used for these measurements. These were the activity sets 3 and 4 as previously

discussed in Chapter 5.

Experimental design

To make the classification challenge harder, sets of similar activities were decided to

be included in the original framework of this set. The listed activities, as mentioned in

Chapter 5 were selected due to the variety in the motions required as the whole body

with its constituent parts, and similarity to other activities in the set. Most of these

movements, other than falls, are commonly performed in daily life and therefore they

are a balanced indicators of decreasing mobility.

Fig.7.3 in shows the mD Doppler signature and magnetometer data for four different

daily activities. The strongest segment of the spectrogram is used to normalize it to

scale the clutter and the noise floor down. However, changing the distance between the

target and the radar can cause a corresponding change in the background noise levels

of the radar.
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Figure 7.3: Magnetometer and mD spectrogram representations for four activities: a)

reaching out to drink water from a cup b) picking up a phone to receive a call c) walking

back and forth d) frontal fall.

7.4.1 Classification results

Magnetic sensor and Radar

Fig. 7.4 shows the classification accuracy for different sensors and classifiers and the

varying number of optimal features through the SFS algorithm. There is no linear

relation between the number of features and the accuracy, therefore the presence of

redundant features is assumed. The accuracy over the number of features becomes

stable when 30 features are selected for the magnetic sensor and when 10 features for

the radar. The average accuracy with these features is 90% approximately. As adding

more features will not bring any improvements to the classification and instead it may
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reduce the performance, only a subset of all the available features should be used [19].

Figure 7.4: Accuracy comparison between sensors with and without fusion

Feature selection after feature fusion derives the salient features from both radar and

the magnetic sensor after combining them into a single feature space. The resulting

accuracy from feature fusion outperforms the cases of both sensors used individually

[19].

Fig. 7.4 shows also the accuracy as a function of the number of features from a fused

pool of features from both sensors used as input to a single hidden layer artificial neural

network (ANN) classifier with 50 neurons. Results appear to be very similar for SVM

and ANN, so classifier selection appears to be unimportant provided fusion and feature

selection are used. The validation accuracy produced using ANN with a single hidden

layer and between 1 and 50 neurons, utilizing different sensors is shown in Fig. 7.5.

Results from using fusion outperforms using each sensor individually with an average

of 96% with feature fusion, which is similar for SVM. The near maximum accuracy

is reached when over 10 neurons are used in the fusion case, which corresponds to

the number of classes [19] hinting at a relation between these parameters. For the

individual sensors, the number required is comparable to the optimal features from

SFS. This suggests that the ANN is automatically selecting relevant information from
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the combined space and selecting salient features.

Figure 7.5: Performance of a ANN Accuracy

Figure 7.6: Performance dependency of layers of a ANN on accuracy

Fig.7.6 shows the marginality of using multiple hidden layers for the ANN after fusion

is performed as there is only a small difference in accuracy when multiple hidden layers

are used for the ANN. The number of neurons are varied in the last hidden layer and

kept constant at 50 for the other layers however there is a variety of about 0.8% between
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using one or two hidden layers with the exception that less neurons are required to reach

the optimal point.

In real-life applications, the classifier will often not have prior information from the test

subject, yet it should be able to classify the movements from such a person. For the

leave one subject out, observations from one specific participant was partitioned from

the entire dataset to make the testing set and the remaining participants were used

for training. This was performed until all the participants were used as the testing set

then the cumulative accuracy was generated [19].

Fig 7.7, which is in [19], shows the lower, average and upper bounds using ‘min’,

‘max’, and ‘mean’ accuracy obtained from these tests. The ‘max’ and ‘min’ variables

represent the best and worst-case scenario from all the participants while the ‘mean’

is the average across all participants. The ‘difference’ variable shows the stratified test

and this new approach of “leave one subject out”.

The results show that there can be significant variability in accuracy on a subject-by-

subject basis, with the extreme case of the magnetic sensor, where both ANN and SVM

yield accuracy of approximately 40%. Radar is more robust with both classifiers, as

the mean results are 2 to 4% lower than the stratified set. Ultimately, the differences

are clearer for the magnetic sensor as the accuracy is 12% lower for both classifiers

with this sensor. However, feature fusion has shown to help recover this loss [19].

The minimum value for each of the sensor-classifier combinations displays the challeng-

ing issue of activity classification for unknown users as it single sensor classification

can be as low as 40%. Despite the use of feature fusion and selection, the difference

between this lower bound of performance and fusion is 27% as SVM fusion achieves a

much improved accuracy of 67%. For the magnetic sensor, feature fusion helps here as

the ‘difference’ between the two testing methods is reduced from 12% to 4%. Feature

fusion therefore is truly necessary for ambient activity monitoring as the additional

degree of freedom generated through feature fusion provides a large benefit in the

accuracy obtained.

In our experiments, as the participants were given freedom to move in a comfortable

way to make the data represent real natural movements. In an extreme case, one

participant who moved slowly and was a general outlier has a completely different
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Figure 7.7: Classifier performance when models are tested with an unknown partici-
pant. Difference is the delta from the average stratified test when participant informa-
tion is not explicitly removed from the training set.

signature from the rest of the set. The minimum figure mostly represents cases like

this where the target moves uniquely to the training samples, which is expected from

new participants who have no prior knowledge of the experiments.

IMU and Radar

Fig. 7.4 presents results for the SFS method for wearable IMU and the radar sensor,

with a general summary for all methods provided in table 7.4 (inertial) and table 7.5

(radar). These tables show that the filter methods reduce the number of features used

but bring no performance improvements, with less than 2% improvement compared to

when all available features are used [27]. Optimal features suggested by filter methods

reduce the required number of features by 60% and 35% for inertial sensor and radar ,

respectively but there are exceptions to this in the Relief-F results for both sensors. For

radar Relief-F with KNN increased accuracy by 4% despite being a filter method, while

for IMU, Relief-f only reduced required features by 8%. SFS reduced the feature subset

while bringing an improvement of 5-7% in accuracy for both sensors with SVM and this

was achieved after fusion. KNN on the other hand had no performance improvement

for the inertial sensor despite a 9% boost for radar [27]. Finally, for feature fusion

between the inertial and radar sensors, the highest classification accuracy was 97.4%
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Table 7.6: Decision level fusion results

Method Average error Average accuracy (%)
LOGP 9 96.7
Fuzzy logic 14 94.8
Voting system 6 97.8

as shown in Fig. 7.9.

Table 7.4: Comparison of feature selection methods for the inertial sensor

Method Accuracy (%) Time(s)* Features no.

Fscore (SVM) 90.7 1448 73

Fscore (KNN) 88.2 220.2 76

ReliefF (SVM) 91.1 1210.7 164

ReliefF (KNN) 89.3 196.9 58

SFS (SVM) 95.6 14489.5 35

SFS (KNN) 88.25 903.5 69

Table 7.5: Comparison of feature selection methods for the Radar sensor

Method Accuracy (%) Time(s) Features no.

