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Methods taken from engineering and computer science were applied to the lymphatic

system. Starting with a 3D analysis of a single subject-specific lymphatic valve. A

mechanism was presented to explain previous experimental results showing the effect

of trans-mural pressure on the pressure required to close lymphatic valves. The impor-

tance of wall motion in future FSI studies of lymphatic valve dynamics were identified.

Previous approaches to lumped modelling of the lymphatic system were considered and

modifications were proposed. A less-idealised valve model, incorporating trans-mural

dependent bias, was proposed as well as a method of allowing self-organised contrac-

tion through a stretch-dependent frequency of contraction. A network of the superficial

lymphatics of the upper-limb was reconstructed from an anatomical sketch. The net-

work was used in conjunction with the lumped model to produce a 421 vessel lymphatic

model consisting of 17,706 lymphangions. Several issues which impede large network

scale modelling of the lymphatic system are identified. A simplified patient-specific

biphasic model of lymphoedema was proposed and used to develop a novel shape-based

metric for lymphoedema. A statistically significant relationship between the metric and

the presence of lymphoedema was found.
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Chapter 1

Introduction.

In the field of biomechanics, the lymphatic system has not received the attention that

has been afforded the arterial and vascular systems. As a result the physical mecha-

nisms of many lymphatic diseases are poorly understood, as is the reasoning behind

diagnostic and therapeutic interventions. This work builds on previous attempts to

model fluid flows within the lymphatic system with the aim of providing a more holistic

understanding of the mechanisms behind lymphatic insufficiency.

1.1 The Lymphatic System

Lymphatic insufficiency causes the tissues to swell with an accumulation of lymph -

the fluid transported by the lymphatic system. This work is an attempt to numerically

model the transport of lymph. In order to begin it first necessary to consider a definition

of lymph and by extension the lymphatic system. It is the difficulty encountered in these

definitions that provides much of the interest and complexity to this undertaking.

3



Introduction. 4

1.1.1 Lymph

The lymphatic system is often considered in relation to the cardiovascular system. This

relationship is not without support. The lymphatic system emerges from the cardio-

vascular system during embryonic development [9]. Like blood in the cardiovascular

system; a fluid, lymph, is transported through vessels and adapted by organs. How-

ever, two differences between the cardiovascular and lymphatic system complicate this

understanding.

Firstly, the lymphatic system is not a circulatory system, it is directed, with

fluid ultimately moving from the interstitia to the thoracic duct [10]. Unlike capillaries

within the cardiovascular system, initial lymphatics rely on single leaflet valves within

the lymphatic wall to draw fluid directly and solely from the interstitia. This fluid is

then transported through larger collecting lymphatics, draining into the thoracic duct

to sit in the cisterna chyli before draining into the vascular system.

During this process the constituents of the lymph change: lymph nodes present

the opportunity for communication between lymph and blood across a semi-permeable

barrier. Unlike the cardiovascular system, in which blood is mixed and recirculated

giving it a systemic quality, the constituents of lymph at any point within the lym-

phatic system are dependent on their origin and journey [11]. In health, this can be

seen in the mesenteric lymph which gathers fats from chyle in the intestines and trans-

ports it to the liver where they are exchanged for hepatic proteins, giving this lymph

a unique constitution. In disease this can be observed in the presence of inflammatory

factors in tumour sampling lymphatics [12]. This concept can and has been extended

to vaccination, infection and metastasis [13][14]. The extracellular fluid around a local

pathology could contain a mixture of cytokines, immune cells, and malignant tumour

cells that are swept into the lymphatic system. Once in the lymph, they mix in varying

proportions producing spacial gradients and discontinuities across the lymphatic sys-

tem. The spatial variation of these species effects the recruitment of immune cells, the

severity of an immune response and the location of metastasis. The directed nature of

the lymphatic system could be exploited to develop diagnostic techniques and therapies.
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However, these methods would be dependent on understanding the flows which develop

throughout the lymphatic system.

Secondly, the lymphatic system in mammals has no central pump unlike the

heart in the analogous cardiovascular system. Rather pumping is distributed along

collecting lymphatics which draw from the initial lymphatics that sample the intersti-

tia [15]. Semi-lunar check valves along the length of the collecting lymphatic vessels

demarcate lymphangions, which contract to propel fluid along the vessel. Whilst this

property complicates the modelling of lymph, which will be discussed in later sections; it

does allow for a phenotypical definition that will used heavily throughout the remainder

of this work. Collecting lymphatic vessels consist of a series of contractile elements,

lymphangions, which are separated by lymphatic valves.

1.1.2 Lymphoid Organs

The primary lymphoid organs are bone marrow and the thymus; while these have large

immunological impact, they have little to no impact on the flows within lymphatic

system. The secondary lymphoid organs consist of the spleen and lymph nodes. It is

these lymph nodes which have a profound impact on the flows of the lymphatic system.

It is often their removal during the course of cancer treatment which leads to secondary

lymphoedema. Tertiary lymphatic organs such as gastric associated lymphatic tissue,

Peyer’s patches, and arterial tertiary lymphoid organs have important immunological

roles to play but are considered of little importance in the understanding of lymphatic

flow.

The lymph nodes filter lymph from collecting lymphatics allowing immuno-

logical sampling and dendritic cell T-cell interaction. They also place lymph and blood

either side of a semi-permeable structure, allowing communication between the two. Not

only does this allow the dendritic cells to return to systemic blood [16], it also allows the

diffusion of small molecules. A large quantity of lymph is allowed to bypass the majority

of the densely packed cells of the cortex by passing through a sub-capsular sinus. The
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complex and multifaceted behaviour of the lymphoid organs is beyond the scope of this

work.

1.2 The Lymphatics of the Upper Limb and Their Impact

in Breast Cancer Related Lymphoedema.

In lymphoedema the lymphatic system removes insufficient fluid from interstitia to pre-

vent its accumulation, leading to a swelling of the tissues. The cause of this can be

genetic in origin leading to primary lymphoedema or it can be caused by an injury to

lymphatic system leading to secondary lymphoedema. The treatment of breast can-

cers often requires the removal of several nodes that receive lymph drained from the

upper-limb; somewhere between 17 and 54% of these patients will develop secondary

lymphoedema [7].

This work will focus on secondary lymphoedema of the upper limb in the

context of breast cancer. In this section the anatomy of the lymphatic system within

the upper limb is presented along with its relevance to understanding the condition.

Figure 1.1 shows a single vessel traced from the hand to the shoulder with the differing

microstructures of the lymphatic system shown.
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Figure 1.1: An overview of the lymphatics of the upper limb. A single vessel is
traced from the hand to the shoulder. Bottom: The initial lymphatics with button-
junctioned endothelial cells forming oak-leaf shaped single leaflet valves in the wall of
the vessels. Middle: Collecting lymphatics with semi-lunar leaflet valves to prevent
fluid from flowing back toward the tissues. Top: a supratrochlear lymph node with its

afferent sub-capsular sinus.

1.2.1 The Initial Lymphatics and the Lymphatic Capillaries.

Along with the vascular capillaries, the tissues also contain lymphatic capillaries. These

valveless structures draw interstitial fluid and represent the start of the lymphatic sys-

tem. The lymphatic capillaries are interconnected independent of other lymphatic struc-

tures and can be used to allow lymph to flow “reflux” around an injury to the lymphatic
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system, albeit with increased resistance. The capillary bed is drained by pre-collecting

lymphatics which are contractile but lack valves [13].

1.2.2 The Collecting Lymphatics

The collecting lymphatics carry lymph from the initial lymphatics to and between lymph

nodes, until it reaches the cisterna chyli at the spine, where lymph resides until it enters

the lymphatic ducts and is returned to the vascular system. The collecting lymphatics

are commonly divided into two groups; the deep lymphatics, which drain primarily from

the muscles and superficial lymphatics, which drain from the cutaneous tissues [17].

1.2.3 The Lymph Nodes of the Upper Limb

There are usually only a few lymph nodes within the limb itself. The supratrochlear -

sometimes called epitrochlear - glands which consist of one to four nodes present on the

medial aspect of the elbow and one or two deltopectoral - sometimes called infraclavical

- nodes present between the deltoid and pectoral muscle [18][19]. After leaving the limb

the majority of lymph drains into the axillary.

1.2.3.1 Axillary Nodes

Breast cancer related lymphoedema, BCRL, is usually the result of injury to the lymph

nodes of the axilla. The axillary lymph nodes are 20-49 nodes which integrate lymph

flows from the arm with flows from the pectoral, breast and trunk [17]. These nodes

have a longitudinal diameter between 5.4 and 23 mm (M=14.82mm, S.D=3.45mm) and

a transverse diameter of between 3 and 12 mm (M=6.88, S.D=3.45mm) [20]. In the

majority of patients the lymphatics of the upper limb all flow into nodes in the axillary

group. However, cases have been reported where drainage from some regions of the arm

bypassed the axillary group and drained to the trunk or cervical nodes [19]. There is
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also evidence of pre-nodal lymphovenous communication within the arm of pre-operative

axilla lymphandectomy breast cancer patients [21].

1.3 Biomechanics of Lymphangions

The anatomical study of the lymphatic system has its roots in several misinformed

descriptions of the lymphatic system beginning in 500BC. However, it wasn’t until the

end of the Renaissance that the understanding was in place to allow considerations of

the biomechanics of the lymphatic system [22]. There are two aspects of lymphangions

which motivate the study of their biomechanics: the contractile and the valved nature of

lymphangions. Sappey identified lymphatic valves in the vessels of the upper limb in 1855

and noted that they had first been observed by Rudbeck in 1653 [23]. Sappey concluded

that lymphatic valves gave lymphatic vessels a directionality. By 1895, Ranvier was

hypothesising the embryonic formation of lymphatic valves [24][25].

Unlike the lymphatic valves, the contractile nature of lymphangions went un-

reported until the 18th century. The discovery of the contractility of lymphatics is

complicated by the simultaneous discoveries made by authors unaware of each other,

Aukland’s 2005 review of these works makes clear the progression of research [26]. As

Aukland notes Hewson hypothesised in 1774 that lymph could be drawn into the lym-

phatic vessels by capillary forces and then propelled by contraction of the lymphangions.

In 1784, Sheldon noted that the cervical lymphatic vessel walls were muscular in dogs.

He hypothesised that the musculature, along with the motion of respiration and the

motion of the heart, propelled lymph forward [27]. Hewson and Sheldon’s theory was

confirmed by Heller in 1896, without prior knowledge of those hypotheses [26]. Heller

observed the contractility of mesenteric lymphatics in guinea pigs. In 1926, Carrier

observed contractions in the lymphatic vessels of bats wings [26]. However, Carrier

didn’t appear to be aware of the nature this discovery and considered the contractility

of lymphangions to be well known. Florey reported the observation of the contractility

of mesenteric lymphangions in 1927, aware of Heller’s work via Tigerstedt but unaware
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of Carrier, Sheldon, or Newson[23][26]. Florey also recorded observations of the valves

moving with the peristalsis of the gut and suggested they were driven by differences in

pressure [23]. The contractility of pre-nodal lymphangions of the extremities was first

recorded in 1949 by Smith without reference to Carrier [28]. While Zhdanov’s discovery

of the lymphatic duct in 1949 completed the modern understanding of the organ-scale

anatomy of the lymphatic system [29][10]; it would be another twenty years before a

series of works began to explore the mechanisms and function of these behaviours and

lymphatics entered the field of biomechanics.

1.3.1 Behaviour of the Wall

In 1973 Mawhinney and Roddie studied the spontaneous contraction of the bovine

mesenteric lymphatics [30]. They constructed an apparatus which held a section of

lymphangion submerged in a buffered solution and connected to a transducer. They

recorded the axial force of contraction, and the frequency of contraction under the

influence of several drugs. In 1975, McHale and Roddie expanded this apparatus to can-

nulate both ends of the vessel allowing not only pressure measurements just downstream

of the lymphangion but also allowing differing trans-mural and trans-valvular pressure

conditions to be imposed by adjusting the height of fluid reservoirs for the afferent and

efferent cannula. This allowed the study of not only the effect of trans-mural pressure on

bovine lymphatic vessels but also provided data on stroke volume, contraction frequency

and flow rate [3]. This design of apparatus has been used in modern works with the

only changes being improved instrumentation [2]. These techniques are used in the first

study of the biomechanics of the lymphangion by Ohhashi et al. in 1980 [31]. Ohhashi

et al. recorded the pressure-radius relationship for many lymphangions. They estimated

the active components by comparing systole to diasystole, though this method would

not account for the tone generated by the lymphatic muscle. They also estimated the

Youngs’ modulus from the pressure-radius relationship, making this the first attempt

to find a constitutive law for the lymphatic vessel wall. For the purposes of this work

we can split the remaining development of a material model into two groups. Firstly,
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works which attempt to understand the underlying biomechanics and advance these to

a model which agrees well with experimental results. Secondly, works that attempt to

produce functions which only recapitulate the experimentally observed pressure-radius

or pressure-diameter relationships. Of these two tasks the second is simpler while the

first is more informative. In the second case the range of functions to which experi-

mental data can be fitted is infinite, while in the first case the range of material models

with relevant microstructure is limited. The second case allows an understanding of why

the material behaves as observed experimentally, this allows the model to be adjusted

for inter-species variation in microstructure and also explains the material properties in

situations outside of those observed i.e. uniaxial loading. This issue will be discussed in

greater detail in Chapters 3 and 4.

For the first case, Reddy’s model of the lymphatic system in 1979 was based on

Hookean thin wall cylinder with an additional stress term to represent the contraction

[32]. A similar method was used by Quick et al. but with a time-varying elastance

used to impose contraction [33]. This tube-law approach continued with MacDonald

et al. in 2008, adding viscous damping and longitudinal bending to this approach [34].

As MacDonald et al. noted, their experimentally found values for the modulus agreed

with previous values found in thoracic ducts at low pressures but underestimated values

found in bovine mesenteric lymphatics at higher pressures. This suggests that this

model could not capture the highly non-linear shear-stiffening behaviour observed in

lymphangions. This behaviour is believed to be caused by an elastin dominated response

at low strains which transitions to a collagen dominated regime as initially wavy collagen

fibres are pulled taut; in a similar mechanism to that found in arterial mechanics [34].

Contarino and Torro further modified this tube-law into a power law by raising each

of the terms to a non-integer power [35]. Attempts at a microstructure motivated non-

linear constitutive law have also occurred. By using second harmonic generation for

collagen and multiphoton excitation for elastin, Arkill et al. was able to achieve images

of the elastin and collagen networks within bovine mesenteric lymphangions at differing

strain states [36]. However, the authors didn’t propose a strain - stress relationship or

similar. Caulk et al. attempted to fit a four-fibre family model to experiments conducted
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on the thoracic duct of rats. However, as the author noted they struggled to recapitulate

experimental data [37]. The use of thoracic ducts in the construction of lymphatic wall

material models is motivated by their larger size. However, in a 1987 study Ohhashi

found considerable site to site variation in the stiffness of lymphangions in canines, with

a large difference between mesenteric lymphangions and the thoracic duct [38].

Attempts in the second case predominantly proceed from a 2012 study by

Rahbar et al. [39]. As well as making qualitative statements of the composition of the

wall and leaflet, in a manner similar to Arkill et al. [36]. The authors also recorded the

pressure-diameter relationship for mesenteric rat lymphangions, in a manner similar to

Ohhashi [31]. However, instead of calculating an equivalent initial Young’s modulus the

authors fitted an empirical relationship between the diameter and the pressure. This

form was used in the lymphangion model proposed in 2014 by Bertram et al. [40]. With

occasional modification and simplification it has been used in many subsequent works

[41][42][43]. It is the only material model that has been used to predict and explain

a phenomena that was subsequently demonstrated experimentally; the mechanism for

sub-atmospheric lymphatic pumping [44]. It is also the material model that has been

used at the greatest scale in terms of number of lymphangions [43].

Throughout the remainder of this work the approach to modelling the wall will

be focused on the second case. The reliance on empirically derived relationships that do

not attempt to model the underlying material behaviours that drive those relationships

is a limitation of this work. However, these functions conveniently allow the capture of

the highly non-linear wall behaviour.

1.3.2 Behaviour of the Valve

The development of electron microscopy allowed detailed observations of lymphatic

valves in 1971 [45][46]. The absence of smooth muscle on the valve surface strengthened

the observation by Florey that the valves appeared to move passively. In 1987, Mazzoni

et al. published the first quantitive study of lymphatic valve structure [47]. Conducted
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on valves from the Spinotrapezium of rats, wax embedded cross-sections were prepared

by microtome and imaged by light microscopy. Revealing the sparse collagen content of

the leaflet and the “buttressing” of collagen around the annulus. Their paper considered

the mechanics of the valve closure, hypothesising that the valves were driven by pres-

sure differences between lymphangions. They also examined the opening and closing

sequences and estimated the Reynolds number to be 0.0025 [47]. Mazzoni et al. did not

consider wether there was an opening bias to the valves. Reddy’s model considered these

valves to be ideal and unbiased [32]. In 2008, MacDonald et al. included a valve bias

term in their idealised valve model. In 2011, Davis et al. published a study on the valve

gating a murine lymphatic vessels. This work expanded considerably on previous valve

studies, observing behaviour in physiological media as well as considering the absence

of tone by using calcium-free media [2]. They revealed that the valve gating depends on

the trans-mural pressure as well as the presence of tone. Further discussion of previous

modelling of valve behaviour can be found in Chapter 3.

1.4 Overview

This work will seek to take techniques from engineering and computer science and use

them to model aspects of the lymphatic system. This will be done with aim of improving

the understanding of lymphatic disease and identifying new avenues of research. In

Chapter 2 we will first consider a 3D approach to modelling lymphatic valve and wall.

Lessons learned from this project will then inform Chapter 3. Where a 0D lumped model

of a lymphangion is proposed. In Chapter 4, a chain of 0D lymphangions are used to

form a vessel and these vessels connected to form a model of the superficial lymphatic

system for the upper limb. Finally in Chapter 5 a consideration is then given to how

lymphatic insufficiencies would effect limb shape and this is used to construct a shape

based metric of lymphoedema which is then tested on limb scans from 21 unilateral

lymphoedema patients.





Chapter 2

Modelling a Single Lymphangion:

3D FEA.

Some work in this Chapter was published in The Journal of Biomechanics under the title

“An Integrated geometric and mechanical analysis of an image-based lymphatic valve”

in November of 2017 DOI:10.1016/j.jbiomech.2017.09.040. Permission to reproduce has

been sought and given by Elsevier where appropriate.

2.1 Introduction

Lymphatic valves are essential to flow against gravity, their absence, or malformation

in primary lymphoedema is associated with severe lymphatic insufficiency [48]. A pre-

viously published sensitivity analysis of lymphangion models has revealed that valve

resistance is a determinant of lymphatic pumping function [42]. In reality, valve closing

and opening is not instantaneous and this lymphatic resistance will evolve in time and in

response to the trans-valvular pressure gradient. Understanding the dynamics of these

lymphatic valves is complicated by their small size. Current published experimental

15
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data either occurs at a temporal resolution which allows the opening and closing to

be observed [2] or at the spacial resolution which allows the geometry to be accurately

captured [49]. The use of finite element modelling allows inference to be drawn between

these scales by allowing statically images valves to be animated mathematically and

the results compared to experimental data. Several authors have commented on the

potential benefit of a lumped model of the lymphatic system [50]. A lumped model of a

lymphangion is constructed by ”lumping” behaviours together into a series of elements.

These elements can be arranged in series or parallel to form networks. Constructing

models this way overcomes the large computational expense involved in 3D CFD mod-

elling. However, the model is dependent on the ability of these individual elements to

recapitulate the behaviour of the 3D components they represent.

The differing approaches taken to “lumping” the valves into lumped model

will be discussed in greater detail in Chapter 3. However, the greatest progress toward

network scale modelling comes from the model constructed by Bertram et al. [40].

Briefly, Bertram et al. modelled the valves by imposing a fluid resistance, which was

proportional to a logistic function of the applied trans-valvular pressure difference [40].

This approach has subsequently been used in network-scale models, by Jamalian et

al. [43]. These valve models do not include experimentally demonstrated relationships

between the trans-mural pressurisation and the trans-valvular pressure required to close

the valves.

Previous work has considered the opening behaviour of three-dimensional ide-

alised valves [51]. When the work in this chapter was undertaken, as far as the author

was aware the only finite element analysis published about lymphatic valve closure, was

flow around a two-dimensional valve [52]. Subsequently published work has considered

3D fluid structure interaction on idealised valves [53].

However, reconstruction from confocal imagery reveals several difficult to ide-

alise features present on the valve, some of which have not been included in previous

parametric models [49][51]. This process is intensive, and an idealised representative
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model would allow large parametric studies to find the relationships necessary to con-

struct a lumped model of the lymphatic system. The valve represents the first 3D

reconstruction of the lymphatic valve geometry. While, the features found may be arte-

facts of imaging, reconstruction and may not be found on technical or biological repeat

of the experiment. They may also be unique to the mesentery or to mice in general. This

work proceeds by including these features and leaving to future work the task of demon-

strating their irrelevance. This work aimed to provide the first image-specific lymphatic

valve and wall geometry and to use finite element analysis to study the closure of these

compliant valves. Two metrics of valve closure were defined and sensitivity of this model

is assessed against the shear modulus of the leaflet.

2.2 Methods

2.2.1 Image Processing and Segmentation

The image set used was acquired by Prof David Zawieja (Texas A&M) and was produced

by confocal imagery of a lymphangion isolated from the mesentery of a rat. A section

of lymphatic vessel was extracted and placed in a calcium-free solution to prevent con-

traction. The vessel was cannulated and stained by intra-luminally loading with Cell

Tracker Green CMFDA (5-Chloromethylfluorescein diacetate). The lymphangion was

pressurised to a trans-mural pressure of 5cmH2O, No trans-valvular pressure gradient

was applied so that the valve was imaged in a rest state. The valve was scanned with a

Leica AOBS SP2 confocal-multiphoton microscope with an U APO 40.0x1.15 W CORR

objective, a 100mW 488nm laser was attenuated with an acousto-optical modulator,

and acousto-optical beam-splitters were used to select the wavelengths from the emis-

sion spectrum between 510-525µm. The vessel was aligned with the x direction. A single

x-y confocal slice was acquired then the focal plane was advanced in the z-axis before

acquiring the next x-y image. The resolution in x and y is the same and dependent on

the lens, scanning characteristics, confocal pinhole and staining intensity. However, the

resolution in z is lower and is dependent on the step size and confocal pinhole size. The
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scans represent a pack of 195 2D slices containing 512-by-512 pixels at a resolution of

0.6-by-0.6 µm. The distance between consecutive images is 1 µm. The image was con-

verted to an intensity map which was then subjected to a median filter. A 307 micron

length of wall containing a valve, was segmented from the image set by Dr Igor Sazonov

(Swansea University). The valves length was 230 microns from the middle of the bases

to the middle of the commissures. The diameter at the commissures is 160 microns, and

the diameter at the base was 90 microns.

As can be seen in Figure 2.2.A, the images are very noisy, the objects blurred

and the intensity is non-uniform. As the focal plan moves away from the laser source the

fluorescent intensity decays exponentially due to scatter and adsorption. These issues

complicate the reconstruction of the leaflets, which was ultimately performed manually,

as described in Section 2.2.1.1. An overview of the lymphatic valve geometry is shown

in Figure 2.1.A and B.

2.2.1.1 Segmentation and Reconstruction

The wall was segmented by an automatic active contour method implemented by Dr

Igor Sazonov (Swansea University). In order to achieve this, we introduce the Cartesian

coordinates: x and y in horizontal and vertical directions, respectively, in every slice and

the z-axis, is the depth of a slice. Then wall contours are arranged in every z-y slice, see

Figure 2.2.B. The initial contour in the first z-y slice is an ellipse set manually by four

points on the image in the middle of the wall. The contour displaces along its normal,

moving up intensity gradients and stopping when it reaches the maximal intensity. In

all subsequent slices, the final contour of the previous slice is taken as the initial. Thus

the procedure is practically automatic except the setting of the first four points. When

this procedure is completed the result is a series of points with each point representing a

local maxima of intensity. Together these points describe a surface which is assumed to

be at the centre of the wall. The thickness of the wall can then be determined by looking

for the highest gradient of decay each side of the central surface. The wall surface is also

smoothed axially along the surface to remove noise effects using a modified Laplacian
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Figure 2.1: An overview of the lymphatic valve configuration and nomenclature. A)
Nomenclature for the valve leaflets. B) The configuration of the leaflets to form the
valve. C) Shows the Segmented structures of a subject-specific valve. Leaflets are

shown in red and green, and the wall is shown in blue.

smooth algorithm. The Laplacian smooth algorithm usually displaces each point to the

average of its neighbours. The method of segmentation results in each non-boundary

point having two axial neighbours and two radial neighbours. The modified smooth

algorithm moved each point to the average radial position of its axial neighbours. The

smoothed wall geometry is shown in blue in Figure 2.1.C.

