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Abstract: (1) Background: We aimed to develop a transparent machine-learning (ML) framework to
automatically identify patients with a condition from electronic health records (EHRs) via a parsimo-
nious set of features. (2) Methods: We linked multiple sources of EHRs, including 917,496,869 primary
care records and 40,656,805 secondary care records and 694,954 records from specialist surgeries
between 2002 and 2012, to generate a unique dataset. Then, we treated patient identification as a
problem of text classification and proposed a transparent disease-phenotyping framework. This
framework comprises a generation of patient representation, feature selection, and optimal pheno-
typing algorithm development to tackle the imbalanced nature of the data. This framework was
extensively evaluated by identifying rheumatoid arthritis (RA) and ankylosing spondylitis (AS).
(3) Results: Being applied to the linked dataset of 9657 patients with 1484 cases of rheumatoid
arthritis (RA) and 204 cases of ankylosing spondylitis (AS), this framework achieved accuracy and
positive predictive values of 86.19% and 88.46%, respectively, for RA and 99.23% and 97.75% for
AS, comparable with expert knowledge-driven methods. (4) Conclusions: This framework could
potentially be used as an efficient tool for identifying patients with a condition of interest from EHRs,
helping clinicians in clinical decision-support process.

Keywords: phenotyping; rheumatology; cohort identification; electronic health records; feature
selection; transparent machine learning; text mining; big data; artificial intelligence

1. Introduction

Identifying patients who satisfy predefined criteria with a particular condition from
electronic health records (EHRs) can be used in numerous research studies, such as clinical
trial recruitments, survival analysis, or outcome predictions, etc. [1,2]. Importantly, EHRs-
based cohorts allows studies on rare conditions or genomic studies to have the potential
of scaling to large populations with a sufficiently powered analysis. Larger cohorts are a
key contribution to novel discoveries in genetic medicine [3]. But the central question is:
how can we define or identify the criteria that accurately describe the condition of interest
within the EHRs?

Currently, the patient records held in primary care contain the most comprehensive
medical history for a population, including information on symptoms, diagnoses, referrals,
treatment, and changes in an individual’s health over time, representing an incredible
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resource for cohort identification research. However, there are many challenges in using
primary care health records to identify cohorts of patients with a particular condition. First,
the quality of the records can vary [1]; in particular, the diagnostic codes in primary care
may be inaccurate. For example, using medical records in Medicare database (USA), the
positive predictive values (PPVs) were 55.7% for at least two claims coded for RA, 65.5%
for at least three claims for RA, and 66.7% for at least two rheumatology claims for RA [4].
From the Clinical Practice Research Datalink, a routinely collected primary care database
(UK), the accuracy of identifying someone as definite RA by a single RA Read code was
78.7% [5]. A recent study in the Netherlands suggests that more than half of the children
with asthma diagnosed and treated by their general practitioners (GPs) may not actually
have the condition [6], leading to unnecessary treatment, disease burden, and impact on
quality of life and putting them at risk from the side effects of their medication. These
findings suggest that some conditions may appear under-reported in primary care and
others over-reported. In contrast, patient records held in secondary care contain more
robust diagnostic data than primary data, but they are sparse, often contain only severe
active disease, and are not easily available. Therefore, an ideal and natural scheme is to
link the primary care records with the secondary care ones at patient level, in which the
secondary care records act as a gold standard to enhance the accuracy of the codes selected
from primary care for a population.

However, distinguishing patients with a particular condition from their records can be
extremely time consuming and resource costly. This is because the criteria that characterise
a condition, particularly a chronic condition, are buried within complex hierarchical termi-
nology structures across multiple data points in the records of a patient, such as the Read
codes [7] used in General Practice in the United Kingdom or the SNOMED CT (System-
atized Nomenclature of Medicine Clinical Terms) [8], which merge the SNOMED Reference
Terminology and Read codes and is promoted in many countries. These hierarchical termi-
nology structures with extensive overlap of classes lead to a huge number of codes (terms)
describing the condition of a patient across multiple data points. In addition, prevalence of
a certain condition within a population is comparatively very small. This results in a both
highly dimensional (large number of medical codes/characteristics) and imbalanced (few
positive patients) EHR data space. All these issues present a big methodological challenge
in identifying cohorts from EHRs, making the classical statistical modelling techniques
no longer feasible due to the curse of dimensionality [9,10]. Thus, to distinguish patients
with a condition in primary care, it becomes crucial to identify the most predictive code
patterns buried in their EHRs rather than consider the whole set of overlapping codes. To
achieve this, researchers have turned to experts’ review of records to manually select the
most relevant codes in safeguarding the accuracy of patient identification [11,12]. However,
this methodology is expensive, inefficient, and highly subjective and depends on the local
healthcare system and the level of clinicians’ knowledge.