Fscore (SVM) 78.8 220.4 17

Fscore (KNN) 74.1 30.6 17

ReliefF (SVM) 74 213.1 20

ReliefF (KNN) 67 24.2 18

SFS (SVM) 85.6 1316.7 20

SFS (KNN) 79.8 32 19

Table 7.6 shows the results of using the different decision level fusion methods where log

opinion pooing fusion was the best performing decision level method with an accuracy of

96.7% with 9 misclassification instances of activities over 10 iterations of testing. Fuzzy

logic returned lower accuracy of 94.8% and a higher misclassification of 16 instances.
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Figure 7.8: Classification accuracy of individual sensors. The improvements through
the sequential feature selection and the classifier used are highlighted

Figure 7.9: Classification accuracy over the number of features utilised.
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Table 7.7: Comparison of feature selection methods classification accuracy (%) with
radar sensors

Predicted class CW FMCW Fused
A1: Walking 58.82 58.68 61.31
A2: Walking with object 73.89 83.95 75.05
A3: Sitting 70.89 72.89 95
A4: Standing 69.05 80.81 94.22
A5: Picking up an object 83.61 69.94 90.39
A6: Tie up shoes 68.69 74.27 95.14
A7: Drinking from a cup 80.05 78.82 83.14
A8: Taking a call 57.5 72.27 86
A9: Falling forwards 96.23 87.61 95.28
A10: Checking under table 95.67 95.72 96.17

To improve the decision level results, a voting system which considered labels from the

classifier for each of the sensor then performed log opinion pooling with the two best

performing sensors was constructed. This system gave the best decision fusion result

with an average accuracy of 97.8 and 6 error events after 10 iterations.

7.5 Discrete activity recognition: homogeneous data

level fusion

In the previous sections, we explored the use of wearable and non-contact sensors, a

heterogeneous combination of sensors, to detect activities at a higher rate of accuracy.

However, there is a question of what happens when homogeneous sensors are used. To

understand this, a smaller experiment with a single CW and FMCW radar were used

and feature level fusion was performed to identify the improvements that having two

non-contact sensors brings [24]. The processing was from experiment 3 as described in

Chapter 5. The same features were extracted for both sensors and the results from the

individual sensors and fused case are shown in Table 7.7. The data was split into 70%

for training and 30% for testing. The separation was done in a stratified manner so the

class ratios were preserved and class imbalance during training was prevented. This

process was repeated 20 times after which the average was taken and the mean values

are presented in this section. Overall the FMCW radar performs better than the CW
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except for some activities which are identified better by the CW but feature fusion is

the best performing option. However, in certain cases feature fusion will negate correct

decisions from either sensor.

Figure 7.10: Confidence metrics in cases where fusion is required. Case where individual

sensors and fusion results in the same class being selected.

Figure 7.11: Confidence metrics in cases where fusion is required. Case where Fusion

is required as only the FMCW sensor selects the correct class while CW is incorrect.
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Figure 7.12: Accuracy of the tree radar sensor combinations over increasing features.

One such case is for A2: walking with an object. The accuracy is lower for the fused

case at 75.05% compared to FMCW at 83.95%. This is due to the features from

CW, which influence the decision as only using CW has 73.89% accuracy. For A1 and

A2 the accuracy remains low for both classes even after feature selection and fusion.

This is due to both movements having similar motion in walking pattern between the

participants.

To understand the effect of fusion fig. 7.10 shows how the confidence score, expressed

in loss, changes with fusion. The target class here is A9: fall and we can see the

confidence for A9 is the closest to 0 compared to the other activities for all the sensors.

This is the ideal case where the sensors correctly identify the class. In fig. 7.5, there is

ambiguity in the correct class, as the FMCW identifies A7: Drinking from a cup, while

the CW radar picks up the confuser A8: taking a call as the predicted class. Feature

fusion helps select the correct class A7 as the incorrect influence from the CW sensor

is offset.

Fig. 7.12 shows that SFS does not appear to provide a great increase when the stan-

dalone radar systems are used independently. However, it does show that selecting

ten features can get the classification accuracy to within 2% of the maximum value

attainable in both cases. The real noticeable improvement comes when SFS is used
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together with fused features from both radars. With all the features pooled together,

there is an improvement in classification to 83% without any feature selection. SFS

increases this further to approximately 90%, with only 15 features used out of the

38 total. Out of these 15 features selected in the multi-radar fusion scenario, 4 are

extracted from the CW radar data, and 11 from the FMCW radar. Looking at the

radar systems individually, the CW selects features from the SVD and physical features

(centroid and bandwidth), whereas the FMCW chooses energy curve, centroid, cadence

velocity diagram-based features, and SVD-based features. For both systems, the SVD

features selected are predominantly from the left singular vectors, in other words, the

spectral information. Interestingly, in the fused case, the features selected appear to

be different from the individual case. While centroid is present for both cases, the

bandwidth from the CW appears to be redundant when fused. Understandably, many

of the features generated appear to be covariate with their CW and FMCW counter-

part. Additionally, this indicates the presence of less significant features, which could

be removed to improve efficiency for implementation into real world systems. There

are also class-based differences between the radars for specific activities that is shown

by analysing the accuracy of the classifiers on a per class basis. The true positive rate

where the classifier has identified the class correctly, in other words the accuracy, is

shown in Table 7.7. Here we compare the accuracy for all three situations, where each

of the sole radars are used and when they are fused together. Specifically looking at

A9: fall; which is the activity of interest in our case the CW system appears to be

strong at detecting it compared with FMCW. Fusing here seems to bring the helpful

features, which identify falls as the accuracy to a similar level as the CW case. Some

redundancy remains, as fall detection accuracy is 1% lower when fused. For activities

A3, A4, A5 and A6, fusing improves the accuracy from between 69.05% and 83.61%

to between 90.39% and 94.22%. The classification accuracy of this small cluster of

activities seems to have increased the most by the cooperative use of radar.

In Table 7.8, aside from the clusters A1/A2 and A7/A8; the remaining diagonal activ-

ities are classified to an accuracy above 90%. Notably, for A2: walking with an object,

the accuracy is lower for the fused case at 75.05% when compared with FMCW alone

with 83.95%. This appears to be due to the features from CW influencing the decision

process as it is close to the 73.89% accuracy attained when only CW is used. The
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Table 7.8: Confusion matrix for activities for fusion - accuracy and misclassification
(%)

% A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1 61.32 38.68 0 0 0 0 0 0 0 0
A2 23.94 75.06 0 0 0 0 0 0 0 1
A3 0 0 95 0 2.78 0 0 0 0 2.22
A4 0 0 0.5 94.2 2.42 2.88 0 0 0 0
A5 0 0 0.56 5.78 90.39 3.27 0 0 0 0
A6 0 0 0 1 0.5 95.14 0 1.41 1.95 0
A7 0 0 0 0 0.5 1 83.14 15.36 0 0
A8 0 0 0 2.5 2.5 0.5 8.5 86 0 0
A9 0 0 0 0 0 2.67 0 2.06 95.27 0
A10 0 0 0 0 0 3.83 0 0 0 96.17

Table 7.9: Fall detection false positives - misclassification (%)

Incorrectly predicted as falls (false positive) CW FMCW Fused
A4: Standing 0 3 0
A5: Picking up an object 2.95 2.17 0
A6: Tie up shoes 0 0 1.95

accuracy for A1 and A2 remains low even after feature selection and fusion. This is

shown in Table 7.8 where we can see that confusion occurs between the two types of

walking movements. However, this is due to both motions having a similar movement

and variety in walking pattern from the participants. It is also not a severe outcome

as it is not a confuser for A9.

In Table 7.8, we see that there are missed detections for A9: falls and misidentifications

of other classes as falls. 1.95% of A6 were identified as falls. Some fall events are

detected as A6 but also surprisingly A8, which is not a confuser for A9. Although

initially it seems the CW performs better individually, Tables 7.9 and 7.10 show that

there are improvements to be seen with fusion for incorrect classification and missed

detections too. Table 7.9 shows that a lower proportion of A9 is incorrectly detected

but with the fused scenario the erroneous detections occur with A6 as opposed to A5

for CW and A5/A4 for FMCW. The CW radar alone performs similarly with only

A5 being incorrectly identified as falls but with higher misclassifications 2.95%. The

FMCW is the worst performing system here as it incorrectly identifies 3% of A4 and
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Table 7.10: Fall detection misses (%)

Missed falls predicted as (false negative) CW FMCW Fused
A3: Sitting 0.56 0 0
A4: Standing 2.11 1.61 0
A6: Tie up shoes 1.11 5.44 2.67
A8: Taking a call 0 5.33 2.06

2.17% of A5 as A9.

