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Abstract 

Species movement, an animal’s ability to change its location, is a fundamental property of 
life, and animals have diverse physical and behavioural attributes that are believed to 
enhance efficient travel and optimization of resources. Quantifying movement energetics and 
returns to examine these ideas over relevant time- and space scales is, however, problematic. 
In this thesis, I set out to develop and use advanced biologging tag technology to determine 
a second by second account of the behaviour and location of tagged animals to unveil where 
and when key behaviours are occurring, to answer key questions about feeding and social 
behaviour, allocation in space and the energetic costs associated with different movement 
decisions.   Specifically, I used accelerometers, magnetometers, temperature and pressure 
sensors with GPS units in animal-attached loggers to examine key questions linking 
movement, energetics and feeding and aggressive behaviours in 3 wild- and 3 domestic 
ungulate species in mountainous landscapes in the French Alps, monitored for periods 
between 30 and 200 days. To obtain high-frequency data using electronic devices for long 
periods, I had to first design new housings to attach safely the loggers to the animals and 
develop methods for weather proofing the loggers. I designed, using CAD-designa and 3D 
printing, different housing types and used ‘Guronic’ resin to shockproof and waterproof 
circuit boards. This allowed me to obtain logging data for up to 200 days. To give a location 
per second but stay within ethical weight restrictions, the dead-reckoning method to 
reconstruct fine-scale movements between low resolution GPS fixes was adopted. To improve 
the accuracy of dead-reckoning estimates I improved the method using behavioural definition 
to identify real moves (steps, grazing, moving) and distinguish it from resting, grooming and 
other behaviours not leading to a displacement of the animal in space, allowing to selectively 
filter data to be dead-reckon.   Using the data collected, I showed that central-place-based, 
but free-roaming, domestic goats exhibited efficient space-use by having time-dependent 
fanning out from their central place, which reduced local resource depletion. Models 
predicted that area-use increased logarithmically with herd size and duration. These finding 
could lead to improved livestock management in multi-functional alpine landscapes, to 
reduce the risk of over-grazing and manage interactions with other grazing species and 
clonflicts with other landuse needs. The goat grazing patterns were compared to those of wild 
ibex and revealed goats to be more adaptable, with the ibex being particularly vulnerable to 
changes in temperature, exacerbated by them preferring steep slopes with associated high 
metabolic costs and heat generation during ascent. These results could further inform 
management decisions regarding the survival of alpine ibex under projected climate change. 
Furthermore I developed new biologging approaches to investigate social interactions, 
specifically head-clashing in both species. This agonistic behaviour was associated with 
competition and the rut in ibex and was quantified using methods first developed for the 
domestic goat, where the behaviour appeared to relate primarily to competition for food. 
Using the goat as a surrogate species, the behaviour could be identified and mapped for the 
ibex, which highlighted areas and times important for head-clashing, including drastic 
increases during the rut. Finally, movement data and proxies for energy expenditure from 
three domestic species (sheep, cows and goats) and three wild species (ibex, mouflon and 
chamois) was utilised to produce species-specific energy landscapes across the terrains they 
used. This indicated that different anatomies and behaviours resulted in different, species-
specific, movement costs for specific topographies and habitats. Energy use for travel across 
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heterogeneous space depends, therefore, on the species concerned. These findings thus 
highlight the importance to consider that species with different life histories and ecological 
needs use landscapes in contrasting ways and my results can provide a more refined evidence 
base for the management and conservation of these species in alpine grasslands. These 
biologging approaches allow now also to address further management issues such as the 
responses to disturbances from tourists (hiking, skiers, etc.) and even reveal how species are 
more susceptible to climate change. 
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Chapter 1 

Introduction  
 

Animal movement, or more properly ‘animal travel’ (because movement does not necessarily 

involve displacement), is a fundamental property of a species’ biology, with profound 

implications for survival (Nathan et al. 2008). It ranges from a single step to a lifetime track 

(Chapinal et al. 2009, Hansson et al. 2014, Bastille-Rousseau et al. 2017, Parton et al. 2017, 

Mckinnon and Love 2018) and its convolutions, repetitions and reasons for taking the forms 

that it does have been the subject of considerable investigation (Armsworth and Roughgarden 

2005, Bartumeus et al. 2005, Weimerskirch et al. 2007, Barthelemy et al. 2008, Nouvellet et 

al. 2009, Hills et al. 2013). Judicious movement is critical for most animals (and a very few 

plants) and is pivotal for enhancing lifetime reproductive success as animals react 

appropriately to external factors such as the likelihood of predation (Beyer et al. 2016, Pike 

et al. 2018), foraging opportunities (Kacelnik and Houston 1984, Bergman et al. 2001) or 

increased chances of finding a mate (White et al. 2011, Chirichella et al. 2014). But movement 

comes with a cost, both in terms of time and in the energetics associated with overcoming 

physical forces such as gravity, drag, and friction (Armstrong et al. 1983, Wall et al. 2006, 

Vandenabeele et al. 2015, Kay et al. 2019). And the rate at which this cost is implemented 

defines the power requirements of the animal concerned, in other words how quickly the 

energies used in movement are dissipated (McNab 1973, Voloshina et al. 2013, Halsey and 

White 2017, Wilson, Rose, et al. 2020). These are determined by metrics often used to define 

the particularities of movement such as the speed of travel (Pyke 1981, Chapinal et al. 2009), 

the rate of change of altitude (Taylor et al. 1970, Taylor et al. 1972) or depth (Fowler et al. 

2006, Shiomi et al. 2008) and the precise form of the ‘energy landscape’ through which the 

species is moving or cost of transport (COT) (Shepard et al. 2013). COT is the quantification of 

the energetic cost for one animal to move from one location to another allowing comparison 

across species and even different factors at play, for example slope, substrate, or superstrate 

(Halsey and White, 2017; Garland, 1983). COT is calculated per unit distance travelled with 

basal metabolic rate taken into consideration (Schmidt-Nielsen and Knut, 1984). Therefore 

movement is a balance of costs and benefits (e.g. food resources acquired). Biologists assume 

that patterns we see in animal movement are the result of selection pressures which drive 

species to move judiciously, for example, maximizing net energy gain during foraging 
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(Ydenberg et al. 1994, Bergman et al. 2001, Wilson et al. 2012), and that the overall 

movement strategies exhibited by species are multifaceted, changing with the environmental 

conditions (Murray and Boutin 1991, Aublet et al. 2009, Elliott et al. 2014), and these 

strategies define how animals can best exploit their environment given their physical and 

physiological traits (Hildebrand and Hurley 1985, Fancy and White 1987, Crête and Larivière 

2003, White et al. 2011) ) – often called ‘movement capacity’ and ‘navigational capacity’ 

(Nathan et al., 2008).  

 

Recognition that the drivers of movement are many, and the solutions sought by animals to 

deal with the multitude of both external and internal drivers of movement (Nathan et al. 

2008) are necessarily going to be complex in space and time (White et al. 2011, Elliott et al. 

2014). This makes any study that seeks to understand the movement of wild animals seem 

daunting, perhaps even foolish. And this problem is magnified by anyone who attempts to 

consider multi-species movements and interactions within one habitat, as this thesis attempts 

to do. But before despairing of all hope to define movement drivers and consequences, it is 

relevant to consider that there will be major elicitors of movement so that, at a basic level, 

we might expect the general rules behind animal movement to be primarily modulated by 

these few factors. In fact, the optimal foraging literature (Pyke 1981, Kacelnik and Houston 

1984, Ydenberg et al. 1994, Bergman et al. 2001) effectively subscribes to this view, proposing 

that animal behaviour, including movement, should be largely driven by food distribution and 

abundance (Orians and Pearson 1979, Bergman et al. 2001, Aharon et al. 2007, Iussig et al. 

2015). Specifically, foraging theory considers behaviours related to food acquisition – where 

to search and when to feed and when to stop, and which types of food to consume – and a 

common prediction is that animals should maximise energetic benefits from food, minimizing 

the costs involved (Pyke 2010). These principles, originally developed for fine scale decisions 

(food patch and diet selection), apply also to movement behaviours over larger spatio-

temporal scales. This thesis therefore adopts this somewhat simplistic view, purporting that 

movement by animals is driven primarily by food, although social interactions and mating 

opportunities need some consideration, and physiological limitations will also help define 

what movement is judicious, or even possible.  
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This thesis considers the space use, resource acquisition and (metrics that act as a proxy for) 

energy expenditure across a suite of sympatric ungulate species in the French Alps. This area 

offers numerous habitats with many benefits for ungulates, including vegetation rich in 

biodiversity (Beniston 2006, Fischer et al. 2008, Kurtogullari et al. 2020), steep slopes to avoid 

predators (Forsyth 2000, Grignolio et al. 2003, Aublet et al. 2009) and a mountain range with 

little human disturbance (Fischer et al. 2008, Pęksa and Ciach 2018) - but see Marchand et al. 

(2014). But importantly within a movement ecology framework (Nathan et al. 2008), the Alps 

also have very variable topography, ranging from flat areas to steep slopes and cliffs, and 

everything in between (Beniston 2006, Marini et al. 2009, Sturaro et al. 2013), resulting in 

great variation in the costs for ungulates to negotiate: Movement up, and down, steep slopes 

requires greater energy investment to overcome gravity (Rees 2004, Wall et al. 2006, Halsey 

and White 2017, Dunford et al. 2020), and varying habitats, including loose scree and thick 

vegetation, add to movement costs in this highly heterogeneous ‘energy landscape’ (sensu 

Shepard et al. 2013). Previous studies have shown how body mass can then change and 

compound these relationships for example how the gradient of the trend associated with 

slope inclines against COT increases with the body mass of the animal (Halsey et al., 2008; 

Taylor et al., 1970). What drives differences in the energy costs of terrestrial locomotion 

however varies considerably between species and current laboratory data on net cost of 

transport across different species does not allow to obtain a proper understanding of the 

costs and constraints of terrestrial animal movement and obtaining more data from the wild 

will be crucial to solve these issues (Halsey & White 2019). Within this energetics framework 

though, this area also has highly variable climatic conditions, which impact metabolic rates 

(McNab 1973, Heinrich 1977, Halsey et al. 2015). The weather ranges from high winds 

(Beniston 2006, Giovannini et al. 2017), sub-zero temperatures (Beniston 2006, Sturaro et al. 

2013) and thick snow in winter (Beniston 2006) to temperatures in summer that may exceed 

30°C accompanied by high insolation (Beniston 2006, Aublet et al. 2009, van Beest et al. 2012) 

- for example strongly affecting ibex movements (Aublet et al. 2009). On top of this the 

climate is changing with global warming increasing global surface temperatures which in turn 

could change the snowscape (Barnes 2013, Tippett 2018). Previous work has shown ibex 

vulnerability to temperature may leave the species prone to climate change with higher global 

temperatures restricting the species movement regards to altitude and therefore time spent 

grazing or obtaining resources (Aublet et al., 2009; Brambilla et al., 2020; van Beest et al., 
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2012). This premise is associated with the ‘Thermoneutral zone’, a range of temperatures 

wherein an endothermic species does not have to expend energy to achieve homeostasis, or 

in other words the temperature that gives the animal its lowest basal metabolic cost (St 

Juliana and Mitchell, 2016). Critically, the topography of the area means that synoptic 

environmental conditions vary greatly with altitude, as well as with the details of the site (e.g. 

north- vs. south-facing slopes) and time of day or night, so that the ungulates can move to 

areas with favourable micro-climatic conditions, although this will entail movement costs. 

Other factors including predator and accident avoidance can be quantified and considered to 

understand the decision animals make in relation to movement resulting in landscape of fear 

or accidents (Gallagher et al., 2017; Wheatley et al., 2021).  

 

Here, my aim is to use biologging technology to investigate the drivers of alpine ungulate 

movements, quantifying the role of spatiotemporal variation in environmental energetics, 

environmental conditions and habitat across multiple wild and domestic species. Specifically, 

this thesis considers three domestic animals, cows (Bos taurus), sheep (Ovis aries) and goats 

(Capra aegagrus hircus), and three wild species; chamois (Rupicapra rupicapra), alpine ibex 

(Capra ibex) and mouflon (Ovis gmelini musimon × Ovis sp.). All species are mammals from 

the order Artiodactyla (even-toed ungulates) and the family Bovidae and the sub-family 

Caprinae, except for the cows, which are from the sub- family Bovinae. All six species are 

ruminant herbivores and range in body size from around 600 kg for the domestic cows in this 

study, to 70-120 kg for the ibex, 25-60 kg for chamois, 25-55 kg for mouflon, 35-60 kg for the 

domestic sheep and 20-50 kg for the domestic goats. All species are considered of ‘least 

concern’ for the IUCN, except for mouflon which are considered as endangered, but are iconic 

species of high ecological and cultural importance in the Alps and are closely managed by the 

ONCFS in France.   

 

The total population size in alpine ibex is estimated at 30,000 after recovering from near 

extinction (Brambilla et al., 2020), however the species originating from a small population 

since the early 1900s makes the low genetic pool of the alpine population vulnerable to 

inbreeding potentially impacting their ability to adapt to and survive changes in 
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environmental conditions (Toïgo et al., 2007; Brambilla et al., 2020; Stüwe and Nievergelt, 

1991). The species segregate sexually and spatially depending on the season with the sex 

groups mixing during the breeding season or rut, this lasts from December to January 

(Tettamanti and Viblanc, 2014; Villaret and Bon, 2010; Grignolio et al., 2010). Male ibexes 

species compete via head impacts all year round, assessing individuals throughout the year 

rather than just during the harsh winter and rut alone (Willisch and Neuhaus, 2010; Toïgo et 

al., 2007).   

 

European Mouflon and chamois were selected as the other wild ungulate species due to their 

presence within higher altitudes and steep slopes (Pęksa and Ciach, 2018; Marchand et al., 

2015). The three wild species have comparative moving strategies to negate the energetic 

costs of steep slopes, with chamois have sporadic movements, ibex moving conservative and 

mouflon somewhere in between (Biancardi and Minetti, 2017; Pęksa and Ciach, 2018). 

Chamois and mouflon are segregated sexually and spatially, similar to ibex (Ryser-Degiorgis 

et al., 2002; Marchand et al., 2015). Chamois are the least threatened of the three species, 

listed as ‘least concern’ by IUCN (Corlatti et al., 2011; Fankhauser, 2004). Mouflon population 

is descending due to human disturbance through habitat destruction from farming, this had 

lead to mouflon being listed as ‘vulnerable’ on the IUCN (Barbanera et al., 2012). 

 

Cows, goats and sheep are used as livestock across the globe for meat, dairy and wool, 

including the French alps (Sturaro et al., 2013; di Virgilio et al., 2018; Marini et al., 2009). The 

alps offer a unique study site with highly varying and extreme slopes and high altitudes (Lees 

et al., 2013; Dickinson et al., 2021; Halsey and White, 2017). Livestock spend the warmer 

months in the higher altitudes, being herded up from the lower farmlands. Some livestock 

populations are allowed to free roam with supervision from farmers or restricted to large 

fenced off sections (approx. 2 km2) (Sturaro et al., 2013; di Virgilio et al., 2018).  

 

Goats and sheep are physically similar to the ibex and mouflon respectively making them of 

high interest with the species likely to obtain similar niches (Ryser-Degiorgis et al., 2002; 
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Fankhauser, 2004). Sharing similar roles and resources within an ecosystem could lead to 

robust, introduced livestock outcompeting wild ungulate species (Fankhauser, 2004; 

Chirichella et al., 2014). Goats and sheep are well adapted to mountainous habitats with high 

locomotion capacity (Dickinson et al., 2021; Dailey and Hobbs, 1989). In contrast, cows with 

a larger body mass are expected to struggle to move efficiently across the extreme 

topography making comparison of the species movement strategies of interest (Garland, 

1983; Halsey et al., 2008).  

 

The use of domestic species has obvious advantages. They are accessible, manageable, and 

excellent for developing and testing new biologging technology (e.g. collars) and data analysis 

methods on individuals that I could observe at all times. Their study is also topical because 

there is presumed competition between domestic and wild ungulates (Ryser-Degiorgis et al. 

2002, Acevedo et al. 2007, Bro-Jørgensen 2011). Almost one third of the Alps is protected 

under governing bodies due to the unique natural beauty and biodiversity of the region 

(Fischer et al. 2008, Baur and Binder 2013) and wild ungulates are key ecological engineers to 

the ecosystems of the Alps through their grazing (Fischer and Wipf 2002, Probo et al. 2014, 

Nota et al. 2020). Aside from concerns about competition with domestic livestock, many of 

the wild species are also under threat due to the Alps undergoing urbanisation and the 

growing tourist industry, leading to species conflict with humans undertaking activities such 

as pastoralism, forestry and hunting. 

 

Studies have looked into resource acquisitions for the wild ungulates within the Alps to better 

understand species preferable habitat types to better protect and manage the region 

(Macandza et al., 2012; Manly et al., 2002). Ibex were found to prefer bare rock dominated 

habitats (Grignolio et al., 2003) whereas chamois and mouflon selected grassland 

(Fankhauser, 2004; Forsyth, 2000; Marchand et al., 2013, 2015). The wild ungulate species 

change their space use depending on the season and rut (Willisch and Neuhaus, 2010; 

Marchand et al., 2015; Toïgo et al., 2007). The ungulate species generally cover more distance 

during summer to graze as there is higher cover of vegetation during the warmer months 

(Brivio et al., 2010). During the colder months and the rut, the distances moved by the wild 
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ungulate species drop off as less time is spent on foraging and more energy is spent mating 

and behaviours associated (Brivio et al., 2010). Many studies have relied on data from 

observations or global position system (GPS) (Rutter et al., 1997; Helen et al., 2006; Alados et 

al., 2000; Ryser-Degiorgis et al., 2002) but little literature have utilised high resolution data 

(>1Hz) or monitored the species for continuous periods across seasons (Moreau et al., 2009).  

 

The work conducted within this thesis hopefully provides further information to support 

previous findings while providing  fine-scale insights into ungulate behaviour and ecology that 

might aid in management decisions and ultimately play a role in conservation. But the title of 

the thesis; Alpine ungulate movement: Quantification of spatiotemporal environmental 

energetics and social interaction, underpins the overarching question of this work; What 

does the movement ecology of alpine ungulates tell us about their exploitation of their 

environment? Done properly, this would be a monumental task, but I hope, within this thesis, 

to have made appreciable progress at least.  

 

To understand where, when, and why animals move, I based much of my data acquisition for 

this by using animal-attached sensing and recording tags, also known as ‘biologgers’ 

(Kooyman 1965, Kooyman and L. 2004, Naito 2004). Since their inception in the 1960s 

(Kooyman and L. 2004) these systems have become extraordinarily small, diverse, powerful 

and multi-sensing (Holton et al. in press). They can record data from 10 sensors or more at 

high frequencies (> 10 Hz) for many months in storage memories that are essentially 

insatiable (Holton et al. in press), giving information on things like temperature, light, 

pressure, acceleration and magnetic field intensity (Wilson et al. 2008). This sort of 

information can be inspected to reveal behaviours (Shepard et al. 2008, Williams et al. 2015, 

Fehlmann et al. 2017), energy expenditures (Qasem et al. 2012, Wilson, Börger, et al. 2020, 

Dickinson et al. subm.) and movements across 3D landscapes (Shiomi et al. 2008, Bidder et al. 

2015, Wensveen et al. 2015), all in relation to select environmental variables. In particular, 

acceleration loggers can provide unprecedented opportunities to estimate the metabolic cost 

of activities of wild animals, via- so-called dynamic body acceleration (DBA) metrics (reviewed 

in Wilson et al. 2020). The opportunities for acceleration data to act as proxies for energy 
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expenditure were highlighted for studies in humans since decades, and for animals since the 

pioneering work in great cormorants (Phalacrocorax carbo) by Wilson et al. (2006), and since 

then the theoretical and practical framework and methods have been refined (e.g. Quasem 

et al. 2012; Bidder et al. 2012) and the approach can now provide robust estimates for animals 

for which movement-related costs constitute a major part of the energy budget and if precise 

requirements for tag attachment and calibration are observed (reviewedin Wilson et al. 

2020). 

Combination of such data with ‘conventional information’, such as the distribution of 

vegetation types (Tronchot 2008, Moreau et al. 2009, Marchand et al. 2015), provides a 

potent backdrop with which to study important questions about the movement ecology of 

alpine ungulates (see also di Virgilio et al. 2018). For example how do habitat type and slope 

interact to modulate cost of transport across elevations for terrestrial animals?. 

Understanding these relationships should reveal how species mitigate the costs that the 

environment has while comparing the species ability (Garland, 1983; Halsey and White, 2017). 

By quantifying or mapping the COT, movement corridors are exposed, and these areas could 

be prioritised for management and conservation  (Wheatley et al., 2021; Shepard et al., 2013).    

 

However, to take full advantage of the potential of biologging technology, I had to solve a 

series of technological and methodological challenges, starting from the goal of developing 

collars and loggers robust enough to record for up to one year, thereby extending the 

duration of high-frequency multi-sensor biologging collars by orders of magnitude. 

Furthermore, as powerful as biologging seems, it is not without its problems, and these are 

particularly manifest when they are deployed on large animals that regularly engage in high 

impact head clashes in the variable (and sometimes very harsh) environment of the Alps.  In 

short, tags can fail because they are not robust enough to withstand the pressures of 

deployments on free-living animals. Many studies using biologgers resort to the use of 

commercial collars, together with their tag attachment mechanisms (Rutter et al. 1997, 

Putfarken et al. 2008, Moreau et al. 2009, Marchand et al. 2015,), but these options are not 

fully reliable and can be restrictive regarding data resolution, deployment durations, and 

device weight. Attaching remote devices onto species come with ethical restrictions as weight 

and size of the logging unit being shown to have detrimental effects to the fitness of the 
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animal (Cooke et al., 2013; Chivers et al., 2016; Vandenabeele et al., 2015). By building tags 

in-situ of the laboratory, the mass of each element (including battery, housing, logging circuit 

board, attachment method) can be controlled (Bidder et al., 2015; Walker et al., 2015). Trade- 

offs can be made to give the user full control of the data collection for example time window 

and battery capacity, therefore battery weight. Unreliable systems have animal welfare 

implications, because the study subjects have been caught and collared unnecessarily, inciting 

considerable stress (Vandenabeele et al. 2015, Chivers et al. 2016). Thus, in Chapter 2 

(Building customised, flexible multi-sensor biologging units for short- and long-term tagging 

of alpine ungulates), I develop two types of novel collars and housings for collecting high-

frequency multi-sensor biologging data on alpine ungulates. First, I develop custom-designed 

housings to allow flexible and targeted data collection on the domestic ungulates (cows, goats 

and sheep). Second, I develop a custom-designed set of housings to record data for up to one 

year, thus orders of magnitude longer time scales than existing technologies at the time, using 

the Daily Diary multi-sensor tags, attached to commercial GPS collars already deployed on the 

wild ungulates. I document the steps that I took to design and construct tag housings that 

maximized my tag deployment success and at the same time detail the main issues that lead 

to tag failure and loss of data. Chapter 2 specifically attempts to expand biologging solutions 

for the scientific community by introducing lab-built biologgers, demonstrating how the 

devices are designed, produced and deployed, not only to save on costs, but also to give the 

user control and understanding of the logger setup. In addition to this, techniques to mitigate 

the effects of weathering and high impacts on electronics are investigated with evidence 

showing how these methods improve the reliability of the customisable and affordable 

electronic tags.  

 

Having successfully collected large amounts of data on domestic and wild alpine ungulates, 

using the collars and loggers developed in chapter 2, in Chapter 3 (Step in the right direction 

for dead-reckoning terrestrial animals) examines the extent to which a relatively novel 

technique in terrestrial animal ecology, ‘dead-reckoning’ (Bidder et al. 2015), can enhance 

our knowledge of space-use and movement paths by wild animals. Researchers commonly 

use GPS units to determine animal movement (Rutter et al. 1997, Putfarken et al. 2008, de 

Weerd et al. 2015). Unfortunately, communicating with a satellite to calculate position 
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consumes a high amount of battery energy, making frequent locations (≥ 1 fix per minute) for 

long continuous periods impossible if ethically defensible weight restrictions loggers are to 

be maintained (Portugal & White 2018). In order to ensure high resolution location data (e.g. 

every second), dead-reckoning uses a combination of accelerometer, magnetometer and low-

resolution GPS data, interpolating between GPS fixes using movement vectors (speed and 

heading) defined by the sensors (Bidder et al. 2015, Dewhirst et al. 2016). Much literature has 

explored this technique for tracking humans (Jiménez et al. 2009, Tian et al. 2014) and some 

work has used it on wild animals, most notably in the marine environment (Wilson et al. 1991, 

Shiomi et al. 2008, Wensveen et al. 2015).  The method however has scope for substantial 

improvement in terrestrial environments (Bidder et al. 2015) but had never been attempted 

across time scales in excess of one week. Chapter 3 aims to not only dead-reckon the 

movements of four wild ungulates over long time-scales, but also to find possible solutions to 

minimise errors such as location drift associated with dead-reckoning. The work in this 

chapter was a direct attempt to reduce error in dead-reckoning paths, using information from 

the sensors to distinguish body movements associated with a displacement of the body over 

space, and movements of the body whilst the animal remained in the same geographic 

position. The aim was to develop a procedure and data analysis pipeline, so that, following 

successful deployment of tags on animals over months, it would be possible to reconstruct 

high resolution paths of animal movements over seasonal time scales.  This then forms the 

basis for work presented in subsequent chapters (see below). Part of the work in chapter 3 

has also led to an additional publication which I co-authored, on a new R package for dead-

reckoning (Gunner et al. 2021). 

 

Having reconstructed fine-scale (1-second resolution) movements of ungulates over scales 

of weeks to months, I moved from the question of ‘where’ the animals moved, to the 

question of what they did at each point in space. Thus, in Chapter 4 (Move. Eat. Rest. 

Repeat) looks at ungulate food consumption and attempts to link it to locality. The GPS-

enabled dead-reckoning protocol of chapter 3 detailed how animal movement paths could 

be constructed, but this chapter goes beyond simple description of area-use by attempting 

to link space-use to travel and food-finding. Specifically, the high frequency acceleration 

data collected by the animal attached tags are interrogated to define when domestic goats 
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‘rest’, ‘travel’ and ‘graze’, the suppositions being ground-truthed by watching the animals 

undertake these activities and then comparing them to their corresponding acceleration 

metrics. Chapter 4 goes on to consider how 10 individuals within a herd of 40 domestic 

goats manage their time and available space between grazing, travelling and resting over a 

month during which they roamed over large pastures (~2 km2). Since these animals were 

kept in a pen overnight, they moved away from this central place to forage during the day, 

moving back in the evening. The work was able to define grazing pressure with locality and 

showed how the animals used a fanning out technique over time, which reduced their 

impact on the areas available to them. Such fine-scale information allows to reconsider 

ideas about movements and optimal foraging theory (Williams et al. 2020; Owen-Smith et 

al. 2010), as it allows to better connect habitat selection with movement costs. Information 

of this type could increase general understanding of grazing impacts on specific habitats and 

help understand the potential for conflict between domesticated and wild species.  

 

Chapter 5 (Grazing on alpine slopes) adopts a similar methodology to that adopted in chapter 

4, but uses the approach to study the alpine ibex, benefitting from the acceleration signals 

linked to behaviours in the domestic goats to identify resting, grazing and travelling in the 

ibex. The results from the behavioural analysis are used to identify potential overlap between 

the two species in habitat and slope-use when grazing. This section of the thesis also builds 

on previous research within the literature looking at how ibex space-use may be limited by 

heat, with this species being particularly susceptible to overheating. Specifically, the work 

looks at the energy expended by the animals to move in the way they do and dovetails it with 

data on altitude-linked air temperature to theorize that ascent and descent of slopes 

increases metabolic heat production, which needs to be built into assessments of ibex 

susceptibility to climate change.  

 

Whilst resting, travelling and grazing (feeding) comprise the majority of the time budget of 

animals, especially ungulates, there are also other important behaviours expressed by 

animals, such as social behaviours. An important type of social interactions are agonistic 

interactions, such as head-clashing in ungulates. Thus, in Chapter 6 (Landscape of rage) I used 



14 
 

verified behavioural observations of head-clashing interactions of the tagged animals to 

develop efficient head-clashing behaviour identification rules from the accelerometer data 

and then extended the approach to data from the wild counterpart, the alpine ibex. 

Subsequently, by synchronizing the precise times of head-clashing with location of the 

animals, determined by GPS-enabled dead-reckoning, sites and times when particularly high 

rates of these agonistic interactions could be identified. The work showed that most domestic 

goat interactions of this type appeared to occur in relation to food and were most prevalent 

during the day. The ibex engaged in head-clashes throughout the year but displayed a 

substantial increase in incidence during the rut and also favoured particular sites. The 

implications of this are discussed. 

 

Finally, in Chapter 7 (Ungulates as cartographers), I brought together all methods developed 

and obtained fine-scale movement and space-use of the six species of ungulates in the Alps, 

detailing, as far as possible, where, and how, the different species expend most energy to 

move within the heterogeneous energy landscape defined by the topography. The different 

species mitigated the effects of steep slopes by going up and down them at oblique angles, 

with marked inter-specific differences in strategy. This, and proxies for power use, provided 

evidence that the different slopes did not represent a common ‘energy landscape’ (sensu 

Shepard et al. 2013) for the species but rather that animal mass and differing behavioural 

strategies resulted in the different species having different ‘energy landscapes’ for common 

slope angles.   

 

Chapter 8 (The synopsis) briefly reviews the advances and setbacks that occurred during the 

thesis work, pointing to interesting aspects that could not be followed up due to lack of time. 

This chapter finally speculates on where the research area might develop in a future where 

animal-attached technology is set to make an ever-greater mark on our understanding of 

animal movement ecology. 

 

 



15 
 

References 
 

Acevedo, P., Cassinello, J., and Gortazar, C., 2007. The Iberian ibex is under an expansion trend 

but displaced to suboptimal habitats by the presence of extensive goat livestock in central 

Spain. Biodiversity and Conservation in Europe, 16 (12), 119–134. 

Aharon, H., Henkin, Z., Ungar, E. D., Kababya, D., Baram, H., and Perevolotsky, A., 2007. Foraging 

behaviour of the newly introduced Boer goat breed in a Mediterranean woodland: A 

research observation. Small Ruminant Research, 69 (1–3), 144–153. 

Armstrong, R. B., Laughlin, M. H., Rome, L., and Taylor, C. R., 1983. Metabolism of rats running up 

and down an incline. Journal of Applied Physiology Respiratory Environmental and Exercise 

Physiology, 55 (2), 518–521. 

Armsworth, P. R. and Roughgarden, J. E., 2005. The impact of directed versus random movement 

on population dynamics and biodiversity patterns. American Naturalist, 165 (4), 449–465. 

Aublet, J. F., Festa-Bianchet, M., Bergero, D., and Bassano, B., 2009. Temperature constraints on 

foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia, 159 (1), 237–247. 

Barnes, E. A., 2013. Revisiting the evidence linking Arctic amplification to extreme weather in 

midlatitudes. Geophysical Research Letters, 40 (17), 4734–4739. 

Barthelemy, P., Bertolotti, J., and Wiersma, D. S., 2008. A Lévy flight for light. Nature, 453 (7194), 

495–498. 

Bartumeus, F., da Luz, M. G. E., Viswanathan, G. M., and Catalan, J., 2005. Animal search 

strategies: A quantitative random-walk analysis. Ecology, 86 (11), 3078–3087. 

Bastille-Rousseau, G., Gibbs, J. P., Yackulic, C. B., Frair, J. L., Cabrera, F., Rousseau, L.-P., Wikelski, 

M., Kümmeth, F., Blake, S., Bastille-Rousseau, G., Gibbs, J. P., Frair, J. L., and Rousseau, -L.-P, 

2017. Animal movement in the absence of predation: environmental drivers of movement 

strategies in a partial migration system. Oikos, 126 (7), 1004–1019. 

Baur, I. and Binder, C. R., 2013. Adapting to socioeconomic developments by changing rules in 

the governance of common property pastures in the swiss alps. Ecology and Society, 18 (4). 



16 
 

van Beest, F. M., van Moorter, B., and Milner, J. M., 2012. Temperature-mediated habitat use 

and selection by a heat-sensitive northern ungulate. Animal Behaviour, 84 (3), 723–735. 

Beniston, M., 2006. Mountain weather and climate: A general overview and a focus on climatic 

change in the Alps. Hydrobiologia , 562 (1), 3–16. 

Bergman, C. M., Fryxell, J. M., Gates, C. C., and Fortin, D., 2001. Ungulate foraging strategies: 

energy maximizing or time minimizing? Journal of Animal Ecology, 70 (2), 289–300. 

Beyer, H. L., Gurarie, E., Börger, L., Panzacchi, M., Basille, M., Herfindal, I., van Moorter, B., R. 

Lele, S., and Matthiopoulos, J., 2016. ‘You shall not pass!’: quantifying barrier permeability 

and proximity avoidance by animals. Journal of Animal Ecology, 85 (1), 43–53. 

Bidder, O. R., Walker, J. S., Jones, M. W., Holton, M. D., Urge, P., Scantlebury, D. M., Marks, N. J., 

Magowan, E. A., Maguire, I. E., and Wilson, R. P., 2015. Step by step: Reconstruction of 

terrestrial animal movement paths by dead-reckoning. Movement Ecology, 3 (1), 23. 

Bro-Jørgensen, J., 2011. Intra- and Intersexual Conflicts and Cooperation in the Evolution of 

Mating Strategies: Lessons Learnt From Ungulates. Evolutionary Biology, 38 (1), 28–41. 

Chapinal, N., de Passillé, A. M., Weary, D. M., von Keyserlingk, M. A. G., and Rushen, J., 2009. 

Using gait score, walking speed, and lying behavior to detect hoof lesions in dairy cows. 

Journal of Dairy Science, 92 (9), 4365–4374. 

Chirichella, R., Apollonio, M., and Putman, R., 2014. Competition between domestic and wild 

Ungulates. In: Behaviour and management of European ungulates. 110–123. 

Chivers, L. S., Hatch, S. A., and Elliott, K. H., 2016. Accelerometry reveals an impact of short-term 

tagging on seabird activity budgets. The Condor, 118 (1), 159–168. 

Crête, M. and Larivière, S., 2003. Estimating the costs of locomotion in snow for coyotes. 

Canadian Journal of Zoology, 81 (11), 1808–1814. 

Dewhirst, O. P., Evans, H. K., Roskilly, K., Harvey, R. J., Hubel, T. Y., and Wilson, A. M., 2016. 

Improving the accuracy of estimates of animal path and travel distance using GPS drift-

corrected dead reckoning. Ecology and Evolution, 6 (17), 6210–6222. 

Dickinson, E., Marks, N., Stephens, P., Wilson, R., and Scantlebury, D., 2021. Behaviour, 

temperature and terrain slope impact estimates of energy expenditure. In submission 



17 
 

Dunford, C. E., Marks, N. J., Wilmers, C. C., Bryce, C. M., Nickel, B., Wolfe, L. L., Scantlebury, D. 

M., and Williams, T. M., 2020. Surviving in steep terrain: A lab-to-field assessment of 

locomotor costs for wild mountain lions (Puma concolor). Movement Ecology, 8 (1), 1–12. 

Elliott, K. H., Chivers, L. S., Bessey, L., Gaston, A. J., Hatch, S. A., Kato, A., Osborne, O., Ropert-

Coudert, Y., Speakman, J. R., and Hare, J. F., 2014. Windscapes shape seabird instantaneous 

energy costs but adult behavior buffers impact on offspring. Movement Ecology, 2 (1). 

Fancy, S. G. and White, R. G., 1987. Energy expenditures for locomotion by barren-ground 

caribou. Canadian Journal of Zoology, 65 (1), 122–128. 

Fehlmann, G., O’Riain, M. J., Hopkins, P. W., O’Sullivan, J., Holton, M. D., Shepard, E. L. C., and 

King, A. J., 2017. Identification of behaviours from accelerometer data in a wild social 

primate. Animal Biotelemetry, 5 (1). 

Fischer, M., Rudmann-Maurer, K., Weyand, A., and Stöcklin, J., 2008. Agricultural Land Use and 

Biodiversity in the Alps. Mountain Research and Development, 28 (2), 148–155. 

Fischer, M. and Wipf, S., 2002. Effect of low-intensity grazing on the species-rich vegetation of 

traditionally mown subalpine meadows. Biological Conservation, 104 (1), 1–11. 

Forsyth, D. M., 2000. Habitat selection and coexistence of the Alpine chamois (Rupicapra 

rupicapra) and Himalayan tahr (Hemitragus jemlahicus) in the eastern Southern Alps, New 

Zealand. Journal of Zoology, 252 (2), 215–225. 

Fowler, S. L., Costa, D. P., Arnould, J. P. Y., Gales, N. J., and Kuhn, C. E., 2006. Ontogeny of diving 

behaviour in the Australian sea lion: Trials of adolescence in a late bloomer. Journal of 

Animal Ecology, 75 (2), 358–367. 

Giovannini, L., Laiti, L., Serafin, S., and Zardi, D., 2017. The thermally driven diurnal wind system 

of the Adige Valley in the Italian Alps. Quarterly Journal of the Royal Meteorological Society 

Q. J. R. Meteorol. Soc, 143 (707), 2389–2402. 

Grignolio, S., Parrini, F., Bassano, B., Luccarini, S., and Apollonio, M., 2003. Habitat selection in 

adult males of Alpine ibex, Capra ibex. Folia Zoologica Praha, 52 (2). 

Gunner, R. M., Holton, M. D., Scantlebury, M. D., Louis Van Schalkwyk, O., English, H. M., 

Williams, H. J., Hopkins, P., Quintana, F., Gómez-Laich, A., Börger, L., Redcliffe, J., Yoda, K., 



18 
 

Yamamoto, T., Ferreira, S., Govender, D., Viljoen, P., Bruns, A., Bell, S. H., Marks, N. J., 

Bennett, N. C., Tonini, M. H., Duarte, C. M., Rooyen, M. v, Bertelsen, M. F., Tambling, C. J., 

and Wilson, R. P., 2021. Dead-Reckoning Animal Movements in R – A Reappraisal Using 

Gundog.Tracks. Animal Biotelemetry 2021 9:1, 9 (1): 1–37.Halsey, L. G., Matthews, P. G. D., 

Rezende, E. L., Chauvaud, L., and Robson, A. A., 2015. The interactions between 

temperature and activity levels in driving metabolic rate: theory, with empirical validation 

from contrasting ectotherms. Oecologia, 177 (4), 1117–1129. 

Halsey, L. G. and White, C. R., 2017. A different angle: Comparative analyses of whole-animal 

transport costs when running uphill. Journal of Experimental Biology, 220 (2), 161–166. 

Hansson, L.-A., Åkesson, S., Liedvogel, M., and Lundberg, M., 2014. Animal Movement Across 

Scales. Edited The genetics of migration. pure.mpg.de. 

Heinrich, B., 1977. Why Have Some Animals Evolved to Regulate a High Body Temperature? The 

American Naturalist, 111 (980), 623–640. 

Hildebrand, M. and Hurley, J. P., 1985. Energy of the oscillating legs of a fast‐moving cheetah, 

pronghorn, jackrabbit, and elephant. Journal of Morphology, 184 (1), 23–31. 

Hills, T. T., Kalff, C., and Wiener, J. M., 2013. Adaptive Lévy Processes and Area-Restricted Search 

in Human Foraging. PLoS ONE, 8 (4). 

Holton, M., Wilson, R., Teilmann, J., and Siebert, U., 2021. Animal tag technology keeps coming of 

age: an engineering  perspective. Philosophical Transactions B, In press. 

Iussig, G., Lonati, M., Probo, M., Hodge, S., and Lombardi, G., 2015. Plant Species Selection by 

Goats Foraging on Montane Semi-Natural Grasslands and Grazable Forestlands in the Italian 

Alps. Italian Journal of Animal Science, 14 (3), 3907. 

Jiménez, A. R., Seco, F., Prieto, C., and Guevara, J., 2009. A comparison of pedestrian dead-

reckoning algorithms using a low-cost MEMS IMU. In: WISP 2009 - 6th IEEE International 

Symposium on Intelligent Signal Processing - Proceedings. 37–42. 

Kacelnik, A. and Houston, A. I., 1984. Some effects of energy costs on foraging strategies. Animal 

Behaviour, 32 (2). 



19 
 

Kay, W. P., Naumann, D. S., Bowen, H. J., Withers, S. J., Evans, B. J., Wilson, R. P., Stringell, T. B., 

Bull, J. C., Hopkins, P. W., and Börger, L., 2019. Minimizing the impact of biologging devices: 

Using computational fluid dynamics for optimizing tag design and positioning. Methods in 

Ecology and Evolution, 10 (8), 1222–1233. 

Kooyman, G. L., 1965. Techniques used in measuring diving capacities of Weddell Seals. Polar 

Record, 12 (79), 391–394. 

Kooyman and L., G., 2004. Genesis and evolution of bio-logging devices: l963-2002. Memoirs of 

National Institute of Polar Research. Special issue, (58), 15–22. 

Kurtogullari, Y., Rieder, N. S., Arlettaz, R., and Humbert, J. Y., 2020. Conservation and restoration 

of Nardus grasslands in the Swiss northern Alps. Applied Vegetation Science, 23 (1), 26–38. 

Marchand, P., Garel, M., Bourgoin, G., Dubray, D., Maillard, D., and Loison, A., 2014. Impacts of 

tourism and hunting on a large herbivore’s spatio-temporal behavior in and around a French 

protected area. Biological Conservation, 177, 1–11. 

Marchand, P., Garel, M., Bourgoin, G., Dubray, D., Maillard, D., and Loison, A., 2015. Sex-specific 

adjustments in habitat selection contribute to buffer mouflon against summer conditions. 

Behavioral Ecology, 26 (2), 472–482. 

Marini, L., Fontana, P., Klimek, S., Battisti, A., and Gaston, K. J., 2009. Impact of farm size and 

topography on plant and insect diversity of managed grasslands in the Alps. Biological 

Conservation, 142 (2), 394–403. 

Mckinnon, E. A. and Love, O. P., 2018. Ten years tracking the migrations of small landbirds: 

Lessons learned in the golden age of bio-logging. The Auk, 135 (4), 834–856. 

McNab, B. K., 1973. Body, weight, energetics, and the determination of body temperature. 

Journal of Experimental Biology, 58 (2), 277–280. 

Moreau, M., Siebert, S., Buerkert, A., and Schlecht, E., 2009. Use of a tri-axial accelerometer for 

automated recording and classification of goats’ grazing behaviour. Applied Animal 

Behaviour Science, 119 (3–4), 158–170. 

Murray, D. L. and Boutin, S., 1991. The influence of snow on lynx and coyote movements: does 

morphology affect behavior? Oecologia, (88), 463–469. 



20 
 

Naito, Y., 2004. New steps in bio-logging science. National Institute of Polar Research, (58), 50–

57. 

Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., and Smouse, P. E., 2008. A 

movement ecology paradigm for unifying organismal movement research. Proceedings of 

the National Academy of Sciences, 105 (49), 19052–19059. 

Nota, G., Ravetto Enri, S., Pittarello, M., Gorlier, A., Lombardi, G., and Lonati, M., 2020. Sheep 

Grazing and Wildfire: Disturbance Effects on Dry Grassland Vegetation in the Western Italian 

Alps. Agronomy, 11 (1), 6. 

Nouvellet, P., Bacon, J. P., and Waxman, D., 2009. Fundamental Insights into the Random 

Movement of Animals from a Single Distance-Related Statistic. The American Naturalist, 174 

(4), 506–514. 

Orians, G. H. and Pearson, N. E., 1979. On the theory of central place foraging In: “Analysis of 

Ecological Systems” (J. Horn, G. R. Stairs and R. D. Mitchell, Eds.). Ohio State Press, (72), 

155–177. 

Parton, A., Blackwell, P. G., and Skarin, A., 2017. Bayesian inference for continuous time animal 

movement based on steps and turns. In: International Conference on Bayesian Statistics in 

Action. Springer New York LLC, 223–230. 

Pęksa, Ł. and Ciach, M., 2018. Daytime activity budget of an alpine ungulate (Tatra chamois 

Rupicapra rupicapra tatrica): influence of herd size, sex, weather and human disturbance. 