Different from the expert-knowledge-driven methods, AI- and machine-learning-
based, data-driven methods offer a promising application in improving diagnostic perfor-
mance [13,14]. In this paper, we propose to use a transparent machine-learning framework
to mine EHRs for automatic phenotype identification by parsimonious set of useful clin-
ical signals. The proposed methodology is grounded in the theory and methods of text
mining [15]. Each patient is treated as a document consisting of coded terms and other
variables (words); prediction of health outcomes for each patient is thus treated as a prob-
lem of text categorisation. One efficient way of representing words in vector space is
to embed words in a latent factor vector space [16,17]. Although latent representation
of words may significantly improve performance of word classification, it is difficult or
impossible to know the logic involved about relationships between the raw words and
the outcome. As the General Data Protection Regulation (GDPR) [18] takes effect, data
subjects have the right to have meaningful information about the logic involved and the
envisaged consequences of such automated decision making for the data subject. It is of
pressing importance to develop transparent data-driven models that have explanatory
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power. This is essential in order for machine-learning-based tools to be sufficiently trusted
by medical community in modifying protocols for diagnosis and treatment. Therefore,
in this paper, we directly work on raw words rather than their latent representations by
integrating data-mining techniques to offer a transparent disease-phenotyping framework
that generates decision rules with clear inferencing logic involved about relationships
between clinical concepts and health outcome. To reduce the large number of raw words to
the minimum combination of features able to phenotype a condition and with each feature
representing a single EHR within a patient’s medical history, feature selection (FS) is used
to score and rank the clinical codes (terms) so that only the most relevant codes are kept.

Clinical data are commonly imbalanced with a small number of positive patients
within a large patient cohort. However, most health statistical analysis studies did not
consider the problem of imbalance of clinical data; these studies inherently and inexplicitly
put more emphasis on learning data observations with more occurrences. Instead, our
proposed methodology suggested to use cost-sensitive machine-learning techniques to
tackle this challenge. In this way, this framework enables the patterns examined in the
primary care records to be able to identify the presence or absence of the condition as
accurately as possible, at best with a secondary care diagnosis.

In this study, two arthritis conditions are used as exemplar of this framework: rheuma-
toid arthritis (RA) and ankylosing spondylitis (AS). Moreover, we compared this data-
driven framework with the standard clinical expert-knowledge-driven algorithms for both
RA and AS.

In summary, the contribution of this study includes: (1) the proposed methodology
focused on generating transparent knowledge from data; (2) from a large number of factors,
a parsimonious set of influential clinical signals with the fewest number of variables
were identified while system predictive performance was maintained; (3) the proposed
framework worked efficiently with a large and very high dimensional dataset, which allows
the predictive models to avoid the challenges of dimensionality; and (4) the proposed
framework suggested to use cost-sensitive machine-learning techniques to address the
common but ignored challenge of the imbalance of clinical diagnostic data.

2. Materials and Methods
2.1. Data Mining and Machine-Learning Techniques

In primary care, the terminology structures in EHRs (e.g., Read codes, SNOMED-
CT) often generate a huge number of codes (terms) to describe a patient across multiple
care points. In order to provide a guideline for selecting influential codes (i.e., features
in data analytics), we used five data-mining feature-selection methods to quantify their
significance in identifying a particular condition of a patient. The five methods used for
this analysis are χ2 statistic, Binomial distribution [19], Information Gain (IG) [20], Gini
index [21], and DKM index [22].

In this study, decision trees were chosen as classification algorithms within the au-
tomatic data-driven model, while other types of machine-learning classifiers can also be
used in this framework. We chose decision trees due to its strengths that each path from
the root of the tree to each of the leaves (internal or terminal nodes) can be transformed
into a rule describing the class prediction [23]; thus, decision trees provide a unique and
transparent way of inducing knowledge from data, which is different from many other
classifiers working as black-box models. Specifically, three decision tree algorithms [24]
were used within the framework: Classification and Regression Trees (CARTs), C5.0 trees,
and Conditional Inference (CI) trees. Importantly, C5.0 tree is used as a cost-sensitive
classifier to tackle the imbalance of classes during classification for good generalization on
new data samples.