A number of falls are misclassified as other activities, specifically, A3, A4, A6 and A8

and the proportion of which is shown in Table 7.10. Here, we see the 1% loss in fall

detection accuracy is offset slightly as without fused features, falls are identified as three

different classes for both sole radar systems. Fusing reduces this to two classes that

are identified incorrectly, and we also see here that the features from the CW system

are offsetting the errors from the FMCW. The bias towards A8 that the FMCW has

still appears to be there to some extent as 2.06% of A9: falls are still predicted as A8.

7.6 Conclusions

In this chapter, we have overviewed sensor fusion methods and discussed relevant re-

sults. Compared to using a single sensor, multimodal sensing significantly improves

the activity pattern-recognition performance. Different machine learning algorithms

and sensor combinations have been evaluated separately with feature selection tech-

niques utilized, namely Fisher score, Relief-F and Sequential Forward Selection. We

have shown the stages where fusion can take place, specifically at signal, feature and

decision level. By using different sensing technologies cooperatively and prov-

ing that utilizing features from different domains with feature selection

increases activity recognition accuracy, we addressed the question of how sens-

ing methods can be improved to optimise the classification accuracy in the

context of assisted living.

With heterogeneous fusion, an accuracy 97.4% of sensors is achieved with feature fu-

sion with 20 features, while for homogeneous fusion, twenty-one FMCW-derived radar

features are required to achieve an accuracy of 75% where the CW radar performs to a
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more limited degree, with 70% accuracy when 19 features are used. With feature fusion

between the radars, an improvement of classification to 83% occurs. SFS increases this

further to almost 90% with only 15 features. Out of these 15 features selected in the

multi-radar fusion scenario, 4 are extracted from the CW radar data, and 11 from the

FMCW radar, therefore SFS appears to also highlight the salient sensor.

Furthermore, we demonstrated that fusing the features from the FMCW and CW

radars brings about improvements in classification accuracy in general, but also for

missed detection and misidentification of falls as other classes. Using data from the

radar returns of the 20 participants, classification rates of up to 89.54% was achieved

with the help of fusion along with SFS. The central property of feature fusion appears

to be bringing in the strengths of the feature set from both sensors and SFS which seem

to simply enhance this as it has more choices to make the optimal feature selection.
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Chapter 8

Continuous Activity Recognition

with Bi-LSTM

Coming to the end of the thesis and after having overviewed the many challenges and

solutions for discrete activities, it is clear that the research interest has been progress-

ing towards using edge artificial intelligence (AI) techniques, with deep neural networks

coming more and more prominent. This chapter mirrors this trend as the process of

how automatic feature generation methods are utilized for activity recognition by gen-

erating salient features for classification of complex and continuous activity sequences

is reviewed. Utilising a temporal neural network design, specifically LSTM and Bi-

LSTM, a spectrogram signature composed of sequences of six activities are classified

without handcrafted feature extraction. The main contribution of this chapter is the

generation of a network architecture employing the Bi-LSTM network then testing and

validating it with continuous data.

This work has been previously covered in the publication [21] and the remainder of

this chapter is organized as follows. Initially the discussion on the motivations for

using Bi-LSTM networks is conducted, followed by the description of the experimental

setup, data collection, and data pre-processing. Section 8.3 presents a description of

the algorithms used and the results obtained with LSTM and Bi-LSTM networks used

for and offers some insight on optimizing performances. Finally, section 8.5 concludes

the chapter and outlines possible future avenues of research.
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8.1 Motivation for continuous activities and temporal

classification networks

As discussed in the introduction, the research focus on human activity classification

with radar has been on discretely separated activities, which are usually performed and

recorded individually. For the analysis of continuous activities, discrete data samples

can be sequentially concatenated as in [82, 111]. However this does not capture the

full realism of unconstrained human movements, where the duration of each action can

change, and the inter-activity transitions can happen variably.

To evaluate this realistic scenario, the data set utilised in this work includes sequences

of continuous activities performed without restrictions or instructions by the partici-

pants. This process also captures the diversity in sequential order and dynamic tran-

sitions between the activities. Continuous recordings of radar data can appear in time

as sequences of range profiles, stacked together to form range-time matrices, or alter-

natively they can be represented as micro-Doppler spectrograms [112]. As discussed

in Chapter 4, the majority of the works in the literature would interpret these radar

data as two dimensional images or three dimensional data cubes, and process them

with methods used by the image processing community, such as convolutional neural

networks or auto-encoders. In this method, a sliding window of fixed length can be

applied across the sequence of radar data to extract images of individuals or sub-sets

of activities. In a realistic sequence of human movements however, there is no fixed

temporal duration of each action, and furthermore, the transitions between actions can

happen randomly. Therefore, rather than akin to images, these continuous radar data

are akin to sequences of speech or audio signals where individual words or patterns can

appear at any time and for an unconstrained period.

Due to this reason, the recurrent neural network architectures used in the work in

the audio/speech processing community were taken as inspiration and explored in this

work. Specifically, the focus was on Bidirectional LSTM.

The main property of the LSTM is its memory capability to capture long-term depen-

dency between data separated by a significant duration [48]. This is relevant in speech,

where two correlated words can be separated by other words (e.g. auxiliary verb and
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past participles in Germanic languages, nouns and adjectives where many adjectives

are utilised). Radar data therefore, can resemble speech as different actions performed

at different time steps are correlated by human kinematics (e.g. an individual can stand

up only after sitting down, but a variable duration can separate these two actions).

However, the difference between radar data and speech or audio data arises because

they do not encode any kinematic information or constraint, which usually are instead

the main feature of the radar data and what radar-based classification algorithms aim

to utilize.

Then, bidirectionality is the capability of correlating the data processed at a given

timestep with both learned data from past and expected future timesteps [113]. This

is again a key property in speech/language processing to capture the connection be-

tween different words in a long sentence, but also a relevant capability in radar-based

activity classification to understand the kinematic constraints of human movements.

8.2 Training/testing set composition and learning li-

brary

A total of 48 different sequences were collected while 3 sequences were repeated record-

ings performed by each individual subject, and set aside as the validation test. From

the remaining 45 sequences, the testing test included one of the 45 sequences, repeating

the process 45 times to test all sequences. For the training set, two different approaches

were followed to evaluate the effect on the classification performance of prior knowl-

edge/data about a specific participant.

In the approach labeled as ”New,” the two sequences which belonged to the subject

under test were removed from the training set, leaving a total of 43 sequences for train-

ing. In this case, the test subject is unknown to the classifier, as if a new person joining

the experiment. In the approach labeled as ”Known Prior,” two random sequences out

of 45 from other participants were removed from the training set, leaving 43 sequences

for training therefore maintaining consistency with the previous case. However, the

two sequences performed by the test subject were purposely kept in the training set

which meant in this case, the classifier did retain some knowledge of the test subject
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through the two sequences in the training set, although the order of the activities and

the related transitions were different. These two approaches were tested to evaluate

if any prior knowledge of an individual human subject would affect the classification

algorithm and its performance. For the generation of input data, in this experiment,

a 0.2s Hamming window and an overlap factor of 95% is used to generate the micro-

Doppler spectrograms. The LSTM and Bi-LSTM neural networks can use either range

profiles or spectrograms as inputs the sections below explore the effect of using them.