Mammal Research, 63 (4), 443–453. 

Pike, T. W., Richardson, G., Dickinson, P., and Burman, O. H. P., 2018. Unpredictable movement 

as an anti-predator strategy. Proceedings of the Royal Society B: Biological Sciences , 285 

(1885). 

Portugal, S. J. and White, C. R., 2018. Miniaturization of biologgers is not alleviating the 5% rule. 

Methods in Ecology and Evolution, 9 (7), 1662–1666. 

Probo, M., Lonati, M., Pittarello, M., Bailey, D. W., Garbarino, M., Gorlier, A., and Lombardi, G., 

2014. Implementation of a rotational grazing system with large paddocks changes the 



21 
 

distribution of grazing cattle in the south-western Italian Alps. The Rangeland Journal, 36 

(5), 445. 

Putfarken, D., Dengler, J., Lehmann, S., and Härdtle, W., 2008. Site use of grazing cattle and 

sheep in a large-scale pasture landscape: A GPS/GIS assessment. Applied Animal Behaviour 

Science, 111 (1–2), 54–67. 

Pyke, G. H., 1981. Optimal travel speeds of animals. American Naturalist, 118 (4), 475–487. 

Qasem, L., Cardew, A., Wilson, A., Griffiths, I., Halsey, L. G., Shepard, E. L. C., Gleiss, A. C., and 

Wilson, R., 2012. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; 

should we be summing values or calculating the vector? PLoS ONE, 7 (2). 

Rees, W. G., 2004. Least-cost paths in mountainous terrain. Computers and Geosciences, 30 (3), 

203–209. 

Taylor, R. C., Caldwell, S. L., and Rowntree, V. J., 1972. Running up and down hills: Some 

consequences of size. Science, 178 (4065), 1096–1097. 

Rutter, S. M., Beresford, N. A., and Roberts, G., 1997. Use of GPS to identify the grazing areas of 

hill sheep. Computers and Electronics in Agriculture, 17 (2), 177–188. 

Ryser-Degiorgis, M.-P., Ingold, P., Tenhu, H., Mar~a, A., Less, T., Ryser, A., and Giacometti, M., 

2002. Encounters between Alpine ibex, Alpine chamois and domestic sheep in the Swiss 

Alps. Hystrix, the Italian Journal of Mammalogy, 13 (2), 1–11. 

Shepard, E. L. C., Wilson, R. P., Rees, W. G., Grundy, E., Lambertucci, S. A., and Vosper, S. B., 

2013. Energy Landscapes Shape Animal Movement Ecology. The American Naturalist, 182 

(3), 298–312. 

Shepard, E., Wilson, R., Quintana, Q., Gómez Laich, A., Liebsch, L., Albareda, D., Halsey, L., Gleiss, 

A., Morgan, D., Myers, A., Newman, C., and Macdonald DW, 2008. Identification of animal 

movement patterns using tri-axial accelerometry. Endangered Species Research, 10, 47–60. 

Shiomi, K., Sato, K., Mitamura, H., Arai, N., Biology, Y. N.-A., and 2008, undefined, 2008. Effect of 

ocean current on the dead-reckoning estimation of 3-D dive paths of emperor penguins. 

Aquatic Biology, 3 (3), 265–270. 



22 
 

Sturaro, E., Thiene, M., Cocca, G., Mrad, M., Tempesta, T., and Ramanzin, M., 2013. Factors 

influencing summer farms management in the Alps. Italian Journal of Animal Science, 12 (2), 

153–161. 

Taylor, C. R., Schmidt-Nielsen, K., and Raab, J. L., 1970. Scaling of energetic cost of running to 

body size in mammals. The American journal of physiology, 219 (4), 1104–1107. 

Tian, Z., Zhang, Y., Zhou, M., and Liu, Y., 2014. Pedestrian dead reckoning for MARG navigation 

using a smartphone. Eurasip Journal on Advances in Signal Processing, 2014 (1), 1–9. 

Tronchot, M., 2008. Cartography of the habitats of the Caroux-Espinouse massif (Hérault) from 

aerial photos of 2005. Technical report, Environmental and Hunting Interest Group of 

Caroux-Espinouse – Office National de la Chasse et de la Wild Fauna. 

Vandenabeele, S., Shepard, E., Grémillet, D., Butler, P., Martin, G., and Wilson, R., 2015. Are bio-

telemetric devices a drag? Effects of external tags on the diving behaviour of great 

cormorants. Marine Ecology Progress Series, 519, 239–249. 

Voloshina, A. S., Kuo, A. D., Daley, M. A., and Ferris, D. P., 2013. Biomechanics and energetics of 

walking on uneven terrain. Journal of Experimental Biology, 216 (21), 3963–3970. 

Wall, J., Douglas-Hamilton, I., and Vollrath, F., 2006. Elephants avoid costly mountaineering. 

Current Biology, 16 (14), 527–529. 

de Weerd, N., van Langevelde, F., van Oeveren, H., Nolet, B. A., Kölzsch, A., Prins, H. H. T., and de 

Boer, W. F., 2015. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in 

Open and Forested Habitat. PLOS ONE, 10 (6), e0129030. 

Weimerskirch, H., Pinaud, D., and Bost, C. A., 2007. Does prey capture induce area-restricted 

search? A fine-scale study using GPS in a marine predator, the wandering albatross. The 

American Naturalist , 170 (5), 734–743. 

Wensveen, P. J., Thomas, L., and Miller, P. J. O., 2015. A path reconstruction method integrating 

dead-reckoning and position fixes applied to humpback whales. Movement Ecology, 3 (1), 

31–47. 



23 
 

White, R., Yousef, M., and Yousef, M. K., 2011. Energy expenditure in reindeer walking on roads 

and on tundra Maternal protein reserves and assessment of factors affecting lactation and 

calf growth. Article in Canadian Journal of Zoology, 56 (2), 215–223. 

Williams, H. J., Shepard, E. L. C., Duriez, O., and Lambertucci, S. A., 2015. Can accelerometry be 

used to distinguish between flight types in soaring birds? Animal Biotelemetry, 3 (1), 45. 

Williams, H. J., Taylor, L. A., Benhamou, S., Bijleveld, A. I., Clay, T. A., de Grissac, S., Demšar, U., 

English, H. M., Franconi, N., Gómez-Laich, A., Griffiths, R. C., Kay, W. P., Morales, J. M., Potts, 

J. R., Rogerson, K. F., Rutz, C., Spelt, A., Trevail, A. M., Wilson, R. P., and Börger, L., 2020. 

Optimizing the use of biologgers for movement ecology research. Journal of Animal Ecology, 

89 (1), 186–206. 

Wilson, R. P., Börger, L., Holton, M. D., Scantlebury, D. M., Gómez‐Laich, A., Quintana, F., Rosell, 

F., Graf, P. M., Williams, H., Gunner, R., Hopkins, L., Marks, N., Geraldi, N. R., Duarte, C. M., 

Scott, R., Strano, M. S., Robotka, H., Eizaguirre, C., Fahlman, A., and Shepard, E. L. C., 2020. 

Estimates for energy expenditure in free‐living animals using acceleration proxies: A 

reappraisal. Journal of Animal Ecology, 89 (1), 161–172. 

Wilson, R. P., Quintana, F., and Hobson, V. J., 2012. Construction of energy landscapes can clarify 

the movement and distribution of foraging animals. Proceedings of the Royal Society B: 

Biological Sciences, 279 (1730), 975–980. 

Wilson, R. P., Rose, K. A., Gunner, R., Holton, M., Marks, N. J., Bennett, N. C., Bell, S. H., Twining, 

J. P., Hesketh, J., Duarte, C. M., and Michael Scantlebury, D., 2020. Title: Forces experienced 

by instrumented animals depend on lifestyle. bioRxiv, 2020.08.20.258756. 

Wilson, R. P., Shepard, E. L. C., and Liebsch, N., 2008. Prying into the intimate details of animal 

lives: Use of a daily diary on animals. Endangered Species Research, 4 (1–2), 123–137. 

Wilson, R., Wilson, M.-P., Link, R., and Mempel, H., 1991. Determination of movements of African 

Penguins Spheniscus demersus using a compass system: dead reckoning may be an 

alternative to telemetry. Article in Journal of Experimental Biology, 157, 557–564. 

Ydenberg, R. C., Welham, C. V. J., Schmid-Hempel, R., Schmid-Hempel, P., and Beauchamp, G., 

1994. Time and energy constraints and the relationships between currencies in foraging 

theory. Behavioral Ecology, 5 (1), 28–34. 



24 
 

 

 



25 
 

Chapter 2 

 

Building customised, flexible multi-sensor biologging units for 

short- and long-term tagging of alpine ungulates 

 

Abstract 
 

Animal-attached multi-sensor tags (‘Biologgers’) have enormous potential to markedly 

advance our understanding of the causes and consequences of animal movements, such as 

for alpine ungulates. Customised, flexible units allowing both short-term, focussed studies, as 

well as units for long-term (seasonal to annual scales) high-frequency monitoring of terrestrial 

ungulates, are however critically missing. In particular, the likelihood of tag failure, and 

associated animal welfare implications (including weight of the tag and methods of tag 

attachment), varies between different species and habitats and increases with deployment 

duration. The specific requirements will also change markedly depending on the aims and 

questions of the study. Hence, not only are commercially available devices generally very 

expensive, they often may not be well suited for the desired data collection. This work 

presents lab-based techniques to build customizable GPS-enabled Daily Diary (DD) multi-

sensor tags (tri-axial accelerometers and magnetometer and environmental sensors) for 

Alpine ungulates (the methods and approaches can easily be extended also to other taxa), 

flexibly combining DD tags with commercial GPS tags and collars. I focus particularly on 

indications and procedures to maximize the probability that tags will function over time, 

including housing design, battery recommendations and weather-proofing the circuit boards. 

Appropriate designs, measures and costs depend primarily on the projected logging period so 

tag construction is presented for three periods; short-term (days; weight range 20-45 g), 

medium-term (several months; weight range 140-440 g) and long-term (>6 months; weight 

range 200-350 g). I trialled the custom-built medium- and long-term tags on over 100 

domestic ungulates in the French Alps (goats, sheep, cows) over periods of weeks to > 1 

month, and on 58 wild alpine ungulates (ibex, chamois, mouflon), logging accelerometer data 

at 20 Hz, magnetometer data at 8 Hz and temperature and pressure at 1 Hz, and GPS fix 

schedules ranging from 15-minutes to one location every 2 hours. Post-deployment analysis 
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shows that appropriately treated DDs can run until either the memory card is full or the 

battery fully used, with an average tagging success rate of 81% (range: 5 to 27 days) for the 

medium term deployments and 36% (range: 7 to 220 days) for the long term deployments. 

The majority of failures occurred in ambitious long-term targets and consideration of possible 

causes has led to recommendations for future deployment which have already improved tag 

deployment success across three different deployment events. The work should allow 

researchers to minimize malfunction risk with cost-effective tag protection appropriate for 

the deployment conditions. Overall, the study demonstrates how custom-built biologging 

tags and collars, rather than “off the shelf” commercial animal tagging solutions, can have 

optimized weight, attachment method and design to match project aims and suit both the 

field conditions and the study of animal’s welfare.  

 

Introduction 
 

Biologging, the deployment of sensor-based logging systems on free-living animals (Naito 

2004), is increasingly popular for the study of wild (and equally for domestic and farmed) 

animal behavioural ecology as individuals can be studied seamlessly over time irrespective of 

environmental conditions, locality, and time of day (Rutz and Hays 2009). This can also 

mitigate costly and potentially biased direct observations (Altmann 1974, Cagnacci et al. 

2010) which may cause disturbance in normal patterns of behaviour shown by the study 

animals (Canine 1990, Crofoot et al. 2010). A particular value of such tagging systems is that 

they can also, theoretically, log data for periods extending for months (Preston et al. 2010, 

Mckinnon and Love 2018) or even years (Horning and Hill 2005, Mckinnon and Love 2018). 

Such ambitions come at a price however, as the probability that something will go wrong 

increases over time because combining sensitive electronics with harsh field conditions can 

lead to device malfunction, losing some, or all, of the data gathered (Bidder et al. 2015), with 

up to 50% of deployed collars failing to record as programmed across studies in multiple taxa 

(Johnson et al. 2002 Allison et al. 2013, Hofman et al. 2019), with the success depending also 

on the specific settings of the biologgers (e.g. McGregor et al. 2016) and a documented urgent 

need of further improvements of biologging technology for deployment on wild animals (Dore 

et al. 2020). For example, tags that fail due to inability to resist the effects of weathering 
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typically have battery problems, where ingress of water leads to corrosion across the 

terminals and cessation of data storage. Worse, it may sometimes even render the stored 

data inaccessible.  

 

Aside from the cost implications of such tag malfunction, loss of data has ethical 

consequences associated with animal capture and restraint (Portugal & White 2018, Wilson 

et al. 2019, Baatsler et al. 2020, Soulsbury et al. 2020, Stabach et al. 2020) and highlights how 

every effort should be made to have tags that are as reliable as possible.  

 

Importantly, the last few years of biologging studies have seen an appreciable shift away from 

workers buying company-produced tags, to construction of their own systems (Gleiss et al. 

2010, Harrison et al. 2011, Fehlmann et al. 2017, Foley & Sillero-Zubiri 2020) and with this, 

the necessity of customising tag size and shape as well as working with attachment methods, 

result in devices causing as little detriment as possible (Kay et al. 2019). Tag optimisation is 

multi-faceted though. For example, specially selecting minimal, but appropriate, sample rates 

improves GPS fix success rate (McGregor et al. 2016) and may reduce battery consumption 

so that smaller batteries can be used and tags can be lighter (Holton, in press), with 

consequences on the quality of data gathered (Brown et al. 2013). Indeed, even slight changes 

in weight and size can have a disproportional detrimental outcome on the fitness of the 

species being tagged (Vandenabeele et al. 2015, Portugal and White 2018). 

 

Ease of deployment and the understanding of the technology is an underestimated aspect of 

biologging when data are collected in the wild. Building a tag with easy custom options to 

access the logging units and batteries reduces tag setup time when deploying, increasing the 

ability of researchers to track more individuals and/or collect repeated data on the same 

individuals.  In addition, building bespoke tags and their housings in the laboratory increases 

knowledge about how the technology operates. This ultimately leads to units being deployed 

more easily in the field and reduces the chance that there will be any reduction in sample size 
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while maximising both the duration of logging and the length of time that the device is 

attached to the animal.     

 

Here, I describe techniques used to design housings and logger systems closely tailored to the 

research questions and to minimize the failure of tags, and particularly expand on the benefits 

of using in-situ, custom-designed tags based on the lifestyle and habitat of the study subjects 

used in this thesis; alpine ungulates. I also note that lessons learnt from this research have 

led to our presented technology being used to customize tags on other terrestrial species 

including African lions (Panthera leo), and African hunting dogs (Lycaon pictus). 

 

Methodology  
 

Building tags for three deployment lengths 
 

My approach assumes that tags log data continuously (Yoda et al. 1999, Martiskainen et al. 

2009, Moreau et al. 2009, Fehlmann et al. 2017) rather than in bursts, as some systems do 

(Nishiumi et al. 2018, Rast et al. 2020), and I arbitrarily split the projected logging life into 

three groups (Fig. 1) based on the questions being asked in the study. The deployment lengths 

are; short-term (several days), where, typically, fine details of animal behaviour are examined 

(Shepard et al. 2008, Campbell et al. 2013, Dickinson et al. subm.), medium-term (weeks to 

several months), where intra-seasonal patterns of space-use and/or behaviour are of interest 

(Martiskainen et al. 2009, Moreau et al. 2009, Alvarenga et al. 2016, Fehlmann et al. 2017) 

and long-term (several months - years), where inter- and intra-annual patterns are examined 

(Horning and Hill 2005).  
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Figure 1 – Examples of devices used within animal tags by the research group (multiple channel loggers and/or 

GPS loggers and transmitters) and how the housing has been developed according to the projected length of 

deployment periods. 

 

The electronic hardware 

 

Within my system, I primarily used “Daily Diaries” (DD) (Wilson et al. 2008), which record 

acceleration (1 g = 9.81 m.s-2) in three orthogonal axes. The tags were placed on the study 

subjects so that these acceleration axes recorded the anterior–posterior (surge), dorso-

ventral (heave) and lateral (sway) axes. The DDs also recorded magnetic field intensity via an 

orthogonal tri-axial magnetometer, temperature and pressure with the timing of recordings 

regulated by a quartz real-time clock. Circuit boards ranged in size from 25 x 25 x 3 mm to 20 

x 17 x 3 mm, depending on the model (Wildbyte Technologies 2020). These units used a 

removable micro SD card on which the data were stored and typically weigh 2-3g. 

 

The batteries used to power the DDs differed depending on the desired logging duration and 

recording frequency of the unit. Most medium-term deployments used rechargeable flat 

rectangular 3.6 V Lithium polymer cells ranging from 350 to 1000 mAh (RS Components Ltd., 
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Corby, Northants, NN17 9RS, UK), which powered a DD for one week to one month, 

respectively, weighing up to 40g. To collect data for longer periods, up to two 3.6 V Lithium-

Thionyl Chloride A-cells were used (3.6 Ah, LS 17500, SAFT, Speciality Battery Group, Bagnolet, 

France), with each A-cell powering a DD for approximately 100+ days and weighing 22g each 

(at 20 Hz accelerometer sampling rate).  

 

Final line of defence; protection of electronics from water and humidity 
 

Circuit boards were inserted into a plastic ice cube tray so that they could be encased in 

GURONIC casting resin for electronic boards, a rubber like material specifically conceived to 

block the ingression of moisture on electrical circuits and thereby prevent any corrosion from 

water ingression should the seals on the external housing fail or the housing crack.  

 

First line of defence; housings for study systems 

All housings were first designed using Computer-aided design (CAD) technology, in order to 

find the most efficient dimensions, conditional on battery size, number and types of loggers 

employed, and attachment method to the animals (e.g. with or without custom openings to 

attach to the collar belt). The tags varied in their external housings (Fig. 1), which changed 

according to expected environmental pressures (shocks from hitting against other animals or 

rocks; rain and snow; temperatures, etc.) and the projected deployment periods. Two classes 

of materials were used - vacuum-formed from polyethene for short term deployments, and 

3D-printed shock-proof ABS resin for medium and long-term deployments. 

 

Short-term; tests for < 1 day on domestic horses (Equus ferus caballus) 
 

In the present thesis, short-term housings were used to test the loggers, with all data 

collection focussed on medium and long-term deployments, hence I refer to examples where 

I built these housings on side-projects on other taxa. A very efficient and cheap ‘short-term’ 

housings (Type I) can be designed and built using vacuum-formed from polyethene (≈2 mm 

thick). These housings could be splash-proofed by being wrapped in electrical tape or 
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waterproofed (to ca. <0.5 m depth) by sealing with polyethylene glue. I used two housing 

sizes (Fig. 1), the smaller version (20 x 35 x 22 mm, ~20g) potentially allowing smaller species 

to be tagged but leaving no room for units other than a single DD (i.e. no GPS). This housing 

was tested only in domestic and captive species due to its inability to resist high forces and 

pressures and short-term waterproofing. In addition to horses (see case study below), I also 

used these housings for short (ca. 3h), continuously monitored periods on domestic dogs 

(Canis lupus familiaris), and Aldabra tortoises (Aldabrachelys gigantea). 

 

I prepared a similar housing for a study on horse movements and energy expenditure, where 

on a ranch in Buffalo, Wyoming, North America, sixteen adult American Quarter horses were 

tagged using the type I housing described (Milne 2019). The housing held a square “Daily 

Diary” circuit board and a 1000 mAh rechargeable battery. The tag had a total weight of 45 g 

with maximum dimensions of 65 x 35 x 22 mm (Fig. 2). The housing was backed with foam 

and wrapped with electrical tape onto the saddle (Fig. 2) to ensure that the acceleration axes 

mirrored the principal axes of the horse (see above) to obtain an accurate representation of 

the animal’s movement (Fig. 2). The same logger was repeatedly deployed on the different 

individuals for periods between 30 and 150 minutes and the device was constantly observed 

by the rider. During the deployment period, the animals were subject to temperatures 

between 10°C and 23°C with little or no rainfall (NOAA 2017). 

 

 

Figure 2 – (a) Diagram showing position of the DD with respect to the housing and where positioned relative to 

the species (b) Daily Diary and 1000 mAh battery inside a polyethylene housing for short-term data collection 

and (c) in place taped to the saddle of a horse. 
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Field performance – Study area and species 

 

 

Figure 3 – Illustration of the overall study area and the position of specific relevant sites within France. (a) The 

Bauges massif was used for studying the chamois, (b) the domestic goat and (c) the domestic cow.   The Belledonne 

massif was used for (c) the domestic sheep and (d) alpine ibex study while (e) the mouflon was studied within the 

Caroux massif. Each map has polygons outlined and is coloured based on habitat. 

 

Medium-term; tests for < 2 months on domestic cows (Bos taurus) 
 

The medium-term housings (Type II) were designed to be used on the domestic species (cows, 

goats, sheep) during the time of summer (July-August) on the French Alps – on the Bauges 

Mountain (Massif des Bauges, 45.61°N, 6.19°E) (Fig. 3a) for the goats and cows, and on the 

Combe Madame on the Belledonne Massif (La Ferrière, Isère; 45.26479°N, 6.11419°E) (Fig. 

3c) for the sheep. All housings contained Daily Diary tags (Wilson et al., 2008), combined with 

Gipsy5 GPS tags (TechnoSmArtTracking Systems http://www.technosmart.eu), both 

electronic units powered by 1000 mAh rechargeable battery for each tag. All housings were 

attached to the animals using standard commercial nylon collars for livestock – for sheep and 

goats I used Kvikk Durable Plastic Collars (Collar Length 59.5 cm, Collar Width 2.5 cm, 

http://www.technosmart.eu/
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Circumference 41 -52cm, weight 52g; Shearwell Data Ltd, Minehead, Somerset, UK; 

www.shearwell.co.uk), and for the cows I used nylon neck collars with single roller buckle 

(width 40mm, length 135cm, weight 180g;  Fearing Lifestyle, Durham, UK; 

www.fearing.co.uk). The housing was made of Acrylonitrile Butadiene Styrene (ABS) plastic 

(≈10 mm thick) (Olivera et al. 2016) printed in 3D, following the CAD design, to have a cavity 

which could hold of the required batteries and logging units. The housing was constructed so 

that it could be threaded onto different sized belts/collars, but mainly targeted at the cow or 

sheep/goat collars, respectively. The housing was made watertight for long periods by coating 

the plastic in acetone (which sealed the plastic filaments together) and by adding an O-ring 

on the lid, fastened into place using aluminium screws with an optional hole to allow outside 

pressure to be registered by the pressure sensor (Fig. 4). 

 

For the remainder of this chapter for simplicity I focus on the cow collars only – the sheep and 

goats ones were very similar, with a lower vertical extension to accommodate the smaller 

body size. The housing was counterbalanced on the nylon belt with a 500 g lead diving weight, 

to hold the logger up dorsally on the collar (Fig. 4). The collar had a total weight ~690 g, with 

housing dimensions of 60 x 70 x 54 mm. The cows were collared during milking (which 

occurred on-site twice daily in a mobile milking station) and systems remained on the animal 

for between 6 to 30 days. During the deployment period, the animals were subject to 

temperatures between 9°C and 22°C with average monthly rainfall 56mm (NOAA 2017). 

 

 

Figure 4 – (a) Diagram showing position of the DD with respect to the housing and once positioned onto the 

individual cows (b) the Daily Diary, GiPSy 5 and 1000 mAh battery inside the housing for the medium-term data 

collection, (c) Lab-built collar attached to a cow. 

http://www.shearwell.co.uk/
http://www.fearing.co.uk/
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Long-term; tests for > 6 months on ibex (Capra ibex) 
 

For long-term monitoring (i.e. up to 1 year of logging), I prepared 3D-printed housings made 

from ABS plastic (Type III), particular considerations included the ability of the system to 

withstands large impacts (> 2 g), prevent large amounts of water entering and then flooding 

the housing and the capacity to cope with water condensation within the housing from the 

changing temperatures. A key novelty of the housings was that, thanks to the 3D design, I 

could design housings which could be seamlessly bolted onto and encase existing housings of 

commercial GPS collars, used for many years on the study species, as part of long-term 

projects. This housing hence became an add-on to an existing, proven biologging collar, which 

is an advantage both from an animal ethics point of view as well as from an efficiency 

standpoint – the standard, long-term data collection can continue as usual and if the 

additional system works, novel data are collected in addition to the full set of the established 

ones. Specifically, I developed such housings for ibex (Capra ibex), mouflon (Ovis gmelini 

musimon × Ovis sp.), and chamois (Rupicapra rupicapra)  (plus red deer (Cervus elaphus), as 

part of a different project to the current thesis). All three species are routinely monitored and 

tagged every year with GPS radiocollars by the Office National de la Chasse et de la Faune 

Sauvage, according to the ethical permits by the Préfecture de Paris, in agreement with the 

French environmental code.  

 

A sample of individuals of each species is captured every year, using either drop down nets or 

netted pen traps with salt blocks for bait. Once captured, the ungulates were handled, 

masked, released from the net and had their legs restrained to immobilise the animal. Data 

were then collected including blood and hair samples, weight, sex and measurements of 

horns, hoofs and legs. Before the ungulate was released the individual was collared with the 

Lotek GPS with attachment time recorded. Specifically, all animals were tagged with a Lotek 

wireless GPS 3300S collars with radio-controlled remote release mechanism (revision 2; Lotek 

Engineering Inc., Carp, ON, Canada).  The Lotek collars recorded a GPS position every hour 

and contained a VHF transmitter at the top of the collar with mortality sensor, as well as the 

3D-printed housing specifically designed to be screwed onto the GPS unit. The collar with the 
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DD attached weigh in at 438g staying under the 3% guideline for all species. The collars are 

recovered after a year through a remotely triggered drop‐off mechanism. Thus, using a 

custom-built add-on allowed me to seamlessly add an entire new level of data collection, with 

new sensors, to an existing set of long-term projects, without disrupting the ongoing 

monitoring efforts. The chamois were captured in the Massive de Bauges area (Fig 3a), the 

ibex in the Belledonne massif (Fig 3d), and the mouflon in the Caroux‐Espinouse mountains 

(43.60854°N, 2.98639°E) (Fig 3e). 

 

In detail, the ‘Daily Diary’ housing contained an elongated DD circuit board and two 3.6 V A-

cells combined with a diode (Fig. 5; see also above), powering the single DD unit. The 

complete housing had a weight of 62 g and had housing dimensions of 48 x 75 x 78 mm. To 

allow the 2 A cells to last for (theoretically) one year, I selected a sampling schedule of 20 Hz 

for the accelerometers, 8 Hz for the magnetometer, and 2 Hz for the temperature and 

pressure sensors. 

 

 

Figure 5 – (a) Diagram showing position of the DD with respect to the housing and where positioned relative to 

the species (b) Daily Diary and A-cells within the housing showing how the unit fits over the top of the commercial 

collar, (c) similar collar setup attached to a mouflon.  

 

During the deployment period, the tags were subject to temperatures between -11°C and 

+36°C (average 10.8°C), as recorded by the internal temperature sensor, with precipitation 

(rain- or snowfall) varying between monthly means of 70 and 172 mm (NOAA 2017). 

 



36 
 

Results 
 

The three housing types all successfully collected data for the minimum desired amount of 

time across the required channels (Table 1) with high resolution. However, some failures were 

noted following this. 

 

Table 1 - Comparison of the different housing types, the average amount of data collected and the logging 

success of the tags.  

 
Time scale 

Short-term 

(Type I 

housing) 

Medium-term 

(Type II housing) 

Long-term 

(Type III 

housing) 

Average logging time in days (at 20 Hz using 

chosen battery sizes) 
<1 12 200 

Amount of deployments (number of individuals 

(n)) 
26 (n=16) 134 (n=85)  58 (n=58) 

Average data points including all channels (at 20 

Hz using chosen battery sizes) 
1.27E+06 9.12E+07 1.52E+09 

Percentage of devices treated with Guronic 0% 87% 94% 

Percentage of data successfully collected 

compared to maximum potential data collected 

with respect to battery capacity 

100% 81% 36% 

Breakdown of logger failures with possible causes (if no data is recoverable) 

Device incurring electronic failures due to water 

ingression (device logged for part of the time) 
0 (0%) 20 (80%) 3 (8%) 
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Devices that completely failed to record at all 

(likely due to human error in programming and set 

up) 

0 (0%) 5 (20%) 7(19%) 

Corroded and corrupt SD cards losing all data  0 (0%) 0 (0%) 9 (26%) 

Housing found damaged or missing 0 (0%) 0 (0%) 17 (47%) 

 

 

In the short-term study using the type I housing, out of 26 deployments, no units failed, 

providing 100% of the expected data.  

 

The type II housings were deployed 68 times on three domestic ungulate species across the 

months of July and August in 2017 and 2018 and provided 81% of the expected data. 20 

failures occurred in the devices that did not have their circuit boards covered in Guronic. In 

these units, the circuit boards were visibly corroded. Three of the recovered housings (2%) 

had cracks resulting from robust inter-individual interactions, or the action of hitting the 

collars against rocks or the metal bars during the daily milking operations, none of which (0%) 

had resulted in damage to the DDs.  

 

The type III housings recorded alongside a Lotek GPS collar on 14 wild ibex. Three tags failed 

to log data due to corruption on the SD card although the reason was not clear, three tags 

logged for <60 days in circuit boards that were not covered in Guronic (see above), and three 

units logged for >200 days. A total of 27 tags were deployed on mouflon in 2017, 2018 and 

2019; 17 tags were deployed on chamois in 2017, 2018 and 2019. Just under half the units 

(47%) were not successfully recovered accounting for most of the data lost. The SD cards 

failed for 13 and 2 of the tags for mouflon and chamois, 3 for the ibex. Thus, 6 (69%), 11 (41%) 

and 6 (35%) of the collars successfully recorded useable Daily Diary biologging data, 

respectively for ibex, mouflon and chamois – a non-significant difference (Pearson's Chi-

squared test, X squared = 4.2498, df = 2, p-value = 0.1194). These loggers provided 20 Hz 
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accelerometer, 8 Hz magnetometer, and 4 Hz environmental data (temperature and 

barometric pressure) for over three months on average (range 5 – 220 days; Table 2).  

 

Table 2 – How biologger collars performed using type III housing, across three wild ungulate species. 

Species Deployed 

Successfully 

recovered 

Units with 

recovarable 

with data 

SD card 

failures 

Days of data 

(median) 

Days of data 

(range) 

Ibex 14 9 6 3 218 52-220 

Mouflon 27 24 11 13 80 5-220 

Chamois 17 8 6 2 150 97-173 

 

Using the temperature sensor data allows to explore if tag failure was associated with below-

zero temperatures (leading to battery failure). Using the ibex data, whilst there was a clear 

relationship between battery voltage and temperature (Fig. 6), the end of data recording did 

not coincide with the expected end of data recording. 

 

 

Figure 6 – Scatter plot showing how voltage of electronic DD logger changes how temperature register by DD 

logger, across five individual ibex.  
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Discussion 
 

This study highlights how housings for logging systems on wildlife must address a series of 

issues which vary considerably according to the study species and the projected deployment 

period. The tagging success rate was very high for the short term and medium-term 

deployments and whilst the rate was considerably lower for the long-term deployments on 

wild animals, it was still within the average rate for wildlife biologging studies, even using 

expensive commercial devices (Johnson et al. 2002, Allison et al. 2013, Hofman et al. 2019). 

On the other hand, specific commercial devices have shown considerably higher success rates 

and there are strong challenges and risks in developing custom-built devices ((see Foley & 

Sillero-Zubiri 2020) and references therein), counterbalanced however by the lower costs and 

the ability to collect data better suited to the project aims and with closer consideration of 

specific animal welfare requirements. I discuss here in detail procedures to be used to further 

improve tag success rate. 

 

Aside from the housing having to be robust enough to withstand the forces to which the 

animals subject them, including interspecific interactions (e.g. Jung & Kuba 2015), perhaps 

the single most important element is the value of covering the circuit board with Guronic, a 

product fabricated specifically to protect electronics from moisture and reduce the impact of 

mechanical shock. Although the Guronic layer added little to short-term deployments 

(although the test conditions did not cover extremes of weather), temperature changes 

within the air spaces of housings due extreme temperature cycles, even over just a few days, 

can lead to repeated cycles of condensation where water forms droplets on the circuit board, 

before being re-vaporised. An unprotected circuit quickly becomes corroded under such 

circumstances, often due to short-circuiting between the power lines on the board and will 

generally stop logging even resulting sometimes in loss of data. I would therefore 

recommend, where the weight of the tag is not critical, that all circuit boards be covered in 

Guronic (or similar types of coatings for electronic circuit boards), even for short-term 

deployments. Where weight becomes a strict issue (Vandenabeele et al. 2012) , I suggest 

using “plasti dip”, an aerosol designed to protect circuit boards from moisture that can be 

applied in thin layers. Although I did not explicitly use this product within my trials, this would 
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add an extra layer of protection and, whilst this layer will not protect against vibration of 

shocks in the same way as the rubberized Guronic, it would seem markedly better than 

nothing. 

 

Vacuum-formed polyethylene housings are cheap and rapid to produce (typically taking 1 

person approximately 2 days to prepare 10 tags, which includes building batteries and unit 

testing). However, such housings are only appropriate for short-term deployments and should 

be checked regularly (every three days at least) for signs of weakness. The probability that 

such housings will fail to protect the logger depends on the species concerned, its 

environment, the specific site of logger attachment and the projected logging duration. 

Workers need to determine the likely forces to which the housings may be subjected (such as 

the effect of head-butting in ungulates) and test the housings with these forces (which can be 

simulated with weights) to check that they withstand the process. Deployments within humid 

environments or environments subject to highly variable temperatures makes any breach of 

the housing (including simple cracks) critical since water can enter the system and/or 

condense within the housing. Indeed, such cracks generally lead to water accumulating within 

the housing as water condenses, or moves inside via capillary action, and is joined by more 

water as repeated condensation- or precipitation events occur. Finally, the specific site of 

attachment determines, to some extent, the likelihood of the housing eliciting problems. To 

exemplify, I use data from a previous work (Redcliffe 2017), where a transparent housing 

mounted dorsally on a collar can have internal temperatures that exceed 45°C when subject 

to intense insolation due to a ‘greenhouse effect’ (He et al. 2018) (Fig. 7).  
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Figure 7- Hourly mean temperature recorded by a DD tag encased in vacuum-sealed housing and attached to an 

Aldabra tortoise (Aldabrachelys gigantea)) and compared to the weather station data as a function of hour of 

day. The data that were collected over approximately two days during the dry season May to June 2016, in 

Mauritius, with the dashed line representing approximate sunrise and sunset. Note: species behaviour and 

movement will dictate some temperature readings e.g. seeking shade midday.  

 

Not only does this serve to vaporise water within the housing, only to condense later when 

the temperature cools, but it may also lead to pressure build-up within the housing which 

may lead to cracks in the glue and subsequent water ingression. I would recommend that 

such housings be only used for deployments not exceeding a few days in any event but that 

the deployment period be decided depending on the harshness of the operating 

environment, including animal forces and the weather. Vacuum-formed housing are, 

however, ideal for studies on captive animals, such as the horse study described here, since 

they can be easily deployed and removed. 

 

3-D printing using ABS plastic can mitigate many of the problems of vacuum-formed housings 

and are therefore more suitable for medium-term projects (see also Foley & Sillero-Zubiri 

2020). This is, however, more costly and time-consuming (each housing may take several 

hours to print, and must subsequently be water-proofed, so that it takes about 1 week to fully 

prepare 10 tags). The specific advantage of the 3-D printing process is that housing wall 

thickness can be varied easily so that expected forces can be taken into account. It is 
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important, however, to seal the units properly with acetone since the printing process layers 

filaments together, leaving spaces between them so that they are not, otherwise, waterproof. 

There is little information on the stability of ABS plastic over time under conditions 

experienced by wild animals (Boldizar and Möller 2003, Olivera et al. 2016) but some 

degradation of capacity is expected so I would recommend such housings for no longer than 

about 6-12 months. Further long-term tests will be important to clarify this. 

 

Deployment periods that exceed 6 months require a much greater investment of time and 

resources. Specifically, an engineer’s time is required to consult, design and build housings, 

making this the costliest option. Such housings can, however, be made to be fully durable (if 

made in aluminium for example – if the body weight of the study species allows this; this was 

not an option for the wild ungulate species in my thesis), reducing the chance of the unit 

becoming damaged when on the animal, even over extended periods. Reasons for tag failure 

stemming from such housings tend to centre around inadequate provision of batteries or 

using poor quality memory cards (see e.g. Table 2). Both of these problems can be easily dealt 

with. 

 

Choosing the right housing for the study 
 

To aid users undertaking a project using biologgers, I present a flow diagram (Fig. 8) to help 

understand the requirements of the study and identify the most appropriate housing.  

 

 



43 
 

 

Figure 8 - Flow chart relating the study species and the desired logging period, to help identify the optimal 

housing for data collection in ungulates.   

 

Future improvements 
 

The proportion of device failures in my study from both short-term and medium-term tags 

implies that housing recommendations for these deployments are good. I note however, that 

collar mounting, especially loose collars, creates noise within the acceleration and 

magnetometer data (Wilson et al. 2019) lowering data quality, and making behaviour signals 

less consistent. I would suggest that researchers working with such sensors minimize this by 

considering a more flexible, tighter fit, perhaps using more elastic material for the collar, and 

adding padding, if possible, considering animal welfare.  

 

I noted the several tag failures due to corrupt SD cards, tag corrosion and housings being 

smashed during the long-term study. To prevent the housing cracking on further 

deployments, I recommend fortifying the structure by changing the internal structure 

filament print of the housing and rounding off the edges of the ABS plastic. To reduce 

electronic failures, water and shock-proof Guronic should be used on all deployments and 

high quality durable micro SD cards used for memory. As yet, I have done no systematic test 

of the ability of different SD cards brands to provide a robust memory but this is urgently 

needed because I had memory card failure in housings that were fully intact when recovered. 
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The implication is that temperature changes may have been responsible for data corruption 

but this is conjecture. 

 

Conclusion 
 

The in-laboratory-designed biologging collars are not only cheaper but offer more data at a 

higher resolution than most company-built animal collars. The techniques used to shockproof 

and waterproof the terrestrial electronic devices have been improved over the past three 

years and this has increased the success of data collection. This study highlights the 

importance of design and attachment methods to acquire the best quality acceleration and 

magnetometer data. The short-term housing and attachment method produced clear 

consistent signals, however the medium-term collars acceleration data were lower quality 

due to the noise in the signals caused by the loose fitting of the collar. It would be beneficial 

to the community if other researchers building tag housings, including those working in the 

marine environment, were able to disseminate their successes and failure, perhaps via a 

forum in the biologging society. 
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Chapter 3 
 

Step in the right direction for dead-reckoning terrestrial animals: Using 

behavioural definition analysis to improve the accuracy of dead-

reckoned locations 

 

Abstract 
 

Dead-reckoning is a method which uses vectors of heading and speed to allow calculation of 

vehicle movement paths. It has also been shown to be a powerful tool for deriving high 

resolution (>1 Hz) travel paths of terrestrial animals for a fraction of the battery consumption 

and, under some circumstances, less error in location than global positioning system (GPS) 

loggers, with a higher resolution of turns and also in locations without GPS signal reception 

(dense canopy, under cliffs, etc). Despite this, the approach is underused and when it is, few 

specifics are provided, making it hard for researchers to replicate the treatment, and often 

with insufficient consideration of the error sources. This work uses 20 Hz data from GPS-

enabled Daily Diary tags (GPS frequency ranging from 15 minutes to 2 hours) on 27 free-living, 

mountain ungulates – 8 domestic cows (Bos taurus), 10 domestic goats (Capra aegagrus 

hircus), 6 wild alpine ibex (Capra ibex) and 3 Mediterranean mouflon (Ovis gmelini musimon 

× Ovis sp.) to assess the errors of GPS-enabled dead-reckoning in reconstructing movement 

tracks, according to different rules derived from the accelerometers to indicate travelling – 

an approach missing from all current standard methods. By using example data, over time 

scales of 14-20 hours, from the study species, four different ‘travelling detection criteria’ 

(TDC) were tested, all of which demonstrated the extent to which simple filtering can improve 

estimates of animal location, speed and distance travelled with error accumulation ranging 

between 9 and 117 m/h according to species and TDC. This study therefore highlights the 

value of dead-reckoning to interpolate between GPS fixes in collar-tagged free-roaming 

ungulates. In particular, careful consideration of how to determine when tagged animals are 

travelling leads to surprisingly accurate information about animal movement pathways, even 

when GPS fixes are only taken at hourly intervals.  
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Introduction 
 

Two or three dimensional animal paths can reveal key aspects of species energetics (Parker 

et al. 1984, Lempidakis et al. 2018, Wilson et al. 2020), decision-making (Helen et al. 2006, 

Grignolio et al. 2007, King and Cowlishaw 2009), home ranges (Christiansen et al. 2017, Cohen 

et al. 2018) and behaviour (Carbone et al. 2007, Hein et al. 2012) and can lead to a better 

understanding of a suite of important phenomena including the spread of disease (Patz et al. 

2008), habitat utilisation (Aarts et al. 2008, Roper et al. 2001) and social interactions (Bandeira 

de Melo et al. 2007, Handcock et al. 2009, Calabrese et al. 2018, Barkley et al. 2020).   

 

Typically, animal paths are obtained from locations sampled at regular times from the 

continuous trajectory of an animal, using animal-attached biologging sensors or transmitters, 

and are reconstructed by joining the sampled locations with straight line sections (Calenge et 

al. 2009). With high resolution paths in particular, behaviours can be identified from the 

characteristics of the path (Edelhoff et al. 2016), for example track tortuosity (Benhamou 

2004) and step lengths (Ungar et al. 2005, Bandeira de Melo et al. 2007, de Weerd et al. 2015). 

To obtain these locations, satellite-based systems such as Global Positioning Systems (GPS) 

are commonly used, derived from tags attached to the study animals. Since this system uses 

the position of orbiting satellites, communicating via radio transmission, GPS-acquired 

positional quality is affected by any environment that inhibits the passage of radio-waves e.g. 

through salt water or when an animal is under cover (e.g. tree cover) (Gamo et al. 2000, 

Quaglietta et al. 2012, Camp et al. 2016), leading to biased if not entirely missing locations in 

certain habitats. Thus, although GPS-acquired position is regarded as a ‘gold standard’, it is 

not reliable under some circumstances and may not be viable under others (Gamo et al. 2000, 

de Weerd et al. 2015). Radio transmission also requires a relatively high amount of power and 

GPS uses particularly high power to calculate position (Dewhirst et al. 2016). For example, 

typically, to collect GPS fixes for a high-resolution path (at e.g. 1 Hz) for one day requires~500 

mAh of power or ~3.5 g in A-cell battery weight (see appendix, Table 1). Thus, to collect high 

frequency long-term GPS data requires a bulky, heavy and financially costly battery that must 

be carried by the species being tracked. The extra mass and bulk affect the cost of movement 

(Vandenabeele et al. 2012) and therefore likely the fitness of the animal (Wilson et al. 2004, 
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Rasilius et al. 2014, Bodey et al. 2017). Therefore, researchers seeking to minimize such 

effects by keeping batteries small have to choose between short-term high temporal 

resolution tracks or longer-term, low temporal resolution tracks (Frair et al. 2005, Oksanen et 

al. 2015). Low resolution GPS paths  however result in the loss of key details of the path’s 

tortuosity, which has consequences for my understanding of animal movement, e.g. by 

leading to poor estimates in distance travelled or time spent in particular habitats (Rowcliffe 

et al. 2012).  

 

Dead-reckoning (Kao 1991), which uses information on animal heading, speed and change in 

height/depth in vectorial calculations (Shiomi et al. 2008), offers a solution to this. Specifically, 

in terrestrial animals, it produces high resolution paths with fewer GPS fixes by filling in the 

gaps between the infrequent ‘true’ locations by using tri-axial acceleration metrics as a proxy 

for speed and tri-axial magnetometer to derive heading (Bidder et al. 2015). The data 

necessary for dead-reckoning can be collected using electronic devices combining 

accelerometers and magnetometers, e.g., “Daily Diaries - DDs” (Wilson et al. 2008) in tandem 

with the GPS loggers (important for error correction, see below). DDs consume markedly less 

power than GPSs because there is no signal transmission and no complex calculation on the 

tag. The dead-reckoning procedure does not, however, render the GPS obsolete because 

ground-truthed locations are required periodically to prevent any drift caused by cumulative 

errors as a result of slightly offset orientation of the tag relative to the animal (Bidder et al. 