The leaflets were also segmented by Dr Igor Sazonov (Swansea University)

using the following method. First, a separation line is manually placed between the two

leaflets on each slice. These lines separate the voxels into two groups, those above the

line belong to the top leaflet, those below the line belong to the bottom leaflet. The

intensity for each leaflet is summed in the z direction for both sides of the separation line

creating two 2D images which reveal the outline of the leaflets. The trailing edges of the
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50 μm

Figure 2.2: A series of z-y slices illustrating a step by step overview of the segmen-
tation process. A) A z-y image slice. B) A segmentation of the wall (yellow). C) The
guidelines of leaflet edges used in reconstruction (cyan). D) Manual reconstruction of

the leaflet structures (red and blue).

valve leaflets are traced and used as a guide for manual reconstruction of the leaflets.

A vector is constructed such that it is roughly perpendicular to the valve in the z-y

plane, the guidelines are parallel to this vector, as can be seen in Figure 2.2.C. For each

slice, the user places a number of vertices resulting in a polygonal chain that describes

the shape of the leaflet, see Figure 2.2.D. These points can then be post-processed and

meshed to obtain the final geometry, see Figure 2.2.C.

2.2.2 Material Properties of the Wall and Leaflets.

The small size of lymphangions prohibits the use of classical methods to find material

properties for the leaflet and the wall. The composition of lymphangions has also been
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established by immunostaining; with the leaflet consisting predominantly of elastin and

the wall a collagen-elastin composite with collagen reinforcement at the annulus [1].

Existing experimentation on rats has found a highly non-linear pressure-diameter rela-

tionship for lymphangions, Rahbar et. al. fitted a pressure-diameter relationship of the

form [1]:

Pmural(D) = P0

(
exp

[
Sp

(
D

D0
− 1

)]
− 0.001

(
D

D0

)−3

+ 0.05

)
(2.1)

Where Pmural represents the trans-mural pressure in cmH2O, D represents the vessel

diameter in µm, Sp the is a shape parameter which increases the rate of strain-stiffening

and D0 the normalising diameter measured at Pmural = P0. For lymphangion sections

taken upstream of valves the mean values for P0, Sp and D0 were 18.0, 20.4 and 157.4

respectively. It is important to note that the normalising pressure, P0, and diameter, D0,

are the largest considered. Ideally a microstructure motivated constitutive model of the

lymphangion wall would be used, discussed in Section 1.3.1. However, experimentation is

complicated by the collapse of the wall in a stress-free condition. When the lymphangion

is un-stressed it collapses, preventing imaging and experimental analysis. As a result

all imaging is conducted with a certain amount of pre-stress in the wall and leaflet.

Material models have to account for this pre-stress. For linear material models the load

conditions can be adjusted to remove the imaged load. For non-linear material models

the stress-state of the lymphangion has to be known before analysis. An attempt to

account for this without the complexity of an inverse-FEA study to find this stress is

made below.

Rahbar et al. compared fits of their model for lymphangion sections upstream

and downstream of a valve, the greatest change in parameters observed was 16% [1]. As

the leaflet is predominantly devoid of collagen and much thinner than the wall. We take

the assumption that the wall is dominant over the leaflets and the leaflets do not effect

the motion of the wall. This allows a method by which representative wall motion can

be achieved through an elasto-plastic model whereby the wall was considered very stiff

elastically, and artificial plastic deformation was used to model the non-linear component
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of the behaviour described in Eq 2.1. This model allows representative wall motion for

use in leaflet study. Firstly the wall is considered to be a homogenous thin walled cylinder

described in {Θ, R} as 0 < Θ ≤ 2π, R = r(Pmural) with associated thickness, t(Pmural);

where r is the radius of the wall at pressure Pmural. The assumption of symmetry

allows only displacement u in R. The assumption of incompressibility suggests that

cross-sectional area is conserved.

π

[
r(Pmural) +

t(Pmural)

2

]2

− π
[
r(Pmural)−

t(Pmural)

2

]2

= Const (2.2)

The principle strains can be written as:

εΘ =
u

r(Pmural)
, εR =

t− t(Pmural)
t(Pmural)

(2.3)

The principle stresses can be written as:

σΘ =
r(Pmural)Pmural

t(Pmural)
,σR =

−Pmural
2

(2.4)

This allows the creation of a von-Mises equivalent stress-strain relationship. The pre-

stress of the cylinder was modelled by the addition of the existing stress; where P1 is

the trans-mural pressure at imaging.

σvM (Pmural) = σvM (P1) + σvM (Pmural − P1) (2.5)

This relationship was decomposed into a linear-elastic component representing

the gradient at Pmural = P0, in this case, a modulus of 413 kPa and the remaining

strain through artificial plastic deformation. This model was implemented in ANSYS

workbench, and the wall was pressurised to 18cmH2O to cover the full range considered

by Rahbar et al. [1]. Shown below in Figure 2.3 is the fit described in Eq 2.1 compared

to the mean D/D0 for 10 equally sized bands through the wall geometry. As can be

seen, the reconstructed wall is slightly more compliant than the fit. In the absence of

collagen an incompressible neo-Hookean model was used for the leaflets with a shear

modulus of 50kPa. This value has been used in other studies of lymphangions but is
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Figure 2.3: A plot of the mean D/D0 for ten equally spaced bands taken axially along
the wall geometry during pressurisation. Colour indicates the location of the bands,
shown on the lymphangion geometry in the sub-figure. The black line represents the

pressure diameter relationship found by Rahbar et al. [1].

based on experimental data from arterial elastin [51]. The sensitivity of this value was

assessed in the material properties study.

2.2.3 FEA Model Setup

A steady-state elastic finite element analysis was used to assess the pressure required

to close the valve. As immediately after valve closure there is no flow through the

lymphangion this valve can be found without the need for a fluid-structure interaction

study. ANSYS Workbench was used to solve the FEA problems. Meshes of varying

densities were originally created for the reconstructed geometry. These meshes were

then converged to a mean 1 percent relative error by the Euclidean norm of the entire

displacement solution field, at a meshing density of 1 node per 3 µm2. The results of the

manifold harmonic analysis were re-meshed, to preserve mesh quality, at a finer level of

1 node per µm2. For the flexible wall studies an initial mesh of 1 node per 5µm2 was
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refined until the pressure required to close the valve and the retrograde displacement of

volume had a relative error of less than one percent. For every mechanical model, the

leaflet was represented as a series of linear quadrilateral shells each with an associated

thickness of 5 microns. Contact between the leaflets was modelled by an augmented

Lagrange algorithm; the normal stiffness was relaxed to 0.5 of the default setting to allow

convergence and an under-relaxation between equilibrium iterations of −0.5 the time

derivative of displacement was used. The leaflets were considered rough, and slipping was

discouraged through a penalty scheme. The effects of large displacement were modelled

through the ramped application of load in up to 50 steps, during the static analysis.

Both leaflets were pressurised with a trans-valvular pressure difference of 5 cmH2O in

order to close the valve. The afferent and efferent ends of the wall were held in-plane,

and one node on the afferent end of the wall was fixed in space. The leaflets were bound

to the wall by coupling displacements to nearest nodes on the wall. Rotations were also

coupled in order to represent collagen buttressing of the leaflet previously observed [1].

2.3 Results

Three phases of displacement can be identified during the application of an increasing

trans-valvular pressure gradient. The mean of the peak axial displacement of the trailing

edge for both leaflets is shown in Figure 2.4. Firstly, the unimpeded motion of the trailing

edges toward each other; secondly, a transition as the trailing edges start to coapt, and

finally the leaflets deform against one another and the valve seal develops. As shown

in Figure 2.4.D these regions can be delineated by the first trans-valvular pressure at

which initial contact between the two leaflets occurs and closure of the valve, defined as

the first load step for which a contiguous area spanned a leaflet which was within half a

micron of the other. To examine the effect of the wall motion the trans-valvular pressure

required to close was compared with imposed wall motion and with the annulus fixed

in place. The trans-valvular pressure required to close the valve rose from 1.56 to 2.52

cmH2O. A study was performed to assess the sensitivity of the model to changes in the

leaflet shear modulus. The wall was included in this study though its material properties
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Figure 2.4: A plot of the peak axial displacement of the trailing edge against trans-
valvular pressure. Also shown is the original valve at three different trans-valvular
pressures with the Euclidean displacement field coloured. A marks the first contact
between the leaflets. B marks the point of minimal orifice area and C is the maximum

applied trans-valvular pressure.

were kept constant as they were chosen to give representative motion, as discussed in

Section 2.2.2. The shear modulus for the leaflets was varied from 10 kPa to 60 kPa.

A trans-valvular pressure of 5 cmH2O was applied to the valve in a closing manner.

Shown below in Figure 2.5 are the effects of leaflet shear modulus on the displacement

of the leaflet. There is a clear relationship between decreasing stiffness and a reduced

pressure required to close the valve. Davis et al. used calcium-free media to study

lymphatic valve gating without tone comparing those results to the experimental data

for a comparable valve it would appear the shear modulus is much less the 50kPa [2].

After closure of the valve, the leaflets continue to displace axially under the applied

trans-valvular pressure which results in retrograde displacement of the fluid within the

lymphangion. This quantity is expected to play no role in lymphatic pumping however

it is a metric of valve seal that is suited to subject-specific modelling as it doesn’t rely on

finding the apex of the commissure or defining a plane perpendicular to the commissures.

Geometry specific quantities are easy to define for idealised geometries but difficult for

subject specific geometries given their asymmetry and idiosyncrasies. This volume was

estimated by calculating the volume between the two leaflets in the imaged state and
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then after the application of a 5 cmH2O trans-valvular pressure difference in a closing

manner. The change in retrograde volume displaced at 5 cmH2O is shown in Figure 2.6.

As can be expected the retrograde volume displaced is a function of the trans-valvular

pressure required to close, but it also takes into account the compliance of the geometry.
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Figure 2.5: Trans-valvular pressure required to close the valve for differing leaflet
shear moduli. The black lines represent experimental data for a lymphatic valve without

tone and a trans-mural pressure of 5 cmH2O [2]
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Figure 2.6: Retrograde volume displaced for differing leaflet shear moduli.

2.4 Discussion

A subject-specific model of a lymphangion has been presented and metrics of valve

closure which account for the difficulties associated with subject-specific modelling pro-

posed. A method of achieving representative wall motion has been proposed and the

resultant 3.55% increase in diameter, as estimated by the pressure-diameter relationship,

causes a two-fold increase in the trans-valvular pressure required to close the valve. In-

dicating that wall motion plays a significant role in valve gating. The estimated shear

modulus for the leaflet of 50kPa based on arterial studies of elastin and previously used

in studies of lymphatic valves appears to be an over-estimation [51]. There are several

limitations to this study. The contractile nature of the wall was not included in any of

the mechanical models. Secondly, the material properties of the wall in this study were

designed only to produce representative motion, the creation of a constitutive model

based on the interaction between collagen and elastin at various strain-states within the

wall would allow for a greater consideration of its behaviour. The properties describing
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the elastin network in lymphatic leaflets are still unknown and might affect valve be-

haviour. Experimental determination of these properties is very challenging given the

small size of the leaflets. Hence, future work could address these limitations by per-

forming a material characterisation of the valves imaged in two positions and a two-way

fluid-structure interaction study.



Chapter 3

Developing a 0D Lumped Model

for the Lymphatic System: From

Lymphangion to Limb.

Mathematical modelling of the lymphatic system was first undertaken by Reddy et

al. published in 1976 [32]. The model of Reddy et al. considered the entire human

lymphatic system as 28 lumped lymphatic vessels. Since that work, studies have con-

tinued to develop the lumped approach down to the single lymphangion scale, while

others have developed continuum mechanic models [50]. However, the largest models

have considered networks of less than 100 lymphangions [43]. It is hoped that larger

scale lymphatic models will offer a holistic understanding of disease, which will allow

for greater understanding of experimental results and can elucidate the relationship be-

tween pathology and insufficiency which underpins lymphoedema. In this chapter an

attempt will be made to expand lymphangion-scale lymphatic modelling to the tens

of thousands of lymphangions necessary to model limb or organ scale lymphatic net-

works. This chapter presents the methods used to form a model with occasional results

to illustrate behaviours. As a result the chapter is not presented in the methods, re-

sults, discussion structure used throughout the rest of the work; instead methods are

29
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grouped thematically. Throughout this chapter previous methods will be debated, new

approaches considered, and a model for lymphatic vessels at the limb scale proposed.

Chapter 4 will explore the behaviour of this model, present results, and discuss their

implications.

Lumped lymphatic models “lump” basic elements together to produce a sys-

tem of equations which can be solved to find the flows, diameters and pressures within

the lymphatic system. The term “0D lumped model” describes models which have no

remaining spatial dimensions at assembly. For example, compare the 1D approach pub-

lished by MacDonald et al. to the 0D approach published by Bertram et al. [34][55].

Both reduce the Navier-Stokes equations to a 1D tube; MacDonald integrates this equa-

tion across a series of computational cells, allowing the parameters to change along the

length; Bertram et al, represent them as Hägen-Poiseuille style resistance that has al-

ready been integrated along the length of the vessel. The first approach yields a 1D

lumped model where additional elements will capture additional detail, provided the

parameters, such as contraction state, change along the length. The second approach

yields a 0D lumped model where the parameters are fixed along the element. Given the

aim of this study is to produce the first limb-scale model of the lymphatic system the

0D approach is taken, as it offers reduced computational expense. As has been previ-

ously noted contractions appear to be almost instantaneous between lymphangions at

the lymphangion scale [50]. Apart from the valve regions, lymphangions are assumed

to be constant diameter. Meaning there may not be the clear benefit to a 1D approach

that has been realised in cardiovascular modelling [56].

Beyond modelling the flow through the pipe like geometries of the lymphatic

system, there are three essential properties of lymphangions which we seek to replicate.

1) Lymphangions are compliant. 2) Lymphangions are contractile. 3) Lymphangions are

valved. In this section we will explore each of these properties in turn, discuss previous

attempts to recapitulate observations of these properties, and propose modifications and

adjustments which may better suit our aims of limb-scale lymphatic modelling. Each

individual aspect of the model is explained in turn before an explanation of the assembly.
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A circuit equivalent overview of a lymphangion is shown below, Figure 3.1.

It consists of four fundamental building blocks. The flow through the lymphangion is

restricted by two resistors, a capacitance at the central pressure node is used to represent

a compliance, and a variable resistor is used to represent a valve.

P1 P2 P3Pv

Pext

Figure 3.1: A circuit equivalent overview of a lymphangion

3.1 Modelling Flow

All lumped lymphatic models, of which the author is aware, treat lymph as an in-

compressible fluid with an axisymmetric flow. With the notable exception of Quick et

al. an assumption is also made for quasi-steady flow [33]. These assumptions allow

the Hägen-Poiseuille simplification of the Navier-Stokes equations. In order to exam-

ine these assumptions let us divide the flow through a lymphangion into three regions;

Flow distant from a valve, flow around a valve and flow through a valve. In the first

case the very low Reynolds numbers support a quasi-steady approach where changes in

velocity do not have significant inertial consequences - in 1987 Mazzoni et al. estimated

the Reynolds number for a lymphangion in the spinotrapezium muscle of a rat to be

0.0025. They assumed the length scale was the width of the vessel, the velocity scale

was the mean fluid velocity, and the viscosity was twice that of water [47]. An attempt

to find a scaling for Reynolds numbers within the lymphatic system is made below. For

a thin-walled cylinder the relationship between wall tension and internal pressure is as

follows.

T =
PD

2
(3.1)
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With T being tension in the wall, P being the internal pressure, and D representing the

diameter. If we assume that tension is directly proportional to the wall thickness and

thickness directly proportional to diameter then the internal pressure for lymphangions

should be scale-free. This concept has support in literature; Davis et al’s valve experi-

ments in the mesentery of mice and McHale et al’s valve experiments in the mesentery

of cows have approximately the same pressure scale despite the orders of magnitude

difference in the diameter of the lymphangions. If we assume that this pressure alone

drives flow, then we can say that lymphangion fluid velocity is proportional to the square

of diameter. Taking a characteristic length as diameter, we can say that the Reynolds

number scales with the third power of diameter.

Re ∝ D3 (3.2)

This would imply that for lymphangions with diameter less than one millimetre the

Reynolds number is expected to be less than 100. This assumption covers all lymphan-

gion diameters considered in this work.

The above calculation is based on mean velocities and diameters which change

over contraction cycles - of the order of 1-10 seconds [55]. The high length-diameter

ratio and cylindrical nature of this region also support an assumption of axisymmetry.

In the second region the assumption of quasi-steady flow may also be challenged. The

valve motions and velocities associated with the ejection phase of lymphangion pumping

occur over much shorter periods than the contraction cycles - of the order of 0.1-1

seconds [2]. Whilst Quick et al. expected viscosity to dominate in their consideration

of lumped lymphatic modelling, they preserved an inertial term in order to correctly

capture ejections [33]. Bertram et al. however, later omitted this term arguing that

the Reynolds numbers where sufficiently small to justify doing so [55]. This assumption

has continued in later works [43]. Prior to this consideration by Bertram et al., Rahbar

through a 3D CFD model of a radial contracting lymphangion found the wall shear

stresses to agree with those predicted by a Poiseuille model to within 4% [39]. The

pressure-flow relationship stated by Quick et al. is shown below, with the inertial term
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omitted by Bertram identified [33][40].

∆P =
8ηL

πr4
Q︸ ︷︷ ︸

Viscous Term

+
ρL

πr2

dQ

dt︸ ︷︷ ︸
Inertial Term

(3.3)

In flow through the valve itself the assumption of axisymmetry may be better

restated as the assumption that the resistance of the valved section has an equivalent

Hägen-Poiseuille resistance. The nature of this relationship may not be trivial, Wilson et

al. performed 3D CFD simulations of idealised lymphangions [51]. As could be expected

increasing the sinus-to-root ratio increases the area available for flow and reduces the

resistance. Wilson et al. found, within a physiological range of sinus to root ratios for

rat mesenteric lymphangions, this effect was so prominent that the resistance of the

valve-sinus assembly was lower than the Hägen-Poiseuille resistance of a tube of root

diameter. So in these cases, because of the sinus, the inclusion of the valve lowers the

overall resistance of the lymphangion.

It was common in earlier considerations of lymphangions to omit the resistance

in the valve section and assume an ideal valve model where flow is permitted, unimpeded,

when pressure gradients support it and completely prohibited otherwise [57][34].

3.2 Lymphangion Valves

Modern attempts at lumped modelling of the lymphatic system have sought to move

away from idealised valves for three reasons. Firstly, to capture the observed open-biased

nature of the valve. Secondly, to avoid temporal discontinuities in valve state. Finally,

constraining the flow to zero leads to a infinite resistance which can cause numeric

issues. This second factor is significant in correctly capturing the inertial effects of

ejection. Bertram et al. used valves whose resistance was directly proportional to a

logistic function of the trans-valvular pressure gradient with a bias. This allowed a

finite resistance, which is a function of the trans-valvular pressure gradient. Whilst this

produces temporally-smooth resistances, they apply instantaneously [55]. Contarino
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and Toro modelled the valve through an ODE where the change in valve state was

proportional to the trans-valvular pressure gradient [35]. This represents the input-lag

property of the leaflets which will be transiently deformed to closure by the flow field

that occurs as a result of the trans-valvular pressure gradient. They also allowed for

different behaviours in the opening and closing modes representing the hysteresis found

by Davis et al. [2]. However instead of modulating a resistance, Contarino and Toro

modulate the cross-sectional area from which the resistance is calculated [35]. The result

is that the valve state is proportional to the square of the conductance of the section.

This property is more closely inspired by the mechanical nature of the valves but is

difficult to compare to other models and poses numerical issues due to the unbounded

resistances it can generate if that area is allowed to be zero.

A new model is proposed; which, like Bertram et al., modulates a resistance

directly but takes the form of that used by Contarino and Toro [55][35]. An additional

modification is taken in order to replicate the behaviour observed by Davis et al. that

the valve gating is a function of the trans-mural pressure. As the annulus of the valve is

stretched the open-bias increases, this phenomenon was described in in Chapter 1 and

explored in Chapter 2. The valve model, with the proposed modification, is shown below.

With ζ representing the normalised valve resistance, Ptv the trans-valvular pressure,

Pbias(Ptm) the trans-valvular pressure required to close the valve.

dζ

dt
=


kvo(1− ζ)(Ptv + Pbias(Ptm)) Ptv + Pbias(Ptm) ≥ 0, Opening

kvcζ(Ptv + Pbias(Ptm)) else, Closing

(3.4)

To show the differences between the two models a simple demonstration is

presented in Figure 3.2. An expression for Pbias is found by fitting against the results

found by Davis et al. [2]. The data presented in Davis et al. is recapitulated in Figure

3.2.A. In the original work a power-law fit was used. While this would appear to be

correct, a reasonable approximation is achieved with a linear fit as shown in Figure 3.2.A.

To represent a contracting lymphangion the trans-valvular pressure, Ptv, is represented
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by a sine wave with a period of 25 seconds and a amplitude of 2 cmH2O. The trans-

mural pressure linearly increases from 0 to 20 cmH2O over four contraction cycles. The

imposed trans-mural pressure and trans-valvular pressures can be seen in Figure 3.2.C,

with the resultant valve closing and opening shown for the Bertram model and the

proposed model. As can be seen, in the proposed model, there is a valve bias which

changes with trans-mural pressure.

The normalised resistance, ζ, is calculated for these conditions using the eq

3.4, a hysteresis is included by setting kvo = 0.5 cmH2O−1s−1 and kvc = 1 cmH2O−1s−1

. In Figure 3.2.B, this resistance can be seen for the four cycles. The proposed model is

coloured for time and the model used by Bertram is shown in black. The hysteresis of

valve motion is reduced due to the higher trans-valvular pressures during opening and

closing.

It can be expected that there would be much site to site and species to species

variation in the relationship between trans-mural pressure and valve biasing. Such a

study has not been performed outside of the lymphangions of mice. It is also important

to note that allowing the valve state to evolve in time complicates the measurement of the

pressure required to close the valve. Davis et al. measured valve closure by thresholding

for the total intensity in images taken between the valves. When this threshold is met the

valves have closed, but the pressure which closed them occurred several hundredths of

a second before. In a spontaneously contracting lymphangion the difference in pressure

between the start and end of a valve motion is likely to be significant.
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P
bias

Figure 3.2: A) The trans-valvular pressure required to close the valves at differing
trans-mural pressures, reproduced from Davis et al. [2]. The black line indicates a linear
fit with the equation shown. B) Shows a trans-valvular pressure - normalised resistance
plot for the valve demonstration shown in C. The line colour shows the time allowing
the increase in valve open bias present at higher pressures. The hysteresis can be seen
which appears diminished at higher pressures. Shown, in black is the relationship in
the Bertram et al. model without hysteresis or trans-mural pressure dependent biasing.
C) Shows a sinusoidal trans-valvular pressure with an increasing trans-mural pressure.
Markers indicate a change in valve states for the Bertram et al. and proposed model,

found by identifying when the normalised resistance crosses a 50% threshold

.

3.3 Imposing Compliance

Material models for lymphangions in 0D lumped modelling vary in their rigour and

behaviour, as was discussed in Chapter 1. For the same reasons laid out there we proceed

using empirical pressure-diameter relationships. Bertram et al. created a similar model
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to that of Rahbar and Moore to fit experimental pressure-diameter relationships, shown

below with change in nomenclature.