As for the algorithm library, While others have used various libraries [16] [82], this

work utilized the Deep learning toolbox included in MATLAB 2018B. Furthermore,

MATLAB was used additionally for radar signal processing and for creating the class

labels for each time step by manually labeling the ground truth data from physical

observation during the experiments.

8.3 Experimental results and performance analysis

In this section experimental results using different LSTM network architectures are

provided, together with discussions on changes in performances due to the format of

input data used (e.g. spectrograms vs range-time plots), and on significant hyper-

parameters of the networks (e.g. learning rate).

In this section, lower case symbols will denote vectors, e.g. x, whereas matrices are

denoted by upper case letters H. An arrow pointing right, e.g.
−→
Ht indicates the scalar

or vector in the next time step whereas an arrow pointing left, e.g.
←−
Ht indicates the

scalar or vector from the previous time step. � denotes the Hadamard product, an

element-wise product of two vectors.

This experiment utilised the dataset 5 which has been overviewed in Chapter 5 but

to reiterate, the data included six human activities: walking (A1), sitting on a chair

(A2), standing up (A3), bending to pick up an object (A4), drinking a glass of water

(A5) and simulating a frontal fall (A6). These activities are shown in Fig. 5.6. With

the three sequences being :

• A1: A2: A3: A4: A5: A6
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• A5: A4: A2: A3: A1: A6

• A4: A5: A1: A2: A3: A6

8.3.1 Doppler LSTM

The first network investigated is a two-stage stacked LSTM network, which is referred

to as Doppler-LSTM and serves as a baseline for the spectrogram-based results. As

the name suggests, the input to this network is the spectrogram, which contains micro-

Doppler information and is fed into the network as a sequence of different vectors time

bin after time bin.

Table 8.1: Size and property of layers used in Doppler-LSTM network

Layer Size Properties

Input 240 based on the frequency bins of the input spectrogram

LSTM 2400 number selected to store large sequences in memory

LSTM 2400 number selected to store large sequences in memory

FC 6 Based on the number of possible output classes

Output 1 Single output

Figure 8.1: Overview of the LSTM cell used in Doppler-LSTM Note that the arrows

indicate only forward-based temporal information flow from a timestep t − 1 to the

following t
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Figure 8.2: The network architecture of Doppler-LSTM

With the temporal dependencies accounted for, the level of abstraction in the input

data should be assessed, as spectrograms can be considered a mixture of multi-tones

where the micro-Doppler movements induce different Doppler frequency components

depending on the movements of individual body parts. Using multiple layers has been

suggested as the primary method of detecting higher-level abstractions from the input

domain [82]. Therefore as shown in fig 8.2, the proposed Doppler-LSTM network has

two stacked LSTM layers so that these higher-level abstractions can be identified by

the network.It is comprised of:

• An input layer that takes a segment of the spectrogram (250 Doppler bins in each

time bin, which is equivalent to one observation) and sends it to the first hidden

layer,

• Two stacked LSTM layers that extract and update the salient features in the

input data,

• A fully connected layer that connects the activations of the different LSTM layers

necessary for classification,

• A softmax that computes the probability distribution of the data belonging to a

specified output class,

• An output layer that outputs the class label based on the Softmax distribution.

Note that the arrows indicate the temporal direction of the recurrent LSTMs. In this

case, since a standard LSTM layer is used, only forward based recurrence is considered.

The neural networks have 2410 hidden cells for both of the LSTM layers and a learning

rate of 2−4. Of the editable hyperparameters, the learning rate is of significance as it is

the key contributor to vanishing and exploding gradient problems [73]. This hyperpa-

rameter affects radar data significantly and can offset good architectural decisions if an

incorrect learning rate is used. The state activation function is the hyperbolic tangent,
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while the gate activation function is a sigmoid (rectified linear unit is not commonly

used with LSTM as it can cause exploding or vanishing gradients.) and gradient de-

scent optimizer is ”Adam.” Table 8.1 shows a summary of the size and properties of

the layers of the Doppler-LSTM.

• f forget gate : Control to forget cell state

• i input gate : Control to update cell state

• g cell candidate : Control for information to be added to cell state

• o output gate : Control to add cell state to hidden state

8.3.2 Doppler Bi-LSTM

The second proposed network referred to from hereon as Doppler Bi-LSTM, is a modi-

fication of the first one and includes: an input layer, an LSTM layer, a BiLSTM layer,

a Softmax layer, and a classification layer. The Bidirectional LSTM cell is the main

modification of this network and its details are shown in Fig. 8.3, whereas Fig. 8.4

shows the block diagram of all the layers of the proposed network.

Similar to the first network, Doppler Bi-LSTM accepts spectrograms as inputs. Differ-

ing from the previous Doppler-LSTM, this network processes the forward time-based

dependencies first in the initial LSTM layer, and then searches for bidirectional, for-

ward and backward, dependencies in the extracted temporal features. The capability

of characterizing and memorizing these forward and backward dependencies in the se-

quences of data is critical for this network and its performance, as in the sequence

of human activities, there are explicit dependencies and kinematic constraints on the

order of possible actions. The main equations for a Bi-LSTM cell unit [114] are as

follows:
−→
ht = tanh(W

x
−→
h
Xt +W−→

h
−→
h

−→
h t+1 + b−→

h
) (8.1)

←−
ht = tanh(W

x
←−
h
Xt +W←−

h
←−
h

←−
h t+1 + b←−

h
) (8.2)
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yt = W−→
Hy

−→
ht +W←−

h y

←−
ht + by (8.3)

The main difference in the Bi-LSTM layer versus the previously described LSTM layer

comes from each cell having two hidden states, with two parallel pipelines feeding to

both previous and next timesteps as illustrated in Fig. 8.3. Note that in this figure,

the two different hidden states are denoted with capital H and forward and backward

arrows, respectively, as they are in the equations. Differently from the LSTM, in the Bi-

LSTM layer, the interconnections between the input, output, and hidden states through

the relevant weights do not propagate through the forward and backward cells directly;

Figure 8.3: Interconnections and weight transfers in a Bi-LSTM cell used in the Doppler
Bi-LSTM. The arrows show the propagation of the information hidden and cells states
between the layers. Xt is the input, ht is the hidden state with its forward or backward
directionality, Wnn indicates the weights linking hidden states and outputs/inputs and
Yt is the output.
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Figure 8.4: Network architecture of Doppler Bi-LSTM. The key difference between the
previous architecture is the presence of a bidirectional layer.

instead, they interface separately by going through the forward cells (→) and backward

cells (←) at the same timestep. The hidden states from these forward and backward

cells are then combined to generate the output from the Bi-LSTM layer, denoted by

yt. The implication is that the Doppler information corresponding to specific body

movements over a long duration in both forward-time and backward-time directions

are characterized and captured by the Bi-LSTM layer. Essentially, this means that

the network searches and memorizes recurring feature patterns in the past (previous

actions) and any linked recurring feature patterns in the future (subsequent actions).

8.3.3 Doppler LSTM and Doppler Bi-LSTM performance analysis

Fig. 8.5 shows the spectrogram of one of the sequences classified by the Doppler-

LSTM. Furthermore, it shows the comparison of the classification and ground truth

of the activities within this sequence. Initially at t=0, we see that there is a sharp

spike that detects A5: Drink while in truth the person was performing A4: Pick, since

both of these activities have the central component of moving arms the classifier has

a moment of indecision. It then correctly classifies A4: Pick, but it detects A5: Drink

with a delay of 3 seconds, after which another ”impulse-like” indecision, referring to

the sharp spike at about 9 seconds, where A6: Fall is detected. In a fall detection

system, the presence of these spikes for erroneous classifications could be undesirable

Table 8.2: Size and property of layers used in Doppler Bi-LSTM network. Optimal
learning rate of 1e-4 is used
Layer Size Properties
Input 240 based on the frequency bins of the input spectrogram
LSTM 2400 number selected to store large sequences in memory
Bi-LSTM 2400 number selected to store large sequences in memory
FC 6 Based on the number of possible output classes
Output 1 Single output
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and a potential source of false alarms.

