
 
 

 

 

 

 

 

 

Uhrenholt, Anders Kirk (2021) Assumptions and efficiency in Gaussian 

process modelling. PhD thesis. 
 
 
 

http://theses.gla.ac.uk/82442/ 
 

 

 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 

 

 

 

 

 

 
 

Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://theses.gla.ac.uk/82442/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


ASSUMPTIONS AND EFFICIENCY IN

GAUSSIAN PROCESS MODELLING

ANDERS KIRK UHRENHOLT

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING
UNIVERSITY OF GLASGOW

JULY 2021

© ANDERS KIRK UHRENHOLT





Acknowledgements

First and foremost a big thank you to my supervisor, Bjørn Sand Jensen, for inviting me to
the fair country of Scotland and encouraging me to pursuit this degree. I’m grateful for the
excellent guidance and help in identifying the few good ideas amongst the numerous bad
ones that I have burdened you with over the past four years. It’s been a pleasure.

To my parents, Ane, Lars, and Jakob: Thank you for the support from afar. Writing the thesis
in the midst of a pandemic meant that the connection to home was more important than ever.
I’m eternally grateful that each of you were never more than a phone call away.

Thank you to Tristan, Antoine, Francesco, Natascha, Grimur, Valentin, Julia, Gözel, and
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Notation

Scalars, vectors, and matrices

We let scalar variables be denoted by non-bold, lowercase, italic characters, e.g. x 2 R.
When referring to the tally of some quantity, such as the number of datapoints or the number
of dimensions, we will use non-bold, uppercase, italic characters, e.g. {xi}

N
i=1. Vectors

of arbitrary dimensionality will be denoted with bold, lowercase, non-italic characters, e.g.
x 2 RD. Unless otherwise specified, vectors are assumed to be column-oriented. Finally,
we use bold, uppercase, non-italic characters for matrices, e.g. X 2 RN⇥D.

Indexing

We use subscript to retrieve the scalar entry of vectors, e.g. x = [x1, x2, . . . , xD]T . For
matrix X 2 RN⇥D we refer to the i’th row by xi and the j’th column by x:,j , i.e.:

X =

2

66664

xT
1

xT
2
...

xT
N

3

77775
=
h
x:,1 x:,2 · · · x:,D

i
.

The scalar entry in the i’th row and j’th column is denoted by xi,j . We will on rare occasions
have to diverge from these conventions to avoid notational clutter, but we will make it clear
how the overloaded notation is to be understood in a specific context.
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Chapter 1

Introduction

Probabilistic machine learning is an interaction between assumptions and data. A model
encodes a set of assumptions through its specification of e.g. conditional dependencies, fea-
ture representation, and free parameters, which in conjunction define an a priori hypothesis
space. Fitting the model is now equivalent to narrowing this space down to a (set of) viable
explanation(s) that agree with the training data. The result is a calibrated model that may
yield insights about some phenomenon of interest and provide predictions for novel obser-
vations. A popular and successful approach in contemporary machine learning is to specify
a very large hypothesis space, constructed through millions of free parameters, and rely on
vast amounts of data for arriving at a reasonable parameterisation. This approach, mainly
exemplified by deep neural networks, has been instrumental for recent decades’ advances in
weak artificial intelligence, and it is made possible by the availability of abundant data and
computing power.

This thesis takes the view that, despite the successes of big data methods, we should still
be interested in progressing the field of parsimonious models that make efficient use of the
available resources. Firstly, because technological developments in computing efficiency
inevitably create a push towards packing more intelligence into smaller devices such as
watches and sensors whose limited memory, power supply, and computational capacity pro-
hibits excessively complex models (Chen et al. [2014], Gokhale et al. [2014]). And secondly,
because data sources themselves become ever more esoteric. There is thus a hard bound on
the amount of training data available when all data originates from e.g. one particular person
(Ghahramani [2015]) or a novel, scientific experiment where new samples are costly to ob-
tain (Radovic et al. [2018]). The focus of this thesis is modelling scenarios where resources
– here meaning training data, computational power, or both – must be efficiently utilised.
We are especially interested in dissecting how the underlying assumptions of a given model
may affect such efficiency, and whether manipulating the assumptions can promote better
resource utilisation.

To this end Gaussian processes (GP) provide a very popular methodology for learning func-
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tional relationships between input and target values in a data efficient manner. They allow
the model designer to reason, not about the inner workings of the function, but about the
relationship between different function evaluations. This enables a powerful paradigm for
encoding interpretable assumptions such as smoothness, periodicity, and stationarity. For
standard regression problems we can furthermore obtain closed-form expressions for two
of the difficult quantities in Bayesian inference: the posterior and the marginal likelihood.
However, the downside is a model with limited flexibility that scales poorly in the number
of observed datapoints.

Much research has been devoted to the analysis and manipulation of the assumptions un-
derpinning GP modelling and inference. For instance, we can obtain a more flexible model
by composing multiple GP functions in a “deep” structure, by using a non-Gaussian likeli-
hood, or by assuming that the inputs themselves are unknown. On the inference side, the
majority of progress in GP research over the past two decades is arguably owed to the simple
assumption that the true function posterior can be adequately estimated by conditioning on
a small set of inducing points. This body of work has paved the way for GP models entering
the world of big data and producing state-of-the-art results while conforming to a principled,
Bayesian paradigm.

In this thesis we similarly focus on the assumptions that define a given GP model and its
inference algorithm. However, in contrast to the above mentioned research we are instead
interested in the degree to which such assumptions affect the resource utilisation w.r.t. learn-
ing and making predictions. We claim that state-of-the-art GP models inadvertently encode
assumptions that, depending on the setting in which they are employed, may lead to inef-
ficient consumption of training data and/or computational resources. In addition, we claim
that revising those assumptions results in models that are demonstrably more efficient. We
will focus on three important areas of GP modelling – sparse variational inference, Bayesian
optimisation for target vector estimation, and preference learning with multiple users – and
for each identify assumptions in the inference scheme and/or model specification that may
be problematic in terms of making optimal use of the computational resources or training
data. We will then propose minute changes to these assumptions that result in drastically
more efficient models.

1.1 Outline of thesis

The research contributions of this thesis are contained in Chapters 3, 4, and 5. Each chapter
targets a separate modelling problem that incorporates Gaussian processes to achieve state-
of-the-art results. For each problem we examine i. what assumptions are implicitly and
explicitly encoded in prevalent approaches, and ii. how we can update these assumptions
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in order to achieve more resource efficient models and/or inference schemes. The thesis is
structured as follows:

• In Chapter 2 we introduce the requisite background theory pertaining to probabilistic
modelling, Bayesian reasoning, inference methods, and Gaussian processes.

• In Chapter 3 we consider the assumption underpinning the de facto standard approach
of dealing with big data and complex modelling architectures in the GP paradigm,
namely the inducing points methodology. We show that by revising the model specifi-
cation so that inducing points are stochastically generated rather than deterministically
selected, we obtain a model that adapts its computational complexity to the require-
ments of the data.

This chapter is based on the paper: A. K. Uhrenholt, V. Charvet, and B. S. Jensen.
Probabilistic Selection of Inducing Points in Sparse Gaussian Processes. Proceedings
of the Conference on Uncertainty in Artificial Intelligence, 2021.

• Chapter 4 focuses on the method of Bayesian optimisation applied to target vector es-
timation, where we argue that the default approach of using a single-output GP as sur-
rogate model results in pathological behaviour that severely impacts the downstream
optimisation. By updating the surrogate model to better reflect the optimisation task
at hand, and through the introduction of novel acquisition functions, we derive a new
optimisation procedure that is much more data efficient than the default approach.

The chapter expands upon the paper: A. K. Uhrenholt and B. S. Jensen. Efficient
Bayesian Optimization for Target Vector Estimation. In Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics, pages 2661–2670. PMLR,
2019.

• In Chapter 5 we turn to preference learning for multiple users. Here we introduce
a simple assumption, namely that observed preference responses rely not only on the
items but also on some unobserved user features. We demonstrate that we can infer this
latent information directly from the user responses, which allows us to simultaneously
learn the user preferences from fewer data points compared to baseline methods whilst
obtaining an abstract representation of each user that can be valuable for post-hoc
analysis and downstream modelling tasks such as clustering.

• Chapter 6 concludes the thesis by summarising the developed models and results, and
setting a course for future research that this thesis may inspire.
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Chapter 2

Background

2.1 Probabilistic modelling

A model is an idealised mathematical description of a system. Purposes may vary but we
typically utilise models for gaining insight about some phenomenon of interest and predict-
ing novel outcomes that may inform subsequent decision making. In machine learning the
model constitutes only one part of the necessary ingredients, the other being a set of obser-
vations produced by the system that we want our model to explain. By endowing the model
with the capability of choosing an explanation from some predefined hypothesis space and
codifying the suitability of a given explanation in an objective function, L(·), we have a way
of letting the model “learn” from the observed data and evaluating the quality of any given
model that has been provided with data.

Usually a given model will be unable to perfectly explain what has been observed. This is
especially true when the observations are collected from the real world where the data have
been corrupted by noise. One way of accounting for such inaccuracy while still obtaining
meaningful models is to accept the system as being uncertain and explicitly incorporating
stochasticity in the modelling framework. Specifically, we assume noisy measurements to be
realisations of random variables which in turn are specified by probability distributions. Any
data point – observed or predicted – is thus taken to be the outcome of such a distribution,
and a probabilistic model is one that assigns a probability to any collection of outcomes.

This provides a formalism for expressing how likely we are to observe a collection of reali-
sations under a given model. Different probabilistic models can thus be assessed in terms of
the likelihood that they associate with our observations, or training data, D. Furthermore, if
a model is granted flexibility in how probability is assigned, typically through a set of free
parameters, ✓, we can search for the most appropriate model configuration by optimising
the likelihood, p(D; ✓,M), i.e. the probability of observing D under model M with pa-
rameterisation ✓. We refer to this search as “training” or “fitting” the model. Commonly
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we construct a model that specifies a conditionally independent distribution over N obser-
vations, D = {x1, x2, . . . , xN}, in which case the likelihood factorises as a product. And
to avoid numerical instability resulting from repeated multiplications, we apply the (mono-
tonic) logarithmic transformation to arrive at the default objective function for probabilistic
models:

L(✓) , log p(D; ✓,M) =
NX

i=1

log p(xi | ✓,M).

One important aspect of probabilistic modelling is the differentiation between signal and
noise. For example, the probabilistic linear regression model (Bishop [2006]) assumes a
set of response variables, y 2 RN , to be linear transformations of explanatory variables,
X 2 RN⇥D, corrupted by additive, Gaussian noise:

p(y | X;w, �
2) = N

�
y | Xw, I�2

�
,

for w 2 RD. This yields the log likelihood:

L(✓;y,X) =
NX

i=1

logN
�
yi | x

T
i w, �

2
�

where ✓ = {w, �
2
} are the free parameters of the model. Here, the latent signal is given by

Xw, and constitutes what we can hope to learn. Meanwhile, the residuals, ✏ = y � Xw,
are artefacts of the inherent noise of the system that can never be predicted regardless of
the amount of training data. The best we can settle for is to learn the noise distribution, i.e.
✏ ⇠ N (0, I�2).

Note that the linear model is characterised as a conditional probability distribution, and that
this distribution describes the generative process for y, i.e. how we assume that y came to
be. This is a general trait of probabilistic models, and we will throughout this thesis say that
we specify a model by writing up the factorisation of the joint distribution over uncertain
variables. This will interchangeably be referred to as the generative model.

2.2 Bayesian inference

Probabilistic models can be categorised as being either frequentist or Bayesian. Under the
frequentist paradigm we perceive a given model parameterisation, ✓, as the explanation of
the observed data. This explanation is inherently deterministic and a question such as “what
is the most probable value of ✓?” is nonsensical since we cannot associate probabilities with
deterministic quantities.

In Bayesian modelling we interpret the explanation itself as being uncertain. This allows us
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All possible datasets

too simple

“just right”

too complex

‘

Figure 2.1: Illustration of the principle of Occam’s Razor, as realised through Bayesian in-
ference. The horizontal axis represents all possible datasets we may encounter while D

0 is
the one particular instantiation that we have observed. The vertical axis shows the marginal
evidence for three models, as a function of datasets. An overly complex model (blue) will
have to spread its prior hypothesis space wide, thus assigning less probability to any par-
ticular instantiation. On the other hand, a too constrictive model (green) will not consider
D

0 as a viable outcome. The best trade-off is the model that views D0 as reasonable without
entertaining an abundant number of alternative explanations (red). The illustration is adapted
from Rasmussen and Ghahramani [2001].

to associate both M and ✓ with a probability distribution and reason about any model and its
parameterisation as just a particular realisation. This fundamentally separates the Bayesian
and frequentist paradigms in at least three respects. First, it requires us to specify our prior
beliefs through the distributions, p(M) and p(✓ | M).1 This is sometimes pointed to as a
fallacy of Bayesian inference, since the model designer’s subjective opinion may ultimately
affect the conclusion. However, proponents will argue that all inference, Bayesian or oth-
erwise, is impossible without making some initial assumptions; in frequentist models these
assumptions just materialise implicitly through the construction of M (Gelman et al. [2013]).
Second, we no longer seek a single canonical explanation for our data. Instead, we are inter-
ested in learning the entire distribution over possible explanations: p(✓ | D,M)p(M | D).
We refer to this as the posterior distribution. When making predictions about the output for
a novel data point, x?, we are then required to marginalise over the posterior:

p(x? | M,D) =

Z
p(x? | ✓,M)p(✓ | D,M) d✓.

Thirdly, we obtain a new measure for assessing a model, namely the model evidence:

L(M) , p(D | M) =

Z
p(D | ✓)p(✓ | M) d✓.

1Usually we restrict attention to a single model and refrain from explicitly conditioning on M. We will do
the same in this thesis but include it now for expositional purposes.
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That is, we consider how well the data are explained by any parameterisation of our model,
weighted by the prior beliefs we have for each parameterisation. This has the attractive con-
sequence of penalising overly complex models. Here, we use the term “complex” to describe
models with a wide a priori hypothesis space that through p(✓ | M) regards a large set of
parameterisations as reasonable. Such a model must assign less prior probability to any par-
ticular realisation of ✓ since

R
p(✓ | M) d✓ = 1. In turn, the few “good” explanations will

be outweighed by the many inappropriate ones when evaluating the evidence, as illustrated
in Figure 2.1. A model is therefore rewarded for constraining its hypothesis space which
reduces the risk of accidentally arriving at a parameterisation that supports only the train-
ing data without generalising. This is why Bayesian inference is often said to embody the
principle of Occam’s Razor which states that for two hypotheses that explain a phenomenon
equally well, we should favour the one that makes the fewest assumptions (Rasmussen and
Ghahramani [2001]).

Essential to the main topic of this thesis is the dichotomy between assumptions and flexi-
bility that the prior establishes in Bayesian inference. In general, when we encode stronger
assumptions through the use of a narrow prior distribution, we require less data to arrive at
a conclusion with a high degree of certainty. This immediately implies that if we specify a
prior that either allows for a wide range of viable explanations or encourages a parameter-
isation that is incongruent with the system being modelled, we must obtain more data and
typically spend more computation in order to infer the posterior. In turn, we can generally
expect better resource utilisation by tailoring our prior to encode a set of assumptions that
are both sensible and restrictive.

We may encounter free parameters in the prior, p(✓ | M), or data likelihood, p(D | ✓,M),
that are not viewed as part of the model parameterisation. These are denoted hyperparam-
eters and examples include kernel lengthscales in Gaussian processes (introduced in Sec-
tion 2.5) and noise variance in Gaussian likelihoods. Committing fully to a Bayesian ap-
proach would entail marginalising over these along with ✓. While this is sometimes seen in
practice, e.g. Shah et al. [2013], it is much more common to maximise the evidence as a
function of the hyperparameters – so called type II maximum likelihood (ML-II) – and argue
that we are more protected against the pitfalls of frequentist modelling because the flexibil-
ity is encoded higher in the Bayesian hierarchy (Gelman et al. [2013]). This will also be the
default approach in this thesis, although we note that relying on an excessive amount of hy-
perparameters can introduce pathological behaviour in one’s model, as recently documented
in Ober et al. [2021].

The three principal quantities of Bayesian inference – the prior, the posterior, and the evi-
dence – are linked through Bayes rule:

p(✓ | D,M) =
p(D | ✓,M)p(✓ | M)

p(D | M)
,
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Figure 2.2: Demonstration of the distinction between epistemic and aleatoric uncertainty.
The observed data (black dots) have observation noise that varies as a function of the input.
The model has inferred a mean signal for the entire domain (solid blue line) along with
the standard deviation (blue shading). This accounts for the epistemic uncertainty and is
generally small in densily populated regions of the input space. In addition, the model has
inferred the observation noise (blue stripped lines). This is the aleatoric uncertainty which,
in contrast to its epistemic counterpart, will not be reduced by collecting more observations.

which tells us how to get from our prior beliefs and data likelihood to our posterior beliefs.
This is most often applied in the context of going from no data observed, i.e. p(✓ | M), to
all data observed, i.e. p(✓ | D,M), but the rule is also applicable when data are collected
sequentially over time and learning thus consists of a sequence of “Bayesian updates”. We
will encounter such a scenario in Section 2.4.

Bayes’ rule can be extended hierarchically with a prior over multiple models in order to
determine the posterior probability of each:

p(M | D) =
p(D | M)p(M)

p(D) =
R
p(D | M)p(M) dM

,

yielding a Bayesian approach to model selection. Most often, however, we just consider one
model at a time which is equivalent to using a point distribution for p(M). For the remainder
of the thesis we will drop the dependency on M and assume that only one model is included
in the inference.

Whilst frequentist models differentiate between signal and noise, we obtain under the Bayesian
paradigm a further distinction, namely the separation of aleatoric and epistemic uncertainty.
The former is identical to the noise term within a frequentist model and encompasses any
stochasticity resulting from measurement inaccuracies or similar that we cannot hope to pre-
dict. Epistemic uncertainty, on the other hand, is the level of ignorance of our model. It
accounts for the uncertainty that arises from not having obtained a sufficient amount of ob-
servations, and that could in principle be eliminated by collecting more data. This distinction
is critical when assessing model predictions, and it plays a crucial role in fields such as op-
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timal experimental design (Lindley [1956]) where we systematically collect data according
to the maximal expected information gain. Figure 2.2 illustrates the distinction where we
are modelling a set of 1D data points that have varying degrees of observation noise. By
applying a Bayesian model (in this case a Gaussian process which will be introduced in Sec-
tion 2.5) that assumes heteroscedasticity, i.e. that the noise is a function of the input, we can
disentangle whether the predictive variance is due to measurement noise or lack of training
data.