P = Pd

[
c1

(
D

Dd
− c2

)2

+ c3exp

(
c4

(
D

Dd
− c5

))
+ c6 + c7

(
D

Dd
− c8

)
+ c9

(
D

Dd

)−3
]

(3.5)

Where, D, represents the diameter, Dd, represents a scaling for diameter, P represents

pressure, Pd represents a scaling for pressure and c1−10 represent dimensionless fitting

parameters. The pressure and diameter scalings are taken very close to the stress-free

condition, 735 dynes cm−2 was the value fitted. Examining this relationship it can

be decomposed into three phenomena. The first, P ∗Strain-Stiffening is a highly non-linear

stiffening associated with an elastin-collagen duty transition at higher stretches; the

second, P ∗Strain-Thinning represents the strain-thinning incipient to collapse; and the third,

P ∗Residual is the residual behaviour when those two are removed and represents a pressure-

diameter curve for a nearly linear thin-walled cylinder. The three decompositions are

stated below and shown in Figure 3.3. It is important to note at collapse, D = 0, this

solution ceases to exist. Bertram added the strain-thinning term to better agree with

experimental data collected by Davis et al which showed a decrease in vessel compliance

as the vessel approached collapse. This term has an additional consequence of making

complete collapse of the vessel impossible. This has several benefits from a numerical

standpoint, however, it is unphysiological.

P ∗Strain-Thickening = c3exp

(
c4

(
D

c9
− c5

))
(3.6)

P ∗Strain-Stiffening = c10

(c9

D

)3
(3.7)

P ∗Residual =

(
D

c9
− c2

)2

+ c6 + c7

(
D

c9
− c8

)
(3.8)
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Figure 3.3: The passive pressure diameter relationship proposed by Rahbar decom-
posed into the following functions [1]. A strain-stiffening function at high stretches,
P ∗

Strain-Stiffening, shown in blue. A strain-thinning function incipient to collapse,
P ∗

Strain-Thinning, shown in magenta. P ∗
Residual the residual with the above functions

removed, shown in green. Finally, the sum of the above three functions is shown in
black. Left axis is the normalised pressure ratio. Right axis is the pressure if Pd is 735

dynes cm−2

.

There are numerical issues with P ∗Residual. The quadratic form yields non unique

solutions. This is resolved in a simplification proposed by Bertram which is stated below

[40].

Pc = Pd
4

15

[
12exp

(
D

Dd
− 1

)
− 11−

(
D

Dd

)−3
]

(3.9)

This can arrived at by setting c1 = c2 = c7 = c8 = 0, c4 = c5 = 1, c6 = 44
15 , c3 = 16

5 and

c9 = 4
15 . The condition of the resulting system can be further improved by constraining

the diameter, D, to the range D → [ε, inf], where ε is some small number.
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3.4 Imposing Contraction

Myocytes within lymphangion contract periodically in order to pump against pressure

gradients and there are multiple ways of considering this mathematically. However, they

each represent, implicitly or explicitly, an additional pressure which is a function of time

and the lymphangion stress state, fa(σ, t).

Pc(D) + fa(σ(D), t) + Pext = P2 (3.10)

In one the first considerations of lymphangion-scale 1D modelling, McDonald

et al. inspired by treatments of the vascular system proposed that this fa(D, t) be

represented as a stress occurring due to a modulating stiffness [34]. By mapping this

stiffness to a contraction state 0 ≤ χ ≤ 1 a dimensionless variable representing the

contraction state could be imposed a priori or substituted for a more complex function

of the lymphangion state which can include calcium and nitric oxide dynamics as recently

used by Contarino and Toro [35].

3.4.1 Modulating Tension

An alternate method originally used in lymphatic modelling by Bertram et al. repre-

sents fa as a tension, which varies in time. It is important to note that if fa is just a

function of t it is insufficient to capture the behaviour of lymphangions [55]. Consider

a circumferential tension, M0, on a thin-walled cylinder of thickness, τ . then the hoop

stress σθ = M0
τ can be represented as a pressure 2M0

D This pressure can be made transient

by some periodic function, with period T , Mt(t+ T ) = Mt(t) : R→ [0, 1]

fa(D, t) =
2M0Mt

D
(3.11)
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It is important to note that after the downstream valve has opened, if the lymphangion

enters a collapse regime, fP (D) < 0 the contraction is unbounded.

lim
D→0

fa(D, t) =∞ (3.12)

Once Popen is overcome the valve will collapse. It is also important to note that the

diameter-time inflection does not agree with experimental observation during the start

of contraction. Tension increases with the inverse of D, and increasing tension increases

further decreases D. In order to prevent the collapsing behaviour in another work

Bertram et al. made this tension a function of diameter thus M0 is replaced with M(D)

which relates the tension to the strain state and prevents tension in the stress-free state

[40]. This makes the hoop-stress a function of the strain-state which is functionally

equivalent to the modulating stiffness approach. This method has been incorporated

into network-scale models [43].

3.4.2 Refined Modulating Stiffness Model

The model proposed in this work builds on the above methods by considering an ad-

ditional pressure term which represents the stress induced by the stretch of a coupled

thin wall cylinder with modulating stiffness. This can be represented explicitly as an

additional pressure term due to a coupled thin-walled cylinder. While, this cylinder

will be given linear properties they will be derived by an examination of experimental

results. Consider the hoop stress in a thin cylinder of diameter D experiencing a hoop

stretch λMyo
θ .

σθ = EmaxMt(λ
Myo
θ − 1) (3.13)

Assuming that myocytes do not function in compression, it is assumed there is some

diameter represented as αsfDd at which point the myocytes have zero stretch and below

which they make no meaningful contraction. This allows the below form

λMyo
θ =

D

αsfDd
(3.14)
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Taking a thin-walled cylinder approximation allows fa to be stated as below.

fa =
2τ(D)EmaxMt

D

(
D

αsfDd
− 1

)
(3.15)

Where τ(D) is the thickness of the cylinder wall which conserves its cross-sectional area.

Which yields the following.

fa =
EmaxMt

D

(
D

αsfDd
− 1

)(
−D +

√
D2 + 4τdDd + 4τd

)
(3.16)

In deciding a form for Mt two factors are taken into account. Firstly, examining Davis’

results there appears to be an asymmetry between the duration of the contraction and

relaxation phases [2]. Secondly as Davis et al. demonstrates in the same work there is

some constant tone present at diasystole which an be represented through some minimum

stiffness Emin → [0, Emax]. This stimulus can then be modelled through a simple ODE

allowing for different kinetics in the contracting and relaxing phase.

dM̂t

dt
=


Kc(Mt − 1)ω, Contraction

−KrMtω, Relaxation

(3.17)

These equations can be solved and representative parameters introduced to give the

following for Kc and Kr, for derivation see Appendix B.

Kc = −φ+ 1

Tφ
log

∣∣∣∣1−Mmax

1−Mmin

∣∣∣∣ (3.18)

Kr =
φ+ 1

T (φ− 1)
log

∣∣∣∣Mmin

Mmax

∣∣∣∣ (3.19)

Where T represents the total period of contraction, φ represents the eccentricity of the

contraction, Mmax & Mmin are ratios of E at which contraction ends and starts. As a

result they change the initial and final rate of contraction by dictating which part of the

exponential curve the contraction occurs; as a result 1 ≥ Mmax > Mmin ≥ 0. and Mt
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can be scaled to E as below.

Mt = Emin +
M̂t −Mmin

Mmax −Mmin
(Emax − Emin) (3.20)

φ, the eccentricity, is the ratio of contraction time and the relaxation time. The con-

sequences on the shape of the Mt of varying φ can be observed below in Figure 3.4.B.

Observed lymphatic contractions have significant eccentricities with the contraction time

being some order of magnitude smaller than the relaxation time.

Below, in Figure 3.4, the consequences of adjusting the contraction model pa-

rameters are explored. A single lymphangion is simulated using the model defined in

Section 3.4.4, without inertia, and contracting against an initial trans-mural pressure

gradient of 1 cmH2O. In Figure 3.4.A the effect of increasing Mmin can be seen on the

shape of the relaxation phase of the contraction changes moving with a plateau moving

from the end of the relaxation phase to the start as Mmin increases. Experimental results

indicate that this value is likely to be to the lower end of the simulated range. Figure

3.4.C shows the relatively modest effects of increasing Mmax namely a sharpening of

the contraction-relaxation transition and an increase in the rate of relaxation. Finally,

in Figure 3.4.D the non-linear nature of Emax and the systolic diameter can be seen.

Whilst the logarithmic increase in Emax initially produces a logarithmic change in the

systolic diameter this quickly plateaus to a constant rate of increase before asymptoti-

cally approaching αsfDd. Compared to a modulating tension approach this reduces the

sensitivity of the behaviour on Emax or equivalent parameters.
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A B

C D

Figure 3.4: The model defined in Section 3.4.4 is used to illustrate the effects of
changing the contraction parameters against previously published experimental data.
Apart from the parameters under investigation the coefficients are as stated in 4.2.
Simulated diameters are shown in colour. Dashed line represents a contraction from

Davis et al. [2].

3.4.3 Increasing Contraction Frequency with Trans-mural Pressure.

As observed by McHale and Roddie the contraction frequency of lymphangion is a

function of the pressure [3]. In a 2015 review Munn described contraction as driven

by Ca2+ fluxes from extracellular to intracellular stores[58]. As some of the channels

that drive calcium into the cells are stretch-activated. It follows that the contraction

frequency increases in response to an increased flux of Ca2+ ions into the cell as a
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response to wall stretch. Contarino and Toro were the first to model this phenomenon

in the case of lymphatic contraction through a system of four ODE’s based on the

FitzHugh-Nagumo model [35]. A simple approach to this would be to assume that

Ca2+ ion concentration is an instantaneous function of the circumferential stretch of

the lymphangion. Using the constitutive equation in Section 3.3 McHale’s pressure-

frequency relationship can be converted into a diameter-frequency relationship. As can

be seen below in Figure 3.5 this relationship appears to be piecewise linear. This can

be simply implemented as a minimum frequency of contraction, ωmin. Which, increases

steadily with stretch once a certain threshold, λthes, is exceeded.

ω

(
D

Dd

)
=


ωmin,

D
Dd
≤ λthes

ωmin + βfreq, else

(3.21)

Figure 3.5: The constitutive law in Section 3.3 is used to rescale McHale’s pressure-
frequency data into pressure-stretch data[3]. Through which a piecewise linear approx-

imation is fitted.

However, this instantaneous frequency would vary largely over a contraction
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cycle as the diameter decreased and increased with pumping. It is assumed that lym-

phatic muscle cells would have some internal state of ω̄ which would approach ω in time.

In order to give the calculated ω the character found by McHale, it is instead replaced

by ω̄, which is found as a solution to the following ODE.

d

dt

(
ω̄ − ω

(
D

Dd

))
= −Kω

(
ω̄ − ω

(
D

Dd

))
(3.22)

With Kω representing the rate at which ω̄ approaches ω, shown below in Figure 3.6 is

an illustrative example of this process calculated from the results presented in Section

4.2.2. The D/Dd ratio as a lymphangion pumps against an increasingly adverse pressure

gradient is shown as well as the ω̄ value in time for increasing values ofKω. For simplicity,

this parameter is taken to have a value of 1 s−1.

Figure 3.6: Top: the normalised diameter D/Dd is shown for a lymphangion pumping
against an increasingly adverse pressure gradient. Bottom: the corresponding frequency

ω̄ for increasing values of Kω.
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3.4.4 Discretisation and Assembling a Single Lymphangion

The discrete system of equations for a lymphangion is constructed as follows. Starting

with a resistive element responsible for a pressure drop across a lymphangion, shown

below in Figure 3.7. The resistance can simply be found by the Hägen-Poiseuille equa-

tion.

Q
1

P
2

P
1

Figure 3.7: The simplest representation of a lymphangion as a Hagen-Poiseuille re-
sistance between two pressures

Equation 3.3 can be discretised for this element at the nth time step as flows,

starting with only the viscous term.

π(nD)4

128ηL

 1 −1

−1 1

n+1P1

n+1P2

 =

 n+1Q1

−n+1Q1

 (3.23)

This model does not allow for the vessel diameter to change in response to trans-mural

pressure as was examined in Chapter 2. There are two considerations when incorporating

this effect. Firstly, the change in resistance due to the change in diameter and secondly,

the conservation of mass. When the vessel is expanding or contracting the flow entering

the vessel will not equal the flow leaving. As in previous models this is resolved by adding

a separate conservation of mass equation into the system of equations to be solved [55].

The circuit equivalent model is shown below in Figure 3.8.
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Figure 3.8: A representation of a lymphangion with a compliance representing the
walls

As was previously done for a lymphangion by Carson [56], a mass balance can

be written as follows.
πDL

2

∂D

∂t
−Qc = 0 (3.24)

This can be restated and discretised at the nth time step using the second-order Taylor

expansion of the first order differential operator as the following [56].

πL

4∆t

(
nD + 4 n−1D + 3 n−2D

)
n+1D = nQc (3.25)

The constitutive equation can be introduced through a pressure balance.

nP2 − n

(
∂Pwall

∂D

)
n+1D = Pwall − n

(
∂Pwall

∂D

)
n−1D (3.26)

Where Pwall = Pext + Pc + fa and n
(
∂Pwall
∂D

)
can be found analytically for the fa and

Pext terms while the Pc term can be found numerically. The resultant system is shown

below with the following substitutions rflow = 64ηL
π (nD)4 , kcomp = −n

(
∂Pwall
∂D

)
, kmass =
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πL
4∆t

(
nD + 4 n−1D + 3 n+1D

)
, fcomp = nPwall − n

(
∂Pwall
∂D

)
n−1D



1
rflow

− 1
rflow

0 0 0

− 1
rflow

2 1
rflow

− 1
rflow

0 1

0 − 1
rflow

1
rflow

0 0

0 0 0 kmass 1

0 1 0 kcomp 0





n+1P1

n+1P2

n+1P3

n+1Qc

n+1D


=



n+1Q1

0

−n+1Q2

0

fcomp


(3.27)

The valve can be introduced through adding a variable resistor, where the resistance

is directly proportional to ζ as found in equation 3.4. The equivalent circuit diagram

can be seen below in Figure 3.9. The system of equations can be modified as follows,

with the introduction of rvalve = rmin(1 − nζ) + rmax
nζ. It is important to note that

from here on the valve is shown “un-lumped” this is for the sake of the reader so that

the equations and pressures are clearly delineated, for this reason Q2 = Q3 is explicitly

stated. This method is functionally equivalent to lumping the valve resistance into the

Q2 equation and reconstructing n+1Pv after solving the system as is shown in Section

3.5. This remains a 0D lumped model with one pressure node per lymphangion.



1
rflow

− 1
rflow

0 0 0 0

− 1
rflow

2
rflow

− 1
rflow

0 0 1

0 − 1
rflow

1
rflow

+ 1
rvalve

− 1
rvalve

0 0

0 0 − 1
rvalve

1
rvalve

0 0

0 0 0 0 kmass 1

0 1 0 0 kcomp 0





n+1P1

n+1P2

n+1Pv

n+1P3

n+1Qc

n+1D


=



n+1Q1

0

0

−n+1Q2

0

fcomp


(3.28)
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Figure 3.9: An equivalent circuit diagram for a lymphangion including a valve

.

A final modification can be made through the introduction of inertia to the

fluid domain. This is achieved by placing an inductor either side of the compliance as

can be seen below in Figure 3.10. This only modifies the equations for Q1 and Q2.

Introducing lflow = 2ρL
πD2 , to represent the inertial term in equation 3.3, the equation for

Q1 can be modified as follows.

n+1P1 − n+1P2 =
1

rflow

n+1Q1 + lflow

(
n+1Q1 − nQ1

)
(3.29)

Which can be rearranged to yield.

1

rflow + lflow

n+1P1 −
1

rflow + lflow

n+1P2 = n+1Q1 +
lflow

rflow + lflow

nQ1 (3.30)
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Figure 3.10: The complete equivalent circuit diagram for a lymphangion including
inertia

.



1
rflow+lflow

− 1
rflow+lflow

0 0 0 0

− 1
rflow+lflow

2
rflow+lflow

− 1
rflow+lflow

0 0 1

0 − 1
rflow+lflow

1
rflow+lflow

+ 1
rvalve

− 1
rvalve

0 0

0 0 − 1
rvalve

1
rvalve

0 0

0 0 0 0 kmass 1

0 1 0 0 kcomp 0





n+1P1

n+1P2

n+1Pv

n+1P3

n+1Qc

n+1D



=



n+1Q1 − lflow
rflow+lflow

nQ1

lflow
rflow+lflow

nQc

lflow
rflow+lflow

nQ2

−n+1Q2

0

fcomp


(3.31)

The system of equations including the inertial term is presented in Eq. 3.31.

The other time derivatives used in this work are approximated with the second-order cen-

tral difference. However, when this was used for the inertial time the scheme was unstable
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and would quickly produce negative diameters. Discretising with a first-order backwards

difference yielded stable solutions. One final modification is made to introduce a Newton

method with J iterations to improve the estimation of the solution variables within time

steps. With n
jX representing the X quantity at the nth time step and the jth Newton it-

eration. The following quantities are modified rflow = 64ηL

π (n+1
j D)4

, kcomp = −n+1
j

(
∂Pwall
∂D

)
,

kmass = πL
4∆t

(
n
JD + 4 n−1

J D + 3 n+1
j+1D

)
, fcomp = n+1

j Pwall − n+1
j

(
∂Pwall
∂D

)
n−1
J D. With

these new substitutions the system of equations can be modified as shown in Eq. 3.32.

When the Newton iterations are complete the time-step is advanced with the assumption

that n
JX = n+1

1 X for all solution variables.



1
rflow+lflow

− 1
rflow+lflow

0 0 0 0

− 1
rflow+lflow

2
rflow+lflow

− 1
rflow+lflow

0 0 1

0 − 1
rflow+lflow

1
rflow+lflow

+ 1
rvalve

− 1
rvalve

0 0

0 0 − 1
rvalve

1
rvalve

0 0

0 0 0 0 kmass 1

0 1 0 0 kcomp 0





n+1
j+1P1

n+1
j+1P2

n+1
j+1Pv

n+1
j+1P3

n+1
j+1Qc

n+1
j+1D



=



n+1
j+1Q1 − lflow

rflow+lflow

n
JQ1

lflow
rflow+lflow

n
JQc

lflow
rflow+lflow

n
JQ2

−n+1
j+1Q2

0

fcomp


(3.32)

3.5 Assembling From a Vessel to a Lymphatic Network for

the Upper Limb

The functional element of the collecting lymphatics, the lymphangion, was described in

the previous section. By concatenating these elements together vessels can be formed

and these vessels arranged into networks. The definition of a lymphangion as a structure

with two valves is complicated by the fact that, in a vessel, each lymphangion shares a
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valve with its neighbour. Figure 3.10 shows the lymphangion with only one valve, such

that when stacked end to end each lymphangion is bound by two valves. A vessel of a

single lymphangion is formed by adding a valve block, as shown below in Figure 3.11.

This vessel can be extended by simply adding addition lymphangion elements, as shown

in Figure 3.12.

Q

P
1

P
2

Figure 3.11: The equivalent circuit diagram for a vessel of a single lymphangion.
Note the addition of valve block at the left hand side.

Valve
Block

Lymphangion
1

Lymphangion
2

Lymphangion
n

Lymphangion
n

Figure 3.12: A vessel is extended through the addition of more lymphangion elements.
Note the lumping of elements leaves one pressure node per lymphangion as discussed

in section 3.4.4.

3.5.1 A Lymphatic Network for the Upper Limb

Large-scale 3D models of the lymphatic system and the anatomical data necessary to

construct them are sparse. Tretyakova et al. based a model on a CGI asset produced by

PlasticBoy [59]. This 3D network was produced by an artist and intended for advertising

/ educational purposes. The network was never intended for quantative study and the

number and position of the lymph nodes in the upper limb disagrees with anatomical

observations. It remains however, the only published lymphatic network model spanning

more than a few lymphangions. ICG and nuclear imaging methods capture a few vessels

at poor quality. Suami et al. has developed a method which can produce networks of the
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upper limb with many vessels, by injecting the cadaver limbs with hydrogen peroxide,

which allows distended lymphatic vessels to be visualised and injected with contrast [60].

While patent blue is used routinely to visualise lymphatic vessels during surgery it can

only be imaged visually and would require the dissection of every lymphatic vessel.

The method Suami et al used is similar to that used by Sappey to produce

sketches of the collecting lymphatics of the upper limb in the mid 19th century. Sappey

removed the skin from the limb and inverted it, before using peroxide to visualise the

vessels and then inject mercurial stains [4]. Sappey’s sketches remain more detailed

than modern methods and are still used in anatomical textbooks today [61]. In order to

produce a 3D network for this work scans of Sappey’s sketches were used to reconstruct

a 3D network of the superficial lymphatics of the upper limb.

Sappey produced a sketch of the same limb from three different angles allowing

the entire network to be seen. The sketch from Planche III of Sappey’s Anatomie, phys-

iologie, pathologie des vasisseaux lymphatiques considérés chez l’homme et les vertébrés

is reproduced with modification in Figure 3.13.A [4]. Scans (Bibliothéque nationale

de France) of each of these figures were manipulated using a series of custom scripts

in MATLAB. Each of these three figures was manually traced. The diameter of each

sketched lymphatic vessel was measured in pixels in several locations and a linear func-

tion found to represent the change of the lymphangion diameter over its length. The

trace of fig I. from Planche III is shown overlaid on the original sketch in Figure 3.13.A.

The assumption was made that fig III of Planche III is perpendicular to fig

I meaning that these two drawings represented the semi-major and minor axis of the

limb. A limb geometry was then constructed as a series of elliptically cross-sectioned

frustra, on to which the line elements traced previously, were projected and truncated

from the just distal of the shoulder to the wrist. The projected collection of tracings can

be seen in Figure 3.13.B. The three sections were connected together by inspection. The

network was then manipulated manually to close each connection. The final network

is presented in a cylindrical coordinate system in Figure 3.14.A. Suami et al. observed

that human lymphatic vessels of the upper limb varied in diameter between 200 & 500
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µm [60]. The diameters found from measuring Sappey’s sketches were normalised by

their mean and rescaled to a mean diameter of 300 µm, the distribution of diameters

can be observed in Figure 3.14.B.

The connectivity is the number of neighbouring vessels which each vessel is

connected to, it represents the degree of branching within the network. The distribution

of vessel connectivities for the network can be found in Figure 3.14.C. Sappey’s sketches

include three lymph nodes of which two are included in the final model, for the purposes

of this work the lymph nodes were just modelled as connections between vessels.

A B

Figure 3.13: A: Planche III from Sappey is shown with the traced vessels overlaid
in green [4]. B: The reconstructed network is shown after the traced sections were

projected onto a series of fustra
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A

B C

Vessel Connectivity (~)

Figure 3.14: A: The final lymphatic limb network is presented in cylindrical form
with the axilla located at the bottom of the image and the hand at the top. B: The
distribution of vessel diameters in the lymphatic limb network. C: the distribution of

vessel connectivities in the lymphatic limb network.

3.6 Metrics for Exploring Lymphatic Function

In this section several metrics are designed to assess lymphatic function. The capability

of the vessel is the flow rate averaged over a meaningful time scale. The less-idealised

nature of the valve means that the lymphangion may experience retrograde flow over

the course of a contraction. Therefore, per contraction metrics were designed and then

calculated over a contraction cycle. The contraction duration can be found as the time
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between peaks of fa, the additional pressure due to contraction. The flow rate, Q2

is integrated over the course of a contraction cycle to yield the volume pumped per

contraction, Vc. This allows the average flow rate per contraction to be expressed as

Q̄c = Vc/tc. The work done over a cycle can be calculated by integrating pressure with

the respect to volume. For simplicity the integral is performed with respect to time

and the volume of the vessel is multiplied by the derivative of pressure such the integral

is equivalent to integrating volume with respect to pressure. In order to assess the

efficiency of pumping the stroke work of a contraction was calculated as follows.

Ws =

∫
t∈tc

πD2L

4

dP

dt
dt (3.33)

Where L is the length of the lymphangion, P is the pressure and t is the time. The

efficiency can then be defined as the volume pumped per unit energy, ηpump = Vc/Ws.

The period over which this quantity is calculated is shown in Figure 3.15, the closed PV

loop can be observed.

If we imagine a rectangular PV loop, then the work done would simply be

Ws = ∆P∆V so the efficiency would have a scale which would be the reciprocal of the

scale of the change in pressure caused by a contraction, fa. This reveals the highly

efficient nature of these pumps i.e. a lymphangion of O(fa) = 1 cmH2O would pump

withO(ηpump) ≈ 10−3cm3/erg or 10L per Joule. It’s important to note that this quantity

is not representative of the actual energy used, given the inefficiency of the contraction

of the vessels.