2015, Dewhirst et al. 2016), noise in the acceleration data and inaccuracies in the speed versus 

acceleration metrics (Bidder et al. 2012). In short, GPS-derived positions allow the dead-

reckoned data to be converted into locations that can be mapped, making a combination of 

GPS and dead-reckoning a powerful method for deriving high resolution animal movement 

paths.  

 

GPS-corrected dead-reckoning has been used to project paths in studies for aquatic species 

(Wilson et al. 1991, Mitani et al. 2003, Shiomi et al. 2008, Wensveen et al. 2015), for 

pedestrian navigation (Jiménez et al. 2009, Tian et al. 2014) and terrestrial animal studies 

have tested the methodology on domestic species, including domestic dogs (Canis lupus 
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familiaris), cows    (Bos Taurus) and horses (Equus ferus caballus) (Bidder et al. 2015, Dewhirst 

et al. 2016). However, few studies have used this approach on wild species for periods longer 

than a day, and no studies have used the technique on freely-moving wild species over long 

time scales.  

 

The use of dead-reckoning for terrestrial animals was first described by Bidder et al (2015) 

with its benefits highlighted. Bidder et al. (2015) mention, however, how using Vectoral 

Dynamic Body Acceleration, a derivative from tri-axial acceleration data (Wilson et al. 2019), 

as a proxy for speed, has its limitations due to the relationship between true speed and VeDBA 

changing with substrate, incline and the change in step gait from walking to running. In the 

most simplistic approach though, the suggestion is that VeDBA extent appropriately codes for 

travel speed even though animals may have high VeDBA values when not moving (e.g. when 

shaking themselves or grooming).  This is obviously problematic and makes a strong case for 

identifying translocational movement before applying any speed conversion to the VeDBA 

data. However, there are multiple approaches for identifying behaviour from acceleration and 

magnetometer data (Fehlmann et al. 2017, Williams et al. 2017) with corresponding potential 

to enhance dead-reckoning-derived tracks.  

 

In this work, I examine the extent to which behaviour identification enhances dead-reckoning 

path definition in moving animals using data from free-living, domestic cows (Bos Taurus), 

domestic goats (Capra aegagrus hircus), wild alpine ibex (Capra ibex) and wild mouflon (Ovis 

gmelini musimon × Ovis sp.). The specific aims of this study are; (i) to examine various 

acceleration-based metrics to indicate when animals are travelling and stationary, (ii) to 

consider how these metrics tie in with VeDBA/speed relationships, (iii) to assess how both of 

these affect the viability of GPS-enabled dead-reckoned tracks before (iv) making 

recommendations as to how researchers can best use acceleration and magnetometry data 

to produce the paths in GPS-enabled dead-reckoned data that most likely correspond to the 

real paths taken by study animals. This forms an important element that informs the methods 

used in subsequent chapters in this thesis. 
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Methodology 
 

Acceleration and magnetometer data were collected using Daily Diary (DD) multi-sensor 

biologgers (Wildbyte Technologies 2020) and GPS systems – Gipsy 5 (Technosmart) or Lotek 

3300S (Lotek.com) – see chapter 2 for more detail. I here summarise the main information – 

on 4 wild and domestic ungulate species living in alpine mountain areas in France (Table 1; 

see chapter 2 for further detail). The DDs recorded multiple data points per second on 8 

channels including, tri-axial accelerometers (at 20 Hz), tri-axial magnetometry (at 8 Hz), 

temperature (at 2 Hz) and barometric pressure (at 2 Hz). The GPS units recorded fixes at 

different rates, dependent on the species, location and projected logging period (Table 1).  

 

Table 1- A list of data used within this study detailing the individuals used, GPS sampling frequency and tagging 

duration. 

Species Number of 

individuals 

Time window of 

sample data 

Sample data 

duration 

GPS fix rate Location 

Domestic 

goat 

10 August 2017 14 hours 1 fix every 15 

minutes 

Bauges massif, 

France 

Domestic 

cow 

8 August 2017 14 hours 1 fix every 15 

minutes 

Bauges massif, 

France 

Ibex 6 May to June 2017 24 hours 1 fix every 2 

hours 

Belledonne 

massif, France 

Mouflon 3 June to July 2017 16 hours 1 fix every 30 

minutes 

Caroux parc, 

France 

 

Two data sets were taken from deployments using tags on domestic animals; cows and goats 

in the Bauges massif (45.60485°N, 6.18295°E). For these two species, the laboratory-built 

collars were made from nylon belts equipped with 500 g lead weight and flexi-plastic with a 

100g lead weight, respectively. Both species’ collars had the same tag housings (weight; ~50 

g, dimensions; 60 x 70 x 54 mm) constructed of ABS plastic (see chapter 2) containing a DD 
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and GPS Gipsy 5 unit (TechnoSMart 2020) that took one GPS location every 15 minutes (Table 

1).  

Two data sets were derived from wild species, one from alpine ibex tagged in the Belledonne 

massif (45.2241°N, 6.0305°E) and the other from mouflon residing in the Caroux mountains 

(43.6059°N, 2.9868°E). The DD housing for both species (weight: 150 g, dimensions: 48 x 75 x 

78 mm) was also constructed of ABS plastic and was fitted over, and screwed onto, a collar-

mounted GPS Lotek 330s collar (Lotek 2020), programmed to take a fix once every two hours 

for the ibex and once every 30 minutes for the mouflon (see chapter 2).  

 

In the procedure detailed below, a single 24 h period, picked at random from each individual 

from each species was selected for analysis.  

 

Nominal dead-reckoning procedure for terrestrial animals  
 

The simple, nautical dead-reckoning technique (Cotter 1978) begins by taking a known start 

point (in my case, where the animal was at the start of the selected 24h period). If the heading 

of the vessel (or animal) is known as well as its speed, the trajectory of that vessel can be 

plotted over time using vectorial calculations. In essence, the moving body continues in a 

straight line with a movement rate determined by its speed until either speed or heading 

changes (Cotter 1978, Kao 1991, Bidder et al. 2015). In the times of old sailing vessels, 

headings and speeds were maintained for long periods, making the calculation relatively 

simple (notwithstanding issues with drift due to currents). Application of this technique to 

animal movement necessarily involves frequent (sometimes > 1 Hz) assessment of both 

heading and speed since animals may change both at any time. This is achievable with modern 

logging systems (Kao 1991, Jiménez et al. 2009, Bidder et al. 2015), which can compute 

heading and speed for fractions of seconds (Bidder et al. 2015, Dewhirst et al. 2016). Today, 

animal dead-reckoners are generally based on using inertial measurement units (IMUs) 

(Johnson and Tyack 2003) such as found in the DDs. However, this is complex and requires 

several transformations to convert the magnetometer and acceleration data into distance 

and heading and then to convert these into GPS decimal coordinates. These are briefly 
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described below although more details can be found in Bidder et al. (Bidder et al. 2015, 

Gunner et al. 2021, Walker et al. 2015). To undertake the dead-reckoning process and all the 

calculations associated with it, I used bespoke software; Daily Diary Movement Trace (DDMT) 

(Wildbyte Technologies 2020).  

 

Magnetometer data correction  
 

The magnetometer data are subject to a number of errors including sensor bias (which is due, 

in part to ferrous material in the tag or adjacent tags such as the GPS), scale factors (because 

the earth’s magnetic field is not constant across its surface), sensitivity errors and iron 

deposits in rock types in the surrounding areas of where the animals  move (Caruso 2000, Guo 

et al. 2008, Vasconcelos et al. 2011). To correct for these issues, the tri-axial magnetometers 

tag must be calibrated. This involves subjecting them to a series of extensive, defined 

rotations so that a tri-axial plot of the magnetic field intensity logged by the sensors (also 

called the M-sphere (Williams et al. 2017)) can be formed (Fig. 1). This is supposed to be a 

perfect sphere but is typically distorted in a number of ways due, for example, to the presence 

of ferrous material in or near the tag, and so must be corrected (Fig. 1) (for details see Bidder 

et al. 2015). 

 

Figure 1 – Calibration of the magnetometers by rotating them extensively produces data that, when plotted as a 

tri-axial graph, produces a sphere (the M-sphere – see Williams et al. (2017). To be useful in dead-reckoning, this 

sphere, which is typically distorted (a), has to be normalised (b) so that it becomes perfectly spherical and so that 

the vectorial sum of the magnetic field vectors are constant at all points on the sphere, which centres the sphere 

about a defined origin.  

 

Derivation of tag orientation to prepare for animal heading calculations 
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The procedure for deriving animal heading requires, first, that the tag orientation be defined. 

This is done by deriving the ‘static’ acceleration (that component due to the earth’s gravity 

acting on the body of the animal, also when the animal is immobile) by smoothing the raw 

acceleration, typically over a window of 2 seconds (Shepard et al. 2008), and then using these 

values to define tag pitch and roll (Fig. 2).  

 

Figure 2- Alignment of the tri-axial sensors with respect to the animal carrying the tag and summarized 

description of how tag pitch and roll is calculated from the ‘static’ acceleration (the acceleration component due 

to gravity). Note that the x and y refer to the acceleration axes shown in the stylized animal drawings. 

 

Derivation of animal heading  
 

The details of the derivation of the animal heading are given by Bidder et al. (2015) and 

Walker et al. (2015). In short, the animal pitch and roll angles are used to interpret the 

normalized (Fig. 1) magnetometry data. Specifically, the heading angle is determined by using 

the atan2 function in the relevant two axes of the normalised magnetometer data and this is 

then converted to radians (Fig. 3).  
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Figure 3 – Calculation of animal heading involves the integration of the pitch and roll data (x and y) with 

corresponding axes in the normalized magnetometer readings (N and m terms). 

 

Distance travelled 
 

Bidder et al. (2012) provides evidence that the Vectorial sum of the Dynamic Acceleration 

(VeDBA) (see Qasem et al. 2012) scales linearly with travel speed in terrestrial animals. VeDBA 

is calculated by deriving the dynamic acceleration for each axis by taking the static (smoothed) 

acceleration away from the raw acceleration before the 3 axes are added vectorially (Wilson 

et al. 2019) (Fig. 4). 

 

Figure 4 – The distance travelled by an animal has been found to be accessible by using VeDBA as a proxy for 

speed (Bidder et al. 2015). To calculate VeDBA, the dynamic acceleration from each acceleration channel (which 

is the raw acceleration minus the smoothed – see Fig. 2) is added, vectorially, to the dynamic acceleration values 

from the other two channels. The speed versus VeDBA relationship is linear, with a non-zero VeDBA threshold 

intercept at a speed of 0. The distance travelled is simply the calculated speed multiplied by the time spent 

travelling at that speed. 

 

The linear relationship between true speed and VeDBA is described by a gradient and 

intercept, which vary according to species and, to some extent, terrain (Bidder et al. 2012, 

Qasem et al. 2012). The values of these parameters can be found for some species in the 

literature or calculated using the GPS points: Here, time-defined GPS points are superimposed 

on the equivalent (again time-defined) dead-reckoned points and the gradient and intercept 
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values in the VeDBA versus speeds relationship changed iteratively until the distance (and 

angle – because the tag might not be placed perfectly aligned with the longitudinal axis of the 

animal’s body) between the two points is minimised. Corrected dead-reckoned points can 

then be converted to GPS-type co-ordinates (Fig. 5). 

 

Figure 5 – The dead-reckoned data, which in the initial steps consists of distances in metres and heading in 

degrees, are positioned so that they best accord to infrequent GPS-fixes, which follow a standard co-ordinate 

system. The approach then has to convert all data to a standard geographic co-ordinate format. 

 

After GPS correction has taken place any speed estimates derived from the path, will have a 

strong relationship with VeDBA with key alterations made by extending or limiting the path 

length based on GPS locations (Bidder et al., 2015). This helps to account for distribution 

within the linear relationship between VeDBA and true speed caused by differences in walking 

gait, across individuals, on substrate and superstrate (Bidder et al., 2012). This correction 

makes VeDBA and true speed estimates independent of one another.    

 

Four approaches to defining travelling behaviour for dead-reckoning 
 

The precise way in which speed is derived is critical for the viability and accuracy of the dead-

reckoning approach (Bidder et al. 2015). The two central issues in this regard, are to decide 

precisely when an animal is travelling and how fast it is travelling. I used four different rules 

to deal with these issues and examined their potential for error by dead-reckoning the 

movements of four ungulate species (Table 1). For this, I extracted randomly selected data 

from each individual of the four species and dead-reckoned paths for; a single 14h stretch for 

each individual of both the domestic cows and goats, for the mouflon over 16 h and over 24 
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h for each individual ibex (periods chosen to reflect different GPS fix frequencies (Table 1). I 

illustrate the approach I took by highlighting data from a goat from a start point (GPS-

determined) to a point 14 h later (also determined by GPS). With this animal, as with all the 

animals within this chapter (Table 1), the iterative correction described above, which would 

usually be used to correct the VeDBA/speed relationship between all GPS points, was only 

applied to every other GPS point gathered between the start and end points of the periods 

used for analysis (Table 1). As a result, the positions calculated by the dead-reckoning 

procedure coincided exactly with the GPS positions for half the GPS fixes, deviating in the 

other GPS points by an extent that was dependent on the validity of the rules used to define 

travelling behaviour (see below) and the extent to which the parameters defining the 

relationship between VeDBA and speed (Fig. 4) held true. 

 

The four different rules used to define true travelling (travelling detection criteria – TDC) 

were; (i) no VeDBA threshold (ii) VeDBA threshold (iii) definition of steps and (iv) 

implementation of movement modes. 

 

(i) No VeDBA threshold  
 

Although VeDBA has been found to be a good proxy for speed, (Bidder et al. 2012, 2015) 

VeDBA signals are also produced when animals move their bodies without travelling, such as 

when they shake themselves (Shepard et al. 2008). Clearly, conversion of the VeDBA values 

during such periods into speed and therefore travel is wrong and leads to erroneous 

movement patterns. Despite this, many dead-reckoning studies do not state that the speed 

of the study animal (e.g. by using a VeDBA/speed relationship) has been filtered for any 

acceleration data that might indicate that the animal is not actually travelling (Mitani et al. 

2003, Shiomi et al. 2008, Jiménez et al. 2009, Wensveen et al. 2015). In order to address the 

effect of not filtering non-travel-produced VeDBA, my start position was to dead-reckon 

between GPS points assuming a linear relationship between VeDBA and speed (cf. Fig. 4) with 

an intercept that goes through zero for both parameters (Fig. 6a).  
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Figure 6 – Derivation of movement versus non-movement rules for ungulates equipped with collar-mounted DD 

tags. Graphs are of select acceleration channels (recorded at 20 Hz) over time for one dataset from a domestic 

goat tagged in August 2017 within the Bauges, France, illustrating the different approaches used to filter the 

data before being used in the dead-reckoning procedure. In all cases, the raw y-axis data is shown as well as the 

same data smoothed (over 0.1 s),  the differential of the y axis across 0.1 seconds and the VeDBA, smoothed over 

2 s. (a) shows when travelling was inferred (purple box) based on any value of VeDBA > 0.0, (b) shows when 

travelling was inferred (blue box) for any time that the VeDBA exceeded a threshold of 0.1 g. (c) shows travelling 

(green bars) based on a Boolean algorithm that interrogated acceleration data to determine when steps had 

taken place and (d) shows inferred travelling based on VeDBA thresholds to define behavioural states (resting, 

grazing and walking).  

 

(ii) VeDBA threshold  
 

The VeDBA threshold method  (Walker et al. 2015) assumes that low-value VeDBA estimates 

occur when animals are not travelling. Thus, to identify travelling, I implemented a rule that 

ensured that no dead-reckoning was undertaken unless until the VeDBA values exceeded a 
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defined amount (>0.1 g in the example in Fig. 6b). This threshold value is presumed to vary 

between species and biologger setup so travelling behaviour should be ground-truthed with 

observations when possible. In the case of my animals, I defined this threshold by observation 

of the domestic animals and comparing travelling behaviour with VeDBA. For the wild 

animals, I compared their raw acceleration data to those of the domestic animals and set the 

threshold to occur at a VeDBA value that was marginally lower than the lowest VeDBA 

associated with acceleration signals that indicated footfalls (see below). 

 

(iii) Definition of steps  
 

One of the most obvious delineators of travelling behaviour should be the identification of 

steps (or strides), assuming they can be defined within the tag data. I used a particular form 

of analysis based on a Boolean approach as suggested by Wilson et al.  (Wilson et al. 2018), 

the Lowest Common Denominator (LoCoD) approach, which can be used to define individual 

steps within an animal’s movement. This approach looks for specific changes and defined 

patterns in e.g. acceleration signals, that occur during movement, that are predictable with 

each step, and which only occur during travelling behaviour. In my use of the LoCoD approach, 

I attempted to quantify the presence of steps (Fig. 6c) so that the VeDBA/speed relationship 

could be applied to dead-reckon at any time when steps were identified. To implement this, 

I synchronised video observations/recordings of tagged goat and cow movement with their 

respective DD data to define the sensor-dependent features of steps. Following this, I 

produced an algorithm within the DDMT software (Wildbyte Technologies 2020) which 

implements the LoCoD method, that searched for steps within any prescribed ungulate data 

(see Wilson et al. 2018 for more detail). For the specific example of the goat, I calculated a 

difference in the accelerometer y-axis readings (the rate of change of acceleration or jerk) 

across 2 data points (0.1 seconds, as acceleration was recorded at 20 Hz). The step was 

marked as such when the jerk was > 0.11 g and VeDBA smoothed (across 40 events/2 seconds) 

was less than 0.5 g. Each marked step was then extended by half a second either side 

assuming each step would take at least a half second to carry out, which also allows the 

algorithm to link steps within continuous travelling behaviour. The equations used for the 

other species, which were grounded in observations for the cows but using the similar 



64 
 

distinctive patterns in steps in the wild species, can be found in the appendix (see appendix, 

Table 2).  

 

(iv) Movement modes 
 

The LoCoD method (Wilson et al. 2018) was also used to identify three general behaviours, 

two of which typify ungulate movement (the third being resting) (Fig. 6d): VeDBA smoothed 

(across 40 events/2 seconds) windows were used to define the behaviours when animals 

were ‘resting’ (where VeDBA smoothed for goats  was < 0.1 g),  ‘grazing’ (VeDBA smoothed > 

0.1 g) and ‘walking’ (VeDBA smoothed <0.23 g) (cf. chapter 4). Cross-checks with observations 

(see appendix, table 7) showed that this basic approach successfully identified the behaviour 

on a second by second basis and matched the observed behaviours >80% of the time (see 

chapter 4 for the goat example) (see appendix , Table 2 for behaviour definition rules). Each 

behaviour or movement mode was then allocated with a different speed coefficient (the 

gradient of the relationship between VeDBA and speed (Fig. 4) - see below for details) to 

calculate the distance travelled (Fig. 4). These speed coefficients were initially determined by 

finding data that corresponded to animal travel (both grazing or walking) that had occurred 

continuously between two adjacent GPS-defined points so that the correct gradients could 

be determined via iteration (see above). This same approach was used in the domestic cows 

and attempted in the two wild ungulate species by examination of the acceleration data and 

comparing them to the domestic species. During the iterative procedure when the dead-

reckoned path was being fitted to the GPS points, the (different) gradient coefficients for 

grazing and walking, respectively, were changed in tandem, but maintaining the same ratio 

to each other. 

 

GPS cleaning 
 

GPS locations can be notoriously inaccurate under certain conditions (Cagnacci et al. 2010), 

one of which is mountainous terrain because the topography shields access to satellites 

(Rutter et al. 1997, Gamo et al. 2000, Ungar et al. 2005). To correct for such problems, GPS 

screening was used to clean the raw GPS data (Bjørneraas et al. 2010). Here, outliers from 
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median speed and acute angles in movement, manifest as departures from an otherwise 

regular trajectory and taking the form of spikes (cf. Gunner et al., in 2021), were filtered from 

the GPS locations.  R-studio was used to carry out the GPS cleaning (RStudio Team 2020).  

 

Errors in dead-reckoned vs GPS positions and animal travel speed 
 

The distance between the locations of the dead-reckoned paths (for each of the 4 rules used 

to identify travelling for the 4 ungulates) and their time-synchronized GPS positions was 

calculated using the following equation: 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑎 cos(sin 𝐿𝑎𝑡𝐷𝑅 ∙ sin 𝐿𝑎𝑡𝐺𝑃𝑆 + cos 𝐿𝑎𝑡𝐷𝑅 ∙ cos 𝐿𝑎𝑡𝐺𝑃𝑆 ∙ cos(𝐿𝑜𝑛𝐺𝑃𝑆 − 𝐿𝑜𝑛𝐷𝑅)) ∙ 6371 

 

This calculation was carried out using the package ‘fossil’ within R-studio.  The same package 

was used to calculate animal travel speed. 

 

Statistically comparing travelling detection criteria 
 

I used linear mixed models, fitted using the lme4 package in R (R Core Team, 2019), to test 

for differences between TDC methods in average error. I accounted also for differences 

between species and compared models with and without an interaction between species and 

TDC method. To obtain the p-values I used the lmerTest package, which applies a 

Satterthwaite’s degrees of freedom method. 

 

Results 
 

The dead-reckoned tracks using the four different travelling detection criteria (TDC) overall 

showed broadly similar patterns in movements over the 14 h, as the path was brought back 

to the GPS positions each time, but within this broad pattern there were clear distinct 

differences in the reconstructed fine-scale path (Fig. 7). The most obvious differences were 
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between the ‘no-threshold VeDBA’ travelling criterion and the other three travelling criteria. 

For example, in my illustration of the process with a single goat (Fig. 7), the no VeDBA 

threshold method showed no extensive southwest deviation in the path taken towards the 

beginning of the track, whereas the final part of the path was rather similar in all cases. 

 

 

Figure 7 – An example of how the movements of terrestrial animals can be elucidated using GPS-corrected dead-

reckoning. The figure shows the movements of a domestic goat tagged in August 2017 within les Bauges, France, 

over 14 h as determined using GPS fixes at 15 min intervals (black dots joined by black lines and arrowed to show 

direction). The dead-reckoned path was interpolated between every other one of these points (i.e. for GPS fixes 

separated by 15 mins) according to one of four travelling-discerning criteria (see methods). The grey dashed 

boxes in the top left-hand corner show areas which have been magnified to highlight differences in finely resolved 

tracks. 
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The coherence between any of the four different TDC methods was less obvious when very 

fine-scale movements were considered (see insets in Fig. 7) although, again, the similarities 

were most apparent between the ‘VeDBA threshold’, the ‘step definition’ and the ‘movement 

mode’ approaches. 

 

By allowing the dead-reckoning process to superimpose dead-reckoned tracks with GPS fixes 

for every other GPS fix, I was able to examine the extent to which the dead-reckoning process 

drifted away from the ‘true’ position over even short time scales (assumed here to be the GPS 

fixes – but see discussion) for the positions where the dead-reckoned track and the GPS fixes 

were not aligned. This can be illustrated by a cumulative error plot where the cumulative error 

in dead-reckoning compared to GPS fixes is plotted over time (Fig. 8). This plot shows pairs of 

points where the error does not accumulate, corresponding to where the GPS fixes and dead-

reckoned points are aligned via the iterative error-correction process outlined in the 

methods, alternating with pairs of points where the GPS and dead-reckoning process are not 

aligned, and the two paths can diverge. 

 

.  

Figure 8 – Graph showing the extent of deviation between GPS- and dead-reckoned fixes across time in GPS-

corrected dead-reckoning procedures (using 14 hours from a domestic goat tagged in August 2017 in the  Bauges, 
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France) with travelling specified according to one of four criteria (see text). Here, the GPS and dead-reckoned 

paths were superimposed at every other GPS fix so that the accumulating error jumps in the y-axis at every other 

point (see text). 

 

The ‘No VeDBA threshold’ method has the highest location error rate across all study species 

(by between 14 and 41%) than those of the other TDCs, a lower movement speed by between 

12% to  29%), and longer total paths, by 5% to 26% (Table 2). Using ‘No VeDBA threshold’ lead 

to significantly larger errors (t-value = 2.168, p-value = 0.030), whereas the estimated average 

error was essentially the same for the other methods. There was also no significant difference 

between species in the effect of TDC methods on average error (i.e. no support for an 

interaction). Conversely, average error was larger for ibex (t-value = 3.369, p-value = 0.0028). 

There was also no significant difference between species in the effect of TDC methods on 

average error. Conversely, the characteristics of the movement path are very similar among 

the three dead-reckoned tracks with a travelling detection criterion, total path length was 

significantly larger for ‘No VeDBA threshold’ (t-value = 4.449, p-value <0.001), with no 

difference among the other 3 TDC paths. Speed output, was found to be markedly and 

significantly quicker for ‘Step definition’, whereas significantly slower than the others for ‘No 

VeDBA threshold’ (when compared to ‘Movement modes’, No VeDBA threshold: t-value = -

9.044, p-value <0.001, Step definition: t-value = 11.392, p-value <0.001, VeDBA threshold: t-

value = -3.687, p-value <0.001).  

 

Table 2 - Mean error in concurrence between GPS fixes and dead-reckoned fixes for alternate non-aligned fixes 

(see text) for each of the travelling detection criteria used across all species. The distance between each non-

aligned GPS and dead-reckoned step was also used to give speed and path distance.  

Species Travelling 

detection criterion 

Mean error for alternate 

GPS correction (m) 

Total path 

length (m) 

Average speed (when 

moving) ms-1 

D
o

m
es

ti
c 

g
o

a
t No VeDBA 

threshold 

35.02 7871.46 0.15 

VeDBA threshold 25.11 6610.78 0.25 
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Step definition 24.79 6324.45 0.41 

Movement modes 25.21 6496.72 0.28 

D
o

m
es

ti
c 

co
w

 

No VeDBA 

threshold 

17.19 4763.68 0.09 

VeDBA threshold 15.13 4603.69 0.13 

Step definition 15.23 4512.52 0.26 

Movement modes 14.84 4609.09 0.18 

Ib
ex

 

No VeDBA 

threshold 

117.68 11541.79 0.13 

VeDBA threshold 90.11 9799.96 0.15 

Step definition 83.75 9487.26 0.34 

Movement modes 83.28 9128.69 0.20 

M
o

u
fl

o
n

 

No VeDBA 

threshold 

31.30 5330.68 0.08 

VeDBA threshold 21.05 4684.95 0.10 

Step definition 23.21 5231.31 0.26 

Movement modes 21.90 4610.04 0.14 

 

Discussion  
 

Integration of dead-reckoning with GPS 
 

This work clearly shows the value of dead-reckoning as a method for providing information 

about the movement paths of animals between GPS fixes, elucidating remarkable detail in 

the minute by minute movements of the animals, even when GPS fixes were only available 
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every two hours. The frequency of verified locations, which need not take just the form of 

GPS fixes (Gunner et al. 2021), is clearly important for maintaining a good approximation of 

how the animals relate to environmental space (as e.g. determined by vegetation surveys 

(Fischer and Wipf 2002, Mancilla-Leytón et al. 2013, Oksanen et al. 2015), topography etc. 

(Dailey and Hobbs 1989, Wall et al. 2006, Dunford et al. 2020)). However, I also note that the 

forms of the paths taken by animals themselves (tortuosity (Nams 2014, Ihwagi et al. 2019), 

speed (Pyke 1981, Wilson et al. 2015), step lengths (Hildebrand and Hurley 1985), turn angles 

(Wilson, Griffiths, et al. 2013, Wilson, Mills, et al. 2013) etc.) are important for understanding 

a suite of animal movement issues, such as species diffusion (Hein et al. 2012), food location 

strategies (Kacelnik and Houston 1984, Wilson et al. 2012) and vigilance (Vasquez 2002, 

Lashley et al. 2014), thus, accurately reconstructing the movement path is of paramount 

importance. 

 

An important point about the utility of GPS-enabled dead-reckoning, is that it allows animal 

movement to be studied in fine detail and over much longer periods than by conventional 

GPS alone because system power requirements are considerably lower (Holton et al.  in 

press). Specifically, calculation of GPS fixes typically draws a current of 30-50 mA over several 

seconds (Bidder et al. 2015, Dewhirst et al. 2016) whereas DDs, such as used in this study, use 

ca. 1.3 mA. The consequence of this is that GPS systems alone require batteries that have a 

capacity that is around 30 times higher than dead-reckoning systems if they are to be used 

virtually continuously in a comparable manner. Since battery capacity is directly related to 

battery volume and mass (Kay et al. 2019, Williams et al. 2020), this translates to study 

animals having to carry disproportionately large tags, with all the ethics consequences that 

these engender (Vandenabeele et al. 2015, Williams et al. 2020). For my studies on alpine 

ungulates, which were conceived to cover many months of tracking, this equates to 

prohibitively large packages if the space use were to be determined using GPS alone. 

 

Within the context of this thesis, absolute resolution of animal position in space is important 

though, thus it is relevant that the errors in dead-reckoning be considered. My process does 

assume, however, that the GPS locations were perfectly correct, and the fact that I had to 
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remove erroneous points because the speed or the position were impossible, makes this 

obviously untrue. So, although I assume that all system errors were due to the dead-reckoning 

processes, GPS inaccuracy should be borne in mind. In fact, dead-reckoned tracks and GPS 

fixes taken with low temporal resolution are complimentary because they both allow 

determination of position but suffer from quite different errors (see de Weerd et al. 2015 and 

Gamo et al. 2000 for discussion). More in-depth work could consider the extent to which GPS 

and dead-reckoning should be given different weightings according to conditions (including 

the frequency of GPS fixes); for example, di Virgilio et al. (2018) use a Bayesian approach to 

include also GPS error into account in dead-reckoning. In a pragmatic and general sense for 

the moment though, I note that for GPS-enabled dead-reckoning, authors recommend one 

GPS fix every two hours or less, depending on the activity of the species tagged and quality of 

data (Bidder et al. 2015, Dewhirst et al. 2016) and I have worked within these limits.  

 

Travel detection criteria 
 

 

A key aim was to evaluate more biologically realistic specific criteria that could be used to 

determine when animals were travelling (rather than just moving their bodies without 

travelling), in order to improve the application of dead-reckoning – in particular avoiding that 

the algorithm makes the trajectory move when in reality the animal was moving some part of 

the body but was not moving the body across space. The results clearly indicate that even 

over very short overall times scales (< 24h) and also very short specific time scales (2-4 hours), 

a non-negligible and detectable error accumulated (Table 2), and that any type of TDC should 

be employed, as opposed to use dead-reckoning without a form of TDC, in order also to avoid 

obtaining movement paths with misleading characteristics (total distance moved, speed, etc. 

– Table 2). Furthermore, whilst the difference is smaller, the biologically more realistic TDCs, 

based on step or movement mode identification, consistently outperformed fixed VeDBA -

threshold rules. Interestingly, movement paths reconstructed using the step-based TDC, i.e. 

where the path is dead-reckoned only when a clear step was identified in the accelerometer 

signal, lead to movement paths with the faster average movement speed between locations 

(Table 2). This suggests that this criterion may be the most biologically realistic, being better 
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able to identify the instances when the animal was truly moving. This is intuitive since there 

are clearly occasions when animals produce a VeDBA signal but are not moving. Examples 

would be shaking or inter-animal interactions without travel (Gregorini et al. 2006, Pipia et al. 

2008, Aublet et al. 2009). The ‘no VeDBA threshold’ would incorporate these into the travel, 

which is obviously erroneous, not least because it would tend to underestimate travelling 

speed (Gregorini et al. 2006, Manning et al. 2014, Biancardi and Minetti 2017, Moseby et al. 

2020) as well as produce parts of the pathway that never existed. 

 

Thus, in an attempt to define a single approach that could be used within this thesis as 

standard, I chose the ‘movement modes’ approach which, across species, had either the 

lowest rate of error or close to it. This gave error rates of between about 16 and 44 m/h (see 

appendix, Figure 1, Table 3 for further details). This option is advantageous in that it does not 

have the complexities of defining single steps (which may be particularly challenging for 

species that cannot be observed) and is not as simplistic as having just a VeDBA threshold, 

which may be expected to vary more in different habitats than the movement modes 

approach. Separating behaviours into essentially three phases (stationary, grazing and 

travelling), where the two travelling modes may have different gradient coefficients, may also 

account to some extent for gait changes that may occur between grazing and travelling. This 

may be appropriate because it has already been noted that the relationship between VeDBA 

and speed changes with gait (Chapinal et al. 2009, Bidder et al. 2012, Dickinson et al. subm.). 

Ultimately though, any of the three TDCs that incorporated a more sophisticated travel would 

seem to produce excellent path resolution (Tables 2 & 3) with errors of less than 0.5 m/min. 

 

The general value of the TDCs within the GPS-enabled dead-reckoning approach is 

exemplified in Fig. 7, which shows a large deviation from the GPS-defined track just after the 

start of the monitored period (Fig. 7), where the animal moved some distance in a south-

westerly direction before reversing its direction of travel (evident in all TDC except the ‘No 

VeDBA threshold’) to almost join its previous position.  Activity based on GPS position alone 

would have concluded, at this time, that the animal moved very little whereas it was, in fact, 

particularly active. The dead-reckoning approach therefore obviously provides a great deal of 
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information beyond just position, mostly particularly speed (Table 2), something that is hard 

to define except in a rather vague sense, for GPS positions spaced in time. 

Although this study focussed only on short time scales, it highlights the value of terrestrial 

dead-reckoning for elucidating the movement paths of ungulates, even in a topographically 

variable environment. Not only is GPS-corrected VeDBA a useful metric for defining travel 

speed, and thereby relating to distance travelled, but the linear relationship between speed 

and VeDBA seems extraordinarily robust given the instability of collar-mounted tags. 

Consideration of rules that define when, precisely, animals are travelling is important though, 

and I recommend that researchers give this proper consideration in future attempts to 

verified position-corrected dead-reckoning in terrestrial animals. 
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Chapter 4 

 

Move. Eat. Rest. Repeat: Habitat preferences and space-use of a herd 

of domestic goats (Capra aegagrus hircus) in the French Alps  

 

Abstract 
 

Elucidation of the space-use and habitats selected for grazing by free-roaming domestic 

ungulates can help farmers manage the ecological impact of their livestock and enhance 

animal welfare. This study utilised high frequency, continuously logging accelerometers and 

magnetometers combined with infrequent GPS location data collected on free-roaming 

domestic goats (Capra aegagrus hircus) within a region of the French Alps with summer alpine 

pastures. First, tagged goats were observed during grazing, travelling and resting and, by 

pairing observations with accelerometer signals, algorithms based on a Boolean approach 

were produced to define the behaviours. This method resulted in an efficient behavioural 

definition with an ≥ 85% accuracy rate (85% grazing; 87% moving; 100% resting), providing 

information on behaviour for every second of data. A range of data collected (5 to 25 days) 

across ten individuals was then used to define when and where the goats were grazing. Dead-

reckoning was used to reconstruct high-resolution 1Hz movement maps, which combined 

with the behaviour identification procedures allowed to map movements and behaviour 

across the study area and for all available habitats. Goats adopted a central place foraging 

strategy because they were trained to come back to the farm pen periodically, where cover 

and salt licks were provided and goats were milked. Outside the pen, which they could leave 

freely, movements were not restricted within their foraging range. Goats tended to graze on 

the most abundant habitats but avoided forested areas and showed a preference for rocky 

habitats (e.g. scree), grasses (e.g. alpine lawns, semi-arid lawns) and grazing herb formations. 

The area covered during grazing increased approximately logarithmically with both time and 

the number of individuals, giving a crude estimate of 1.1 km2 space used over 25 days for a 

herd of 10 individuals. The work and results show how loggers can be used to identify and 

record very fine behaviour and movement data, used to examine the impact of livestock 
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during free-roaming grazing while defining the space and habitats needed for domestic 

species. The behavioural identification rules are based on explicit algorithms which can easily 

be applied to other studies, including wild species. 

 

 

Introduction 
 

Grazing impacts by domestic livestock are now topical (Dong et al. 2020, Nota et al. 2020), 

not least because of the detriment to the environment, such as reducing biodiversity (Fischer 

et al. 2008, Ravetto Enri et al. 2017). Specifically, over-grazing changes the recruitment of 

vegetation by driving out species vulnerable to grazing impacts while allowing species 

adapted to this pressure to flourish (Mayer and Erschbamer 2011). Grazing also leads to soil 

becoming compacted, decreasing the soil quality and discouraging vegetation growth in 

excessively grazed areas (Vidal et al. 2020). Cessation of livestock grazing does not always 

seem to be the solution for this though, with studies in the Alps showing how the absence of 

grazing amongst the highlands allows for the invasion of less desirable shrubs and subsequent 

reforestation (Sturaro et al. 2013, Probo et al. 2014). This, in turn, causes habitat loss for 

valuable semi-natural vegetation communities (Marini et al. 2009). Thus, grazing by livestock 

can be an effective approach for managing and conserving grasslands and the associated 

wildlife (Watkinson & Ormerod 2001, Kotsonas et al. 2021) 

 

Although pastures within the higher altitudes of the Alps have been formed over thousands 

of years of livestock grazing, the last 50 years has seen grazing meadows abandoned as the 

practice becomes economically marginal (Fleury and Gibon 2000, García-Martínez and 

Bernués 2009, Bernués et al. 2011). This shift in grazing impact has resulted in lower species 

richness, triggering initiatives seeking to protect the pastures, with Nardus-based pastures 

being recognised as being of particular conservation interest (Kurtogullari et al. 2020) due to 

the high productivity and connectivity of this habitat (Parolo et al. 2011). In addition, the 

reduction of summer grazing high up the mountain slopes puts more grazing pressure on the 

lowlands all year round, resulting in altitudinal over-grazing (Sturaro et al. 2013).  
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It has been suggested that strategies to protect the valuable alpine environment should 

balance grazing pressure with space over time. However, this approach requires detailed 

information on precisely how livestock exploit the landscape in time and space (Bernués et 

al. 2011, Sturaro et al. 2013, Probo et al. 2014), a non-trivial undertaking, especially with the 

more mobile livestock. To this end, quantifying in fine detail variation in space use and habitat 

selection is of paramount importance.  In fact, a number of studies have looked at the spatio-

temporal variation in grazing of cows (Probo et al. 2014, Pittarello et al. 2016) and sheep 

(Pittarello et al. 2017, Ravetto Enri et al. 2019) within the Alps. Against this, although previous 

work in the Alps has sought to identify vegetation selection and daily movement patterns of 

goats using simple location data (Iussig et al. 2015), the scales over which this, and other, 

studies can provide information depends on the frequency of location fixes – and if these 

locations are frequently taken (> 1 fix per minute) the logging period is typically short (Moreau 

et al. 2009, Pittarello et al. 2017).  Thus, combining location data with accelerometer-based 

behaviour identification provides exciting potential for conservation grazing and precise 

livestock farming (Moreau et al. 2009, di Virgilio et al. 2018). 

 

There is however, potential for this to change as biologgers, animal-attached recording tags, 

become smaller, more powerful and more accessible (Holton et al. in press), providing 

exciting new possibilities for research and management (Williams et al. 2020). Indeed, tri-

axial accelerometers recording at tens of Hz are now regularly used to quantify behaviours in 

both wild animals (Wilson et al. 2008, Brownscombe et al. 2014, Fehlmann et al. 2017) and 

domestic livestock (Martiskainen et al. 2009, Moreau et al. 2009, Lush et al. 2018) and 

acceleration metrics in tandem with magnetometer data are also now being used to dead-

reckon the paths of wild (Bidder et al. 2015, Dewhirst et al. 2016) and farmed animals (di 

Virgilio et al. 2018) to give detailed movements of species where GPS data are sparse (Wilson 

et al. 1991, Shiomi et al. 2008, Wensveen et al. 2015). A prime value in such biologger data is 

that it is cost-effective and allows unbiased data to be collected (Canine 1990, Rutz and Hays 

2009) for long continuous periods (months) (Preston et al. 2010, Mckinnon and Love 2018), 

including at times when the study subject cannot be seen (Brown et al. 2013) for example 
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during night or within mountainous or heavily vegetated environments (Gamo et al. 2000, 

Camp et al. 2016).  

 

In this study, I used biologgers on domestic goats (Capra aegagrus hircus) to examine their 

movement and grazing patterns in an extensive alpine pasture in France. I aimed to determine 

goat habitat- and vegetation preferences by; (i) determining their movements with 

unprecedented 1 second resolution by using GPS-enabled dead-reckoning, (ii) quantifying the 

three major behaviours found in ungulates (resting, grazing and moving (Festa-Bianchet et al. 

2008, Martiskainen et al. 2009, Moreau et al. 2009)) using a Boolean approach based on the 

Lowest Common Denominator method (Wilson et al. 2018) before (iii) marrying the marked 

behaviours to the locations calculated in to map out grazing and understand space use 

associated with the behaviour, and finally (iv) conduct a resource selection analysis to unveil 

habitats that are avoided or selected by the goats to suggest vegetation that is selected when 

grazing and map and quantify the area grazed over time by herds of goats.  

 

This approach is an important step to understanding habitat and space use by goats in the 

Alps that should contribute to informing management plans seeking to optimize both habitat 

conservation and economic benefits. 

 

Methods 
 

Study Site 
 

The study was conducted in 2017. The site chosen was a pasture valley within the Bauges 

Massif, a game and wildlife national reserve situated in the French pre-Alps (Fig. 1). The valley 

is made up of mostly limestone rock types, which dictate the vegetation, resulting in mostly 

calcareous alpine grassland and coniferous forests (Mathieu et al. 2009, UNESCO 2015). Bare 

rock and scree become more prevalent higher up the side of the valley as the topography 

becomes steeper.  
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Figure 1 – Map of the massif in relation to France and the study site in relation to the massif with each habitat 

outlined and coloured by habitat.  

 

All year round, the study site supports two wild ungulate species, chamois (Rupicapra 

rupicapra) and Mouflon (Ovis gmelini musimon × Ovis sp.). Between June and October, the 

valley is shared with grazing livestock; domestic dairy cows (Bos taurus) and domestic dairy 

goats (Capra aegagrus hircus). The goats used in this study came from a goat farm where the 

livestock were free to browse an area of 2 km2 hectares within the valley (but importantly 

their movements were not restricted by fences and the goat farmer reported that a few 

individuals remained in the area after summer and survived the winter, in the years before 

my study).  

 

The goat herd comprised 40 females and 1 male. Of these, I selected twenty females for data 

collection with an average weight of approximately 30 kg. The animals were milked most 

mornings and were kept in a pen overnight but were free to roam and leave the pen during 

the day and during nights.  
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Biologgers 
 

The domestic goats were collared with lab-built collars (see chapter 2), using commercial soft 

nylon livestock collars, lead weights and the logging units (Daily Diary and GPS). A 100 g of 

lead was attached to the bottom of the collar to act as a counterweight to keep the biologger 

dorsally positioned to provide consistent acceleration signals and increase the chances of the 

highest quality GPS fixes.  

 

The biologger  featured a waterproof 3D-printed ABS plastic housing containing a GiPsy 5 GPS 

(TechnoSMart 2020), set to record a location every 15 minutes, and a “Daily Diary” (DD) multi-

sensor biologging unit (Wilson et al. 2008, Wildbyte Technologies 2020), comprising tri-axial 

accelerometers and magnetometers and environmental sensors, each powered by a separate 

1000 mAh lithium battery (see chapter 2). The Daily Diary unit was programmed to collect 

both acceleration and magnetic field intensity in three orthogonal axes, temperature, light 

and pressure at a range of sampling rates (Table 1). The DDs were covered in Guronic (te 

Connectivity 2020) to keep the devices waterproof, shock-proof and insulated. The device 

recorded the data onto a removable 2GB micro-SD card, sufficient to record data up to one 

month at 40 Hz. The total weight of the collar and tags was 240 g, staying within the ethical 

guidelines of 3% of the animals’ body weight. 

 

Table 1- A list of variables the Daily Diary (DD) collected with corresponding recording frequency, units of 

measurement and range. 

