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Summary

Two of the most common forms of arterial disease are stenosis and aneurysm,
estimated to affect between 1% and 20% of the population. Ruptured abdominal
aortic aneurysms alone are estimated to be the cause of between 6,000 and 8,000
deaths a year within the United Kingdom. Patients with stenosis have been shown
to have a mortality hazard ratio of 1.42 compared to a control population [2], and
an unadjusted death rate of 3.35 per 100 person-years compared to 1.23 per 100
person-years in a control population [97]. Current methods for the detection of
arterial disease are generally impractical for large scale screening, expensive, or
both. If an inexpensive method for the detection of both stenosis and aneurysm is
created, that minimises the need for invasive measurements, the cost effectiveness
of large scale screening could be improved making both continuous monitoring and
screening feasible. One such method is to use easily acquirable haemodynamic
measurements at accessible peripheral locations within the circulatory system for
diagnosis. Within this thesis an initial exploratory study into the potential of
using machine learning classification algorithms to detect arterial disease from such
measurements is presented.

It is likely that the indicative biomarkers of arterial disease held within pressure
and flow-rate profiles consist of micro inter- and intra- measurement details. To
facilitate the use of a data driven approach to the discovery of any biomarkers
a framework for the creation of virtual patients, through the employment of a
mathematical model of blood flow, is presented. This framework is utilised to
create a series of virtual patient databases, as the balance between simplicity and
realism progresses through the thesis. The most realistic of these databases is made
publicly available (https://doi.org/10.5281/zenodo.4549764). The aforementioned
framework for the creation of virtual patients is a major contribution of this thesis,
and can be applied to a wide range of biological systems given a mathematical
description.

The synthetic data sets are used to train and subsequently test a series of machine
learning classifiers, to predict the presence of both stenosis and aneurysm, using
various combinations of pressure and flow-rate measurements. It is shown that the
inclusion of a diseased vessel (either stenosis or aneurysm) produces consistent and
significant biomarkers in haemodynamic profiles, irrespective of a patients unique
underlying arterial network. These biomarkers are found to be differentiable from
the natural variability present across a large cohort of patients, showing that arterial
disease has a clear and unique effect on pressure and flow-rate profiles. This suggests
strong potential in the use of haemodynamic measurements to detect arterial disease.
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Chapter 1

Introduction

Arterial disease refers to any disease affecting the arterial system. Two of the most

common forms of arterial disease are stenosis and aneurysm. These two forms of

disease are estimated to affect between 1% and 20% of the population [66, 186, 129,

122]. Ruptured abdominal aortic aneurysms alone are estimated to be the cause of

between 6,000 and 8,000 deaths a year within the United Kingdom [44]. Patients

with stenosis have been shown to have a mortality hazard ratio of 1.42 compared

to a control population [2], and an unadjusted death rate of 3.35 per 100 person-

years compared to 1.23 per 100 person-years in a control population [97]. Current

methods for the detection of arterial disease are primarily based on obtaining images

of the area profiles of arterial vessels. The techniques for obtaining such images are

generally impractical for large scale screening, expensive, or both. If an inexpensive

method for the detection of both stenosis and aneurysm is created, that minimises

the need for invasive measurements, the cost effectiveness of large scale screening

could be improved making both continuous monitoring and screening feasible.

One such alternative is to use easily acquirable pressure and flow-rate

measurements at accessible peripheral locations within the circulatory system

for diagnosis. Within this thesis the potential of using machine learning (ML)

classification algorithms to detect arterial disease from such measurements is

investigated. A series of virtual patient databases (VPDs), similar to that presented

in [217], are created using a physics based model of one dimensional pulse wave

propagation [20]. These synthetic data sets are then used to train and test a series

of ML algorithms, designed to distinguish between healthy and unhealthy patients.

This chapter provides an overview of the following: arterial disease, and why

detection of arterial disease is important; the relationship between pressure and

flow-rate profiles and the health of a patient’s arterial system, and how this may

be exploited to detect arterial disease; why the application of ML classification

algorithms to arterial disease detection is logical; and how ML classification

algorithms may be applied to the problem of arterial disease detection. This chapter

culminates in an outline of the aims and objectives of the remaining thesis.

1



1.1. ARTERIAL DISEASE

1.1 Arterial disease

The cardiovascular system comprises of the heart, blood vessels, and blood. The

blood vessels within the cardiovascular system can be further broken down into

arteries, the micro-circulation, and veins. The arterial system transports high

pressure blood from the heart to the micro-circulation where it is permeated through

organs and tissue. Cardiovascular disease is a general term given to conditions

relating to the heart and blood vessels. When this disease affects the arterial system

it is referred to as arterial disease. While there are many forms of arterial disease,

two of the most common are stenosis and aneurysm.

A stenosis is a narrowing of an arterial vessel. This is normally caused by a

build up of fatty deposits, known as atherosclerosis. The rate of atherosclerosis

has been recorded to vary in different populations between 6.2% and 18.3% [134].