In the next chapter these metrics will be used to explore the distribution of

efficiencies, their sensitivity to parameter change, and examine how different pressure

conditions effect these metrics.
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Figure 3.15: Plots of lymphangion volume, pressure, flow rate and the upstream, ζu
and downstream ζd valve state are shown with a single contraction cycle in bold.

3.7 Convergence Study and Scheme Stability

The temporal convergence of the scheme, as proposed in Section 3.5, was assessed by

comparing a series of simulations refined by successive halving of the time-step or increase

in the Newton iterations. An example case was chosen to represent the finest time-

step required. As the pressure gradient against which a lymphangion pumps increases

the period over which the valve actions occur increases. When the pressure gradient is

greater than the lymphangion can pump against, then there is no change in diameter and

no valve actions occur. So temporal convergence is assessed at a point where pumping

insufficiency is incipient. Convergence was assessed for each of the solution variables

and fa, the mean relative absolute error over 90 seconds of simulation was compared to

the most refined case is shown in Figure 3.16.
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Figure 3.16: The temporal convergence is shown for each of the solution variables
and fa.

As can be seen convergence is quickly achieved for D and P2. For the second

finest case, δt = 1.28× 10−3 and four Newton iterations per time step, The mean error

in fa and Q2 is less than one percent. This was deemed acceptable for the analysis being

performed and was selected as the time-step.

When the inertial term is omitted and values are used for kvo and kvc are much

greater than 10 cmH2O−1s−1 then a “flutter” phenomena is found. Small changes in

resistance at the valves effect the formation of trans-valvular and trans-mural pressure

gradients. The result is an unstable state where the valve “flutters” between a closing

and opening mode. This instability is only resolved by the end of the contraction.

This phenomena has not been observed in published works on lymphatic valves and is

assumed to be unphysiological. In the presence of the inertial term stabilises the valve

state. The consequences of doing so are shown below in Figure 3.17. As can be seen

the presence of valve flutter causes large changes in flow rate and diameter but small
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changes in pressure. Whilst the pressure undergoes small oscillations about the valve

threshold, the change in resistance causes large changes in flow rate. This phenomena

can be avoided by keeping the values for kvo and kvc less than 10 cmH2O−1s−1.
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Figure 3.17: The flow rate, diameter, pressure and upstream valve state are shown
for a “fluttering” lymphangion. The red line indicates without an inertial term and the
blue line with an inertial term. Note the relatively high consequences of flutter on the

flow rate and diameter but small consequences on the pressure.

.





Chapter 4

Exploring a 0D Model of the

Lymphatic System: From

Lymphangion to Limb.

4.1 Introduction

Understanding the flows within the lymphatics of the upper-limb could offer additional

insight into the diagnosis and treatment of disease. The lymphatic system is the principle

route through which cancer cells metastasis and an understanding of the lymphatic fluid

flows at larger scales could allow the predication of metastasis sites [62]. The most

common treatments of BCRL of the upper limb involve some form of compression of

the limb [63]. These methods involve compressive garment use, multilayer-bandaging

and intermittent pneumatic compression [64]. While these methods have a range of

efficacies, there is an absence of quantitative justification for the pressures used [65][64].

In this section the model defined in Chapter 3, will be explored to assess the value of

this approach and any insights that can be offered into lymphatic function. In particular

this section will seek to identify potential avenues for further research that can bridge

the gap between lymphatic modelling and therapy for lymphoedema. Results from the

61



Exploring a 0D Model of the Lymphatic System: From Lymphangion to Limb. 62

model will be presented against previously published experimental data and studied to

assess the effect of trans-mural and trans-valvular pressures on the mean flow rate Q̄c

and the efficiency ηpump on a chain of 10 lymphangions and the network of the upper

limb.

4.2 Methods

In order to reduce the number of parameters under consideration the fit for the valve bias

model found in section 3.2 is assumed correct and the following constants are assumed:

Lymph density ρ = 1 g cm−3, lymph viscosity η = 1 cP and the constitutive law defined

pressure Pd = 35 dynes cm−2

4.2.1 Sensitivity Analysis

In order to assess the sensitivity of the model to variation in parameters a global variance

sensitivity analysis was performed using the SAFE toolbox [66]. Briefly, Sobol indices

study a function which relates the variance in the input parameters to the variance of the

output. This function can be decomposed into a polynomial series of increasing orders

of the parameter sets. By calculating the first order terms and the total variances this

function can be represented as the “main effects”, the first order relationship between

parameter variance and output variance and the “total effects” the sum of all remaining

terms in which that parameter appears. The quality of the estimation of these quantities

is directly related to the number of samples evaluated, and every sample needs to be

evaluated multiple times. The quality of the estimation of the Sobol indices can be

assessed through “bootstrapping” which allows confidence intervals of the Sobol indices

to be evaluated without additional samples [67][66].

A single lymphangion with a trans-mural pressure of 1 cmH2O was simulated
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for 60 seconds. The parameters and the ranges considered are shown in Table 4.1; to-

gether they form a 12D parameter space, this space was chosen to represent the compu-

tational limits of the model. A quasi-random uniform distribution was sampled through

the parameter space using the latin hypercube method. The computational expense of

calculating Sobol indices can be greatly reduced if the samples are triplicated such that

only certain parameters change between the triplets as described by Saltelli et al [68][66].

Sobol indices were calculated from 10,000 samples distributed in the ranges shown below

in Table 4.1. There were 110000 evaluations for 12 parameters with 1000 samples used

for bootstrapping.

Symbol Description Lower Bound Upper Bound Units

Ko Valve opening rate 0.01 10 s−1

Kc Valve closing rate 0.01 10 s−1

φ Eccentricity of contraction 10−3 1− 10−3 ∼
Emax Maximum value of Mt 10 1000 cmH2O
Emin Minimum value of Mt 0.01 10 cmH2O

Mmax Maximum value of M̂t 0.5 1 ∼
Mmin Minimum value of M̂t 10−16 0.5 ∼
αsf

D
Dd

ratio at which fa = 0 2 3 ∼
ωmin Minimum contraction frequency 10−4 3 s−1

λthres
D
Dd

threshold for increase in frequency 0 3 ∼
βfreq Rate of frequency increase after contraction 0 4 s−1

Table 4.1: A table showing the range of parameters used in the sensitivity analysis.

4.2.2 Parameter Estimation

Davis et al. performed experiments which elucidate the valve gating of a lymphan-

gion pumping between two pressure reservoirs. However, these experiments also offer

a holistic perspective on lymphatic pumping and contain relationships between diam-

eter, pressure which lymphatic modelling should seek to recapitulate. Detailed results

are presented for only one lymphangion has been presented pumping against a pressure

gradient, which increases in time. This data has been used in the development of lym-

phangion models [2][40][35]. An attempt was made to fit the model described in Chapter

3 to the data presented by Davis et al.[2].
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Initial attempts, made using classical methods, were an attempt to find the

parameter set which most closely agreed with experimental results. A particle swarm

method was used. Whereby, a series of particles are distributed over the parameter space

and they move with each iteration based on two factors a momentum in the direction

which minimises the objective function and a social factor attracting them toward other

particles with lower objective functions. This method was computationally expensive

as complete simulations had to be performed for each particle and the approach to the

minima was slow. The sensitivity of the social and momentum meant particles could

“skip” over local minima if the social factor was too high or fail to explore the parame-

ter space if the momentum factor was too high. In order to address this; several other

methods including cuckoo search, co-variant matrix adaptation by evolutionary strategy,

genetic algorithm, differential evolution and gradient descent were also attempted with

similar results. Finally, a Bayesian inference method was attempted using the ensemble

Kálmán filter method [69]. A step by step explanation of the method is included in

Appendix A. Briefly, a series of particles are distributed according to a Gaussian distri-

bution throughout a transformation of the state space, including the parameters, such

that the state values are bounded but the transformation isn’t. These particles are then

evaluated and the distribution of objective function valves is observed as a posterior,

which is then used to correct the variance of the particles and the state is propagated.

This method was much cheaper, computationally, as the simulation was run once for

each particle. However, as the particles converged to a solution the valve state variance

would collapse as all particles would be opened or closed. An attempt to avoid this was

made by removing the valve states from the state and imposing them a priori. How-

ever, this did not yield good fits. In order to proceed the model was fitted manually by

inspection. The resulting parameter values are presented below in Table 4.2 and will be

used unless otherwise specified for the remainder of this work.
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Symbol Description Value Units

Ko Valve opening rate 1 s−1

Kc Valve closing rate 1 s−1

φ Eccentricity of contraction 0.02 ∼
Emax Maximum value of Mt 510 cmH2O
Emin Minimum value of Mt 0.1 cmH2O

Mmax Maximum value of M̂t 0.75 ∼
Mmin Minimum value of M̂t 1× 10−6 ∼
αsf

D
Dd

ratio at which fa = 0 2.15 ∼
ωmin Minimum contraction frequency 0.05 s−1

λthres
D
Dd

threshold for increase in frequency 2.7 ∼
βfreq Rate of frequency increase after contraction 0.25 s−1

Table 4.2: A table of the values found by manually fitting the model against the data
from Davis et al.[2]

4.2.3 Lymphangion Chain Study.

A chain of 10 lymphangions, with a defined diameter, Dd = 30 µm and a length of

3 cm, was assembled as described in section 3.5. The valve block that preceded the

first lymphangion was designated as an inlet and prescribed a pressure, Pin, and the last

lymphangion was designated as an outlet and prescribed a pressure, Pout. A steady-state

flow study, without the valve or contraction terms, was iterated with a Newton-Rhapson

scheme until the difference in diameter was less than 10−6 µm. The found resultant

pressures and diameters were used to initialise the simulation, with the valves set to

open and the contraction state, M̂t set to Emin. The solution variables were allowed to

evolve for a period of 600 seconds and the contractions were analysed to find the metrics

defined in section 3.6. Pin and Pout were varied between 1 and 5 cmH2O to produce a

range of 20 pressure loading conditions. This process was repeated without the inertia

term. A second study was performed where the valve properties Ko, Kc and the valve

bias relationship were adjusted for the chain against a 1 cmH2O to explore the effects

of less-idealised valve models.



Exploring a 0D Model of the Lymphatic System: From Lymphangion to Limb. 66

4.2.4 Limb Network Study.

The limb network as described in section 3.5.1, was populated with lymphangions. Lit-

tle data exists on the lymphangion spacing within the lymphatic networks of the upper

limb. A spacing of 1 cm was assumed based on an approximation of an aspect ra-

tio previously assumed [43]. The vessels were populated with lymphangions, at vessel

junctions the valve block was absent to prevent multiple valves being placed together

without a compliant section between them. The resultant network consisted of 17706

lymphangions. Lymphatic branches which terminate at the proximal end of the limb

are labelled as inlets all other terminations are labelled as outlets. Figure 4.1 shows the

cylindrical representation of the limb as in Figure 3.14.A but with the inlet and outlets

marked.

Inlets

Outlets

Figure 4.1: A cylindrical representation of the limb network model with the bound-
aries marked.
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4.3 Results

4.3.1 Sensitivity Analysis

The results of the sensitivity analysis can be seen below in Figure 4.2. The left plot shows

the estimated Sobol indices for the average flow rate, Q̄c. As can be seen the uncertainty

in the derived indices is high enough to only allow qualitative statements of the sensitivity

of parameters. There are several parameters for which the error exceeds the value.

However, it’s clear that ωmin, βfreq, Emin and Mmax are largely insignificant. Though

it is important to note that this may be a reflection of the case selected for analysis.

In the absence of a trans-valvular pressure gradient any Mmax would be sufficient to

cause pumping and the limit of the degree of contraction would be dictated by αsf -

to which the model is sensitive. αsf also shows the highest discrepancy between the

first order and total Sobol indices for average flow rate indicating that relative to other

parameters its largest effects are caused by interactions with other parameters. The

valve parameters Ko and Kc are the parameters with the largest first order effects and

are likely to have the largest total sensitivity. Emax appears to have insignificant first

order sensitivity. However, given its effect on the shape of contraction it is to be expected

that in combination with other parameters it can cause a significant change in Q̄c. A

similar effect is noted for the eccentricity of contraction, φ.

The sensitivity analysis of the pumping efficiency is less informative. This is

not unsurprising given that the volume pumped per unit energy will be dictated by the

regime of the constitutive law traversed during contraction. It’s clear the variance in

efficiency is dominated by the interaction between parameters. Narrowing the parameter

space could allow for a more informative sensitivity analysis. Experimental data that

constrained this space may allow more insight into the relationship between efficiency

and the parameters.
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Total Sobol Indices

Figure 4.2: Left: the first order and total sensitivity index of each parameter on
average flow rate, Q̄c, is shown with the 95% confidence interval. Right: the first order
and total sensitivity index of each parameter on pumping efficiency, ηpump, is shown

with the 95% confidence interval.

4.3.2 Coordination of Lymphatic Pumping

The proposed stretch dependent frequency of contraction model allows lymphangions to

coordinate their pumping. Vessels which pump surplus to requirement will deplete their

volume, slowing their contraction frequency and vessels which are accumulating fluid

will increase their rate of contraction. While previously published network scale models

relied on prescribing a phase difference between adjacent lymphangions the formation of

phase differences in this model can be observed to form spontaneously. Shown below, in

Figure 4.3 a chain of 10 lymphangions initially pumping simultaneously, can be seen to

form a train of contractions over time. The first contraction occurs at slightly different

frequencies, due to the difference in stretch caused by the pressure gradient along the

chain. As the pumping is established within the lymphangions the average contraction

frequency falls due to a fall in the average stretch because of contraction. Over time a

semi-periodic pattern of contraction forms, with a unimodal distribution of contraction

durations. The establishment of this pattern can be seen as an initialisation step and

measurements can be made when this process is complete.
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Figure 4.3: The contraction state, M̂t, of a chain of 10 lymphangions pumping against
a 1 cmH2O pressure difference is shown at four different time points over 10 minutes

of simulation. Coloured by distance from the inlet, blue, to the outlet, red.

Time= 1s Time= 5s

Time= 10s Time= 20s

Figure 4.4: Four cylindrical representations of the lymphatic limb network coloured
from blue to yellow proportional to the contraction state M̂t showing the initialisation

of contractions against a 1cmH2O pressure difference.
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This effect is also observed in a network of lymphangions, see Figure 4.4. Ini-

tially contractions occur fastest at the outlets, as time progresses chains of contractions

occur and the average frequency drops. Unlike the chain case, these trains of contrac-

tions interact at confluences and the resultant behaviour is complex. This complicates

establishing the point at which a stable pattern has formed. The following assumption

was taken, the contraction pattern is established when the distribution of contraction

times is constant. Figure 4.5 shows the probability density of contraction duration over

time. As can be seen the initial distribution is unimodal. As pumping is established,

the range of contraction durations increases and the mean contraction duration reduces.

Eventually, a stable bi-modal distribution forms with two groups of lymphangions. The

first set pumping just above fmin and the second set pumping at approximately 1 Hz.

This behaviour is indicative of an insufficiency in the network. Where lymphangions are

unable to prevent accumulation of fluid, their diameter and contraction frequency will

increase. As can be seen in Figure 4.6 and 4.7, this phenomenon is principally observed

at confluences, a hypothesis is addressed in section 4.4.1.
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Figure 4.5: The probability density of contraction duration of a lymphatic limb net-
work pumping against a 1 cmH2O pressure difference over 600 seconds.
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Figure 4.6: A radial representation of the limb network is shown coloured by the final
contraction duration of 600 second simulation pumping against a 1 cmH2O pressure

difference
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Figure 4.7: A radial representation of the limb network is shown coloured by the
average D/D0 ratio for the final contraction cycle of a 600 second simulation pumping

against a 1 cmH2O pressure difference

4.3.3 The Effects of Inertia

Standard reasoning would lead one to omit inertial effects from a model such as this given

the low Reynolds number of the flow and small nature of the vessels. As observed by

Davis et al. the valve action occurs over sub-second time periods. The small latency in

the contraction cycles allow several lymphangions to have valve states within one period

of each other which could form a contiguous volume spanning multiple lymphangions.

This volume would to be bought to a stop over a time period otherwise uncharacteristic

for this system. If the Reynolds number is calculated using the vessel diameter and

the average velocity then it will be very low and this justification for omitting inertial

effects is well founded. However, as seen in Figure 4.2 the major drive of average flow

rate is the valve closing and opening rate. The open-bias nature of the valves mean

that these valve motions occur when a pressure gradient supports flow through the
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valve. Small changes in apparent valve closing and opening rates - which are driven by

trans-valvular pressure - could have large effects on the average flow rate. The scalings

used to determine Reynolds numbers are not appropriate for judging whether inertia in

the fluid domain effects valve timing. While these phenomena may be insignificant in

a single lymphangion they could produce large changes in the flow rate of a chain of

lymphangions.

Figure 4.8 shows the pressure and diameter curves of a single lymphangion with

and without an inertial term, pumping with no inlet-outlet pressure difference. Over a

200 second simulation the difference in the pressure and diameter curves is insubstantial

and largely due to timing. The average relative error over the entire simulation period

is also shown on each plot.

Figure 4.8: Pressure and diameter traces showing the consequences of omitting the
inertial term is shown for a single lymphangion after 200 seconds of simulation. Also
shown is the average absolute relative error in both diameter and pressure over the

entire simulation period

This process is repeated for a chain of 10 lymphangions in a variety of pressure

states. The final ten contractions of a 600 second simulation are averaged for all lym-

phangions to give an average of Q̄c for the chain. This average for the differing pressure
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states can be observed in Figure 4.13. The relative error in this quantity due to removal

of the inertial term is shown in Figure 4.9. As can be seen these errors are substantial

with a near 20% overestimation and a 35% underestimation of the average flow rate in

the worst case. The relationship between this error and the pressure state is not mono-

tonic or clear. Little relationship appears to exist between the trans-mural pressure and

the error. It appears that peak over estimations occur between pressure differences of

-1 to 0 cmH2O. These results challenge the assumption that inertia plays no role in

lymphatic pumping. However, the understanding of its role is far from complete.
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Figure 4.9: The relative error in the average flow rate, Q̄c, is shown for differing
pressure conditions.

4.3.4 Exploring the Effects of Pressure Loading

The previously described mean Q̄c is shown below in Figure 4.13. The relationship

between chain pressure difference and the average flow rate is surprisingly consistent and

linear, though a slight downward inflection can be noted at the higher chain pressures

- a trend which is reversed at lower chain pressures. Higher trans-mural pressures seem

to cause a widening in distribution of Q̄c and steadily increase the ability of the network

to pump.
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Figure 4.10: The effects of different pressure states on the average flow rate, mean
Q̄c. Vertical bars indicate the standard distribution of Q̄c

This relationship is not held at the network scale. Figure 4.11 shows the dis-

tribution of Q̄c at differing boundary pressure conditions, truncated at the 5th at 95th

percentiles. As can be seen, trans-mural pressure conditions which would encourage flow

increase the flow rate. However, flow-adverse pressure conditions do not appear to reduce

the flow rate below some minimum. The distribution of flow rate grows more bimodal

with increasingly adventitious pressure condition. All cases have an average trans-mural

pressure of 4 cmH2O. However, higher trans-mural pressures associated increases the

degree of retrograde flow. This property is responsible for a reduced efficiency at higher

pressure. Figure 4.12 shows the distribution of ηc or the network model at differing

boundary pressure conditions, truncated between the 5th and 95th percentiles. A peak

efficiency can be observed at a pressure difference of 3 cmH2O.
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Figure 4.11: Violin plots of the distribution of Q̄c is shown for the network model
with differing pressure boundary conditions. The mean of Q̄c is also shown in blue.
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Figure 4.12: Violin plot of the distribution of the pumping efficiency, ηc, for differing
pressure boundary conditions.
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4.4 Discussion

4.4.1 Network Scale Model

The network scale model as presented is insufficient in its transport of fluid in a manner

that is likely not physiological. This insufficiency results in the accumulation of fluid in

sections of the network as observed in Figure 4.7. This may be due to the parameters

chosen, the network of lymphangion or the models absence of a regulatory mechanism.

These will be discussed in turn and a hypothesis for the insufficiency at confluences

proposed.

4.4.1.1 Parameter Set

The computational expense of the sensitivity analysis and parameter estimation pre-

cluded their use at the network scale. The consequence of this is that insight into the

network model is limited. It is clear that phenomena observed at the single lymphangion

and lymphangion chain scale are not replicated at the network scale. The sensitivity of

parameters to pumping metrics at the network scale remains unknown. Similarly, while

a manual fit to Davis data appears to at least be proximal to some minima the lack of a

global consideration leaves open the possibility that a more appropriate minima in the

parameter space exists, which may yield different results at the network scale.

4.4.1.2 The Limb Network

Sappey’s networks and sketches have had clinical application. Sappey used the sketches

to create a series of rules for deciding to which lymph node a section of skin drains,

the sentinel node [60]. Starting in the 1950s with the invention of lymphangioscintigra-

phy physicians began to challenge Sappey’s rules noting that the sentinel node could be

ambiguous under some circumstances [70]. Authors have also challenged Sappey’s ob-

servation that there was no pre-nodal communication between the deep and superficial
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lymphatics. It is essential to this work that this observation is correct. In a modern

work, Suami et al. studied the upper-limb of cadavers using methods similar to Sappey

which broadly supported Sappey’s observations [60]. However, it is important to note

that the sketches are being used in this work in a manner that Sappey could not have

considered. It is likely that the diameters are illustrative. A better approach may be to

select diameters such that the diameter of the parent and daughter vessels are decided to

minimise the work required for transport, Murray’s law is an example of such a system.

This could minimise the insufficiency at the confluences.

4.4.1.3 A Regulatory Mechanism

A hypothesis for confluence insufficiency phenomenon is proposed. Under the current

model lymphangions have a steady-state frequency of contraction dependent on the

stretch of the vessel. At each confluence one of the parent vessels will have a steady-

state frequency closer to the daughter vessel than the other parent vessels. This vessel is

dominant over the other parents as its relative phase to the daughter vessel will change

at the slowest rate maximising the time at which the relative pressure states of the

parent and daughter vessel allow flow. The other parent vessels will accumulate fluid

due to insufficiency, increasing their frequency with only a few contractions achieving

meaningful flow. The downstream vessel would decrease its frequency as it depleted its

fluid. However, the vessel is adequately supplied by the dominant parent and it does

not adapt to the non-dominant parents. This behaviour would explain the observed

insufficiency at confluences. In reality, lymphangions are also connected electrically and

this communication may be how contractions are organised at confluences. No current

lymphangion model of which the author is aware considers this electrical communication.
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4.4.2 Discrepancies Between the Single Lymphangion Model and Pre-

viously Published Experimental Data.

In this section the model will be compared to previously published experimental data.

In Figure 4.13, the model recapitulates the results found by Davis et al. [2]. Several

phenomena are annotated and these will be used as a basis for a discussion the limitations

of the model’s agreement with experimental data.

4.4.2.1 A: Pressure Curves

The character of the pressure curves disagrees with the experimental results. However,

in the results presented by Davis et al., the pressure was measured using a servo-null

micropipette. This measures pressure by manipulating the pressure applied to a mi-

cropipette of hypertonic solution such that the electrical resistance is constant meaning

there is now flow in or out of the micropipette. The frequency response of such a system

is likely to be complex. Davis et al. raise the possibility that the frequency response

of the micropipette may have been insufficient to accurately capture the lymphangion

pressure peak [2]. Seki et al. examined the frequency response of similar system pro-

duced by the same manufacturer [5]. This frequency response was fitted with a Gaussian

function, which was then used to form a finite impulse response filter. This filter was

applied to the simulated data to emulate the behaviour of the servo-null micropipette.

As can be seen while this does reduce the amplitude of the pressure curve it does not

cause it to adopt the character observed experimentally. A widening of the pressure

curve and a reduction in the amplitude could be achieved by increasing the eccentricity,

such the contraction took place over a longer period. However, this would negatively

effect the diameter fit and by extension the frequency of contraction.
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Figure 4.13: Left: the frequency response found by Seki et al. [5]. Right: Experi-
mental data[2] is presented along with the fit shown from Figure 4.13 also shown is the
filtered simulation result using a filter defined by the frequency response shown on the

left.

4.4.2.2 B: Insufficient Contraction

In order to capture the increase in frequency associated with the increasing downstream

pressure, the diameter at the end of contraction must increase as observed in the experi-

mental data. The degree of contraction can be controlled through the αsf. The behaviour

referred to in section 4.4.2.6 means that in-order to characterise the frequency increase

associated with an increasingly adverse pressure difference. αsf must be set such that

the initial simulated contractions have a smaller reduction in diameter, than the initial

contractions observed experimentally.