Fig. 8.6 represents an example of results for the Doppler Bi-LSTM network. Note

that the sequence of activities is the same as the one presented in the previous figure,

but performed by a different subject. For this reason, the ground truth plots are

identical, but the input spectrograms appear overall similar. Comparing the classifier

output/test outcome in the orange line and the ground truth in the blue line, we can

see that test outcome matches the classifier output to a very large extent. However,

there are three noticeable segments at time points 4, 20, and 22 seconds where there

is a slight mismatch between the test outcome and the observed ground truth. In the

first case, at 4 seconds, there is a short delay in detecting the transition from A4: Pick

up to A5: Drink. However, one can note that in the spectrogram input in Fig. 8.6,

the signature is unclear at that time instance, with a difficult transition detectable by

eye. This is typical of transitions where the dynamic range of the macro movement of

the body/torso and the micro-movements of the limbs change drastically. The network

may respond to this by maintaining the classification from the previous time instances,

Figure 8.5: Classifier input at the top sub-figure, ground truth in blue, and the test
outcome in orange in the bottom sub-figure for a test sequence for the Doppler-LSTM
network.
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so there is a short delay but no erroneous classification occurs. This is similar to

the second case, at 20 seconds, where the classifier appears to detect A6: Fall with

a short delay. In the third instance, at 22 seconds just before it happens. Reviewing

the spectrogram, prior to the A3: Standing occurring, there is a precursory movement

which the classifier notes and associates as part of the A6: Fall class, possibly due to

the knowledge of the signature at future time instances in the spectrogram provided

by the bidirectional capabilities of the network.

Fig. 8.7 shows the classification accuracy for the 45 sequences collected where each

one was the test sequence in turn, as discussed in section II.C. Note that the hyperpa-

rameters and training/testing approach were kept consistent between the two network

architectures. This provides a more effective way to compare the performances of the

proposed Doppler LSTM and Bi-LSTM networks across the whole dataset of continu-

ous signatures, rather than observing individual sequences.

The range of classification accuracy is, on average higher for the Bidirectional LSTM

Figure 8.6: Classifier input at the top sub-figure, ground truth in blue, and the test
outcome in orange in the bottom sub-figure for a test sequence for the Doppler-Bi-
LSTM network.
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Figure 8.7: Comparison between Doppler-LSTM and Doppler Bi-LSTM architectures
output as classification accuracy over the 45 test sequences. Although the layers
between these classifiers are different, the hyperparameters and training and testing
methodologies are consistent between both network architectures.

network compared with the unidirectional LSTM, and there is less variability across

different subjects and different sequences performed by the same subject. This can be

described by the mean and standard deviation across the 45 classification tests, that

are recorded in Table 8.3 for the Doppler Bi-LSTM and LSTM networks. The mean

increases to approximately 91% from 78%, whereas the standard deviation is reduced;

the maximum (best case) and minimum (worst case) are also increased when using a

bidirectional architecture of approximately +6% and +15%, respectively.

The metrics in Table 8.3 and the detailed results in Fig. 8.7 for each test sequence show

how the bidirectional capability of the proposed Bi-LSTM provides superior capabilities

to classify human activities in a continuous sequence with respect to a conventional

unidirectional LSTM (for example the increase in accuracy from LSTM to Bi-LSTM

is +30% in the best case of sequence #31). The robustness and good generalization of

the proposed approach across the diverse set of 45 recorded sequences and 15 subjects

are demonstrated. Furthermore, for subsequent sequences where there is a drop in the

accuracy, the Bi-LSTM appears to be more robust than the unidirectional LSTM, for

example for sequences 5 and 6, where for the Bi-LSTM the accuracy drops from 94%

to 88% and for the LSTM it drops from 78% to 57%. As a note, the accuracy in Fig.

8.7 and Table 8.3 is calculated as the number of correct classification of the activity

(1 out of the 6 performed) in each time bin of the spectrogram, over the total number

of time bins in the 35s total duration of each testing sequence. We think that this
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Table 8.3: Accuracy metrics from the tested participants across different LSTM archi-
tectures with Doppler and Range input.

Classifier Mean Standard deviation Maximum Minimum
Bi-LSTM 91 5 98 69
LSTM 78 9 92 54
Range BiLSTM 76 7 87 54

is a conservative approach, which labels as mistakes even the very short spikes with

erroneous prediction lasting for only a few time bins, as seen in Fig.8.5. As part of

future work, smoothing filters approaches could be applied to the predictions of the

LSTM or Bi-LSTM networks to disregard labels for activities that would last only for

few time bins, and therefore be unrealistic as the subject could not perform a given

activity in such short physical time.

8.3.4 Range Bi-LSTM

In the previous sections, we have analyzed the results of using Doppler spectrograms

input to the LSTM and Bi-LSTM networks, but spectrograms need an additional

level of processing after the generation of the range profiles to be calculated. This

prompts the question of whether sufficient information can be inferred from the data

in the range-time domain, leaving to the networks the task of extracting the Doppler

information, i.e. the changes between subsequent range profiles implicitly.

Range profiles do not show the different activities in the signature in an easily perceiv-

able manner compared to spectrograms since only the location relative to the radar is

given, and in the specific case of our radar, the range resolution is limited to approx-

imately 40cm with the 400 MHz bandwidth. Hence, to the human eye, the different

activities in the range-time plots appear much less distinguishable than in the spectro-

grams, but this may not necessarily be a limitation for neural networks.

Fig. 8.8 shows an example of such a range-time plot in its top part; it is evident how

this image is less clear than the corresponding spectrograms in Fig. 8.6 and Fig. 8.5

for the same sequence of actions. A significant difference between spectrograms and

range-time plots, is the number of time bins, of temporal units that the LSTM or
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Bi-LSTM network will need to process. For 35s of data in each sequence of activities,

spectrograms consisted of 1750 time bins with the selected STFT parameters, whereas

range-time plots had 35,000 observations or range profiles, as the data were sampled at

1 kHz PRF. This increased size of the data led to a modification of the network with

a different number of inputs reflecting the number of range bins in the range profile.

This network is referred to as Range Bi-LSTM. In terms of its layers and architecture,

the Range Bi-LSTM is similar to the one shown in Fig. 8.4.

The bottom part of Fig.8.8 shows an example of representative results from this alter-

native network using range-time data as input. The performance is reduced compared

to the Doppler based networks.

At 0, 4, and 5 seconds, we see transient detection of A5: Drink at multiple instances

until an apparent misdetection of activity A1: Walking as A2: Sitting as the target

comes to a halt which is visible in the range-time plot. This is followed by an early

detection of the A2: Sitting. At 28 seconds, multiple instances of A5: Drinking is

detected before A4: picking up item is correctly identified, which is reminiscent of

the spike transients observed with the Doppler-LSTM. In general, more spikes and

instability in providing a steady prediction are shown at other transitions, and there

are misdetections of all activities throughout the sequence.

8.3.5 Range-time Bi-LSTM performance analysis

The results in Fig.8.8 for the usage of range-time data as inputs to the Bi-LSTM show

a degradation in performance compared to the usage of micro-Doppler information. To

view the performance of the network on a sequence by sequence basis across the whole

dataset, Fig. 8.9 shows the results for the 45 test sequences, and Table 8.3 shows the

overall performance metrics.