An exact value of the prevalence of resulting stenosis is hard to obtain due to the

fact that stenosis can be be categorised into several sub-diseases, prevalence varies

dependent on the demographics of the population studied, and the interpretation

of the point atherosclerosis becomes stenosis is not fixed. One of the most common

forms of stenosis is peripheral artery disease (PAD). PAD refers to the stenosis

of any peripheral artery, however most commonly the legs [115, 1, 39]. The

prevalence of PAD has been recorded to vary between 5.28% and 18.83% within

different demographics [66]. Within the upper body, a common form of stenosis

is subclavian artery stenosis (SAS), with the prevalence recorded to be 1.9% in a

free-living population and 7.1% in a clinical population [186]. Another common

form of stenosis is carotid artery stenosis (CAS), with 3.8% of men and 2.7% of

women recorded to be affected [129]. While the occurrence of these different forms of

stenosis are not mutually exclusive, 18.7% of patients with PAD have been recorded

to also have SAS [78], these numbers do give an indication to the scale of the effect.

Patients diagnosed with SAS have been shown to have a mortality hazard ratio of

1.42 compared to a control population [2], while patients with CAS have been shown

to have a unadjusted death rate of 3.35 per 100 person-years compared to 1.23 per

100 person-years in a control population [97].

The second common form of arterial disease are aneurysms. An aneurysm is a

localised weakening of an arterial vessel wall, causing the vessel to bulge. This bulge
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1.1. ARTERIAL DISEASE

will gradually grow over time until, if left untreated, it may eventually rupture [59,

179]. As with stenosis, aneurysm may be referred to by several different names,

dependent on the location of the disease. The most common form of arterial

aneurysm is abdominal aortic aneurysm (AAA), with a prevalence of 4.8% [122].

Ruptured AAAs are estimated to be the cause of between 6,000 and 8,000 deaths a

year with in the United Kingdom [44], and approximately 45,000 deaths a year in the

United States of America [81]. Currently AAA is the only form of arterial disease for

which the United Kingdom’s National Health Service (NHS) offers screening. While

this program of voluntary screening of 65 year old males is expected to reduce the

rate of premature death from ruptured AAAs by 50% by 2023, the current expected

cost of this is £7,600 per quality life-year gained [48].

Current methods for the detection of arterial disease are primarily based on

obtaining images of the area profile of arterial vessels [205, 124, 163, 119]. Two

frequently used techniques to obtain these images are:

� Angiography. Arterial vessels are not naturally visible within X-ray images.

Angiography involves the insertion of a catheter into the arterial system. This

catheter is guided to the portion of the arterial network of which an image

is desired, and used to inject a contrast medium. This contrast medium

highlights arterial vessels in X-ray images. X-ray images can then be taken of

the arterial system, and examined to diagnose arterial disease. Angiography

is invasive, and requires local anaesthesia.

� Doppler ultrasound. Doppler ultrasound involves a trained technician

running a probe along the surface of the skin. This probe emits high frequency

sound waves, and records the reflected waves. The shift in frequency between

the emitted and received waves allows for the construction of an image of the

arterial vessels beneath the probe. Assessing arterial health through the use

of Doppler ultrasound requires the probe to be run over all arterial vessels for

which an image is desired. A further limiting factor is that arterial vessels

deep in the body are harder to see than superficial vessels.

It can be seen from the examples highlighted above that imaging techniques

are generally impractical for large scale screening. While the NHS currently offers

screening for AAAs through the use of Doppler ultrasound, this program is limited
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in scope due to cost effectiveness. Currently all 65 year old males in the United

Kingdom are invited to undergo scanning for the presence of an AAA. If the

abdominal aorta of a patient is found to have a diameter less than 3cm, the patient is

discharged with no future scanning carried out. If the abdominal aorta of a patient

has a diameter between 3cm–4.4cm or 4.5cm–5.4cm the patient is invited back for a

follow up scan in 1 year or 3 months time, respectively. If the diameter of a patient’s

abdominal aorta is found to be greater than 5.4cm the patient is invited to undergo

surgery [48]. Concerns have been raised about the current screening protocol due to

the lack of follow up scans for patients with a diameter of less then 3cm [204], and

the reduction in cost effectiveness as the prevalence of AAAs reduces [73]. Currently

screening for AAAs is not offered to women, partially due to the fact that a similar

protocol to that offered to men would cost £30,000 per quality life-year gained due

to the lower prevalence [200]. The NHS currently offers no screening program for

the presence of any form of stenosis.

If a new method for the detection of stenosis and aneurysm is created

that minimises both the cost and the need for invasive measurements, the cost

effectiveness and feasibility of large scale screening would be improved. This could,

in turn, allow for an expansion to the current AAA screening program, and the

implementation of a stenosis screening program.