4.4.2.3 C: Slope of Contraction

As can be seen in Figure 4.13.C as well as all the sub-figures of Figure 3.4, the model

overestimates the rate of contraction. There are two potential reasons for this; 1) a

more complex length-dependent tension would capture this effect; 2) a force opposes
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contraction which is not considered by the model. In the first case, consider that the

highly non-linear stiffness of the wall would require an equally non-linear contraction

function to produce such a smooth, almost linear, contraction. The very low stiffness

present at the end of contraction means the load of the muscle would have to be applied

much more gradually than in any current published consideration in order to capture

this effect. It is not clear what biological mechanism would account for this contractile

behaviour. In the second case, there are two forces which could oppose the contraction.

A force which resists the change in motion, an inertial force, or a force which resists the

motion itself, a viscous force. The model already incorporates the viscous quality of the

fluid domain which leaves only an inertial force or a viscosity in the wall. Viscoelastic

wall properties have been previously been considered in 0D/1D arterial modelling [56].

It has also previously been incorporated into 1D lymphangion modelling [34]. Future

work should seek to incorporate this behaviour into 0D modelling

4.4.2.4 D: Relaxation Slope

The slope of relaxation is also much sharper than observed experimentally, as can be seen

in Figure 4.13.D. The argument made in section 4.4.2.3.C is not as convincing here as it

occurs across a relatively linear stiffness regime and occurs over larger time-scales than

the viscoelastic effects. Previous approaches have used more complex length-tension

relationships in order to account for this phenomenon [41]. Future work could aim to

build physiologically motivated models of lymphatic muscle cells. It is likely that a more

physiologically motivated contraction model considering the length-tension relationship

of the muscle fibre would allow greater insight into this phenomenon.

4.4.2.5 E: Loss of Volume

The experimental results appear to show a gradual loss of volume within the lymphan-

gion as the pressure gradient grows more unfavourable. There would appear to be two
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mechanisms that would prevent this. Firstly, the diameter dependent frequency of con-

traction and secondly the Frank-Stirling principle - the general assumption made that the

non-linear material properties regulate contractions such that output remains constant.

Future work should seek to establish if this property is representative of lymphangions

in general.

4.4.2.6 F: Lack of Retrograde Fluid Motion

The experimental data continues to show a diameter contraction when the downstream

valve no longer opens due to retrograde motion through the upstream valve. This

behaviour is not replicated by the model as the upstream valves do not open during

this period. This suggests that the kinetics of the valve opening are not correct as the

trans-valvular pressure generated due to the resistance of the valves during opening is

sufficient to raise the pressure causing the upstream valves to close again. It may be

that a fluid-structure interaction study of valve opening dynamics reveals the source of

this behaviour.

4.4.2.7 G,H: Refractory Period

As can be seen in these sections of the experimental data there is a refractory period when

the downstream pressure is relaxed. This refractory period is preceded and followed

by large contractions. The first contraction after the refractory period is the largest

contraction observed. As the first contraction after the relaxation of the downstream

pressure condition would have the highest velocity this could be cause the wall-shear

stress inhibitation phenomena that Contarino and Torro included but is absent from

this work [35].



Exploring a 0D Model of the Lymphatic System: From Lymphangion to Limb. 83

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

T
im

e
 (

s
)

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Diameter (m)

S
im

u
la

te
d

E
x
p
e

ri
m

e
n

ta
l 
(D

a
v
is

 e
t 
a

l 
2

0
1

1
)

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

T
im

e
 (

s
)

012345678

Pressure (cmH2O)

A

B

C
D

E

F

G

H

F
ig
u
r
e

4
.1
4
:

A
co

m
p

ar
is

on
of

th
e

m
o
d

el
fi

tt
ed

a
g
a
in

st
p

re
v
io

u
sl

y
p

u
b

li
sh

ed
ex

p
er

im
en

ta
l

re
su

lt
s.

In
th

e
ex

p
er

im
en

ta
l

d
a
ta

,
a

ly
m

p
h

an
gi

on
w

as
p

re
se

n
te

d
w

it
h

an
in

it
ia

l
u

p
st

re
a
m

a
n

d
d

ow
n

st
re

a
m

p
re

ss
u

re
o
f
1

cm
H

2
O

.
A

ft
er

th
e

se
ve

n
th

co
n
tr

a
ct

io
n

th
e

d
ow

n
st

re
a
m

p
re

ss
u

re
w

as
in

cr
ea

se
d

at
a

ra
te

of
4
cm

H
2
O

m
in

−
1

u
n
ti

l
th

e
d

ow
n

st
re

a
m

p
re

ss
u

re
w

a
s

8
cm

H
2
O

a
t

w
h

ic
h

p
o
in

t
th

e
u

p
st

re
a
m

p
re

ss
u

re
w

as
re

tu
rn

ed
ra

p
id

ly
to

1
cm

H
2
O

[2
].

T
h

is
p

ro
ce

ss
is

re
p

ea
te

d
fo

r
th

e
si

n
g
le

ly
m

p
h

a
n

g
io

n
m

o
d

el
.

K
ey

d
is

cr
ep

a
n

ci
es

b
et

w
ee

n
th

e
si

m
u

la
te

d
an

d
ex

p
er

im
en

ta
l

d
a
ta

a
re

h
ig

h
li

g
h
te

d
a
n

d
a
n

n
o
ta

te
d

.
T

h
es

e
a
re

d
is

cu
ss

ed
in

se
ct

io
n

4
.4

.2
.



Exploring a 0D Model of the Lymphatic System: From Lymphangion to Limb. 84

4.5 Conclusion

It is clear that much work is needed before large scale modelling of the lymphatic system

can realise the potential benefits. The phenomenological approach taken in this work

offered several benefits advantageous to its aim. The computational cost reduction of

lumped modelling and the reduction of parameter sets through the use of experimen-

tally derived relationships allowed the expansion in scale this work achieved. However,

this approach does not allow the degree of insight offered by physiologically motivated

modelling attempts undertaken by others [34][35]. Difficulties in achieving experimen-

tally observed diameter and pressure responses are caused, in part, by the inflexibility of

experimentally derived relationships. A physiologically motivated model of contraction

capable of integrating calcium dynamics, nitric oxide dynamics and electrical coordi-

nation between lymphangions would be beneficial to future work. The sensitivity of

these models to parameter variations add further difficulty to the problem of parameter

estimation. The lymph nodes are represented in this work as a simple connection be-

tween lymphangions when in fact they are complex contractile structure that alter the

composition of lymph and present variable resistances and compliances, little work has

been done to couple lumped lymphangion models and lymph nodes.

The identification of a bimodal distribution of contraction periods as indicative

of insufficiency may augment diagnosis. NIRF has been used previously to estimate the

period of lymphatic contraction in human limbs [71]. Spectral analysis of NIRF signals

could allow the identification of bimodal contraction period distributions as a metric

for insufficiency. The reduced efficiency of lymphatic contractions at higher adventi-

tious pressures could be used to inform the application of compressive garment use in

lymphoedema patients.

The importance of inertia at the lymphangion scale can be debated, however

as the scale of model approaches the organelle, organ or limb scale the consequences of

the small changes in valve dynamics start to cause significant effects. It maybe possible

to capture lymphatic phenomena, propose valid hypothesis and validate computational
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results without considering inertia, the assumption by the field that it is insignificant

needs to be re-examined and future work in this field should examine the role inertia

may play carefully, before proceeding without it.





Chapter 5

Breast Cancer Related

Lymphoedema and its Effect on

Limb Shape.

5.1 Introduction

Injury to the lymphatic system as a result of axial node dissection, radiation or sentinel

node biopsy in the treatment and diagnosis of breast cancer is a common cause of

secondary lymphoedema of the upper limb [72]. The removal of lymph nodes during

an axial node dissection - and to a lesser extent a sentinel node biopsy - reduces the

lymphatic pathways available to remove lymph from the interstitia. Radiation causes a

general degradation of the exposed lymphatic vessels and nodes through mechanisms not

currently entirely understood. Outside of the developed world the largest single cause

of secondary lymphoedema is filariasis. However, within the US nearly all secondary

lymphoedema patients develop the condition as a consequence of cancer or its treatment

[73].

87
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5.1.1 The Diagnosis of Lymphoedema

It is often stated that the “gold standard” of breast-cancer related lymphoedema (BCRL)

diagnosis is by lymphangioscintigraphy (LAS). Its use is recommended by the Interna-

tional Union of Phlebology, the American Venous Forum and the International Society

of Lymphology [74][75]. Under this method a contrast, usually albumin-bound techni-

cium 99m, is injected intradermally or subcutaneously and the limb is imaged as the

contrast is taken up by the lymphatic system. Analysis of the “pattern” produced allows

qualitative statements about the lymphatic system to be made. For example no uptake

of the contrast indicates no functioning lymphatics and is referred to as a “no-flow”

pattern and is more associated with primary than secondary lymphoedema. A specific

lymphatic injury can be found when the contrast is observed to stop progressing along a

vessel and diffuse away from the vessel indicating it is undergoing reflux into the tissues

around the injury. Several issues exist with this method: Firstly, it is important to note

that the detection of an injury and the presence of oedema does not imply causation.

Co-morbidities common to cancer patients mean that the oedema may have another

origin i.e. renal failure. Secondly, no quantitive measure of the insufficiency is available.

Thirdly, there is no accepted standard for this procedure [74]. Finally, the author is

aware of no study in which patients undergoing breast cancer surgery were routinely

subjected to LAS - though the expense and risks associated with nuclear imaging may

explain this: This makes assessing the incidence of BCRL through LAS difficult. The

rise of near infra-red imaging (NIRF) with idocyanine green (ICG) reduces the invasive

nature of the procedure which may lead to its wide spread use [76][62][77]. It has been

routinely used in one study which will be discussed later [78].

Outside of LAS, diagnostic methods for lymphoedema involve assessing a his-

tory indicative of lymphatic injury, a “lymphoedema” phenotype of the swelling and an

assessment of the degree of oedema. This assessment of the degree of oedema appears

to be responsible for the wide array of incidence estimates.

Water displacement, opto-electrical volumetry, and tape measurement are the
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three methods typically used to assess the degree of oedema. Water displacement mea-

sures the volume of the limb by Archimedes’ principle; the limb is submerged in water

and the volume calculated by measuring the water displaced. This method has been

referred to as the gold standard for limb volume measurement [79]. However, in practice

it has been described as below.

“In practice when dealing with the limbs, this procedure requires a whole

collection of different containers and apparatus that renders it unpractical,

messy and time consuming. Furthermore with regards to hygiene, since

people with lymphoedema often have concomitant skin alterations, the ap-

propriateness of this procedure is questionable and it is also not suitable for

patients in the immediate postoperative period.” - Belgrado et al. [80].

Opto-electrical volumetry measures the semi-major and minor axis of the limb using a

device called a perometer. The perometer uses two perpendicular arrays of infra-red

LEDs to cast shows onto two perpendicular sensors. The width of the shadows cast

on the two sensors are measured as the arrays are moved along the length of the arm.

The perometer assumes the arm is an ellipse with a semi-major and minor axis same as

the lengths of the two shadows. A diagram demonstrating the operation of a perometer

is shown in Figure 5.1. The final and most commonly used method to determine the

volume of the limb is by tape measurement. A non-elastic tape is used to measure the

circumference at multiple locations along the length of the limb. These are then used to

calculate the volume assuming a series of circularly cross-sectioned frustra.
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Figure 5.1: A diagram explaining the operating principle of a perometer. A frame
containing two perpendicular arrays of infra-red LEDs opposed by sensors are moved
with both arrays orthogonal to the arm. The cross-section is assumed to be a ellipse,
with the semi-major and minor axis having the same lengths as the shadows cast by

the limb.

Cheville et al. examined differing strategies for grading lymphoedema and

their consequences on the reported incidence of lymphoedema [7]. Figure 5.1 expands

on their analysis by combining seven of the nine papers they considered with three more

modern studies and refining the focus to axillary node dissections (ALND) - a common

cause of BRCL. Two studies were exempted in the first instance because the study used

a management grading of lymphoedema which precludes quantitative diagnosis and in

the second instance because no ALND patients were considered. In one study a small

percentage of sentinel node biopsies (SNB) - 6% - are included because the results were

not presented in a way that permitted their removal. As SNB patients are less likely to

be diagnosed with lymphoedema it is assumed this will yield a slight underestimation

of the incidence rate.

A large range of differing estimates of the incidence rate are found for similar

methods. The three highest circumference discrepancy incidences Pavia [78], Petrek [81]

and Gerber [82] each measure the circumference in a relatively large number of places

along the limbs length; 7, 4 and 3 places respectively. This implies that the position

and or quantity of measurements is important. This hypothesis is further compounded

given the high incidences found by perometer and water displacement methods, Stout

Gergich [83] and Sergerstrom [84], which measure continuously along the length of the
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limb. The absence of a properly controlled study on the methods of diagnosis for lym-

phoedema means the effects of different methods of diagnosis cannot be determined.

However, without a gold standard against which to assess this methods of diagnosis;

it is impossible to deconvolve the “true” incidence of lymphoedema. The Akita study

[78] used ICG NIRF to offer a direct measure of lymphatic function, which could serve

this purpose. The Akita study [78] has the highest reported incidence of any none self-

reporting study, which could imply that lymphoedema was under-represented in the

other clinical trials [77]. However, that statement is complicated as some patients in

that study were administered axilla radiation therapy, which is associated with lym-

phoedema. It remains clear that no standard method for assessing lymphoedema exists

in clinical trials, the methods used are varied and lack an evidential basis and the highest

incidence is in patient self-reporting. The elevated findings of ICG NIRF are particu-

larly significant because they fundamentally do not gauge the degree of lymphoedema

but instead identify the lymphodema phenotype. It is this observation that forms the

following assumption. Inconsistencies in lymphoedema incidence are due, in part, to an

over-reliance on identifying the degree of oedema instead of the character of oedema.
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Study n Procedure Diagnostic Criteria Reported

Incidence

Paiva 2016 [78] 250 ALND Inter-limb circumference discrepancy

or SNB (6%)

>2cm(any of seven) 44.5%

Akita 2016 [78] 71‡ ALND ICG NIRF

& Axilla Radiation

Diffuse or Stardust 45.8%

Stout Gergich 2009 [83] 71‡ ALND Inter-limb Perometer volume discrepancy

>2% 45%

Petrek 2001 [81]† 923 ALND Inter-limb circumference discrepancy

& Mastectomy + Self Reported feeling of oedema

Mild <0.5 in (any of 4) 19%

Moderate 0.5-2.0 in (any of 4) 17%

Severe >2.0 in (any of 4) 13%

Total=49%

Schrenk 1999 [85]† 35 ALND Self report

& Mastectomy(26%) swelling & function

Mild 40%

Moderate 14 %

Severe 0%

Total=54%

Liljegen 1997 [86]† 35 ALND Tape measure

volume difference

>100ml 11.2%

Kiel 1996 [87]† 183 ALND Inter-limb circumference discrepancy

+ Axilla radiation(2.2%) >1cm (any of two) 35%

Keramopoulos 1993 [88]† 72‡ ALND Inter-limb circumference discrepancy

Masectomy >2cm(any of two) 17%

Gerber 1992 [82]† 61‡ ALND Inter-limb circumference discrepancy

>2cm (any of three) 47%

Sergerstrom 1991 [84]† 93 ALND Water Displacement

+ Axilla radiation(61%) >150ml 43%

Werner 1991 [89]† 282 ALND Inter-limb circumference discrepancy

+Axilla radiation(23%) >2.5cm (any of two) 19.5%

Lin 1993 [90]† 122 ALND Inter-limb circumference discrepancy

>2 cm (any of two) 24%

Table 5.1: A table of diagnostic criteria used in clinical studies of BCRL and their
reported incidence. † from Cheville et al.[7]. ‡ Only ALND patients are produced
from a study which included non-ALND patients. Non-axilla targeted radiation is not
considered though some patients received it. Chemotherapy was given to most but
not all patients. Modified radical mastectomies are omitted, stated mastectomies are

simple or segmented

A variety of classifications for grading lymphoedema exist; of these, we will

consider the International society of Lymphology grading(ISL), the American Physical

Therapy Association lymphoedema Criteria(APTA), the latent effect of normal tissues

(LENT/SOMA) measure and the common toxicity criteria (CTCv3).

The ISL has four stages: Stage 0 or sub-clinical, where swelling is not seen;
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stage I, where swelling is and can be transient and is alleviated by elevation; stage II

where swelling is constant and pitting; stage III where the tissue is hard and fibrotic.

There are also four severities based on volume increase. sub-clinical 3-5%, mild 5%-20%,

moderate 20-40% and severe >40%. The ISL consensus document also notes the use of

minimal for a 5-10% difference[75].

The APTA has three grades of severity defined based on a the maximum

inter-limb circumference discrepancy; mild, <3cm; moderate, 3-5cm and severe, >5cm.

LENT/SOMA has four grades based on the same metric; grade I, 2-4cm; grade II, 4-6cm;

grade III, >6cm and grade IV is an arm with no function. In the cases of upper-limb

CTCv3 [7] grades lymphoedema as follows:

Grade Characterisation

1 5%-10% inter-limb discrepancy in volume or circumference

at point of greatest visible difference; swelling or obscuration

of anatomic architecture on close inspection; pitting oedema

2 10-30% inter-limb discrepancy in volume or circumference at

point of greatest visible difference; readily apparent obscu-

ration of anatomic architecture; obliteration of skin folds;

readily apparent deviation from normal anatomic contour

3 30% inter-limb discrepancy in volume; lymphorrhea; gross

deviation from normal anatomic contour; interfering with

ADL

4 Progression to malignancy (i.e., lymphangiosarcoma); am-

putation indicated; disabling

Table 5.2: A table showing the CTCv3 grading for lymphoedema as defined in [7]

Present in the CTCv3 but not included in CTCv2 or the other grading systems

is the presence of shape as a metric of lymphoedema. It is important to note that all three

clinical definitions in the CTCv3 involve shape with the mildest case being noticeable

on “close inspection” and the standard rising to “readily apparent” and finally to “gross
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deviation”. The reversal of shape changes during the development of lymphoedema has

been considered an aim of treatment [63].

5.1.1.1 Consequences of an Earlier Diagnosis

In order to motivate a method of diagnostic metric better able to quantify early lym-

phoedema the potential benefits must be discussed. The relationship between patient

outcomes and early diagnosis is not straightforward. It has been recommended that

early assessment of lymphoedema should not be used as an indicator of prognosis, given

the rate of spontaneous improvement [84]. However, the effectiveness of lymphoedema

management is significantly improved if applied when the oedematous volume is still

small [91]. Lymphoedema leads to a odematous volume that without treatment steadily

increases in time [92]. As Lymphatic function is compromised before odematous volume

becomes detectable [78]: it follows that early diagnosis is unreliable because it is inaccu-

rate but early treatment is beneficial. Diagnosis by the odematous volume is complicated

by the mean difference in volume of 2.2% found between dominant and non-dominant

arms [93], the presence of peri-operational swelling and the fact that early dysfunction

of the lymphatic system causes undetectable odematous volume. An alternative method

to calculate the relative fluid content of the tissues has been well described in the form

of multi-frequency bio-impedance analysis and this method has been shown to be able

to diagnose lymphoedema [94][95]. However, it is still a method of volume measurement

and requires comparison to the unaffected limb of that same patient.

5.2 Developing a New Diagnostic Method

A new method of assessing lymphoedema has been proposed. 3D stereo optical cameras

can measure produce distance images. Images taken at multiple angles around a limb can

be used to reconstruct the limb surface [96]. These scans don’t suffer from the practical

issues associated with water displacement and offer more geometric information than



Breast Cancer Related Lymphoedema and its Effect on Limb Shape. 95

opto-electrical volumetry. This chapter attempts to see if this geometric data can be

exploited to improve early diagnosis. The author takes the following assumption. A sub-

clinical form of lymphoedema exists, which if accurately diagnosed would be beneficial

to patient outcomes. These early changes are first noted by the patient and could

be responsible for the higher incidence recorded by self-reporting in the early detection

[97]. However, they need to be separated from post-surgical effects which are responsible

for the apparent spontaneous improvement. Volumetric measurement is insufficient to

assess the small increase in volume and the changes in shape too small to be noticeable

on “close inspection”. Whilst some of these assumptions are supported in literature,

a thorough establishment of them is beyond the scope of this work. However, they

motivate the following hypothesis. The “character” of swelling can be quantified as a

change in shape and this metric will significantly differ between mildly lymphoedematous

and non-lymphoedematous limbs. The work in this Chapter sets out to define a metric

of shape and test its suitability as an indicator of lymphoedema.

5.3 Methods

The following study modality was adopted to allow an exploration of metrics for lym-

phoedema while preventing over-fitting by preserving the integrity of limited patient

data. 3D limb scans for 24 female patients (48 limbs) aged between 29 and 76, with

mild unilateral lymphoedema, were scanned by Kevork Karakashian (Swansea Univer-

sity) as part of a Lymphaticovenular anastomosis (LVA) service review [96]. Three

patients (6 limbs) were selected at random and removed from the study. These unaf-

fected limbs would have a lymphoedema model induced in-silico through finite element

analysis (FEA) and the resulting geometries subjected to manifold harmonic analysis

(MHA) in order to examine changes in shape. The affected arms then have increasing

degrees of multiplicative and additive noise added to check the robustness of the metric

to noise. After these steps a single metric was developed which was then tested against

the 21 remaining patients to assess its validity. An overview of the study design can be

seen below in Figure 5.2.
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Figure 5.2: A flowchart showing the study design considering upper limb scans for
group of 24 lymphoedema patients. In an in-silico study, three patients of this group
were used to develop a shape-based metric that was then used in a statistical shape

analysis of the remaining 21 patients.

5.3.1 Manifold Harmonic Analysis

Manifold harmonic analysis allows the quantification of shape and has previously been

used to perform shape analysis, editing, and look-up [98]. It is suited to patient imaging

use due to its robustness to changes in local topology, which is variable in the unstruc-

tured type meshes associated with patient-specific meshing [99]. However, its greatest

benefit lies in the fact that the MHT is invariant to changes in pose [98]. This means

that MHT derived metrics of shape will be independent of the position the arm is help

during imaging. Manifold harmonic analysis has previously been used in an analysis

of the shape of carpal bones [100] but has not previously been used to develop patient

specific metrics [100]. The manifold harmonic transform (MHT) allows an analogue of

the Fourier series for triangulated manifolds. MHA is performed by eigendecomposi-

tion of a discrete Laplacian yielding a series of eigenvalues which represent frequency

and eigenvectors which represent the contribution each node makes to that frequency.

Briefly, MHA allows Fourier like transformations to be performed on manifolds using

the eigenvectors of the Laplace-Beltrami operator [99]. In standard Fourier analysis the
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function, f(x), is decomposed into a trigonometric series as,

f(x) =

∞∑
n=−∞

f̂(n)eiωnx, (5.1)

where ω = 2πn/T , with T the period and f̂(n) is the Fourier transform, whilst f(x) is

decomposed onto an orthonormal basis, eiωnx. Each Fourier basis function satisfies the

Helmholtz equation of the real line.

− ∂2φk(x)

∂x2
= ω2

kφk(x) (5.2)

Thus the k-th Fourier basis function is the k-th eigenvector of the 1-D Laplace operator.

It is this property that is used to generalise the Fourier transform to higher dimensions.

Levy[99] sought a family of functions {φk(x)} that could form a complete basis for

arbitrary manifolds, such that any square-integrable function defined on a manifold, M,

can be decomposed into a linear combination of this basis, {φk(x)}. In 1-D Euclidean

space {φk(x)} are the eigenvectors of the Laplace operator.

5.3.2 The Laplace-Beltrami Operator

The Laplace operator can be generalised on a manifold as the Laplace-Beltrami operator,

∆M. Many attempts to construct a discrete Laplace-Beltrami operator have been made.