2.2. Performance Metrics

There are many different ways to evaluate the performance of a machine-learning
classifier. For imbalanced datasets, which are very common in clinical studies, the F1-score
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is a preferred metric, as it makes more sense than others [25]. As a harmonic mean of
precision (positive predictive value) and recall (sensitivity), F1-score uses its balanced form
to assess the classifiers’ performance.

F1-score =
2·recall·precision
(recall + precision)

Ranking process, models implementations, and performance evaluation were all
performed in RStudio version 3.0.2. 64 bits, a multiplatform, open source integrated
development environment for statistical computing in R language. Packages rpart for
CART trees, C50 for C5.0 trees, and party for conditional inference trees were used within
RStudio. The caret package was used to select the ranges for the tuning parameters for the
grid search via cross-validation.

2.3. Datasets

We used a cohort of patients with the conditions AS and RA as exemplars of the
application of the data-driven framework. RA affects a large number of people, which
allows a large cohort to be identified. Previously, researchers and clinicians turned to the
Quality Outcomes Framework (QOF) to identify the condition of RA. The QOF is a-pay-
for-performance scheme established in UK in which a standardised set of codes is used to
find the prevalence of a condition in a practice [26]. In this study, the developed algorithm
was compared with the QOF-based results. AS is considerably less prevalent than RA,
and the development of AS is less understood, and diagnosis can take several years to be
confirmed. These differences allow the method to be tested against very different cases to
better assess its effectiveness.

Data were extracted from the SAIL databank [27], which is a national e-health in-
frastructure for linking a wide range of person-based, health-related data schemas. This
study used GP records across the Abertawe Bro Morgannwg University Health Board
(ABMU) and Cardiff areas and linked to the local rheumatology secondary care clinical
database-CELLMA (RioMed Ltd. UK). The CELLMA data were used as the gold standard
for training models to identify patients with RA or AS. Individuals were identified as being
valid if they had continuous coverage within the period between 2002 and 2012. This
excluded people born after 2002 and people who had moved out of the area or died within
the period of interest.

The GP data uses the 5-digit Read codes to administer patient health records that relate
to diagnosis, medication, and process. The CELLMA system uses SNOMED-CT codes to
record diagnosis and medications as well as clinical data entered by rheumatologists at the
point of capture.

In this study, multiple sources of EHRs, including 544,537 patient records from ABMU
CELLMA, 150,417 records from Cardiff CELLMA, 917,496,869 records from primary care,
and 40,656,805 records from secondary care within the period between 2002 and 2012,
were collected to generate the dataset. Thus, the linked dataset is comprised of a total of
9657 patients (8723 in ABMU and 934 in the Cardiff area), from which 1484 were positive
in RA (ABMU: 1189—13.63% prevalence; Cardiff: 295—31.58% prevalence), and 204 were
positive in AS (ABMU: 163—1.87% prevalence; Cardiff: 4.39% prevalence) (See Table 1).
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Table 1. Datasets.

Rheumatoid Arthritis Ankylosing Spondylitis

0 1 0 1

COMPLETE DATASET 8173 1484 9453 204

ABMU data

Complete ABMU 7534 1189 8560 163

Training (Split_1_1) 4521 713 5133 101

Validation (Split_1_2) 1515 230 1709 36

Testing (Split_1_3) 1498 246 1718 26

CARDIFF data Testing (Split_2) 639 295 893 41

2.4. The Data-Driven Framework for Patient Cohort Identification

To identify cohort of patients with a particular condition, we integrated the feature
selection and machine-learning techniques in one framework. Specifically, the proposed
data-driven framework consists of the following phases as shown in Figure 1.
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2.4.1. Phase 1: Generating Patient Representations

The RCT system with 5 bytes provides around 83,000 clinical descriptive terms in
hierarchical structure, comprising five levels of detail with more detail to a concept in each
successive level; even the SNOMED system offers much more descriptive terms than the
RCT. In this study, we treated each patient as a document described by a series of coded
terms and other variables (words) as in text classification, but the exact ordering of the
terms was ignored, and only the number of occurrences of each term mattered (i.e., a Bag
of Words). In this way, we created numeric representations of patients from EHRs by
assigning each term with its frequency: how frequently the term occurs in the e-health
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records of a patient. In this way, each patient is treated as a vector with one component
corresponding to each term.