2.3 Handling intractability

While conceptually simple the Bayesian approach often leads to models for which both as-
sessment and making predictions are impossible. This is due to the marginalisation of the
latent parameters in the model evidence and predictive posterior:

p(D) =

Z
p(D | ✓)p(✓) d✓, p(x? | D) =

Z
p(x? | ✓)p(✓ | D) d✓,

which are generally intractable. In this thesis we will rely on two approximation techniques
for circumventing this problem, namely Monte Carlo sampling and variational inference.

2.3.1 Monte Carlo sampling

In the context of machine learning any method that relies on sampling repeatedly from a
probability distribution is classified as a Monte Carlo method. Such methods are mainly
applied for two purposes: obtaining samples from an intractable distribution, which will not
be relevant in this thesis; and approximating an integral:

Ep(z) [g(z)] =

Z
g(z)p(z) dz ⇡

1

S

SX

s=1

g(z̃(s)), z̃
(s)

⇠ p(z).

This situation may arise when we have learnt a posterior over the model parameters, ✓, and
want to predict the expected value for a new point:

x̂? =

Z
p(x? | ✓,D)p(✓ | D) d✓.

Somewhat more challenging is the scenario in which we associate parameters (�,�) with the
distribution, p�(z), and inner function, g�(z), and wish to optimise the integral with respect
to these. As the number of parameters increases it will be necessary to leverage gradient
information and apply first-order optimisation algorithms such as Stochastic Gradient De-
scent (Zhang [2004]) or Adam (Kingma and Ba [2014]). Estimating the gradients w.r.t. �
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is straightforward since the differentiation operator can be moved inside the expectation,
leading to a new integral that may again be estimated with Monte Carlo sampling:

O�Ep�(z) [g�(z)] = Ep�(z) [O�g�(z)]

⇡
1

S

SX

s=1

O�g�(z̃
(s)),

z̃
(s)

⇠ p�(z).

For �, however, this is not immediately applicable since:

O�Ep�(z) [g�(z)] =

Z
g�(z)O�p�(z) dz,

does not take the form of an expectation. We will rely on two methods for resolving
this issue. When the random variable, z, can be written as a deterministic transformation,
z = h�(t), where t ⇠ p0 for some unparameterised distribution p0, we can apply the repa-
rameterisation trick (Kingma and Welling [2014]) and rewrite the expectation as:

Ep�(z) [g�(z)] = Ep0(t) [g�(h�(t))] .

Since � no longer defines the expectation we can approximate the gradient the same way as
for �. For instance, when z 2 RD follows a multivariate normal, z ⇠ N (µ,⌃), we can
make the reparameterisation z = hµ,L(t) = Lt + µ, where t ⇠ N (0, I) and LLT = ⌃. In
the univariate case, z ⇠ N (µ, �2), this simplifies to t ⇠ N (0, 1) and hµ,�(t) = � · t + µ.
The method has been generalised to also include discrete variables in Maddison et al. [2017]
and Jang et al. [2016], subject to a continuous relaxation of the distribution.

When a deterministic transformation is not available, we can instead use a score function
estimator (SFE) to approximate the gradient (Williams [1992], Fu [2006]). This method
relies on the observation that O�p�(z) = p�(z)O� log p�(z). Making this substitution inside
the expectation yields:

O�Ep�(z) [g�(z)] =

Z
g�(z) (O�p�(z)) dz

=

Z
g�(z) (p�(z)O� log p�(z)) dz

= Ep�(z) [g�(z)O� log p�(z)] .
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We can then, yet again, apply Monte Carlo integration to approximate the gradients:

O�Ep�(z) [g�(z)] ⇡
1

S

SX

s=1

g�(z̃
(s))O� log p�(z̃

(s))

z̃
(s)

⇠ p�(z).

These methods make it very easy to implement any objective function that takes the form
of an expectation when relying on a framework that supports automatic differentiation, such
as PyTorch (Paszke et al. [2019]) or Tensorflow (Abadi et al. [2016]). However, while the
gradients provided by both methods are unbiased, they may be subject to a considerable
amount of sampling noise, especially for the SFE method. We will return to this problem in
Chapter 3.

2.3.2 Variational inference

The other approach for handling intractability, that we make use of in this thesis, is varia-
tional inference (VI) (Jordan et al. [1998], Blei et al. [2017]). Here we introduce a proposal
distribution, q�(✓), which relies on the variational parameters, �, and is intended to approx-
imate the true posterior, i.e. q�(✓) ⇡ p(✓ | D). By applying Jensen’s inequality we can now
derive the evidence lower bound (ELBO):

log p(D) = log

Z
q�(✓)

q�(✓)
p(D | ✓)p(✓) d✓

�

Z
q�(✓) log

p(D | ✓)p(✓)

q�(✓)
d✓

= Eq�(✓) [log p(D | ✓)]� KL [q�(✓) k p(✓)]

, L(�),

where KL [· k ·] denotes the Kullback-Leibler (KL) divergence. The ELBO serves as the ob-
jective to be maximised and has multiple purposes. Most importantly, increasing the ELBO
has the effect of reducing the KL divergence from q�(✓) to p(✓ | D). This can be seen by
substituting in log p(D | ✓) = log p(✓ | D) + log p(D)� log p(✓) and rearranging:

L(�) = Eq�(✓) [log p(D | ✓)� log q�(✓) + log p(✓)]

= Eq�(✓) [log p(✓ | D) + log p(D)�⇠⇠⇠⇠⇠log p(✓)� log q�(✓) +⇠⇠⇠⇠⇠log p(✓)]

= �KL [q�(✓) k p(✓ | D)] + log p(D).

Since log p(D) is constant we thus improve the approximate posterior, as measured under
the KL divergence, by maximising L(�). And because the KL divergence is 0 if and only if
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q�(✓) = p(✓ | D) we a guaranteed to recover the true posterior when L(�) = log p(D).

When the model holds parameters not encompassed by ✓ (e.g. the generator parameters in
variational autoencoders (Kingma and Welling [2014]) or hyperparameters in sparse varia-
tional Gaussian processes (Titsias [2009])), the maximisation of the ELBO may also result
in an increase of the true model evidence. This, of course, depends on the tightness of the
bound and how changes to the variational posterior affect the remaining model parameters
(Cremer et al. [2018]). I.e. under an inappropriate proposal distribution, the hyperparame-
ters that maximise L(�) will not match those that maximise the true model evidence. For the
same reason we cannot generally rely on the ELBO as a solid metric for model selection.

To highlight the main differences between MC methods and VI, we see that the former is
stochastic while the latter is deterministic. The predictive capacity of VI depends on the
proposal distribution’s ability to emulate the true posterior, and there is thus a hard bound on
the accuracy that can be achieved through VI estimation. MC sampling, on the other hand,
is asymptotically exact. In terms of computational complexity, it may require a large amount
of samples to arrive at an adequate approximation using sampling methods, especially when
dealing with large dimensionality. Here, VI is typically the more efficient option.

2.3.3 Stochastic variational inference

Even though we are free to choose the proposal distribution so as to achieve a simpler opti-
misation task, we may still find the ELBO to be intractable, especially when working with a
large number of observations. When the model can be written as:

p(x, z, �) = p(�)
NY

i=1

p(xi | zi, �)p(zi), (2.1)

where x = {xi}
N
i=1 are our observations; z = {zi}

N
i=1 are local variables, each only influ-

encing the distribution for a single observation; and � are global parameters, we can apply
stochastic variational inference (SVI) to significantly speed up optimisation (Hoffman et al.
[2013]). Here we construct a proposal distribution that follows a mean-field assumption,
meaning that all parameters are independent:

q�(z, �) = q�(�)
NY

i=1

q�(zi).
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This allows us to move the expectation inside the summation over log densities in the ELBO
and decompose the KL divergences w.r.t. local variables:

L(�) =
NX

i=1

Eq�(�)

⇥
Eq�(zi) [log p(xi | zi, �)]

⇤

�

NX

i=1

KL [q�(zi) k p(zi)]� KL [q�(�) k p(�)] .

This does not entirely solve our problem since we need to evaluate the expectations for all
datapoints w.r.t. q✓(zi) to obtain the gradient for �. However, we can now apply Monte Carlo
methods by sampling from the data population and thus obtaining noisy, unbiased gradients.
We can then optimise the variational parameters, �, by appealing to the reparameterisation
trick or score function estimation.

2.4 Bayesian optimisation

Often the predictions that we obtain from a model are just the means to an end, whilst the
actual goal is to use those predictions for making informed decisions. The canonical way of
making decisions in a probabilistic framework is to specify a cost function, c : Y ! R, that
maps outcomes to some measure of risk, and then choose from an action space, A, the action
that minimises the expected risk (MacKay [2003]):

a
? = argmin

a2A

Z
c(y)p(y | a) dy, (2.2)

where p(y | a) is the predictive distribution over outcomes given action a. Here the quantifi-
cation of epistemic uncertainty is critical. Any model that we rely on for making decisions
should be acutely away of its own ignorance, which motivates the use of a Bayesian ap-
proach.

One popular application is Bayesian optimisation (Močkus [1975], Brochu et al. [2010],
Shahriari et al. [2015]) where the goal is to minimise a blackbox function, f : X ! Y , that
is unknown in the sense that we can only interact with it by making queries and retrieving
its outputs. We usually also assume that evaluations are expensive in terms of e.g. time or
financial cost, and that observations are corrupted by noise: yi = f(xi) + ✏. On a limited
querying budget (usually tens to hundreds of evaluations) we now want to retrieve the optimal
input, x?. Use cases include optimising the hyperparameters in machine learning models
(Snoek et al. [2012]); policy search in reinforcement learning (Brochu et al. [2010]); sensor
selection for meteorological modelling (Garnett et al. [2010]); and compiler configuration
(Shah and Ghahramani [2016]).
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We can cast the optimisation of f as a decision problem by defining a cost function such as
simple regret:

c(y1:N) = min
NX

i=1

yi � y?,

where

y? = min
x2X

f(x), y1:N = [y1, y2, . . . , yN ]
T
,

and then minimising (2.2) where the action space is sequences of inputs, A = X
N . This

objective, however, requires us to propagate predictions through N steps of evaluations and
is typically intractable.

In Bayesian optimisation we instead take a myopic approach where, in each iteration, we
select the input that we believe to be most promising under some heuristic. This is formalised
in an acquisition function, ↵ : X ! R, that maps inputs to some measure of querying
utility under the predictive model. Formally we place a prior on f and derive the posterior
conditioned on all samples collected up until iteration i:

p(f | y1:i,X1:i) =
p(y1:i | f)p(f | X1:i)

p(y1:i | X1:i)
.

Using this as our surrogate model for the true blackbox function, f , we then rely on the
predictive posterior for finding the input that maximises ↵:

xi+1 = argmax
x2X

↵(x;D1:i),

where D1:i = (X1:i,y1:i). After having collected the new sample, yi+1 = f(xi+1) + ✏, we
update our posterior belief over f and repeat until we meet some termination criterion.

This introduces a secondary optimisation task, namely that of optimising ↵ in between
queries to the blackbox function. We therefore require both our surrogate model and ac-
quisition function to be relatively cheap to evaluate and easy to optimise. Ideally they are
both differentiable w.r.t. the input so that we may obtain the partial derivative:

↵
0(x;D) = ⇠

0(p(f | x,D))
@p(f | x,D)

@x
,

where we define ⇠(p(f | x,D)) = ↵(x;D).

In principle we can use any probabilistic model that yields a predictive distribution over f
in the Bayesian optimisation framework, but the de facto standard is the Gaussian process
(Rasmussen and Williams [2006]) due to its data efficiency, tractability, and robust uncer-
tainty estimation. However, other models have also been explored, e.g. random forests
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(Hutter et al. [2011]), Student-t processes (Shah et al. [2013]), and Bayesian neural networks
(Springenberg et al. [2016]).

The catalogue of available acquisition functions, on the other hand, is more varied. Generally
we will want the acquisition function to balance exploration, i.e. collecting inputs from
unexplored regions to learn about f , and exploitation, i.e. using the limited querying budget
to obtain good samples. Two of the most popular choices are Expected Improvement and
Lower Confidence Bound, which we review in Chapter 4.

2.5 Gaussian processes

As mentioned in the introduction a popular approach in contemporary machine learning is
to construct a very flexible parametric model and curb the behaviour by training on vast
amounts of data. This relieves the model designer of the burden of encoding anything but the
most vague assumptions about the behaviour of the latent function. The caveats are complex
models that are difficult to interpret, use more training time and data than should arguably
be necessary, and lack solid guarantees which makes them vulnerable to critical prediction
errors (Szegedy et al. [2013], Lynch et al. [2017]).

Bayesian nonparametrics (Ghosh and Ramamoorthi [2003]) offer a complimentary approach
wherein the complexity and capacity of the model grow as a function of the training data.
Formally, these models define a prior over an infinite dimensional parameter space that in the
posterior can be marginalised out to only contain dimensions corresponding to the observed
data. The ability of the model to adapt its complexity means that the model designer does
not have to worry about under- or overfitting; provided that the prior is sensible, the model
will only be as flexible as what is supported and required by the data.

One prominent member of the Bayesian nonparametric family is the Gaussian process (GP)
(Rasmussen and Williams [2006]) which specifies a prior over functions that may explain
the mapping from a set of inputs, X = {xi}

N
i=1 ⇢ X to their corresponding, real outputs,

f = {fi}
N
i=1 2 RN where we use the shorthand fi = f(xi). They can be viewed as the

generalisation of a multivariate normal distribution when the dimensionality tends to infinity.
Formally, a GP is defined as a collection of random variables, any finite subset of which is
jointly normally distributed as such:

p(f1, f2, . . . , fN | X) = N (µ,K) , (2.3)

µi = E[fi] = m(xi),

kij = Cov[fi, fj] = (xi,xj),

where the statistics are determined by the GP’s mean function, m : X ! R, and kernel
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function  : X ⇥ X ! R. Commonly we use a zero-mean function, i.e. m(xi) = 0, 8i,
which does not restrict the set of representable functions specified by the prior but simplifies
both notation and analysis – we will take this approach throughout this thesis. The function,
f , is then the infinite vector obtained by mapping from all elements in X , which of course
is not explicitly available. However, due to the marginalisation property of the multivariate
normal distribution we can reason about any finite subset of evaluations of f , as given in
(2.3). This is equivalent to first constructing the infinite vector and then marginalising out
all values except those pertaining to X, which is how the GP conforms to the nonparametric
definition of specifying an infinite dimensional prior.

The GP effectively encodes the assumption that any pair of inputs, that are “close” in kernel
space, should have similar function evaluations. This is arguably a more interpretable prior
than e.g. stating that the weights of a Bayesian neural network should follow a standard
Gaussian distribution (Gal and Ghahramani [2016]), and it affords us much agency in con-
stricting the a priori hypothesis space given by p(f | X). If X 2 RN⇥D and we believe that a
good similarity metric is the Euclidean distance, we may opt for e.g. the radial basis function
(RBF) kernel:

RBF(x,x
0) = �

2 exp

 
�

DX

d=1

(xd � x
0
d)

2

2`2d

!
,

where the subscript denotes the input dimension. Here, the kernel variance, �2, and charac-
teristic lengthscale, ` = {`d}

D
d=1, are hyperparameters that determine respectively the scal-

ing of the function and the effective distance of influence between points. Note also that
this kernel assumes stationarity, meaning that the covariance between any pair of points is
determined solely by their distance. This is a fairly standard assumption but may prove too
restrictive for certain problems – we will return to such a scenario in Chapter 5.

Any kernel function is required to produce valid covariance matrices. This entails that the
matrix obtained by applying the kernel to any set of distinct inputs is positive definite (PD):

vT
(X)v > 0, 8 v 2 RN

,X ✓ X ,

where we use the shorthand

(X) =

2

66664

(x1,x1) (x1,x2) · · · (x1,xN)

(x2,x1) (x2,x2) · · · (x2,xN)
...

... . . . ...
(xN ,x1) (xN ,x2) · · · (xN ,xN)

3

77775
.

When this requirement is upheld we say that  is PD. Conveniently, positive definiteness is
closed under addition and multiplication meaning that given two PD kernels, 1 and 2, we
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can construct new, valid kernels as such:

+(x,x
0) = 1(x,x

0) + 2(x,x
0), ⇥(x,x

0) = 1(x,x
0)⇥ 2(x,x

0).

To incorporate the Gaussian process prior into our Bayesian inference framework we need to
specify a data likelihood for our observations, p(y | f), and derive the posterior, p(f | y,X).
The difficulty of this task depends solely on our choice of data likelihood. When learning a
regression model, we obtain tractability by assuming that any output observation is simply a
function evaluation corrupted by independent, Gaussian noise: yi = fi + ✏i, ✏i ⇠ N (0, �2

i ).
This yields the expressions

p(y | f) = N (y | f ,⌃y) , p(y | X) = N (y | 0,K+ ⌃y) ,

where ⌃y is a diagonal matrix whose entries are given by �
2
i . Importantly, this likelihood is

conjugate to the prior so that the posterior is itself a multivariate Gaussian:

p(f | X,y) = N
�
f | K(K+ ⌃y)

�1y,K(K+ ⌃y)
�1⌃y

�
.

Furthermore, for any new input, x?, we have by definition that the joint distribution between
observed outputs and the latent function evaluation is again a multivariate normal:

p(f?,y | x?,X) = N

 "
f?

y

# ����� 0,
"
k?? kT

?

k? K+ ⌃y

#!
,

where k? = [(x?,x1), . . . ,(x?,xN)]T and k?? = (x?,x?). This yields a closed-form
expression for the conditional distribution over f?:

p(f? | x?,y,X) = N
�
f? | k

T
? (K+ ⌃y)

�1y, k?? � kT
? (K+ ⌃y)

�1k?

�
,

which serves as our prediction for new inputs. Typically we will simplify this further by
using a homoscedastic noise model where the likelihood variance, �2

i , is identical for all
observations. This will be the default choice in this thesis.

Note that the predictive variance increases with the magnitude of k?. In effect, the GP has
the attractive behaviour of assigning higher uncertainty to points that are dissimilar from all
current observations. Additionally, the model naturally disentangles the aleatoric uncertainty,
given by ⌃y, and the epistemic uncertainty, given by the variance of p(f? | x?,y,X).

The evidence term, p(y | X), serves as a measure of plausibility of the GP prior and can be
used as a model selection criterion for e.g. kernel design (Duvenaud et al. [2013]). Further-
more, when we have free hyperparameters in the kernel and/or data likelihood, we can use
the evidence as the optimisation objective. This is amenable to numerical optimisation since
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all operations required for calculating p(y | X) are differentiable.