There are cases where the Range Bi-LSTM performs well. For example, in the se-

quences 31-35, an accuracy of approximately 80% is attained. However, it does not

maintain this rate for the all of the test sequences as the classification challenge of

detecting complex activities designed for this set, and also delayed and transient detec-

tion of classes occur as demonstrated in Fig. 8.8. Viewing Table 8.3 while comparing

Fig.8.9 and Fig. 8.7, show the performance loss of using the range-time profiles as
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inputs to the proposed LSTM networks, despite the potential advantage of avoiding

the calculation of spectrograms at the pre-processing stage before the network. To

put it into perspective, the best classification accuracy, or the maximum in Table 8.3

(87%), for any range input is 4% less than the mean accuracy for the Doppler Bi-LSTM

(91%). In other words, the best case with range input cannot match the average case

with Doppler input with a similar or even a range focused network architecture. Di-

rectly comparing the mean accuracy shows an improvement of 15% through the use of

Figure 8.8: Classifier input, ground truth, and the test outcome for a test sequence
for the Range Bi-LSTM network.

Figure 8.9: Range Bi-LSTM output as classification accuracy over the 45 test se-
quences.
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the Doppler Bi-LSTM (91%) instead of Range Bi-LSTM (76%) and improvements in

the maximum by 5% and minimum rate by 15% when the former architecture and its

corresponding input is used.

8.4 Further experimental validation

In this section we present further tests to validate the proposed methods. We discuss

the influence of the classifier having prior information from participants, compared

to when no such information is provided. Additionally, the effect of static clutter on

the classification is analysed and a comparison with a simpler support vector machine

classifier (SVM) is made, with a comparative analysis is provided.

8.4.1 Known Prior vs Unknown

Table 8.5 shows the results from the networks and input domains discussed in this

chapter with the ”Known Prior” and ”New” training and testing methodologies. For

Table 8.4: Size and property of layers used in Range Bi-LSTM network. Layers were
resized to fit input domain and memory limit.

Layer Size Properties
Input 64 based on the range bins of the input spectrogram
LSTM 240 number selected to store large sequences in memory
Bi-LSTM 240 number selected to store large sequences in memory
FC 6 Based on the number of possible output classes
Output 1 Single output

Table 8.5: Accuracy metrics for range vs Doppler domain networks with ”Known
prior” and ”New” training and testing approach.

Classifier Subject Mean Standard deviation
Range Bi-LSTM Known Prior 74 7
Range Bi-LSTM New 77 7
Doppler LSTM Known prior 78 10
Doppler LSTM New 78 9
Doppler Bi-LSTM Known prior 91 4
Doppler Bi-LSTM New 90 6
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each of the participants, one sequence of activities was taken as a test sample with the

best performing classifier and input domain combined. In the case of Known Prior, the

training set had included the other two sequences performed by the same subject (but

with a different order of activities), whereas for the New set, the classifier did not have

information on that specific subject from the other sequences. The Table shows there

appears to be a marginal difference in the prediction between a classifier that has prior

information from the test subject and one which does not. The only factor inducing

a significant change is the selection of the network and corresponding input domain,

where it follows the trends discussed at the end of section III-E. Substantially, the

Doppler Bi-LSTM outperforms the other architectures/input domains. As the prior

knowledge of the test subject induces no significant change in the classification accuracy,

we assume that during the data collection the same activities were not reproduced in

the exact form in all sequences, despite the test subject remained the same. This was

due to the fact that the duration of each activity was unconstrained and that as the

order was different, the transitions between the activities happening before or after

a given one created diversity in the data. Therefore, each sequence is distinct, and

there is no much difference in providing to the network knowledge of other sequences

at the training stage for a given test subject. Conversely, it can be seen that, when the

best performing combination of network and radar data format is used, the proposed

approach based on recurrent LSTM networks is robust enough to generalize across the

cohort of 15 subjects and 45 sequences. The analysis of some of the individual test

sequences for the ”Known Prior” and ”New” approaches in Fig. 8.10 shows cases where

prior knowledge appears to help with improving accuracy. For example, with person 1

and 6, there is an improvement of more than 10%. However, there are also cases where

the opposite occurs, for example, with person 8. Therefore, prior knowledge of the test

subject with the classifier does not appear to be a major factor in the overall accuracy.

8.4.2 Influence of static clutter

The role of clutter is another aspect which is questioned about in the research area of

using radar for monitoring human activities as indoor environments consistently have

objects which generate static clutter and possible multipath. This is usually mitigated
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by using MTI filters, as it has been done in this work since it removes the effect

of static clutter. To demonstrate the impact of clutter, the signatures without MTI

filtering have been used as the input to the classifiers. Fig. 12 shows the results when

the spectrogram signature has the filter removed, therefore the effect of background

clutter on the Doppler signature is included. Both cases of ”Known Prior” and ”New”

approaches for training the Doppler Bi-LSTM network are reported for the cluttered

data.

There are certain cases, e.g. Person 1 and person 13, where the presence of clutter

results in a decrease of approximately 12% from the regular case where the MTI filter

is present. Similarly, there are cases where an extreme decrease is present, e.g. person

15 where for the ”Known Prior” cases the presence of clutter has a 50% decrease in

accuracy compared to the filtered/regular counterpart. Incidentally, there appears to

be a marginal benefit in this case where prior knowledge is useful in classification as

in average, there is a 3% difference between the ”Known Prior” and ”New” cases with

clutter considered as shown in Table 8.6. With Fig.12 and Table 8.6, we see that

there is a decrease in performance for all the participants in both ”Known Prior” and

”New” cases. This suggests that filtering static clutter is essential to ensure accurate

recognition of sequences with the proposed method.

8.4.3 Comparison with conventional Support Vector Machine

A simpler classifier, a support vector machine, is used with features derived from

segmented windows of the whole sequence to detect the activities, and the results can

Table 8.6: Accuracy metrics for the Doppler Bi-LSTM with vs without static clutter
filtered, for ”Known prior” and ”New” training and testing approach. SVM results
also shown for comparison

Classifier Subject Mean Standard deviation
Doppler Bi-LSTM Known prior 91 4
Doppler Bi-LSTM New 90 6
Cluttered Doppler Bi-LSTM Known prior 71 14
Cluttered Doppler Bi-LSTM New 68 12
SVM Both 66 11
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be then compared to those generated by the proposed LSTM networks. This is done

to establish a benchmark for the Bi-LSTM architecture and to validate their use for

this classification problem. SVM utilises as input a selection of features extracted

from the centroid, bandwidth, and singular value decomposition of the spectrogram

signature. This has been previously used in literature to identify discrete activities

[115, 18], together with a sliding segmenting window. The window length was 4.5s

and overlap was 90% and the kernel of the chosen SVM was linear. These parameters

for the sliding segmenting window approach were selected as they resulted in the best

performance in previous work [116].

Table 8.6 shows a summary of the results for the SVM to compare them with those of

the Bi-LSTM networks; the results for individual sequences were shown in Fig. 8.10.

Note that there was only negligible difference in the SVM case between the ”Known

Priori” and ”New” approach for training the classifier, hence they are reported together

in the table. In general, the SVM results (green bars in Fig. 8.10 are lower than using

Doppler Bi-LSTM networks (blue bars in Fig. 8.10. While the performance can be

close in rare instances, e.g. for Person 1, in general the SVM is between 20 to 40 %

lower when compared to the regular Doppler Bi-LSTM. This result emphasises the

value of the proposed approach with a temporal-aware classifier such as the proposed

Doppler Bi-LSTM for recognising continuous human activities.