For the proposed framework, we split the data in two parts: Split_1 and Split_2
(Table 1). The first part, Split_1, was used within both phases 2 and 3 below, while Split_2,
from a population in a different geographical area, was used for evaluating the gener-
alization performance of the final algorithm resulted from Phase 3 below. Split 1 was
subsequently divided in 3 parts with training subset Split_1 (60%) for feature ranking and
constructing classifier, validation subset Split_2 (20%) for selecting optimal predictors, and
testing subset Split_3 (20%) for testing the performance of the predictors in Phase 2.

2.4.2. Phase 2: Pre-Selection of Features

Given K features, each of the K features can be either be selected or excluded, and as a
result, there are 2K possible feature subsets. This poses a model-selection challenge over 2K

possible models because linked medical dataset often has a large number of features, i.e.,
K is very large, while it is usually too computationally expensive to explicitly enumerate
over and compare all 2K models. Heuristic scheme is typically used to identify the subset
of good features as described below. This phase comprises following steps:

Ranked Features Generation

Each feature (e.g., Read codes in our dataset) will occur in a number of times for
each patient [28]. Using Split_1_1, the five FS methods described in Section 2 are used to
generate five ranked lists of features in terms of their abilities to distinguish the health
outcomes of patients. Assume that Ω is the feature-ranking results obtained in terms of
a chosen ranking index Ω = {Ω(1), Ω(2), · · · , Ω(K)}, where K denotes the total number
of features.

Forward Selection of Features

After ranking features from the most significant one to the least significant one using
a significance index (i.e., Ω(i) decreases as i = 1, . . . , K), one can use a procedure, termed
as forward selection, to determine the smallest subset of features that explain the available
data well. Let Σ be the features selected recursively.

The forward-selection procedure (Figure 2) is a heuristics for feature selection that
starts with an empty set of features (i.e., Σ = ∅). One at a time, the most important
feature from the Ω is added to Σ, the validation error of the predictive model constructed
by these features from the Split_1_1 data. This feature-selection process continues until
the validation performance of the constructed model applied to the validation dataset,
Split_1_2, is satisfied. As depicted in the Figure 2, the forward selection procedure consists
of the following steps:

Step 1. Set Σ0 = ∅, i = 1, and assign a validation error tolerance threshold.
Step 2. Select the most important feature from Ω as follows:

Σi = Σi−1 ∪Ω(i)

where Ω(i) is the ith most important feature.
Step 3. Construct a classifier model with the feature set Σi.
Step 4. Apply the classifier model to the validation dataset.
Step 5. If the validation performance is satisfied, then use this compact feature set Σi

to develop phenotyping algorithm next; otherwise, increase i by 1, and go to Step 2.
In this study, the model performance is assessed by its accuracy and F1-score. In order

not to lose potential features, the best and the second best (highest and second highest
values of accuracy and F-score) subset of features are taken to the next phase.
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2.4.3. Phase 3: Phenotyping Algorithm Development

This phase tries to find the optimal phenotyping algorithm based on selected feature
sets. For each selected combination of features resulting from Phase 2, a grid-search is
performed over different decision tree algorithm using the Split_1_1 data as the training
dataset. Within this grid-search, tuning parameters for each type of decision tree described
above varied until a combination in their values that results in an optimal performance
was found. The performance is the overall agreement rate averaged over 10-fold across
validation iterations. A more fine granularity within the ranges of parameters during the
grid-search could be achieved by choosing a step increase for each parameter. For example,
in this study, for the C5.0 trees, the parameter of the smallest number of samples to be
put in at least two of the splits varied between 5 and 30 with a step increase of 5; the cost
of misclassifying positive class into negative class varied between 1 and 20 with a step
increase of 1.25. For the CART trees, the parameter of the minimum number of observations
in a node in order for a split to be attempted varied between 10 and 40 with a step increase
of 5, while the complexity parameter to save computing time by pruning off splits that
are obviously not worthwhile varied between 0.001 and 0.1 with a step increase of 0.001.
For the CI trees, the value of the test statistic or 1—the p-value that must be exceeded in
order to implement a split—varied between 0.1 and 0.99 with a step increase of 0.1. The
minimum sum of weights in a node in order to be considered for splitting varied between
35 and 45 with a step increase of 5.