One of the main caveats of GP training and prediction is the complexity as a function of
observed points. This stems from the calculation of the inverse and the determinant of the
covariance matrix, both of which require O(N3) time and O(N2) memory. However, recent
progress has been made in alleviating these issues by speeding up the matrix calculations to
enable exact inference for millions of points (Wang et al. [2019]) or applying asymptotically
exact mini-batch optimisation (Chen et al. [2020]). Besides the number of datapoints, there
are two other factors relevant to this thesis that may render the evidence and predictive poste-
rior intractable. First is the use of non-conjugate data likelihoods, e.g. the Student-t distribu-
tion for regression or the Bernoulli distribution for binary classification. Exclusively relying
on Gaussian likelihoods would entail that the model is only applicable for regression, and that
we always assume normal posteriors for function evaluations which may prove too restrictive
for noisy datasets (Jylänki et al. [2011]). Second is the setting where inputs are uncertain,
e.g. when they are the result of noise corrupted measurements (Girard and Murray-Smith
[2005]), outputs of another GP (Damianou and Lawrence [2013]), or latent variables to be
inferred along with the function (Lawrence [2004]). The perhaps most popular approach to
re-establish tractability in the face of large datasets, non-conjugate likelihoods, and/or uncer-
tain inputs is the methodology of sparse GP’s (Quiñonero-Candela and Rasmussen [2005]),
which we review in Section 2.7.

2.6 Multitask Gaussian processes

By default the GP is a prior over scalar functions. This can, however, easily be generalised to
multitask GP’s (MTGP) where K function evaluations are associated with any particular in-
put. This is useful when we expect one output dimension (or task) to be informative w.r.t. to
another, and it may be necessary when we have insufficient data for modelling each dimen-
sion independently. The common approach for correlating tasks within the GP paradigm is
to model all evaluations across dimensions with a single multivariate normal distribution. We
will encounter MTGP’s throughout the thesis, and so this section provides a brief overview
over the models that may be applicable for a given multitask problem. We leave the data
likelihood, pertaining to a given MTGP model, unspecified for now and focus solely on the
derivation of the latent function.

The taxonomy of MTGP’s can broadly be divided into those that assume isotopic data, where
all outputs are evaluated for the same set of inputs, and heterotopic data, where different out-
puts are not restricted to sharing inputs. The former case will be relevant in e.g. deep Gaus-
sian processes, where multiple “layers” of MTGP’s are stacked to create a more flexible prior
over functions (Damianou and Lawrence [2013]). Another example is global optimisation of
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an unknown function with multiple outputs, where a MTGP may be employed as surrogate
model (Shah and Ghahramani [2016], Astudillo and Frazier [2019]). The need for a het-
erotopic model may arise in e.g. preference learning (Chu and Ghahramani [2005]), where
we want to learn multiple, correlated functions pertaining to different users who have not
necessarily assessed the same inputs.

A common approach for introducing correlation between dimensions is to view a particular
output as the linear combination of Q latent, independent GP functions, [u1, . . . , uQ], where
Q  K. The perhaps most popular formulation is the linear coregionalisation model (LCM)
(Journel and Huijbregts [1976]), originally developed within the field of geostatistics. Here
we consider the i’th evaluation of the k’th output dimension to be given by:

f
(k)
i =

QX

q=1

RqX

j=1

a
(j)
q,ku

(j)
q (xi).

That is, for each latent process, uq, we draw Rq samples and let the k’th output dimension
be their sum, weighted by free parameters a(j)k,q for 1  j  Rq. Defining the K ⇥Rq weight
matrix Aq for process uq:

Aq =

2

66664

a
(1)
q,1 a

(2)
q,1 · · · a

(Rq)
q,1

a
(1)
q,2 a

(2)
q,2 · · · a

(Rq)
q,2

...
... . . . ...

a
(1)
q,K a

(2)
q,K · · · a

(Rq)
q,K

3

77775
,

we can write the entire K dimensional output vector for a given input, xi, succinctly as:

fi =
QX

q=1

Aquq(xi),

where uq(xi) = [u(1)
q (xi), . . . , u

(Rq)
q (xi)]T . Furthermore, the covariance matrix between two

output vectors is given by:

Cov[fi, fj] =
QX

q=1

Bqq(xi,xj),

where Bq = AqAT
q is the coregionalisation matrix and q(xi,xj) is the kernel function for

uq. Stacking all function vectors, f = [fT1 , . . . , f
T
N ]

T , we then have:

p(f | X) = N

 
f

���� 0,
QX

q=1

Kq ⌦Bq

!
, (2.4)
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where Kq is the kernel matrix for uq and ⌦ is the Kronecker product.

From this model we can retrieve several simpler MTGP models. Using the same number of
samples, Rq, for all latent functions, [u1, . . . , uQ], we have the semiparametric latent factor
model (SLFM) (Seeger et al. [2005]). Meanwhile, if we only assume a single latent function
from which we have drawn R samples, we obtain the intrinsic coregionalisation model (ICM)
(Goovaerts et al. [1997], Williams et al. [2007]). And finally, by setting the coregionalisation
matrix to identity in the ICM, we retrieve a MTGP that assumes independency between
output dimensions. This is equivalent to just learning a separate GP for each dimension, all
of which share the same kernel function.

The LCM and SFML are especially appropriate for isotopic data. When all dimensions are
evaluated for the same N inputs, we only need to compute a single N⇥N covariance matrix
for each latent function and then take advantage of the Kronecker structure in (2.4) to obtain
the NK ⇥NK covariance matrix across the entire function vector. The ICM model, on the
other hand, is an obvious choice for heterotopic data. Here, we can equivalently write the
covariance between any pair of evaluations as:

Cov[f (k)(xi), f
(`)(xj)] = bk,l · (xi,xj),

where bk,` is the covariance between dimension k and `. The main caveat is that all dimen-
sions are forced to use the same kernel, meaning that we implicitly assume all tasks to adhere
to the same function dynamics.

The above models all share some critical limitations. Firstly, the coregionalisation matrices
may introduce a rather large number of free hyperparameters leading to a risk of overfitting
when data are scarce. This can, as always, be alleviated in a Bayesian fashion as is done in
e.g. Titsias and Lázaro-Gredilla [2011] where all matrix entries are associated with spike-
and-slab priors and the posterior is approximated through VI. Secondly, they assume the
presence of relatively few, salient processes. This is not a weakness in and of itself, but we
may encounter settings where such an assumption is too restrictive. And thirdly, they always
enforce a Gaussian predictive distribution. This, again, is often an appropriate characteristic,
but in some modelling scenarios it may be preferable to allow for multimodal distributions
when uncertainty is high. We will examine these limitations further in Chapter 5 in the
context of MTGP’s applied for preference learning.

2.7 Sparse Gaussian processes

The intractability of GP’s when modelling large datasets was circumvented in early works by
only conditioning on a relatively small subset of observations (Williams and Seeger [2001],
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Csató and Opper [2002], Lawrence et al. [2003]). This, in turn, lead to the combinatorial
problem of identifying the most informative subset for representing the entire dataset. An
elegant approach for solving this issue was proposed by Snelson and Ghahramani [2006]
who lifted the restriction of having the conditioning points be part of the observed data,
leading to the methodology of sparse Gaussian processes (SGP). Here we introduce a set of
inducing points, or pseudo points, (u,Z), where Z = {zj}Mj=1 belong to the input domain,
X , and u = {uj}

M
j=1 are taken to be evaluations of the latent function, i.e. uj = f(zj). By

definition these points are jointly Gaussian with the observed data:

p(f ,u | X,Z) = N

 "
f

u

# ����� 0,
"
KNN KNM

KMN KMM

#!
,

where KNN is the covariance pertaining to our N observed points, KMM is the covariance
between the M inducing points, and KNM = KT

NM is the covariance between observed and
inducing points. As for the predictive distribution given by the exact GP, we can now obtain
the conditional for f in closed form:

p(f | u,X,Z) = N
�
f | KNMK�1

MMu,KNN �KNMK�1
MMKMN

�
. (2.5)

Crucially, the marginals of f in (2.5) only depend on the corresponding inputs from X as
well as the inducing points:

p(fi | X,u,Z) = p(fi | xi,u,Z) = N
�
f | (xi,Z)

TK�1
MMu,�i

�
, (2.6)

(xi,Z) = [(xi, z1), . . . ,(xi, zM)]T ,

�i = (xi,xi)� (xi,Z)
TK�1

MM(xi,Z).

This means that when we have p(y | f) = N
�
y | f , I�2

y

�
, we can replace p(y | f)p(f | X)

of the exact GP model with

p(y | u,X,Z)p(u | Z) =

Z
p(y | f)p(f | u,X,Z) df

�
p(u | Z),

with the effect of obtaining a data likelihood that factorises across datapoints:

p(y | u,X,Z) =
NY

i=1

Z
p(yi | fi)p(fi | u,xi,Z) dfi (2.7)

=
NY

i=1

N
�
yi | (xi,Z)

TK�1
MMu,�i + �

2
y

�
.

Note that in order to calculate (2.7) we only need to compute the diagonal of the covariance
in (2.5). This property lends the method its name: Fully Independent Training Conditionals
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(FITS). The marginal likelihood is still available in closed form:

p(y | X,Z) =

Z
p(y,u | X,Z)p(u | Z) du

= N
�
y | 0,KNMK�1

MMKMN + ⇤+ I�2
y

�
,

⇤ = diag([�1, . . . ,�N ]),

which importantly only requires the inversion of rank M matrices and the diagonal, ⇤, thus
eliminating much of the complexity of the exact GP model. Furthermore, the marginal
likelihood is differentiable w.r.t. both hyperparameters and inducing inputs, Z, making it
amenable to numerical optimisation. Compared with the exact GP model, we have now re-
duced the complexity to O(M3

N) time and O(M2
N) memory which for M ⌧ N results

in a substantial reduction. On the other hand we have introduced M · D new parameters,
i.e. the inducing inputs, which may complicate optimisation and risk introducing overfitting
unless they are associated with a prior (Rossi et al. [2021], Uhrenholt et al. [2021]).

To infer the optimal inducing outputs, u, we can readily apply Bayes rule:

p(u | y,X,Z) =
p(y | u,X,Z)p(u | Z)

p(y | X,Z)

= N
�
u | KMMQ�1KMN(⇤+ I�2

y)
�1y,KMMQ�1KMM

�
, (2.8)

Q = KMM +KMN(⇤+ I�2
y)

�1KNM .

New predictions are now made by using the posterior of (2.8) to integrate out the conditional
distribution given by (2.6) for novel input, which only requires O(M) time and O(M2)

memory, providing that Q�1 has been cached.

The advantage of this approach is primarily the decoupling of data points in (2.7) and the
reduction in time and space complexity at training and inference time. However, it comes
at the price of replacing the joint distribution, p(y | f)p(f | X), with the sparse approxi-
mation, p(y | u,X,Z)p(u | Z), which is simultaneously much less expressive and more
heavily parameterised than the exact GP. While approaches have been proposed for increas-
ing the predictive capacity by e.g. re-introducing correlation between individual function
evaluations in (2.6) (Quiñonero-Candela and Rasmussen [2005]), the fundamental limitation
remains that the generative model relies explicitly on the inducing points. This was done
away with in the variational re-interpretation of Titsias [2009] which we turn to next.

2.7.1 Sparse variational Gaussian processes

The sparse variational Gaussian process (SVPG) method leaves the generative model un-
changed – i.e. we still assume that the data are generated via an exact GP – and instead
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augments the collection of latent function evaluations with the, initially redundant, inducing
points:

p(y, f ,u | X,Z) = p(y | f)p(f ,u | X,Z).

We stress that this does not constitute a change from the exact GP model since f is a sufficient
statistic for y, and so:

p(f | y,u,X,Z) = p(f | y,X) =

R
p(y | f)p(f ,u | X,Z) du

p(y | X)
.

The novelty of this method is to instead take a variational approach and introduce a proposal
distribution over the latent variables, q(f ,u), that should approximate the true posterior,
p(f ,u | y,X,Z). Specifying

q(f ,u) = p(f | u,X,Z)q(u | Z),

where p(f | u,X,Z) is defined as in (2.5), we now obtain a much simplified ELBO:

log p(y | X) = log

Z
q(f ,u)

q(f ,u)
p(y | f)p(f ,u | X,Z) d[f ,u]

�

Z
q(f ,u) log

p(y | f)p(f ,u | X,Z)

q(f ,u)
d[f ,u]

=

Z
q(f ,u) log

p(y | f)(((((((
p(f | u,X,Z)p(u | Z)

(((((((
p(f | u,X,Z)q(u | Z)

d[f ,u]

= Eq(f |X,Z) [log p(y | f)]� KL [q(u | Z) k p(u | Z)] , (2.9)

where we define:
q(f | X,Z) =

Z
p(f | u,X,Z)q(u | Z) du,

which is analytically tractable when q(u | Z) is normal. Predictions for new datapoints now
proceed with the approximation:

p(f⇤ | x⇤,y,X) =

Z
p(f⇤ | x⇤, f ,X)p(f | y,X) df

⇡

Z
p(f⇤ | x⇤, f ,X)q(f | X,Z) df .

=

Z
p(f⇤ | x⇤,u,Z)q(u | Z) du.
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Titsias [2009] derives the collapsed bound that maximises the ELBO when the data likeli-
hood is an isotropic Gaussian, i.e. p(y | f) = N

�
y | f , I�2

y

�
:

q(u | Z) = N (u | µu,⌃u) ,

⌃�1
u = �

�2
y K�1

MMKMNKNMK�1
MM +K�1

MM ,

µu = �
�2
y ⌃uK

�1
MMKMNy.

Besides only applying for one specific family of likelihoods, this formulation also suffers
from a restrictive complexity for large N since µu and ⌃u rely on all observations. It is
furthermore incompatible with SVI because the proposal distribution does not adhere to the
required form of (2.1). To solve this, Hensman et al. [2013] introduce the more general
proposal distribution:

q(u | Z) = N (u | m,S) ,

where m and S are free variational parameters. Since the likelihood for any individual
datapoint, yi, now only relies on the global parameter, (m,S), and the associated input,
xi (as can be seen from (2.6)), we can decompose the expectation Eq(f |X,Z) [log p(y | f)]

across datapoints and apply mini-batch optimisation. Furthermore, we no longer have any
restrictions on type of likelihood for p(y | f), meaning that this formulation enables a wide
range of modelling tasks such as classification (Hensman et al. [2015a]), ordinal regression
(Sheth et al. [2015]), and Poisson regression for count data (Law et al. [2018]).

Here, the main limitation is arguably that the expressiveness of the proposal distribution is
completely reliant on the inducing points, which bound both the ELBO and the accuracy
of new predictions. We can thus only increase flexibility by adding more inducing points,
which will eventually make the O(M2) time complexity infeasible. In Chapter 3 we develop
a method for instead learning M from the data by including the selection of inducing points
in the inference process. Another limitation in terms of flexibility is the assertion that the
approximate posterior distribution for all function evaluations must be Gaussian, which is
decidedly false when using anything but a Gaussian likelihood. This assumption is treated
in Chapter 5 in the context of sparse MTGP’s.

2.7.2 Gaussian process latent variable modelling

Unsupervised learning aims at finding an informative, and often low-dimensional, repre-
sentation of one’s data. A popular approach is latent variable modelling where we assume
that our high-dimensional observations are generated from some low-dimensional represen-
tation. This intuitively encourages the model to capture the salient factors of variation in the
data, which hopefully correspond to high-semantic features that are useful for data analysis,
visualisation, or downstream modelling tasks. Parametric approaches include Bayesian prin-
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cipal component analysis (Bishop [2006]), variational autoencoders (Kingma and Welling
[2014]), and generative adversarial networks (Goodfellow et al. [2014]).

In the GP framework we can construct a latent variable model (GPLVM) by associating
latent inputs, X 2 RN⇥Q, with a prior (Lawrence [2004], Titsias and Lawrence [2010]). We
thus assume that our observed outputs, Y 2 RN⇥D, result from the generative process:

X ⇠ p(X),

F | X ⇠ GP(0,),

Y | F ⇠ p(Y | F),

where F and Y are capitalised to reflect that both have multiple outputs. A common choice is
to set p(X) = N (X | 0, I) and use a MTGP with independent outputs and shared covariance
for p(F | X). Inference now proceeds by deriving the posterior:

p(F,X | Y) =
p(Y | F)p(F | X)p(X)R

p(Y | F)p(F | X)p(X) d(F,X)
.

In contrast to the supervised setting, where X is non-stochastic, we cannot evaluate the ev-
idence in closed-form due to the intractability of marginalising over the random covariance
matrices in p(F | X). The approach originally proposed in Lawrence [2004] simply identi-
fies a point estimate:

X? = argmax
X

log p(Y | X) + log p(X).

Although conceptually simple and easy to implement, this method does not provide uncer-
tainty estimates for X nor access to the posterior for F. In addition, the model has O(NQ)

free parameters, leaving it susceptible to overfitting.

We can solve these challenges under the variational framework by following the same pro-
cedure as described in the previous section, but including X in the proposal distribution:

q(U,F,X) = p(F | U,X,Z)q(U | Z)q(X),

where Z 2 RM⇥Q and U 2 RM⇥D are the inducing inputs and outputs. The new proposal
distribution, q(X), can be chosen arbitrarily, although an isotropic Gaussian is common. The
ELBO from (2.9) is then updated to

log p(Y) � Eq(F|Z) [log p(Y | F)]� KL [q(U | Z) k p(U | Z)]� KL [q(X) k p(X)] .
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The expectation term implicitly marginalises over X in the proposal distribution:

Eq(F|Z) [log p(Y | F)] =

Z
q(F | Z) log p(Y | F) dF

=

Z Z
q(F | X,Z)q(X) dX

�
log p(Y | F) dF,

which remains intractable in the general case, although certain kernels allow for a closed-
form expression when q(X) is normal (Titsias and Lawrence [2010]). In this thesis we will
instead rely on stochastic variational inference and estimate the entire integral with Monte
Carlo sampling, as is done in Salimbeni and Deisenroth [2017]:

Eq(F|Z) [log p(Y | F)] ⇡
1

S

SX

s=1

log p(Y | F̃(s)),

F̃(s)
⇠ q(F | X̃(s)

,Z),

X̃(s)
⇠ q(X).

Note that when the variational distribution for the latent inputs adheres to a mean-field as-
sumption, i.e. q(X) =

QN
i=1 q(xi), the entire expression decomposes over individual data-

points, yielding a highly scalable model that is amenable to mini-batch optimisation.