Wardetzky[101] notes it is impossible to construct a discrete Laplacian that converges

to the smooth Laplacian and is also symmetric for general meshes. However, a popular

scheme is proposed by Meyer et al. [6]. Consider any triangulation with a vertices list,

V of size (nv, 3), and an associated edge list E. Now a geometric weight matrix W of

size (nv, nv) can be defined as follows.

wij =


− cotβij+cotβ́ij

2 if (i, j) ∈ E∑
k

cotβik+cotβ́ik
2 , (i, k) ∈ E if i = j

0 else

(5.3)
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Where βij and β́ij are the measures of the angles opposing the edge (i, j). A

diagonal matrix, A, can be defined where Aii equals the finite Voronoi area of the ith

member of V, calculated using the method described by Meyer et al. [6]. An overview

of the construction of the weights matrices is described in Figure 5.3.

The generalised eigenvector problem WΦ = ΛΦA [98] can be solved to yield

a nv-by-nv matrix of eigenvectors Φ, and the eigenvalue matrix, Λ, whose diagonal,

corresponds to the square of the fundamental frequencies those bases represent. We

can therefore transform V to give V́ = VTAΦ where V́ is the spectral representation.

Upon the boundaries only one angle opposing the edge is found. Hence, cot(β́ij) does

not exist, and only the finite Voronoi region is considered [99].

β
ij

β’
ij

A
ii

i

j

Figure 5.3: A figure demonstrating the Meyer et al. construction of the Laplace-
Beltrami operator [6]. For a node, i, the area weight, Aii, is the Voronoi area associated
with the node. For each associated edge (i, j) the weight wij is found as a function of
the two corners that oppose ij, βij . For the leading diagonal of W the values are the

negation of the sum of every weight associated with that node.

5.3.3 Global Point Signature

Shape analysis performed using the Laplace-Beltrami spectra directly has been pro-

posed [102][98]. However, the techniques have been improved by the introduction of
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global point signature. The global point signature (GPS) normalises the eigendecom-

position of the Laplace-Beltrami operator by the frequency to yield a multidimensional

spectral embedding where the distances between vertices in that embedding are more

meaningful, while still conserving the original properties [103]. The embedding of the

geometry is constructed from the eigendecomposition of the Laplace-Beltrami operator.

Each column of Φ is an eigenvector which represents a sinusoidal function on the surface

of the geometry and each element of that eigenvector represents the contribution of the

associated vertex to that mode. A limb geometry coloured by the normalised eigenvec-

tors for some low frequency modes is shown below in Figure 5.4. Similarly each row of


i 1


i 6


i 11


i 16

-1

-0.5

0

0.5

1

Figure 5.4: The first, sixth, eleventh and sixteenth eigenvectors of the Laplace-
Beltrami operator are shown for the case one limb geometry. Colour is normalised

eigenvector coffecient.

Φ represents a multidimensional spectral embedding of each vertex with each dimension

representing that points contribution to each sinusoidal function. This embedding is

called the global point signature (GPS), the ith vertex of V would be embedded for n

eigenvectors as follows.

ˆφ(n)i =

[
φ1i

λ1
,
φ2i

λ2
...
φni
λn

]
(5.4)

Reducing n truncates the series and is equivalent to a low-pass filter.
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5.3.4 G2-distribution Metrics

The G2-distribution is the distribution of pairwise distances between each point of the

geometries GPS embedding [103].

Dij(n)(Φ) =

n∑
k=1

√
φ̂ik − φ̂jk (5.5)

It is important to note that the zero-th eigenvector and eigenvalue, φ0 = [0, .., 0] and

λ0 = 0 is not aggregated into the GPS as the resultant GPS would have an undefined

value. Rustamov observed the significance of distances within this space and their

relation to Green’s functions [103]. Briefly, the inner product of two points within the

GPS domain is equal to the Green’s function of the two points. Consider an elastic

surface, S(x), subject to some load, f(x), such that it undergoes displacement, u(x).

∇2u = f(x) (5.6)

Now suppose that the load was concentrated on a point, q, i.e. f(x) = δ(x− q). One

way to solve this equation is by convolving the load with a Green’s function G(x,q)[104].

u(x) =

∫
S
f(q)G(x,q) dq (5.7)

As can be seen for any point, p 6= q the function G(p,q) represents the consequence of

loading point q on the displacement at point p. As Rustamov notes the magnitude of

Green’s function represents the ‘togetherness’ of two points and it is this quality that

gives meaningful representation to distances within the GPS embedding [103]. These

distances can be represented as a distribution drawn from the GPS truncated to n = m1

d(m1) = {Dij(m1)(Φ) : i 6= j} [105]. Where m1 is a truncation point which will be

found later. It is by studying this distribution that shape analysis can be performed.

The similarity of shapes can be found by comparing metrics constructed from the distri-

bution of these distances [105]. Probability density functions can be constructed for this

distribution using a histogram method. When selecting the number of bins, two factors

need to be considered. Firstly, a large enough number of bins to ensure sensitivity to
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changes between distributions and secondly, a small enough number of bins to reveal

the underlying distribution. By inspection, a histogram of 1000 bins of equal width was

placed across the range of G2 values for each arm and the resultant count normalised

by the total number of counts to give each bin a probability of occupancy.

5.3.4.1 Entropy and Redundancy

There is a conceptual relationship between informational entropy and lymphoedema, the

swelling can be considered as the progression of the cutaneous tissues toward a minimal

surface, obscuring the detail of muscle and bone that lies beneath. The Shannon entropy

of the G2-distribution, H(d(m1)), gives a metric of this process, its value falling as the

G2-distances become more consistent representing a homogenisation of the geometry.

Through the histogram method, a discrete estimation of the probability distribution,

P (d(m1)), can be constructed and the Shannon entropy of the distribution can be

calculated as follows with i representing the ith bin of the histogram.

H(m1) = −
∑
i

P (d(m1)i) logP (d(m1)i). (5.8)

However, the Shannon entropy alone requires a context for interpretation. It can be

normalised as a ratio of the maximum entropy possible in the context. This expres-

sion, called redundancy, is a measure of the informational content as compared to the

maximum possible within the context [106]. In order to find the maximum entropy,

consider the Fiedler vector, φi1, shown on a limb surface in the left hand plot of Fig-

ure 5.4. This function has one turning point over the surface, each higher frequency

eigenvector will turn more than once. It is this property that causes the pairwise dis-

tances at this frequency-scale to represent the least-ordered function with the highest

entropy, H(d(1)). Thus the entropy of pairwise distances constructed from φ̂i1 represent

a maximum entropy for the GPS embedding.

R = 1− H(d(m1))

H(d(1))
(5.9)
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A redundancy, R, can be formulated as above to represent the additional order added

by the aggregation of higher frequencies in the GPS embedding which lower the entropy

when compared to the Fiedler vector. The geometry can be considered as the superpo-

sition of these ordered low-entropy, underlying features and a high-entropy cutaneous

tissue which covers them. Measuring the redundancy of information, R, in the entropy

of the G2-distribution as compared to the entropy of a G2-distribution defined from the

Fiedler vector, allows a measure of the order or structure of the signature, which is not

present in the limb’s most basic description.

5.3.4.2 Noise

In manifold harmonic analysis, it is not common to calculate all the possible eigenvectors

for the given mesh; both to reduce computational expense and exclude noise which of-

ten dominates for the higher frequency eigenvectors. Other work in the field of manifold

harmonic analysis has found that the number of eigenvectors required to recapitulate a

geometry sufficient for most shape-analysis objectives is a relatively small subset of the

total, i.e. around 1% [99][98]. Given the role of eigenvectors of the Laplace-Beltrami

operator in manifold harmonic analysis and the Fourier-analogous nature of the mani-

fold harmonic transform, a method for assessing the first noise dominant eigenvector is

proposed. The power-frequency spectrum for a manifold can be found from the mani-

fold harmonic transform in a similar manner to that seen in Fourier analysis. For each

eigenvalue, λi, an associated power, Pi, can be found by taking a Euclidean norm of

the ith row of V́. The power-frequency spectra for each of the three limbs in the FEA

study is shown below in Figure 5.5. Based on the principle that the random nature of

noise means there should be no correlation between the power of noise and its frequency.

Thus the first mode where noise is dominant can be identified as the largest eigenvalue

for which the correlation between power and frequency can be established. To achieve

this the piecewise-linear function, P̂ (m), is fitted in a least-squares manner to identify
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the first eigenvalue at which noise is dominant, m1,

log(P̂ (m)) = log(P̄n) +


0 m ≤ m1,

km else,

(5.10)

with P̄n representing the mean logarithm of noise-power and k a coefficient of linear-

regression of the relationship between power and frequency. For the three limbs under

consideration in the in-silico study m1 was found to be 40.67± 2.33. In order to ensure

a consistent number of modes in further study, a more conservative value of m1 = 50

was used.

Figure 5.5: A plot showing the power-eigenvalue number relationship for the three
in-silico geometries. The solid lines represent least-squares fits of a ‘dog-leg’ function
with the inflection point representing the point of noise dominance. The eigenvalue
numbers are such that the Fiedler vector would have an eigenvalue number of 1 and

the highest frequency would be numbered n.

5.3.5 Finite Element Analysis

Finite element analysis could be used to develop models of lymphoedema that had

direct diagnostic applicability. However, this would require models which considered

the complex phenomena that occur. Examples of these include, the varying compliance

of the tissues, strain dependent permeability and the remodelling of the skin to reduce

stress over time. Even if such a model was constructed it would then require extensive
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simulation to build a understanding of how different fluid-loading conditions effected

limb shape. These changes in limb shape would then need to be quantified. It is also

possible that such a modality could be used in a patient-specific manner. With individual

patient geometries being modelled to aid in patient prognosis. However, in this work

a much simpler approach is taken. For the three limbs that have been set aside from

the main study. A crude and simple model of lymphoedema is imposed. The surface

is modelled as a thin layer of compliant dermis bound by stiff epidermis. This layer

is injected with fluid with its inner surface constrained. Representing a rigid muscle

and fat layer. The GPS changes associated with this pressurisation are then examined

for general trends, and a derived metric is assessed against the remaining limbs, which

were not subject to FEA. This approach reduces the computational expense of extensive

FEA. While this approach relies on a simplified model of lymphoedema its observations

are validated directly against patient data. The method by which this FEA model was

implement is described below.

A two-layer steady-state biphasic model was implemented in FEBIO(Scientific

Computing and Imaging Institute, University of Utah, USA). The outer surface of the

scans was modelled as two biphasic layers; the inner layer representing the dermal tissues,

with a Young’s modulus of 1.17kPa and a solid fraction of 0.2 and the outer layer

representing the epidermis, with a Young’s modulus of 1364 kPa and a solid fraction of

0.8, both with a Poisson ratio of 0.4 [107]. An increasing fluid pressure was applied in

a steady-state manner to the internal surface, which was fixed in space. The geometries

were meshed using linear hexahedral elements. Note that the permeability was irrelevant

as in a steady-state simulation the model is at equilibrium. The meshes were coarsened

three times by halving the number of elements each time and, subsequently, all meshes

were subjected to a hydrostatic pressure of 3kPa. It was found that for every case the

difference in volume change between the two finest geometries was less than one percent.

This reduction was necessary to reduce computational expense, after simulation the mesh

was resampled at the original, finer, density before calculating the G2-redundancy.



Breast Cancer Related Lymphoedema and its Effect on Limb Shape. 105

5.4 Results

5.4.1 In-silico Study

5.4.1.1 Sensitivity to Noise

In order to assess the sensitivity of G2-redundancy to noise, the three affected geometries

used in the in-silico study had additive and multiplicative Gaussian noise imposed in

increasing quantities and the resulting change in G2-redundancy calculated. The volume

of each noisy geometry was also measured and the error calculated. This process was

repeated 100 times for each of the three geometries, the mean and standard deviation of

that change are shown in Figure 5.6. For small levels of noise, the zero-mean displace-
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Figure 5.6: Relative error in G2-entropy and volume for each of the unaffected ge-
ometries removed from the original study with the presence of an additive (top) and
multiplicative (bottom) Gaussian noise. The bars represent one standard deviation for

100 runs.

ment nature of the noise causes little variation in either metric yet volume outperforms

G2-redundancy. However, at higher noise levels approximately 1-10% G2-redundancy

becomes more noise resistant for both additive and multiplicative noise.
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5.4.1.2 Pressurisation

Shown in Figure 5.8 is the volume change associated with pressurisation for each of the

three unaffected limb geometries removed from the in-vivo study. As can be seen in

cross-section also in Figure 5.8 the pressurisation swells the dermal tissues causing the

the epidermis to progress toward a surface of minimum curvature. Shown in Figure

5.7 are the GPS-distance distributions for the unaffected geometries in each of the three

in-silico cases at each pressure step. Each distribution is coloured from blue to red repre-

senting the amount of pressurisation, 0 to 3kPa. As expected, the general change for all

distributions is a reduction in the entropy associated with each distribution during pres-

surisation. Whilst the relationship in non-monotonic, particularly in case one. However,

the buckling associated with this would not occur physiologically as the stiff epidermis

would remodel and relax over the large time-scales associated with lymphoedema. Its is

assumed that this phenomena can be ignored. As this pressurisation is used only to find

spectral changes associated with lymphoedema that can be used to design a shape-based

metric of lymphoedema. However, a more complex model of the tissues could explore

this phenomenon.

The increase in the probability of a given distance coupled with a decrease in

the range of observed distances reduced the amount of information associated with each

point in the original geometry. This loss of information can be considered as a spec-

tral homogenisation of the geometry. The change in G2-redundancy associated with

pressurisation can be seen in Figure 5.8.

5.4.2 In-vivo Study

The G2-redundancy of the 21 patients within the in-vivo study was calculated and the

G2-redundancy values were compared with both the affected and unaffected limbs. A

statistically significant difference in the mean of the samples was identified. The G2-

redundancy means were found to be 7.17 % (6.99-7.35, 95% CI) and 6.73 (6.55-6.92,

95% CI) for unaffected and affected limbs respectively, t(40) = 10.51, p = 0.0023. To
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Figure 5.7: In-silico simulations illustrate the effect of limb swelling on the G2-
distributions for GPS series that are truncated from the Fiedler vector to the point

of noise dominance. The colours represent the hydrostatic pressure in kPa.

Figure 5.8: Redundancy change associated with pressurisation for each in-silico case.
Also shown are cross-sections of case one for three applied loads.

assess the potential of G2-redundancy as a diagnostic criterion, an error minimising

threshold for lymphoedema of 7.05% was found. If used to diagnose the individual

limbs in this study, then it would have a sensitivity of 76.6 (58.5-94.7 95% CI) and a

specificity of 86.7% (72.2-100, 95% CI). The threshold can be seen along with violin

plots of G2-redundancy for affected and unaffected limbs in Figure 5.9. A similar plot is

also shown for limb volume with means of 2.43 L (2.21-2.65, 95% CI) and 2.13 L (1.97 to

2.29, 95% CI) for affected and unaffected limbs respectively, t(40) = 4.38, p = 0.0428. No

significant correlation was found between G2-redundancy and limb volume for affected or

unaffected arms respectively, Pearson r(19)=0.258, p=0.259 and r(19)=0.239, p=0.296.

A plot showing the difference in both metrics between affected and unaffected arms for
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each patient is shown in Figure 5.10.

Affected Unaffected
5

5.5

6

6.5

7

7.5

8

8.5

R
e

d
u

n
d

a
n

c
y
 (

%
)

Affected Unaffected
1.5

2

2.5

3

3.5

4

4.5

V
o

lu
m

e
 (

L
)

Figure 5.9: Violin plots for affected and unaffected limbs. Top: G2-redundancy.
Bottom: volume. A significant difference exists for both. On the G2-redundancy plot

a hypothetical threshold of 7.05% is shown as a horizontal dashed line.
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Figure 5.10: The signed difference between the affected and unaffected arm in G2-
redundancy and volume is plotted for each patient. Difference = Affected-Unaffected.

No statistically significant relationship was found between the two.
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5.5 Discussion

Whilst a statistically significant difference was observed in the affected vs unaffected

means for both volume and G2-redundancy, there is a higher confidence in the relation-

ship for G2-redundancy than there is for volume. The absence of a statistically signif-

icant relationship between limb volume and G2-redundancy suggests that this metric

captures an aspect of shape which is independent of volume. Which implies that this

metric could be used to allow greater understanding of disease state. As can be seen in

Figure 5.10, some patients have large discrepancies between the values. For example,

patient 19 has a 1L difference in the volume between limbs, the largest observed, yet

their G2-redundancy difference is within the 6th decile. Conversely, patient 2 has the

second smallest observed difference in limb volume yet has a G2-redundancy difference

comparable to patient 19. Further work should seek to relate these metrics to clinical

outcomes to assess whether these discrepancies are of clinical value.

As can be seen in Figure 5.6 G2-entropy shows resistance to noise, with the

standard deviation of error being smaller than the standard deviation of the applied

noise. This is to be expected given the method of truncating the manifold harmonic

transform such that high-frequency noise is rejected. Whilst volume is similarly robust

to low-level additive noise due to the mean displacement of the nodes being zero, it is

important to note that G2-entropy outperforms volume in the presence of large additive

and multiplicative noise.

The assessment of entropy needs to be considered carefully in the use of a

histogram method. Too coarse a sampling of the G2 range can over-smooth and obscure

changes associated with lymphoedema whereas oversampling can emphasise noise over

the underlying distribution.

If a threshold G2-redundancy of 7.05% were used as a criterion, considering the

data-set series of limbs with and without lymphoedema, it would have a sensitivity of

76.6% (58.5-94.7 95%CI) and a specificity of 86.7%(72.2-100, 95%CI), this is comparable,

if not better, in performance to criteria defined as differences between limbs for currently
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Diagnostic Sensitivity Specificity
criteria (95%CI) (95%CI)

Volume Difference
≥ 200ml 0.39(0.27-0.51) 1.00(0.95-1.00)
≥ 4% 0.67(0.55-0.78) 0.89(0.79-0.95)

Circumference Difference
≥ 2cm 0.36(0.25-0.48) 0.94(0.86-0.98)

Bioimpedance
≥ 1 SD 0.87(0.77-0.94) 0.47(0.35-0.56)
≥ 2 SD 0.51(0.39-0.64) 0.99(0.92-1.00)

Table 5.3: Published diagnostic sensitivities and specificities for upper-limb breast
cancer related lymphoedema [8]

available techniques, see Table 5.3 [108][8]. This is not to say that these values would

be found in a pre-diagnosis population but it is indicative of the ability of this metric

to diagnose lymphoedema based on the intrinsic shape of a limb, not in comparison

to an unaffected limb. As far as the author is aware, there is no quantitative metric

of lymphoedema that does not require the comparison between affected and unaffected

limbs. This raises the possibility that this technique could be used to aid the diagnosis

of lymphoedema when limbs cannot be compared, future work should seek to explore

this.

5.6 Conclusion

A volume-independent shape-based metric for assessing lymphoedema has been pro-

posed and evaluated against a sample of unilateral lymphoedema patients. A statisti-

cally significant correlation between G2 entropy and the presence of lymphoedema was

found. As the quantification of volume offered benefit to the definition of swelling in

lymphoedema. The quantification of shape may offer similar benefit both in diagnosis

through a quantification of the aims of CTCv3 and further allowing the reversal of shape

changes to be quantified when evaluating the efficiency of treatment.
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Many other phenomena play a role in limb shape such as age, hydration, obe-

sity, and activity. Additionally, many unconsidered phenomena will effect the change in

shape associated with lymphoedema such as changes in skin compliance, tissue remod-

elling, and changes in lymphatic capacity associated with the change in downstream

pressure condition. The current study would appear to validate the decision to omit

these behaviours as a statistically significant relationship was found, for this patient

population, without a metric designed with these behaviours in mind. Rather than

include these in the FEA modelling producing considerably more complex models and

using these to adjust the metric; the authors propose that future work seeks to ap-

ply this metric to wider populations and debate any observed inconsistencies. Further

work should seek to address whether this metric could augment volume-based methods

in the diagnosis or treatment planning of lymphoedema and to establish the relation-

ship between the severity of lymphoedema and G2-entropy. Further development of the

methodology could explore more advanced methods to assess the entropy of the G2-

distributions instead of a histogram approach. This may increase the sensitivity of the

method to lymphoedema without affecting sensitivity to discretisation. The work un-

dertaken in Chapter 4 raises the possibility that specific injuries could be associated to

specific shape changes. However, this would require coupling a 0D lumped model of the

lymphatic network to a biphasic model of the tissues, and a mechanism for incorporating

remodelling phenomena, future work should seek to address this.





Chapter 6

Concluding Remarks

This work set out to numerically model the mechanics of lymph transport, with the

aim of providing insight into lymphatic disease, formulating hypotheses of lymphatic

physiology and identifying potential new avenues of research. Starting with a 3D analysis

of a single subject-specific lymphatic valve. A mechanism was presented for previous

experimental results showing the effect of trans-mural pressure on the pressure required

to close lymphatic valves and the importance of wall motion in future FSI studies of

lymphatic valve dynamics were identified.

The potential benefits of expanding the scale of lymphatic modelling were iden-

tified and a consideration of the steps necessary was undertaken. 0D Lumped mod-

elling was identified as a way to reduce computational expense, previous approaches

to lumped modelling were considered and modifications were proposed. A less-idealised

valve model, incorporating trans-mural dependent bias, was proposed as well as a method

of allowing self-organised contraction through a stretch-dependent frequency of contrac-

tion.

A network of the superficial lymphatics of the upper-limb was reconstructed

from an anatomical sketch. The network was used in conjunction with the lumped

model to produce a 421 vessel lymphatic model consisting of 17,706 lymphangions. The

113



Breast Cancer Related Lymphoedema and its Effect on Limb Shape. 114

first lymphangion scale model which considered more than seven vessels. An attempt

to study the fluid flows within this network revealed issues with the coordination of

contractions at confluences which frustrated further progress. However, a potential

metric of insufficiency based on the modality of the distribution of contraction durations

and the reduce efficiency of contractions at higher adventitious pressure differences was

identified.

A simplified patient-specific biphasic model of lymphoedema was proposed and

used to develop a novel shape-based metric for lymphoedema. A statistically significant

relationship between the metric and the presence of lymphoedema was found.

There are missed opportunities in the current state of the art that if undertaken

could improve understanding and help convert current work into methods which improve

patient outcomes. Firstly, there is limited understanding of the mechanics of lymphatic

wall motion. In 2010, Arkil et al noted it was strange that the field had persisted for

so long without such an understanding [36]. The subsequent decade has not yielded a

constitutive model of the lymphangion wall and has done little to progress toward such

a model. 3D computational models of valve behaviour, including this work continue to

develop but offer limited insight until the mechanics of the wall are well understood. Sec-

ondly, a variety of species and sites make up the landmark studies that have discovered

the phenomena which drive lymphatic pumping. These studies are almost universally

not repeated in other species or at other sites.

Lumped modelling of lymphatics has benefits beyond those considered in this

work. The ability to use large-scale lumped models of the lymphatic system, such as

that presented in this work, to model the metastasis of cancer and the development of

immunity could have profound implications for the treatment and prevention of disease.

However, such efforts are hampered by the mixture of bovine, murine, rat and bat

experimental models in the thoracic duct, mesentery and limb which make up the current

state of the art. Future work toward coupling lumped models of the lymphatic system

and biphasic models of the tissues could lead to allow more insight into the relationship

between lymphatic injury and the development of lymphoedema.



Appendix A

Kálmán Filter Overview

The ensemble Kálmán filter draws multiple observations of the state variables from a

distribution, propagates these observations in time, then calculates the mean and co-

variance empirically. A function G is defined to map bound state variable from unbound

values such that the state can be considered [−∞,∞] which avoids the complication of

calculating the mean and covariance of a truncated multi-variate distribution by empir-

ical observation.

G : Rnp [rhigh, rlow]→ Rnp (A.1)

Ξ̄ = G(Ξ) =
1

1 + exp(5Ξ)
(rhigh − rlow) + rlow; (A.2)

With Ξ representing the bound and Ξ̄ representing the unbound state. With rhigh and

rlow representing the range of values for Ξ.

Ξ̄ ∼ Nnp,no(µ, nPxx) (A.3)

Ξ̄ consists of no members drawn from a np-variate Gaussian distribution whose mean is

represented by the vector µ and has the covariance nPxx

x̂ =
1

no

∑
(Ξ) =

1

no

∑
(G−1(Ξ̄)) (A.4)
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The mean state x̂

ŷ =
1

no

∑
(†) (A.5)

The state variables are propagated, in time, through the model.

x = f(Ξ̄, tn) (A.6)

After propagation the state variable can be transformed into the observation vector

which will be compared to experimental data.