Channel Recording frequency (Hz) Measurement 

Accelerometer X axis Surge (Forward – Backward) 20 0 to 6 g 

Accelerometer Y axis Sway (Side – Side) 20 0 to 6 g 

Accelerometer Z axis Heave (Vertical) 20 0 to 6 g 

Magnetometer axis 1 8 Max. of earth’s magnetic field 

Magnetometer axis 2 8 Max. of earth’s magnetic field 

Magnetometer axis 3 8 Max. of earth’s magnetic field 

Barometric pressure 2 100 to 2000 mbar 
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External Temperature 2 -20 to 60°C 

Light 2 0 to 100 000 lux 

 

 

Deployment 
 

Before attaching the collars to the animals, the DDs were calibrated by engaging them in a 

defined set of movements, conceived to provide proper 3-dimensional coverage for the G- 

and M-spheres (Williams et al. 2017) – see also chapter 2. Collars were then attached in the 

morning when the goats were still within their pen. All individuals selected were docile and 

required little to no restraint. The ear tag number was taken from each individual and used 

as a corresponding study number. The attachment and tag recovery times were noted, with 

tag recovery also taking place in the morning after defined wearing periods. There were three 

deployments using a range of randomly selected individuals; two one-week deployments, 

where behavioural observations were undertaken, and a one month continuous deployment.  

 

Behavioural observations  
 

Behavioural observations were recorded using the ab-libitum focal sampling method 

(Altmann 1974) noting time carefully so that behaviours could be synchronised with 

acceleration data to ground-truth all behaviours.  

 

Quantifying behaviours  
 

The DD data was visualised using bespoke software Daily Diary Movement Trace (DDMT) 

(Wildbyte Technologies 2020). The software produces interpolated time-based plots to show 

how acceleration and other channels change over time at high resolution (in my case, 20 Hz). 

Time-stamped behavioural observations were imported into DDMT to visualise how 

behaviours appear in the accelerometery data. Based on this, Boolean-based rules using 

acceleration metrics were used as algorithms (Wilson et al. 2018) to search for and highlight 
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behaviours within all data sets including times the individuals were unobserved. This Lowest 

Common Denominator (LoCoD) approach (Wilson et al. 2018) was chosen because this 

method was found to be particularly time-efficient, allowing many different rules for different 

behaviours to be tested across large data sets, and can be directly employed and used by 

other studies (e.g. as opposed to machine-learning based approaches). The single most 

appropriate metric to define grazing was vectoral dynamic body acceleration (VeDBA), 

calculated using;  

VeDBA = √(𝐷𝐵𝐴𝑋)2 + (𝐷𝐵𝐴𝑌)2 +  (𝐷𝐵𝐴𝑍)2 

 

Where DBA is the dynamic acceleration in the three axes (X, Y and Z). The dynamic 

acceleration was calculated by subtracting static acceleration (the raw acceleration smoothed 

with a running mean over 2 seconds (Shepard et al. 2008) from the raw acceleration. A further 

running mean across 40 data points (or two seconds) was used to smooth VeDBA to reduce 

noise (Wilson et al. 2020) while producing more consistent waves (hereafter called sVeDBA).  

 

Resting, grazing and moving behaviours were defined using simple sVeDBA thresholds and 

limits (Fig. 2). The classification rules identified the peak of sVeDBA wave during active 

behaviours (grazing, walking, other). Where behaviours apparently changed from one to 

another and back within a second, it was marked as the predominant behaviour either side 

of the change. 
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Figure 2- A plot of acceleration smoothed in all 3 axes and smoothed VeDBA (sVeDBA) over 2 s showing how it 

changes over time as the goat changes behaviour. The thresholds used to define the three behaviours are shown 

using the dashed lines with the specifics of the conditions indicated. Other behaviours are flinching, head-clash, 

drinking and using salt lick in this order.  

 

GPS-corrected dead-reckoning  
 

I dead-reckoned the movement paths of the goats using the magnetometry data in tandem 

with the accelerometers to derive heading (Bidder et al. 2015) and VeDBA as a proxy for speed 

(Bidder et al. 2012) to reconstruct fine-scale movements between GPS location fixes (see 

chapter 3). This produced a 1 Hz GPS corrected dead-reckoned path using DDMT (see also 

chapter 3). The GPS data used was cleaned using the GPS screening method of Bojorneaas et 

al. (Bjørneraas et al. 2010).  

 

Mapping behaviours 
 

The quantified behaviour was allocated a location from the 1 Hz dead-reckoned path by 

synchronising behaviour and location times. R (R Core Team, 2019) and R Studio (RStudio 

Team 2020) were used to map these behaviours with a combination of packages including 

ggmap, and ggplot2. Mapping data from Google Maps (Google 2020) and shape files were 

used to gain detailed information about space use and habitat type used by the goats. The 
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shape files have areas of habitat represented by polygons that have an associated National 

Inventory of Natural Heritage (INPN) (Callou et al. 2011) habitat code with detailed 

description of that habitat and dominant vegetation (Table 2). This mapping data was 

supplied by Grenoble University and the National Hunting and Wildlife Agency (ONCFS) 

management team (Tronchot 2008).  

 

Table 2 – A list of habitats found within the study site with dominant vegetation; habitat INPN code which  links 

to the habitat description (link: https://inpn.mnhn.fr/); and study code used to abbreviate habitat for figures.  

Habitat Dominant vegetation Study 

code 

INPN habitat 

code  

Alpine lawns Sesleria sp, Laserpitium siler and Carex 

sempervirens 

AL 36.4311/ 

36.4312 

Beech forest Fagus sp./Acer pseudoplatanus BF 41.133/ 41.15 

Grazing tall herb 

formations 

Rumex alpinus, Senecio alpinus, Cirsium 

spinosissimum and Peucedanum ostruthium 

GTH 37.88 

Green alder Alnetum viridis GA 31.611 

Hay meadows Trisetum flavescens HM 38.3 

Heathland Rhododendron ferrugineum H 31.42 

Limestone cliffs Potentilla sp. LC 62.151 

Nardus lawns Nardus stricta NL 36.311 

Oak forest Quercus sp. OF 41.571 

Pioneer formations Fraxinus excelsior PF 41.39 

Rock slabs None RS 62.3 

Scree with herbs Thlaspion rotundifolii SwH 61.22 

Scree with 

petasites 

Petasites sp. SwP 61.231 

Sedge lawns Carex ferruginea SL 36.412 

Semi-arid lawns Brachypodium pinnatum SAL 34.323 

https://inpn.mnhn.fr/
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Spruce forest Picea abies  SF 42.215/42.2121 

Tall herb meadows Adenostyles alliariae THM 37.81 

Willow bushes Salix pentandra and S. appendiculata. WB 31.6213 

 

 

To visualise the high resolution location data and to quantify the time spent per location, the 

“recurse” package was used to calculate and define ‘revisits’ by animals if locations on one 

day were within 10 metres of a site used on another day. This metric was used to colour points 

on the map to produce a ‘heat map’ effect.  

 

Calculating distances moved 
 

To calculate the distance between adjacent locations, step length was calculated using the 

following equation from the “fossil” package in R; 

𝐸𝑟𝑟 = 𝑎 cos(sin 𝐿𝑎𝑡𝐷𝑅1 ∙ sin 𝐿𝑎𝑡𝐷𝑅2 + cos 𝐿𝑎𝑡𝐷𝑅1 ∙ cos 𝐿𝑎𝑡𝐷𝑅2 ∙ cos(𝐿𝑜𝑛𝐷𝑅2 − 𝐿𝑜𝑛𝐷𝑅1)) ∙ 6371 

 where; 𝐿𝑎𝑡𝐷𝑅1= Latitude of dead-reckoned step 1, 𝐿𝑎𝑡𝐷𝑅2= Latitude of dead-reckoned step 

2,𝐿𝑜𝑛𝐷𝑅1= Longitude of dead-reckoned step 1, 𝐿𝑜𝑛𝐷𝑅2= Longitude of dead-reckoned step 2. 

 

Estimate for space use 
 

To quantify the space used by each goat and the whole herd, all location data was subset to 

provide 1 location every minute. The location limits were then used to produce a polygon by 

interpolating the most outer locations. The “sf” package in R was used to calculate the area 

of the polygon shape drawn in relation to the polygon projection.   

 

Selection coefficients  
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To quantify habitat use and preference of the goats, I used standard Resource Selection 

Analysis (RSA) procedures, to compare used against available resources (‘habitat’), based on 

the central assumption that the distribution of animals is proportional to the quality of the 

resources (Manly 2002). I defined all habitat types within the outline of all locations visited 

by the herd of goats as ‘available’ (i.e. corresponding to a within-home range level). The 1 Hz 

dead-reckoned movement path data were defined as ‘used’ locations. More specifically, and 

a point of novelty of this chapter, is that thanks to the behaviour identification from the 

accelerometer data, I was able to identify and select the grazing locations only, without using 

all locations, as done in standard resource selection analysis based on GPS data. To generate 

the ‘available’ locations I distributed randomly points across the availability polygon (with a 

specified minimum point differences >5 m). Given the very high volume of ‘used’ data, using 

the same amount of available ‘random’ locations allowed to quantify well the availability 

space.  I then used standard logistic regression, implemented using Generalised Linear Mixed 

Models to account for individual variation (individual ID fitted as random intercept), to relate 

the vector of used and available locations (coded as 0/1) to the habitat covariates (i.e. the 

type of habitat at each location) and to estimate the regression coefficients, which directly 

provide the selection coefficients (negative values indicate avoidance, positive values indicate 

selection for, or preference, for a habitat type). All analyses were done in R using the “lme4” 

package. The abundant, but regularly grazed, rock slab habitat was coded as the reference 

habitat type and only habitats that were grazed on a reasonable proportion (> 1% of locations) 

were included, (see appendix, Fig. 2, Table 4 for all habitats). 

 

Results 
 

Behaviour identification 
 

124 focal observations over ~6 hours were made across six individuals during the first week 

of data collection and were used to validate the definitions of behaviour using the Boolean-

based rules (see appendix, Table2). As the equations defined behaviours to the second, the 

equations were tested on a second by second basis. All behaviours had a high reliability 



95 
 

(≥85%), with the most frequent error being that some moving was defined as grazing (Table 

3).  

Table 3 – List of defined behaviours with corresponding seconds that match the observed behaviours which was 

then used to calculate the reliability of the behavioural rule used (see text). Data used for this were from varied 

logging periods (5 to 7 days) from six domestic goats tagged July 2017 within les Bauges, France.   

 
Seconds of Observed behaviour  

Moving Grazing Resting Other Accuracy 

Se
co

n
d

s 
o

f 

d
ef

in
ed

 

B
eh

a
vi

o
u

r  Resting 0 0 345 0 100% 

Grazing 120 971 8 50 85% 

Moving 825 73 0 48 87% 

 

 

Behaviour and space use 
 

The mean number of hours spent on each behaviour showed little variation between 

individuals (Levene’s test for variance: F-value =0.013, p-value=1), (Fig. 3) with resting 

accounting for most time (69%), grazing second (24%) and moving the least time (7%).  

 

 

Figure 3 - Average daily time spent engaged in defined goat behaviours showing the variation between 

individuals. Data taken from varied logging periods (5 to 25 days) from ten domestic goats tagged in August 

2017 within les Bauges, France.   
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The GPS-enabled dead-reckoning, combined with the behaviour identification algorithms, 

produced unprecedented detail of the behaviours and movements of all tagged goats. This 

showed that goats typically adopted central place movement (Orians & Pearson 1979), 

radiating from their central place (their pen) in the morning and returning either at night or 

for a brief period during the day before moving out again (Fig 4). 

 

 

Figure 4 – Example movements of 6 individual goats, each over the same single day, showing their outward 

movement from the pen (black house logo) and illustrating the extent of group cohesion. On this day, the herd 

executed two forays from the central place. Note the tendency for increased grazing to occur at greater distances 

from the pen. 

 

Over time, these movements showed a tendency for the animals to fan out, covering an ovoid 

shape, rather than repeatedly returning to the same place (Fig. 5). 
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Figure 5 - Mapped goat behaviour across space (by linking acceleration-defined activity with GPS-enabled  dead-

reckoned paths). The data are from a 25-day logging period from a single domestic goat tagged August 2017. 

Although this movement roughly also represents that of the herd (cf. Fig. 7b).  5b - Boxplot (horizontal lines show 

median, box limits show upper and lower quartile and whiskers show range excluding outliers) showing how 

behaviour changes with distance from the pen. Data from varied logging periods (5 to 25 days) from one domestic 

goats tagged August 2017 within the Bauges massif, France.   

 

Within this general fanning out pattern, goats grazed more at locations more distant from the 

pen, rested closer to the pen and moved (with reduced or no grazing) between the pen and 

grazing spots (Fig. 5a, b). The fanning out behaviour over time meant that the area grazed by 

individuals, and therefore the herd, increased significantly over time during the 25 day 

continuous data collection (Fig. 6a), both for individual animals and for all ten goats classified 

as herd (Simple linear regression on all individuals for log scales for time (t) and area used for 

grazing (A) (Fig. 6b) this gave 𝐴 = 0.88𝑡 − 2.14 (p <0.001, R2=0.90) for all individuals and 𝐴 =

0.44𝑡 − 1.11 (p <0.001, R2=0.94 ) for the whole herd of 10). 
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Figure 6 – (a) Relationship between overall area used for grazing and time for individual goats and for all 10 

considered together (herd). (b) The same variables with both space use and time on a log scale to show 

logarithmic relationship with linear regression lines for both individuals and the herd. Data from varied logging 

periods (5 to 25 days) from ten domestic goats tagged August 2017 within les Bauges, France.   

 

Resource selection analysis 
 

The resource selection analysis showed clear selection for/against specific habitats (Fig. 7a). 

In particular, there was evidence that Forests and Nardus lawns were selected against for 

grazing, while tall herb formations, semi-arid lawns, scree with herbs and tall grazing 

formations all were used more likely for grazing than based on their availability in the within 

the ‘herd home range’ (Fig. 7).  
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Figure 7 – (a) The daily hours grazed for random modelled data and average real goat data for each habitat 

(where the daily hours grazed >0.05). (b) – Grazing mapped on a habitat map to reveal areas revisited with 

location data thinned to be one fix per minute. Grazing locations are coloured by revisits, with revisits being 

defined as two or more time-spaced locations sharing the same 10 m2 grid.  Black house logo represents pen/farm 

location. Data from varied logging periods (5 to 25 days) from ten domestic goats tagged in August 2017 within 

les Bauges, France.   

 

Examination of grazing patterns over time showed that the time spent in different habitat 

types changed over the summer month (the 25 days tagging period), also compared to a 

random selection (Fig. 8) (see appendix, Fig. 2 and Table 4 for all habitats) linked, in part, to 

changing area use with varying habitat type availability (Fig. 8, 9).  
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Figure 8 – The daily hours grazed for random modelled data and average real goat data for each habitat (where 

the daily hours grazed >0.05) across different time periods. Data from varied logging periods (5 to 25 days) from 

ten domestic goats tagged in August 2017 within les Bauges, France.   

 

 

Figure 9- Grazing mapped on habitat to reveal revisited areas (location thinned to one fix per minute). Grazing 

locations are coloured with a heat map depicting revisits (see Fig. 7 for definition) and are repeated for the 

specified time period. Black house logo represents pen/farm location. Data from varied logging periods (5 to 25 

days) from ten domestic goats tagged in August 2017 within les Bauges, France.   
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This was reflected in the observed changes in the selection coefficients (Table 4), as out of 12 

habitat types, only ‘Tall herbs’ were always selected for, and only ‘Nardus lawns’ were always 

selected against. The forested areas, ‘Spruce forest, ‘Green Alder’ and ‘Beech forest’, were 

also always selected against except for one time period. Selection coefficients for the 

remaining habitat types repeatedly switched between positive and negative values (Table 4). 

This coincided also with changes in the areas used by the herd over the 25-day time period, 

Fig. 9, Table 4), using more areas further south in the latter part of the tag deployment period. 

 

Table 4- List of selection coefficients for each habitat compared to the rock slab habitat, giving data for each 

data collection period as well as an overall coefficient (*** = p< 0.001, ** = p<0.01). Data from varied logging 

periods (5 to 25 days) from ten domestic goats tagged in August 2017 within les Bauges, France.    

Habitat 
03

rd
 to 07

th
 

August 

08
th

 to 12
th

 

August  

13
th

 to 17
th

 

August  

18
th

 to 23
rd

 

August 

23
rd

 to 29
th

 

August 
Overall 

Alpine lawns 1.033*** -0.070*** 0.589*** 0.402*** -0.306*** 0.550*** 

Beech forest -2.566*** Not grazed 10.516 -4.137*** -1.175*** -2.725*** 

Grazing tall 

herb  
0.600*** 0.756*** 1.185*** 1.233*** 1.025*** 1.300*** 

Green alder 0.121*** Not grazed -0.065*** -1.850*** -0.841*** -1.495*** 

Nardus lawns -0.418*** -3.810*** -0.396*** -0.942*** -0.333*** -0.701*** 

Rock slabs 0.644*** -0.656*** -0.528*** 0.030*** 0.248*** -0.282*** 

Scree with 

herbs 
0.796*** 0.072*** -0.373*** -0.176*** 0.097*** 0.217*** 

Scree with 

Petasites 
0.520*** -0.244*** 0.205*** -0.598*** -3.658*** 0.104*** 

Sedge lawns 0.587*** -0.297*** 1.621*** -11.649 -1.015*** -0.192*** 

Semi-arid 

lawns 
0.418*** 0.215*** 0.466*** -0.084*** -1.206*** 0.156*** 

Spruce forest 0.095*** -1.045*** -0.696*** -2.548*** Not grazed -1.342*** 
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Discussion  
 

Applicability of approach in defining feeding areas and preferences 

 

Our GPS-enabled dead-reckoning approach provided extraordinary resolution of goat 

movement, both in terms of defining individual movement, and that of an appreciable 

proportion of the herd, even though the GPS position was only sampled approximately once 

per 15 minutes. This, together with good resolution of habitat type, and the identification of 

the behaviour at each location (grazing, moving, resting) provided an excellent and rather 

unprecedented picture of overall habitat use. The quality of the allocation of specific areas of 

the habitat to behaviours depends, however, on our ability to resolve behaviours. Various 

authors have used accelerometry (and other) techniques in attempts to define ungulate 

behaviours, notably grazing (Festa-Bianchet et al. 2008, Martiskainen et al. 2009, Moreau et 

al. 2009), with various levels of success. For example, Moreau et al. (2009) used a combination 

of loggers and acceleration data and similar approach to that adopted in this study by using 

acceleration thresholds to successfully define grazing in goats for >73% of the time, while 

Putfarken et al (2007) looked at GPS data alone to define grazing in both cows and sheep, 

with rates of success of 94% and 89%, respectively. Our method used a simple sVeDBA 

threshold to provide data on resting, moving and grazing with over 85% accuracy (Table 3). 

Within this, resting was identified with certainty (100%), as expected due to low values of 

acceleration in all three orthogonal acceleration axes. Similarly, substantive movement was 

well defined by high VeDBA values because walking and trotting in tetrapods provides high 

heave and surge acceleration values  (Martiskainen et al. 2009, Moreau et al. 2009) and 

sometimes sway (Fehlmann et al. 2017), which all feed into the calculation of VeDBA (Qasem 

et al. 2012). Grazing was least accurate for two reasons. Firstly, transition between moving 

and grazing and vice versa involves a gradual change in VeDBA which depends on the length 

of time over which the transition occurs. Under these conditions, the precise point at which 

one activity begins and the other ceases does not seem to be reflected by a precise value of 

VeDBA (and it may be different depending on whether the goat goes from walking to grazing 

or vice versa). Secondly, linked to this, and perhaps more importantly, goats engage in walking 

and grazing where the two behaviours are effectively mixed. Indeed, multi-tasking is a 
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common feature of mammalian herbivores, with multiple overlapping behaviours during 

foraging (Fortin et al. 2004). Under such conditions, the weighting to one or the other activity 

depends greatly on the time allocated to each element, the length of the transition period 

and the ‘vigour’ of each of the two elements. I suspect that resolution of such phenomena 

would be challenging for any method used to define behaviours from accelerometry data 

(Fehlmann et al. 2017, Chakravarty et al. 2019), with grazing and moving being located more 

on a continuum as opposed to binary, exclusive categories. I also note that our approach did 

not allow us to differentiate between grazing and drinking or salt-licking. However, the 

prevalence of these two behaviours compared to grazing is trivial. Similarly, other infrequent 

but dynamic behaviours (e.g. headbutting, flinching and shaking) likely were categorized as 

‘moving’, but given their very low occurrence this would have affected the time allocation to 

our three principal activities only minimally.  

 

In light of the widespread ungulate multi-tasking, achieving a  ≥ 85% classification success is 

actually very encouraging, even more so considering that certainty for animals operating in 

very variable terrain, in terms of vegetative cover and slope, both of which affect patterns of 

movement (Wall et al. 2006, Shepard et al. 2013, Dunford et al. 2020) and VeDBA (Bidder et 

al. 2012) making identification more problematic. Certainly, our simple approach makes 

recognition of potential errors easier and more apparent, at least, than is the case with many 

machine-learning approaches (Fehlmann et al. 2017, Chakravarty et al. 2019). We note, 

however, that machine-learning approaches may be particularly valuable for more refined 

definitions of transient behaviours (Valletta et al. 2017), although this was not the subject of 

this study.  

 

Grazing and movement patterns 
 

In a general sense, the calculated times spent grazing, moving and resting (Fig. 3) by the goats 

matched activity budgets for a suite of other goat species for similar data logged over intense 

grazing periods (table 5) (Aharon et al. 2007, Vas and Andersen 2015). However, the activity 

budgets over the daytime period showed that this population rested more frequently and 



104 
 

generally moved more frequently than in these other studies (Shi et al. 2003, Moreau et al. 

2009, Pokorná et al. 2013). Overall, it is clear that many factors will influence patterns, 

including breed, landscape (indoor or outdoor), climate or even vegetation quality and this 

may explain differences. In contrast, my results could highlight observation bias toward 

grazing if the focus of the study surrounds the grazing behaviour. Another cause for the high 

resting levels found within my study could be the strict classification for grazing to reduce 

false positives. This would underestimate overall grazing frequency although I do not expect 

it to change comparisons between times spent grazing within different habitats. Lastly, my 

definition only indicates grazing during the active part of the behaviour, on a second by 

second basis, which leads to chewing between bites and momentarily pauses for vigilance 

being marked as resting when lower resolution methods would define this as grazing. 

Including more time-based decision rules in the classification algorithms could be a potential 

solution. 

 

Table 5 – List of studies with corresponding details to compare the result of time budgets as proportion time 

spent 

Species Author Data collection Resolution   Date(s) Purpose 

of study 

Proportion of time spent 

Resting Grazing Moving Other 

Feral goats Shi et al 

(2003) 

Observations NA Daytime 06h to 20h 

(Jan and Dec 1981; 

May and Nov 2000) 

Activity 

budgets 

0.32 0.55 0.07 0.06 

Domestic goats (Thüringer 

Waldziege × Toggenburg 

crossbred) 

Moreau et al 

(2009) 

Accelerometer and 

observations 

>1Hz Daytime for 4h periods 

(June to August 2007) 

Grazing 0.32 0.65 0.03 NA 

Domestic goats (Mamber 

breed) 

Aharon at al 

(2007) 

Observations NA Daytime (total: 164 

hours) 

Grazing 0.33 0.32 0.35 NA 

Domestic goats 

(Norwegian) 

Bruun (2015) Video recordings NA 1.5 hour intervals 

during feeding 

Activity 

budgets 

0.43 0.44 0.05 0.08 

Domestic goats 

(Norwegian) 

Vas and 

Andersen 

(2015) 

Observations NA 1.5 hour intervals 

during feeding 

Activity 

budgets 

0.25 0.5 NA 0.25 

Domestic goats Pokorna et al 

(2013) 

Observations 5min 

intervals 

Daytime 06h to 20h 

(Aug to Sept 2008) 

Activity 

budgets 

0.35 0.61 0.04 NA 

 Domestic goats This study Accelerometer 1Hz Intense grazing periods 

for 26 days (Aug 2017) 

Grazing 0.4 0.47 0.13 NA 

Domestic goats This study Accelerometer 1Hz Daytime 06h to 20h 

periods for 26 days 

(Aug 2017) 

Grazing 0.58 0.32 0.1 NA 
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It gives confidence in my methods that this data ties in so well with the diurnal pattern of 

other species (see chapter 5, Fig. 4), but also shows that the goats behaved in a manner 

considered typical for ungulates in their habitat (Shi et al. 2003, Festa-Bianchet et al. 2008). 

The lack of variation between individuals in the time spent engaged in each behaviour is fully 

expected for such a socially dependent species that moves collectively as a herd (O’Bryan et 

al. 2019). Indeed, asynchrony between individuals within the herd is presumably what leads 

to the extent of spreading out of the herd over the day (Couzin and Krause 2003, O’Bryan et 

al. 2019), with the situation being reversed when they return to the pen at night.  

 

The dual phenomena of the goats being herd animals and in this context being a species that 

forages in a central place manner (Orians and Pearson 1979) is what likely accounts for the 

change in space use over time observed in my study goats (Fig. 9): All central place animals 

tend to deplete food resources closest to their central place, a phenomenon that has been 

called Ashmole’s halo in marine systems (Birt et al. 1987, Elliott et al. 2009), thus it benefits 

individuals to radiate out beyond this halo to forage. More generally this is a case where 

accessibility becomes restricted, in this case due to the central place foraging behaviour, 

affecting space use of animals (Matthiopolous 2003). Where animals forage in groups on 

static resources, such as plants, the exploitation in the space used by the group can be 

extreme, particularly when inter-individual spacing is small (Elliott et al. 2009). Thus, 

optimization of movement patterns of herd animals such as goats, has to balance the distance 

(and associated cost) that the animals travel away from their central place with the energetic 

benefits of unexploited (or little exploited) areas with increasing distance (Pyke 1984, 

Houston and McNamara 1985). In addition, movement direction has to be factored in, 

because by adopting a fanning out pattern over time, animals can exploit closer areas to their 

central place than they could if they always maintained a single heading when setting out to 

forage. Indeed, time-based exploitation of different areas based on radiating from the central 

place gives time for the vegetation to regrow and should, other things being equal, result in 

a logarithmic increase in space use with time, as observed in my goats (Fig. 6). The effect of 

distance and direction on exposed area can be made apparent by using the simple example 

of a circle representing the limits of daily movement of a central place foraging animal such 
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as these goats. Because the total available area increases according to Area = πr2, where r is 

the radius of the circle, small increases in radius produce a disproportionate increase in 

available area. In this case, this would effectively rapidly limit the necessary transit distance 

between pen and feeding site. In fact, in my study, the area topography apparently somewhat 

limited fully radial movement, with a steep incline being present to the West of the pen, which 

tended to flatten the potential radiation circle into an ovoid. Nonetheless, the observed 

space-use by our animals over time (Fig. 6a) gives a good estimation of how much area a herd 

of 10 goats will exploit at that time of year – levelling off at about 1.1 km2. I note, however, 

that most of this space is also presumably used for the rest of the herd of 40 animals so that 

extrapolation of space-use and herd size needs attention, unless the entire herd is monitored. 

A plot of the area grazed against number of animals for defined periods of time shows 

increasing area with increasing numbers in the herd as well as increasing areas over time (cf. 

Fig. 10). Extrapolation of these lines to different numbers of animals in the herd should help 

give an idea of how herd size relates to area exploited. However, strictly speaking, this will 

not be truly representative of area use if the herd were solely made up of the indicated 

number of animals since the data were derived from a herd of 40 animals which, itself, will 

affect the results. Nonetheless, the approach at least gives an approximate idea. 

 

 

Figure 10- Area grazed by goats in an Alpine setting as a function of the number of goats in the herd. Note that 

this data was derived from individuals with a 40-animal hard and so does not represent the situation that would 

occur were the goat herd were to be strictly limited to the number suggested. Nonetheless, the graph shows 

important trends.  
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Beyond this, if food is indeed a determinant of space-use, central place foraging theory would 

predict greater space use in less productive times of the year and this is also expected to 

change according to habitat composition. 

 

Habitat exploitation 
 

The data clearly shows habitat preferences (Fig. 7, table 4), which therefore affects the details 

of space-use. For example, I note that there was an usually high number of revisits to a spot 

in the centre East of the overall grazed area (Figs 7b & 9), a space that was predominantly 

grazing tall herb formations surrounded by hay meadow vegetation. Although I cannot know 

precisely what plant species the goats were targeting within this, and other habitats (Sanon 

et al. 2007, Mancilla-Leytón et al. 2013), preference for grazing in certain habitats should 

allow somewhat modified predictions as to the overall space that goats may require in 

different areas of the Alps according to herd size and the habitat composition. For example, 

knowing that the animals tend to avoid forest habitats and sedge lawns would indicate that 

areas of the Alps with high proportions of these habitat types are likely to suffer increased 

consumption on the other, relatively less abundant, habitat types, such as Alpine lawns, Scree 

with herbs and semi-arid lawns. Ideally, studies should attempt to determine what, exactly, 

goats favour within the different habitat types so as to build up a more comprehensive picture 

of goat impact over time and space.  Such as reconstruction of the foodscape of an area for a 

specific species has recently been achieved in the same study area for a wild species, the 

chamois (Duparc et al. 2020). By combining data on animal movements with unprecedent 

detailed data on the quantity and quality of edible resources in the landscape (via vegetation 

sampling, remote sensing, and diet DNA barcoding), the authors were able to show that in 

reality the foodscape of the chamois contained only a low proportion of available biomass 

(<18%) and a low spatial covariation between plant phenology and biomass. This led to the 

chamois constantly selecting for plants in the flowering stage, avoiding areas with low edible 

biomass, leading to shifts in the home range selection ratios for/against more advanced plants 

over the summer period. Thus, to understand habitat selection and foraging patterns, it is 
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crucial to consider the actual foodscape for a species, especially when the traits of edible 

plants differ from those of all available plants. 

 

The high amount of grazing on rock slaps was unexpected as, despite the presence of 

vegetation, the habitat is described as mostly bare rock (Devillers et al. 1991) which implies 

that there would be more effort required to seek out the vegetation. A similar argument can 

be made for the preference for scree with herbs. Based on this, I assume that the vegetation 

on rock slabs (spp.) and within herb screes (spp.) must be particularly beneficial, such as 

having a high energy density. More detailed studies, including using the collar-mountain 

videos used by Newmaster et al. (2013), could examine this in more detail. 

 

Goats avoided forested areas, which included spruce, green alder (Alnus alnobetula) and 

beech habitat when grazing. This was expected as there are few herbs and grasses due to the 

shading effect of the tree canopy (Mancilla-Leytón et al. 2013). However, wild alpine 

ungulates may use the forested areas to avoid the heat (Marchand et al. 2015), which seems 

to be less of a problem in the domestic species. Interestingly, the only period when there was 

a significant preference for wooded habitat was during the first 5 days of tagging, when green 

alder had a high selection coefficient.  

 

Overall, hay meadows were preferred over rock slabs but this did not stay consistent over the 

logging period. I expected to see a preference, with high grazing rates at these sites as this 

habitat is specifically planted by farmers for livestock to graze (Devillers et al. 1991). This 

expected result further supports this methodology and analysis to define and locate grazing. 

Alpine lawns were preferred, as expected, due to diverse grass species being present, which 

make up the preferred diet of most goat species (Sanon et al. 2007, Iussig et al. 2015), but 

this picture will become further clear by including diet selection data to understand the 

species-specific foodscape (Duparc et al 2020).  
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Grazing herb formations were the most preferred habitat for grazing. This habitat is usually 

associated with cattle (Devillers et al. 1991) that were also present within the valley. This 

result might show the benefit of having multiple species grazing within one pasture valley if 

the goats prefer vegetation that forms uniquely in the presence of domestic cows.  

 

Semi-arid lawns were not preferred for all logging periods but overall did have a positive 

selection coefficient. This habitat is a result of over-grazing or nutrification (Devillers et al. 

1991, Mayer et al. 2009) but this data shows that the habitat still offers grazing opportunities 

for livestock. As part of this, depending on the resilience of the vegetation, this habitat could 

be restricted from goat grazing to allow the habitat to recover and increase in biodiversity, 

especially since these results show that goats seek out and graze on the habitat. Nardus lawns 

are similar, in being associated with over-grazing, with resulting in reduced biodiversity. 

Although goats did graze in this habitat, there was no specific preference for it. 

 

Despite the methodological limitations (see above), the results do show what habitats are 

preferred by domestic goats for grazing and this information should be useful for farmers, 

allowing them to better manage the land, and protect habitats from being over-grazed. 

Indeed, this type of study could be run for longer periods, with more detailed analysis of the 

foodscape, to define trends over seasons so as to understand what could be done to manage 

grazing impacts. As part of this, more detailed analysis could specifically determine 

vegetation-, rather than just habitat preferences (Duparc et al. 2020).  
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Chapter 5 
 

Grazing on alpine slopes:  Effects of habitat, slopes and temperature on 

grazing behaviour and behaviour budget in domestic goats (Capra 

aegagrus hircus) and Alpine ibex (Capra ibex).  

 

Abstract 
 

Domestic ungulates have been introduced into every continent across the globe and can 

compete with native ungulate species for resources. This can be especially critical in mountain 

grasslands, where steep slopes and rocky areas restrict available habitats, with environmental 

change, such as rising temperatures, further exacerbating the impact of domestic livestock 

on wild ungulates.  Understanding resources selection, conditional on topography and 

environmental conditions, of both wild and domestic mountain ungulates can hence 

markedly inform management as well as further our understanding of their movement 

ecology. Here, I used multi-sensor biologging technology and novel methods to study two 

closely related species, the domestic goat (Capra aegagrus hircus) and the alpine ibex (Capra 

ibex), living in two nearby study sites in the French Alps. Movement data from both species 

were collected using collar-attached accelerometers, magnetometer and global position 

system (GPS) devices, fine-scale (1Hz) movement paths were obtained over summer months 

(July-August) by dead-reckoning and the behaviour at each point in space and time was 

reconstructed using the ‘Lowest Common Demnominator (LoCoD)’ Boolean behaviour 

identification method, and grazing locations, and time spent grazing, were analysed in a 

resource selection framework, in relation also to topography (slopes) and environmental 

temperature. The ibex and goats shared four habitat types, with both species selecting herb 

habitat and avoiding conifer forests when grazing. The time spent grazing as a function of the 

slope of the topography depended on incline in goats, with a slight preference for steeper 

inclines when grazing. The ibex also selected steeper slopes for grazing, preferring even 

steeper inclines than the goats (but related also to availability of inclines). Importantly, ibex 

showed a markedly stronger response to temperature than domestic goats, in line with the 
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documented heat stress sensibility of the former. The results show that global warming may 

prove critical for the management of alpine grasslands and that domestic species may 

negatively impact wild species, due to their shared habit preferences and being less critically 

affected by environmental change, likely due to the support received by the farmers and 

shepherds.  

 

Introduction 
 

For conservationists, how invasive- and deliberately introduced species interact with their 

adopted habitat and the native species is key to understanding how to preserve ecosystems 

(United Nations 1993). Invasive species can, for example, alter an ecosystem by inter alia 

posing a threat to native species via predation (Caut et al. 2008, Cheng et al. 2016), 

competition (Côté 2005, Dugger et al. 2011), habitat alteration (Wardle et al. 2001) or habitat 

destruction (Fordham et al. 2007). A common example of potentially detrimental 

introductions is in the form of ungulate livestock competing with their wild counterparts: 

Livestock grazing accounts for over one quarter of the world’s land use (Steinfeld et al. 2006) 

and, in many instances, these livestock have to share resources with wild herbivores. The 

competition and negative impacts of domestic species on wild animals is the subject of much 

debate (Chaikina and Ruckstuhl 2006, Allred et al. 2013), with domestic ungulates often 

providing social and economic benefits but negatively affecting biodiversity (Spear et al. 2009 

) and the key need to understand the contrasting impacts of native and introduced/domestic 

grazers for the conservation of grasslands (Allred et al. 2013).  

 

Livestock management within the French Alps is a particular case, with free-range grazing 

livestock present at the higher altitudes during the summer months (Tasser and Tappeiner 

2002). Studies show that there are some benefits of this grazing to the vegetation biodiversity 

and connectivity (Fischer and Wipf 2002, Mayer et al. 2009). It improves the alpine ecosystem 

generally and can even promote relevant habitat availability for the wild ungulates (Zweifel-

Schielly et al. 2009, Espunyes et al. 2019).Governing bodies actively encourage farmers to 

adopt site-specific seasonal grazing (Baur and Binder 2013) which leads, in some areas, to 
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livestock and wild species appearing to share the same spaces in the summer months (Ryser-

Degiorgis et al. 2002, Fankhauser et al. 2007, Chirichella et al. 2014). The extent to which this 

leads to space- and time overlap for grazing by wild and domestic ungulates is unclear.     

 

The locations, extents and times spent grazing by ungulates are critical to their fitness 

(Bergman et al. 2001) because all species need to spend a substantial part of their life feeding 

(Arnold 1985). Indeed, anything that diminishes this time can have a significant impact on 

fitness (Bergman et al. 2001, Janis 2008). It is little surprising, therefore, that studies have 

shown that ungulates choose judiciously where and when to forage in relation to predators 

(Gazzola et al. 2005, Gude et al. 2006), habitat type (Pearson et al. 1995, Forsyth 2000) and 

temperature (Aublet et al. 2009, Pęksa and Ciach 2018, Herfindal et al. 2019). Critically 

though, few studies have considered how wild species compare with potentially co-occurring 

domestic livestock in these regards, and how this might affect competition (Ryser-Degiorgis 

et al. 2002). An exception to this was Martinez (2002), who investigated ibex (Capra 

pyrenaica) and sheep (Ovis aries) conflicts in sympatry but found that sheep adopt such 

different feeding behaviours to ibex species that competition seemed unlikely. Comparisons 

between congeners are expected to be more telling though, because similar species are more 

likely to favour similar conditions which can result in niche displacement for the weaker 

species (Pépin and N’Da 1991, Fankhauser 2004, Ferretti and Mori 2020). This may explain 

why domestic goats (Capra aegagrus hircus) have been shown to displace the iberian ibex 

(Capra pyrenaica) to suboptimal (woodland) habitats, with both species being reported to 

prefer grasses and herbs in areas of allopatry (Acevedo et al. 2007). In fact, for this reason, 

goats may be problematic to wild congeneric species, with a particular case for concern being 

the Alpine ibex (Capra ibex). This species faced near extinction at the beginning of the 

twentieth century due to excessive hunting although careful re-introduction has now allowed 

numerous populations to establish across the Alps (Stüwe and Nievergelt 1991). While the 

current estimated population totals some over 50,000 individuals (Stüwe and Nievergelt 

1991), the low genetic diversity of this species puts it at risk of inbreeding and makes it 

vulnerable to environmental pressures (Grossen et al. 2020),. The Alpine ibex habitat 

preferences for grazing have been previously described in a number of their alpine 

populations (Grignolio et al. 2007, Herfindal et al. 2019, Brambilla et al. 2020) particularly 
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those in France (Villaret and Bon 1995). The results showed that the species spent long 

periods on bare rocks and scree but considering abundance favours grass habitats (Grignolio 

et al. 2003), higher altitudes (Grignolio et al. 2003, 2007, Aublet et al. 2009, Herfindal et al. 

2019) and avoids midday high temperatures (Aublet et al. 2009, Herfindal et al. 2019). 

However, both the behavioural analyses and space-use were based on the use of low-

resolution GPS, radio-tracking or simple observations and therefore could not definitively 

allocate space-use and temperature to grazing. Thus, here my aim was to provide an analysis 

of very fine-scale movements, behavioural budgets, and space use, including response to 

slope and temperature, of alpine ibex and domestic goats. Especially the combination of 

behaviour identification and movement data allows for a considerably more refined analysis 

of foraging behaviour and to this end combining a wild species and a closely related domestic 

one, tagged in two different areas, provides the opportunity to apply this approach to data 

showing a large range of behavioural and environmental differences. 

 

This study used continuous, high resolution (≥1 Hz) animal-attached loggers to determine the 

second-by-second location and behaviours of domestic goats and Alpine ibex foraging in two 

different areas within the French Alps. The aims of the work were; (i) to verify tag sensor-

defined behaviours (resting, grazing and moving) by observation of logger-equipped domestic 

goats and applying these values, with modification, as necessary, to wild ibex, (ii) to 

determine the extent to which temperature affects the grazing of both species, (iii) to identify 

grazing preferences with regards to habitat and slope and thereby (iv) allude to the extent to 

which the two species might compete for resources or space if farming practice leads to 

sympatry. 

 

Methods 
 

Study sites 
 

The domestic goats were collared in a pasture valley (45.60485°N, 6.18295°E) within the 

Bauges Massif, a National Game and Wildlife Reserve in the northern French Alps (Fig. 1a). 
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The vegetation in the Bauges is dominated by beech Fagus sylvatica and fir Abies alba forests 

(with a preponderance of conifer forests in the specific study area here), Alpine pastures and 

rocky areas (Duparc et al. 2020). In the summer months, daylight averages 15 hours, 

temperature ranges from 12°C to 27°C and there is regular rainfall (NOAA 2017).   

The ibex were collared near Allemond (45.13610°N, 6.04020°E) in the Belledonne-7   Laux 

Reserve (Isere, France) on the Belledonne mountain range (Fig. 1b). The Belledonne massif 

attitude range is greater than that of the Bauges, with several peaks higher than 2700 m above 

sea level, and deep valleys. The topography determines the vegetation, and there are larger 

areas of bare rock and scree compared to the Bauges. There are however, several shared 

habitat/vegetation types shared, including extensive grasslands and fragmented forest, 

including conifer, deciduous, mixed, and open woodland (Michallet et al. 1988). The summer 

has temperature highs of 25°C and lows of 10°C with regular rainfall and an average of 15 

hours of daylight (NOAA 2017).  

 

 

Figure 1 – (a) A shape file of the Bauges massif and its position within France, (b) – the site used for the domestic 

goat study and its location within the massif and (c) - a shape file of the Belledonne massif and its position in 

relation to France. (d) shows the site used for the alpine ibex study and location within the massif. Each shape 

file had polygons outlined and coloured based on habitat.  

 

Study species 
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Domestic goat: The free roaming herd of goats studied was composed of 1 male and 40 

females, of which ten were selected for data collection. The average weight of the selected 

goats was approximately 30 kg. The animals were milked every morning and were kept in a 

pen for most nights, which predetermined their movement habits appreciably. The goats used 

in this study came from a goat farm that was easily accessible where the livestock were free 

to browse a segregated area of 2 km2 within the valley (Fig. 1b). The goat herd shared space 

with domestic dairy cows (Bos bos taurus), wild chamois (Rupicapra rupicapra) and wild 

mouflon (Ovis gmelini musimon × Ovis sp.). 

 

Wild Ibex: The ibex population within the Belledonne massif were reintroduced in 1983 with 

20 Alpine ibex from Mont-Pleureur (Switzerland), with the population continuously 

monitored since then through capture–mark–recapture methods (including GPS collars) by 

the Office National de la Chasse et de la Faune Sauvage (Toigo et al. 2013). Specifically, Ibex 

are captured and ear-tagged each spring, using tele-anaesthesia, cage traps, leg-holdsnares, 

or drop nets, using methods approved by the French Environment Ministry. Six ibex 

individuals were captured and collared for this study in the eastern part of the mountain 

range (Fig. 1d). The ibex population shared the massif with other ungulates including wild 

chamois (Rupicapra rupicapra) and domestic sheep (Ovis aries).The average weight of the 

selected individuals was 80 kg, all Ibex were males with an estimate age ranging from 7 to 12 

years (determined from counts of horn growth rings at capture).  

 

Biologgers 
 

Domestic goats: The goats were collared with lab-built collars containing accelerometer and 

magnetometer units (“Daily Diaries” - DD) (Wilson et al. 2008) (Fig. 2a) and Global Position 

Systems (GPS) (GiPsy5, TechnoSMart). The GPS was programmed to record position once 

every fifteen minutes, while the DD recorded tri-axial acceleration at 20 Hz, tri-axial magnetic 

field intensity at 8Hz and temperature and pressure at 2 Hz (for further details of the collar 

setup and DDs see chapter 4 methods) (Fig. 2b). The highest collar weight was 150 g, staying 

well within the 3% ethical guidelines (0.5%).  