2.7.3 Deep Gaussian processes

The SVGP and GPLVM can be further generalised to the composition of multiple GP’s,
yielding a deep Gaussian process (DGP) (Damianou and Lawrence [2013]). This is in-
spired by the tremendous success of deep neural networks (Goodfellow et al. [2016]) where
intermediate feature representations in the hidden layers of a deep model are learnt in an au-
tonomous fashion. For the DGP specifically it broadens the family of representable functions
encoded in the prior when compared to a standard, “shallow” GP. An example is shown in
Figure 2.3 where the aim is to learn a simple step function, f(x) = I(x > 0). The discon-
tinuity at x = 0 is difficult to handle for a stationary GP due to the implicit assumption of
smoothness enforced by the kernel. In addition, the GP imposes a normal posterior which
seems unreasonable for a dataset where any outcome has one of two values. However, in
the DGP the correlation between any pair of evaluations depends, not only on the kernel of
the last layer, but on the transformations incurred by the layers preceding it. This effectively
lifts the restriction of stationarity and enables more attenuated jumps in the posterior func-
tion. Furthermore, the composition of multiple Gaussian distributions, as obtained through
the deep structure, leads to a non-Gaussian output. This accounts for the bimodal distribution
outside of the observed data in Figure 2.3.
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Figure 2.3: A three layer DGP employed for learning a step function. The three top plots
show the approximate posterior of each SVGP layer, where the black dots are the inducing
points. The lower left plot shows 10 samples drawn from the posterior along with the ob-
servations (black crosses). The lower right is the posterior density for 200 samples. Note
that even though each layer by construction outputs Gaussian marginals, the propagation of
uncertainty through the layers results in a bimodal distribution outside the observed region.

The probabilistic model for an L-layer DGP is specified as the joint distribution:

p(Y,F1, . . . ,FL | X) = p(Y | FL)
LY

`=1

p(F` | F`�1),

p(F` | F`�1) = N (F` | 0,`(F`�1,F`�1)) ,

where we use subscript to denote layer index (rather than observation index) and define
F0 = X for notational convenience. Each layer is thus a MTGP that takes the outputs
of the previous layer as input. As was the case for the GPLVM, we cannot marginalise
out the stochastic function evaluations in the intermediate layers. To solve this, we again
rely on the sparse variational framework by augmenting each layer with inducing variables,
{U`,Z`}

L
`=1, and introducing a proposal distribution:

q(F1, . . . ,FL,U1, . . . ,UL) =
LY

`=1

p(F` | U`,F`�1,Z`)q(U` | Z`)

, Q.

As in the standard SVGP derivation, this factorisation causes cancellations in the ELBO that
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decouples latent function evaluations across observations:

log p(Y | X) �

Z
Q log

"
p(Y | FL)

LY

`=1

 
((((((((((
p(F` | U`,F`�1,Z`)p(U` | Z`)

((((((((((
p(F` | U`,F`�1,Z`)q(U` | Z`)

d{F`,U`}

!#

= EQ [log p(y | FL)]�
LX

`=1

KL [q(U` | Z`) k p(U` | Z`)] .

Here, we can optionally include a prior and variational distribution for X to obtain a deep
version of the GPLVM. When q(U` | Z`) are all Gaussian, the KL divergences become ana-
lytically tractable. This leaves the expectation term whose distribution includes the marginal-
isation of both inducing points and function evaluations for all L layers. Relying on the
doubly stochastic formulation of Salimbeni and Deisenroth [2017] we propagate samples
through the layers to jointly perform Monte Carlo integration for all nested expectations:

EQ [log p(Y | FL)] ⇡
1

S

SX

s=1

log p(Y | F̃(s)
L ,ZL),

F(s)
` ⇠ q(F` | F̃

(s)
`�1,ZL), ` 2 [1, . . . , L],

q(F` | F̃
(s)
`�1,ZL) =

Z
p(F` | U`, F̃

(s)
`�1,ZL)q(U` | Z`) dU`.

As was the case for the uncollapsed SVGP, the distribution for any function output only
depends on its associated inputs as well as the inducing points of that layer. That is, letting
f`,i be the output vector for observation i in layer `, we only need to consider f`�1,i, Z`, and
U` to find the variational statistics for f`,i:

q(F` | F`�1,Z`) =
NY

i=1

N
�
f`,i | µ`,i,�`,i

�

µ`,i = ↵T
`,im`

�`,i = `(f`�1,i, f`�1,i)�↵T
`,i (`(Z`,Z`)� S`)↵`,i

↵`,i = `(Z`,Z`)
�1
`(Z`, f`�1,i),

where m` and S` are the global, variational parameters pertaining to layer `. This crucially
implies that the approximate posterior for any output vector, yi, only depends on the distribu-
tions pertaining to that point, N (f`,i | µ`,i,�`,i), for each layer ` (Salimbeni and Deisenroth
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[2017]). In turn, the expectation over log p(Y | X) decomposes into a sum of N integrals:

EQ [log p(Y | FL)] =
NX

i=1

Eqi [log p(yi | fL,i)]

qi =
LY

`=1

N
�
f`,i | µ`,i,�`,i

�
,

which can be easily approximated using Monte Carlo sampling.
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Chapter 3

Complexity reduction in sparse
Gaussian processes

In this chapter we consider the role of inducing points in sparse variational Gaussian pro-
cesses (SVGP) and the modelling assumptions they represent. We argue that, although el-
egant, the sparse framework possesses certain characteristics that contradict the principles
of Bayesian inference and prohibits flexibility. By expanding the hierarchical model to in-
clude the selection of inducing points, we develop a simple and theoretically well-founded
method for alleviating these problems, and we demonstrate empirically that the method finds
immediate applicability in the design of standard SVGP regression models, deep Gaussian
processes, and latent variable modelling.

3.1 Introduction

As described in Section 2.5 the defining quality of nonparametric models is their ability
to increase complexity and capacity with the amount of observed data. For the Gaussian
process model in particular, we specify a function prior that incorporates the data directly
through the mean and kernel functions thereby building an increasingly complex model as
observations are collected. In conjunction, the predictive capacity grows since the model
can rely on more observations to inform the conditional function distribution for novel data.
When compared to parametric approaches such as neural networks, this alleviates the model
designer of the responsibility of choosing a number of free parameters that offers sufficient
flexibility while avoiding overfitting; provided that the GP prior is sensible, the model will
only be as flexible as what is supported and required by the data. In relation to model design,
this is perhaps the strongest advantage of the nonparametric paradigm when compared to
parametric models, where substantial effort and expertise must be dedicated to identifying
the correct amount flexibility.
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Sparse Gaussian processes, and the later extension to sparse variational Gaussian processes
(SVGP), were originally aimed at solving scalability issues but have since found relevance in
enabling esoteric models such as deep Gaussian processes (Damianou and Lawrence [2013]),
latent variable models (Titsias and Lawrence [2010]), and convolutional kernels (van der
Wilk et al. [2017]). Here we make the assumption that our observed data can be adequately
explained by a small set of prototypical data, denoted pseudo points or inducing points. The
task of model training now reduces to quantifying and minimising the discrepancy between
the exact GP, that incorporates all observed data, and the sparse GP that only conditions on
the inducing points. When the number of inducing points, M , is significantly smaller than
the number of datapoints, N , we obtain a much more efficient model.

Naturally, the posterior approximation of the SVGP improves with M . At the same time, M
is the main bottleneck in terms of computational complexity in sparse GP’s.1 Much work
has been dedicated to making the inducing points either more informative (Lázaro-Gredilla
and Figueiras-Vidal [2009], Lázaro-Gredilla et al. [2010]) or less computationally demand-
ing (Wilson and Nickisch [2015], Salimbeni et al. [2018], Dutordoir et al. [2020]), but the
fact remains that the more inducing points we can afford, the more accurate a model we may
hope to achieve. Identifying a suitable choice for M is thus ultimately a trade-off between
complexity and capacity.

Given that the GP model belongs to the family of Bayesian nonparametrics, we argue that
the sparse paradigm falls victim to two conceptual issues. Firstly, it requires us to make an
a priori choice about a quantity, of which we may be uncertain, when specifying the model.
However, a core principle of Bayesian inference is to make our uncertainty explicit and de-
rive a posterior that balances prior beliefs and the support of the data. Secondly, we now
find ourselves in the very dilemma of parametric models that the nonparametric approach
promised to solve. That is, by fixing the number of inducing points we also fix the model
complexity and (potential) capacity, and our model no longer adapts to the data without di-
rect intervention from the model designer. This may then prompt an architecture search for
identifying an appropriate number of points that allow for accurate predictions without be-
ing overly demanding in terms of computational requirements – something that is a frequent
exercise in neural network design but blissfully absent when specifying non-sparse Gaussian
process models.

In this chapter we propose an elegant and theoretically well-motivated method for solving
both of these issues. Following a Bayesian approach we absorb M into the model inference
by updating the model specification so that the inducing points assumed to be sampled rather
than deterministically chosen. This is achieved by associating the inducing points with a

1Here we do not refer to the model complexity in terms of degrees of freedom, but rather the memory and
time required for training the model and making new predictions.
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Figure 3.1: Illustration of the method. (a) The approximate posterior of a SVGP for a set
of 1D datapoints (grey crosses), utilising 50 equidistant inducing points (black dots). (b)
The marginal probability of inclusion for each inducing point midway through training, as
assigned by our variational point process. Note that uninformative points are less likely to be
included. The plots to the right show three samples from the point process and the conditional
SVGP posteriors. (c) The final model after training where all but a small, informative subset
of inducing points have been pruned away.

point process prior that encourages the model to be economical in its use of points. We then
apply variational inference to derive an approximate posterior set of inducing points, thereby
enabling the model to include only those points that it deems sufficiently informative in
terms of explaining the observed data. The procedure is illustrated in Figure 3.1. As we will
show experimentally, this approach reinstates the nonparametric ability of adapting M to
the amount and characteristics of the data. Furthermore, we demonstrate how the approach
can solve practical problems when specifying deep Gaussian processes and latent variable
models.

The rest of the chapter is organised as follows: In Section 3.2 we analyse the role of in-
ducing points in the sparse variational framework, define the notion of informativeness in
the inducing set, and motivate the need for selecting one’s inducing points with care. We
then formulate our proposed solution in Section 3.3 and develop the necessary optimisation
machinery for training the new model. Finally in Section 3.4 we provide empirical evidence
of the efficacy of our approach for a variety of modelling tasks and datasets.
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3.2 The role of inducing points

We pick up from the description of the variational free energy (VFE) framework from Sec-
tion 2.7.1 where the optimisation objective is given by the evidence lower bound (ELBO):

L(Z) , Eq(f |X,Z) [log p(y | f)]� KL [q(u | Z) k p(u | Z)] ,

q(f | X,Z) =

Z
q(f ,u | X,Z) du

q(f ,u | X,Z) = p(f | u,X,Z)q(u | Z).

Here we have made it explicit that the objective is a function of the inducing inputs, Z,
and we drop the dependency on all remaining model parameters to avoid notational clutter.
The pivotal assumption of this construction is that we can adequately approximate the true
function posterior at the observed inputs with a GP that is only conditioned on u:

p(f | X,y) ⇡

Z
p(f | u,X,Z)q(u | Z) du.

This places a rather large amount of responsibility on the inducing points since all informa-
tion about y must be communicated through u. Ultimately, the inducing points act as an
information bottleneck that upper bounds the potential capacity of our model. We can gauge
this bottleneck through the posterior KL divergence:

KL [q(f | X,Z) k p(f | X,y)] = �L(Z) + log p(y | X),

which is zero if and only if we manage to perfectly emulate the true function (i.e. the bot-
tleneck is removed). However, this quantity is not available in most realistic scenarios since
the marginal evidence will be intractable.

One important aspect for our analysis is the different factors that may influence this bot-
tleneck. The most obvious factor, which is also the one that has attracted most attention in
the literature, is the sheer number of points. However, just as crucial are various character-
istics of the data being modelled and the latent function being approximated. As shown in
Burt et al. [2019] we can communicate more information per inducing point when the data
are clustered and the kernel is smooth. Another characteristic of interest, identified in Hens-
man and Lawrence [2014], is the aleatoric uncertainty. When the data are subject to more
observation noise, there is less signal to infer for the exact GP, and we therefore require fewer
inducing point to obtain a good approximation. The influence of these characteristics w.r.t.
the posterior KL divergence is illustrated in Figure 3.2.

Common to these characteristics is that they are rarely known a priori. That is, when tasked
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Figure 3.2: Illustration of the effect of three characteristics – observation noise, data clus-
tering, and kernel smoothness – w.r.t. the posterior KL divergence. In each row the right
example has a higher intensity of the given characteristic than the left. This results in a lower
KL divergence when fitting a SVGP because the true function becomes easier to emulate.

with specifying a model for a new dataset, the model designer will generally not know how
much observation noise is to be expected, how smooth the kernel should be, nor the amount
of clustering within the data. Determining an adequate number of inducing points while
being mindful of resource utilisation is therefore ultimately done on an uninformed basis.
This lends weight to the argument that choosing the inducing points ought to be part of the
inference rather than the model specification. We will return to this point in the experiments
section, when we demonstrate that increasing the intensity of either of these characteristics
causes our proposed model to adapt by pruning away inducing points and arriving at a more
sparse approximation.

In some scenarios, the task of choosing the number of inducing points does not pose much
of a dilemma. For instance, when fitting a standard SVGP we will usually opt for using
as many inducing points as possible while keeping within the computational constraints at
training and prediction time. In other scenarios, however, the choice between capacity and
complexity is less obvious to the model designer. In an online setting where data are pre-
sented in batches and only available in memory for a limited time (see e.g. Bui et al. [2017b]
or Titsias et al. [2019]) we will have to decide on the number of inducing points to dedicate
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Figure 3.3: Illustration of different function fidelities in a 3 layer DGP. The three left plots
show the learnt SVGP’s for each layer, while the right plot shows the DGP’s posterior density
along with the target observations. We used our proposed method to jointly learn an adequate
number of points across layers, resulting in the majority being assigned to the first and most
complex one.

to a given batch in order to properly summarise it. This will in turn depend on various data
characteristics for said batch, as described above, or the resemblance to already existing in-
ducing points. Another relevant use case, that has recently seen a sharp increase in interest,
is the design of models that consist of multiple GP compositions, e.g. DGP’s (Damianou and
Lawrence [2013]) and multi-fidelity modelling (Cutajar et al. [2019]). Here, the different
functions may have varying degrees of fidelity and thus require different number of inducing
points for achieving an acceptable approximation. This phenomenon is illustrated in Fig-
ure 3.3 where a square wave is modelled with a three layer DGP. The usual assumptions of
smoothness and stationarity are quite poor in this case due to the discontinuous nature of
the data, and a shallow GP with RBF or Matern kernel will therefore be ill-suited for this
task. The deep model solves this by making a smooth approximation in the first layer while
using the subsequent layers to attenuate the jumps through step functions. Note that because
the first layer is more complex than the subsequent ones, it requires more inducing points to
obtain an adequate function approximation. However, when working with high-dimensional
data and more complex model architectures, the required per-layer fidelity may not be obvi-
ous, and finding a good allocation of inducing points will ultimately become a combinatorial
problem. We will return to this scenario for real-world data in the experiments section.

Even when a suitable number of inducing points can be determined a priori, the model de-
signer is still faced with the non-trivial task of choosing those points. This is relevant in
methods where the inducing points are selected from the observed data, e.g. Titsias et al.
[2019] and Cutajar et al. [2019]. Here, previous approaches have relied on measures such
as the determinant of the inducing kernel matrix, KMM = (Z,Z), with the intuition being
that a larger hypervolume indicates better coverage in the input space. However, it is im-
portant to note that the informativeness of the inducing points cannot be determined from
the kernel matrix alone. A simple counter-example is shown in Figure 3.4 where a dataset
with heteroscedastic noise is modelled. Since the observations to the left in each plot carry a
stronger signal, the resources are better spent placing most of the inducing points here even
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Figure 3.4: Demonstration of the notion that a larger hypervolume of the KMM does not nec-
essarily improve the ELBO. The SVGP to the left uses equidistant inducing inputs resulting
in a maximal determinant of KMM , while the SVGP to the right clusters the inducing inputs
where the signal is strongest.

if it results in a lower determinant of KMM .

Typically we will solve this by exploiting the fact that we have access to the gradient of any
inducing input, @L

@zj
, which can thus be included in the model optimisation. However, here we

encounter another subtle problem, namely that the gradient for a given point is proportional
to the influence said point exerts over the approximate posterior. This has the unfortunate
effect that as an inducing point moves away from the observed data, as measured under the
kernel, our derivative information diminishes:

lim
(zj ,X)!0

@

@zj
Eq(f |X,Z) [log p(y | f)] = 0.

We provide a formal argument for this in Appendix A. As a result the point may get “stuck”
far away from the data without contributing to the modelling task but still allocating re-
sources. This is illustrated for a 1D example in Figure 3.5 where an inducing point is located
at a distance of 7 times the characteristic lengthscale from the nearest observation. Conse-
quently, the gradient magnitude is less than 10�11 and the point will therefore not get close to
the observed data in the immediate future for any sensible step size. Letting the selection of
inducing points be part of the inference endows the model with the ability to simply remove
points that have become redundant.

3.2.1 Relation to prior work

Since the sparse methodology was first introduced, much work has focused on reducing the
information bottleneck between y and u by pursuing two, sometimes overlapping, strate-
gies. In the first strategy, we seek to make the set of inducing points more informative by
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Figure 3.5: Illustration of the gradient diminishing as an inducing point is moved away from
the observed data. The lower plot shows the magnitude of the partial derivative, @L

@zj
, for each

inducing input, zj . The point to the left is effectively stuck, asserting no influence over the
function approximation in the relevant part of the domain but still taking up computational
resources.

optimising a compact representation that lies in a different domain than the observed data,
either on the input side (Snelson and Ghahramani [2012], Wilson et al. [2016b]) or the output
side (Lázaro-Gredilla and Figueiras-Vidal [2009], Hensman et al. [2018], van der Wilk et al.
[2017]). In the second strategy, we aim at reducing the computational load of calculating
the variational densities, thus allowing us to scale up the number of inducing points to many
more than what would otherwise be feasible (Wilson and Nickisch [2015], Salimbeni et al.
[2018], Dutordoir et al. [2020]).