† = H(x) (A.7)

The difference from the mean state and observation for each sample can be can be

calculated

ex = x− x̂ (A.8)

ey = † − ŷ (A.9)

From this the covariances n+1Pyy andn+1Pxy can be calculated

n+1Pyy = eyey
T (A.10)

n+1Pxy = exey
T (A.11)

The filter gain can now be found

K = n+1Pxy
n+1P−1

yy (A.12)

This allows the error in mean observation to be used to adjust the mean state.

µ = x̂+ K(ŷ − yexp) (A.13)
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Similarly the covariance in observation can be used to correct the covariance in state.

n+1Pxx = n+1P−xx −K ∗ n+1Pyy ∗KT (A.14)





Appendix B

Contraction Function Derivation

Assume that some function whose gradient is directly proportional to its state and

alternates between two modes in time.

dM̂

dt
=


kc( ˆM(t)− 1), 0 ≤ t < tc

−kr ˆM(t), tc ≤ t < tr

(B.1)

Boundary conditions

ˆM(0) = M̂b (B.2)

ˆM(tc) = M̂u (B.3)

solving the contraction

log

∣∣∣∣M(t)− 1

Mb − 1

∣∣∣∣ = kct (B.4)

log

∣∣∣∣M(t)

Mu

∣∣∣∣ = kr(tc − t) (B.5)

find tc, M(tc) = Mu for eq. B.4

1

kc
log

∣∣∣∣1−Mu

1−Mb

∣∣∣∣ = tc (B.6)
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find tr, M(tr) = Mb from eq. B.5 and eq. B.6

1

kc
log

∣∣∣∣1−Mu

1−Mb

∣∣∣∣− 1

kr
log

∣∣∣∣Mb

Mu

∣∣∣∣ = tr (B.7)

Introduce the contraction parameters

T = tc + tr =
2

kc
log

∣∣∣∣1−Mu

1−Mb

∣∣∣∣− 1

kr
log

∣∣∣∣Mb

Mu

∣∣∣∣ (B.8)

Mmax = M0Mu (B.9)

Mmin = M0Mb (B.10)

φ =
tc
tr

=
log
∣∣∣1−Mu

1−Mb

∣∣∣
log
∣∣∣1−Mu

1−Mb

∣∣∣− kc
kr

log
∣∣∣Mb
Mu

∣∣∣ (B.11)

Isolate kc, kr from B.11.

log Mb
Mu

∣∣∣∣1−Mu

1−Mb

∣∣∣∣ φ− 1

φ
=
kc
kr

(B.12)

substitute kr into B.8

kc =
φ+ 1

Tφ
log

∣∣∣∣1−Mu

1−Mb

∣∣∣∣ (B.13)

substitute B.13 into B.12

kr =
φ+ 1

T (φ− 1)
log

∣∣∣∣Mb

Mu

∣∣∣∣ (B.14)



Appendix C

Upper Limb Network

Presented below is the lymphatic network produced in Section 3.5.1. The following table

presented in eleven parts lists each vessel, it’s length, starting and ending positions and

starting and ending diameter. The following table, presented in eleven parts, shows the

connectivity between vessels with the end of each parent vessel being connected to the

corresponding daughter vessel.
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Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

1 5.505 -4.798 3.278 21.299 -4.798 3.278 21.299 293.699 316.802

2 4.176 -3.351 4.010 24.536 -3.351 4.010 24.536 459.356 442.848

3 2.770 -5.295 2.657 25.586 -5.295 2.657 25.586 439.292 148.695

4 1.732 -5.936 1.946 25.499 -5.936 1.946 25.499 129.173 148.695

5 1.001 -5.070 2.680 25.999 -5.070 2.680 25.999 244.710 156.928

6 3.478 -6.300 1.405 23.986 -6.300 1.405 23.986 342.223 284.077

7 1.595 -6.593 0.223 24.199 -6.593 0.223 24.199 294.499 282.507

8 2.844 -6.580 -0.353 21.999 -6.580 -0.353 21.999 406.305 350.517

9 1.886 -6.581 0.349 25.299 -6.581 0.349 25.299 189.291 148.695

10 1.023 -6.532 0.639 25.699 -6.532 0.639 25.699 129.173 148.695

11 1.764 -6.541 -0.595 25.599 -6.541 -0.595 25.599 165.988 148.695

12 8.161 -1.794 -4.595 20.399 -1.794 -4.595 20.399 186.642 244.967

13 2.141 -1.580 4.309 25.736 -1.580 4.309 25.736 405.229 448.640

14 4.325 -5.446 2.007 26.949 -5.446 2.007 26.949 408.260 467.052

15 1.954 -5.736 1.353 27.999 -5.736 1.353 27.999 296.199 227.310

16 2.845 -6.272 -0.486 26.649 -6.272 -0.486 26.649 363.592 348.250

17 1.971 -5.734 -1.489 27.399 -5.734 -1.489 27.399 149.847 172.494

18 1.779 -5.589 -1.998 26.549 -5.589 -1.998 26.549 329.557 436.681

19 3.735 -4.953 -3.090 24.349 -4.953 -3.090 24.349 400.692 148.695

20 3.657 -3.146 -3.998 25.249 -3.146 -3.998 25.249 400.692 256.956

21 7.114 -5.998 0.177 29.749 -5.998 0.177 29.749 276.875 400.236

22 6.074 -2.164 -3.606 27.649 -2.164 -3.606 27.649 307.755 255.466

23 1.515 -5.929 -0.506 30.099 -5.929 -0.506 30.099 192.308 148.695

24 1.472 -5.702 -1.037 30.949 -5.702 -1.037 30.949 181.471 148.695

25 5.195 -2.654 -3.231 29.499 -2.654 -3.231 29.499 318.178 305.222

26 2.299 -1.559 3.726 27.799 -1.559 3.726 27.799 405.312 349.627

27 4.648 -4.228 2.478 32.324 -4.228 2.478 32.324 326.144 300.702

28 1.624 -5.139 1.853 32.799 -5.139 1.853 32.799 287.226 148.695

29 3.039 -5.342 1.726 34.149 -5.342 1.726 34.149 251.733 179.183

30 1.101 -5.069 1.886 32.199 -5.069 1.886 32.199 199.584 148.695

31 2.581 -5.722 1.276 34.249 -5.722 1.276 34.249 214.574 203.684

32 4.423 -4.935 1.979 30.861 -4.935 1.979 30.861 328.243 302.429

33 2.514 -5.963 0.370 31.649 -5.963 0.370 31.649 390.649 305.822

34 1.119 -5.991 0.273 31.249 -5.991 0.273 31.249 159.222 148.695

35 1.146 -6.034 -0.095 32.099 -6.034 -0.095 32.099 249.258 343.410

36 0.447 -6.035 -0.073 32.299 -6.035 -0.073 32.299 277.832 180.919

37 2.110 -5.527 -1.397 32.136 -5.527 -1.397 32.136 203.187 174.336

38 0.575 -5.522 -1.449 32.499 -5.522 -1.449 32.499 223.564 148.695

39 1.259 -5.053 -1.904 31.749 -5.053 -1.904 31.749 230.874 257.832

40 2.046 -5.726 1.162 32.649 -5.726 1.162 32.649 469.027 378.829
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Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

41 6.460 -3.171 -2.956 31.949 -3.171 -2.956 31.949 262.393 377.562

42 2.928 -6.163 0.325 35.349 -6.163 0.325 35.349 331.082 334.265

43 2.216 -6.028 -0.794 35.649 -6.028 -0.794 35.649 350.605 264.973

44 2.141 -6.187 0.095 36.899 -6.187 0.095 36.899 269.214 237.684

45 16.508 -5.562 -0.588 46.874 -5.562 -0.588 46.874 362.006 384.195

46 7.515 -4.854 2.182 37.211 -4.854 2.182 37.211 357.984 307.152

47 6.107 -5.873 0.646 42.049 -5.873 0.646 42.049 180.132 148.695

48 5.200 -5.514 1.184 42.536 -5.514 1.184 42.536 338.141 377.624

49 1.666 -5.501 0.993 43.899 -5.501 0.993 43.899 317.163 187.841

50 4.854 -5.639 -0.347 46.999 -5.639 -0.347 46.999 336.276 359.413

51 2.781 -5.898 0.179 49.524 -5.898 0.179 49.524 418.893 215.648

52 5.982 -3.617 2.861 36.499 -3.617 2.861 36.499 283.199 201.581

53 6.078 -5.934 -0.767 40.049 -5.934 -0.767 40.049 335.302 468.067

54 3.408 -5.864 0.439 42.749 -5.864 0.439 42.749 417.507 189.320

55 5.194 -5.531 -0.671 46.811 -5.531 -0.671 46.811 325.073 299.363

56 6.081 -5.512 -0.721 46.805 -5.512 -0.721 46.805 348.269 400.905

57 3.070 -5.945 -0.302 49.886 -5.945 -0.302 49.886 255.947 294.630

58 6.836 -5.596 -1.158 41.899 -5.596 -1.158 41.899 332.647 197.011

59 13.679 -5.610 0.841 48.949 -5.610 0.841 48.949 391.030 270.077

60 1.904 -0.902 3.407 39.511 -0.902 3.407 39.511 388.807 422.784

61 4.945 -3.853 2.328 43.261 -3.853 2.328 43.261 458.558 269.953

62 1.616 -2.174 3.233 39.261 -2.174 3.233 39.261 247.807 335.664

63 1.642 -1.315 3.425 38.299 -1.315 3.425 38.299 241.985 167.134

64 2.584 -3.735 2.620 40.549 -3.735 2.620 40.549 336.149 207.981

65 1.919 0.022 3.202 41.961 0.022 3.202 41.961 445.652 430.039

66 3.037 -2.222 2.968 41.949 -2.222 2.968 41.949 324.152 148.695

67 5.017 -2.747 2.614 45.999 -2.747 2.614 45.999 386.679 354.463

68 4.529 -3.671 2.342 47.349 -3.671 2.342 47.349 310.511 294.753

69 3.023 -4.376 1.906 46.274 -4.376 1.906 46.274 302.684 273.331

70 1.241 -4.908 1.520 46.349 -4.908 1.520 46.349 461.251 519.117

71 2.441 -5.576 0.611 47.349 -5.576 0.611 47.349 402.882 396.113

72 1.404 0.018 3.008 44.599 0.018 3.008 44.599 222.026 285.749

73 2.111 -1.414 2.908 44.761 -1.414 2.908 44.761 341.845 224.335

74 1.975 -1.746 2.841 45.949 -1.746 2.841 45.949 129.173 148.695

75 1.148 -1.275 2.962 44.099 -1.275 2.962 44.099 171.735 148.695

76 0.731 -1.943 2.836 44.749 -1.943 2.836 44.749 214.488 148.695

77 3.533 -0.892 3.099 47.611 -0.892 3.099 47.611 351.346 310.196

78 2.481 -4.979 1.596 48.224 -4.979 1.596 48.224 427.378 630.028

79 2.232 -2.389 2.941 48.374 -2.389 2.941 48.374 430.866 409.000

80 1.215 -3.081 2.577 47.436 -3.081 2.577 47.436 374.067 408.504
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Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

81 3.087 -2.362 3.224 50.111 -2.362 3.224 50.111 322.023 308.435

82 1.138 -2.804 2.749 47.999 -2.804 2.749 47.999 187.619 193.173

83 1.801 -3.406 2.716 48.999 -3.406 2.716 48.999 383.559 418.871

84 15.683 -2.796 2.242 69.461 -2.796 2.242 69.461 421.010 323.093

85 5.800 -6.218 -0.348 51.474 -6.218 -0.348 51.474 257.288 400.392

86 2.541 0.701 4.072 54.724 0.701 4.072 54.724 255.519 248.927

87 1.866 0.912 4.147 56.474 0.912 4.147 56.474 298.554 343.676

88 1.982 0.959 4.142 56.486 0.959 4.142 56.486 316.910 415.943

89 9.452 -1.976 2.788 67.349 -1.976 2.788 67.349 380.192 326.206

90 9.186 -1.312 2.984 67.036 -1.312 2.984 67.036 129.173 404.103

91 0.799 -1.785 2.847 67.246 -1.785 2.847 67.246 370.693 301.735

92 5.199 -1.464 2.436 70.449 -1.464 2.436 70.449 217.801 148.695

93 3.370 -0.270 2.610 70.011 -0.270 2.610 70.011 352.118 286.615

94 3.527 -0.475 2.283 72.999 -0.475 2.283 72.999 167.322 231.489

95 6.384 -0.728 1.900 78.161 -0.728 1.900 78.161 210.699 271.171

96 5.454 -3.213 1.400 74.411 -3.213 1.400 74.411 309.266 259.326

97 2.014 -3.647 1.598 71.211 -3.647 1.598 71.211 315.582 242.185

98 2.711 -2.195 1.997 73.099 -2.195 1.997 73.099 358.328 412.484

99 1.581 -3.443 1.550 72.399 -3.443 1.550 72.399 344.042 303.748

100 2.826 -4.621 0.858 70.299 -4.621 0.858 70.299 286.090 337.330

101 2.321 -0.151 1.808 79.899 -0.151 1.808 79.899 207.800 302.574

102 4.650 0.698 1.666 83.424 0.698 1.666 83.424 241.506 278.007

103 10.024 0.543 1.612 87.162 0.543 1.612 87.162 254.160 402.103

104 2.996 -2.785 1.494 75.989 -2.785 1.494 75.989 311.283 379.337

105 5.381 0.706 3.783 60.849 0.706 3.783 60.849 396.554 358.098

106 16.133 -0.501 -1.695 85.008 -0.501 -1.695 85.008 230.238 464.902

107 7.269 1.149 -1.543 85.124 1.149 -1.543 85.124 306.374 241.935

108 2.436 -6.066 -1.582 58.324 -6.066 -1.582 58.324 340.296 384.731

109 13.467 -2.941 -0.977 78.811 -2.941 -0.977 78.811 253.631 344.082

110 3.326 -5.959 -1.675 54.724 -5.959 -1.675 54.724 445.016 362.232

111 2.088 -6.332 -1.187 56.824 -6.332 -1.187 56.824 243.119 279.863

112 1.784 -6.072 -1.574 58.336 -6.072 -1.574 58.336 281.907 387.182

113 5.201 -1.939 -1.330 82.500 -1.939 -1.330 82.500 281.434 259.175

114 3.549 -5.854 -1.523 52.274 -5.854 -1.523 52.274 401.982 421.007

115 2.790 -6.335 -1.051 54.774 -6.335 -1.051 54.774 387.286 460.016

116 2.047 -6.572 -0.412 56.824 -6.572 -0.412 56.824 184.475 300.316

117 5.737 -6.045 0.358 63.549 -6.045 0.358 63.549 242.720 318.569

118 3.834 -6.234 -0.787 60.599 -6.234 -0.787 60.599 290.575 313.194

119 7.850 -3.992 -0.215 75.774 -3.992 -0.215 75.774 300.280 310.242

120 4.745 -6.041 0.379 63.524 -6.041 0.379 63.524 289.546 317.299
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Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

121 2.248 -5.501 1.443 63.961 -5.501 1.443 63.961 440.326 301.434

122 2.098 -5.797 0.540 65.055 -5.797 0.540 65.055 362.258 319.279

123 3.651 -1.909 1.571 78.699 -1.909 1.571 78.699 176.853 197.846

124 18.024 -2.858 -0.309 84.487 -2.858 -0.309 84.487 196.163 384.540

125 2.619 -3.668 -0.361 77.399 -3.668 -0.361 77.399 257.722 185.330

126 8.697 -2.888 -0.249 82.500 -2.888 -0.249 82.500 187.467 281.368

127 3.020 -4.478 1.967 66.161 -4.478 1.967 66.161 451.889 355.006

128 5.522 -4.037 1.099 72.349 -4.037 1.099 72.349 302.590 348.321

129 2.774 -4.077 0.457 74.899 -4.077 0.457 74.899 311.434 183.606

130 2.929 -4.831 1.209 68.099 -4.831 1.209 68.099 353.390 148.695

131 4.181 -3.785 2.138 67.636 -3.785 2.138 67.636 256.606 148.695

132 1.185 -3.371 2.228 68.149 -3.371 2.228 68.149 270.007 278.570

133 4.653 -3.453 0.538 78.074 -3.453 0.538 78.074 268.080 262.257

134 2.907 -3.389 0.870 77.161 -3.389 0.870 77.161 240.151 288.384

135 1.350 -3.453 0.536 78.036 -3.453 0.536 78.036 324.187 438.282

136 1.676 -2.856 1.484 75.767 -2.856 1.484 75.767 342.128 202.627

137 1.322 -3.188 1.225 75.899 -3.188 1.225 75.899 129.173 148.695

138 1.292 -3.055 1.236 76.549 -3.055 1.236 76.549 195.631 148.695

139 3.687 -2.608 1.020 80.549 -2.608 1.020 80.549 402.900 256.086

140 1.070 -3.062 1.015 78.249 -3.062 1.015 78.249 405.966 295.561

141 3.684 -2.831 0.704 80.999 -2.831 0.704 80.999 192.838 148.911

142 7.193 0.298 1.591 84.625 0.298 1.591 84.625 426.074 336.459

143 4.620 -2.867 0.378 83.424 -2.867 0.378 83.424 413.357 312.904

144 1.634 -2.109 1.211 81.686 -2.109 1.211 81.686 268.083 363.689

145 5.496 -2.159 -1.130 82.500 -2.159 -1.130 82.500 336.281 387.105

146 3.964 -1.609 1.375 85.299 -1.609 1.375 85.299 388.891 403.521

147 0.611 -5.796 0.547 65.055 -5.796 0.547 65.055 129.173 148.695

148 3.042 -5.427 0.210 67.299 -5.427 0.210 67.299 250.732 250.807

149 2.541 -3.668 1.876 69.099 -3.668 1.876 69.099 143.525 165.217

150 1.056 -2.253 1.079 82.249 -2.253 1.079 82.249 129.173 151.514

151 1.644 -1.762 1.335 83.024 -1.762 1.335 83.024 303.139 424.521

152 2.319 -5.771 1.462 61.449 -5.771 1.462 61.449 374.851 370.618

153 3.649 -5.083 1.979 63.449 -5.083 1.979 63.449 308.184 236.507

154 1.887 -2.487 3.193 50.155 -2.487 3.193 50.155 242.983 249.030

155 1.085 -2.581 3.182 50.202 -2.581 3.182 50.202 412.429 351.186

156 10.856 -4.175 2.616 63.149 -4.175 2.616 63.149 270.260 412.347

157 8.458 -4.313 3.167 56.599 -4.313 3.167 56.599 320.374 368.794

158 3.753 -5.064 2.384 60.049 -5.064 2.384 60.049 243.788 452.507

159 2.502 -6.220 -0.333 51.486 -6.220 -0.333 51.486 272.919 517.289

160 2.816 -5.709 -1.336 50.849 -5.709 -1.336 50.849 232.648 276.051
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Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