After all decision trees are generated for each of the selected combinations of features,
the validation dataset, Split_1_2, is used to select the tree with best performance for each of
the combinations, and subsequently, the best of all trees is selected among this list. To test
the performance, Split_2 is used at this stage.

2.5. Complexity Analysis of Selecting Set of Good Features

Traditional forward-selection procedure uses exhaustive search to identify the set
of good features in which at the start, the selected set is empty, and all K features are
candidates. This means the first iteration tests K candidates, the second K−1, . . . , etc.,
which leads to K(K + 1)/2 runs of classification models to determine good features. In
this paper, we first evaluated the importance of each feature and ranked them using
feature ranking index, then the forward selection first evaluated the most important
feature, the second most important feature, . . . , etc., until the set of selected features could
achieve the best classification performance on validation samples (let k be the number of
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selected features in the feature set). In other words, we did not exhaustively search all
feature candidates; instead, we only ran k times of classification models. However, the
computational cost of feature ranking needs to be taken into account, for example, the
computational complexity of calculating original χ2 for a feature is O(I × J) [29] using a
contingency table with I rows and J columns. Gini-index-based feature selection is bounded
by O(K *Ntrn + K logK) [30], where Ntrn is the number of training samples. The running cost
of calculating information gain is O(K·c) [31], where c is a number of classes (c = 2 in this
paper). The time complexity of using dynamic programming approach to implement the
binomial coefficient C(K, k) is O(K·k) [32].

Additionally, the full complexity of feature selection also depends on the computa-
tional cost of classifier. For example, this study used the decision tree C5.0 model with
complexity of O(h · l · (c · Ntrn + Ntrn · log Ntrn)) [31], where l is the number of features in
the tree, and h is a tree height. Considering the C5.0 model was run k times, from a model
with 1 feature, a model with 2 features . . . to a model with k features, we can calculate the
full complexity of feature selection as

O
(

max
(

Rt, h·k2(c·Ntrnlog·Ntrn)
))

(1)

where Rt is the cost of feature ranking as decribed above. This computational cost is much
better than that of traditional forward selection scheme O

(
h·K2(c·Ntrnlog·Ntrn)

)
, in which

the classifier is C5.0 model and K � k. In other words, the proposal feature selection
framework is much more computationally efficient.

3. Results
3.1. Results by the Data-Driven Framework

In Phase 1, the Bag of Words scheme in text mining led to a complete clinical
dataset with a total of 27,293 different single codes, which means a patient-term ma-
trix of 9657 × 27,293 dimensions was created to represent patient profiles. As described
above, this dataset was further split into the subsets of Split_1_1, Split_1_2, and Split_1_3
for feature selection and Split_2 for evaluating the generalisation performance of optimal
phenotyping algorithm in grid-search.

In Phase 2, the 27,293 different clinical codes were ranked separately by each of the
five FS methods. Tables 2 and 3 show, for the RA and AS datasets, respectively, the best
and second best combination of features selected for every FS method after applying the
forward selection procedure (Figure 2). The tables show the two best results for accuracy
and F1-score obtained for each method that were used to the parsimonious sets of features
needed for the next phase. The tables also show the best and second best combinations for
each method on testing samples. The χ2 and Gini were presented together, as they selected
the same predictors.

Table 2. Pre-selection of Features for Rheumatoid Arthritis.

Feature Selection
Method Cut-Off Point Compact Set of

Features Selected Acc. (Val.) Acc. (Test) F1-Score (Val.) F1-Score (Test)

χ2/Gini
First 125 92.67 93.12 0.73 0.75
Second 191 92.43 93.06 0.72 0.75

IG
First 234 92.5 93.12 0.72 0.75
Second 300 92.5 93.12 0.72 0.75

Binomial
First 238 92.5 93.12 0.72 0.75
Second 310 92.5 93.12 0.72 0.75

DKM
First 263 92.5 93.12 0.72 0.75
Second 347 92.5 93.12 0.72 0.75

Acc., accuracy; Val., validation.
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Table 3. Pre-selection of Features for Ankylosing Spondylitis.