The common goal for these methods is to make the most use of whatever computational
resources are available. They are thus related but fundamentally orthogonal to the problem
that we consider, which is to infer which and how many inducing points are required. It is
important to note, however, that the approach that we develop in the following section can be
applied in conjunction with any of these methods so long as they adhere to the general varia-
tional framework where p(f | X,y) is approximated by q(f | X,Z) =

R
p(f | u,X,Z)q(u |

Z) du.

3.3 Probabilistic selection of inducing points

Our proposed solution to all issues listed in the previous section is to move the choice of
inducing point set from being part of the model specification to instead being part of the
model inference. We do this by simply expanding the hierarchical model with a point process
prior over the inducing inputs, p(Z), to explicitly encode our uncertainty as to which points
should be used for summarising the data. To accommodate this expansion we introduce
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a variational point process, q(Z), that approximates the posterior over inducing point sets.
Note that p(Z) and q(Z) are not continuous distributions over the locations for fixed-sized
sets of inputs; they are discrete distributions that assign probability mass to sets of points.
Our joint distribution for the generative model is thus updated to:

p(y, f ,u,Z | X) = p(y | f)p(f | u,X,Z)p(u | Z)p(Z),

while the variational distribution for the latent variables is given by:

q(f ,u,Z | X) = p(f | u,X,Z)q(u | Z)q(Z).

We note that within the SVGP literature, Z is often interpreted as a variational parameter
rather than part of the generative model, the argument being that Z exclusively affects the
proposal distribution (see e.g. Hensman et al. [2015b] and Hensman et al. [2018]). Following
this line of reasoning it is not theoretically justified to associate Z with a prior. To counter
this view, we argue that the inducing inputs are indeed present in the generative model as
inputs to the infinite function vector of the GP – they are just redundant since f , by assump-
tion, is a sufficient statistic for y. We are thus free to put a prior on p(Z), causing Z to be
marginalised out along with u without affecting p(y | f). However, once we make the vari-
ational approximation the inducing points cease to be redundant, and any prior associated
with the inducing points will in turn cease to be redundant as well.

As will be specified in Section 3.3.1 we choose p(Z) to encourage sparsity by assigning
higher probability mass to sets of smaller cardinality. Through q(Z) the model is now able
to choose only those points that it deems sufficiently informative w.r.t. explaining y. With
p(Z) and q(Z) defined we obtain the new ELBO:

log p(y | X) � Eq(f ,u,Z|X)


log

p(y | f)(((((((
p(f | u,X,Z)p(u | Z)p(Z)

(((((((
p(f | u,X,Z)q(u | Z)q(Z)

�

= Eq(Z)


Eq(f ,u|X,Z)


log

p(y | f)p(u | Z)

q(u | Z)

�
+ log

p(Z)

q(Z)

�

= Eq(Z) [L(Z)]� KL [q(Z) k p(Z)] (3.1)

, L̃.

Note that this objective encodes the capacity/complexity trade-off since the first term in-
creases with the number of points drawn from q(Z) while the latter decreases. Another point
worth highlighting is that under this construction we never actually have to sample from our
prior, p(Z) – we only need to be able to evaluate the probability mass function. This affords
us a lot of freedom in designing a prior that suits our purposes.
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3.3.1 Specifying the point processes

Our overall objective is to enable the model to be selective w.r.t. which inducing points to
include, based on their ability to explain the observed data. We therefore encode in our prior
a preference towards smaller sets of inducing points:

p↵(Z) = C · exp
�
�↵|Z|2

�
, (3.2)

where ↵ is a (fixed) hyperparameter determining the strength of the prior while C is the nor-
malising constant. We use the squared cardinality of Z since the complexity of the standard
SVGP model when making predictions is O(|Z|2) in time and memory – however, this is
ultimately a design choice.

This prior only assigns probability according to the size of Z while being agnostic w.r.t. the
actual locations in input space. Although we could also use the prior for other purposes,
such as encouraging more dispersion of inducing points (as was recently done in Rossi et al.
[2021]), we choose to focus solely on the objective of managing the size of Z. Note that the
location of points is still optimised during model training since they do affect the likelihood
term, Eq(Z) [L(Z)].

The hyperparameter ↵ controls the sparsity level of the model, and it thus plays a regulari-
sation role similar to the shrinkage penalty in Ridge or Lasso regression (Hoerl and Kennard
[1970], Tibshirani [1996]). The reasoning behind including it as a configurable parameter
is that the ideal sparsity level can never be determined from the data alone; it must neces-
sarily be subject to resource considerations. I.e. different sparsity levels may be appropriate
depending on whether a model is run on a GPU cluster or a laptop. This, of course, means
that the model designer has not been completely relieved of all responsibility relating to the
inducing points. However, any and all choices are now condensed into a single parameter
residing on a higher level in the Bayesian hierarchy, and the model still maintains the ability
to adapt the points according to function fidelity and data characteristics.

For the variational distribution, q(Z), we choose the discrete Poisson Point Process (PPP)
which simply associates each individual point from the input domain with an independent
probability of inclusion (Streit [2010]). Given a set of candidate points, Z?, the probability
of observing Z ✓ Z? is:

q�(Z) =
Y

zk2Z

q(zk)
Y

zk /2Z

(1� q(zk)) =
Y

zk2Z

�k

Y

zk /2Z

(1� �k),

where the vector � = [�1, . . . ,�K ]T is the variational parameter comprising the probabilities
assigned to each of the K elements in Z?. The domain of q� is thus the power set of Z?

excluding the empty set, P(Z?) \ ;, which yields 2K � 1 instances.
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This choice of surrogate distribution implies two concessions: We restrict the domain to the
finite set of points, Z?, that is determined in advance, and we rely on a mean-field assumption
rather than allowing for correlations between points. A simple remedy of restricting the do-
main is to simply overshoot by including more points in Z? than we believe to be necessary.
This does not negatively impact optimisation complexity since only the sampled points enter
the calculations of (3.1). The extra points and their associated probability will of course take
up additional memory, but this will typically be negligible when compared to the actually
observed data. The mean-field assumption, however, is more problematic. When inspect-
ing Figure 3.1 it seems clear that neighbouring points should be assigned approximately the
same marginal probability of inclusion while having high, negative correlation, such that
when one is sampled, the other is left out. Under the PPP we instead force the model to
choose a small set of favoured points and discard the rest. Learning the correlations could
be achieved by instead using a determinantal point process (Kulesza and Taskar [2012]) for
q�(Z) which seems especially well-suited for this setting since it, like the GP, relies on a
kernel to determine the degree of similarity between points. However, we will leave this
avenue open for future research and focus on the PPP which has proven sufficiently robust
for proving the efficacy of the proposed paradigm.

Under these choices of prior and variational distributions the KL divergence is analytically
tractable. This can be seen by first decomposing into entropy and cross entropy:

KL [q�(Z) k p↵(Z)] = �Eq�(Z) [log p↵(Z)] + Eq�(Z) [log q�(Z)]

= CE(↵,�)�H(�).

Since the elements of Z? are sampled independently, the joint entropy can be written as the
sum of entropies pertaining to individual elements:

H(�) = �Eq(z1),...,q(zK)

"
KX

k=1

log q(zk)

#

= �

KX

k=1

(�k log �+ (1� �k) log(1� �k)) .

For the cross-entropy, note that the cardinality of Z under q�(Z) follows a Poisson binomial
distribution. The two first moments of |Z| are thus:

E , Eq�(Z)[|Z|] =
KX

k=1

�k, V , Varq�(Z)[|Z|] =
KX

k=1

�k

KX

k=1

(1� �k).
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We then have:

CE(↵,�) = � logC + ↵Eq(Z)

⇥
|Z|2

⇤
= � logC + ↵(V + E

2).

The normalising constant is given by

C =
1

K

KX

k=1

✓
K

k

◆
e
�↵·k2

,

but can generally be ignored as it contains no free parameters.

Besides being closed-form computable, the KL divergence is differentiable and thus easy
to include in gradient-based optimisation. Its tractability is contingent on three statistical
measures for the variational point process: the mean and variance of number of points and
the entropy over the entire domain. Any other point process for which the same measures
are available can thus be readily applied without requiring changes to the expressions above.

3.3.2 Optimising the new objective

Having specified a new objective and the relevant prior and variational distributions, we now
turn to the practical matter of model training. In order to leverage efficient optimisation
methods based on Stochastic Gradient Descent (Zhang [2004], Nemirovski et al. [2009]) we
need to obtain the gradients for (3.1):

O✓L̃ = Eq�(Z) [O✓L✓(Z)] (3.3)

O�L̃ = O�Eq�(Z) [L✓(Z)]� O�KL [q�(Z) k p↵(Z)] (3.4)

where we let ✓ denote all free parameters for L✓(Z) excluding Z, i.e. the variational param-
eters pertaining to the inducing points and the hyperparameters for the likelihood and GP
prior. The expectations w.r.t. q�(Z) constitute a summation over 2K �1 subsets, K being the
number of candidate points in Z?, so calculating the above gradients directly is not tractable
in the general case. Instead we will provide approximations for both (3.3) and (3.4) and show
how they can be unified in a single objective that makes the optimisation straightforward to
implement in automatic differentiation frameworks such as PyTorch (Paszke et al. [2019])
and Tensorflow (Abadi et al. [2016]).

For (3.3), note that O✓L(Z) is the usual gradient we rely on when optimising the standard
SVGP for a fixed set of inducing points. We can thus simply approximate the gradient of L̃
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with Monte Carlo sampling:

O✓L̃ ⇡
1

S

SX

s=1

O✓L✓(Z̃
(s)), Z̃(s)

⇠ q�(Z). (3.5)

As for (3.3), the gradient pertaining to the KL divergence is readily available qua our choice
of point processes. What remains is then O�Eq�(Z) [L✓(Z)] which is not directly amenable to
sampling-based approximation since

O�Eq�(Z) [L✓(Z)] =
X

Z2P(Z?)\;

L✓(Z)O�q�(Z),

does not have the form of an expectation as we would require. As described in Section 2.3
we can solve this with the re-parameterisation trick, provided that q�(Z) can be rewritten
as a deterministic function of some random variable that follows a non-parameterised dis-
tribution. Although we did develop a re-parameterisation scheme that makes this approach
possible, it is contingent on q�(Z) being a PPP and would prohibit generalising to other,
more versatile point processes in the future. We therefore defer the detailed description of
the re-parameterisation method to Appendix B.

Instead we will rely on score function estimation (SFE) to obtain an unbiased approximation
of the gradient:

O�Eq�(Z) [L✓(Z)] = Eq�(Z) [L✓(Z)O� log q�(Z)]

⇡
1

S

SX

s=1

L✓(Z)O� log q�(Z̃
(s)) (3.6)

Z̃(s)
⇠ q�(Z).

When implementing the method in a framework that supports automatic differentiation, we
can now combine (3.5) and (3.6) in the surrogate objective:

R(�, ✓) =
1

S

SX

s=1

⇣
L✓(Z) log q�(Z̃

(s)) + L✓(Z̃
(s))
⌘
, Z̃(s)

⇠ q�(Z),

where (·) indicates that the expression is decoupled from the differentiation process. This
objective allows us to acquire the noisy gradients w.r.t. both � and ✓ in a single pass for each
sample from q�(Z), making it straightforward to implement on top of any existing SVGP
method that formulates L✓(Z) as the optimisation objective.

One issue to be aware of for the SFE optimisation is the risk of high sampling noise in
(3.6). There exist many methods for alleviating this problem but we have chosen the rela-
tively simple approach of subtracting a baseline, b, from L✓(Z) before differentiating R(�, ✓)
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(Glasserman [2013]). When b is constant w.r.t � this operation does not affect the gradient
in the limit of S ! 1, but it will reduce the variance between gradient samples when if b is
carefully chosen. We use the common heuristic of setting b to a decaying average of previ-
ous evaluations of L✓(Z), i.e. b = a(Lv

✓(Z)�1 + L
v2
✓ (Z)�2 + . . . ) where L

·
✓(Z)�i is the i’th

previous evaluation of L✓(Z), v < 1 is the decay parameter, and a is a normalising constant.
This proved sufficient for obtaining stable optimisation in our experiments – however, if the
method is to be applied for increasingly complex models and/or point processes in the future,
it may be necessary to employ more sophisticated methods for ensuring stability.

3.4 Experiments

In this section we demonstrate the efficacy of our method in the context of both standard GP
regression and the more esoteric settings of deep modelling and latent variable modelling.
We wish to show that i. the model is able adapt to characteristics of the data and function
dynamics that affect the informativeness of the inducing points, as described in Section 3.2;
and ii. that our method has practical applicability when designing and training DGP’s and
GPLVM’s.

3.4.1 Adapting to data characteristics

As described in Section 3.2 the informativeness of inducing points depends on the observa-
tion noise, kernel smoothness, and input clustering. When the intensity of either of these
characteristics increases, the inducing points become more informative, and fewer points are
required to reach the same level of approximation of the true posterior function. However, as
these characteristics are typically not known a priori and need to be inferred, it only seems
natural to also make the selection of inducing points part of model fitting.

In this experiment we show on synthetic and real-world data that our model does indeed
adjust the number of inducing points as a function of the aforementioned characteristics.
In the synthetic setting we first generate observations drawn from a GP with varying in-
tensity of each characteristic. The specifics of the data generation process are described in
Appendix C. For each set of observations we fit a standard SVGP with [5, 10, . . . , 80] in-
ducing points and measure the KL divergence between the true and approximate posterior,
KL [q(f | X,Z) k p(f | X,y)] (lower is better). These are the solid lines in Figure 3.6, each
coloured by their intensity. As expected, we see that as the intensity increases, fewer points
are required to emulate the true function.

Next we apply our method by associating a prior and variational point process for each
condition and prune away points. The vertical, dashed lines in Figure 3.6 show the mean of
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Figure 3.6: KL divergence between the approximate and exact posterior as a function of the
number of inducing points under different data characteristics (lower is better). Solid lines
are the baseline SVGP’s with a fixed number of inducing points. As a given intensity in-
creases, fewer points are required to obtain the same KL divergence. The vertical, dashed
lines show the expected number of inducing points inferred by the point process under differ-
ent characteristics, and the circles are 10 samples of subsets drawn from each. Our method
adaptively reduces the number of points as informativeness decreases, and in certain cases it
slightly improves upon the baseline.

Figure 3.7: ELBO as a function of number of inducing points when adding Gaussian noise
of varying intensity (higher is better). The setup is similar to that of Figure 3.6.

posterior number of inducing points which monotonically decreases with the intensities. The
circles show the performance for 10 draws of inducing point sets from the variational point
process. We see that we generally achieve similar or improved performance compared to the
standard SVGP.

We repeat the experiment for 4 real-world datasets, constrained to the characteristic of ob-
servation noise. In this setting we measure the ELBO as a function of inducing points
(higher is better) due to the intractability of calculating KL [q(f | X,Z) k p(f | X,y)] for
large datasets. The results are shown in Figure 3.7 and confirm that the point process adapts
to the data as expected while maintaining or improving performance.

The two experiments demonstrate that the model is able to adapt the number of inducing
points to the characteristics of the data. In settings where these characteristics are a priori
unknown and resource utilisation is a priority, the method will relieve the model designer of
having to pin down an adequate number of points over multiple iterations of re-fitting and
evaluating for different model instantiations.
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3.4.2 Deep Gaussian processes

In the sparse variational DGP formulation (e.g. Damianou and Lawrence [2013] and Salim-
beni and Deisenroth [2017]) each layer of the model is associated with its own set of induc-
ing points. Choosing the sizes of these sets are subject to the same considerations as for the
“shallow” SVGP model, namely that more points will increase capacity but be more com-
putationally demanding. However, as argued in Section 3.2, choosing the number of points
for each layer is effectively a combinatorial problem that may constitute a time-consuming
search where the model designer will have to re-fit the model for each configuration of points
and compare the accuracy and efficiency. Our method provides a way of integrating this
search into the model inference, allowing us to find an appropriate configuration in a single
training run.

We consider a 2-layer DGP applied to the UCI Kin8nm regression dataset (Asuncion and
Newman [2007]) with 8192 observations and 8 input dimensions. The DGP uses the doubly
stochastic formulation of Salimbeni and Deisenroth [2017] that we reviewed in Section 2.7.3
where predictions are based on samples from the variational distributions, and optimisation
relies on unbiased, noisy gradients obtained from those samples. Following the insights of
Duvenaud et al. [2014] we add the observed input to each layer to avoid instability due to
non-injective mappings between layers. We distinguish between the “fixed” model, where
the number of inducing points per layer is decided before model fitting, and our “adaptive”
model where the point sets of each layer are associated with their own prior and variational
point process. The task we wish to solve is to find configurations of points between layers
that result in high model accuracy while keeping prediction time low.

As a baseline, we train fixed models with [10, 20, . . . , 100] inducing points in each layer
for 5000 epochs, resulting in 100 distinct configurations. For each we measure the average
test log likelihood and prediction time over 5 folds. The results are plotted as grey dots
in Figure 3.8a, showing a large variation in prediction efficiency for models with similar
performance. The large dots are those configurations that use the same number of points
in each layer, which seems to be the default choice in the DGP literature (Damianou and
Lawrence [2013], Salimbeni and Deisenroth [2017], Havasi et al. [2018b], Cutajar et al.
[2019], Blomqvist et al. [2019]). For the adaptive model, we initialise each layer with 150
inducing points, pre-train for 2000 epochs, and learn the inducing point sets along with the
remaining model parameters for another 3000 epochs. We repeat this for 4 settings of the
prior – these are the coloured dots in Figure 3.8a.

From the results it is clear that all configurations found in the adaptive models are near
the frontier of optimal trade-offs, and that increasing the prior weight steers the model to-
wards more sparse configurations. This points to significant potential benefits of applying
our method as DGP grows deeper and more complex. Additionally, the procedure may yield
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Figure 3.8: Dynamically allocating inducing points in a 2 layer DGP. (a) Each dot corre-
sponds to the accuracy and performance of a specific configuration of inducing points. Grey
dots are the outcomes of a comprehensive and tedious grid-search, with the 10 large dots
representing those configurations that have equal number of inducing points in each layer.
Red dots are the configurations found by our point process for four different settings of the
prior weight, ↵. Note that the latter all fall on the frontier of optimal trade-offs between
accuracy and performance. (b) The distribution of points across layers for over 5 folds. We
see a clear preference towards placing more inducing points in the last layer.

post-hoc insights into the model in terms of layer fidelity and resource allocation. Figure 3.8b
shows the distribution of points between layers for each of the prior settings, which indicates
that for this specific architecture the second layer seems to be of higher fidelity than the first.