161 3.044 -5.850 -1.530 52.274 -5.850 -1.530 52.274 373.730 318.701

162 3.032 -1.150 3.521 50.574 -1.150 3.521 50.574 287.460 330.905

163 1.674 -5.789 -0.338 65.349 -5.789 -0.338 65.349 291.346 244.024

164 1.672 -5.928 -0.460 64.449 -5.928 -0.460 64.449 252.688 174.527

165 4.463 -4.935 -0.696 69.249 -4.935 -0.696 69.249 224.781 148.695

166 3.654 -5.237 2.020 51.499 -5.237 2.020 51.499 339.795 388.130

167 2.825 -5.593 1.470 50.799 -5.593 1.470 50.799 329.545 332.713

168 2.945 -6.313 -0.803 52.899 -6.313 -0.803 52.899 172.988 193.187

169 1.466 -6.312 -0.792 52.899 -6.312 -0.792 52.899 319.741 253.780

170 6.526 -6.441 0.691 58.949 -6.441 0.691 58.949 401.758 387.799

171 2.758 -6.206 0.807 52.149 -6.206 0.807 52.149 209.778 338.077

172 2.726 -6.209 0.798 52.149 -6.209 0.798 52.149 393.410 442.575

173 3.327 -6.301 1.021 53.999 -6.301 1.021 53.999 399.120 563.800

174 2.200 -6.302 1.018 53.999 -6.302 1.018 53.999 341.240 245.508

175 6.314 -6.445 0.677 58.949 -6.445 0.677 58.949 299.674 204.478

176 6.441 -3.493 3.536 55.949 -3.493 3.536 55.949 335.329 366.200

177 3.318 -6.019 1.109 51.649 -6.019 1.109 51.649 208.507 288.024

178 2.653 -6.197 0.831 52.149 -6.197 0.831 52.149 364.958 420.116

179 4.250 -5.151 2.614 56.949 -5.151 2.614 56.949 294.698 488.451

180 2.293 -5.224 2.555 57.099 -5.224 2.555 57.099 263.177 302.952

181 15.744 0.384 3.066 47.201 0.384 3.066 47.201 414.695 330.997

182 2.027 4.362 2.915 26.517 4.362 2.915 26.517 469.959 487.953

183 4.329 1.033 4.244 25.804 1.033 4.244 25.804 306.514 152.881

184 3.929 -0.281 3.774 27.976 -0.281 3.774 27.976 361.314 399.468

185 5.733 1.138 3.411 29.826 1.138 3.411 29.826 385.032 390.958

186 5.829 0.748 3.396 32.476 0.748 3.396 32.476 348.180 298.337

187 3.680 5.189 1.814 28.917 5.189 1.814 28.917 356.270 289.995

188 7.634 0.686 3.321 40.250 0.686 3.321 40.250 329.387 351.215

189 5.118 1.293 3.339 34.026 1.293 3.339 34.026 511.587 367.518

190 7.293 4.598 2.356 36.779 4.598 2.356 36.779 357.168 445.953

191 3.143 3.564 2.728 39.817 3.564 2.728 39.817 454.906 390.228

192 1.480 3.915 2.717 37.548 3.915 2.717 37.548 159.215 158.312

193 1.991 3.616 2.790 38.854 3.616 2.790 38.854 135.166 201.386

194 2.563 4.169 2.605 36.004 4.169 2.605 36.004 129.743 148.695

195 1.277 3.344 2.940 37.954 3.344 2.940 37.954 259.252 148.695

196 2.763 3.162 2.648 42.317 3.162 2.648 42.317 298.505 241.441

197 1.432 2.630 2.753 43.154 2.630 2.753 43.154 187.416 190.198

198 2.596 2.667 2.674 43.854 2.667 2.674 43.854 309.108 244.924

199 4.215 0.528 3.028 43.751 0.528 3.028 43.751 318.095 359.761

200 4.064 5.612 1.270 31.392 5.612 1.270 31.392 369.913 371.276



Appendix C: Upper Limb Network 127

Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

201 7.744 5.813 0.963 40.067 5.813 0.963 40.067 380.095 318.657

202 3.991 5.652 0.668 44.042 5.652 0.668 44.042 277.803 328.989

203 5.507 5.236 1.879 36.567 5.236 1.879 36.567 278.912 499.453

204 2.573 5.278 1.672 39.879 5.278 1.672 39.879 445.619 479.717

205 2.014 4.901 2.089 38.617 4.901 2.089 38.617 356.633 303.697

206 7.910 3.175 2.505 46.454 3.175 2.505 46.454 457.127 312.936

207 2.977 4.611 2.107 41.104 4.611 2.107 41.104 282.481 169.279

208 10.516 0.438 3.505 49.704 0.438 3.505 49.704 583.544 323.552

209 2.780 5.089 1.591 42.548 5.089 1.591 42.548 335.529 288.357

210 5.937 6.133 0.244 33.454 6.133 0.244 33.454 363.276 404.650

211 2.382 6.072 0.118 28.154 6.072 0.118 28.154 398.337 346.356

212 6.266 6.037 0.696 34.054 6.037 0.696 34.054 401.366 375.686

213 3.174 5.931 1.008 36.554 5.931 1.008 36.554 163.490 185.015

214 4.500 6.050 0.436 39.254 6.050 0.436 39.254 326.310 341.816

215 4.161 5.921 0.333 42.154 5.921 0.333 42.154 261.275 151.422

216 1.496 6.037 0.266 40.354 6.037 0.266 40.354 216.328 163.492

217 4.165 5.202 1.274 44.467 5.202 1.274 44.467 389.023 206.065

218 2.360 4.969 1.453 45.804 4.969 1.453 45.804 226.470 151.130

219 2.912 5.188 1.234 46.554 5.188 1.234 46.554 187.884 179.610

220 2.703 5.558 0.598 46.455 5.558 0.598 46.455 427.488 461.026

221 2.977 5.541 0.696 47.042 5.541 0.696 47.042 320.067 349.587

222 2.012 5.172 1.423 48.104 5.172 1.423 48.104 132.348 148.695

223 1.943 5.624 0.883 48.929 5.624 0.883 48.929 362.920 352.401

224 4.974 3.821 2.215 45.504 3.821 2.215 45.504 264.342 148.695

225 4.498 4.410 1.997 47.554 4.410 1.997 47.554 314.327 315.987

226 7.572 3.358 3.044 50.554 3.358 3.044 50.554 169.887 260.914

227 4.376 2.116 3.288 49.754 2.116 3.288 49.754 181.785 205.074

228 5.886 1.845 3.630 51.751 1.845 3.630 51.751 323.181 348.095

229 3.370 5.468 2.000 59.967 5.468 2.000 59.967 330.271 292.333

230 6.627 2.236 3.064 65.154 2.236 3.064 65.154 246.471 317.210

231 9.920 1.407 2.972 66.651 1.407 2.972 66.651 229.095 235.878

232 6.320 3.777 1.905 68.517 3.777 1.905 68.517 361.866 372.579

233 4.676 4.276 2.088 66.104 4.276 2.088 66.104 400.632 268.652

234 3.557 4.741 2.312 62.404 4.741 2.312 62.404 284.636 235.242

235 5.184 0.134 2.552 70.004 0.134 2.552 70.004 307.597 324.792

236 7.370 -0.264 2.103 75.004 -0.264 2.103 75.004 312.302 477.914

237 8.847 0.020 1.840 79.054 0.020 1.840 79.054 252.410 380.125

238 7.723 3.045 3.215 61.617 3.045 3.215 61.617 329.460 325.207

239 2.100 1.906 3.440 62.454 1.906 3.440 62.454 298.345 332.700

240 3.990 1.726 3.264 64.454 1.726 3.264 64.454 268.169 155.817



Appendix C: Upper Limb Network 128

Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

241 0.949 5.439 0.901 66.067 5.439 0.901 66.067 363.872 264.914

242 10.257 1.432 2.100 73.554 1.432 2.100 73.554 339.270 342.531

243 2.847 4.763 1.428 67.404 4.763 1.428 67.404 290.639 180.168

244 6.442 1.694 1.776 76.892 1.694 1.776 76.892 255.316 251.169

245 3.046 0.633 1.752 79.854 0.633 1.752 79.854 394.136 356.678

246 5.544 0.756 1.737 79.754 0.756 1.737 79.754 382.691 361.550

247 1.871 1.711 1.640 78.154 1.711 1.640 78.154 220.145 214.897

248 1.629 0.361 1.747 81.254 0.361 1.747 81.254 298.446 330.161

249 2.004 4.437 2.306 49.529 4.437 2.306 49.529 378.759 295.298

250 2.100 3.869 2.993 51.542 3.869 2.993 51.542 309.703 357.563

251 6.667 2.293 3.915 56.401 2.293 3.915 56.401 248.596 266.743

252 4.881 1.591 3.987 55.426 1.591 3.987 55.426 200.057 275.085

253 10.408 2.535 3.707 58.701 2.535 3.707 58.701 315.139 345.294

254 3.729 -5.437 -2.523 25.105 -5.437 -2.523 25.105 363.305 284.877

255 3.571 -3.982 -3.134 26.418 -3.982 -3.134 26.418 350.672 403.671

256 6.929 -2.635 -3.151 29.955 -2.635 -3.151 29.955 275.811 363.071

257 5.231 -2.910 -3.134 29.205 -2.910 -3.134 29.205 288.963 210.702

258 4.488 -3.888 -2.699 34.141 -3.888 -2.699 34.141 269.980 148.695

259 5.924 -3.054 -3.058 35.505 -3.054 -3.058 35.505 248.657 385.360

260 2.496 -3.944 -2.716 36.805 -3.944 -2.716 36.805 254.200 148.695

261 5.142 -3.914 -2.603 39.827 -3.914 -2.603 39.827 273.685 189.320

262 3.136 -2.431 -3.182 32.305 -2.431 -3.182 32.305 174.585 165.725

263 7.763 -2.099 -3.308 35.555 -2.099 -3.308 35.555 293.352 311.333

264 8.451 -2.099 -3.308 35.580 -2.099 -3.308 35.580 329.996 214.887

265 5.800 -3.697 -2.433 43.702 -3.697 -2.433 43.702 283.681 303.199

266 13.735 -2.605 -2.687 43.955 -2.605 -2.687 43.955 334.443 344.345

267 4.071 -4.086 -2.463 49.271 -4.086 -2.463 49.271 331.036 345.002

268 3.206 -2.618 -2.686 46.405 -2.618 -2.686 46.405 197.806 148.695

269 5.615 1.279 -3.394 31.855 1.279 -3.394 31.855 238.292 312.757

270 6.060 -0.200 -3.414 39.330 -0.200 -3.414 39.330 213.221 272.298

271 1.111 1.774 -3.319 32.218 1.774 -3.319 32.218 188.197 173.913

272 5.552 1.191 -3.460 36.055 1.191 -3.460 36.055 178.918 149.857

273 3.551 2.789 -3.133 29.855 2.789 -3.133 29.855 235.584 202.133

274 3.024 -1.208 -3.203 41.055 -1.208 -3.203 41.055 164.771 148.695

275 1.290 -1.804 -3.073 41.455 -1.804 -3.073 41.455 158.861 173.487

276 1.926 -1.459 -3.034 42.255 -1.459 -3.034 42.255 129.173 148.695

277 6.692 -2.410 -2.958 48.218 -2.410 -2.958 48.218 258.339 340.071

278 2.640 -3.765 -2.774 50.055 -3.765 -2.774 50.055 373.598 198.535

279 1.186 -4.118 -2.512 49.548 -4.118 -2.512 49.548 241.956 379.806

280 3.466 -4.242 -2.891 52.005 -4.242 -2.891 52.005 221.142 148.695



Appendix C: Upper Limb Network 129

Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

281 5.753 -4.773 -2.780 53.705 -4.773 -2.780 53.705 284.326 263.876

282 10.740 2.668 -3.183 36.655 2.668 -3.183 36.655 307.073 363.730

283 13.424 -3.891 -3.293 53.955 -3.891 -3.293 53.955 380.971 290.578

284 2.599 -5.009 -2.688 55.802 -5.009 -2.688 55.802 195.028 186.798

285 2.489 -5.019 -2.696 55.605 -5.019 -2.696 55.605 290.001 250.373

286 3.471 3.452 -2.999 28.455 3.452 -2.999 28.455 363.802 296.126

287 4.210 3.441 -3.004 28.455 3.441 -3.004 28.455 430.710 443.920

288 6.135 1.864 -3.363 36.205 1.864 -3.363 36.205 288.620 332.241

289 4.450 4.419 -2.438 29.030 4.419 -2.438 29.030 205.869 255.239

290 4.541 4.404 -2.446 29.043 4.404 -2.446 29.043 320.001 235.821

291 2.247 3.868 -2.667 31.555 3.868 -2.667 31.555 314.112 471.450

292 4.474 1.854 -3.364 36.230 1.854 -3.364 36.230 314.112 314.300

293 12.784 -3.944 -3.355 55.918 -3.944 -3.355 55.918 262.212 381.802

294 2.659 -4.925 -2.714 57.905 -4.925 -2.714 57.905 415.019 226.179

295 4.009 -4.582 -2.791 58.905 -4.582 -2.791 58.905 316.288 151.180

296 1.288 2.859 -3.118 37.455 2.859 -3.118 37.455 376.773 245.467

297 3.102 2.425 -3.133 39.355 2.425 -3.133 39.355 129.173 192.215

298 1.663 3.397 -2.947 36.355 3.397 -2.947 36.355 173.576 164.767

299 2.352 3.945 -2.675 33.355 3.945 -2.675 33.355 170.548 148.695

300 10.966 5.953 -0.388 41.655 5.953 -0.388 41.655 445.040 324.008

301 10.985 2.598 -2.807 42.518 2.598 -2.807 42.518 222.948 229.548

302 2.742 1.839 -2.835 44.855 1.839 -2.835 44.855 327.473 266.555

303 4.950 1.486 -3.244 48.818 1.486 -3.244 48.818 257.975 296.964

304 2.601 0.117 -3.629 50.518 0.117 -3.629 50.518 485.757 387.716

305 7.298 -3.811 -3.270 58.718 -3.811 -3.270 58.718 280.171 322.515

306 2.953 -0.595 -4.013 53.255 -0.595 -4.013 53.255 169.136 174.144

307 2.420 -4.499 -2.694 60.405 -4.499 -2.694 60.405 477.462 361.430

308 9.450 -2.843 -3.347 60.955 -2.843 -3.347 60.955 374.601 241.057

309 2.281 -3.737 -2.986 61.305 -3.737 -2.986 61.305 302.569 273.227

310 3.867 -4.463 -2.377 63.327 -4.463 -2.377 63.327 326.968 376.385

311 5.472 5.656 -1.214 31.730 5.656 -1.214 31.730 386.442 220.315

312 3.541 4.838 -2.199 35.693 4.838 -2.199 35.693 353.108 367.041

313 2.603 4.130 -2.545 39.018 4.130 -2.545 39.018 318.740 309.501

314 2.808 4.885 -2.113 38.355 4.885 -2.113 38.355 260.406 255.239

315 8.775 1.607 -3.701 51.718 1.607 -3.701 51.718 279.553 366.913

316 6.377 4.376 -2.400 49.793 4.376 -2.400 49.793 239.171 205.210

317 4.482 4.251 -3.019 53.055 4.251 -3.019 53.055 431.923 148.695

318 14.935 4.500 0.879 70.580 4.500 0.879 70.580 334.253 344.149

319 3.063 1.674 -3.956 53.955 1.674 -3.956 53.955 148.426 148.695

320 1.989 1.188 -3.988 53.618 1.188 -3.988 53.618 308.152 424.550



Appendix C: Upper Limb Network 130

Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

321 2.709 -0.157 -4.186 55.818 -0.157 -4.186 55.818 288.029 307.846

322 7.374 2.463 -3.103 64.343 2.463 -3.103 64.343 289.127 315.745

323 1.697 0.176 -4.147 57.155 0.176 -4.147 57.155 186.295 237.912

324 2.718 -0.869 -4.043 58.168 -0.869 -4.043 58.168 284.045 286.775

325 2.771 -1.427 -3.657 60.755 -1.427 -3.657 60.755 393.994 344.744

326 3.405 -2.381 -3.124 64.518 -2.381 -3.124 64.518 386.015 381.032

327 2.477 -3.517 -2.481 66.105 -3.517 -2.481 66.105 321.722 307.556

328 6.787 -2.407 -2.276 69.755 -2.407 -2.276 69.755 268.235 371.101

329 2.556 -2.295 -2.043 71.805 -2.295 -2.043 71.805 186.103 338.727

330 2.904 -2.388 -2.773 66.605 -2.388 -2.773 66.605 184.677 148.695

331 2.207 -0.143 -3.774 60.518 -0.143 -3.774 60.518 173.778 266.722

332 5.110 -0.382 -2.985 66.930 -0.382 -2.985 66.930 321.220 269.045

333 5.280 -1.557 -2.038 73.805 -1.557 -2.038 73.805 307.096 392.184

334 2.721 -1.790 -1.819 76.202 -1.790 -1.819 76.202 399.608 335.281

335 4.194 -1.184 -1.658 79.943 -1.184 -1.658 79.943 174.383 301.108

336 2.077 -1.837 -1.398 81.105 -1.837 -1.398 81.105 314.112 361.586

337 2.048 -1.219 -1.538 82.055 -1.219 -1.538 82.055 307.073 437.150

338 5.007 1.784 -2.093 72.830 1.784 -2.093 72.830 470.750 383.179

339 4.600 3.010 -1.344 75.755 3.010 -1.344 75.755 262.706 251.620

340 4.697 2.488 -1.302 78.280 2.488 -1.302 78.280 331.812 393.716

341 7.450 5.255 -1.693 39.730 5.255 -1.693 39.730 346.185 398.506

342 3.780 3.928 -2.204 44.255 3.928 -2.204 44.255 379.868 383.520

343 4.898 4.476 -2.044 48.055 4.476 -2.044 48.055 300.277 193.229

344 3.095 3.209 -2.591 47.355 3.209 -2.591 47.355 334.421 362.948

345 4.058 2.544 -3.637 52.718 2.544 -3.637 52.718 364.831 288.097

346 17.519 5.489 0.719 66.155 5.489 0.719 66.155 340.288 175.182

347 6.905 3.453 -3.552 55.268 3.453 -3.552 55.268 251.999 345.022

348 4.648 4.107 -2.698 62.368 4.107 -2.698 62.368 383.481 353.151

349 3.675 4.260 -2.900 59.668 4.260 -2.900 59.668 347.808 297.390

350 3.484 4.755 -2.340 61.955 4.755 -2.340 61.955 250.896 148.695

351 2.321 4.103 -2.700 62.368 4.103 -2.700 62.368 270.786 406.423

352 4.674 1.080 -3.773 60.055 1.080 -3.773 60.055 227.667 314.975

353 3.231 1.698 -3.400 63.355 1.698 -3.400 63.355 143.517 221.649

354 7.822 0.086 -2.322 72.418 0.086 -2.322 72.418 292.855 357.566

355 5.452 -0.243 -1.992 77.155 -0.243 -1.992 77.155 240.988 148.695

356 4.320 0.299 -1.785 79.155 0.299 -1.785 79.155 320.195 204.456

357 3.271 1.047 -3.422 63.830 1.047 -3.422 63.830 409.677 368.253

358 9.843 1.492 -1.765 77.818 1.492 -1.765 77.818 271.480 279.517

359 4.448 1.193 -2.751 67.955 1.193 -2.751 67.955 281.758 148.695

360 6.756 4.341 -0.880 71.330 4.341 -0.880 71.330 372.815 743.476



Appendix C: Upper Limb Network 131

Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

361 11.039 4.754 -0.573 70.118 4.754 -0.573 70.118 272.644 369.876

362 1.643 4.492 -2.343 63.630 4.492 -2.343 63.630 281.556 366.688

363 3.118 2.735 -2.482 67.530 2.735 -2.482 67.530 199.814 306.684

364 7.298 3.877 -0.721 74.718 3.877 -0.721 74.718 278.013 253.006

365 2.877 2.228 -2.274 70.055 2.228 -2.274 70.055 187.245 152.413

366 6.029 3.559 -0.655 76.730 3.559 -0.655 76.730 287.006 348.253

367 4.084 5.265 -0.985 66.455 5.265 -0.985 66.455 274.017 223.043

368 6.761 4.196 0.925 72.030 4.196 0.925 72.030 281.468 204.921

369 3.076 4.494 -0.100 72.355 4.494 -0.100 72.355 134.824 155.201

370 4.210 3.716 1.004 74.080 3.716 1.004 74.080 235.514 428.660

371 2.070 3.698 1.021 74.118 3.698 1.021 74.118 215.090 234.892

372 5.287 0.063 1.794 80.055 0.063 1.794 80.055 260.364 315.926

373 4.107 3.968 0.311 75.355 3.968 0.311 75.355 228.272 195.859

374 4.395 3.023 0.917 78.030 3.023 0.917 78.030 272.166 260.681

375 3.462 3.025 0.914 78.018 3.025 0.914 78.018 336.678 173.323

376 8.039 0.060 1.772 80.355 0.060 1.772 80.355 196.585 357.805

377 7.650 6.153 0.374 36.455 6.153 0.374 36.455 367.405 331.776

378 1.988 5.985 0.828 37.655 5.985 0.828 37.655 508.605 231.315

379 4.360 5.795 0.830 41.455 5.795 0.830 41.455 265.520 299.714

380 3.270 5.985 -0.461 28.655 5.985 -0.461 28.655 365.110 545.273

381 10.456 5.539 0.704 45.555 5.539 0.704 45.555 297.299 228.154

382 1.886 5.916 -0.555 30.430 5.916 -0.555 30.430 444.629 397.767

383 16.429 5.705 -2.036 54.993 5.705 -2.036 54.993 268.033 308.543

384 6.659 5.487 -1.251 41.893 5.487 -1.251 41.893 339.386 349.434

385 3.978 5.239 -1.164 45.855 5.239 -1.164 45.855 304.810 306.834

386 2.995 5.664 0.287 46.055 5.664 0.287 46.055 368.748 303.199

387 2.206 5.873 -0.011 43.155 5.873 -0.011 43.155 425.653 296.824

388 1.769 5.830 -0.248 43.255 5.830 -0.248 43.255 370.564 503.833

389 1.975 5.623 0.490 45.555 5.623 0.490 45.555 316.644 270.744

390 10.062 6.444 0.475 58.855 6.444 0.475 58.855 229.717 426.389

391 7.439 6.450 0.684 54.405 6.450 0.684 54.405 369.546 284.818

392 3.603 6.289 -0.521 51.593 6.289 -0.521 51.593 406.894 334.564

393 4.517 6.552 0.467 56.655 6.552 0.467 56.655 194.028 299.659

394 4.761 6.529 -0.581 56.155 6.529 -0.581 56.155 312.840 259.687

395 3.612 5.721 -2.067 57.555 5.721 -2.067 57.555 226.052 205.719

396 3.499 6.246 -1.042 58.955 6.246 -1.042 58.955 351.655 286.238

397 3.223 6.225 0.603 60.905 6.225 0.603 60.905 434.343 197.637

398 1.775 6.227 -0.667 60.518 6.227 -0.667 60.518 295.637 322.235

399 2.642 6.048 0.593 62.505 6.048 0.593 62.505 294.550 259.604

400 1.965 6.159 -0.140 62.355 6.159 -0.140 62.355 349.894 209.393



Appendix C: Upper Limb Network 132

Vessel Number Length Starting Position (cm) Ending Position (cm) Starting Ending

(cm) x y z x y z Diameter (µm) Diameter (µm)

401 1.543 3.024 -1.048 77.768 3.024 -1.048 77.768 358.677 583.909

402 1.840 3.449 -0.012 78.349 3.449 -0.012 78.349 312.307 409.902

403 2.646 -0.672 -1.676 81.280 -0.672 -1.676 81.280 520.917 305.761

404 2.984 1.598 1.547 80.055 1.598 1.547 80.055 224.664 417.010

405 3.631 -0.093 1.759 81.055 -0.093 1.759 81.055 385.500 251.030

406 1.375 2.508 -1.288 78.343 2.508 -1.288 78.343 421.309 338.727

407 3.622 3.138 -0.178 79.955 3.138 -0.178 79.955 426.029 303.248

408 3.146 0.708 -1.710 80.968 0.708 -1.710 80.968 453.097 282.864

409 1.738 2.797 -0.825 79.730 2.797 -0.825 79.730 376.067 359.508

410 1.963 0.710 -1.710 80.955 0.710 -1.710 80.955 645.863 534.076

411 2.051 1.454 -1.587 79.955 1.454 -1.587 79.955 217.979 264.496

412 3.098 2.083 -1.343 79.855 2.083 -1.343 79.855 391.284 418.205

413 2.334 3.152 0.054 80.055 3.152 0.054 80.055 516.679 412.397

414 1.415 -1.216 -1.539 82.055 -1.216 -1.539 82.055 404.845 466.031

415 1.573 -2.055 -1.175 82.978 -2.055 -1.175 82.978 206.083 302.410

416 4.058 1.180 1.578 81.005 1.180 1.578 81.005 283.082 271.136

417 2.364 -1.730 1.348 82.255 -1.730 1.348 82.255 344.124 237.680

418 1.184 2.543 -1.005 80.355 2.543 -1.005 80.355 338.069 348.078

419 1.330 -0.844 -1.602 82.500 -0.844 -1.602 82.500 263.433 168.211

420 1.719 1.457 -1.451 82.255 1.457 -1.451 82.255 322.236 668.716

421 2.378 -0.237 -1.677 82.500 -0.237 -1.677 82.500 234.876 191.183
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Parent Daughter

Index Index

3 2

4 3

5 3

6 2

7 6

8 6

9 7

10 9

11 9

12 7

14 13

15 14

16 14

17 16

18 16

19 18

20 18

21 13

22 21

23 21

24 23

25 23

27 26

28 27

29 27

30 28

31 28

32 26

33 32

34 33

35 33

36 35

37 35

38 37

39 37

40 32

41 40

42 40

43 42

44 42

Parent Daughter

Index Index

47 46

48 46

49 48

50 48

51 45

51 50

54 53

55 53

57 45

57 55

57 56

61 60

62 60

63 62

64 62

66 65

67 65

68 61

69 61

70 69

71 70

73 72

74 73

75 73

76 73

77 72

78 69

79 67

80 67

81 77

82 80

83 80

87 86

89 87

89 88

91 90

92 90

94 93

95 93

96 89

Parent Daughter

Index Index

96 91

97 84

98 84

99 97

100 97

101 95

102 95

103 98

104 98

109 108

109 112

111 110

112 111

113 109

115 114

161 115

116 115

117 116

118 111

119 117

119 120

120 170

120 175

121 152

122 121

123 104

124 121

125 119

126 119

127 156

128 127

129 128

130 127

131 156

132 131

133 128

134 96

135 134

136 96

137 104
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Parent Daughter

Index Index

137 136

138 104

138 136

139 104

140 134

141 140

142 140

143 133

143 135

144 139

145 109

146 139

147 122

148 122

149 131

150 144

151 144

152 158

153 158

154 79

155 81

156 154

156 155

157 83

158 157

159 57

162 77

163 122

164 163

165 163

166 78

167 78

168 160

169 114

161 169

170 168

170 169

171 51

172 57

173 85

Parent Daughter

Index Index

173 159

174 171

174 172

174 178

175 173

175 174

176 162

177 59

178 166

179 173

179 174

180 157

183 182

184 182

188 187

189 187

191 190

192 190

193 192

194 192

195 192

196 191

197 196

198 196

199 191

201 200

202 201

203 200

204 203

205 203

206 205

207 205

208 204

209 204

213 212

214 212

215 214

216 214

217 201

218 217

Parent Daughter

Index Index

219 217

220 202

221 202

222 221

223 221

224 209

225 209

226 209

227 206

228 206

230 229

234 229

235 230

236 232

237 232

239 238

240 238

242 241

243 241

245 244

247 244

249 225

250 249

251 250

252 250

253 223

257 255

258 256

259 255

260 259

261 259

262 256

265 263

265 264

267 266

268 266

270 271

271 269

272 271

273 271
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Parent Daughter

Index Index

274 270

275 274

276 274

277 270

278 277

279 278

280 278

281 277

283 282

284 283

285 283

288 286

288 287

291 289

291 290

292 291

293 288

293 292

294 293

295 293

296 282

297 296

298 296

299 291

302 301

303 301

304 303

305 304

306 304

307 305

308 303

309 305

310 308

312 311

313 312

314 312

315 313

316 313

317 316

318 316

Parent Daughter

Index Index

319 315

320 315

321 320

322 320

323 321

324 321

325 324

326 325

327 326

328 325

329 328

330 326

331 324

332 331

333 332

334 333

335 333

336 335

337 335

338 332

339 338

340 338

342 341

343 342

344 342

345 344

346 341

347 344

348 347

349 347

350 349

351 349

352 345

353 352

354 352

355 354

356 354

357 331

358 357

359 357

Parent Daughter

Index Index

360 348

360 351

361 345

362 348

362 351

363 322

364 322

365 363

366 363

367 362

368 362

369 361

370 361

371 368

372 370

372 371

373 360

374 364

375 364

376 360

378 377

379 377

381 380

382 380

383 382

384 382

385 384

386 384

387 300

388 300

393 392

394 392

395 383

396 383

397 396

398 396

399 398

400 398

401 366

402 366
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Parent Daughter

Index Index

403 356

404 402

405 374

405 375

406 401

407 401

408 358

409 340

409 406

410 356

411 358

412 358

413 402

414 403

415 337

415 414

416 402

417 416

418 409

419 337

419 414

420 408

420 410

421 408

421 410

45 184

46 185

52 186

59 189

60 188

65 188

72 199

84 181

238 391

229 393

244 318

232 397

233 399

231 390

53 258

Parent Daughter

Index Index

58 258

56 261

85 265

114 267

110 267

241 346

107 334

106 310

160 267

88 252

105 251

90 253

86 228

391 220

93 231

108 284

110 279

248 416

246 371
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