Ankylosing Spondylitis Dataset

Feature Selection
Method Cut-Off Point Compact Sets of

Features Selected Acc. (Val.) Acc. (Test) F1-Score (Val.) F1-Score (Test)

χ2/Gini
First 2 99.08 99.48 0.75 0.82

Second 306 97.94 98.45 0.57 0.61

IG
First 2 99.08 99.48 0.75 0.82

Second 74 97.19 97.36 0.51 0.48

Binomial
First 3 99.08 99.48 0.75 0.82

Second 81 97.19 97.42 0.51 0.48

DKM
First 138 97.19 97.42 0.51 0.48

Second 293 97.02 97.65 0.48 0.51

Acc., accuracy; Val., validation.

For RA, the most compact set of features was obtained by the χ2 and Gini methods.
Comparatively, to obtain similar performance, it was necessary to select 234 features by
IG method, or 238 features by Binomial method, or 263 features by the DKM method
because similar predictors were selected, and therefore, they gave best and second-best
combinations with similar total number of features. In the case of AS, promisingly, the
most compact sets with two features by χ2 and Gini, or IG methods, or three features by
Binomial method were identified. The DKM index ranked features differently than other
methods, and larger number of features were identified.

In Phase 3, the two best-selected lists of features given by each method were taken to
Phase 3. The best performance for the RA dataset was achieved by using the C5.0 decision
tree with the second list selected by the Binomial distribution method. Similar performance
with fewer features was achieved with the C5.0 tree and the first list of features selected
by the DKM index. For the AS dataset, the best decision tree with fewer features resulted
from the C5.0 and CART algorithms with the first feature list selected by the Binomial
distribution. C5.0 and CART trees obtained marginally better performance with the second
feature list selected by the IG method.

In both datasets, the CI trees gave a worse performance than C5.0 and CART trees.
Performance of all decision trees, selected best algorithms, and corresponding tuning pa-
rameters are shown in the Appendix A. Appendix B illustrates list of Read codes appearing
in the decision trees and corresponding description, in which Table A1 shows the Read
codes appearing in the decision trees for AS.

3.2. Comparison with Human Knowledge-Driven Algorithms
3.2.1. The QOF-Based Ruleset for Rheumatoid Arthritis

We compared the proposed data-driven methodology with the QOF-based ruleset
in identifying RA patients [33]. The QOF uses a set of Read codes to determine whether
a patient has an RA diagnosis. These codes are included in the Table A2 (Appendix B).
Table 4 shows the performance achieved by using the QOF rules on the Cardiff dataset
(Split_2) and the two best decision trees obtained with the first feature list selected by the
DKM index (DKM-1) and the second feature list selected by the Binomial distribution (BIN-
2). It can be seen that, overall, the DKM-1 algorithm with the accuracy of 86.19% performed
slightly better than the QOF rules with 85.85%. However, the QOF rules obtained better
positive predictive value (PPV) (85.28%) than DKM-1 algorithm, while the DKM-1 achieved
higher sensitivity (72.20%) than the QOF rules (66.78%). The BIN-2 had better performance
in terms of specificity (95.77%) and PPV (87.32%).
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Table 4. The Two Best Data-Driven Models Compared with QOF Rules for RA.

RA Algorithms

Performance QOF Rules for RA DKM-1 Algorithm BIN-2 Algorithm

Accuracy 85.85 86.19 85.44

Sensitivity 66.78 72.2 63.05

Specificity 94.67 92.64 95.77

Positive Predictive Value 85.28 81.92 87.32

Negative Predictive Value 86.04 87.83 84.88

3.2.2. The Clinical Standard Procedure for Ankylosing Spondylitis

There are no QOF rulesets defined for AS. The standard method followed by clinicians
to identify the prevalence of AS in a population is simply using the Read code “N100.”.
Applied to our dataset, this standard method achieved 95.65% PPV and 97.86% accuracy
(Table 5). However, this resulted in a low sensitivity (53.66%), which means that almost half
of the positive cases would remain unidentified. Promisingly, our data-driven algorithm
(IG-2) also identified “N100.” as the most important feature in identifying AS, together
with two additional codes, “F440.” and “k65z.” corresponding to diagnosis and treatment
of uveitis, a condition that has been strongly related to AS [34].

Table 5. The Best Data-Driven Model Compared to Clinical Method for AS.