3.4.3 Latent variable modelling

Lastly we consider the Gaussian process Latent Variable Model (GP-LVM) which is identical
to the standard GP regression model except for the inputs being unknown. By placing a prior
on the inputs we can include these in the inference and derive a posterior over input locations
which may be of interest for e.g. visualisation or features extraction for downstream tasks.
However, the uncertainty of the inputs prohibits tractability of the marginal likelihood and
posterior, and so again the variational sparse methodology can be applied to approximate the
true posterior.

Choosing a suitable number of inducing points in this setting can prove especially difficult
since the input space, that the points must represent, is an abstraction and will change over
time as the variational input locations are inferred. The heuristic of choosing a set of inducing
points that “covers” the input domain (Titsias et al. [2019]) thus proves difficult to apply
when said domain is a moving target. Here our method provides a paradigm for including
new points only when such is required by the current state of the latent representation.

To illustrate this we use a GP-LVM to learn a 2-dimensional representation of 48 single cell
gene expressions for 437 samples.2 The samples are taken at different stages of development

2qPCR dataset from https://github.com/sods/ods

https://github.com/sods/ods
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Figure 3.9: Demonstration of our method for a GPLVM applied to a single-cell qPCR
dataset. Each coloured dot is the inferred location for a given cell in the latent space where
the colour denotes the cell stage. We fix the inducing points to a 15⇥15 grid and let the filling
indicate the marginal probability of inclusion. Here, filled means a probability of one while
open means a probability of zero. As the latent inputs change throughout model training,
different inducing points are considered relevant by the variational point process.

and the aim is to infer these stages from the gene expressions alone. We include 225 inducing
points fixed to a 15⇥ 15 grid for illustrative purposes and jointly learn all model parameters
(excluding inducing input locations) over 300 epochs. The training process is illustrated in
Figure 3.9 where the latent coordinates are coloured according to cell stage. Notice that at
any given time only a small subset of inducing points are assigned notable probability of
inclusion, and that this subset changes over time as the inputs move around. In effect our
method allows for the model to adapt to the change in function and inputs throughout model
training, thus avoiding using more inducing points than what is necessary to accommodate
the data.

3.5 Conclusion and future work

In this chapter we focused on the central assumption of the SVGP framework, namely that
a deterministically chosen set of inducing points can adequately emulate the true posterior
process. We argued that this assumption, in the context of Bayesian nonparametrics, is patho-
logical in two respects: Firstly, because it compels the model designer to make a determin-
istic choice for a quantity, about which they may be quite uncertain; and secondly, because
the number of inducing points bounds the potential capacity of the model and prevents the
complexity to increase as a function of the amount and characteristics of the data. We also
described various applications where the resource requirements are difficult or impossible
to ascertain a priori, in which case the proper trade-off between capacity and complexity, as
given by the number of inducing points, should be data dependent.

We showed that a very simple adjustment of the aforementioned assumption can help re-
solve these issues. By letting the inducing points be generated stochastically from a point
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process that assigns higher probability to smaller sets, we can use the Bayesian machinery
to infer a posterior point process, thus learning which and how many inducing points to rely
on for approximating the posterior function. In effect, the model can adapt its complexity
requirements to the demands of the data.

For conducting inference under this model, we developed a VI scheme relying on an ap-
proximate point process that assigns independent probability of inclusion to all points from
a finite candidate set. By the choice of the prior, this results in an analytically tractable
KL divergence between point processes. The log likelihood expectation, however, requires
approximation which we achieved through score function estimation. We demonstrated em-
pirically that our proposed model adapts to various data characteristics that are known to
affect complexity requirements; can be used for allocating inducing points between layers in
a DGP; and adapts to the inferred representation for a GPLVM as the latent variables moves
around in representation space during model training.

Future work may consider the integration of different point processes, both as prior and
approximate posterior. The current prior, which penalises the quadratic cardinality of the
inducing point set, was motivated by the O(M2) time complexity when making predictions
with a standard SVGP. However, other recent formulations (Cheng and Boots [2017], Havasi
et al. [2018a], Salimbeni et al. [2018]) decouple the inducing points such that different sets
are used for inferring respectively the predictive mean and variance. Since the mean calcu-
lation only imposes linear complexity in the number of inducing points, it would be sensible
to update the point process prior to reflect this. Such an update would require minimal effort
to implement since a linear variant of (3.2) would also result in a tractable KL divergence
in the current framework. As mentioned in Section 3.3.1, another interesting avenue would
be a more flexible variational posterior such as the determinantal point process (Kulesza and
Taskar [2012]), which could rely on the same kernel as the GP prior for evaluating similarity
between inducing points. Lastly, there may be great potential in integrating this method in
the context of online learning where new data are continuously collected but the maximum
number of inducing points is bounded by computational requirements, e.g. learning from
streaming data (Bui et al. [2017a]) or reinforcement learning (Deisenroth and Rasmussen
[2011]).
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Chapter 4

Estimating a target vector through
Bayesian optimisation

This chapter explores the problem of target vector estimation which is commonly addressed
using Bayesian optimisation. However, we show that the default paradigm relies on erro-
neous assumptions that causes the method to waste valuable information while introduc-
ing pathological modelling deficiencies. By modifying the surrogate model to infer a more
suitable predictive distribution, and by developing accompanying acquisition functions, we
demonstrate a much improved search procedure on a variety of problems.

4.1 Introduction

The focus of this chapter is the task of matching the evaluations of a noisy, multi-output
blackbox function to a pre-specified target vector. In other words, we wish to answer the
question: “What inputs to our function may result in a given output vector?”. The premise
remains largely identical to that of standard Bayesian optimisation: We assume that the
blackbox function is expensive to evaluate, affording us a limited querying budget (typically
10’s to 100’s of evaluations) before deciding upon the most promising input. We also assume
that we can only interact with the function through querying, allowing us no access to e.g.
derivative information for guiding the search.

This problem pre-dates Bayesian optimisation and has been widely explored within the
methodology of e.g. evolutionary algorithms (Schaffer [1985], Fourman [1985], Fonseca
and Fleming [1998]). Example use cases span a diverse set of research areas, including
modelling of blood flow in the human vasculature (Perdikaris and Karniadakis [2016]); es-
timating of the optimal hyperparameters of machine learning models (Snoek et al. [2012]);
defining the structural design of helicopter rotor blades (Murugan et al. [2007]); estimating



4.1. Introduction 51

emission line intensities of alumina powder (Wienke et al. [1992]); and guiding the simu-
lation parameterisation in Approximate Bayesian Computation (Järvenpää et al. [2018]). In
the experimental section of this chapter we will furthermore consider two real-world scenar-
ios: reverse engineering musical synthesizers (Horner et al. [1993], Garcia [2001], Lai et al.
[2006], Heise et al. [2009]) and designing nano-topographies for stem cell development (Cu-
tiongco et al. [2020]).

Multi-output functions in and of themselves are not a novelty in the context of Bayesian
optimisation. The task that has received most attention is that of identifying the Pareto
frontier, i.e. the set of non-inferior evaluations for which at least one output dimension
is minimal/maximal (Knowles [2006], Zhang et al. [2010], Shah and Ghahramani [2016]).
This is relevant in situations where we want to optimise over competing, correlated aspects
of a given task, e.g. designing drugs that are simultaneously effective, safe, and cheap to
develop (Negoescu et al. [2011]). Here the common approach is to model all outputs of
the blackbox-function and apply an acquisition function that reasons about some relevant
measure, such as the hypervolume of the Pareto frontier (Zitzler [1999]).

Less attention has been paid to our problem formulation where the quantity to be minimised
is the distance between the function evaluations and a target vector. In contrast to the Pareto
setting, we are here willing to accept the deterioration of one output dimension if it provides
sufficient improvements in other dimensions such that the aggregated distance is reduced. In-
terestingly, this task is already perfectly amenable to standard Bayesian optimisation. Since
the ultimate goal is to minimise a scalar (i.e. the distance to the target), we can simply place a
Gaussian process prior on the function that maps input parameters to observed distances and
use the predictive distribution in conjunction with a suitable acquisition function to search
for promising querying locations that may reduce the objective value. This is indeed the
approach taken in previous work (e.g. Perdikaris and Karniadakis [2016] and Järvenpää
et al. [2018]) but in doing so we discard potentially valuable information since we are not
observing the individual outputs of our blackbox function. Alternatively, we can follow the
example of the Pareto-algorithms and model all output dimensions; however, the subsequent
aggregation into a distance measure results in a quantity that is certainly not Gaussian, which
breaks compatibility with the usual scalar-based acquisition functions.

In this chapter we solve these obstacles by updating the surrogate model to incorporate the
individual function outputs, deriving an approximate distribution over the resulting distance,
and developing accommodating acquisition functions that are both analytically tractable and
differentiable. All combined this yields a principled and efficient framework for estimating a
target vector under the Bayesian optimisation framework. The rest of the chapter is organised
as follows: In Section 4.2 we formally specify the problem and our assumptions, consider
the issues of using a naive approach, and review alternative approaches. In Section 4.3 we
develop the surrogate model and acquisition functions for our method. Finally in 4.4 we
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Figure 4.1: Pictorial depiction of the problem setup. We are given a stochastic blackbox
function, h, that takes M -dimensional inputs and produces K-dimensional outputs. In ad-
dition, we know of a K-dimensional target vector, y?. The task now is to identify the input
that minimises the squared `2-norm between the function evaluation and the target vector.

show the superiority of our method on a wide range of benchmark functions and two real-
world problems.

4.2 Problem specification

Given a blackbox, multi-out function h : X ! Y we wish to identify the input that minimises
the output distance to a known target vector, y?

2 Y , where X ✓ RM and Y ✓ RK . The
appropriate distance metric is problem dependent but we will restrict attention to the widely
used sum of squared residuals (or squared Euclidean distance or squared `2-norm):

d(y) = ky � y?
k
2
2 =

KX

j=1

(yj � y
?
j )

2
.

The optimisation task is depicted in Figure 4.1. We will use the notation from stochastic
process theory and view the functions d and h as an infinite vector and matrix, respectively,
each of which are indexed by a finite set of inputs. The distribution over the distance d(x) =
kh(x)� y?

k
2
2 is simply written as p(d | x).

To apply Bayesian optimisation for this minimisation task we place a prior on d and derive
a posterior predictive distribution, p(d | x,D), for novel input x when conditioned on pre-
viously collected observations, D = {xi,yi}

n
i=1. The next input to query is then selected by

maximising an acquisition function, ↵ : X ! R, that associates the predictive distribution
with a measure of querying utility which should capture e.g. exploration/exploitation trade-
off, level of greediness subject to the remaining budget, and other requirements of the model
designer.



4.2. Problem specification 53

Figure 4.2: Inferring the distance between a target vector and a function with one input
and three outputs. The three top rows show each dimension of the blackbox function while
the horizontal red lines are the target values. The bottom row show the squared `2-norm,
d = kh � y?

k
2
2. The left column illustrates a naive approach where we base our posterior

on the distance measurements alone. Here, we will inevitably discard information about the
individual outputs which may prove useful for selecting future querying locations. In the
right column we model each output individually and use the posteriors to construct a more
accurate distribution over d.

4.2.1 Applying standard Bayesian optimisation

The problem as currently specified is readily amenable to standard Bayesian optimisation.
By placing a GP prior directly on d we get an analytically tractable, normal posterior for any
unseen point, p(d | x,D). This distribution can now be used in conjunction with usual ac-
quisition functions such as Expected Improvement (EI) or Lower Confidence Bound (LCB)
to efficiently search for new inputs that minimise d.

Such an approach, however, has two major caveats. Firstly, we may discard potentially
useful information about the individual outputs of h. This is because the surrogate model is
only ever presented with the aggregated values, d = kh� y?

k
2
2. And since this aggregation

is non-injective, information about h is inevitably lost. This is illustrated in Figure 4.2a
where a number of different output vectors from h result in roughly the same distance to y?.
A surrogate model that only updates its posterior belief based on observations of d would
therefore learn very little about h from such a set of training data.

The second caveat is that the normal distribution is quite ill-suited for modelling a distance.
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Figure 4.3: Modelling the distance d = kh � y
?
k
2
2 with h(x) = 0.3x2 and y

? = 0. The
optimum is located at x = 0. Black dots are the observed samples. Even though both models
have a fairly good fit and a reasonable idea of the true minimum, the standard model enforces
a normal predictive distribution which results in an unrealistic estimate with both negative
support and symmetrical density around the mean.

Any distribution over distances will generally be asymmetrical and without negative sup-
port, neither of which is true for the normal distribution. This is especially critical when
p(d | x,D) is highly uncertain while being centered close to zero, since a large proportion
of potential values are then assumed to be realised in the negative domain as shown in Fig-
ure 4.3. At the same time, such locations will be favoured by most acquisition functions as
they satisfy both the exploration and exploitation criteria, potentially leading the procedure
to spend most of the querying budget at regions where the surrogate model is least accurate.

4.2.2 Sampling based approaches

From the above it is clear that the main challenge of the optimisation problem arises from
wanting to simultaneously i. incorporate the individual outputs of the blackbox function in
the surrogate model, ii. obtain a reliable posterior of the distance, and iii. identifying an
acquisition value for this posterior. The currently prevalent approach for accomplishing this
is to rely on stochastic approximations. Astudillo and Frazier [2019] considers the more
general problem of composite functions on the form, v = t(r(x)), where r : X ! RK is an
expensive blackbox function with multiple outputs while t : RK

! R is cheap, known, and
differentiable. The authors propose modelling r with a MTGP and then consider the EI over
current incumbent value, t⇤:

↵EI(x;D) = Ep(r|x,D) [max(t⇤ � t(r), 0)] .

Since the max(·) function is subdifferentiable (similar to the rectified linear operator com-
monly employed in neural networks), the gradients w.r.t. x can now be approximated with
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the re-parameterisation trick (Kingma et al. [2015]) given that t is known:

Ox↵EI(x;D) = E✏⇠N (0,I) [Ox max(t⇤ � t(µr + Lr✏), 0)]

⇡
1

S

SX

s=1

Ox max(t⇤ � t(µr + Lr
˜✏(s)), 0), (4.1)

✏̃(s) ⇠ N (0, I) ,

where µr and ⌃r = LrLT
r are the predictive mean and covariance of the surrogate model. We

can obviously map this formulation to our problem by letting the outer composition be the
distance to our target vector. This approach can be seen as a special case of the framework
of Wilson et al. [2017] where the authors propose to use the re-parameterisation trick for
any acquisition function that can be expressed as an integral. Prior work has also considered
intractable acquisition functions, e.g. Hennig and Schuler [2012] and Henrández-Lobato
et al. [2014] that use expectation maximisation to estimate the differential entropy at novel
inputs, and Snoek et al. [2012] and Wang et al. [2020] that consider the EI in parallelised
settings and use Monte Carlo sampling in a similar manner to (4.1). These works, however,
presupposes one-dimensional predictive densities.

This family of methods are prone to two sources of added complexity: Firstly, the repeated
evaluation of the acquisition function for different samples in each iteration when obtaining
asymptotically unbiased gradient estimates; and secondly, the fact that we are limited to em-
ploying first-order stochastic optimisation methods rather than more powerful quasi-Newton
based methods, such as BFGS (Nocedal and Wright [2006]).

These issues can be alleviated somewhat by instead using sample average approximation
(SSA) as proposed in the context of Bayesian optimisation in Balandat et al. [2020]. Rather
than drawing new base samples, {✏̃(s) ⇠ N (0, I)}Ss=1, at every iteration, the SSA approach
relies on a single set of samples that is maintained throughout optimisation of the acquisition
function. This has the dual benefits of requiring fewer base samples in total and turning
the maximisation of the acquisition into a deterministic optimisation problem. The caveat is
that reusing the same set of base samples results in the gradient estimation no longer being
unbiased, although theoretical convergence properties are provided in Balandat et al. [2020].

In this chapter we want to draw a distinction between our approach, that uses numerical
calculations and approximations to derive special purpose, tractable acquisition functions,
and the more general, sample based approaches reviewed above. We acknowledge that with
sufficient time, memory, and parallelisation, these approaches should be able to perform on
a par or better than the method we develop. However, they are not very compatible with
the theme of this thesis, which is the development of inference methods that are mindful of
resource utilisation. Another argument against the sample-based approaches is that they are
only applicable when the acquisition function can be written as an integral. This is not the
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case for e.g. LCB1 which would fall by the wayside when restricting attention to Monte
Carlo methods. For these reasons, we will use the standard Bayesian optimisation approach
discussed in the previous section as the baseline for comparisons against our method.

4.3 Efficient Bayesian optimisation for target vector
estimation

Our approach is conceptually straightforward: As in Pareto and Monte Carlo methods we
will use a surrogate model that learns the individual outputs of h. However, rather than a
sample based approximation of the resulting distance, we develop an analytical one based
on the noncentral �2. Given this new predictive distribution we then turn our attention to the
acquisition functions and derive closed-form expressions for EI and LCB. We will refer to
our proposed surrogate model as the `2 model.

4.3.1 Updating the distance distribution

Keeping with Gaussian processes as the main modelling tool, we assume that the observa-
tions, {yi = h(xi)}ni=1, are evaluations of a latent MTGP corrupted by independent Gaussian
noise:

y = f(x) + ✏, ✏ ⇠ N (µ, diag(�✏)) .

Since the target vector, y?, is constant, this effectively places a multivariate normal distri-
bution on the difference vector, � = h � y?, i.e. p(�) = N (� | µ,⌃) for some statistics
given by the GP (we will drop the conditioning on x and D in the rest of this section to avoid
notational clutter). Under this assumption we have a well-established distribution for the
Euclidean distance, d = k�k

2
2, namely the generalised �

2 (G�
2). However, as will be shown

in the following section we require closed-form expressions for, or approximations to, the
CDF and truncated mean in order to derive the EI and LCB acquisition functions, neither of
which are known for the GC�

2 distribution at the time of writing. In order to circumvent
this problem we replace the covariance matrix, ⌃, with a scaled identity matrix, I�2, which
turns p(d | x,D) into a scaled noncentral �2 (NC�

2) distribution.

The NC�
2 is defined as the distribution over a sum of independent, squared variables that

each follows a normal distribution with unit variance. I.e. if z = [z1, z2, . . . , zk]T is a vector
of uncorrelated random variables s.t. zj ⇠ N (µj, 1), then kzk22 ⇠ NC�

2(k,�) where k is
1We observe that Wilson et al. [2017] does propose an integral formulation of LCB but this only applies

when the predictive density is Gaussian. We do not know of a similar expression for distributions over distances.
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the degrees of freedom (i.e. the size of z) and � =
Pk

i=1 µ
2
i is the noncentrality parameter.

To map this to our problem, consider the distance scaled by �
�2:

d�
�2 =

 
kX

j=1

�2
j

!
�
�2 =

kX

j=1

(�j�
�1)2.