125 
 

 

Wild Ibex: The ibex were collared with Lotek 3300S GPS collars (Lotek 2020) with a lab -built 

housing fitted and fastened to the commercial battery housing at the base of the collar (Fig. 

2c). The ABS plastic housing contained two A-cell 3.7 volt batteries and a DD that recorded 

acceleration (Fig. 2d) and magnetic field intensity in three orthogonal axes as well as 

temperature and pressure using the same regime as for the goats. The Lotek GPS collar had 

an injection mould plastic housing at the base containing batteries to power VHF and GPS 

units within the collar. The collars themselves were constructed of re-enforced artificial 

leather and had a remote triggered release. The combined weight of the logging collar with 

all components was, on average, <500 g, weighing in as 0.7% of the average ibex weight 

capture, staying far below the recommended 3% maximum tag weight (Casper 2009). 

 

 

Figure  2- (a) Placement of the Daily Diary (DD) housing and the way it fits in relation to the lab-built collar, (b) - 

the orientation of the three acceleration axes in relation to the collar and goat, (c) - placement of the Daily Diary 

(DD) housing with respect to its fitting onto the exterior of commercial Lotek collar and (d) - the orientation of 

the three acceleration axes in relation to the collar and the ibex.  

 

Deployment and collection 
 

Before collars were attached to the animals, each GPS and DD device was turned on and the 

DD was then calibrated. Calibration of the DD involved carrying out a defined series of 

movements to; (i) provide a key within the data for synchronised time and (ii) to allow the 3 

magnetometers to sample the magnetic field intensity in all orientations to calibrate the 

overall magnetic field intensity (Williams et al. 2017) and to enable hard- and soft-iron 

corrections to be implemented (Guo et al. 2008, Vasconcelos et al. 2011). 
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Domestic goats: The collars were attached to the goats in the morning when the herd was 

enclosed in an indoor pen. The individuals were selected randomly and required minimal 

handling. Attachment time and ear tag number was recorded for each collared individual. 

 

Wild Ibex: The captures for the wild species used a drop net trap, triggered remotely, and 

baited with salt licks to lure the ibex (Toigo et al. 1999, Jullien et al. 2001). All methods were 

approved by the French Environment Ministry. Individuals of suitable weight and size were 

selected to be collared, with horn length and weight noted at capture.  

 

Data analysis 

All biologging data were handled and analysed for behaviour identification and dead-

reckoning using the DDMT software (Wildbyte Technologies 2020). All other analyses, 

including mapping and statistical analyses, were conducted in R (R Core Team, 2019) and R 

Studio (RStudio Team 2020). In particular, statistical analysis involved the use of linear models 

and generalised linear mixed models. 

 

Dead-reckoning 
 

To give an estimate location every second, dead-reckoning (Bidder et al. 2015) between GPS 

fixes was used. In essence, this involves using accelerometers and magnetometer to derive 

animal heading with respect to magnetic North (subsequently corrected to true North) and 

Vectorial Dynamic Body Acceleration (VeDBA) (Bidder et al. 2012, Qasem et al. 2012) as a 

proxy for speed (see chapter 3 methods for further details).  To clean the GPS data, the 

Bjørneraas GPS screening (Bjørneraas et al. 2010) method was used within a package through 

R-studio (RStudio Team 2020).  

 

Pressure to altitude 
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To convert the pressure and temperature channels from the DD to altitude the following 

formula was used: 

ℎ =

((
𝑃0

𝑃 )

1
5.257

− 1) × (𝑇 + 273.15)

0.0065
 

Where h is altitude or height in metres, P0 is pressure at sea level, P is the pressure reading 

from the logger and T is temperature.  

 

Behaviour definition   
 

Definition of the behaviours of wild Ibex, where tagged animals effectively cannot be 

observed, is not trivial. The normal protocol is to observe a tagged animal and correlate the 

details of acceleration signals to behaviour so that machine-learning or other protocols can 

be used to find specific data within extended datasets from unobserved animals (Shepard et 

al. 2008, Brown et al. 2013, Fehlmann et al. 2017). This option is not available for wild cryptic 

species and one suggested solution is to use a similar animal captive counterpart (e.g. a 

congener) to provide the necessary calibration (Campbell et al. 2013, Rast et al. 2020). This is 

naïve if the expectation is that a machine-learning algorithm for a particular behaviour in a 

captive animal is to be transposed to a wild counterpart because even small morphological 

differences between the wild animal and its observable counterpart can make a large 

difference in acceleration metrics (Wilson et al. 2020, Dickinson et al. subm.).  However, there 

are generalities in the accelerometer patterns produced by moving animals, especially useful 

if animals share the same Bauplan and mode of locomotion, as for example ungulates. With 

ungulates, the variability in the raw heave, surge and sway acceleration data as well as in the 

smoothed VeDBA signal, clearly indicate grazing, resting or travelling (chapter 4). This is 

possible, not least because the data from any acceleration sensor in a tri-axial (orthogonal) 

group of three, is a defined and predictable response to the movement of the tag. Specifically, 

the sensor returns an acceleration value along its measurement axis that incorporates; (i) the 

static acceleration from the earth’s gravitational field (which depends on the angle of the 

sensor axis with respect to the earth’s surface) with (ii) any linear acceleration produced by 

the animal and (iii) any centripetal acceleration invoked by the animal. Given this, and the 
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fact that the sampling frequency of the three axes determines the extent to which observable 

waveforms within the data are due to, for example, an animal’s stride, it is not difficult to see 

how particular animal movements produce recognisable acceleration patterns. This can be 

formalised within an efficient and repeatable framework, the Boolean time‐based decision‐

tree template (Wilson et al. 2018).  

 

With this in mind, I visually examined Ibex acceleration data after spending extensive time 

examining goat behaviour manifest in the acceleration data (Chapter 4). I had developed a 

protocol for differentiating this goat behaviour into its three main elements, resting, travelling 

and grazing, based on thresholds in smoothed VeDBA (over 40 data points) (Chapter 4) (Fig. 

3a): I used this as a basis to transpose Ibex acceleration data and identify the three behaviours 

within the wild Ibex dataset, verified by simple ‘expert inspection’ (Fig. 3a,b). Specifically, an 

offset was needed to correct for the difference in noise in the acceleration signature of the 

Lotek collar compared to the lab-built collar: The Lotek collar was heavier than the lab-built 

collar, and was padded, which led to a more stable (less variable) signature during periods of 

animal immobility (resting). Comparison of the resting sVeDBA for the two species showed 

that the goats produced an average sVeDBA that was 0.05 g higher than the Ibex. Thus, the 

sVeDBA thresholds for all behaviours previously defined for the goats (Chapter 4) were offset 

by 0.05 g to act as thresholds for the 3 major behaviours within the ibex data (Fig. 3b). 

Inspection of the acceleration signals corresponding to resting, travelling, and grazing in the 

Ibex data using this offset identified, as far as the ‘expert user’ could tell, the behaviours 

perfectly. Once quantified, the behaviour (from both species) could be linked to other 

variables (temperature, pressure and location [see above]) recorded by the DD via time (see 

appendix, Table 2 for rule definition table).  
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Figure 3- (a) A plot of acceleration smoothed (over 40 events (2 s)) over all 3 orthogonal axes (grey lines) and 

sVeDBA (green line) to show changes over time with changing goat behaviour. The thresholds used to define the 

three behaviours are shown using the dashed lines with the thresholds specified. (b) - shows an equivalent plot 

for an Ibex (sVeDBA - blue line) using a 0.05 g sVeDBA offset applied to all thresholds used to define the three 

behaviours. 

 

Mapping 
 

“ggmap” and “raster” packages within R (R Core Team, 2019) and R studio (RStudio Team 

2020) were used to map the 1 Hz dead-reckoned paths onto shape and raster files. Details 

including slope and habitat could then be extracted from the maps to link grazing to the 

environment: habitat type was extracted from shape files and slope incline (as %) (using a 

map with 25 m2 resolution) from the raster plot. Mapping data was supplied by Grenoble 

University and the National Hunting and Wildlife Agency (ONCFS) management team 

(Tronchot 2008). The shape files describing the habitat for Belledonne and the Bauges used 

different habitat definitions, so the French maps were translated and unified for 

standardization (Table 1). To quantify overall space-use for each species and identify space-

use according to grazing, the locations of grazing for each individual were used to outline a 

polygon, executed using the “sf” package in R studio, which then allowed the area used to be 

calculated.  

 



130 
 

Table 1- List and break-down of how the habitat information supplied was combined to define shared habitats 

with new habitat descriptions. 

Study 

habitat ID 

Description  Belledonne 

habitats  

Bauges habitats 

Bare rock Predominately exposed rock in the 

form of rock face or loose scree. 

Vegetation can be present including 

pioneer species, grasses and herb 

species.  

Rock shadow, 

exposed rock 

Scree 

Grasses Grass species making up lawns that 

have a variety of biodiversity- and 

productivity types including Nard, 

Laiche and Seslerie species 

Diverse lawns Nard, Laiche, Seslerie, Dry 

grass, Forage (mowing 

meadows) 

Herbs Herbs species with a variety of 

biodiversity and productivity including 

Megaphorbiaie 

Herbs Megaphorbiaie 

Open water Open bodies of water in the form of 

lakes and rivers 

Water Not present 

Shrubs Mixture of open, fruit-bearing, closed, 

low and tall shrub species 

Closed shrubs, 

open shrubs, low 

shrubs, shrubs 

with fruits 

Shrubs 

Snow Snow present, note: not known if this 

habitat is date dependent as snow is 

present at some altitudes all year 

round 

Snow Not present 

Wetland Habitat where the water table is high, 

resulting in seasonal or permanent 

flooding 

Low swamp Not present 

Woodland 

coniferous  

Forest made up of conifer species 

including spruce and larch 

Spruce, Conifers 

in islets, larch 

Spruce 
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Woodland 

deciduous  

Forest, made up of deciduous species 

including beech, birch, alder and a 

mix of deciduous species 

Beech, Birch, mix 

of hardwoods 

Beech, Alder 

Woodland 

mixed 

Forest made up of a mix of deciduous 

and conifer species 

Mix of conifers 

and deciduous 

trees 

Not present 

Woodland 

open 

Sparse forest including a variety of 

species 

Loose forest Not present 

 

To condense the high numbers of data points (hundreds of millions), the “recurse” package 

within R studio was selected, where, if two or more grazing locations were withing 10 m2 of 

one another, it was counted as a revisit. This revisit metric was then used to indicate areas 

that were used most frequently. 

 

Selection coefficients  
 

In a manner similar to chapter 4, a logistic regression within generalised linear mixed models 

(using the “lme4” package in R) was used to analyse use-available data within standard 

resource selection analysis (Manly et al. 2002). Used locations were the locations with 

identified grazing behaviour. Available locations were distributed within the polygon 

enclosing all locations of the herd or tagged individuals. The results produced a selection 

coefficient for each habitat compared to bare rock (reference standard). The same process 

was also used to highlight preferences for grazing on different slope inclines with slope as a 

percentage.  

 

Results 
 

Overview of captures 
 

The six Ibex captured were all male and weighed between 77 and 85 kg, with estimated ages 

ranging between 7 and 12 years (Table 2). 
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Table 2- List of the individual Ibex (all male) tagged with the data noted at the time of capture and the 

corresponding values associated with their behaviour for the following 30 days after release. Each of the six 

animals was tagged in June 2017 within Belledonne, France.    

Study 

ID 

Total grazing 

hours 

Total distance 

travelled (km) 

Space use 

(km
2
) 

Space use when 

grazing (km
2
) 

Weight 

(kg) 

Estimated age 

(years) 

Ibex 1 286.48 210.78 4.85 4.81 77.7 7 

Ibex 2 288.43 213.03 5.87 5.81 85 12 

Ibex 3 273.24 201.24 5.24 5.31 78.3 9 

Ibex 4 259.85 188.5 5.28 5.17 81.2 12 

Ibex 5 279.63 152.43 1.52 1.51 79.4 7 

Ibex 6 303.6 63.11 3.47 3.46 79.8 9 

Mean 281.87 ±14.84 171.52 ±57.54 4.37 ±1.61 4.34 ±1.60 80.2 ±2.6 9 ±2 

 

 

Behaviour  
 

The second by second data stemming from a total of 30 ibex days from 6 individual Ibex 

showed that the animals spent a mean of 53% of their time resting (standing or sitting), 8% 

moving (without grazing) and 39% grazing. This was similar to the goats, that spent a mean of 

69% of their time resting (standing or sitting), 7% moving (without grazing) and 24% grazing 

(Chapter 4). As with the goats (Chapter 4), there was little variation in overall activity across 

individual Ibex (Levene’s test for variance: F-value = 0.018, p-value = 0.99), with a maximum 

of 17% difference in time spent grazing between the most active and least active grazers 

(Table 3). Activity in both species depended on time of day though. Both species 

predominantly rested at night and around mid-day and had peaks in grazing activity in the 

morning and afternoon/evening, with periods of heighted travel preceding and during grazing 

(Fig. 4). 
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Figure 4 – Mean proportion of time spent per hour engaged in grazing, resting and travelling by (a) tagged goats 

and (b) tagged ibex during the study period. Error shading shows SD across individuals for each behaviour. Ibex 

data from 30 days from six wild ibex tagged in June 2017 within Belledonne, France. Goat data from varied 

logging periods (5 to 25 days) from ten domestic goats tagged in August 2017 within the Bauges, France.      

 

The sVeDBA associated with the three major activities was highest in walking animals, being 

approximately 10 times that of the lowest sVeDBA activity, which occurred in resting animals 

in both species (Table 3). Grazing was intermediate in both species and was approximately 

five times higher than resting (Table 3). 

 

Table 3 – Mean values of DBA for both domestic goat and ibex in relation to behavioural state 

 
Goat Ibex 

Activity Mean sVeDBA (g) SD Mean sVeDBA (g) SD 

Resting 0.03 0.04 0.03 0.01 

Grazing 0.15 0.04 0.10 0.03 

Walking 0.31 0.16 0.24 0.14 

 

As a reflection of the activity-specific VeDBAs (Table 3) and the varying proportion of 

behaviours allocated to different hours of the day (Fig. 5), there were clear trends in mean 

VeDBA-values per hour, with highest VeDBAs associated with movement (travelling and 
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grazing) between 6h and 10h and 15h and 20h for the goats and between 5h and 9h and 17h 

and 22h for the Ibex (Fig. 5). 

 

 

Figure 5 – Variation in VeDBA over the course of the 24 h cycle in 10 tagged domestic goats (green line) and 6 

tagged wild Ibex (blue line). Error shading shows SD across individuals for each species. Ibex data from 30 days 

from six wild ibex tagged in June 2017 within Belledonne, France. Goat data from varied logging periods (5 to 25 

days) from ten domestic goats tagged in August 2017 within the Bauges, France.      

 

Area-use 
 

Information on the goat area-use is covered extensively in chapter 4 (see Figures 6 and 9 in 

this chapter). In essence though, these animals displayed a central place foraging pattern 

because they returned to their pen on most nights. In addition, because the goats travelled 

as a herd, individual differences were minimized, which was not the case for the Ibex (see 

below). Overall, for the monitored period, the goats radiated out from their central place 

spending most time in their central place with diminishing time with increasing distance from 

that central place (Fig. 5, Chapter 4). An exception to this was an enhanced revisit frequency 

in a single northwest axis extending out from their pen (Fig. 7b, Chapter 4). 

 

Individual Ibex varied appreciably in their use of space (Fig. 6) and in the distances that they 

travelled (Chapter 6, Table 4). For example, Ibex 5 remained for the whole of the monitored 
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period within small areas (<3.5 km2), with a higher incidence of revisits to grazing patches (Fig 

5). The other individuals exploited larger areas during the data collection, ranging from 4.28 

km2 to 6.70 km2, with lower mean revisits to the defined grazing patches and greater 

distances travelled (Fig. 5).  One individual (Ibex 2) exploited two substantially different areas 

during the tagging period, spending approximately half the time in one area before moving 

to the other (Fig. 5). 

 

Figure 6 – (a) Dead-reckoned paths coloured by individual, sub sampled to 1 location per minute to show area 

and movement range used by each individual. (b)  Mean locations for hourly periods coloured by individual with 

size of each point to show proportion of that hour spent grazing. Map coloured by study habitat type. Data from 

30 days from six wild ibex tagged in June 2017 within Belledonne, France.    
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Temperatures 
 

The hourly variation in temperature to which the goats and Ibex were exposed was very clear 

from the DD data, with maxima around 14h and minima around 6h in both species (Fig. 7a) 

although the goats were exposed to temperatures that were almost 8°C higher than the Ibex. 

A histogram of the proportion of time spent grazing by the two species revealed that the ibex 

grazed throughout the 24 h cycle but for appreciably longer periods in the hours around dawn 

and dusk. By contrast, although the goats grazed appreciably in the mid-morning, they grazed 

most substantially in the mid- to late afternoon (Fig. 7a). Consideration of the mean 

proportion of time grazing per hour of day against hourly mean temperatures showed a 

significant negative relationship between grazing (y) and temperature (x) for the Ibex (y=-

0.06x+1.23, R2= 0.83, p<0.001) but not for the goats (y=-0.02x+0.73, R2=0.06, p>0.1) (Fig. 7b).   

 

 

Figure 7- (a) The mean temperature (derived from the DD data) to which goats (grey line) and Ibex (black line) 

were exposed during the tagged periods overlaid on the mean proportion of time that the two species spent 

grazing per hour (goats shown by green bars and ibex by blue bars). (b) Scatter plot of the mean proportion of 

time per hour spent grazing as a function of mean temperature per hour during daylight hours for both ibex (blue 

symbols) and goats (green symbols. Each data point represents mean hourly temperature for all individuals of 

that species and the mean hourly proportion time spent grazing compared to other two defined behaviours (rest 

and moving) for just daylight hours (6h to 21h). Ibex data from 30 days from six wild ibex tagged in June 2017 
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within Belledonne, France. Goat data from varied logging periods (5 to 25 days) from ten domestic goats tagged 

in August 2017 within the Bauges, France.      

 

Altitudes 
 

The two species exploited two markedly different altitudes during their tagged periods, with 

the Ibex and the goats grazing at mean altitudes of 2166 m and 1538 m (Fig. 8b,c), 

respectively. Beyond this, the ibex moved over a greater altitude range (225 m) that was 

approximately twice that of the goats (112 m) (Fig. 8a). The hourly proportion of time spent 

grazing by goats (y) increased with increasing relative altitude (x) in the ranges they selected 

according to y=0.003x+0.178 (p <0.05, R2=0.33) whereas the Ibex grazed less with increasing 

relative altitude within the ranges they selected (y=-0.002x+0.719 p<0.0001, R2=0.80) (Fig. 

7a).   

 

 

Figure 8- Scatter plot showing how the mean proportion of time spent grazing changed with altitude for (a) ibex 

and (b) goats. (c) shows the mean proportion of time spent grazing as a function of relative altitude where 0 is 

the lowest altitude encountered at any time per individual over the tagged period. Each data point represents 

mean hourly temperature for all individuals of that species and the mean hourly proportion time spent grazing 

compared to other two defined behaviours (rest and moving) for just daylight hours (6h to 21h).  Ibex data from 

30 days from each of six wild ibex tagged in June 2017 within Belledonne, France. Goat data from varied logging 

periods (5 to 25 days) from ten domestic goats tagged in August 2017 within the Bauges, France.      
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The altitudes exploited were, however, dependent on time of day. The goats spent the night 

at a relative altitude of just under 100 m, generally descending to graze during the day (Fig. 

9). By contrast, the Ibex spent the night at their lowest relative altitudes, climbing some 250 

m during the day, peaking around mid-day, before descending again for the night (Fig. 9). 

 

Figure 9 – Mean relative altitude of goats (green symbols) and Ibex (blue symbols) as a function of time of day 

(cf. Fig. 8a) across the full period the animals were tagged. Error shading shows SD across individuals for each 

species. Ibex data from 30 days from six wild ibex tagged in June 2017 within Belledonne, France. Goat data from 

varied logging periods (5 to 25 days) from ten domestic goats tagged in August 2017 within the Bauges, France.      

 

Grazing habitat 
 

Ibex grazed more in herb- and shrub habitat type than available, with slight avoidance of 

grassland habitat (Fig. 10). Ibex also avoided coniferous woodland but preferred deciduous 

woodland. By contrast, goats grazed more than expected from available on bare rocks and 

grasses while avoiding all types of wooded areas (Fig. 10). The two species only shared four 

habitat types between them, within which the goats spent most time grazing grasses (5.36 

hours) whereas Ibex grazed mostly on herbs (2.76 hours) and shrubs (2.54 hours). The Ibex 

also grazed within other habitat types present in their movement range, including snow and 

shrubs.   
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Figure 10 – (a) Bar plot highlighting the selection index for each habitat shared by the goats and ibex. The 

histogram shows the mean time spent grazing in each habitat type for the study animals (coloured bars) 

compared to available; (b) Ibex and (c) domestic goats. - Ibex data from 30 days from each of six wild ibex tagged 

in June 2017 within Belledonne, France. Goat data from varied logging periods (5 to 25 days) from ten domestic 

goats tagged in August 2017 within les Bauges, France.      

 

Slope 
 

The proportion of time spent grazing as a function of slope compared to available in the area 

revealed that Ibex appeared to graze most on steeper slopes, with the highest proportion of 

time spent on slopes with gradients of between about 35 and 60 degrees (Fig. 11a). This 

meant that a simple linear regression analysis showed a significant positive trend of time 

spent grazing (y) against slope (x) for these animals (y=6.00e-5x+6.35e-3, p <0. 05, R2=0.07). By 

contrast, the goats appeared to graze less with increasing slope, spending most time grazing 

on slopes between 0 and 40 degrees (Fig. 11b). This pattern meant that there was a significant 

negative trend in time spent grazing (y) against slope (x) according to y= -1.95e-4x+1.64e-2 (p 

<0, R2=0.46). Worth noting there was a high amount of flat (0% slope) available to the ibex, 

producing predicted 0.07 proportion (total 2179 hours for the 29 days) time spent, this is not 

displayed on the plot below.  
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Figure 11 - Scatter plot showing how the proportion of time spent grazing changed with slope (%) for (a) ibex and 

(b) goats.  Proportion time spent grazing was calculated by comparing to other two defined behaviours (rest and 

moving) with a mean for each rounded slope value. To do this for random data, random data was sampled at 

the same quantity for each individual within a circle encompassing the range of observed movements, so 

comparisons could be drawn comparing availability of the slope to the goats. Ibex data from 30 days for each of 

six wild ibex tagged in June 2017 within Belledonne, France. Goat data from varied logging periods (5 to 25 days) 

from ten domestic goats tagged in August 2017 within the Bauges, France.  

 

The resource selection analysis at individual level showed appreciable variation between 

individual ibex with habitat type but less so with slope; five of the ibex selected steeper slopes 

to graze on compared to slopes available (Table 4). Most ibex had a preference for shrub 

habitat for grazing (compared to the bare rock) but all other habitats had appreciable 

variation between individuals with no obvious species preference even though the selection 

index implied that woodlands would be preferred (see above). The goats showed much less 

variation between individuals, as expected given they were from the same herd, than the 

ibex. Most had a strong preference for grasses and herbs over bare rocks but appeared to 

prefer exposed rocks over woodland areas (See appendix, Table 5 for all habitat types 

occupied by Ibex when grazing).   

 

Table 4- List of selection coefficients for each habitat compared to the bare rock habitat and slope (%) giving data 

for each data collection period as well as an overall coefficient (*** p< 0.001). Ibex data from 30 days for each 

of six wild ibex tagged in June 2017 within Belledonne, France. Goat data from varied logging periods (5 to 25 

days) from ten domestic goats tagged in August 2017 within the Bauges, France. 



141 
 

 
Grasses Herbs Woodland 

coniferous 

Woodland 

Deciduous 

Shrubs  Slope 

Study 

ID 

Goat  Ibex Goat Ibex Goat Ibex Goat Ibex Goat Ibex Goat Ibex 

1 0.17*** 0.21*** 1.50*** 0.31*** -1.25*** -5.48 -2.27*** 
  

0.11*** 0.013*** 0.006*** 

2 -0.17*** 0.83*** 0.86*** 0.98*** -1.07*** 
 

-11.74 0.74*** 
 

1.51*** 0.004*** -0.001*** 

3 0.07*** -0.36*** 1.27*** 0.16*** -1.29*** 
 

0.89*** 1.55*** 
 

0.39*** 0.009*** 0.019*** 

4 0.29*** 0.24*** 1.55*** 0.23*** -1.16*** -1.31*** -2.34*** -1.51*** 
 

0.35*** 0.007*** 0.017*** 

5 0.36*** -1.26*** 1.61*** -0.68*** -0.52*** 
 

-4.12*** -12.87 
 

-0.64*** 0.015*** 0.036*** 

6 -0.49*** -0.12*** 0.19*** -0.20*** -0.61*** 0.51*** -11.64 -0.40*** 
 

1.10*** 0.019*** 0.046*** 

7 0.13*** 
 

1.52*** 
 

-1.41*** 
 

-14.57 
   

0.009*** 
 

8 0.20*** 
 

1.23*** 
 

-1.48*** 
 

-2.13*** 
   

-0.002*** 
 

9 0.06*** 
 

1.49*** 
 

-1.49*** 
 

-2.88*** 
   

0.009*** 
 

10 0.08*** 
 

1.53*** 
 

-1.60*** 
 

-2.28*** 
   

0.003*** 
 

Mean 0.07 -0.08 1.28 0.13 -1.19 -0.40 -2.16 0.09 
 

0.47 0.009 0.021 

 

 

Discussion 
 

Viability of adopting goat-derived signals for behaviour for wild Ibex 
 

A critical step within this study is the use of sVeDBA, with specific thresholds for particular 

behaviours and visually verified for goats, for ibex (du Toit and Yetman 2005, Sanon et al. 

2007, Pokorná et al. 2013). To make this approach applicable, however, the sVeDBA 

thresholds had to be modified by subtracting a noisier baseline apparent in the ‘resting’ goat 

data but absent in the ibex. This was then used to derive ibex activity, based on effectively 

minimally modified thresholds and confirmed by visual inspection. I believe that this 

approach, which called on ‘expert knowledge’ to recognise particular patterns in the 

acceleration data linked to specific behaviours, was justified for a number of reasons. Firstly, 

and perhaps most importantly, it is effectively impossible to record the behaviour of tagged 

wild ibex. This situation is not unique to ibex though, since there are many species that cannot 

be observed to ‘validate’ acceleration data. The idea that no attempt to determine the 
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activities of these animals should be made simply because it is impossible to validate is 

patently absurd because, as mentioned earlier, accelerometers give precise outputs to 

defined movements of the tags and many patterns of behaviour are similar among related 

species, as shown by classical ethograms obtained from visual observations. Secondly, there 

were broad and easily recognisable patterns in the form of the acceleration data for just three 

very different behaviours; resting, travelling and grazing goats, and these patterns were 

similarly clear for the ibex (Fig. 3). Thirdly, the offset of 0.05 g in the sVeDBA represents a 

relatively small change given the range of sVeDBA in the data. Finally, given that ungulates 

typically spend >95% of their total time engaged in resting, travelling or grazing (Shi et al. 

2003, Pelletier et al. 2009, Pęksa and Ciach 2018), the only real imperative of this study was 

to be able to distinguish between these three, all other behaviours (such as head clashing – 

see chapter 6) being so transient as to be insignificant with regard to feeding sites. Thus, 

although the data on sites and environmental conditions used for grazing in this study are 

dependent on broadly correct identification of grazing, I am confident that this was the case. 

 

In fact, the activity time budgets and daily patterns for the ibex in this study matched the 

literature using behavioural focal observations for caprinids (Hamel and Côté 2008, Aublet et 

al. 2009, Ma et al. 2012) in ibex species (Aublet et al. 2009, Grignolio et al. 2010, Büntgen et 

al. 2014), with the species spending most of its overall time resting (both standing and sitting 

down) while most of its active time was spent grazing. This also lends confidence to the 

methods used to distinguish between the behaviours of the ibex (see above).  

 

The physiological consequences of altitude and activity  

 

Ibex body- and environmental temperature as a function of altitude.  
 

The tag-derived observations of the behaviour of the ibex can be used to summarize their 

activities and examine how these relate to the environment and the synoptic conditions. This 

is important because not only are ibex particularly susceptible to higher temperatures (Aublet 

et al. 2009, Mason et al. 2017) but the very act of climbing to allow animals to move up the 
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mountainside to higher, cooler altitudes (Parker et al. 1984, Halsey and White 2017, Dunford 

et al. 2020) is energetically onerous (Büntgen et al. 2014, Mason et al. 2017) and results in 

large amounts of heat production, which could exacerbate temperature problems. In brief 

summary, this data show that the ibex fed little at night (Fig. 4b), primarily resting on the 

lower slopes (Fig. 8a, 9) where they were exposed to moderate temperatures (ca. 11°C) (Fig. 

7). However, around dawn, they moved up the slopes (Fig. 8), feeding as they went, with high 

levels of grazing within the first 100 m relative increase in altitude (Fig. 9). As they did this, 

the temperature they experienced rose due to the normal changes in temperature that occur 

during the 24 h cycle. This temperature continued to rise as the animals also continued to 

climb while decreasing their incidence of grazing. Their average relative altitude reached a 

maximum at around 250 m by 12h (Fig. 8), by which time they were exposed to mean 

temperatures of 17°C (Fig. 7a) and were only grazing for 20% of their time (Fig. 7). As the day 

progressed, and the temperatures at altitude began to fall, so the Ibex increased their 

incidence of grazing (Fig. 7a) and moved down the slopes (Fig. 9). Their grazing diminished 

abruptly at around 20h (Fig. 7a), after which they descended further, attaining their night-

time status and altitude at around 21h (Figs 7 and 9).  

 

All this points to specific benefits of both maximum and minimum relative altitudes. The 

reduced incidence of grazing at night, replaced by resting, indicates that the lower slopes are 

used for sleep and likely rumination while these ibex are exposed to temperatures that are 

within their (likely) thermoneutral zone. This will minimize the energetic costs of metabolic 

rate at night and possibly also help reduce the incidence of predation (by, for example, wolves 

(Canis lupus lupus) – in another study using these tags in the area, a mouflon was actually 

depredated by a wolf during the study). The extent to which the lower slopes provide 

appropriate, or preferred food, however, is not clear. This is because animals move rapidly up 

the slopes around dawn, and continue to do so, increasing relative altitude by about 200 m, 

until about 10h (Fig. 9). During this period, initially directed movement gives way to a greater 

incidence of grazing until there is a grazing peak around 6h (Fig. 4, 6a). Given that ibex have 

been shown to be highly sensitive to high temperatures (Aublet et al. 2009), this altitudinal 

migration, which has been described by Aublet et al. might be ascribed to either their 

movement to preferred feeding areas or attempts to minimize high temperature stress 
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because the temperature decreases by 0.2°C for every 30m change in altitude. In fact, this 

altitudinal migration is likely to be a combination of both feeding in an appropriate area and 

temperature regulation.  

 

The extent to which movement and temperature regulation due to altitudinal migration 

interact, can be examined in a general manner by using a simple energetic model built on 

using calibrated data from another goat species acting as a proxy for ibex. Dickinson et al 

(subm.) present data on the metabolic rate of pigmy goats (Capra aegagrus hircus) as a 

function of DBA metrics during resting and walking at different speeds and inclines on a 

treadmill. They specifically present results for DBA as Overall Dynamic Body Acceleration 

(ODBA) (Qasem et al. 2012) rather than VeDBA (Wilson et al. 2020) as used here, but these 

are essentially interconvertible by dividing ODBA by 1.44 to calculate VeDBA. This conversion 

is used throughout to convert data presented in Dickinson et al (subm.) to standardize units.  

 

Derivation of an indicative relationship between VeDBA and oxygen consumption 
 

Firstly, I note that the VeDBA values reported by Dickinson et al. (subm.) for Pygmy goats both 

resting and moving (at specific speeds) (being 0.028 g and [interpolated to 1 m/s – the 

regression only goes to 0.83 m/s] 0.29 g, respectively) are strikingly similar to the values 

reported here for both goats and ibex (cf. Table 3). This gives general confidence in a 

comparative approach because the accelerometers on the Dickinson et al. ( collars (which 

were identical to those used in this study) are seemingly reacting in much the same way with 

regard to DBA as those in the current study even though they are deployed on different 

species.  

 

Dickinson et al (subm.) report that their pygmy goats walking on the level had a mean oxygen 

consumption of 82.2 mL/min at VeDBA-values of 0.097 g, increasing by 4.33 mL/min for every 

0.00694 g VeDBA-value increase after that. This translates to;  

VO2 = 1860VeDBA + 2.171        (1) 
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with units being mL O2 per minute per animal or a mass-specific (mean mass of the goats was 

25.9 kg) relationship of;  

VO2 = 17.342VeDBA + 1.488        (2) 

in units of mL/min/kg. In turn, using Schmidt-Nielsen’s (Llobera and Sluckin 2007) conversion 

of oxygen into energy of 20.1 J being released for every mL of oxygen used, this converts to;  

Power(at 0°) = 150.47VeDBA + 12.91       (3) 

in units of W/kg. By contrast, pygmy goats walking up a 15° slope, had a mean oxygen 

consumption reported to be 183 mL/min at VeDBA-values of 0.096 g, increasing by 17.93 

mL/min for every 0.00694 g VeDBA-value increase after that. Using the same approach as 

above, This converts to; 

Power(at 15°) = 623.09VeDBA + 0.73      (4)  

again, in units of W/kg. Note that the intercepts in both eqns (3) and (4) cases do not 

correspond to oxygen consumption at RMR because animals have a positive VeDBA signal 

even when resting (e.g. Table 3).  

 

 

Derivation of mass-specific energy expenditure as a function of slope 
 

The relationships above, derived from Dickinson et al (subm.), only allow for calculation of 

power on level ground and ascending slopes of 15°, and it is clear from these that the VeDBA 

vs Power relationship depends critically on slope. In order to approximate the effect of a 

variable slope (within the 0-15° range) in terms of power and VeDBA, I suggest that I can 

linearly interpolate between the slopes of eqns (3) and (4) because the rate of change of 

potential energy for an animal moving up a slope at a constant speed is linearly dependent 

on that slope. As such, the difference between the slope gradients from the two equations 

and their intercepts can simply be divided by 15 to give the increment in energy expended 

per degree slope increment. If these values are multiplied by the slope angle and added to 

the values for the 0° relationship, it should approximate a relevant relationship between 
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VeDBA and power for a given slope within that range. Applying this process results in the 

following relationship gives; 

Power(0-15°) = ((150.47+[31.508 X θ]) X VeDBA) + (12.9-[0.911 X θ])   (5) 

where θ = slope angle and the power has units of J/s/kg or W/kg. 

 

Power ties in closely with cost of transport (COT), a quantification of the energy relative to 

metabolic rate required for an animal to change location (Halsey and White, 2017; Shepard 

et al., 2013). The more power required to overcome potential energy posed by slope angle, 

the higher COT to move across this slope (Halsey, 2016; Halsey and White, 2017; Dickinson et 

al., 2021).   

 

Approximation of the angle of the slope during the ascent 
 

Eqn (5) gives an approximation for the power required to walk up a slope of a given angle for 

a given value of VeDBA. However, in order to put this into context, the slope angle taken by 

the ibex during the morning altitudinal migration needs to be calculated. This cannot simply 

be the slope of the area over which the animals are moving (see e.g. slope index earlier) 

because ungulate tracks in mountains rarely move directly up the slope, with the animals, 

instead, walking tangentially (Dailey and Hobbs 1989). I allude to the slope angle by another 

process. During the morning ascent, the ibex gained altitude at a rate defined by the 

difference in altitude between hourly mean values (ΔH) while walking at a speed of v (m/s) 

with the mean walking VeDBA defined in Table 3 for the fraction of the time within that hour 

when the animals were walking (Fwalk) (I assume that no specific directional movement 

occurred during grazing). Assuming this to approximate the situation, the slope angle is given 

by; 

Θ = asin(ΔH/v X 3600 X Fwalk)        (6) 

where v is 1.0 m/s (see earlier), ΔH is in metres and the 3600 ensures that the speed, given in 

m/s, is multiplied to change it into the distance travelled within that hour. 
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Adopting this process calculates the effective slope for each of the hourly blocks during which 

the ibex moved up the mountain and indicates that angles when animals moved uphill varied 

between 0.3 and 9° (Fig. 12).  

 

 

Figure 12 – Estimated slope angle traversed for ibex engaging in daily altitudinal migration based on relative 

altitude change per hour, assuming walking speed estimate is a consistent (see text). Positive angles indicate 

animals moving uphill, negative, downhill. 

 

Indicative energetic costs of climbing 
 

Assuming that the pygmy goat data can be used as a proxy to indicate trends in ibex energetics 

for animals climbing up variable slopes defined by our process (see above), I can use eqns (5) 

and (6) together with the known mean VeDBA of walking of 0.24 g (Table 3) to calculate the 

Mass-specific energy used in climbing as a function of time of day. This can be multiplied by 

the mean body mass of our animals (of 80.2 kg – Table 3) to produce a whole animal estimate 

of the power used for the animals to walk up the slopes. The total amount of energy 

specifically used during walking the ascent phase per hour is then given by multiplying the 

power by the number of seconds in that hour spent walking (multiplying the fraction of the 

time spent walking by 3600 [the number of seconds in any hour]) (Fig. 13)  
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Figure. 13 – Theoretical amount of energy used by ibex by walking during the ascent phase of their daily 

altitudinal migration based on relationships between energy expenditure and slope determined for a congener, 

the pygmy goat. 

 

I note that these costs are extremely high but accord with data gathered on bighorn sheep 

(Ovis canadensis) and mountain goats (Oreamnos americanus) by Daily and Thompson 

(Aublet et al. 2009, Mason et al. 2017) who noted that the energy expended by the sheep and 

goats for raising 1 kg of body weight by one metre vertically (on a 21.5 slope) exceeded the 

highest cost documented for quadrupeds. 

 

Thermal consequences of climbing 
 

Given that the ibex is reported to be particularly susceptible to higher temperatures (Heinrich 

1977), it is useful to consider how the theoretically high energy costs of walking up slopes 

during the altitudinal migration might lead to thermal load, which can be expressed in terms 

of projected body temperature increment (although the animals presumably adopt heat-loss 

mechanisms to counteract it). For this, the total energy used per hour to climb (Fig. 13) should 

be multiplied by 0.80, since about 80% of energy expenditure is due to heat generation 

(Hodgson et al. 1993, Sandro Campos Maia et al. 2014), and then divided by the specific heat 

capacity of Ibex tissue multiplied by the Ibex mass. This can be expressed as; 

Temperature increment = (Energy used to climb per hour X 0.8)/(SHC(Ibex) X Mass(Ibex))  (7) 
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where the mass is in grams, the SHC is the specific heat capacity (in J/g/°C) and the 

temperature increment is in °C. If I assume that ibex body temperature is normally maintained 

by metabolic processes other than walking (resting, grazing etc.), I can allocate the heat 

generated by walking to a temperature increment over the whole body. For this, I assume 

that the specific heat capacity of ibex tissue is roughly the same as that of muscle at 3.42 

J/g/°C (https://itis.swiss/virtual-population/tissue-properties/database/heat-capacity/). The 

calculations indicate that, in the absence of cooling mechanisms (e.g. increased radiation, 

evaporation etc. (McNab 1973)) ibex body temperatures during the altitude gain phases of 

their altitudinal migration would rise by up to about 1C per hour (Fig. 14), which serves to 

illustrate the rough magnitude of the expected thermal load. 

 

 

Figure 14– Blue-line; theoretical heat production expressed by body temperature increase that could be sustained 

by Alpine ibex (in the absence of cooling mechanisms) due to uphill slope walking during the daily altitudinal 

migration based on the energetics of walking using data from pygmy goats. The yellow line shows the mean 

ambient temperature as measured by temperature sensors associated with the ibex tags (cf. Fig. 7a). Note how 

the highest predicted temperature increments occur at the lowest ambient temperatures, with these rapidly 

dropping off as the ambient temperatures increase. 

 

Although the exercise of predicting the heat increment of climbing in ibex is subject to many 

assumptions (not least of which is that the overall mass-specific metabolic rate of pygmy 

goats is comparable to that of ibex when the elephant-shrew curve would have it higher 

https://itis.swiss/virtual-population/tissue-properties/database/heat-capacity/
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(Aublet et al. 2009, Mason et al. 2017)), it does serve as a useful pointer to the rough extent 

of heat production and how it is predicted to vary during the climb.  

 

Consequences of the model for understanding Ibex altitudinal migration 
 

Two things are striking about the output of the model, one being that the heat produced 

during walking is very significant. The other is that the ibex climb the most, and therefore 

produce most heat, at the coolest part of the day (at ca. 6h) (Fig. 14), rapidly diminishing their 

climbing activity as the ambient temperatures rise. Certainly, this accords with observations 

that ibex are easily heat-stressed (Fuller et al. 2016).  This suggests that these animals have 

to balance activity, and specifically high metabolic cost (heat-producing) behaviours, with 

ambient temperature carefully (Maloney et al. 2005, Aublet et al. 2009, Sheila et al. 2010). 

Such higher metabolic costs presumably also include grazing, where the mean VeDBA 

estimates are some 4-5 times higher than resting (Table 3). I suggest, therefore, that the early 

morning and early evening grazing activities at lower ambient temperatures (Fig. 7a,b) could 

allow the animals to feed and minimize heat stress (Haase and Underwood 2013). In addition, 

the altitudinal migration would seem to be a balance of the ibex moving up to higher altitudes 

where temperatures are lower, which should allow them to remain as close to their 

thermoneutral zone as possible, with the thermal consequences of having to climb (Pyke 

1981) Judicious management of the climbing process (travel speeds (Halsey and White 2017) 

slopes selected (Halsey 2016) percentage time spent walking etc. (Villaret and Bon 1995, Bon 

and Joachim 2001) would seem critical in this. But all this also hinges on them finding 

appropriate food in the spaces they can access using their movement strategies.  

 

Consequences of environmental temperatures for goats 
 

By comparison with the ibex, the goats undertake a trivial, and less definitive, daily altitudinal 

migration, tending to descend during the day but by less than 100 m (Fig. 9). This means that, 

as a result, they do not have to deal with prolonged heat-producing activities compared to 

the ibex and will encounter only marginally increased altitude-related temperatures onto 

which the daily ambient temperature cycle is superimposed (Fig. 7a). This moderated pattern 
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is, in part, almost certainly due to the goats having to forage as central place animals, having 

to return to their pen at night, which severely limits the extent of their behavioural patterns 

(see Chapter 4). Worth noting that this finding is comparing male ibex and female goats, but 

studies have shown male ibex to be more heat sensitive than female ibex and could account 

for the differences found in this study (Aublet et al., 2009; Grignolio et al., 2010). More 

generally, sex differences in movements and habitat use can occur in ungulates due to sex 

differences in weather sensitivity (e.g. in deer; Conradt et al. 2000), nutritional needs (e.g. 

deer; Conradt et al. 1999), predation avoidance (e.g. kudu; Du Toit 1995), thus the differences 

observed here between female goats and male ibex are likely driven also by sex differences. 

 

Space-use by Ibex and goats 
 

The smaller numbers of ibex used in the study compared to the goats, and their greater 

variability in habitat selection, both in terms of slope index (Fig. 11) and vegetation type (Fig. 

10), belies an important distinction between the two species and sampling protocols. This is 

that the goats all essentially acted as one herd, making collective decisions about (Sumpter 

2006, Delgado et al. 2018) where to move and forage (Laundré et al. 2010) with concomitant 

reduced inter-individual variability (Chapter 4). By contrast, the studied ibex were from 

different groups, moving in different areas.  