Figure 8.11: Parameter sweep of the learning rate with the best performing architecture
and radar data domain: Doppler Bi-LSTM. A suboptimal initial learning rate can be
as harmful to the classification accuracy as using a less suitable architecture or input
domain.
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8.4.4 Optimising Learning rate

A final point of note in the analysis is the selection of the learning rate. Fig 8.11 shows

the sweep of the learning rate value with increments of a factor of ten for the Doppler

Bi-LSTM architecture. It shows that even with an optimized architecture and input

domain if the initial learning rate selected is not optimal; the classification accuracy

can degrade significantly to the levels where sub-optimal networks and input domains

were used. Note that the mean accuracy presented in this figure refers to the average

across the 45 diverse test sequences, as discussed in previous tables.

In suboptimal cases, be it with architecture, input domain or parameter selection, the

presence of delayed classification with respect to the ground truth, transient states

(spikes in the predicted labels), and complete misclassifications exhibited in fig 8.8

increase significantly, thus reducing the performances.

8.4.5 Line of sight and future direction

One of the recurring questions about using radar for human activities monitoring is

its performance when the target is not in a direct line of sight (LOS). In this case, the

signal-to-noise ratio of the returned signal will vary, especially if the activity is being

conducted at the edge of the antenna beamwidth. This is due to the combination of

the effects from the attenuation of the antenna radiation pattern, the RCS fluctuation

of the target, and the relation of the micro-Doppler shift with the aspect angle.

To assess this effect in a preliminary test, we recorded a sequence similar to Fig.5.6

with an added A1: walking. The participant started the activities outside of the direct

LOS before walking across the LOS to perform the A6: fall event at the edge of the

beam. This meant that the aspect angle between the target and the radar varied from 0

degrees to approximately 30 degrees. This sequence was then tested with the Bi-LSTM

trained with prior single LOS data, as discussed in the previous sections.

Figure 8.12 shows the input, output, and ground truth of this test. The classifier

makes two errors. The first is at 0 seconds where it detects A3: Standing for a small

duration, and at 30 s, where it does not immediately detect the transition to A1:

Walking. This is due to a non-movement gap visible in the Doppler-time map between
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Figure 8.12: Classifier input at the top sub-figure, ground truth in blue and the test
outcome in orange in the bottom sub-figure for a test sequence with varying aspect
angles and signal to noise ratio for the Doppler-LSTM network.

28-30 seconds. Other than this, it appears to track the activities and the sequence well,

with an average of 91.56% overlap between the predicted and ground truth data. This

is consistent with other findings in literature where an angle up to 30 degrees gives

an acceptable performance [16]. When this angle is larger (i.e, more than 30 degrees)

or the target is out of the beam, performances may degrade further and a different

radar deployment would necessary, such as for instance multistatic, interferometric, or

multi-platform. Improving the robustness of classification for irrespective of the aspect

angles is the subject of further research, but beyond the scope of this article.

8.5 Summary

This chapter analysed continuous sequences of experimental radar data to classify hu-

man activities and movements. Unlike the majority of current work in the literature,

the data were not collected as separate recordings for each specific activity, but as a

continuous stream where transitions between each activity can happen at any time

and have unconstrained duration. Here we demonstrated improved recognition



Chapter 8. Continuous Activity Recognition with Bi-LSTM 179

of continuous activities and activity transitions without feature extraction

through the use of temporal classification algorithms to show how to leverage ad-

vances/evolution in machine learning to automatically segment and classify

human activity in a continuous data stream with a single radar sensor. These

sequences were processed using novel recurrent Bidirectional LSTM networks that in-

terpret the data as a temporal series, rather than as 2D images (i.e. matrices of pixels),

as more conventional classification approaches based on convolutional networks do.

The proposed approach was validated with experimental data collected using a C-

band FMCW radar with 15 participants performing 6 activities. Sequences with 3

different combinations of these activities were recorded to capture and classify diverse

transitions between them. Different architectures for the recurrent networks were in-

vestigated, namely conventional LSTM and Bi-LSTM layers, as well as the effect of

key hyperparameters such as the learning rate and of different formats of the input

radar data, namely spectrograms and range-time sequences.

The results show that the proposed Bi-LSTM architecture outperforms unidirectional

LSTM, as the former can capture connections within the data in both the backward

(past) and forward (future) temporal directions. This is particularly important for the

classification of continuous sequences of human movement data, as the activity/move-

ment performed at a specific time has a strong dependence on what was performed

previously and influences what the subject can perform afterward. Classification accu-

racy over 90% was achieved for the optimized Bi-LSTM architecture across 45 different

sequences of activities tested with a leave-one-subject-out cross-validation approach,

demonstrating promising robustness and generalization capabilities for the proposed

approach. Micro-Doppler data yielded higher accuracy than using range-time profiles

as inputs to the networks. It is anticipated that the range information can be more

relevant for classification when the subjects perform activities at an unfavorable aspect

angle for Doppler-based measurements, or where a radar with wider bandwidth and

finer range resolution is available (for example those operating in the mm-wave spectral

region). It was also shown the benefit in carefully designing the network architecture

and select its hyperparameters to fit the selected radar input data domain, as optimal

architectures for the micro-Doppler domain did only provide sub-optimal performances

when fed with range profiles.
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An open problem faced by the radar research community for human monitoring is

when multiple people are in the radar field of view and the recognition of activities

while subjects are occluded by other subjects or objects. Techniques to separate the

signatures of multiple subjects have been proposed using the fine range information of

ultra-wideband (UWB) radar [117] or the separation of the scatterers points of mul-

tiple subjects in the 3D radar cube [118]. These techniques could help separate and

decompose the total signature into individual signatures that can then be subsequently

processed by the proposed classification approach. The thorough investigation of this

challenging scenario is left to future work, with different subjects, activities, environ-

ments, and trajectories or aspect angles.
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Chapter 9

Conclusion and Future Work

Throughout the years of this research, the research topics of activity recognition with

radar and radar for living targets has increased considerably in breadth and number

of papers. Considering this topic only has been in focus since 2008, this represents a

significant increase in the attention around the use of radar. This is also in line with

the market treatment of radar as a whole, with many more applications in the civilian

domain beyond the traditional defence applications most people would associate radar

with.

In this thesis, we overviewed the inception of radar activity with humans and described

the iterative steps through which this process occurred. Although the use of sensors to

monitor and classify activities is nothing new, the mature technologies which already

exist in this space come with a number of detractors which radar does not have. In this

digital age, radar has a key strength of preserving privacy more than any other sensor,

as it cannot be used to identify an individual or their location outside of the area under

test with plain, optical images. This is especially true in the case of pervasive sensors

such as camera based systems or inertial sensors which have GPS sensors, these systems

have been popular recently because of their use in smartphones and other smart devices.

In the beginning of this research the literature had a number of open research questions

available, which grew over the past few years as the state of the art methods evolved.

The research activities described in this thesis contributed to address some parts of

these questions, as summarised below.
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9.1 Summary of contributions

In 2016, when this thesis’ activity started, the majority of the works used the classic

feature extraction methods often using a single source and a specific category of fea-

tures, either textural or spectral etc. They also utilised older, more legacy classification

algorithms and the experimental design was at times ambiguous and it did not consider

the variety in the participants, especially older people and different genders which led

to two initial queries.

The first was an inquiry about an issue which is common in many machine learning

(ML) applications for activity recognition, regardless of the sensor. By demonstrating

how the variety of subject physiology affects the classification rates in chapter 5 and

6 we addressed the first question of how the target population and handcrafted

feature extraction influence the accuracy of the classification algorithm.