Here �j is the difference between the j’th entries of the output and target vector. Since
�j�

�1
⇠ N (µj�

�1
, 1) it follows that d��2

⇠ NC�
2(k,�) for � = �

�2
Pk

j=1 µ
2
j . And

since p(d) = p(g(d)) · |g0(d)| for monotonic function g, we have

p(d) = NC�
2(d��2

| k,�)��2
. (4.2)

We have yet to define the scaling parameter, �2, which was introduced to approximate the
predictive distribution over the difference vector, p0(�) = N (� | µ,⌃), with an isotropic
normal, p1(�) = N (� | µ, I�2). To specify a notion of optimality for �2, we will rely on the
KL divergence, KL [p0 k p1], which quantifies the amount of information lost by replacing
the “true” distribution, p0, with an approximate distribution, p1. When both distributions
are multivariate normals this expression is analytically tractable, which allows us to find the
minimum as a function of �2:

KL[p0 k p1] =

Z
p0(�) log

p0(�)

p1(�)
d�

=
1

2

✓
Tr((I�2)�1⌃)� k + log

✓
det I�2

det⌃

◆
+ (µ� µ)T (I�2)�1(µ� µ)

◆

=
1

2

 
�
�2

kX

j=1

�
2
j � k + k log �2

� log det⌃

!
.

, v(�2),

where [�2
1, . . . , �

2
k]

T = diag(⌃) are the marginal variances of p0. Taking the derivative w.r.t.
�
2 we have:

v
0(�2) = �

1

2�2

 
1

�2

kX

j=1

�
2
j + k

!
,

from which we can identify the (only) stationary point at �2 = 1
k

Pk
j=1 �

2
j . And since v is

convex and strictly positive it follows that this is the optimal setting of �2.

With �
2 set as the average variance across output dimensions, it turns out that our distance

distribution, p(d) = NC�
2(d��2

| k,�)��2, is unbiased. To see this, first note that the
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mean of a NC�
2 distributed variable is conveniently given by k + �. The expectation of d

under the scaled NC�
2 is therefore E[d] = E[d��2]�2 = (k + �)�2. If instead we let the

expectation distribute over the sum of squared residuals we have:

E[d] =
kX

j=1

E[�2
j ] =

kX

j=1

E[�2
j�

�2
j ]�2

j .

Since �2
j�

�2
j ⇠ NC�

2(1, µj�
�2
j ), we have E[�2

j�
�2
j ] = 1 + µj�

�2
j , and so:

E[d] =
kX

j=1

(1 + µ
2
j�

�2
j )�2

j =
kX

j=1

�
2
j +

kX

j=1

µ
2
j = (k + �)�2

.

In summary, we have constructed a new surrogate model that incorporates the individual
outputs of h in order to provide a more realistic predictive distribution over the target dis-
tance. In doing so we have made the concession of approximating the multivariate predictive
distribution over � = h � y? with an isotropic normal in order to obtain a NC�

2 distri-
bution for d. This simplification, however, has the benefits that it i. will allow us to derive
efficient expressions for the EI and LCB acquisition functions; ii. is unbiased w.r.t. the true
G�

2 distribution; and iii. is optimal as measured under the KL divergence. The advantage of
incorporating individual outputs of h in the surrogate model is demonstrated in Figure 4.2b.
Even though the distance measurements themselves are not very informative if taken in iso-
lation, we manage to obtain a good estimation of the true distance due to the well-modelled
individual outputs.

We also note that in the special case of h only having one output, our method is still ap-
plicable without any approximations being made, since in that case the G�

2 and NC�
2

distributions are identical.

4.3.2 Updating the acquisition functions

Once we have acquired a predictive distribution over the quantity that is being minimised,
we need to consider how such a distribution should be mapped to a querying utility by means
of an acquisition function. There are a plethora of interesting acquisition functions available
(see Shahriari et al. [2015] for an overview), but the two most widely used are arguably the
Expected Improvement (EI) and Lower Confidence Bound (LCB). We will restrict attention
to these for the remainder of this chapter.

EI considers the improvement that is expected to be achieved over the current incumbent,
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dmin:

↵EI(x;D) = Ep(d|x,D)[max(dmin � d, 0)] =

Z dmin

c

p(d | x,D)(dmin � d) dd,

where c is the minimum of the distribution domain. LCB is defined as the negative2 minimum
of a pre-specified confidence interval:

↵LCB(x;D) = �F
�1(q | d), (4.3)

where F�1 is the inverse CDF (or quantile function) associated with d, while q is the quantile
of the confidence interval. This expression can be interpreted as mapping a given input
location to the most optimistic outcome of said interval. Reducing the value of q results in
a larger confidence interval which in turn yields a more exploratory search strategy. When d

is normally distributed, the expression can be straightforwardly written as:

↵LCB(x;D) = �µ� ��1(q)�,

where µ and � are the mean and standard deviation for d and � is the standard normal CDF.
Adopting the conventional notation we define � := ���1(q).

In order to derive these functions under the scaled NC�
2 distribution we will require three

statistical quantities: The expected value for a truncated domain, E[d | d < dmin]; the CDF,
F : [0,1] ! (0, 1), associated with d; and the quantile function, F�1 : (0, 1) ! [0,1].
Starting with the CDF, we use the results of Sankaran [1959] where it is shown that given
t ⇠ NC�

2(k,�) we can make a transformation, z = g(t), such that z is approximately
normally distributed. This transformation is specified as follows:

z = g(t) =

✓
t

k + �

◆`

, ` = 1�
r1r3

3r22
, rs = 2s�1(s� 1)!(k + s�),

resulting in z approximately following N (z | ⌫, ⇢
2) with the statistics given by:

⌫ = 1 + `(`� 1)

✓
r2

2r21
� (2� `)(1� 3`)

r
2
2

8r41

◆
,

⇢ =
`
p
r2

r1

✓
1�

(1� `)(1� 3`)

4r21
r2

◆
.

The approximation accuracy of this transformation is illustrated in Figure 4.4. Since the CDF
is invariant for monotonic mappings we have F�,k(b) ⇡ �

⇣
g(b)�⌫

⇢

⌘
, where we let F�,k be the

CDF for NC�
2(k,�). This immediately yields an approximation for the quantile function,

2The negation is applied to frame the acquisition function as an objective to be maximised.
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Figure 4.4: Example of the transformation z = g(t), where p(t) = NC�
2(t | 3, 8) and

p(z) ⇡ N (z | ⌫, ⇢
2). The left histogram shows the empirical distribution based on 215

samples from NC�
2(t | 3, 8) while the right histogram is based on the transformation of

those samples (and not samples from the true normal distribution). We see a very close
correspondence between the approximate and the exact normal.

F
�1
�,k(q) ⇡ g

�1 (��1(q)⇢+ ⌫). Lastly, we will use the results of Marchand [1996] in which
the following expression for the truncated mean is derived:

E[t | t < b] = k · Fk+2,�(b) + �Fk+4,�(b).

We are now ready to specify ↵EI and ↵LCB under p(d | x,D) ⇡ NC�
2(d��2

| k,�)��2.
Defining t , d�

�2 such that t ⇠ NC�
2(k,�) and ⌘ , dmin�

�2 we have:

↵EI(x;D) =

Z dmin

0

p(d | x,D)(dmin � d) dd

=

Z dmin

0

NC�
2(d��2

| x,D)��2(dmin � d) dd

=

Z ⌘

0

NC�
2(t | x,D)��2(dmin � t�

2) dt

= ⌘Fk,�(⌘)� E[t | t < ⌘]. (4.4)

For LCB we first note that F (d) = Fk,�(d��2) ⇡ �
⇣

g(d��2)�⌫
⇢

⌘
. Solving for F (d) = q we

obtain

d = F
�1(q) ⇡ g

�1(��1(q)⇢+ ⌫) =
p̀
��1(q)⇢+ ⌫ · (k + �)�2

.

And substituting in � = ���1(q) to match the signature of the Gaussian LCB, we arrive at

↵LCB(x;D, �) = �

p̀
⌫ � �⇢ · (k + �)�2

. (4.5)

Note that both (4.4) and (4.5) are closed-form computable and differentiable. The latter
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Figure 4.5: The acquisition functions calculated for the inferred distance distribution from
Figure 4.2b, normalised for comparison. We evaluate ↵LCB both for � = 0.5 (least explo-
rative) and � = 5.0 (most explorative).

quality is especially important when searching over a large domain in X where we want to
leverage quasi-Newton optimisation techniques to efficiently identify maxima.

Figure 4.5 shows the acquisition functions when applied to the example from Figure 4.2b.
We see that a larger �-value for ↵LCB results in more utility being assigned to the uncer-
tain area around 0. Of the three acquisition functions, ↵EI seems to be the least explorative.
However, they all agree on x = �2.8 as the best location for the next query.

4.4 Experiments

In this section we evaluate our method on synthetic benchmark data as well as two real-world
problems. We wish to determine whether the proposed `2 surrogate model, that incorporates
individual outputs of the blackbox function and infers a more appropriate predictive distri-
bution, leads to significantly better performance for the target vector estimation task.

As a baseline we use the “standard” Bayesian optimisation approach where the distance is
modelled with a single-output GP (see Figure 4.2 for an illustration of the difference be-
tween the two models). We consider both EI and LCB for each surrogate model, yielding
4 combinations in total. The metric we use for performance is simply the smallest distance
achieved after a pre-determined number of iterations. For all models we use a RBF kernel
with automatic relevance detection (ARD) and a Gaussian likelihood. The hyperparame-
ters (likelihood noise, kernel lengthscales, and kernel variance) are optimised with type II
maximum likelihood estimation between queries to the blackbox function. The exploration
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Figure 4.6: Distribution over smallest distances obtained after 30 iterations with 8 repeti-
tions. We denote the proposed surrogate model as `2 and the baseline as Std. The body of
the box is the interquartile range, the whiskers indicate the minimum and maximum, and the
median is marked by the vertical line in each box. The green boxes are those for which the
median is lowest for the given function.

parameter for the LCB acquisition function is fixed to � = 2 for both surrogate models.

Synthetic functions

We first test our approach on 14 synthetic functions, 9 of which have a single output while the
remaining have between 2 and 6 output dimensions. Refer to Appendix C for further details.
These functions are commonly used for benchmarking optimisation methods where the goal
is to either locate a global minimum/maximum (when the function has a single output) or
identify the Pareto frontier (when the function has multiple outputs). To cast the problem as
target vector estimation we first sample an output, y? = h(x?), at random from the given
objective function, and then seek to minimise the distance to y?. We initialise with 5 points
selected by Latin hypercube sampling, run the optimisation procedure for 30 iterations, and
report on the lowest distance obtained over the course of optimisation. This is repeated 8
times for each combination of surrogate model, acquisition function, and objective function
while keeping y? fixed.



4.4. Experiments 63

Figure 4.7: Sound processing pipeline for our synthesizer. Two oscillators, generating resp.
sinusoidal and saw waves, are first mixed. We then saturate the signal, apply white noise,
and filter out low and high frequencies. For each step of this pipeline we associate a free pa-
rameter that can be adjusted to shape the sound. The objective is to find the parameterisation
that reproduces a target sound.

The benchmark functions are all deterministic so in order to induce stochasticity we add nor-
mally distributed noise to the output of all evaluations, scaled by the output range. Specifi-
cally we use

y = h(x) + ✏, ✏ ⇠ N (0, diag(v)) , v = [�(h1), �(h2), . . . , �(hk)]
T
· 10�2

,

where �(hj) is the difference between the highest and the lowest value of dimension j from
10,000 random evaluations of h.

The results are summarised in Figure 4.6 where we show the distribution over minimum dis-
tances obtained for each method. Our surrogate model obtains the best median distance for
all but one objective function, and we generally see best performance for the LCB acquisition
function.

Audio target estimation

We next consider a problem from the field of music production where the aim is to reproduce
a target sound with a musical synthesizer (Horner et al. [1993], Garcia [2001], Lai et al.
[2006], Heise et al. [2009]). This might be relevant when a musician replaces their old
synthesizer with a new model that has a different sound engine and/or user interface. The
task of recreating all previously programmed sounds before the next concert is a process that
can be both tedious and time-consuming when done manually.

We can frame this as target vector estimation by first projecting the sounds into some la-
tent space in which Euclidean distances are representative of perceptual similarity. Although
we will use a simple deterministic representation for our experiment, we note that more ad-
vanced methods have been considered for learning an appropriate representation space for
sound perception using e.g. deep belief networks (Hamel and Eck [2010]), autoencoders
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Figure 4.8: Optimisation trace for the audio estimation experiment. For each method we
show the incumbent distance over 30 iterations, aggregated across 8 repetitions. The lines
show the median distance while the shading is the interquartile range.

(Mor et al. [2018]), or siamese networks (Manocha et al. [2018]). In this setting, X is the set
of configurable synthesizer parameters, Y is the set of projected sounds, and our blackbox
function h : X ! Y comprises the process of generating a sound with the synthesizer and
projecting it into Y .

As a simple use case we programmed a synthesizer containing typical audio processing op-
erations, depicted in Figure 4.7. The output sound was projected from the discrete spectral
domain into a 10-dimensional representation obtained by principal component analysis. We
then followed the same procedure as for the synthetic experiments by first sampling a random
configuration of the synthesizer and using the resulting sound as the target for each method
to reproduce. The optimisation trace over 8 repetitions are showed in Figure 4.8. We see
a significantly faster convergence for the `2 model and again a superior performance when
relying on the LCB acquisition function.

Topography design for stem cell development

Lastly, we turn to the field of bioengineering where it has been widely demonstrated that
morphological changes can be induced in stem cell material through the manipulation of
nanotopographies. By placing cells on a surface with nanopits of varying sizes and geo-
metric configurations it is possible to promote different gene expressions throughout cell
development. This line of research is relevant both for gaining insights about the biological
processes, that account for the stem cell development, and for generating cell tissue for med-
ical applications, e.g. when producing biological implants or replacing cells after tumour
removal.
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Figure 4.9: Topography and qPCR measurements for 3 random samples. The top row shows
the 5 parameters that constitute the search domain: pit diameter, vertical spacing, horizontal
space, row offset, and noise. The second row depicts the corresponding topography designs
(these are not shown explicitly to the model). The third row are the qPCR measurements for
14 genes pertaining to the given topography.

We consider the task of identifying a nanotopography that reproduces some prespecified set
of gene expressions. Following the approach of Cutiongco et al. [2020] we let the topogra-
phy be determined by 5 parameters controlling the resp. vertical and horizontal spacing, the
diameter of the pits, the offset between subsequent rows, and the amount of uniform noise
added to the pit coordinates. The gene expressions are encoded as a 14-dimensional vector of
quantitative Polymerase Chain Reaction (qPCR) values. See Figure 4.9 for example topogra-
phies and their corresponding qPCR measurements. As such, our blackbox function is the
entire process of printing the nanotopography, letting the stem cells undergo morphological
changes, and then measuring the qPCR values. This usually takes 2 to 4 weeks which mo-
tivates the need for an informed search in order to reduce the number of iterations required
for identifying an appropriate topography.

Conducting the full experiment for a satisfactory number of iterations and repetitions would
potentially take years, so we instead consider a post hoc simulation based on 76 samples col-
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Figure 4.10: Results for the topography experiment. (a) The incumbent distance over iter-
ations, aggregated across 20 repetitions. The solid lines are the medians and the shadings
are the interquartile ranges. (b) The distribution of number of required iterations before the
target topography was identified. The boxes are the interquartile ranges, the whiskers are the
minimum and maximum values, and the vertical line within each box is the median.

lected for Cutiongco et al. [2020]. We first select a target qPCR vector, sampled at random
from the 76 observations, and present the surrogate model with 5 initial topography/qPCR
pairs, again chosen at random. In each iteration the surrogate model now selects one topog-
raphy from the remaining, unseen observations, and we terminate once the target topography
is found. The experiment was repeated 20 times for each condition.

Note that, in contrast to the previous experiments, we do not actually optimise over acquisi-
tion values in the input space in each iteration; instead we evaluate the acquisition function
for all unobserved topographies and select the maximum. This discretisation is of course not
ideal, but we argue that the benefits of a more effective search in the discrete domain should
carry over to the realistic setting of searching over a continuous topography space.

The results are shown in Figure 4.10. To the left we show the aggregated optimisation traces
which demonstrate consistently quicker convergence for the `2 surrogate model. To the right
we show the distribution of the number of required iterations before the target topography
was found. As for the other experiments, the `2 surrogate model significantly outperforms
the standard GP, and we get slightly better results when using the LCB acquisition function.

4.5 Conclusion and future work

In this chapter we considered the task of estimating a target vector under the Bayesian op-
timisation framework. We showed that the problem is compatible with standard Bayesian
optimisation by treating the distance between target and function output as an arbitrary cost
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to be minimised. However, this approach relies on overly simplistic assumptions about the
system being modelled which in turn negatively impacts the overall optimisation procedure.
Specifically, by employing a standard GP to model the distance we discard potentially valu-
able information about the multiout blackbox function whilst enforcing an inappropriate
predictive distribution.

To correct these deficiencies we proposed to update the modelling assumptions of the surro-
gate model such that all outputs are explicitly incorporated. We developed approximations
for the resulting predictive posterior and two of the most widely used acquisition functions.
The result is a demonstrably more data efficient optimisation procedure that still allows for
second-order numerical optimisation of the acquisition functions and does not rely on com-
putationally demanding Monte Carlo methods.

Future work on this optimisation procedure may look at improving our approximation of
p(d | x,D), which in its current form ignores correlations between outputs in the MTGP sur-
rogate model. While the true distance distribution is known to be a generalised �

2 its CDF,
quantile function, and truncated expectation have yet to be derived at the time of writing.
This prohibits the development of the EI and LCB acquisition functions, although alterna-
tives could be considered. Our approach has already been applied for quantum dynamics
(Deng et al. [2020]) and rainfall simulations (Hesslow [2020]), but there are still many use
cases, some of which are listed in the introduction, that fit our problem formulation and
could be interesting to revisit using our framework. In particular, we are currently testing
our method in approximate Bayesian computation (Järvenpää et al. [2018]) to speed up the
calibration process of costly simulations.



86

Chapter 6

Conclusion and discussion

This thesis has examined the role of assumptions in Gaussian processes with respect to re-
source utilisation. We have cast both the model specification and the accommodating in-
ference scheme as a codification of a set of (sometimes unacknowledged) assumptions that
bound the potential flexibility of the model and determine the resource efficiency in terms
of training data and computational requirements. Much recent research has been devoted to
adjusting these assumptions with the aim of obtaining more flexible models that scale well to
large datasets and take full advantage of contemporary computing power. This thesis looks
in the opposite direction and claims that identifying and revising one’s assumptions can lead
to models that perform drastically better when data and computational resources are scarce.