 

Inter-specific differences in movement patterns and grazed habitat 
 

The ranging patterns of the goats were typified by that of central place and have been 

discussed at length in chapter 4. Briefly though, over time, the herd took trajectories that 

resulted in a fanned-out pattern from the central place (the pen). This resulted in them 

exploiting a wide variety of vegetation and, importantly, ostensibly not over-visiting any 

particular area so that resources were presumably not over-grazed (Parker et al. 1984, Halsey 

and White 2017). 
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The ibex were clearly not bound by a central place, either as a group or as individuals. Indeed, 

one individual (Ibex 2) exploited two areas that were separated by a distance of ~5.8km over 

two distinct time periods (Fig. 6). However, there was over a fourfold variation between 

individuals in the total distance they covered (range 63-213 km) although this was reduced to 

less variation if the areas in which they actually grazed are compared (Table 3, Fig. 6). This 

indicates that this species will travel extensively, either to feed or perhaps for other reasons, 

such as to find areas with minimum disturbance, but is able to find sufficient food in relatively 

small areas which appear as distinct patches within the overall area within which they might 

forage (Fig. 6).  

 

Within their frequented areas, both goats and ibex showed clear preferences for habitat types 

(Fig. 10). Again, the goat data are discussed at length in chapter 4, with animals selecting 

grasses and vegetation on bare rocks preferentially while the ibex preferred shrubs, 

deciduous woodlands and herbs. This accords with Lussig et al. (Iussig et al. 2015) who noted 

that domestic goats prefer grass or herbs species, and Villaret and Bon (Villaret and Bon 

2010), who found that ibex in the Alps predominantly feed on rock, more precisely scree 

habitat (plants associated with rocky areas) over grass habitats during the summer. It is 

notable, however, that not all habitat types were common to both species so that is how 

goats might respond to snow habitats and ibex to areas for farming is not known. Superficially 

therefore, it would seem that there is some overlap in diet between the two species but also 

appreciable divergence. The reality is likely to be more complex though because studies such 

as these, in assessing habitat-, and therefore feeding, preferences, assume that all other 

things are equal. This is not the case, not just for thermal reasons (see above), but also, 

notably, with respect to elevation and topography and hence energy landscapes (Llobera and 

Sluckin 2007, Lempidakis et al. 2018)  

 

Energy landscapes 
 

The energy landscape concept (Dunford et al. 2020, Shepard et al. 2013) assumes, all other 

things being equal, that animals will use the path of least energy cost to move between two 
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points. This can include substantial deviations from a straight-line course to a resource to be 

exploited (Stüwe and Nievergelt 1991). Since moving up and down inclines, particularly steep 

ones, are some of the most energetically taxing behaviours that animals can engage in 

(Pereira et al. 2009), I expect both goats and ibex in our study areas to be adopting paths that 

follow shallow gradients, even if they are on steep slopes (van Beest et al. 2012, Marchand et 

al. 2015). This is not only responsible for the zig-zag tracks of ungulates moving up steep 

slopes (Marchand et al. 2015) but will also act as a deterrent for animals to exploit steep 

slopes in general. This may be particularly the case when these animals engage in altitudinal 

migration, as was the case with the tagged ibex. Superimposed on this, it has been pointed 

out that moving up inclines is proportionately more onerous for larger animals (because the 

metabolic cost is a larger fraction of the mass-specific metabolic rate (Wall et al. 2006)). As a 

consequence, I would expect the ibex, with a mean mass of 80.1 kg (Table 3), to be more 

steep slope-shy than the goats (mean mass <25Kg– chapter 4) and therefore, perhaps, tend 

to favour vegetation that grows on shallower slopes.  

 

However, the goats preferred gentler slopes than the ibex to forage (Fig. 11) and it is not 

immediately obvious why. The answer might, in part, be due to selection pressures for life on 

steep slopes. Aside from being energetically onerous (Laundré et al. 2010, Gallagher et al. 

2017), steep slopes are considered to constitute an ‘accident landscape’ with a high 

probability of slips and trips in tandem with a high likelihood of detriment (Wheatley et al. 

2021). Whilst all goats are well adapted to steep slopes, the selection for this movement 

ability likely has been less stringent for domestic goats which have been domesticated in a 

variety of habitats, including flatlands, and selected for different aims (Laundré et al. 2001). 

Thus, I suggest that the preference for shallower slopes in the goats, as to ibex, a highly 

specialised mountain species, might be related to this difference, too. 

 

I also propose that the steeper slopes used by the ibex could potentially reduce thermal 

problems (see above) if these slopes were more northerly facing by being more likely to be in 

shadow, especially at diminished sun zenith angles. I did not determine the extent to which 

slope choice showed directional bias and did not analyse effects and selection for aspect (e.g. 
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north vs. south facing) but, given that many ungulates show shade-seeking behaviour (Ciuti 

et al. 2012), e.g. by resting under trees (García-Martínez and Bernués 2009, Sturaro et al. 

2013), this would be an interesting aspect to examine. 

 

 

Landscapes of fear 
 

Inter-specific area-use differences, in both grazing habitat as well as slope incline preferences 

generally (Fig. 10) may also be partially explained within the concept of the landscape of fear 

(Beniston 2006). This notion recognises that animals may prefer not to frequent particular 

areas due to potential for predation associated with those areas (Aublet et al. 2009, Mason 

et al. 2017). Certainly, prime foraging areas are avoided by some ungulates if they are more 

likely to be depredated in these habitats (Aublet et al. 2009, Mason et al. 2017) and this 

extends to reaction to humans (Aublet et al. 2009, Mason et al. 2017). Understanding that 

there is a huge difference in the perception of people as a threat between domesticated goats 

and ibex needs serious consideration in any treatise that attempts to examine differences in 

space-use between the two species rather than assuming that habitat differences are simply 

based on feeding preferences.  

 

General competition between Ibex and goats, annual and long-term temperature trends 
 

A prime aim of this work was to investigate spatio-temporal differences in space use by 

grazing goats and Alpine ibex. Conversely, as the populations were studies in different places 

and times, the present work could not investigate competition between the two species, 

except point out that there seems to be appreciable overlap in grazing preferences thus there 

might be potential for competition if the two species were to occur in sympatry. However, 

this is only likely to be an issue if goats are allowed to graze in a manner that is not central 

place foraging, which is the norm in the French Alps (Aublet et al. 2009, Mason et al. 2017). 

Such a foraging pattern means that the goats will always graze within a defined range (see 

Chapter 4), with this being limited by the distances that they can roam within the day. 
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Provided that the distribution of such goat herds leaves appropriate space for the ibex, with 

their ability to move across the landscape using the environmental resources in a patchy 

manner (Fig. 6, cf. goat figure from Chapter 4), I believe that potential competition is unlikely 

to be a problem for the ibex. 

Our study, which was conducted in some of the year’s warmest months, does, however, point 

to the confounding effects of temperature in space-use, both at a seasonal level and, in the 

longer term, as a result of global warming (Aublet et al. 2009, Mason et al. 2017). This ties in 

with previous work (Aublet et al. 2009, Mason et al. 2017) that suggests that ibex are sensitive 

to temperature. Higher temperatures presumably reduce the overall time that ibex can spend 

grazing and could well make large areas of the Alps, the lower, hotter regions, unviable for 

them. I would expect patterns to vary with season though, and this would have to be factored 

into any considerations of livestock competition. I suggest that year-long deployments of 

position and activity-determining tagging technology should be deployed on the ibex to 

provide the necessary data to examine this. In the meantime, caution with regard to livestock 

usage of the Alps would seem sensible in order to balance the abundance of introduced with 

native fauna. 
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Chapter 6 
 

Landscape of rage: Identification and fine-scale mapping of head-

butting in domestic goats (Capra aegagrus hircus)  and  alpine ibex 

(Capra ibex) using biologging 

 

Abstract 
 

Head-clashing by ungulates is of high interest to behavioural ecologists because it is costly 

and is associated with competition for resources (food, minerals, space and access to mates). 

Although the behaviour is distinctive, it is difficult to study and record, especially in mountain 

ungulates. This study uses animal-attached loggers to record acceleration and global position 

system (GPS) data on domestic goats (Capra aegagrus hircus) and on Alpine ibex (Capra ibex) 

to develop new methods, and quantify and locate in space, head-clashes in both species. The 

method used a time-series lowest common denominator (LoCoD) Boolean approach to 

successfully identify >80% of the observed head-clashes of the goat with no false positives 

(against verified data from visual observations), and was modified to be used on ibex 

biologging data.  Mapping the behaviour revealed how ten tagged domestic female goats 

competed for a salt lick and space within their pen. Similar analysis on data from six male ibex 

showed expected trends, with head-clash frequencies being performed throughout the year 

but with a sudden increase during the pre-rut and rutting periods. Mapping the behaviour 

showed the location of the agonistic interactions before and during the rut. It also showed 

increases in distances travelled at this time, in agreement with the seasonal movements 

expected during that time, and supporting the theory that the mating season involves a heavy 

investment by adult male ibex. This study provides hence new approaches to use animal-

attached logger data to reveal important, but difficult to observe directly, behavioural 

changes associated with time and space in ibex life history, with potential to inform 

conservation management strategies.   
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Introduction 
 

Head-butting by animals, whereby two individuals clash the fronts of their heads together 

(Shank 1972), is widespread and has keenly interested ecologists and ethologists for a long 

time (Darwin 1871). There is evidence that it was used by dinosaurs (Barghusen 1975, Benoit 

et al. 2017) and that it occurs in extant animals as diverse as insects (Siva-Jothy 1987), fish 

(Muñoz et al. 2012), cetaceans (Gowans and Rendell 1999) and ungulates, where it occurs 

very frequently (Shank 1972, Clutton-Brock 1989, Pipia et al. 2008, Willisch and Neuhaus 

2010), both in wild animals and their domestic equivalents. In particular, the ‘head-clash’ is 

present in both domestic goats (Capra aegagrus hircus) as well as the congeneric alpine ibex 

(Capra ibex). In these goats, the behaviour consists of individuals rearing back and surging 

forward to bang their horns together – a process that can be repeated several times in 

succession. The display is associated with males showing their dominance while competing 

for females (Shank 1972, Clutton-Brock 1989, Willisch and Neuhaus 2010, Stanley and Dunbar 

2013) but it is also present in female domestic goats competing for resources (Pretorius 1970). 

This behaviour is energetically costly and dangerous action as animals accelerate rapidly 

towards one another, finally coming together with a high impact collision characterised by 

large forces near critical cranial organs (Alvarez 1990).  In goats at least it, however, rarely 

leads to physical damage due to structured heads which absorb the impact (Shackleton and 

Shank 1984).  

 

Head-butting is a fundamental part of the mating season or the rut (Clutton-Brock 1989, 

Mysterud et al. 2004, Holand et al. 2006), where particularly males of polygynous ungulate 

species invest much of their energy in competing for, and defending access to, the females 

(Mysterud et al. 2004, Villaret and Bon 2010, Willisch and Neuhaus 2010).  Agonistic 

behaviour in general, associated with the rut, aside from head-clashes, is energetically costly 

and often associated with the males prioritising mating even over grazing, leading to a 

reduced  post-rut likelihood of individual survival during the subsequent winter months. Given 

that head-clashing, dominance and access to females are all associated, the study of head-

clashing is of particular interest because it is one aspect that relates animal effort to chances 

of reproductive success and survival (Brivio et al. 2010). Alpine ibex display a strategy of 
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established dominance hierarchies, a hierarchy tactic that involves the males competing with 

one another via head-clashes throughout the year to assess each individual dominance. 

During the pre-rut and rutting period there is a surge in male on male agnostic behaviours, 

but less than in other ungulate species (Toïgo et al. 2007, Brivio et al. 2010, Tettamanti and 

Viblanc 2014), with evidence that ibex males may adopt conflict reduction strategies to 

reduce such energy-intensive interactions during the rut (Willisch and Neuhaus 2010).   

 

Although head-clashes are obvious and striking behaviours to the observer, understanding 

the full extent of their usage is particularly problematic in cryptic ungulates that adopt this 

behaviour. This is because the ease with which they can be observed is highly context 

dependent: Animals that are easily observable from an appropriate distance may engage in 

head-clashes but inappropriate proximity of the observer changes behaviour. This makes 

mountain ungulates particularly problematic because, living in their extreme environments, 

they cannot be observed for much of their day. Even when observable, direct visual 

observation requires considerable field work effort, with typically only few events observed. 

For example, Willisch and Neuhasu (2010) conducted 1141 hours of 238 continuous focal 

observations over three years in the Alps during the rut on a total of 71 different males, 

recording 76 fights among around 62 different male dyads. This problem can, however, be 

circumvented by biologging techniques (Brown et al. 2013), if robust approaches are 

developed to reliably identify the occurrence of such behaviours. The most sophisticated 

biologgers contain GPS units, accelerometers, magnetometers, pressure and temperature 

sensors (and more) and record these parameters at infra-second rates (typically tens of Hz) 

(Holton et al. in press). When such tags are placed on a study animal, they can reveal animal 

movements (Shepard et al. 2008, Handcock et al. 2009), behaviours (Fehlmann et al. 2017, 

Williams et al. 2017), physiologies (Roper et al. 2001, Carbone et al. 2007, Handcock et al. 

2009) and energetics (Qasem et al. 2012, Wilson, Börger, et al. 2020, Dickinson et al. subm.) 

in relation to environmental factors seamlessly over time without incurring the classic time-

consuming, physically limiting and subjective problems of the straightforward observational 

approach (Canine 1990, Crofoot et al. 2010). This has obvious value for studying head-clashes 

in mountain goats whereby, in particular, the likely ability of accelerometers to define head-

clashes due to the substantial deceleration incurred during the clash can be combined with 
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the fine-scale movement paths of animals using GPS-corrected, magnetometer-derived dead-

reckoning (Bidder et al. 2015) (see Chapter 3) to examine social interactions in detail across 

time and space. 

 

The aims of this study were to; (i) use Capra hircus as a model to examine tag-derived 

accelerometer data of head-clashes to identify specific features that are unique to the 

behaviour, (ii) create robust classification rules that correctly identify these agonistic 

interactions in freely roaming goats and wild alpine ibex, (iii) pair the quantified head-clashes 

with dead-reckoned high resolution paths to find areas of social interest and describe any 

diurnal patterns in domestic goats, and (iv) adopt the approach for Alpine ibex to reveal where 

aggressive interactions occur during and outside the rut and to elucidate monthly patterns in 

the frequency of the aggressive behaviour.  

 

Methodology 
 

Study site 
 

I placed loggers on animals from a herd of domestic goats located in a pasture valley within 

the Massif du Bauges game and wildlife national reserve (45.60485°N, 6.18295°E) in the 

French Alps (Fig. 1a). This farmed group consisted of over 40 females and 1 male that browsed 

a segregated area of approximately 2 km2 between June and October.  

Wild ibex were captured at several field sites the French Alps, in the Belledonne mountains 

(45.2241°N, 6.0305°E) centred around the village of Allemond (Fig. 1b).  

 



171 
 

 

Figure 1 - Maps (google) of (a) the site used for the domestic goat study within the Bauges massif and (b) the site 

used for the alpine ibex study within the Belledonne massif, both with respect to France. 

 

Further details of the study sites, study species, biologger setups, deployments of collars and 

focal observations are given in chapters 3 and 4.  

Behavioural observations  
 

Behavioural observations were recorded using the ab-libitum focal sampling method 

(Altmann 1974) noting time carefully so that behaviours could be synchronised with 

acceleration data to ground-truth all behaviours. A total of 6 hours of observations across six 

individual goats were taken with any change of behaviour recorded resulting in over 124 

observations (appendix, table 7).  

 

Identification of head-clashing behaviour  
 

To quantify the head clash behaviour, 43 recorded observations of the behaviour in animals 

tagged with biologgers were compared to their corresponding acceleration data and 

inspected using the Daily Diary Multiple Trace – DDMT software (Wildbyte Technologies 

2020). Vectorial dynamic body acceleration (VeDBA – for definition see chapters 3 and 4) was 

selected as a prime metric for identification of the behaviour as  it showed clear peaks in 

sequential waves during head-clashes while also mitigating against issues associated with tag 

orientation and noise in the data. VeDBA achieves this by integrating all three (Qasem et al. 

2012) acceleration axes. A time-dependent approach, which breaks down the behaviour into 
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time-based segments using a ‘lowest common denominator’ (LoCoD) (Wilson et al. 2018), was 

chosen as the behaviour showed regular and predictable waveforms with defined 

wavelengths in the VeDBA signal. An initial simple ‘lowest common denominator’ (LoCoD) 

implementation however classified periods with high VeDBA values but this identified both 

head-clashing and some cases of running as false positives. Thus, I used a combination of 

LoCoD rules on multiple interacting elements incorporating time, which allowed head-clashes 

to be definitely separated from any other behaviours.  

 

For this, the time series was expanded to create a detection algorithm that incorporated 

different sequential elements, all of which had to be recognised as TRUE based on their values 

and their timing for head-clashing to be identified. Timing windows included; the number of 

sequential data points within the first element for which the rule had to be true, how many 

sequential data points would then be skipped until the search for the next rule to be true for 

the second element (i.e. generation of a ‘blindspot’) and how many sequential data points 

should be searched within the next element for the next rule to be verified. If the first element 

was found to be true, the search continued for the second element, this process continuing 

for all elements to be true in sequence before the behaviour was identified as a positive match 

(see details of the general method in Wilson et al., 2018). For the domestic goat, a four-

element rule was defined to pick out a head-clash (Fig. 2, Table 1). Detailed inspection of the 

acceleration signals allowed each element to be justified. For example, element 1 needed a 

period of low activity to initiate the search for the behaviour since head-clashes are always 

preceded by a pause. Element 2 recognised a defined high acceleration in the VeDBA 

(surpassing a threshold) associated with the head-clash. Element 3 recognised a second wave 

of high VeDBA as part of the head-clash resulting from hysteresis in the collar while element 

4 was a renewed period of low activity because individuals always paused following head-

clashes (Fig. 2, Table 1).    
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Figure 2 - A line plot of how acceleration and VeDBA changes over time during an observed domestic goat head-

clash. Each element is numbered on the signal with the time windows colour-coded in the bar above the plot. 

Table 1- Each element is listed with its corresponding rule and timing.  

 

The time series was then adapted to be used on the alpine ibex (Fig. 3, table 2). Since the 

domestic goat is so anatomically similar to wild caprids, and head-clashing is so distinct, I 

believe that the algorithm for detecting clashes can be adapted in a robust and 

straightforward way. After inspection of the ibex data using the goat head-clash algorithm, I 

modified the search algorithm for alpine ibex by increasing the threshold for the VeDBA peaks 

– due to manifestly higher acceleration signatures (the species is heavier, with markedly 

larger horns, and therefore produces head-clashes with a higher force). The timing of the 

second VeDBA peak with respect to the first was also increased due to the greater time for 

the collar hysteresis stemming from the greater size of the alpine ibex (Fig. 3, Table 2).  
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Figure 3 - Changes in acceleration and VeDBA over time, during what was believed to be an ibex head-clash 

(unobserved). Each element of the search algorithm to define head-clashing in ibex is numbered on the signal 

with the time windows colour-coded in the bar above the plot. Table 2- Each element is listed with corresponding 

rule and time windows.  

 

Aggressive interactions are often related to efforts to protect, or gain access to, contested 

resources. To investigate relations between the spatial distribution of head clashing events 

and the distribution of food resources in goats, I related the distribution of head-clashing 

events to the distribution of grazing time (with grazing identified and quantified as detailed 

in chapters 3 and 4).  

 

Dead-reckoning 
 

Dead-reckoning was used to convert low resolution GPS into high resolution estimate 

locations (Bidder et al. 2015). This process is a series of vectorial calculations on acceleration 

and magnetometry data from which speed and animal heading are derived (see Chapter 3 for 

further details and methods). To deal with cumulative error in heading and variation in the 

relationship between VeDBA and true speed, the periodic GPS fixes were used to correct the 

dead-reckoned path. This correction aligned the dead-reckoned path with GPS data after 

correcting for rotation, forcing the dead-reckoned path to fit between the corresponding GPS 

points. The DDMT programme was used to dead-reckon as well as to GPS-correct to produce 
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1 Hz locations for each individual animal for periods of up to 30 days, using the method 

detailed in chapter 3.  

 

Mapping behaviours  
 

Each head-clash was matched to the GPS-corrected dead-reckoned path using time as the 

common base. This gave a location for each head-clash and allowed the behaviours to be 

mapped. R (R Core Team, 2019) and R Studio (RStudio Team 2020) and the package “ggmap” 

was used to access google maps satellite imagery to map out the behaviours.  

To assess the head-clash density over space, the R “recurse” package was used. This revisit 

analysis marked any occasions when two or more head-clashes occurred within a defined 

proximity of one another. Proximity areas were selected based on the species. I used a 25 m2 

proximity for the ibex and 10 m2 for the goats since these animals moved as a herd. The 

mapped behaviours were then coloured according to revisits to give a heat map effect for 

visual inspection.  

 

Distance travelled 
 

To calculate the distance between adjacent locations, step length was calculated using the 

“fossil” package within R , based on the following equation; 

𝐸𝑟𝑟 = 𝑎 cos(sin 𝐿𝑎𝑡𝐷𝑅1 ∙ sin 𝐿𝑎𝑡𝐷𝑅2 + cos 𝐿𝑎𝑡𝐷𝑅1 ∙ cos 𝐿𝑎𝑡𝐷𝑅2 ∙ cos(𝐿𝑜𝑛𝐷𝑅2 − 𝐿𝑜𝑛𝐷𝑅1)) ∙ 6371 

 Where; 𝐿𝑎𝑡𝐷𝑅1= Latitude of dead-reckoned step 1, 𝐿𝑎𝑡𝐷𝑅2= Latitude of dead-reckoned step 

2,𝐿𝑜𝑛𝐷𝑅1= Longitude of dead-reckoned step 1, 𝐿𝑜𝑛𝐷𝑅2= Longitude of dead-reckoned step 2 

To give total distanced travelled the sum of all step lengths was calculated.  
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Results 
 

Domestic goats 
 

The time series behaviour identification algorithm was successful in picking out 36 of the 43 

observed head-clashes, giving the rule an 84% reliability rate. The ethogram data from the 

direct visual observations of 6 hours across six goats provided a total of 81 events of other 

behaviours, none of which elicited false positives in the search algorithm, thus with 0% false 

positive rate. 

 

Revisit analysis on all individuals with identified head-clashing events, showed an epicentre 

to the behaviour (Fig. 4), with a maximum of 66 occurrences within the goats’ pen. There 

were also dense patches of head-clashes just north-east and south-west of the pen, with 

occasional other patches of higher reoccurrences at the outskirts of the goats’ herd 

movement range (Fig. 4a).  Correcting this information for time spent in an area however, by 

considering number of head clashes per hour, showed there was a lower incidence of head 

clashes per hour around the pen and a higher incidence at the range limits, particularly in the 

north-east and north-western sectors (Fig. 4b) 

 

Figure 4 - Mapped head clash behaviours of domestic goats, with each behaviour location coloured by (a) the 

number of reoccurrences to show density (with reoccurrences being defined as two or more incidences of head-

clashing within 10 m2 of one another) and (b) clashes per hour spent per location (with time spent being defined 
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from 1 Hz location data within 10 m2 of one another). Satellite map supplied by google maps. Data from varied 

logging periods (5 to 25 days) from ten domestic goats tagged in August 2017 within les Bauges, France.   

 

There was also notable inter-individual variation in the time-corrected incidence of head 

clashes, reflected both in the absolute values as well as their distribution in space (cf. goats 4 

and 9 in Fig. 5). 

 

Figure 5 - Mapped head clash behaviours for individual goats, with each behaviour location coloured by (a) the 

number of reoccurrences to show density (with reoccurrences being defined as two or more incidences of head-

clashing within 10 m2 of one another) and (b) clashes per hour spent (with time spent being defined from 1 Hz 

location data occurring within 10 m2 of one another). Satellite map supplied by google maps. Data from varied 

logging periods (5 to 25 days) from ten domestic goats tagged in August 2017 within les Bauges, France.   

 

 Average daily head-clash frequency showed a 5-fold variation between individuals (Table 3), 

unrelated to the number of days the goats had been monitored (ρ = 0.2610; p = 0.4663; 

Spearman rank correlation). Similarly, VeDBA at impact provides a measure of the force of 
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impact (Table 3) and there was individual variation in the mean VeDBA (force) of head-clashes 

(CV =  0.0744) and especially the maximum VeDBA (CV = 0.2137). Interestingly (see also Table 

3), there was a strong negative correlation between the daily frequency of head-clashes and 

the mean VeDBA of head clashes (ρ = -0.73; p = 0.0163; Spearman rank correlation), whereas 

there was no consistent relationship with individual variation in the maximum VeDBA of head 

clashes (ρ = 0.14; p = 6992; Spearman rank correlation).  

 

Table 3- List of metrics and frequencies derived from the behaviour and dead-reckoned data for each domestic 

goat. Data from varied logging periods (5 to 25 days) from ten domestic goats tagged in August 2017 within les 

Bauges, France.   

Animal 

ID 

Daily Diary data 

analysed (days) 

Daily mean head-

clash frequency  

Daily average 

distance travelled 

(km) 

Mean VeDBA during 

head-clashes (g) 

Max VeDBA during 

head-clashes (g) 

Goat 1 26 12 8.58 0.6 14.44 

Goat 2 10 12 8.36 0.57 18.34 

Goat 3 26 25 8.29 0.54 16.16 

Goat 4 26 39 8.68 0.49 16.72 

Goat 5 18 40 8.65 0.48 14.94 

Goat 6 6 8 8.65 0.52 8.86 

Goat 7 27 13 9.02 0.58 20.98 

Goat 8 26 16 8.10 0.55 15.45 

Goat 9 26 40 9.43 0.51 16.06 

Goat 10 26 24 8.98 0.51 20.92 

Mean 
 

23 8.67 0.54 16.29 

 

Average head-clash frequency across all goats over the course of the day showed the same 

general ungulate activity pattern of high occurrence in the morning after dawn and the 

evening before sunset – compare the pattern of hourly head clashing frequency in Figure 6 

with the very similar pattern of the distance moved per hour.  
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Figure 6-  Mean head-clash frequency across of individuals as a function of hour of day.  Data from varied logging 

periods (5 to 25 days) from ten domestic goats tagged in August 2017 within les Bauges, France. 

 

In accordance with this pattern, the frequency of head-clashing was linked to both distance 

moved (Fig. 7a) and grazing frequency (Fig. 7b). Specifically, the hourly number of head-

clashes across all individuals (y) was related to the average hourly distance travelled across 

all individuals (x) via (𝑦 = 𝑥0.003 − 0.467, P<0.001, R2= 0.84). Using the behavioural analysis 

for grazing described in chapter 4, the proportion of each hour spent grazing could be defined 

across all goats. Average hourly head-clashes across all individuals (y) were significantly 

positively related to the hourly proportion time spent grazing across all goats (x) via  (𝑦 =

3.282𝑥 + 0.238, p<0.001, R2=0.67). 
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Figure 7- (a) Scatter-plot of mean hourly head-clashes across all individuals against average hourly distance 

moved across all individuals (calculated from the dead-reckoned path); (b)- Scatter-plot of average hourly head-

clashes across all individuals against the average hourly proportion of time spent grazing across all individuals. 

Data from varied logging periods (5 to 25 days) from ten domestic goats tagged in August 2017 within les Bauges, 

France. 

 

Wild ibex 
 

Based on the constructed head-clash algorithm for ibex, clash locations were apparent across 

the area frequented (Fig. 8a) with what appeared to be hotspots. In particular, a dense patch 

was revealed close to the capture site with 10 head-clashes/50 m2, two other locations had 

maximum occurrences of 30 head-clashes/50 m2 (Fig. 8a). As with the goats though, the 

spatial pattern of the frequency of head-clashes per time differed from that of absolute 

numbers of head-clashes,  with hotspots of high head-clashing frequency being widely 

scattered across the range, with a particularly high incidence in the north-western sector (Fig 

8b). 

 

Figure 8 - Mapped head-clash behaviours for alpine ibex, with each clash location coloured by (a) the number of 

reoccurrences to show density (with reoccurrences being defined as two or more incidences of head-clashing 

within 50 m2 of one another) and (b) clashes per hour spent (with time spent being defined from 1 Hz locations 

within 50 m2 of one another). The capture site is indicated by arrow with an ibex in a net. Satellite map supplied 

by google maps. Data from varied logging periods (47 to 217 days) from six male ibex tagged in late May to June 

2017 within Belledonne, France.   
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There was appreciable inter-individual variation in the spatial pattern of occurrence and the 

frequency of head clashes (part of which was due to very different tagging durations and 

differences in the time of year (see below) (Fig. 9a). The six individual maps indicate that head-

clashes were prevalent around the capture site but also occurred over the other areas used 

by the animals. Again, the picture of absolute numbers of head-clashes changed substantially 

for individuals if these values were converted to the incidence of head-clashes per unit time 

(Fig. 9b). For example, ibex 4 displayed a spot with a high number of head-clashes per unit 

area close to the limit of its north-east range, with a low prevalence in the south-west corner 

but this pattern was almost reversed when the data were time corrected: Here, head-clashes 

per unit time (and area) occurred more frequently in the south-west corner (Fig. 9b). 

 

Figure 9 - Mapped head-clash behaviours with behaviour location for each individual, (a) the number of 

reoccurrences to show density (with reoccurrences being defined as two or more incidences of head-clashing 

within 50 m2 of one another) and (b) clashes per hour spent  (with time spent being defined from 1 Hz locations 

within 50 m2 of one another). The capture site is indicated by arrow with an ibex in a net. Satellite map supplied 
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by google maps. Data from varied logging periods (47 to 217 days) from six male ibex tagged in late May to June 

2017 within Belledonne, France.   

 

The incidence of head-clashes and the distance travelled by the wild ibex varied across the 

year, with mean daily distance travelled across all individuals decreasing into the winter 

months into what is considered to be the rutting period – November and December (Fig. 10a). 

Overall, the total monthly number of head-clashes across all individuals was below 100 

clashes until November and December when the incidence more than doubled (Fig. 10a). 

Closer inspection of the head clashes for just these two months indicated that the three 

individuals tagged for this time executed this behaviour across their movement range (Fig. 

10b).  

 

Figure 10- (a) Mean head-clash frequency across individuals with month of year with an interpolated scatter-plot 

showing how average monthly distance moved across of individuals changes at the same time. (b) shows maps 

of head-clashes for the three individuals with data available during the rut (November and December). Each 

head-clash location is coloured by numbers of revisits. Data from varied logging periods (47 to 217 days) from 

six male ibex tagged late May to June 2017 within Belledonne, France. 
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Despite the fact that animals outside the rutting period ostensibly travelled more in terms of 

absolute distance covered per day, all three animals for which I had data of movements and 

head-clashes both outside and inside the rutting period ranged more widely during the rut 

than otherwise (Fig. 11), engaging in head-clashes in virtually the entirety of the area covered. 

 

 

Figure 11 – Comparison of ranging and rutting behaviour for the three individual ibex where data collection 

covered both rutting and ‘non-rutting’ periods (cf. Table 4). The total area occupied for the two periods is shown 

in grey with the time-corrected frequency of head-clashes superimposed. Note the diminutive area exploited 

outside the rut compared to the rut itself, even though this represented a period that was about 2.6 times longer 

than the rutting period (ca. 157 days compared to 60). Head-clashing occurred both during the rut and outside 

it. 

 

In accordance with the very strong increase in head-clashing frequency during the rut (Fig. 

11), the daily frequency of head clashing events was higher for the three individuals 

monitored into the rut, as compared to that of those monitored for shorter periods outside 

the rut (Table 4). Interestingly, whilst the mean VeDBA of head-clashes did not vary strongly 

between individuals, the maximum deceleration (VeDBA) recorded was markedly higher for 

the individuals monitored also during the rut (Table 4).   
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Finally, comparing the ibex data to the goat data (Table 3 vs. Table 4), given the 2.7 larger 

average body size of the former (80kg vs. 30 kg), the recorded VeDBA values at impact should 

be larger, too. Accordingly, the maximum VeDBA recorded across all the individual ibex was 

2.9 larger than the maximum VeDBA recorded for the goats; the mean VeDBA was 2.7 times 

larger. 

 

Table 4- List of metrics derived from the behaviour and dead-reckoned data for each tagged alpine ibex. Data 

taken from varied logging periods (47 to 217 days) from six male ibex tagged in late May to June 2017 within 

Belledonne, France. 

Animal 

ID 

Daily Diary data 

analysed (days) 

Daily mean head-

clash frequency  

Daily mean 

distance travelled 

(km) 

Mean VeDBA during 

head-clashes (g) 

Max VeDBA during 

head-clashes(g) 

Ibex 1 69 3 12.875 0.9 19.99 

Ibex 2 47 2 12.222 1.74 18.37 

Ibex 3 47 2 13.306 1.72 16.8 

Ibex 4 217 5 8.679 1.11 24.01 

Ibex 5 216 4 7.818 1.14 21.54 

Ibex 6 217 4 4.437 1.06 24.17 

Mean  
 

3 9.890 1.28 20.81 

 

Discussion  
 

Ability to discriminate head-clashes 
 

Head-clashes are distinctive behaviours to observe (Shank 1972, Shackleton and Shank 1984) 

and, by their nature, are expected to produce a distinctive acceleration signature because an 

animal (especially the head and neck) moving at an appreciable velocity is suddenly subject 

to a substantial deceleration (Shank 1972). Indeed, it is hard to imagine any other natural 

circumstance that would lead to such high deceleration values. This nominally means that it 

should be simple to search the acceleration data for these high peaks to define head-clashes. 

However, observations of the domestic goats and examination of their data made it apparent 

that such interactions vary between relatively gentle ‘head-butting’ and dramatic head-
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clashing, where animals may both rear up before descending into a very high force head-

clash. Indeed, precursors of what might be construed as head-clashes were also observed, 

with the head being lowered and an animal surging forward slightly, directing its attention to 

another, before stopping abruptly before any collision. Even this will produce a low g event. 

So, what constitutes a head-butt, clash or precursor to this agonistic behaviour (Pretorius 

1970)? In some ways, using a threshold, as was done in this chapter, constitutes a solution. 

According to our definition, a head-clash has taken place when the VeDBA exceeds 1.5g (and 

the other parts of the algorithm are fulfilled; see Methods). I appreciate, in the continuum 

between a slight movement indicating head-butt intent and a high impact full rearing head-

clash, that this process selectively removes the lower intensity agonistic interactions but at 

least I do not have a filter set to the lower end where there is an argument about whether 

the data indicate an agonistic interaction at all. Indeed, setting the VeDBA thresholds where 

I did only led to missing a small percentage of the lower intensity head-clashes. Against this, 

the process of using high VeDBA thresholds also means that there are unlikely to be other 

behaviours with which head-clashing can be confused, something that explains why I got no 

false positives in our domestic goat validation set. I believe achieving the latter is very 

important. 

 

The distinctiveness of the head-clash signal makes translation of this agonistic behaviour 

identification rules between one species liable to work well with another (Williams et al. 2015, 

Jeanniard‐du‐Dot et al. 2017, Dickinson et al. subm.), which is why I felt it appropriate to 

search for ibex head-clashes based on the domestic goat data. As with the domestic goats, it 

is hard to conceive of a situation where such high decelerations could be produced without 

head-to-head impact. But in a manner similar to the goats, I was obliged to set a threshold, 

which should be higher in the more massive alpine ibex (see also the strict observed 

correlation between differences in relative body size and relative mean and max VeDBA at 

impact – see Table 3 vs. Table 4). Also, on inspection, I noted that the second peak occurred 

later than in the domestic goats so I altered the algorithm accordingly. I believe that the 

displaced second VeDBA peak was also mass-related: What happens during the head-clash, is 

that the animal essentially stops at the moment of impact and the collar continues forward, 

travelling somewhat up the neck, until it meets the lower rearward-facing part of the animal’s 
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skull, which is where (and when) the greatest deceleration in the tag occurs (cf. peak in both 

the surge axis and the VeDBA in Fig. 2). Note that this occurs a fraction of a second later than 

the actual head-to-head impact. But, following this initial deceleration, the collar is then also 

typically bounced back posteriorly, causing it to travel until it reaches the body, at which point 

it decelerates again, producing a reverse peak in the surge acceleration (cf. Fig. 2) and a 

second peak in the VeDBA (for which all accelerations are positive). In the larger ibex, the 

reverse travel of the collar following the initial impact, the hysteresis, is expected to take 

longer, which is why the time between the two peaks was increased in the search algorithm. 

 

I note, in this, the value of the manual, rather than machine-led, construction of the algorithm 

to locate head-clashes in the ibex was based on the rule derived and validated for domestic 

goats. This is specifically because the mechanics of the acceleration signal can be reasoned 

through and modified taking physical differences between the species, which directly impact 

differences in the acceleration signal, into account. Although not explicitly tested, I believe 

that a machine-learning approach would have struggled to detect ibex head clashes with any 

certainty if the process were based on domestic goats; for similar arguments see also (Viviant 

et al. 2010, McClune et al. 2014, Wang et al. 2015). 

 

A final point is relevant in discussing the value of acceleration metrics to derive the forces 

involved in head clashes. As mentioned above, the measured deceleration is only a proxy for 

the actual deceleration experienced by the skull because the effect is diminished by resistance 

of the collar to travel up the neck (Dickinson et al. 2020, Wilson, Rose, et al. 2020), with the 

expectation being that the higher the force of the impact, the higher the recorded VeDBA. 

However, the highest decelerations in a two animal head-clash will be experienced by the 

animal that gets pushed back by the impact (albeit individuals are not always pushed back) 

rather than the individual with the greatest momentum. This is because the pushed-back 

individual has an acceleration signature resulting from a change of a positive to a negative 

velocity whereas the animal that does not get pushed back only slows down, thereby 

experiencing less deceleration. This explains how head-clashes can manifest dominance by 

larger individuals because their greater mass and therefore momentum (momentum = mass 
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X velocity) will tend to displace their opponents, subjecting them to greater deceleration and 

therefore greater forces (force = mass X acceleration). This is relevant with respect to 

discussion of the VeDBA values in our studies because, in any given head-clash between two 

individuals, the weaker (or lighter) animal will record the highest VeDBA values, which seems 

somewhat counterintuitive. Across the population though, I would expect stronger 

individuals to generally exert higher forces during their head-clashes, in part by virtue of their 

mass. The close relationship between relative VeDBA values and relative body size observed 

between ibex and goats confirms this. 

 

Finally, the value of head-clashing as a metric for determining the success of agonistic 

encounters has to take into account the frequency of encounters as well as the force 

developed within each encounter. I noted substantial differences in both of these for the 

domestic goats (Table 3), with individual values ranging between means of 9 and 40 head-

clashes per day and developing maximum VeDBA values of between 9 and 21 g and an 

interesting close relationship between the VeDBA values and the frequency of head clashes 

(although there was no obvious relationship between head-clash frequency and maximum 

VeDBA (Table 3)). Notwithstanding the development of forces referred to above, I propose 

that this variation could be due to the hierarchical system adopted by goats (Alvarez et al. 

2003, Stanley and Dunbar 2013); established dominant individuals and lesser goats compete 

little with each other but adjacent individuals on the dominance ladder have to compete 

regularly (Alados et al. 2000), in accordance also with the general idea that animals should 

weigh carefully the costs and benefits of investment in direct aggressive interactions (Clutton-

Brock et al. 1979, Clutton-Brock & Parker 1995). A more comprehensive monitoring of all the 

individuals in the flock with biologgers would allow such detailed investigation. Specifically, 

the outcomes of the head-clashes between known individuals could perhaps be judged based 

on the distribution of the forces developed (see above), potentially revealing details of the 

dominance hierarchy. 
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Head clashing in domestic goats 
 

Head-clashing has been well documented in the literature, with it generally being interpreted 

as an aggressive behaviour to assert dominance with respect to getting access to resources 

(Miranda-de la Lama and Mattiello 2010, Stanley and Dunbar 2013), which may be mating 

opportunities (Mysterud et al. 2004, Miranda-de la Lama and Mattiello 2010, Bro-Jørgensen 

2011, Tettamanti and Viblanc 2014), food (Helen et al. 2006, Miranda-de la Lama and 

Mattiello 2010) or space (Fernández et al. 2007, Miranda-de la Lama and Mattiello 2010, 

Patison et al. 2015). I can use this interpretation to examine where resources were located 

for the domestic goats because I would expect the frequency of the behaviour to be highest 

where resources are most coveted. The epicentre of the agonistic behaviour appeared to be 

the goat pen. In fact, I determined that head-clashes even occurred overnight, albeit at a low 

intensity (Fig. 6), which I interpret as being competition for optimum space in the densely-

packed overnighting area. Hay bags were also hung up on the sides of the pen in a manner 

that only allowed access to a limited number of animals at a time, which presumably led to 

further competition within the pen. Around the pen, head-clashing was also frequently 

observed, and I surmise that this was due to the salt licks. Salt is a limited resource for many 

ungulate species (Toigo et al. 1999, Marchand et al. 2015) so I expected individuals to 

compete with one another for regular access. In addition, the domestic goats spent much 

time ruminating outside the pen over midday where shade was at a premium so I expected 

some agonistic interactions associated with that. However, all these head-clashes were not 

time-corrected and so represent absolute numbers of head-clashes per unit area. Time-

corrected head-clashes (i.e. number of clashes per unit of time) showed the reverse trend 

(Fig. 4b, 6b), where animals in the pen had relatively fewer interactions than at the limits of 

their foraging ranges (Fig. 4b). This implies that whatever factors elicit head-clashing away 

from the pen were most apparent at these spots. In accordance with the suggestion that 

these encounters were due to competition for foraging spots/resources, the highest 

frequencies of head-clashing were often located at the edges of the foraging ranges (Fig. 4b), 

where the vegetation quality may also be highest, being least grazed (Elliott et al. 2009). 
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Time of day, and extent of movement were two factors that appeared to have a substantial 

effect on the incidences of head-clashing (Fig. 6), broadly in accordance with the general 

dawn/dusk peak of activity in many ungulate species.  Furthermore, the peak in head-clashing 

at around 06h00 corresponded also with an increase in distance moved even before the herd 

was let out the pen and appeared to be related with agonistic interactions associated with 

the goats being milked at this time and matches my personal observations that the goats 

became more aggressive before and during milking. Similar dominance interactions are 

documented for dairy cows (Crossley et al. 2017) and may be associated with the discomfort 

of over-full udders and the relief that milking offers, this reprieve specifically being the 

resource for which the goats are competing (Alados et al. 2000, Alvarez et al. 2003, Miranda-

de la Lama and Mattiello 2010).  

 

Head clashing in alpine ibex 
 

Given the accepted paradigm, that head-clashes in ungulates represent agonistic behaviour 

related to resources (Shackleton and Shank 1984, Clutton-Brock 1989), the head-clashes 

identified from the ibex dataset revealed some interesting patterns. These can be considered 

within the presumed model for ibex sociality, that adult males are territorial and hierarchical, 

defending access to females, but combined with a careful timing of investment in agonistic 

interactions, such as establishment of hierarchies before the peak of the rut so not to divert 

resources from the mating itself (Willisch and Neuhaus 2010). Thus, the year-round incidence 

of head clashing in all the tagged ibex suggests that establishment and maintenance of 

dominance hierarchies occurs throughout the year, with a dramatic increase in the pre-rut 

period (Willisch and Neuhaus 2010)  and rutting period (Brivio et al. 2010, Tettamanti and 

Viblanc 2014). In accordance with cost vs. gain considerations, these data show that also the 

force of head clashes increased dramatically during the rut (see Results and Table 4). 

 

In accordance with the considerable overlap in area use by the tagged animals (Chapter 5) 

and that head-clashing occurred across all sites, especially during the rut (Figures 8, 9), ibex 

use mating tactics where multiple males associate with a receptive female (with the latter 
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closely followed (‘tending’) and dominated by the dominant male, but with sub-ordinate 

males trying to achieve temporary access (‘coursing’) in the case of sudden mating 

opportunities.  

 

Despite the low sample size, I believe that it was relevant that all three males that were 

equipped for both the rutting and the non-rutting period, exhibited higher rates of head-

clashes during the rut (Fig. 10a) and expanded the areas they occupied and in which they 

engaged in head-clashing (Fig. 10b), in accordance with tending and coursing mating tactics. 