AS Algorithms

Performance Clinical Procedure
(N100) IG-2 Algorithm

Accuracy 97.86 97.75

Sensitivity 53.66 56.1

Specificity 99.89 99.66

Positive Predictive Value 95.65 88.46

4. Discussion

By selecting the most relevant features from a huge number of primary care codes, this
framework can bring multiple benefits to health informatics research. Firstly, dimension-
ality reduction makes many machine-learning classifiers feasible for large data problems
due to avoiding the curse of dimensionality. Secondly, using only the most relevant codes
(terms) can significantly speed up the training and testing process of the classifiers, which
makes the development of a phenotyping algorithm effective. Thirdly, using those relevant
codes can remove the noises and reduce biases that distort the true relationship between the
risk factors and the outcome. Fourthly, using only the most relevant features can avoid the
over-fitting dilemma, a common challenge in the development of data-driven approaches,
which would help improve the generalisation performance of the classifiers applied to
un-seen patients’ data. Importantly, with only the most relevant features, the developed
classifiers themselves and their prediction results would achieve better transparency and
interpretation in clinical decision supports [15,33–36].

On the other hand, chronic diseases, like RA and AS, often take years to develop and
be properly diagnosed. For instance, AS can take more than 10 years to be diagnosed,
and when a formal diagnosis is made, the disease is in a very advanced state [37]. The
proposed method is used in retrospective to extract knowledge from the medical history
of already diagnosed AS patients and therefore discover early symptoms of AS. In this
way, this framework provides an efficient option for identifying cohort of patients with a
particular condition, especially where knowledge-driven approaches, such as QOF-based
rulesets, do not yet exist. In addition, by learning directly from the data, the data-driven
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algorithm generated by the proposed framework might potentially reduce bias and/or
errors derived from applying other algorithms implemented using a specific population
with different characteristics.

For RA, the algorithms development discovered a set of codes related to drugs that
are commonly given to RA patients [38]. The particular Read codes identified by the
data-driven method may be specific characteristics of the studied population across ABMU
and Cardiff regions. Reasonably, such a unique set of codes may vary for other populations
(datasets). Promisingly, the proposed framework was demonstrated to identify these
unique sets of codes related to certain populations from given datasets.

Our results indicate that the χ2 statistic and the Gini index generated the same ranking
of features in both datasets. This is mainly because the χ2 statistic coefficient for a 2 by
2 contingency table can be also interpreted as the Gini coefficient [39]. Each feature-selection
method works differently depending on the nature of the data. To identify patients with
a particular profile, a single feature-section method may generate incomplete results.
Our recommendation is to use multiple feature-selection methods to generate a bigger
picture of prediction performances and select an optimal algorithm with consideration of
clinical practices.

We stress that the proposed framework aiming at identifying influential features
actually fulfils the task of dimensionality reduction in nature. In a high-dimensional
data space, dimensionality reduction can be performed by two different schemes. One
scheme is to directly select influential features from original features, in which the selected
features work together to demonstrate good prediction performance, such as our proposed
framework. The other scheme is to transform all original features into a low-dimensional
space, in which each dimension of this space works as a latent variable while holding
certain statistical property of original features, such as the principal component analysis.
Each scheme has its own advantages and disadvantages, but in disease phenotyping and
patient identification, the first scheme is preferred. This is mainly because the first scheme
can maintain the physical meanings of original variables in a low-dimensional space so
that the finally selected features in this space can gain clear interpretations in prediction.
The second scheme uses latent variables in a low-dimensional space that are often difficult
for which to gain clear physical meanings.

As a baseline method for identifying optimal hyper-parameters, grid-search can
provide coarse but uniform exploration of the parameter space. The performances of
decision tree models varied greatly for different values of the parameters. The C5.0 trees
are very sensitive to the two parameters of minimum cases for split and asymmetric cost.
For the RA and AS, we found that the optimal parameters are particular to each dataset.
That is to say, one cannot expect a single optimal parameter set can be generalised to
different datasets. In the future, heuristic optimisation procedures will be used to reduce
the computing loads in identifying optimal hyper-parameters.

Medical data sets are often predominately composed of “normal” cases (a large
number of population without a condition of interest) together with a small percentage of
“abnormal” cases (a small number of cases with this condition of interest, such as RA or
AS). Such an imbalance presents methodological challenges in developing and verifying
machine-learning algorithms. This study used the C5.0 tree model to tackle imbalanced
classification problems by benefiting from the asymmetric costs implemented in majority
class and minority class.