This chapter draws from [29] and [31]. This work mirrors the trend at the time of the

machine learning community regarding the importance of the input, putting it ahead

of other factors such as the algorithms or hyperparameters. By evaluating the effect

of variety in age, gender and physiology of the subjects on the accuracy of activity

detection, it addressed an open question of presenting signatures of the type of people

the hypothetical scenarios in our field have proposed.

The second inquiry was regarding the limit of the use-cases radar micro Doppler (mD)

based classification had been applied to so far. By applying methods previously es-

tablished we showed a novel use of radar based gait recognition to detect

lameness in animals which are physiologically different from humans. Al-

though this research was a sub-segment of our field, presenting these results in [30]

and [24] showed a pivot in potential application of this technology, generating new

interest, in this area but also with the use of mD radar. With this innovative use case

we showed that mobility testing could be automated with results approaching to the

level of human experts in detecting lameness or gait problems in a variety of farmed

animals. We showed that activities in this case could be detected at rates between 68%

to 92.4%, but also showed how individual discrete activities were more challenging to

classify compared to segmented of repeated discrete activities which could be identified

above 91.9%. We showed that lameness in dairy cows can be identified to 80%, up to
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100% in sheep, and up to 92% in horses for a three-class problem of classifying severe,

mild, and absence of lameness.

As the introduction of radar for activity recognition was an improvement on the sens-

ing technologies, it was another avenue where new innovations were being made. By

using different sensing technologies cooperatively and proving that utiliz-

ing features from different domains with feature selection increases activity

recognition accuracy, we addressed how sensing methods can be improved to

optimise the classification accuracy in the context of assisted living in chapter

7, which composes of research generated in [27, 26] and [20]. As the features generated

by different properties of the input signal required selection of the highly salient ones,

by using different sensors and feature selection we were able to demonstrate higher

accuracy in activity recognition through exploiting the benefits of increased variance

through multi-domain inputs. We demonstrated, using heterogeneous sensor fusion,

where sensors were measuring different physical movements, and homogeneous sensor

fusion, where sensors were measuring the same physical motions at different frequen-

cies, we demonstrated an increase in the accuracy of activity recognition. Classification

rates of up to 89.54% was achieved with the help of fusion along with SFS. With het-

erogeneous fusion, an accuracy 97.4% of sensors was achieved with feature fusion with

20 feaures, while for homogeneous fusion, twenty-one FMCW-derived radar features

are required to achieve an accuracy of 75% where the CW radar performs to a more

limited degree, with 70% accuracy when 19 features are used. With feature fusion be-

tween the radars, an improvement of classification to 83% occurs with SFS increasing

this to 90% with only 15 features.

Over time the complexity of the activities and recognition of life-like sequences be-

came a major topic of interest as people seldom do a single activity in isolation. We

demonstrated improved recognition of continuous activities and activity

transitions without feature extraction through the use of temporal classification

algorithms typically used in the audio AI community. In fact, both radar and au-

dio signals are physical movements expressed as spectral information to show how

to leverage advances/evolution in machine learning to automatically seg-

ment and classify human activity in a continuous data stream with a single
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radar sensor. We used spectrograms containing sequences of activities as inputs to

an LSTM and bi-LSTM based classifier to classify the challenging signature containing

not only activities of various duration but also the variable transitions between them.

This piece concluded the research in this topic by presenting the best case single radar

sensor performance for continuous activity recognition without specified feature gener-

ation for a realistic activity sequence with an accuracy over 90% was achieved for the

optimized Bi-LSTM architecture across 45 different sequences of activities tested with

a leave-one-subject-out cross-validation approach.

9.2 Impact

In the thesis we briefly discussed the challenge of obtaining data for activity recognition

with radar. One of the main impact of this research is the generation of a large data-set

which has already been used in multiple research papers and it is also the subject of

two classification challenges. It has also been used in [119] by Addabbo et. al. as the

input for a temporal convolutional network (TCN) to classify activities. This work

reassuringly presents a classification scheme to classify the activities in our datasets to

a high accuracy.

This work has also led to collaborations between different institutions and fields and

through outreach events conducted due to this project, it has promoted the feasibility

and option of using radar for activity recognition. One notable example of this being

our work with the University of Glasgow veterinary school.

Finally, the research conducted for this thesis and discussed in the prior chapters

have been part of broadening the scope of activity recognition with radar and has

introduced various challenges present in the literature and methods to resolve them.

In other words, it has expanded the knowledge base of how radar can be used for human

targets for non-defence roles, establishing an idea of civilian radar which is expected

to progress due to the uptake of radar for autonomous driving technologies and use in

commercial smart devices.

In a pleasant turn of event, the work here [21] has been cited, amongst other researchers,

by Prof. Youngwook Kim in his work [120] who was an inspiration behind this research
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and one the author of the notable papers [16] which started the period of interest in

this topic.

9.3 Limitations

One of the main caveats of this research is that radar has not reached maturity techno-

logically when we consider activity recognition application. Although there are more

readily available sensors that are readily available due to the autonomous driving mar-

ket such as the TIDA-01570 module from Texas Instruments Incorporated and VMD3

module from RFbeam Microwave GMBH, the support of devices and usability is far

inferior compared to dedicated intertial sensors such as the shimmer3 inertial measure-

ment unit (IMU) from Shimmer.

Another limitation is the problem that radar faces in the sense of aspect angle as if the

radar is oblique to the target then the signal to noise ratio increases considerably and

makes activity recognition more challenging.

For participants, as the experiments are physical and have injury risks associated with

them, the internal review board process to conduct these experiments safely means

that many types of activities which should be identified by such a system cannot be

simulated. Furthermore, it also means that obtaining data from senior citizens is

challenging, even if these systems are primarily designed for their benefit.

Another general limitation and challenge is the size of the dataset and the generalisation

capability to new and diverse scenarios. In fact, there can always be more activities,

longer sequences, more confusers and more participants of diverse nature; however these

are all increasing as more attention is attracted to activity recognition with radar.

9.4 Future Work

There were many research avenues that we could have undertaken instead of the ones

discussed above and different solutions are also being offered for the research questions

we have answered. Regarding the input data, recent contributions in the literature

have explored the usage of generative adversarial network (GAN) in [121, 122, 123, 124]
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to address the need of a large amount of data for training deep neural networks for

classification. GANs have been shown to be an effective tool to generate synthetic

radar data starting from a small set of experimental radar data, therefore it could be

an avenue to generate data which is difficult to obtain in large volumes, such as with

senior citizens. However, there are outstanding research challenges to evaluate the

fidelity and reliability of synthetic data produced through them, and their closeness to

the real-life data.

In [121] the authors used GANs to generate radar signatures for walking gaits at

different speeds, and [122] applied GANs to data of six human actions, including a

variety of full body motions. Notably, GAN counters have also been proposed in

literature, with [123] proposing a novel approach to use the adversarial learning of

GANs combined with a PCA-based kinematic sifting approach to reject synthetic radar

samples presenting unrealistic data which contain artefacts that would normally be

absent in experimental data. There is also the topic of the increasingly congested

electromagnetic spectrum and approaches to use joint radar-communication waveforms

in [125] to show how mD signatures of pedestrians and other automotive targets.

Another research path is the use of point clouds generated from multi-receiver radar

targets as discussed in [120]. By leveraging the point information from several parts of

the body there is a possibility to record richer movement information. This represents

an added domain which will be used to enhance activity recognition with radar.

In short, radar is following the developments in the AI space to generate innovative

solutions to the limitations presented.
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