 

Generalities of head-clashing 
 

This work on head-clashing in goats and in ibex using goat-based acceleration metrics to 

identify head-clashing illustrates further potential of the application of biologging 

technologies for behavioural ecology studies. Head-clashing is about dominance, winners and 

losers, and it is easy to see how, if a whole herd of goats were tagged, the winners and losers 

of interactions could be defined so as to deduce the herd-wide hierarchy. Within this, because 

the acceleration metrics allow us to allude to the forces produced during each agonistic 

interaction, I could also use these as measures of the costs of positional maintenance in the 

hierarchy. The high resolution of movement and ability to determine precisely when and 

where grazing occurs could also help us examine the gains of specific interactions – winners 

in a head-clash over resources are expected to exploit those while losers must move 

elsewhere. The costs of such movement in the loser (e.g. Chapter 4) together with its 

presumed lower quality food, can be used to derive a net gain metric (kJ ingested/kJ used 

(Arnold 1985, Bergman et al. 2001) and this perhaps linked to stature (Toigo et al. 1999, Côté 

2000, Büntgen et al. 2014). Thus, with the domestic animals at least, this would start to 

provide important links between sociality, hierarchy and resource limitation, certainly a 

reason to advocate the biologging approach. 

 

Wild animals such as the ibex are more problematic because it is probably impossible to tag 

all the individuals within a given area. Nonetheless, extensive tagging protocols should allow 
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researchers to detail interactions between known individuals and, in the same way as in the 

goats, identify the winners and losers. The highly resolved dead-reckoning of movement 

(Chapter 2 and 3) together with identification of behaviour (Chapter 3 and 4) should then 

allow us to describe the ostensibly much greater consequences of the outcomes of these 

extraordinary agonistic behaviours. 
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Chapter 7 
 

Ungulates as cartographers: How do topography and habitat affect 

the movement energetics of ungulates in mountain areas?  

 

 Abstract 
 

Travel is considered to account for a substantial proportion of a species’ daily energy 

expenditure, especially in active, warm blooded animals. The environment through which a 

species moves can dictate the cost of movement (or transport: COT), including the incline of 

slopes, substrate penetrability, and superstrate density. I used multi-sensor biologging data 

from six ungulate species living in the French Alps (3 wild; alpine ibex (Capra ibex), mouflon 

(Ovis gmelini musimon × Ovis sp.) and chamois (Rupicapra rupicapra) and 3 domestic; cows 

(Bos taurus), sheep (Ovis aries) and goats (Capra aegagrus hircus)) to estimate and quantify 

cost of travel by using vectoral dynamic body acceleration (VeDBA) as a proxy for energy 

expenditure. This information combined with detailed mapping data of the Alps in which 

theindividuals moved, allowed to identify how slope and habitat affected movement costs 

and compare this across species. Critically, the straight line slope angles (the steepest incline 

reported for cartographic data) were not used as such by any of the species. Instead, animals 

travelled obliquely adopting a “zig-zag” approach so that the angle that any individual 

experienced was much lower than that of the actual topography. This strategy allowed 

animals to manage the cost of moving on any slope. Movement modes revealed how COT 

changed whether species were ascending or descending, with projected descent movement 

costs being slightly less due to animals taking advantage of potential (gravitational) energy 

gained. Travel speed affected the VeDBA-based proxy for COT even though most species 

moved particularly slowly on steep inclines. Models that considered speed, COT, slope and 

habitat type showed clear relationships between COT and slope with variation across habitat 

types. Although VeDBA-derived values for energy expenditures cannot be strictly compared 

across species without appropriate calibration, inter-specific differences in COT for given 

slopes were so large that, rather than energy landscapes being a fundamental feature of the 
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environment for animals, the magnitude of any energy landscape may depend strongly on 

the movement capacity and specific life history and needs of a species, beyond simple 

differences in body size.  

 

Introduction 
 

Understanding the cost of animal movement and how the environment can alter this cost is 

fundamental for biologists because movement costs account for a large portion of a species’ 

daily energetics (Garland 1983, Rezende et al. 2009, Scantlebury et al. 2014). Indeed, 

compared to other metabolic processes, movement costs are so substantial (Speakman and 

Selman 2003, Halsey et al. 2015) that there is assumed to be a particularly strong selection 

pressure for animals to move through their environments efficiently (Merker 2005, Fahrig 

2007, Shepard et al. 2013). Judicious movement should take into account the many physical 

attributes of the environment that modulate the energy expenditure associated with travel, 

including wind and water currents in fluid environments (Riotte-Lambert and Weimerskirch 

2013, Elliott et al. 2014) and substrate penetrability (White and Yousef 1978, Crête and 

Larivière 2003), substrate resistance (Fancy and White 1987, Crête and Larivière 2003, 

Shepard et al. 2013) and incline (Dailey and Hobbs 1989, Wall et al. 2006, Halsey and White 

2017) in terrestrial systems. The cost of movement can be quantified and translated into 

metabolic costs while considering several confounding variables (e.g. speed, mass) (Dickinson 

et al., 2021; Shepard et al., 2013).  

 

Within terrestrial energy landscapes (Wilson et al. 2012, Shepard et al. 2013), changes in 

height are the most energetically onerous (Wall et al. 2006, Parsons et al. 2008, Lees et al. 

2013, Halsey and White 2017, Dunford et al. 2020) because of the associated changes in 

potential energy (PE), which relate to the mass of the animal (M), the height change incurred 

(ΔH) and the gravitational constant (g) via PE = Mg ΔH (cf. chapter 6). This energy is converted 

into necessary mechanical power to climb a slope (P) via P = PE/t so travel speed and degree 

of incline play key roles in the rate at which energy is expended by an animal moving on 

slopes. Although it is clear from the formula how energy must be invested by a climbing 
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animal, the apparent potential energy gain from descent is not fully realized because animals 

have to invest energy to brake downward motion when slopes become steep (Richard Taylor 

et al. 1972, Armstrong et al. 1983, Fancy and White 1987) which also increases the metabolic 

cost of travelling down steeper slopes (Dailey and Hobbs 1989, Birn-Jeffery and Higham 2014, 

Dickinson et al. subm.). 

 

The amount of deformation of substrates can also affect the energy expenditure of travelling 

animals (Shepard et al. 2013, Halsey 2016). Particularly strenuous substrates in this regard 

are soft surfaces, such as sand (Pinnington and Dawson 2001, Voloshina et al. 2013), where 

energy expenditure for a given speed may be higher than movement on a hard substrate 

(Pinnington and Dawson 2001).  Snow is another example (White and Yousef 1978, Fancy and 

White 1987, Crête and Larivière 2003), but this also includes a component of the third 

element of terrestrial energy landscapes, which is the energy required to push or pull limbs 

through a superstrate (Crête and Larivière 2003). Costs are hard to determine but it is obvious 

that thick vegetation, for example, requires more effort to move through than sparse foliage 

or open ground (Shepard et al. 2013).  

 

Other factors can dictate the cost of moving across spaces that are not environmental. For 

example, the metabolic cost to move will differ with species depending how adapted that 

species is to move efficiently within the surrounding environment (Wall et al. 2006, Dunford 

et al. 2020).  As highlighted in the above equation, mass (M) of the animal which differs with 

species can dictate the overall power required to move (Garland, 1983; Parsons et al., 2008; 

Halsey, 2016; Halsey and White, 2017) .     

 

It is well established that animals often move to minimize the costs of transport (COT)(defined 

as the energetic cost of moving a defined mass of over 1 m (Tucker 1970)), which can explain 

a suite of movement parameters such as when and where animals move and the details of 

track tortuosity (Shepard et al. 2013).  But the precise costs of energy landscapes depend on 

the species moving through them. For example, a snowshoe hare (Lepus americanus) moving 
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over deep snow may not sink at all and so have no superstrate to push through whereas a 

moose (Alces alces), with its high body mass and relatively small surface area of the hooves 

producing high pressure points, may have to struggle (Parker et al. 1984, Fancy and White 

1987, Murray and Boutin 1991). Therefore, a prime challenge is to understand how animals 

move (‘movement capacity’) in association with energy landscapes that are relevant to them 

and for this energy expenditure should be considered in relation to environmental 

characteristics across species using that environment. Overall, COT is a quantification for the 

energy required for an animal to displace itself.COT not only considers‘power required’ but 

takes into account the animals speed, standard gravity forces acting on the animal and the 

individual’s mass and indicates how efficiently an animal is moving (Halsey, 2016; Halsey and 

White, 2017; Shepard et al., 2013).    

 

The Alps offer an area with a great range in habitats and topography making the site a 

naturally variable environment in terms of classic energy landscapes. It is populated by a 

number of native ungulate species; alpine ibex (Capra ibex), mouflon (Ovis gmelini musimon 

× Ovis sp.) and chamois (Rupicapra rupicapra), which are adapted at the challenges of 

mountain environment, such as extreme seasonal climates, highly variable and steep inclines, 

including steep dangerous slopes that however may also offer potential protection from 

predators. During the summer months a very large number of domestic ungulates also graze 

on alpine grasslands – especially cows (Bos taurus), sheep (Ovis aries) and goats (Capra 

aegagrus hircus) (Herzog & Seidl 2018). 

 

This study system provides an excellent opportunity to study how contrasting species deal 

with the challenges of topography and habitat, by using sensor-rich data loggers that allow 

the calculation of their fine-scale movement paths in relation to habitat (Chapters 2, 3, 4) as 

well as to allude to their movement energetics (Qasem et al. 2012, Jeanniard‐du‐Dot et al. 

2017). 
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Thus, the overall aim of this study is to use biologging data from six free-roaming ungulate 

species, ranging in body mass from 30 to 600 kg, to assess how they respond to defined 

energy landscapes within a mountainous region and to compare movement strategies 

between species. There are four principal objectives; (i) to compare how slope affects the 

movement energetics (using dynamic body acceleration as a proxy) of six ungulate species, 

(ii) to model the DBA-defined costs of transport against slope for various identified habitat 

types for each study species, (iii) to identify species-specific paths that appear to minimize 

movement costs within the area and (iv) to combine the above within an over-arching 

framework that seeks to construct species-specific energy landscapes in order to understand 

space use by this ungulate  group.  

 

 

 

 

Methods 
 

Study sites 
 

Three study sites were selected for data collection on free roaming ungulate species (Fig. 1, 

Table 1), all of which were within the French Alps with similar habitat types which, however, 

varied in their incidence and topography, and all part of long-term wildlife monitoring 

projects.  
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Figure 1 – Illustration of the overall study area and the position of specific relevant sites within France. (a) The 

Bauges massif was used for studying the chamois, (b) the domestic goat and (c) the domestic cow.   The 

Belledonne massif was used for (c) the domestic sheep and (d) alpine ibex study while (e) the mouflon was studied 

within the Caroux massif. Each map has polygons outlined and is coloured based on habitat.  

 

The Bauges massif (45.60485°N, 6.18295°E) was used as the study site for three species 

including wild chamois, which roamed a large area (Fig. 1a), domestic goats and domestic 

cows , both of which were restricted to 2 km2 pastures by farmers (Fig.1b), although the goats 

were in fact free to roam. The Bauges mountain range had a lower average altitude and 

shallower slopes than the adjacent Bellendonne massif, which resulted in the Bauges having 

more vegetation cover (see chapter 4 for further details). Belledonne (45.13610°N, 

6.04020°E) was the massif used for domestic sheep and wild alpine ibex. These two species 

were tagged within the same section. As with the Bauges massif study, the ibex roamed 

widely whereas the sheep used a smaller area, which effectively giving the species two 

different study sites (Fig 1c, 1d respectively) within the Belledonne massif. The average 

altitude of the Belledonne massif mountain range was the highest of the three massifs and 

had the steepest average slopes (see chapter 5 for further details). Mouflon were tagged in 

the Caroux mountains (43.60854°N, 2.98639°E), situated ~300km away from the other two 
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sites. The individuals tagged used a large part of this game and wildlife national reserve (Fig. 

1e). Caroux is a sub-Mediterranean habitat with an appreciably lower average altitude than 

the other study sites and has the least extreme topography (Marchand et al. 2015). The 

weather is also correspondingly milder than the other study sites due to the combined 

influence of Mediterranean, oceanic and mountainous climates (Baudière 1962).  

 

Study species  
 

The numbers of animals used within the six species varied between 2 and 11, with appreciable 

variation in the sex ratio according to species (Table 1). Despite slight variation in tag 

deployment durations, and the time of year when most data were collected, most data sets 

were >20 days and collected during the summer (Table 1). 

 

Table 1- A list of species used in the study and details of the data collected.  

Species Individuals  Sex Logging 

duration 

range 

(days) 

Mean 

logging 

duration  

Time of year for 

logging  

Study site 

Female Male 

Domestic cow 8  8 0  ≈9 to ≈25  ≈22  Aug 2017 Bauges 

Domestic goats 10  10 0 ≈5 to ≈25  ≈20  Aug 2017 Bauges 

Domestic 

sheep 

11  11 0 ≈ 11 ≈ 11 Aug 2018 Belledonne 

Chamois 2 2 0 ≈ 27 ≈27  Sept 2017 Bauges 

Ibex 6 0 6 ≈ 27 ≈27  Jun 2017 Belledonne 

Mouflon 5 4 1 ≈ 27 ≈27  Jul 2017 (n=2) 

Jul 2018 (n=1) 

Oct 2018 (n=1) 

Caroux 
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Jul 2019 (n=1) 

 

Biologgers 
 

The wild species had commercial Lotek 3300S GPS collars (Lotek 2020) with lab-designed 

external housing fixed over the existing housing containing “Daily Diary” accelerometer and 

magnetometer (see chapter 2 and 4 for further details). The domestic species were collared 

with lab-built collars with a housing containing a Daily Diary and TechnoSMart GiPsy unit 

(TechnoSMart 2020). The collar was weighted at the bottom to keep the housings containing 

the above devices on top of the animals’ necks (see chapters 2 and 4 for further details). 

 

Deployment 
 

Wild species were captured using drop nets traps that were remotely activated and baited 

using salt licks (Toigo et al. 1999, Jullien et al. 2001). Once trapped, the animals were hooded, 

handled and processed with their weight, hoof length, horn length and sex recorded. Each 

species was then collared with a device that was calibrated (for details see chapter 4) on site.  

For the domestic species, individuals (were caught in their pen, or the milking station, and 

handled directly. All collars were calibrated at the study site and attached to the animal.  

 

 

 

VeDBA 
 

Vectoral dynamic body acceleration (VeDBA) (Qasem et al. 2012) was calculated (for equation 

and further details see chapter 4) using the DDMT software (WIldbytes Ltd., Swansea, UK) to 

be used as a proxy for speed (Bidder et al. 2012, 2015) and energy expenditure (Qasem et al. 

2012, Jeanniard‐du‐Dot et al. 2017, Wilson, Börger, et al. 2020, Dickinson et al. subm.) in all 

species. VeDBA is notorious for its noise as it varies dramatically between periods of footfall 
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(which produces a high deceleration spike) and between footfalls (where the values stabilize 

for a brief period) (Wilson, Rose, et al. 2020). A recommendation to deal with this is to smooth 

values over at least a full stride cycle (Wilson et al. 2020). As a consequence, VeDBA values 

were smoothed (sVeDBA) using a running mean over 40 data points (corresponding to 2 

seconds) (Shepard et al. 2008). The high temporal resolution of acceleration data collected, 

necessitated some sub-sampling to 1 s resolution for some parts of the analysis (see below) 

to process the information, which was constrained by computational capacity.  

 

Definition of active behaviours 
 

Smoothed VeDBA values were used to define three principal behaviours; resting, grazing and 

moving for domestic goats with appropriate ground-truthing via direct observation (see 

chapter 4) and adapted for the alpine ibex (see Chapter 5). However, not all species 

behaviours could be calibrated with observations or adapted (as above) with clear 

justifications. As a result, grazing and moving could not be separated from each other in some 

species with certainty, especially since all species move to variable extents while grazing. 

Instead, I separated behaviours into either ‘active behaviours’ or ‘inactive behaviours’, which 

were defined by using sVeDBA thresholds (Fig. 2). As noted in Shepard et al. (2008), the 

difference in acceleration signals over time (including sVeDBA) between activity and inactivity 

is striking, being effectively stable during inactivity and highly variable the instant an animal 

moves (Shepard et al. 2008) (Fig. 2). 
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Figure 2- Examples raw acceleration data from the 3 orthogonal axes (grey lines) and sVeDBA (green line) to 

show changes over time with changing active and inactive behaviours for; (a) domestic cow, (b) domestic goat, 

(c) domestic sheep, (d) chamois, (e) ibex and (f) mouflon. The thresholds used to separate these two states are 

shown using the dashed lines with the thresholds specified.  

 

By inspecting the data as detailed in chapter 4, I noted that the only appreciable change to 

sVeDBA thresholds across species was due to the noise in data from the lab-built collars, 

which were lighter than the Lotek collars used in the wild species. As a result, the lab-built 

collars were more prone to move during minimal animal movement such as head turning 

(recorded by the accelerometers). Thus, for the wild species, the behaviour thresholds were 

reduced by 0.05 g compared to their domestic counterparts (Fig. 2; see also chapter 5 and 6). 

If any period resulted in a sVeDBA value that surpassed the given threshold, the period was 

marked as ‘active’ behaviour, and if it did not, it was marked as ‘inactive behaviour’. However, 

once ‘active behaviour’ was recognized, it was considered to have occurred for a minimum 

time of one second before the data was interrogated again. This behavioural analysis was 

carried out in the Wildbyte software ‘DDMT’ (Wildbyte Technologies 2020).  
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Dead-reckoning  
 

The GPS location frequencies were set to provide comparatively low temporal resolution and 

varied across species (Chapter 3, Table 1), ranging from 1 fix every 15 minutes to 1 fix every 2 

hours. To increase the location fix rate and bring all species to the same frequency, dead-

reckoning was used to fill the gaps between GPS points (see chapter 3 for further details). In 

this, VeDBA was used as a proxy for speed (Bidder et al. 2015, Dickinson et al. subm.) with 

GPS correction being used to offset any error in speed (or heading) by altering the coefficient 

for the gradient between VeDBA and speed (for definition see chapter 3) so that dead-

reckoned pathways led to points that coincided in time and space with the GPS points. This 

process accounts for differences in the linear relation between VeDBA and true speed which 

are expected to vary between species (Bidder et al. 2012) and for different substrates and 

slopes (Dickinson et al. subm.).  

 

Speed 
 

The dead-reckoning process gave a location every second so that speed could be derived by 

examining the distance between the two locations per second. This was calculated using R-

studio using the “fossil” package in R (see chapter 3 for details).  

 

Altitude  
 

The pressure was converted to altitude (h) using a formula that incorporates a temperature 

correction: 

ℎ =

((
𝑃0

𝑃 )

1
5.257

− 1) × (𝑇 + 273.15)

0.0065
 

where the altitude is in metres, P0 is pressure at sea level, P is pressure reading from the 

logger (recorded at 2 Hz) and T is temperature.  
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Mapping 
 

R (R Core Team, 2019) and R studio (RStudio Team 2020) was used, with several packages 

including “ggmap”, “ggplot2”, “sf”, “raster,” and “rgdal” to map high resolution GPS-

corrected dead-reckoned paths with overlayed defined behaviours, VeDBA metrics, step 

lengths, speeds and changes in altitude. Combing this 1 Hz path with detailed mapping data 

(supplied by Grenoble University and the National Hunting and Wildlife Agency (ONCFS) 

management team) (Tronchot 2008) allowed slope (in degrees) and habitat type to be 

extracted from shape and raster files. The habitats had to be unified (Table 2) with varying 

habitat definitions and to ensure sufficient data was available to build the desired energy 

landscape models.  

 

Table 2- List and break-down of how available habitat information was combined to define shared habitats with 

revised habitat descriptions. 

Study 

habitat ID 

Description  Belledonne habitats  Bauges habitats Caroux habitats 

Bare rock Predominately 

exposed rock in the 

form of rock face or 

loose scree. 

Vegetation can be 

present including 

pioneer species, 

grasses and herb 

species.  

Rock shadow, 

exposed rock, snow 

(on assumption 

bare rock during 

summer months) 

Scree Rock, bare ground 

Grasses 

and herbs 

Grass and herb 

species making up 

lawns that have a 

variety of 

biodiversity and 

productivity 

including Nard, 

Diverse lawns, 

herbs 

Nard, Laiche, 

Seslerie, Dry grass, 

Forage (mowing 

meadows), 

megaphorbiaie 

species 

Lawns, grasses, 

meadows, mixed 

open areas (herbs 

and shrubs) 
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Laiche, Seslerie and 

Megaphorbiaie 

species 

Shrubs Mixture of open, 

fruit baring, closed, 

low and tall shrub 

species 

Closed shrubs, open 

shrubs, low shrubs, 

shrubs with fruits 

Shrubs Broom moors, 

Heather, Callune 

moors, fern heaths, 

blueberry moors 

Woodlands Forest made up of a 

mix of deciduous 

and conifer species 

including open, 

patchy woodlands  

Spruce, Conifers in 

islets, larch, Beech, 

Birch, mix of 

hardwoods, loose 

forest  

Spruce, beech, alder Hardwood, Holm 

oaks, Pine forests, 

Beeches, Chestnut 

trees, 

undifferentiated 

softwood, mixed 

forests 

Other Not selected for 

energy landscape 

model due to lack of 

abundance 

Low swamp, water None Farmland, Urban 

areas, villages and 

hamlets, water 

 

 

Summary data 
 

Many millions of data points are necessary if 40 individual animals are examined for all the 

data over >20 days each on a second-by-second basis. To condense this information, summary 

data were calculated where totals and means were calculated every time the species moved 

10 m. From this, the proportion of time spent engaged in active behaviours was derived to 

remove the extended periods of resting behaviour (since I am only interested in movement 

here). Altitude change was defined as part of movement using following filters; ‘ascents’ were 

defined when there was a >0.5 m change over 10 m, ‘descent’ was defined when there was a 

<-0.5 m change over 10 m, and anything in between was defined as ‘level movement’. From 
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the 10 m summaries, a crude proxy estimate of cost of transport (COT) was calculated by 

dividing the total sVeDBA by the distance moved to give sVeDBA per metre moved (COTsVeDBA).  

 

Slope data was recorded as a percentage (Tronchot 2008). To better visualize and analyse this 

and the high number of 10 m summaries, each slope value was rounded to the nearest whole 

percentage and mean metrics within species were calculated for every slope integer.  

 

Animal chosen slopes against cartographic slopes 
 

The literature is explicit about how animals can moderate their power outputs for moving up 

steep inclines by adopting a zig-zag path, moving upward at much shallower slopes but 

increasing distance travelled (Llobera and Sluckin 2007). To examine the extent to which the 

study ungulates did this, I examined the rate at which animals moved up slopes defined by 

the digital elevation model data by calculating their vertical velocity or change in altitude. I 

did this by subtracting altitude estimates at time t = 1 from the altitude at time t = 0 every 

time the animal moved 10 metres. Knowing the altitude change and the distance moved by 

the animals from the change in the individual’s location, I used simple trigonometry to provide 

an estimate of the slope taken by the animal as a function of the cartographic slope (fig 3). 

The slope was then converted to slope as a percentage to match the mapping data.  

 

 

Figure 3 – Schematic figure to show data from the 10 metre distance summaries and trigonometry was used to 

calculate an estimate animal angle of travel.  
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Building energy landscapes using random fixed effects models 
 

To construct the proxy energy landscapes, the relationship between COTsVeDBA with slope 

incline for each habitat had to be predicted. A linear mixed effect model was used, fitted in R 

using the lme4 package, with random intercept by animal ID and slope also as random slope, 

with a different model for every species for both ascent and descent.  By filtering each habitat 

on the map, the slope and intercept could be derived from the model and for giving a 

COTsVeDBA value for, finally, each 25 metre sector (the change in resolution from 10 m was 

dictated by the available map resolution) of any given cartographically-defined slope. 

 

Results 
 

Speed with slope 
 

All 6 species showed little change in general travel speed across slopes although mean speeds 

were lowest during ascent, highest during level travel and intermediate during descent in all 

species (although in the chamois, the incline movement occurred at similar speeds) (Fig. 4). 

 

Figure 4- Boxplot (horizontal bars show medians, box limits show quartile limits and whiskers indicate range 

limits not including outliers) showing the relationship between speed and whether each of the 6 different study 

species was ascending, descending or travelling on level ground. Ascent is represented by purple, descent by 
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green and level travel by yellow. The mean speed was taken including resting periods, in other words the speed 

of the animal (0 ms-1) was considered when the animal was not moving.  

 

Detailed consideration of speed with respect to slope showed though, for animals moving up 

slope, speed decreased approximately linearly with incline for all species except the chamois, 

where speed actually increased with incline steepness (Fig. 5). 

 

 

Figure 5 – Scatter-plots for each study species showing how mean travel speed changes with slope. Table 3 shows 

the simple linear regression results for the data displayed. 

  

Animal slope estimates as a function of cartographic slopes 
 

Animals travelled up and down slopes at much shallower angles than the maximum incline 

indicated by cartographic data for those slopes (Fig. 6). 
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Figure 6 – Estimates of the slope angle taken by the 6 study species of ungulates in relation to the cartographic 

inclines for both ascending and descending animals. Points show species-specific grand means across all datasets 

and 10 m travel lengths. 

 

There were notable species-specific differences in slopes chosen (i.e. the observed incline of 

the path) according to incline of the terrain, with domestic goats, sheep, ibex and mouflon all 

increasing their chosen slope angles with increasing incline (Table 4; Figure 6). Although cows 

showed the same trend, it was far less marked while chamois actually decreased both ascent 

and descent angle with the slope of the terrain (Fig. 6, Table 4), which accords with the 

previous result that they are the only species to increase speed in steeper terrain (Figure 5; 

Table 3).  

 

Cost of travel with slope 
 

Our proxy for cost of transport (COTsVeDBA) showed the reverse of the speed estimates 

according to whether animals ascended, descended or moved on level ground (Fig. 7).  
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Figure 7 - Boxplot (horizontal bars show medians, box limits show quartile limits and whiskers indicate range 

limits not including outliers) showing the relationship between COTsVeDBA and whether animals were ascending, 

descending or travelling on level ground. Ascent is represented by purple, descent by green and level travel by 

yellow.  

 

Detailed examination showed how the slope of COTsVeDBA increased with respect to terrain 

slope for all species apart from chamois (Fig. 8), in accordance with the precious results (Table 

3; Table 4). The chamois also had a higher average VeDBA value per metre travelled. The 

gradients of this relationship differ also between other the five species with the positive trend 

with the domestic sheep, goats and ibex COT being affected less compared to the Mouflon 

and notably the cow with a high coefficient estimate and R-squared value.  
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Figure 8 – Scatter-plots for each study species showing how mean COTVeDBA changes with cartographic slope. 

Table 5 shows the simple linear regression results for the data displayed.  

 

The map of the study site for the domestic goat is an example of the combined habitat and 

slope data available (Fig. 9a). The combination of both slope and habitat for these animals on 

COTVeDBA in shown in Fig. 9b, exemplifying the substantial variation. This approach was 

supported with simple linear models which showed significant relations between the two 

variables but with notably low R2 values (max <0.02) (see appendix, Table 6 for the full 

statistical table).  

 

Figure 9- (a) Map of the domestic goat study site with poly shapes representing habitats and pixels showing how 

slope (%) changes across 25 m2 areas. (b) Scatter-plots of VeDBA per metre moved against slope for both 
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movement mode and all habitats present, coloured to match the mapped habitats with simple liner regression 

lines to represent the trend. Domestic goat 10 m summary data, filtering out level movement, was used for this 

analysis. 

 

These patterns are confirmed by the results from the linear mixed effects models of how 

COTVeDBA is affected by slope and habitat. Within almost all species an increase in COTVeDBA 

with slope across habitats for bare rocks, and a consistent change of slope in vegetated 

habitats (Table 6).  

 

Table 6- Habitat-specific cost of transport (COTVeDBA) against slope – coefficient estimates form a linear mixed 

effects model with animal ID as random intercept and terrain slope as random slope, controlling for speed and 

the speed by slope interaction. Models were fitted separately for ascent and descent for each species.  

  
Domestic cow Domestic goat Domestic sheep 

  
Slope  Intercept P value Slope  Intercept P value Slope  Intercept P value 

Bare rock 
Ascent -0.430 13.229 0.280 0.991 7.253 <0.01 0.794 12.139 0.084 

Descent -1.175 13.007 0.150 0.501 6.238 <0.01 0.202 10.287 0.647 

Grasses 

and herbs 

Ascent 1.632 12.321 <0.001 -0.002 6.685 <0.001 0.297 11.769 0.244 

Descent 0.615 10.905 <0.001 0.013 5.646 <0.001 0.717 10.377 0.125 

Shrubs 
Ascent 

No Data No Data 
-0.406 12.548 0.020 

Descent 0.288 9.974 0.830 

Woodlands 
Ascent 0.080 7.499 0.240 -0.326 5.963 <0.001 -0.833 12.529 0.108 

Descent 0.416 6.588 <0.001 -0.494 4.894   0.010 -1.143 11.207 0.131 

           

  
Chamois Ibex Mouflon 

  
Slope  Intercept P value Slope  Intercept P value Slope  Intercept P value 

Bare rock 

Ascent -1.278 10.666 0.462 0.491 10.040 0.074 1.193 10.451 0.005 

Descent -1.218  9.710 0.345 0.697 9.132 <0.001 0.721 10.967 0.139 

Grasses 

and herbs 

Ascent 0.158 15.587 0.012 0.519 9.711 0.902 1.676 10.067 0.035 

Descent 0.223 15.342 0.028 0.577 8.843 0.488 1.016 9.280 0.391 

Shrubs 

Ascent 2.970 18.995 0.021 1.472 10.143 0.001 2.270 10.909 <0.001 

Descent -5.391 14.891 0.020 1.643 9.073 <0.001 1.180 9.961 0.298 

Woodlands 
Ascent -7.216 23.948 <0.001 1.864 10.628 0.012 1.239 10.240 0.816 

Descent -0.856 9.132 0.821 0.883 12.524 0.681 0.604 9.366 0.690 

 

 



219 
 

Based on the above work, the predicted COTVeDBA per 25m2 could be superimposed on the 

mapped areas used by each species, effectively correcting for both slope and habitat type 

(Figure 10). This showed the marked variation in COTVeDBA across areas for some species 

linked, in part, to the variation in the habitat (slope and superstrate types). Of note are the 

high costs of, for example, shrubs for ascending chamois and for woodlands for ascending 

ibex (cf. Table 5) and the extremely low values for ascending chamois in general. The reduced 

area of the study site for cows and goats with the reduced habitat types makes the much 

higher COTVeDBA for the cows compared to the goats particularly obvious.   
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Figure 10 – Energy landscapes constructed using COTVeDBA against slope and vegetation following mixed effect 

linear models which took into account ID as a fixed random effect on intercept, and speed as a random effect on 

slope. Both ascent and descent is shown for each species.  
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Discussion 
 

The robustness of VeDBA-based metrics to define behaviour 
 

My ability to determine behaviours, and most specifically when animals are moving depends 

critically on how well VeDBA codes for behaviour. Since the pioneering work of Ken Yoda 

(Yoda et al. 1999), it has been well established that tri-axial acceleration can be used to help 

identify behaviours, with numerous authors following suite and describing many complex 

manners, including machine learning (Martiskainen et al. 2009, Fehlmann et al. 2017) and 

Boolean-based algorithms (Lush et al. 2018, Wilson et al. 2018), by which acceleration can be 

interpreted to identify specific behaviours (Shepard et al. 2008, Moreau et al. 2009, Campbell 

et al. 2013, McClune et al. 2014). However, most of these studies work with data from tags 

fixed firmly to their animals and so the acceleration data properly reflect movement of the 

animal’s trunk (Moreau et al. 2009, Kölzsch et al. 2016, Dickinson et al. 2020). Collars can 

rotate and, to an extent, pitch forwards and backwards independently of the animal during 

movement, making identification of behaviours appreciable more problematic (Wilson, Rose, 

et al. 2020). Vectorial metrics, using all three acceleration axes, such as VeDBA (Qasem et al. 

2012), negate some of these issues because all three dimensions of space are covered but 

they are still compromised in their discriminatory capacity because the specific information 

from individual axes is missing. My approach of using a VeDBA-based threshold was chosen 

as a broad-brush approach to defining behaviour into either ‘inactive’ or ‘active’ because it 

eliminates the need to examine individual axes that are, by themselves, poor indicators of 

state. Against this, I have only aspired to resolve behaviours into one of two states. This is 

conservative, but there is no doubt that it will work in a general sense because a fully inactive 

animal produces no VeDBA. The crucial detail, however, lies in where the threshold is set to 

define the two states, not least because even resting animals produce some limited VeDBA 

signal. My choice of VeDBA thresholds to differentiate between ‘active’ and ‘inactive’ 

behaviours (Fig. 2) was minimally different between species and seemed appropriate based 

on observations of the domestic species and examining the corresponding raw and VeDBA 

acceleration signals (see Chapter 4, 5). Certainly, there is normally a step change in sVeDBA 

when animals transition between the two states (Fig. 2). However, potential slight 

inaccuracies in our choice of the threshold will do little to change the basic pattern, that the 
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more active an animal is, the higher its VeDBA (McClune et al. 2014, Fehlmann et al. 2017, 

Dickinson et al. subm.). 

 

The robustness of VeDBA-based metrics for interspecies comparisons of power use 
 

The value of VeDBA as a proxy for energy expenditure has been validated many times, with 

the relationship being linear (Qasem et al. 2012, Jeanniard‐du‐Dot et al. 2017, Wilson, Börger, 

et al. 2020) but it is not perfect across conditions. For example, Dickinson et al (subm.), 

working with pigmy goats (Capra aegagrus hircus) on a treadmill, demonstrated a tight linear 

relationship between VO2 and VeDBA for animals walking on the flat, and on both positive 

and negative slopes of 15°. However, the relationship going up the slope was significantly 

different to that of the flat or downhill walking, with more oxygen consumed per VeDBA unit. 

Although my animals did not walk up anything like such steep slopes as the test conditions 

used by Dickinson et al (subm.), (15° is equivalent to a slope of 26.8% while our species 

ascended using maximum slopes of about 5%, or ca. 3°), there is likely to be an effect on the 

robustness of the VeDBA proxies for metabolic rate according to slope. Specifically, VeDBA-

values would tend to underestimate metabolic rate, and therefore COTVeDBA, on steeper 

inclines. I could use the goat data within Dickinson et al (subm.) to correct for this effect but 

the domestic goats were not typical in our data set (see below) and the difference would in 

any event be minimal. 

 

To date, to my knowledge, there has been no study that has examined how VeDBA changes 

according to animal body form, lifestyle and mass. In this study, the body forms of our study 

ungulates are broadly similar, as is general lifestyle (but see below), but mass varies between 

about 30 kg for the domestic goats (McKean and Walker 1974, Alados et al. 2000) and roughly 

600-700 kg for a cow (Bouissou 1972, McMorris and Wilton 1986), well over an order of 

magnitude. Of relevance to movement capacity, within ungulates, the most notable 

consequence of increasing mass, and body size, is that the legs are longer (Alexander et al. 

1981, Hildebrand and Hurley 1985) so that stride length increases (Hildebrand and Hurley 

1985, Garland et al. 1990). This is important because it is the specifics of the strides that 
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produce the VeDBA signature. In particular, the VeDBA is derived from the difference 

between the smoothed and raw acceleration values for all 3 axes whereby peaks in this 

difference are apparent in each stride (Fig. 11). As stride frequency decreases so too does the 

sVeDBA (Fig. 11). 

 

 

Figure 11 – Translation of a raw acceleration signature from walking into VeDBA (purple line) and sVeDBA (dark 

purple – smoothed over 1 s) using (a) an example of an animal where the tag was firmly affixed to the body (a 

penguin – data from RPW), (b) a collar-mounted tag on a domestic goat (this chapter) and (c) a collar-mounted 

tag for an ibex that is weighted to emulate the animal’s movement more appropriately. Note that the penguin 

begins to walk from stationary (left hand-side) and how peaks and troughs in the sway axis (green line), due to 

the lateral movement in the waddling gait, coincide with peaks in both heave (blue line), as the bird momentarily 

rises during each step, and surge (yellow line), as the bird accelerates forward with each stride. In the production 

of VeDBA, the differences between all these values and the smoothed accelerations for each of the axes (lines 

running through the raw acceleration traces) are made positive and added vectorially. This produces very distinct 

peaks in the VeDBA with each stride. These relate to the dynamism of the strides and the step frequency (both of 

which decrease on the right-hand side of the graph) and shows clearly how step frequency affects the production 

of VeDBA and sVeDBA. The goat and ibex examples show a similar, though more complex, quadruped pattern 

but greatly obscured due to collar roll. Nonetheless, the same patterns regarding VeDBA and sVeDBA hold true. 

 

The expectation is, therefore, all other things being equal, that my cows should have broadly 

lower VeDBA values than the goats, for example, because they have lower stride frequencies 

for a given speed. This is not obviously the case (at least as reflected in the COTVeDBA estimates 

(e.g. Fig. 8). However, it is difficult to make robust comparisons because I did not have 

controlled conditions (such as a treadmill – cf. Dickinson et al. subm.). Instead, my data show 
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how COTVeDBA varies with slope (Fig. 8) at times where the animals were controlling their own 

speed (Fig. 5) and indeed, the extent to which they walked continuously. Nonetheless, I 

tentatively suggest that the expectation is that the larger ungulates should have lower VeDBA 

values for given speeds on level ground at least. I therefore propose to bear this in mind as I 

examine how animals of different masses deal with slopes and habitat under the null 

hypothesis that there is no difference in VeDBA (or mass-specific VeDBA) versus power-use 

across species so that any disproportionate increase in VeDBA with performance (speed and 

slope) in cows in particular (being substantially larger than all other species), genuinely 

reflects power investment.  

 

Species-specific movement tactics 
 

Perhaps the most striking feature of the way the study animals moved on slopes is the 

difference between animal slope angles, which are determined by the angle at which animals 

move up or down the cartographic (maximum) slope, and the slope of the terrain itself (Fig. 

6). Indeed, these animal angles were a fraction of the maximum angle of the slope. I believe 

that there are two elements to this. Firstly, animals were often moving and grazing (cf. 

Chapter 4, 5) rather than just moving, and grazing, in itself, is not expected to relate to slope. 

Secondly, I have no indication of the extent to which these animals intended to walk directly 

up or down the slopes. Such considerations are easily dealt with when examining human trails 

up mountains where people wish to reach a peak (Rees 2004) so that the energetics of zig-

zag tracks can be examined (Llobera and Sluckin 2007, Lempidakis et al. 2018). However, in 

the case of my mountain ungulates, animal-chosen slope angles are a complex mixture of the 

energetics of slope movement and accessing resources. In this respect, I am unable to make 

definitive statements except to note the speeds selected and the animal-chosen slopes as a 

function of the cartographic slopes. 

 

Within our dataset, I have information on both uphill and downhill movement, and note that 

animal-selected slopes in relation to cartographic slopes are strikingly similar for both uphill 

and downhill movement (Fig. 6). Although it is clear that uphill locomotion is most 
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energetically onerous, followed by downhill movement and finally movement on the flat (Fig. 

6) for reasons discussed earlier, for convenience, I concentrate in the following discussion on 

uphill movement, understanding that patterns will be similar for downhill movement, if less 

extreme. 

 

In order to understand species-specific tactics for dealing with inclines, it is important to 

merge animal slopes with respect to the slope of the terrain (Fig. 6) with animal-chosen 

speeds as a function of terrain slopes (Fig. 5) to give us the species-specific relationship 

between animal-chosen speed and animal-chosen slope (Fig. 12). 

 

 

Figure 12 – Relationship between the mean maximum speed travelled by 6 species of ungulate on inclines (cf. 

Fig. 4) and the incline chosen by the ungulates (cf. Fig. 6) derived by combining regressions. 

 

A number of aspects are apparent in this representation. First, both the ibex and the chamois 

ascended with constrained slopes (Fig. 11), even though they move in terrains that are both 

steep and extensive (20-50% for the chamois and 10-60% for the ibex) (Fig. 6). The power 

consequences for them are apparent in Fig. 8, which shows that the ibex has the lowest 

positive COTVeDBA versus slope coefficient of all species except for the sheep, while the 

chamois has a negative coefficient, although by the time this is converted to a COTVeDBA versus 

animal-chosen slope (by combining COTVeDBA versus animal-chosen slope and animal-chosen 

slope against terrain slope), it is positive (Fig. 12). The power consequences are also the result 
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of the fairly minimum change in speed over that range and, together, this translates into 

minimized dynamic range in power, assuming power can be equated linearly to VeDBA (and 

the evidence for this is compelling, even for ungulates - (Dailey and Hobbs 1989, Parsons et 

al. 2008, Halsey and White 2017, Dickinson et al. subm.). A consequence of this minimized 

power range is that the potential for overheating (cf. Chapter 5) is also less variable and 

perhaps more controllable and this may be a reason why the animals choose to move up 

slopes at the angles they do. 

 

 

Figure 13 - Relationship between COTVeDBA (cf. Fig. 8) and the mean incline chosen by animals to ascend for 6 

species of ungulate on inclines (cf. Fig. 6) derived by combining regressions. Note that both the positions of the 

lines as well as their gradients are important, with lines closest to the left hand side being proxies for power use 

(although COTVeDBA also needs to be seen within the context of travel speed (cf. Fig. 12)). 

 

The rate of speed drop with (chosen) slope in goats is notably high (Fig. 12), and it is also clear 

that these animals move so that their trajectories take them predominantly up shallow slopes 

(Fig. 12), irrespective of the cartographic slopes (Fig. 6). This strategy leads to a minimization 

in the rate of potential energy change during ascent (because their effective climb rate is 

reduced), which will keep power requirements low and is presumably the reason why their 

gradient of their COTVeDBA versus terrain slope is also particularly shallow (Fig. 8) and why they 

operate at low COTVeDBA values overall (Fig. 13). 
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The mouflon tended towards climbing slopes that were between 1 and 3.5%, which applied 

to mapped slopes of 0 to 55% (Fig. 6), with the highest gradient of all species bar the sheep 

(Table 4, Fig. 6). So, despite them adopting an appreciable reduction in speed drop over the 

range (Fig. 12), they had one of the highest absolute values of COTVeDBA across slopes and 

highest rates of increase in COTVeDBA with animal slope of the species examined (Fig. 13). 

 

Although cows adopted relatively low speeds (Fig. 12) and travelled so as to move up low 

slope angles, with little variation according to terrain slope (Fig. 6), they had the highest rate 

of increase of COTVeDBA against animal slope of all the species (Fig. 13). If my earlier null 

hypothesis, that VeDBA is a suitable proxy for power (and therefore COTVeDBA for cost of 

transport) irrespective of size is to be adopted, it would seem as if moving up slopes is most 

onerous for cows. This is likely to be further emphasized because, as projected earlier, there 

are reasons to think that cows, by virtue of their size, should have lower COTVeDBA values that 

the other species. An explanation for this is provided by Wall et al. (2005), who point out that 

slope-climbing is more onerous for larger animals because of muscles being ~33% less 

efficient when climbing compared to flat surface travel and the shifting of extra body weight 

against gravitational forces. That this restricts cow movement on slopes is also indicated by 

the high COTVeDBA values at low animal-chosen slopes (Fig. 13), despite the reduced speed at 

which they operate (Fig. 12). 

 

The most surprising result of this study concerns, though, the sheep. The data indicate that 

sheep reduce their mean travelling speed the least in relation to slope of all the species (Fig. 

13) and also have the lowest COTVeDBA values while doing this (Fig. 14) and exploiting an 

appreciable range of slopes, both in their chosen slopes and the cartographic slopes (Fig. 8). 

This makes sheep real outliers and this is particularly apparent if the COTVeDBA values, the 

speeds and the animal-chosen slopes are placed within one three-dimensional graph (Fig. 14). 



228 
 

 

Figure 14 – 3d plot linking the VeDBA-derived costs of transport with travelling speed and ascent angles 

(combining Figs 12 and 13) adopted by the 6 species of ungulates used in this study. 

 

It is not clear why the sheep are so efficient and, in any event, a proper calibration of oxygen 

consumption versus VeDBA (Dickinson et al. subm.) would be needed for all species for this 

to be confirmed. However, assuming the VeDBA proxy for power to be true (Qasem et al. 