5. Conclusions

We have presented a transparent machine-learning framework capable of identifying
cohorts of people with certain disease from EHR in primary care. We have validated
this framework for two chronic diseases, RA and AS. We have demonstrated that the
machine-learning framework performed as well as the existing clinical-knowledge-driven
approach. This study provides an efficient way of identifying cohort of patients with a
particular condition in primary care. The proposed framework has a promising potential
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of being widely used in health-related studies, such as clinical trial recruitments, survival
analysis, or outcome predictions, etc.
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Appendix A

Best Decision Trees Resulting from the Data-Driven Framework Applied to the RA
and AS Datasets.
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Appendix A.1.1. Decision Tree 1 for RA—Using First List Selected by the DKM Index
(DKM-1 Algorithm)
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Appendix A.1.2. Decision Tree 2 for RA—Using First List Selected by the Binomial
Distribution (BIN-2 Algorithm)
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Distribution (BIN-2)
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Appendix A.2.2. Decision Tree 2 for AS—Using First List Selected by the Information Gain
Method (IG-2 Algorithm)
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Appendix B

List of Read codes appearing in the decision trees and corresponding description.

Table A1. Read codes appearing in the decision trees for AS.

Read Codes Type Description

N040. Musculoskeletal and connective tissue disease Rheumatoid arthritis
h341. Chemotherapy/Immunosuppressant drugs METHOTREXATE 2.5 mg tablets
4258. Laboratory procedures Haematocrit
j551. Musculoskeletal drugs SALAZOPYRIN EN 500 mg e/c tablets
44J9. Laboratory procedures Serum urea level
N100. Musculoskeletal and connective tissue disease Ankylosing spondylitis
k65z. Eye drugs FLUOROMETHOLONE eye drops
F440. Nervous system and sense organ diseases Acute and subacute iridocyclitis

Table A2. QOF given Read Codes to identify prevalence of RA.

READ CD Description

N040. Rheumatoid Arthritis
N0400 Rheumatoid arthritis of cervical spine
N040T Flare of rheumatoid arthritis
N0402 Rheumatoid arthritis of shoulder
N040S Rheumatoid arthritis - multiple joint
N0409 Rheumatoid arthritis of PIP joint of finger
N0408 Rheumatoid arthritis of MCP joint
N0401 Other rheumatoid arthritis of spine
N0400 Rheumatoid arthritis of cervical spine
N0407 Rheumatoid arthritis of wrist
N040B Rheumatoid arthritis of hip
N040D Rheumatoid arthritis of knee
N040K Rheumatoid arthritis of 1st MTP joint
N040F Rheumatoid arthritis of ankle
N0405 Rheumatoid arthritis of elbow
N040A Rheumatoid arthritis of DIP joint of finger
N0406 Rheumatoid arthritis of distal radio-ulnar joint
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Table A2. Cont.

READ CD Description

N040H Rheumatoid arthritis of talonavicular joint
N040J Rheumatoid arthritis of other tarsal joint
N040G Rheumatoid arthritis of subtalar joint
N040L Rheumatoid arthritis of lesser MTP joint
N040C Rheumatoid arthritis of sacro-iliac joint
N0404 Rheumatoid arthritis of acromioclavicular joint
N040N Rheumatoid vasculitis
N040R Rheumatoid nodule
N040P Seronegative rheumatoid arthritis
N041. Felty’s syndrome

N042. Other rheumatoid arthropathy with visceral or systemic
involvement (Excluding N0420 Rheumatic carditis (v27))

N0422 Rheumatoid nodule
N042z Rheumatoid arthropathy + visceral/systemic involvement NOS
N0421 Rheumatoid lung disease
N047. Seropositive errosive rheumatoid arthritis
N04X. [X]Seropositive rheumatoid arthritis, unspecified
N04y0 Rheumatoid lung
N04y2 Adult onset Still’s disease
Nyu11 [X]Other seropositive rheumatoid arthritis
Nyu12 [X]Other specified rheumatoid arthritis
Nyu1G [X]Seropositive rheumatoid arthritis, unspecified
Nyu10 [X]Rheumatoid arthritis+involvement/other organs or systems
G5yA. Rheumatoid carditis
G5y8. Rheumatoid myocarditis
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