In Chapter 3 we treated the main assumption of the sparse variational Gaussian process
(SVGP) framework, namely that the true posterior process can be sufficiently approximated
by conditioning on a deterministically chosen set of inducing points. We argued that this
assumption is not wholly compatible with the philosophy of Bayesian nonparameterics, since
it bounds the potential capacity and complexity of the model rather than letting both grow
with the amount of data. Furthermore, it forces the model designer to make a deterministic
choice about a crucial variable – the number of inducing points – rather than associating it
with uncertainty. We solved these issues by expanding the hierarchical model to include the
sampling of inducing points from a prior point process. In effect, the selection of inducing
points became part of the inference rather than the model design, yielding a new paradigm
for managing computational complexity that is applicable for both standard SVGP regression
and more exotic variants such as deep Gaussian process and latent variable models.

In Chapter 4 we focused on the problem of target vector estimation under the Bayesian
optimisation framework with a Gaussian process acting as surrogate model. Here, a naive
approach encodes a set of assumptions about the blackbox function that results in valuable
information being lost, and a predictive distribution that is ill-suited for reasoning about dis-
tances. We showed that by letting the surrogate model align more closely with the blackbox
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function, and by making the necessary updates to the acquisition functions, we obtain a
significantly more efficient optimisation procedure.

Finally, Chapter 5 treated a fundamental assumption of supervised learning in the Gaussian
process framework, namely that the inputs are sufficient for explaining the outputs. We
demonstrated that relaxing this assumption in the context of preference learning leads to a
model that allows for transferring information between users through latent features, and
for the derivation of complex posterior distributions pertaining to any given user’s utility
function. When compared to benchmark methods we then require less data to learn how
individual users assign utility, and how different users relate to each other in terms of prefer-
ence. The approach draws many parallels to various multitask Gaussian process models but
also unifies ideas from the areas of data imputation and density estimation.

The main contribution of this thesis is the examination and modification of assumptions that
are problematic in terms of efficient resource exploitation within the three research areas out-
lined above. In a broader perspective, the thesis pushes back against the blackbox approach
towards machine learning where one’s model is treated as an opaque oracle whose inner
workings are poorly understood and of secondary interest. While this strategy is not without
merit, we argue that many tasks, for which probabilistic modelling has the potential to prove
very useful, will benefit from incorporating strong assumptions derived from expert knowl-
edge, prior empirical evidence, or just plain common sense. The capacity for incorporating
such insights in the modelling in an intuitive manner has always been a prime advantage
of Gaussian processes. At the same time, it yields an impetus for actually dissecting one’s
model and considering, whether counterproductive assumptions have been inadvertently in-
cluded. This is especially pertinent as ever more complex models are constantly being de-
veloped, for which it might be easy to lose sight of the underlying assumptions that precede
any inference task. We hope to have shown in this thesis that identifying and revising such
assumptions leads to Gaussian process models that can do more with fewer resources.

6.1 Future work

As argued in the introduction, we do not expect that advancements in computing power
and the ever increasing amount of training data will render parsimonious models obsolete.
Rather, the need for low capacity devices and learning from esoteric data sources should en-
courage more interest in models such as Gaussian processes where strong prior assumptions
may enable small-scale learning. For the topics treated in this thesis in particular, we see the
following potential paths of research:

• Complexity reduction: Within the field of neural networks the need for managing
the computational complexity of one’s model has long been acknowledged. This
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has prompted data-driven methods for deriving lean models, e.g. probabilistic prun-
ing (Dikov and Bayer [2019]) and architecture search through Bayesian optimisation
(Le Goff et al. [2020]). Concurrently, the interest in increasingly elaborate Gaussian
processes modelling, e.g. deep Gaussian processes, is on the rise, and these rely pri-
marily on the inducing point methodology. We therefore advocate a general purpose
approach for adapting the complexity of such models through the concepts introduced
in Chapter 3. For specific avenues of advancements we point to i. the revision or
complete abandonment of score function estimation as the underlying optimisation
method, due to the high variance in gradient estimation; and ii. the introduction of
more flexible inference schemes, e.g. using a determinantal point process as the pro-
posal distribution, or using Monte Carlo sampling for estimating the posterior.

• Bayesian optimisation: The interest surrounding Bayesian optimisation is not set to
disappear soon due to its almost universal applicability. Especially its role in auto-
mated machine learning, or AutoML (He et al. [2021]), has linked the optimisation
framework inextricably to the continued development of neural networks, meaning
that research interest is bound to remain high in the foreseeable future. In terms of
methodological advancements, there are multiple avenues currently being explored
such as incorporating representation learning in the optimisation (Gómez-Bombarelli
et al. [2018]) and using observations at multiple fidelities to inform a holistic surrogate
model (Imani et al. [2019], Cutajar et al. [2019]). We believe that such advancements
calls for a reexamination of the assumptions placed on the blackbox function to avoid
the pathological behaviour similar to what we identified for the target vector estimation
task.

• Latent feature learning: Finally, for the joint learning of a universal function and la-
tent input features that we considered in Chapter 5, we believe there is much ground to
be covered outside the field of preference learning. For instance, the stem cell experi-
ment that we conducted in Chapter 4 relies on a surrogate model which represents the
biological process that a cell undergoes from nanotopography to gene expressions. We
are currently investigating whether datasets obtained from multiple cell types, which
are otherwise incongruent, can be fused by including latent features that explain their
discrepancy. As in the preference learning scenario, this would serve the orthogonal
purposes of increasing the predictive capacity for each individual cell type, and yield-
ing insights into which cell types react similarly to various topographies.
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J. Fürnkranz and E. Hüllermeier. Pairwise preference learning and ranking. In European
Conference on Machine Learning, pages 145–156. Springer, 2003.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, pages
1050–1059. PMLR, 2016.

R. Garcia. Growing sound synthesizers using evolutionary methods. In ALMMA 2002:
Artificial Life Models for Musical Applications Workshop, 2001.

R. Garnett, M. A. Osborne, and S. J. Roberts. Bayesian optimization for sensor set selection.
In Proceedings of the 9th ACM/IEEE International Conference on Information Processing
in Sensor Networks, pages 209–219, 2010.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian
Data Analysis. CRC press, 2013.

Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):
452–459, 2015.

J. K. Ghosh and R. Ramamoorthi. Bayesian nonparametrics. Springer Science & Business
Media, 2003.

M. N. Gibbs. Bayesian Gaussian processes for regression and classification. PhD thesis,
Citeseer, 1998.

A. Girard and R. Murray-Smith. Gaussian processes: Prediction at a noisy input and applica-
tion to iterative multiple-step ahead forecasting of time-series. In Switching and Learning
in Feedback Systems, pages 158–184. Springer, 2005.

P. Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer Science
& Business Media, 2013.

V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello. A 240 g-ops/s mobile copro-
cessor for deep neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 682–687, 2014.
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Appendix A

Diminishing gradients for inducing
inputs

In Chapter 3, Section 3.2, we argued that when an inducing input, zj , moves away from the
observed data, as measured through the kernel, the gradient for said input w.r.t. the expected
log likelihood diminishes:

lim
(zj ,X)!0

@

@zj
Eq(f |X,Z) [log p(y | f)] = 0.

To see this, first note that the function evaluations are conditionally independent given the
inducing points, as shown in Section 2.7.1. Consequently, the partial derivative for zj dis-
tributes as follows:

@

@zj
Eq(f |X,Z) [log p(y | f)] =

@

@zj

NX

i=1

Eq(fi|m,S) [log p(yi | fi)]

=
NX

i=1

Z ✓
@N (fi | µi, �

2
i )

@(µi, �
2
i )

·
@(µi, �

2
i )

@zj

◆
log p(yi | fi) dfi,

(A.1)

where µi and �
2
i are the variational statistics for the i’th function evaluation:

q(fi | m,S) = p(fi | u,X,Z)q(u | m,S,Z) du

= N
�
fi | µi, �

2
i

�

µi = (xi,Z)
T
�, �

2
i = (xi,xi)� (xi,Z)

T
�(xi,Z),

� = K�1
MMmT

, � = K�1
MM(KMM � S)K�1

MM .
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Considering these quantities as a function of a specific inducing input, zj , yields the relations:

µi(zj) / (xi, zj)[�]j, �
2
i (zj) / (xi, zj)

MX

j0=1

(xi, zj0)[�]j,j0 .

Now consider the case of moving away zj from all training data such that (xi, zj) ! 0

for any xi. The inducing covariance matrix, KMM , is still guaranteed to be invertible so its
condition number, ↵, stays bounded. This, in turn, upper bounds all entries of K�1

MM since:

kK�1
MMk1 =

↵

kKMMk1
,

where kKMMk1 = maxk,`((zk, z`) is not affected by moving zj . Consequently, [�]j

and [�]j,j0 are bounded and so the mean and variance functions become constant in zj for
(xi, zi) = 0, implying that the partial derivative tends towards 0:

lim
(zj ,xi)!0

@(µi, �
2
i )

@zj
= 0.

This is then the case for all summands in (A.1), thereby proving the claim.
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Appendix B

Re-parameterisation trick for the
Poisson Point Process

This section develops a method for using the re-parameterisation trick for learning the pa-
rameters, �, of the variational Poisson point process (PPP):

q�(Z) =
Y

zk2Z

q(zk)
Y

zk /2Z

(1� q(zk)) =
Y

zk2Z

�k

Y

zk /2Z

(1� �k).

The method uses the framework of Maddison et al. [2017] that presents a continuous relax-
ation for multinomial variables. A special case is the binary variable, b ⇠ Bernoulli(�) with
probability � 2 (0, 1), which can be rewritten as

b ⇡ �(`(�)), `(�) =
log �� log(1� �) + log u� log(1� u)

�
, u ⇠ Uniform(0, 1).

Here, � is the logistic function and � > 0 is a temperature parameter that determines the
degree of the relaxation. We then have the approximation:

Ep�(b)[g✓(b)] ⇡ Ep(u)[g✓(�(�))],

rendering the optimisation of (�, ✓) amenable to the re-parameterisation trick.

To apply this method for our point process estimation, we first introduce a binary vector,
b 2 [0, 1]K , that indicates which inducing points are being sampled from Z?, i.e. bk = 1 ,

zk 2 Z. Next, we introduce a new objective function, L̂(Z?;b), that relies on this binary
vector as well as the entire candidate set. This function is developed in the following section
and will ensure that L̂(Z?;b) = L(Z). Given a distribution over binary vectors, q�(b),
which awards the same probabilities to subsets as our point process, q�(Z), it then follows
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that:

Eq�(Z) [L(Z)] = Eq�(b)

h
L̂(Z?;b)

i
. (B.1)

When q�(Z) is a PPP, the equivalent distribution over b is:

q�(b) =
KY

k=1

�
bk
k (1� �k)

1�bk .

Substituting this into (B.1), we have:

Eq�(b)[L̂(Z
?;b)] = Eq(b1)[Eq(b2)[· · · [Eq(bK)[L̂(Z

?;b)]] · · · ]],

where q(bk) = Bernoulli(�k). This now allows for the re-parameterisation trick to be applied
for each of the binary expectations.

Masking the bound

The masked bound, L̂(Z?;b), is obtained by updating the existing kernel function, , to the
following:

̂b(x,x
0) = (x,x0) ·�(x,b) ·�(x0

,b), if x 6= x0

̂b(x,x) = �(x,b)((x,x)� 1) + 1,

�(x,b) =
MY

j=1

b
�(x�zj)
j .

Despite the somewhat convoluted expressions, the above update is quite straightforward. It
simply replaces the (i, j) entry in the covariance matrix with a value, v, if either bi or bj is 0.
When the entry is on the diagonal, i.e. i = j, we set v = 1; otherwise we set v = 0. This
operation can be carried out efficiently as a masking operation of the covariance matrix.

The effect of the above modifications is that the masked inducing points, for which bj = 0,
are factorised into a standard multivariate normal distribution. That is, if we denote the
masked points as uC , and unmasked points as u = f(Z?) \ uC , we have:

p(y, f ,u,uC | X,Z?) = p(y,u, f | X,Z)p(uC), p(uC) = N (uC | 0, I) .

The kernel remains PD under the modifications, meaning that the new prior, GP(0, ̂b), is
still a valid Gaussian process. Using the same masking operation for the variational distribu-
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tion, we now have:

L(Z?;b) =

Z
q(f ,u,uC) log

p(y, f ,u,uC | X,Z?)

q(f ,u,uC)
d[f ,u,uC ]

=

Z
q(f ,u)p(uC) log

p(y, f ,u | X,Z)����
p(uC)

q(f ,u)����
p(uC)

d[f ,u,uC ]

= L(Z).

As such, we have an equivalent expression for L(Z) that enables the application of the re-
parameterisation trick.
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Appendix C

Experimental setups

C.1 Complexity reduction in sparse Gaussian processes

C.1.1 Procedure for synthetic data

In the experiment for synthetic data we considered three data characteristics:

1. observation noise,
2. kernel smoothness,
3. input clustering.

Each were evaluated with different “intensity” levels to ascertain the interaction between
characteristic and informativeness of the inducing points. For each combination of charac-
teristic and intensity, we sampled 500 observations from the following, generative model:

x ⇠ p(x),

f ⇠ GP(0,(x,x0; �)),

y ⇠ N
�
f , I�2

�
.

Here,  is a RBF kernel with variance 1.0 and lengthscale �. To generate data for character-
istics 1 and 2 we set p(x) to a uniform distribution over [0, 100]. The intensities were then
given by � for characteristic 1 and � for characteristic 2. To generate data for characteristic
3 we let p(x) be a homogeneous mixture of 5 normal distributions, {N (uj, �

�1)}5j=1, with
equidistant means distributed over the input domain, X = [0, 100]. The intensity was then
given by the shared precision, �; i.e. higher values yields more clustering. As � ! 0 the
mixture tends towards a uniform distribution. The default values for the intensity parameters
were � = 0.1, � = 1.0.
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C.1.2 Procedure for real-world data

For the real-world data we corrupted the original outputs, y, with additive, standard Gaussian
noise scaled by a constant factor:

ŷ = y + ✏ · �̂(y) · v, ✏ ⇠ N (0, 1) ,

where �̂(y) is the empirical standard deviation of the observed outputs. The constant v 2

[0, 1) determines the level of corruption and is the value reported in Figure 3.7. The parame-
ter, ↵, that yields the sparsity level imposed by the point process prior was manually chosen
for each dataset. This is because the datasets vary widely in size and more observations will
tend to diminish the influence of the prior. The prior configurations and noise levels are listed
in Table C.1.

Dataset N D Noise levels ↵
UCI Concrete 1030 8 [0.0, 0.2, 0.3, 0.4] 0.01
UCI Energy 768 8 [0.0, 0.05, 0.1, 0.15] 0.05
UCI Kin8nm 8192 8 [0.0, 0.2, 0.3, 0.4] 0.1
UCI Protein 45730 9 [0.0, 0.3, 0.5, 0.7] 0.2

Table C.1: Specifications for the informativeness experiment carried out on real-world
benchmark datasets.

C.2 Estimating a target vector through Bayesian op-
timisation

This section lists the 14 benchmark functions used in the experimental section.

Rosenbrock (2 inputs, 1 output)

y = (1� x1)
2 + 100(x2 � x

2
1)

2

x1 2 (0, 5)

x2 2 (0, 3)

Ackley (2 inputs, 1 output):

y = 20� 20 exp

✓
�0.2

q
0.5(x2

1 + x
2
2

◆
+ e� exp (0.5(cos 2⇡x1 + cos 2⇡x2))

x1, x2 2 (�30, 30)
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Bohachevsky (2 inputs, 1 output):

y = x
2
1 + 2x2

2 � 0.3 cos 3⇡x1 � 0.4 cos 4⇡x2 + 0.7

x1, x2 2 (�100, 100)

Griewank (2 inputs, 1 output):

y = 1 +
1

4000
(x2

1 + x
2
2)� cos x1 · cos

x2
p
2

x1, x2 2 (�600, 600)

H1 (2 inputs, 1 output):

y =
sin(x1 �

x2
8 )

2 + sin(x2 +
x1
8 )

2

p
(x1 � 8.6998)2 + (x2 � 6.7665)2 + 1

x1, x2 2 (�100, 100)

Himmelblau (2 inputs, 1 output):

y = (x2
1 + x2 � 11)2 + (x1 + x

2
2 � 7)2

x1, x2 2 (�6, 6)

Rastrigin (2 inputs, 1 output):

y = 20 + x
2
1 � 10 cos 2⇡x1 + x

2
2 � 10 cos 2⇡x2

x1, x2 2 (�5.12, 5.12)

Schaffer (2 inputs, 1 output):

y = 4

q
x
2
1 + x

2
2 ·


sin2

✓
50 10

q
x
2
1 + x

2
2

◆
+ 1

�

x1, x2 2 (�100, 100)

Schwefel (2 inputs, 1 output):

y = 837.9658� x1 sin
p
|x1|� x2 sin

p
|x2|

x1, x2 2 (�500, 500)
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BNH (2 inputs, 2 output):

y1 = 4(x2
1 + x

2
2)

y2 = (x1 � 5)2 + (x2 � 5)2

x1 2 (0, 5)

x2 2 (0, 3)

SRN (2 inputs, 2 output):

y1 = 2 + (x1 � 2)2 + (x2 � 2)2

y2 = 9x1 � (x2 � 1)2

x1, x2 2 (�20, 20)

OSY (6 inputs, 2 output):

y1 = �25(x1 � 2)2 � (x2 � 2)2 � (x3 � 1)2 � (x4 � 4)2 � (x5 � 1)2

y2 =
6X

i=1

x
2
i

x1, x2, x6 2 (0, 10)

x3, x5 2 (1, 5)

x4 2 (0, 6)

TwoBarTrussDesign (3 inputs, 2 output):

y1 = x1

q
16 + x

2
3 + x2

q
1 + x

2
3

y2 = max

 
20
p

16 + x
2
3

x1x3
,
80
p
1 + x

2
3

x2x3

!

x1, x2 2 (0, 0.001)

x3 2 (1, 3)
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WeldedBeamDesign (4 inputs, 2 output):

y1 = 1.10471 · x2
1 · x3 + 0.04811 · x4 · x2 · (14 + x3)

y2 =
2.1952 · x2

x
3
4

x1, x2 2 (0.125, 5)

x3, x4 2 (0.1, 10)
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