2012, Jeanniard‐du‐Dot et al. 2017, Wilson, Börger, et al. 2020), this movement efficiency may 

explain why sheep have been adopted as the animal of choice for mountainous regions across 

the globe (Zeuner 1963, Ryder 1983). The wild ancestor of the domestic sheep was the Asian 

mouflon (Ovis gmelini musimon × Ovis sp.), a mountain-dwelling species, which was 

domesticated around 11,000 years ago (Meadow et al. 1989). What is notable though is that, 

within our 6 study species, the mouflon had the most dissimilar strategic and energetic profile 

to the sheep, having the highest COTVeDBA-linked performance of the group (cf. Figs 6, 8, 12, 

13, 14). If the Asian mouflon behaves in a manner similar to this species, and I assume that 

there are survival-linked advantages to their strategy, the process of domestication has 

changed this dramatically. As a result, the domestic sheep seems well adapted, both 

behaviourally and physiologically, to exploit a wide variety of slopes within mountain regions.  
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As expected, the COTsVeDBA decreased with speed adopted by each species, and the rate of 

energy expenditure increases with speed. Higher speeds offer a more efficient way to traverse 

an environment but the speed the species travelled at decreased with slope possibly 

explaining the inefficient travel.  

 

 

Energy landscapes for sympatric ungulates 
 

A prime aim of this study was to construct and compare the energy landscapes of 6 different 

ungulate species living in the same area, positing that although conditions such as topography 

are fixed, that the costs of movement will vary according to animal type. In fact, although my 

study areas were similar, most of our species were not truly sympatric.  

 

Nonetheless, inspection of the energy landscapes for ascending and descending ungulates 

across their respective areas shows huge variability in the costs of moving over the terrain 

they exploit (Fig. 10). Here, it is also notable that patterns of high costs, primarily associated 

with cartographic incline, are similar for both ascents and descents because steep inclines 

necessitate energy to negotiate, but for different reasons (see above). In a general sense, the 

proposed energy landscapes should highlight the areas that are energetically onerous for the 

different species. Future work could consider integrating that with the presumed benefits of 

different areas, such as food quality, access to mates and likelihood of predation. Especially 

interesting is the difference according to substrate, especially the difference between bare 

rocky ground and the vegetated habitats (Table 6). 

 

There was, however, a case where two animals, the goats and the cows, exploited exactly the 

same environment. Here, the data indicate that they had, as hypothesized, very different 

energy landscapes to one another, both for ascending and descending behaviours (Fig. 10). 

Notwithstanding the lack of a proper calibration between oxygen consumption and VeDBA 

with which to ground-truth the data, the inter-specific differences are dramatic, with cows 
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having substantially higher COTVeDBA values for most of the exploited regions, only comparing 

to goats in a tongue of land rising northwards, starting in the south-east, and having lower 

COTVeDBA values in a tongue of land rising northwards, starting in the south-west (Fig. 10). At 

once, this illustrates that energy landscapes do indeed seem to vary between species 

exploiting the same environment but it also points to the competitive advantage that one 

species may have over another according to the habitat. In my study, slope turned out to be 

the major modulator of COTVeDBA, but habitat type, by virtue of the animals having to push 

through superstrate (Murray and Boutin 1991, Crête and Larivière 2003, Shepard et al. 2013) 

or expend energy by having a more tortuous track (Wilson et al. 2013) , will also play a role. 

The precise behaviours adopted by the animals, such as how their chosen ascent slope 

changes with terrain slope and how they modulate speed with slope will affect their power 

use, but will also affect the extent to which they can move up and down mountain slopes to 

exploit resources (including access to females for males). Species that climb up steeper 

gradients will access benefits linked to variable altitudes better but they will pay a high 

energetic cost and so net sum gains will determine the success of this strategy. Included in 

the potential deficits are temperature which, as examined in chapter 5, may constrain high 

energy behaviour which might have had benefits in the past, when global warming was not 

an issue (Aublet et al. 2009). 

 

Most importantly, although this work is a first step towards understanding space-use in 

mountain ungulates, it does, at least, show the breadth of factors that are likely to impact 

population wellbeing. Faced with such complexity, conservationists have a daunting task if 

they are to ensure species success in such as fast-changing world. 
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Chapter 8 
 

Synopsis 

 

Naively into the thesis 
 

When the project and my PhD started, I had great ambitions to collect and collate high 

resolution (20 Hz) multiple sensor tagging data on six ungulate species for periods of between 

30 days and a whole year, and for up to 20 individuals for each species across two field 

seasons. Certainly, by working with Grenoble University and the ‘French National Office for 

Hunting and Wild Fauna’ (ONFCSs), and within the Swansea Lab for Anima Movement (SLAM), 

this seemed highly achievable. But my post-graduate optimism fostered naivety and, 

although part of the work capitalised on commercial GPS collars, I was in for some serious 

lessons.  

 

I suppose that the most important of those was that wild animals have no regard for the 

expense, construction time or utility of tags that I attach to them. I have heard of researchers 

talking of this but the special qualities of my ungulates (simple brute force) and the 

environment in which they live (freezing to hot temperatures with drastic precipitation – 

chapter 2) make for a particular brand of hopelessness. With hindsight, the idea that I might 

construct and deploy such hi-tech, lab-built tags for periods that, at that point, were an order 

of magnitude longer than ever done before, was crazy. SLAM tag deployments using Daily 

Diaries (DDs) are typically a few days (Wilson et al. 2008, Sala et al. 2012, Scantlebury et al. 

2014, Williams et al. 2015) although, exceptionally, there had been deployments of up to 3 

weeks (Fehlmann et al. 2017, Gunner et al. 2020). Finally, of course, many of the species on 

which I was to work are effectively invisible – they cannot normally be observed - so the idea 

that I could sit on a sunny mountain slope sipping coffee from a flask and watch what the wild 

ungulates did with my tags through binoculars was fanciful in the extreme.  
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My MRes, which involved tagging tortoises on a tropical island for a few days at most, did 

little to prepare me for the storm of possibilities that long-term tagging of wild ungulates 

would produce. And finally, the one thing that would undoubtedly have helped me with 

general housing design, the deployment of tags on domestic ungulates (sheep, cows and 

goats – chapter 3, 4, 5), did not happen until the deployments on the wild species (mouflon, 

ibex and chamois) had taken place. A chance that I was supposed to have for a second 

deployment on the wild ungulates, was cancelled after the French researchers discovered 

that the commercially available collars were malfunctioning. This was depressing as a PhD 

student but demonstrates that even the might of industry is not guaranteed to deal with the 

vagaries of wild animals, especially, it would seem, alpine ungulates. 

 

As time into my thesis progressed, eroding the time I had left to finish the job, it became clear 

that great thought and consideration was needed into the design of the housing for Swansea’s 

DD that would complement the Lotek collar (being used by our partners), including force 

measurements and the weatherproofing for the internal electronics of the tag. The simple 

truth about long-term deployments (~12 months) is that they are high risk, because any 

failure that occurs within that extended time can effectively result in catastrophic failure (no 

data at all) and all that time is lost in such a short-term project that can ill-afford it. Indeed, 

the framework proposed by Bidder et al. (Bidder et al. 2014) about tagging failures kept 

nagging me: That, even if the probability that a tag fails per unit time is constant (for whatever 

reason), the overall probability of failure increases with deployment period according to 

simple probabilistic rules – like shaking a 12 with two dice. Throw the dice for long enough 

and you will get 12!  

 

So, the material of the DD housing, how it should be waterproofed and then attached to the 

housing, haunted my start into this thesis for much longer than I thought possible, and is now 

hidden in chapter 2 in a few short words. The construction of the housing was made all the 

more difficult by the understandable ethically motivated restrictions on tag mass (e.g. 

(Vandenabeele et al. 2015, Kölzsch et al. 2016, Wilson et al. 2019)). Batteries alone took up a 

large portion of tag weight because recording for long periods requires greater energy 
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reserves (Holton et al. in press) so I also spent much time testing power consumption and the 

effect of this on various batteries (not all batteries are created equal).   

And finally, having decided on the best design for my DDs, I had the deployments in the Alps 

on wild animals that are elusive, difficult to manage, and for which there were limited 

opportunities to catch. To say this the whole process was extremely stressful (for me as well 

as them) was putting it mildly. But I did it. After all that, I was not to know whether my 

ministrations had paid off until months, almost years, later. 

 

Many unforeseen failures occurred that affected the end data set, although even these 

experiences will be valuable for any future tagging projects. Some housings were destroyed 

by the mouflon, presumably from head-butting (Fig. 1) and all data were lost because the 

smashing was so complete that even the circuit board of the DDs could not be found. A tagged 

chamois was also found dead after falling into a ravine (with the data irretrievable). 

 

 

Figure 1- (a) Acceleration trace of possible high impact (>10 g), agnostic social interaction causing destruction of 

“daily diary” housing units. (b) Image of collar attached to mouflon with daily diary housing intact. (c) Collar 

collected following deployment in the field with ABS plastic missing, bolts holding the housing in place still intact 

but showing the housing fragmented off. Data and images of collars taken from mouflon tagged in Caroux, 

France, during the rutting season in 2017.  

 

Two mouflon were killed by a wolf (there was apparently only one in the region). The data 

from the tags showed the drama of the last seconds of these animal’s lives (e.g. Fig. 2), 
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emphasizing the value of such systems for elucidating transient, but critical, moments in 

animals’ lives – for predators as well as prey (Cooke et al. 2013, Wilson et al. 2015). Given the 

effective scarcity of this predator, that so ‘many’ of my equipped animals were caught, raises 

questions about whether the tags did not contribute to the process. Other, more mundane 

but more common, reasons for data loss, included SD cards that seemed unable to function 

for long periods under the deployment conditions without incurring data corruption. This was 

particularly frustrating because the tags were successfully retrieved (no small matter) and 

then, despite asking specialist companies to try and extract the data from the cards, it was to 

no avail. If there is one key message about deployment of tags that use memory cards, it is 

that card quality is critical, whatever the manufacturers tell you.  

 

 

Figure 2- Line graph to visualise acceleration and VeDBA across time during the final movement of mouflon’s life. 

Changes in acceleration signify changes in posture and activity leading to four proposed phases of mouflon and 

wolf interaction, sitting, pursuit, kill and dead. Mouflon death was confirmed to be caused by wolf by post-

mortem.  
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The benefits of starting with domestic animals extend beyond housing/collar design 
 

Although I was unable to benefit from the domestic livestock in designing my housings, they 

proved critical in helping me understand my data from wild animals because I could observe 

them and inspect the acceleration and magnetometer signals with respect to behaviour and 

movement. In fact, livestock has been well studied in this respect within the literature (e.g.  

Miranda-de la Lama and Mattiello n.d., Alvarez et al. 2003, Sanon et al. 2007, Chapinal et al. 

2009, Lush et al. 2018), not least because these animals have high economic value within the 

farming industry (Miranda-de la Lama and Mattiello n.d., García-Martínez and Bernués 2009). 

Nonetheless, I had to bear in mind that farmed animals (are bred to) undertake less dynamic 

movements than wild animals, and also display a much simplified array of behaviours 

(Campbell et al. 2013) under ‘gentler’ environmental conditions, such as slope angle (because 

no farmer wants to have to retrieve her/his livestock from a cliff!).  Nonetheless, a step taken 

by a domestic goat is functionally much the same as a step taken by a wild ibex so, given the 

questions I was attempting to answer within the thesis, my domestic animals served as 

excellent surrogates for the wild species (e.g. Chapter 5, 6), as well as being interesting in 

their own right (chapters 4, 7). 

 

Dealing with behaviours 
 

This process of matching data to behaviours was not easy, even though many publications 

imply that it is (Shepard et al. 2008). This was primarily because my animals all wore collars, 

onto which the DDs were attached, whereas literature examples of deriving behaviour from 

accelerometer data tend to use examples where the tags are affixed tightly to the trunk of 

the animal (Yoda et al. 1999, Williams et al. 2015, Kölzsch et al. 2016). Collars rotate (Moreau 

et al. 2009, Dickinson et al. 2020), so that acceleration axes become confused, most 

particularly because the heave and sway axes are effectively interchangeable.  And the degree 

of rotation depends on the weighting of the collar (another challenging element that I have 

glossed over in this thesis) and the movement of the animal because, for example, the faster 

an animal travels, the more the collar tends to rotate (pers. obs).  One potential way around 

this, would have been to have used machine-learning, such as random forests (Martiskainen 
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et al. 2009, Fehlmann et al. 2017, Rast et al. 2020), to allow some ‘black box’ approach to 

classify behaviours. This is wonderfully convenient, but the machine can only learn from what 

it is given, and if the test data do not represent the full suite of conditions to which that animal 

is exposed, it cannot be expected to perform to the level it does under the controlled 

conditions. This particularly germane for animals in mountains where, in acceleration terms, 

the data change radically according to slope. A good example of this is apparent in the sheep 

literature: Lush et al. (2018) cite a success of detection of sheep urination of 87% in precision 

and 62% in recall using machine-learning on animals with behaviours calibrated in a flat 

paddock. But this method detected only a fraction of examples of exactly the same animals 

on a mountainside (Marsden et al. 2021). In fact, following this, Marden et al. (in press) 

changed their approach to identify urination using a Boolean approach (Wilson et al. 2018). 

This was based on identifying particular signatures within the data set that were slope-

independent, such as differentials and vectorial sums in the acceleration signals, and showed 

100% success for the paddock trials and expected urination rates for the mountainside sheep 

(Marsden et al., in press).  

 

For reasons such as this, I opted for the Boolean approach (Wilson et al. 2018), but also 

because I could see what was happening at every stage, which is empowering and sometimes 

very necessary.  The Boolean approach capitalised on the SLAM lab-built programme, Daily 

Diary Movement Trace (DDMT), which is extraordinarily powerful, although challenging to 

learn to use. As a consequence, I spent many hours visually inspecting, practising, and 

understanding acceleration data, for what they meant themselves in terms of animal 

movement as well as how they are represented in the DDMT visualisation tool. During this 

time, I was successfully able to define behaviours using acceleration data employing both 

Boolean rules as well as adding a time element to help identify different ‘LoCoD’ aspects of 

behaviours (Chapter 4, 5). The trade-off in accuracy, reliability, adaptability and efficiently 

(analysis time and computer power) in my algorithms was not specifically assessed. However, 

a general trend emerged wherein the more complex the rule and the stricter the time series 

windows associated with it, the greater the accuracy of the algorithm for finding specific 

behaviours. However, it is easy to over-specify the rules so that the behaviours, if they do not 

accord exactly to the conditions set, will be missed. A thorough examination of this process, 
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including the time invested by the computer to search through the data to detect events, 

would be useful to define realistic expectations for people using this method.   

 

During my behavioural meanderings, I was aware of many ideas that I could have pursued. 

These included broad areas associated with accelerometery, such as how animal mass affects 

acceleration signals. But it also touched on fleeting behaviours that are relevant for a suite of 

behavioural issues, such as how post-agnostic behaviours could reveal winners and losers 

after head-clashes (the winner would hold ground, the loser mover away) and perhaps allow 

me to build a dominance hierarchy of populations or depict individual personality. These 

concepts were entertained and discarded due to the workload associated with data handling 

and analysis. This was somewhat frustrating, but in the interests of the specific tasks 

associated with my chapters, the right decision. Maybe I can visit them later? In any event, I 

have a very thorough grounding in acceleration and magnetometry data now, which will 

facilitate analyses that I might undertake using this sort of data in the future, irrespective of 

the animal on which it is collected. 

 

Dealing with data 
 

In a manner similar to my naivety with respect to the tag construction, I was unprepared for 

the task of dealing with billions of data points, even from single animals. A quick calculation 

of deployment lengths and sampling rates would have told me what I should have known. 

With 8 channels recording at 20 Hz, a DD attached to an animal for 200 days will record over 

2.7 billion data points, and although my tags sampled at lesser rates for the pressure and 

temperature readings, for example, it illustrates the point. So, I discovered that utilizing 

billions of data points to produce 20 Hz dead-reckoned paths for >200 days on multiple 

individuals soon cut my wings. I embraced my (hi-specification) computer limitations and 

produced dead-reckoned paths at 1 Hz (and for some figures sub-sampled further to produce 

visualisations). This is defendable given that I needed to resolve relatively ‘broad’ space-use 

and movement (e.g. Chapter 4), but it did mean that the details in the movement of some of 

the ungulate behaviour, such as head-clashing (Chapter 6), were lost on me.   
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Similarly, I could not over-indulge in examining other ‘interesting’ behaviours, such as how 

individual goats move according to the movement and behaviour of adjacent conspecifics 

(O’Bryan et al. 2019, Pérez-Solano et al. 2020). The data are now available, however, a 

precious and hard-won resource that can be examined at any point in the future. Indeed, 

animal ethics considerations would advocate this strongly, rather than instigating more 

studies if the questions being asked can be answered with existing data. Importantly, even 

during the analysis, I was acutely aware of the value of my high-resolution data. The ‘norm’ 

in studies on wild animals is for people to have comparatively ‘rare data’, for example GPS 

data every hour, to which they have to apply hidden Markov maths to try and define ‘states’. 

Such approaches are superfluous in DD information-rich datasets, where the sub-second 

details are available, seamlessly for the whole tag operation period. So, I have the treasure 

and do not have to speculate if I want to know what is in the box. But I decided in the end 

that I did not have the time to sift through it; thesis duration limitations are unforgiving. 

 

Expanding our understanding of energies 
 

The literature reminds us repeatedly of the value of energetics in animal behaviour (Aublet et 

al. 2009, Scantlebury et al. 2014, Wang et al. 2015), movement (Pearson et al. 1995, Wilson 

et al. 2013), reproduction (Holand et al. 2006, Brivio et al. 2010, Willisch and Neuhaus 2010), 

in fact almost everything (Patton 1962), so it seemed appropriate to visit this in my thesis. 

Dynamic body acceleration (DBA) has been shown to be extremely valuable with respect to 

helping define animal energetics with a linear relationship between power and DBA across 

taxa, although the gradients and intercepts vary (Wilson et al. 2020). My tags allowed me to 

determine DBA, and so, in a general sense, I could allude to changing power costs within 

species and this proved important for assessing animal reactions to incline. However, I had 

no calibration, such as was done by Dickinson et al (subm.), so it is important for me to be 

circumspect in how far I could push the issue. Determination of costs of transport (COT) might 

seem a step too far in this regard. However, the calculated speed seemed appropriate 

(chapter 3) so, given that the COT is given by the power to move divided by the speed (Taylor 

and Rowntree 1973, Taylor et al. 1974), the derived COT-values are likely to be no more 
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subject to variation than DBA itself. Importantly though, calculation of COT allowed me to 

effectively remove speed in my application of COT to slope-travelling behaviour (Chapter 7). 

The value is this is obvious from chapter (last chapter), where I could allude to differing energy 

landscapes (Shepard et al. 2013) according to species for the same topography. This indicates 

that slope per se is not enough in our construction of energy landscapes but that precisely 

how the species approach a given energy landscape defines how onerous it is for them. In 

that respect, for me, dead-reckoning really came into its own, demonstrating that none of the 

ungulates apparently ever climbed directly up or down the slope, instead travelling obliquely 

at shallow angles, something that was independently confirmed by the rate of change of 

pressure with respect to speed. So, although I tend to consider mountains by virtue of how 

steep they are (the incline specifically being defined by the maximum gradient), this is not 

applicable to the animals that inhabit these slopes. Instead, the slopes impose a constraint 

for gentle angular climbing but nothing more. This, in turn, means that I should perhaps be 

considering access to resources by animals on slopes according to contours rather than 

altitudinal accessibility (Dunford et al. 2020, Dickinson et al. subm.).  

 

Energy expenditure to move is particularly relevant for ungulates with regard to foraging 

because these animals have to invest such a high percentage of their time grazing, which 

involves movement, so it was relevant for me to consider resource availability. However, 

although I could determine with reasonable certainty that animals were feeding, and in what 

habitat type, I could not determine precisely what they favoured. The literature shows that 

food plant choice in ungulates is complex  (Pokorná et al. 2013, Iussig et al. 2015, Pittarello et 

al. 2017) with, for example, sheep preferring some foodstuffs in the morning and others in 

the afternoon (Pulliam and Pyke 2008, Pittarello et al. 2017). The principle behind optimal 

foraging is not just that animals should chose when to leave food patches (Krebs 1980, Pyke 

1981) but also, particularly when applied to herbivores, what they choose to eat (Zweifel-

Schielly et al. 2009, Mason et al. 2017, Pittarello et al. 2017). This makes perfect sense. They 

are surrounded by food but some plants within the matrix of vegetation are better for them 

(more nutritious or contain more energy) than others and there must be considerable 

selection pressure for them to choose carefully. So my attempts at determining habitat 

preferences as a measure of determining foodstuff preferences are primitive seen in this light. 
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Techniques such as video collars may provide more detailed answers (Newmaster et al. 2013) 

for future work but it is hard to see how this complex issue will be resolved satisfactorily in 

the short term. Nonetheless, linking animal pathways to behaviour to vegetation types is a 

first step in this direction. 

 

Marrying dead-reckoning with behaviour 
 

The work within this thesis that identifies feeding habitat, illustrates what I consider to be a 

critically important feature of the DD technology for understanding the spatial ecology of 

animal behaviour.  This is the ability to marry observations of behaviour with locality by 

inspecting the behaviour deduced from accelerometers with the time-synchronised GPS-

corrected dead-reckoned tracks. Recent ecological work has emphasized that animal 

landscapes can be considered as ‘landscapes of fear’ (Laundré et al. 2001, Hernández et al. 

2005, Kohl et al. 2018), ‘energy landscapes’  (Shepard et al. 2013) or even ‘accident 

landscapes’ (Wheatley et al. 2021), which is another way of saying that the ‘value’ of the 

landscape for animals varies, with positive and negative effects according to locality. In 

accordance with this, authors have noted, for example, that animals avoid ‘landscapes of 

fear’, selecting to use areas where predators are less likely to be present (Laundré et al. 2001, 

Hernández et al. 2005).  This avoidance changes over time, including within the daily cycle 

(Kohl et al. 2018). While this area-switching is useful, not least for conservation reasons 

(Bleicher 2017), it gives no clue as to what behaviours animals exhibit in the different 

landscapes that might indicate why they choose their particular paths.  The ability of 

accelerometers and magnetometers to resolve behaviour, including e.g. vigilance (Wilson et 

al. 2020), in detail (Shepard et al. 2008, Williams et al. 2017) means that it should be possible 

to determine the onset of behaviours, such as vigilance, that indicate why animals choose the 

pathways that they do. Indeed, ultimately, it should be possible to ascribe a full suite of 

behaviours to time and space within all the areas used by animals which would go a long way 

to illustrating how a species fits within its environment. 
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Ecological questions 

With so much of my PhD being dedicated to solving methodological issues, there has been 

an inevitable bias towards the ‘technical’ side of biology. Our data is only as good as our 

research protocols, however, so I believe this aspect is critically important. Indeed, a recent 

submission by Garde et al. (2021) makes clear how blind acceptance of the apparent 

capacity of technology (specifically accelerometers) can lead to fundamental errors in 

interpretation. But my concentration on technology has come at the expense of dealing 

with biological matters so it is worthwhile pointing to biological questions that may be 

addressed using this technology. In 2012, Sutherland et al. (2012) published a paper in the 

Journal of Ecology entitled ‘Identification of 100 fundamental ecological questions’, which 

was compiled using data from 388 participants who sought to identify the 100 (presumably 

most) important questions in pure ecology. These questions understandably reflected  

technical and conceptual issues in ecology and were wide-ranging across scales of time, 

space and populations. Many of these questions will perplex researchers for years to come 

but a few of them may now be addressed using animal-attached technology. For example, 

one question asks ‘How do organisms make movement decisions in relation to dispersal, 

migration, foraging or mate search?’. Although this is obviously a very big and multifaceted 

question, the extraordinarily high temporal and spatial resolution of GPS-enhanced dead-

reckoning means that decisions that occur on any scale can be examined. This ranges from 

the rapid twists and turns as animals try to outmanoeuvre predators, with strategy 

depending on relative predator and prey masses (Wilson, Griffiths, et al. 2015), through 

decisions to  avoid or favour certain areas of the landscape for energetic reasons (Shepard 

et al. 2013 Energy landscapes Am Nat) –including the rate at which animals might negotiate 

slopes (see chapter 7) - to general dispersal metrics (Lidicker 1992), which can be coached in 

terms of instantaneous speeds and track tortuosities as well as their means over periods 

equating to months or even years of dispersal. Indeed, I note that biologgers can now 

operate over years (chapter 6) and have even been demonstrated to do so by a research 

group in Prague working on red deer (Cervus elaphus) and boar (Sus scrofa) who have data 

spanning over two years. This is a significant proportion of the lifespan of these animals and 

it is extraordinary to think that the hierarchy of movement decisions taken by animals can 

now be considered over seconds or months.  
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With respect to ‘when’ and ‘where’ movement decisions occur, recent work by Potts et al. 

(2018) argues that movement decisions are apparent by a change in movement metrics, 

most common of which is a change in direction. So GPS-enhanced dead-reckoning can show 

where turn points occur (Potts et al. 2018) and these can be considered with respect to 

potential elicitors of the turns. These might be details of how an ungulate walks around a 

marsh to minimize its costs of transport (Shepard et al. 2013), uses a mountain path to 

minimize the risk of slipping (Wheatley et al. 2021) or decides to curtail its outward 

movement from its central place (as exemplified in chapter 4). Indeed, the high resolution of 

movement tracks now allows us to examine tracks with respect to (the high resolution of) 

the environment (google earth or digital elevation models) to see the effects of topography 

and substrate across scales. Similarly, the ability to examine movement with respect to high 

resolution data on vegetation (e.g. chapter 4) shows how biologgers can contribute to 

elucidating another one of the 100 questions in ecology ‘How do resource pulses affect 

resource use and interactions between organisms?’. Put simply, we expect animals to 

respond to changing food resources by moving to exploit them as they become available 

(chapter 4) and biologgers should show when and where this occurs. The technology might 

even give clues as to the cues the animals respond to: consistent movement upwind to hone 

in on a food resource may show the influence of odour plumes in food-finding (Nevitt et al. 

1995, Keller et al. 2001, Dove 2015).  

Resource pulses are driven, in part, by meteorological conditions, the importance of which 

also presumably led the Sutherland et al. (2012) consortium to ask ‘How do natural 

communities respond to increased frequencies of extreme weather events predicted under 

global climate change?’. A prime strength of biologging tags is that they can record for long 

periods, which increasingly incorporates extreme weather events (Barnes 2013, Tippett 

2018). As with any behaviour- and movement elicitors, the more finely tuned the data 

collection system, the more precisely responses to specific elicitors can be determined. 

Thus, sub-second resolution in biologging sensors in tandem with synoptic weather data 

promises to allow us to understand how animals respond to the specifics of weather better 

than at any point in the past and my work on the importance of temperature in chapter 5 on 

modulating movement speed and power has looked specifically at this. A charming 

reference to how animals respond to environmental variation in ‘extreme events’ has been 
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proposed by the Max Plank Institute, who have equipped domestic goats (Capra hircus) 

grazing the mountain of Vesuvius with biologgers designed to transit data indicating when 

the animals respond to volcanic activity (Maier 2021). Work has indicated that goats are far 

more sensitive to imminent eruptions than recording apparatus, possibly because they 

respond to infra-sound (Maier 2021), so they may save lives as well as reveal how animal 

sensory capacities and responses have survival value to the animals themselves.   

A final question posed by Sutherland et al. (2012); ‘What is the relative importance of direct 

(consumption, competition) vs indirect (induced behavioural change) interactions in 

determining the effect of one species on others?’, also illustrates that biologgers have an 

important role to play in helping understand animal/animal interactions. Competition is 

considered a major driver of animal movement and behaviour strategy although precisely 

how competition is manifest and resolved is not always easy to quantify. As chapter 5 (head 

butting) showed with the work on head-clashes, biologgers are not only able to quantify the 

extent and intensity of competitive interactions, they can also show where these occur. This 

is relevant because competition is associated with resources. Detailed studies of resource 

quality and ‘winners’ and ‘losers’ (the loser in a head clash will likely be the animal with the 

lowest acceleration signature but also, as apparent in the dead-reckoned trace, the animal 

that retreats) can help identify the rules by which competitive games are played and the 

likely outcome. In goats, for example, what role does mass play in success in competitive 

interactions and, bearing in mind that mating attempts should be readily identifiable by 

biologgers, how might this affect lifetime reproductive success? In this case, as with the 

other questions posed above, it may be that, as Ludwig Mies van der Rohe said, the ‘devil is 

in the details’ but if that is the case, then biologging would seem set to deal with that, 

allowing us to move towards answering some of the fundamental questions in ecology. 

 

The final word 
 

This thesis began as an attempt to try and better understand how the alpine ungulates behave 

according to space and time in their extraordinary landscape and the discussion above makes 

it clear that my best efforts have just scratched the surface.  Indeed, one of the reasons for 
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this was that I was so focussed on the many technical problems, both in terms of hardware 

and software, that I failed to see many of the exciting avenues of investigation until it was too 

late. Then again, if I had not dedicated so much time to problem solving, I might have no data 

or analysis at all. Frank Delarny, in The Matchmaker of Kenmare’ wrote “Start with the difficult 

and when it gets easy, everything else is easier”.  I think that I started with the difficult, but I 

would like to believe that I have maybe made it easier for others for the future. There is 

certainly a lot of data in the bank as well as tips on how to examine it. Surely that is cause for 

celebration? 
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Appendix 

 

Appendix  Supplementary Information for ‘Chapter 3 - Step in the right direction for dead-reckoning 

terrestrial animals: Using behavioural definition analysis to improve the accuracy of dead-reckoned 

locations’, ‘Chapter 4 - Move. Eat. Rest. Repeat: Habitat preferences and space-use of a herd of 

domestic goats (Capra aegagrus hircus) in the French Alps’ and ‘Ungulates as cartographers: How 

do topography and habitat affect the movement energetics of ungulates in mountain areas?’ 

 

Table 1 – List of GPS units used in study with corresponding batteries and logging times to calculate weight per 

day for GPS taking 1 fix every second. 

Animal 
and unit ID 

Sample 
frequency 

Battery 
type 

Battery 
capacity 
(mAh) 

Battery 
weight (g) 

Logging 
days 

Total Data 
points 

Power drawn 
every day 
(mAh) 

Weight of battery 
required to log 
for 1 day 

Cow 9 
week 1 
GiPSy 5 1Hz 

A-cell 
3.6v  3600 25.15 1.8 132693 533.33 3.73 

Cow 9 
week 2 
GiPSy 5 1Hz 

A-cell 
3.6v 3600 25.15 2.16 193533 444.44 3.10 

Cow 9 
week 3 
GiPSy 5 1Hz 

A-cell 
3.6v 3600 25.15 1.84 177001 521.74 3.64 

    Mean 1.93 167742.33 499.84 3.49 

 

Table 2 – List of each behaviour and how Daily Diary Movement Trace (DDMT) was used to quantify each one 

across for each species. 

 
Domestic cow Domestic goat Domestic sheep 

Behaviour Simple rule used to quantify 
behaviours using acceleration  

Simple rule used to quantify 
behaviours using acceleration  

Simple rule used to quantify 
behaviours using acceleration  

Resting/inactive If VeDBA smoothed (across 40 
events) <0.07 

If VeDBA smoothed (across 40 
events) <0.1 

If VeDBA smoothed (across 40 
events) <0.1 

Grazing If VeDBA smoothed (across 40 
events) >0.07 AND VeDBA 
smoothed (across 40 events) 
<0.3  

If VeDBA smoothed (across 40 
events) >0.1 AND VeDBA 
smoothed (across 40 events) 
<0.23 

If VeDBA smoothed (across 40 
events) >0.1 AND VeDBA 
smoothed (across 40 events) 
<0.27  

Moving If VeDBA smoothed (across 40 
events) >0.3 

If VeDBA smoothed (across 40 
events) >0.23 

If VeDBA smoothed (across 40 
events) >0.27 

Steps If difference in the y axis acc. 
(differential across 3 events) 
>0.2 AND VeDBA smoothed 
(across 40 events) <0.6 

If difference in the y axis acc. 
(differential across 3 events) 
>0.11 AND VeDBA smoothed 
(across 40 events) <0.5 

None 
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Chamois Ibex Mouflon 

Behaviour Simple rule used to quantify 
behaviours using acceleration  

Simple rule used to quantify 
behaviours using acceleration  

Simple rule used to quantify 
behaviours using acceleration  

Resting/inactive If VeDBA smoothed (across 40 
events) <0.05 

If VeDBA smoothed (across 40 
events) <0.05 

If VeDBA smoothed (across 40 
events) <0.05 

Grazing If VeDBA smoothed (across 40 
events) >0.05 AND VeDBA 
smoothed (across 40 events) 
<0.23 

If VeDBA smoothed (across 40 
events) >0.05 AND VeDBA 
smoothed (across 40 events) 
<0.18  

If VeDBA smoothed (across 40 
events) >0.05 AND VeDBA 
smoothed (across 40 events) 
<0.22  

Moving If VeDBA smoothed (across 40 
events) >0.23 

If VeDBA smoothed (across 40 
events) >0.18 

If VeDBA smoothed (across 40 
events) >0.22 

Steps None If difference in the y axis acc. 
(differential across 5 events) 
>0.19 AND VeDBA smoothed 
(across 40 events) <0.4 

If difference in the y axis acc. 
(differential across 5 events) 
>0.1 AND VeDBA smoothed 
(across 40 events) <0.4 

 

 

 

Figure 1 – Accumulation of error over time (cf. chapter 3, Fig. 8) during 14 hours of dead-reckoning implemented 

for data from a domestic goat (tagged in August 2017 within the Bauges, France) according to travel determined 
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using four different criteria (see text) (cf. chapter 3, Fig. 8).  The error refers to the distance between GPS- and 

dead-reckoning fixes for each shared dead-reckoned and GPS location where positions were not superimposed 

(see text). 

 

Table 3 - Results of mean total error for each sampling method across all species across their tested periods (14-

24h). Simple linear model output showing gradient of the amount of error per hour and the R-squared value. 

Asterixis show the significance level of the relationship (* p<0.05, ** p<0.01, **p<0.001) 

Species DR method Mean error (m) Coefficient (m error per hour) R2 (error per hour) 

D
o

m
es

ti
c 

g
o

a
t No VeDBA threshold 475.41 92.27*** 0.40 

VeDBA threshold 349.13 54.25***  0.31 

Step definition 302.59 47.55*** 0.24 

Movement modes 274.76 44.83*** 0.40 

D
o

m
es

ti
c 

co
w

 No VeDBA threshold 294.21 38.95* ** 0.16 

VeDBA threshold 186.03 23.28*** 0.43 

Step definition 187.82 27.12*** 0.37 

Movement modes 160.93 20.01*** 0.28 

Ib
ex

 

No VeDBA threshold 596.46 37.34*** 0.51 

VeDBA threshold 372.84 24.70*** 0.43 

Step definition 326.21 22.89 *** 0.37 

Movement modes 307.76 20.22*** 0.27 

M
o

u
fl

o
n

 

No VeDBA threshold  370.45 18.77*** 0.12 

VeDBA threshold 153.79 11.93*** 0.26 

Step definition 155.65 8.64*  0.21 

Movement modes 176.08 15.71*** 0.28 
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Figure 2 - The daily hours grazed for random modelled data and average real goat data for each habitat. Data 

from varied logging periods (5 to 25 days) from ten domestic goats tagged in August 2017 within les Bauges, 

France.   

 

Table 4 - List of selection coefficients for each habitat compared to the rock slab habitat, giving data for each 

data collection period as well as an overall coefficient (*** = p<0.001). Data from varied logging periods (5 to 25 

days) from ten domestic goats tagged in August 2017 within les Bauges, France.    

Habitat 03
rd

 to 07
th

 
August 

08
th

 to 12
th

 
August  

13
th

 to 17
th

 
August  

18
th

 to 23
rd

 
August 

23
rd

 to 29
th

 
August 

Overall 

Alpine lawns 
1.033*** -0.0698*** 0.588743*** 0.40218*** -0.30574*** 0.550403*** 

Beech forest 
-2.56641*** None 10.51628 -4.13682*** -1.17484*** -2.72497*** 

Grazing tall herb 
formations 0.60008*** 0.756318*** 1.184982*** 1.233181*** 1.025152*** 1.299811*** 

Green alder 
0.120506*** None -0.06512*** -1.85001*** -0.84121*** -1.49511*** 

Limestone cliffs 
None None None None -10.6513 -9.66675 

Nardus lawns 
-0.41761*** -3.80961*** -0.39637*** -0.94168*** -0.33268*** -0.70112*** 

Rock slabs 
0.644431*** -0.65558*** -0.52764*** 0.029938*** 0.248457*** -0.28213*** 

Scree with herbs 
0.796234*** 0.072037*** -0.37334*** -0.17553*** 0.096949*** 0.217175*** 

Scree with 
petasites 0.520096*** -0.24384*** 0.204754*** -0.59817*** -3.65837*** 0.104217*** 
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Sedge lawns 
0.586863*** -0.29698*** 1.621108*** -11.6494*** -1.0148*** -0.1922*** 

Semi-arid lawns 
0.418021*** 0.21499*** 0.466087*** -0.08441*** -1.20598*** 0.155925*** 

Spruce forest 
0.09452*** -1.04508*** -0.69586*** -2.5481*** None -1.34163*** 

Tall herb meadows 
None 

None 
None None -10.6513 -9.66675 

 

Table 5- List of selection coefficients for each habitat compared to the bare rock habitat and slope (%) giving data 

for each data collection period as well as an overall coefficient. Ibex data from 30 days for each of six wild ibex 

tagged in June 2017 within Belledonne, France. Goat data from varied logging periods (5 to 25 days) from ten 

domestic goats tagged in August 2017 within the Bauges, France. 

 Grasses Herbs 
Woodland 
coniferous 

Woodland 
Deciduous 

Shrubs  Snow 
Woodland 

open 
Slope 

Stud
y ID 

Go
at  

Ibe
x 

Go
at 

Ibe
x 

Go
at 

Ibe
x 

Go
at 

Ibe
x 

Go
at 

Ibe
x 

Go
at 

Ibe
x 

Go
at 

Ibe
x 

Go
at 

Ibex 

1 0.17 0.21 1.50 0.31 -1.25 -5.48 -2.27   0.11  0.12  0.56 0.013 0.006 

2 -0.17 0.83 0.86 0.98 -1.07  -11.74 0.74  1.51  -0.95  -0.34 0.004 -0.001 

3 0.07 -0.36 1.27 0.16 -1.29  0.89 1.55  0.39  -0.51  0.25 0.009 0.019 

4 0.29 0.24 1.55 0.23 -1.16 -1.31 -2.34 -1.51  0.35  -0.27  0.03 0.007 0.017 

5 0.36 -1.26 1.61 -0.68 -0.52  -4.12 -12.87  -0.64  -0.25  -1.39 0.015 0.036 

6 -0.49 -0.12 0.19 -0.20 -0.61 0.51 -11.64 -0.40  1.10  -0.66  0.30 0.019 0.046 

7 0.13  1.52  -1.41  -14.57        0.009  

8 0.20  1.23  -1.48  -2.13        -0.002  

9 0.06  1.49  -1.49  -2.88        0.009  

10 0.08  1.53  -1.60  -2.28        0.003  

Me
an 

0.07 

-
0.0
8 

1.2
8 

0.13 

-
1.1
9 

-
0.4
0 

-
2.1
6 

0.0
9 

 0.4
7 

 
-

0.4
2 

 
-

0.1
0 

0.009 
0.02

1 

 

Table 6 - VeDBA per metre moved against slope for both movement mode and all habitats present, coloured to 

match the mapped habitats with simple liner regression lines to represent the trend. Domestic goat 10 m 

summary data, filtering out level movement, was used for this analysis. 

Domestic goat 

Habitat Intercept Estimate P value R
2
 value 

Bare 0.415 0.003 <0.001 0.004 

Grasses 0.367 0.004 <0.002 0.005 

Woodlands 0.401 -0.004 <0.003 0.002 
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Table 7- List of observations taken to comprise focal data. Behaviours obtain from observing goats during 

study week 1 and 2, tagged in August 2017 within the Bauges, France.  

Goat Study ID Behaviour Date Time Notes 

G9W1 Walking 20/07/2017 09:45:51 Across rocks 

G6W1 Walking 20/07/2017 15:13:40  
G6W1 Salt lick 20/07/2017 15:13:52  
G6W1 Head clash 20/07/2017 15:14:18 With G4 

G6W1 Head clash 20/07/2017 15:14:52  
G6W1 Salt lick 20/07/2017 15:16:21  
G6W1 Walking 20/07/2017 15:17:24  
G6W1 Standing 20/07/2017 15:17:33  
G6W1 Head clash 20/07/2017 15:22:10  
G6W1 Salt lick 20/07/2017 15:22:15  
G6W1 Walking 20/07/2017 15:22:11  
G6W1 Drinking 20/07/2017 15:22:15  
G6W1 Walking 20/07/2017 15:25:27  
G6W1 Standing 20/07/2017 15:25:46  
G6W1 Walking 20/07/2017 15:25:51  
G6W1 Walking 20/07/2017 15:30:20  
G6W1 Head clash 20/07/2017 15:30:36  
G6W1 Head clash 20/07/2017 15:31:18  
G1W1 Salt lick 20/07/2017 15:34:47  
G4W1 Walking 23/07/2017 11:40:16 Uphill 

G4W1 Standing 23/07/2017 11:42:09  
G4W1 Walking 23/07/2017 11:43:30  
G3W1 Walking 23/07/2017 11:56:51  
G9W1 Browsing 23/07/2017 12:03:26 Some grazing 

G9W1 Browsing 23/07/2017 12:04:07 Stretching 

G9W1 Standing 23/07/2017 12:04:25 Chewing 

G9W1 Standing 23/07/2017 12:04:45 Chewing 

G9W1 Standing 23/07/2017 12:05:43 Alert head up 

G9W1 Shuffle 23/07/2017 12:06:29  
G9W1 Browsing 23/07/2017 12:07:05 Stretching 

G9W1 Standing 23/07/2017 12:07:29 Chewing 

G9W1 Shuffle 23/07/2017 12:07:38  
G9W1 Flinch 23/07/2017 12:08:00  
G9W1 Flinch 23/07/2017 12:09:09  
G9W1 Grazing 23/07/2017 12:10:35  
G9W1 Standing 23/07/2017 12:11:06 Chewing 

G9W1 Shuffle 23/07/2017 12:13:19  
G9W1 Head clash 23/07/2017 12:13:43 Listed as social interaction 

G9W1 Standing 23/07/2017 12:14:21 Head up 

G1W1 Browsing 23/07/2017 12:21:47  
G1W1 Walking 23/07/2017 12:23:47 180 turn 

G1W1 Standing 23/07/2017 12:24:13  
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G1W1 Grazing 23/07/2017 12:24:31  
G1W1 Walking 23/07/2017 12:25:03  
G1W1 Standing 23/07/2017 12:25:20  
G1W1 Flinch 23/07/2017 12:25:33  
G1W1 Walking 23/07/2017 12:25:46  
G1W1 Standing 23/07/2017 12:25:54  
G1W1 Grazing 23/07/2017 12:26:16  
G1W1 Walking 23/07/2017 12:27:15  
G1W1 Grazing 23/07/2017 12:27:30  
G1W1 Grazing 20/07/2017 16:58:24  
G1W1 Walking 20/07/2017 16:59:04  
G1W1 Browsing 20/07/2017 17:00:17  
G1W1 Browsing 20/07/2017 17:09:46  
G1W1 Walking 20/07/2017 17:11:07  
G1W1 Standing 20/07/2017 17:11:23  
G1W1 Walking 20/07/2017 17:11:31  
G1W1 Running 20/07/2017 17:19:16 All goats running  

G4W1 Head clash 20/07/2017 15:12:18  
G4W1 Head clash 20/07/2017 15:13:09  
G4W1 Head clash 20/07/2017 15:14:18 With G6 

G4W1 Salt lick 20/07/2017 15:15:30  
G4W1 Walking 20/07/2017 15:16:08  
G4W1 Drinking 20/07/2017 15:16:29  
G4W1 Lying  20/07/2017 15:17:24 Under milking station  

G2W1 Salt lick 20/07/2017 15:23:20  
G2W1 Salt lick 20/07/2017 15:24:28  
G2W1 Walking 20/07/2017 15:24:59  
G2W1 Salt lick 20/07/2017 15:26:28  
G2W1 Head clash 20/07/2017 15:28:38 Light head clash 

G2W1 Walking 20/07/2017 15:29:10  
G2W1 Flinch 20/07/2017 15:29:25  
G2W1 Walking 20/07/2017 15:30:30  

 