1.2 Use of haemodynamic measurements for

disease detection

A potential alternative is to use easily acquirable pressure and flow-rate

measurements at peripheral locations. It is known from the principals of fluid

mechanics that if the cross sectional area of a vessel is changed, the pressure and

flow-rate profiles of fluid passing through that vessel will also change [133, 50, 208,

183]. Applying this to arterial disease, the inclusion of a stenosis or aneurysm

within a patient’s arterial network should create biomarkers within the pressure

and flow-rate profiles of blood. The implications of the presence of arterial disease

on pressure and flow-rate profiles has already been investigated through the use of

one-dimensional models (similar to those utilised later in this thesis) by a number

of previous studies. It is found in [127] that even low severity AAAs have a global
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impact on the pressure and flow-rate profiles. Further more [183] has shown that the

presence of an aneurysm produces measurable biomarkers within flow-rate profiles,

with these results validated by experimental data. Other similar studies that have

shown the haemodynamic effects of arterial disease include [201], [107], and [90].

Further supporting the use of easily acquirable peripheral measurements is the

significant work already carried out in creating inexpensive methods to measure

both blood pressure and flow-rate. Continuous time varying flow-rate profiles can

be obtained in the brachial [27], carotid [144], and femoral [164] arteries using

Doppler ultrasound. It is important to note that the obtainment of flow-rate profiles

through the use of Doppler ultrasound differs from obtaining an image of the vessel

as measurements are only required at a single discrete location, rather than along

the entirety of a vessels length. Non-invasive pressure profiles can be obtained in the

radial and common carotid arteries using applanation tonometry [3, 146] and in the

brachial arteries through reconstruction of finger arterial pressure [77]. A diagnostic

method that utilised an abundance of already clinically obtainable pressure and

flow-rate measurements would have the potential to significantly improve the cost

effectiveness of large scale screening.

The relationship between blood pressure and cardiovascular health is already

extensively documented and studied, supporting the use of haemodynamic

measurements for arterial disease detection. Previous studies have highlighted

correlations between blood pressure and the risk of cardiovascular disease [185]. It

has been shown that male and female patients with high-normal blood pressure are

1.6 and 2.5 times more likely to experience an incidence of cardiovascular disease over

a 10 year period than those with optimum blood pressure [210], respectively. The

importance of blood pressure in assessing cardiovascular health is further supported

by the known correlation between the ratio of ankle to brachial systolic blood

pressure, referred to as ankle-brachial pressure index, and mortality rate [135]. It can

be seen from the above examples, however, that generally the use of haemodynamic

measurements for assessing cardiovascular health is currently advisory. The above

examples do not offer fixed “rules” for the diagnosis of arterial disease, and instead

only allows for the evaluation of the relative risk of a patient being affected. To allow

for the creation of a diagnostic method specific evaluation criteria within pressure

and flow-rate measurements are required.
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“Since the information which the pulse affords is of so great importance,

and so often consulted, surely it must be to our advantage to appreciate

fully all it tells us, and to draw from it every detail that is is capable of

imparting (Frederick Akbar Oratio Mahomed (1872)).”

One example of the current use of haemodynamic measurements as a diagnostic

method is the use of ankle-brachial index to diagnose PAD. A previous meta-analysis

study of this method has shown high levels of specificity (83.3 – 99.0%) however

varying levels of sensitivity (15 – 79%) [218]. The arterial system, and thus the

underlying pressure and flow-rate profiles, are patient specific. This poses a serious

issue in using haemodynamic measurements to detect arterial disease. A single set

of healthy baseline pressure and flow-rate profiles, which can be used for comparison,

does not exist. It is, therefore, difficult to determine if characteristics of a patient’s

pressure and flow-rate profiles are caused by natural variance or arterial disease. If

a consistent and significant biomarker of arterial disease is found within pressure

and flow-rate profiles, irrespective of a patients unique underlying arterial network,

stenosis and aneurysm can be diagnosed from pressure and flow-rate measurements.

1.3 Machine learning classification algorithms

and their application to arterial disease

detection

To predict the presence of a stenosis or aneurysm through the use of haemodynamic

profiles, a model is required that can map pressure and flow-rate measurements to a

patients underlying arterial health. One method for the creation of such a mapping

is to take a physics advised approach [183]. It is possible to use physics based

models of blood flow, that compute the pressure and flow-rate profiles associated

with particular realisations of arterial networks, to aid in the diagnosis of arterial

disease. Direct inversion of these physics based models of blood flow is complex

and impractical. Instead patient specific parameter estimation [29] can be carried

out, and expected pressure and flow-rate measurements obtained. Comparison of

these expected measurements to those recorded in patients allow for the assessment

of arterial health. A possible method to detect CAS using an extended physics
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based model, containing a patient specific model of blood flow, is proposed in

[34]. A problem with the inclusion of these computational models is that every

time a patient is tested some form of parameter estimation is required, incurring

a computational expense that is likely to be proportional to the accuracy of this

estimation. Thus, accuracy of disease detection is likely to be proportional to

the accuracy of the patient specific parameter estimation, and so consequently

proportional to the computational expense.

An alternative method to create a model mapping pressure and flow-rate

measurements to a patient’s arterial health is to take a purely data driven approach.

A model directly predicting the health of a patient from pressure and flow-rate

measurements bypasses the need for physics based models. It is likely that the

indicative biomarkers of arterial disease held within pressure and flow-rate profiles

consist of micro inter- and intra- measurement details. Discovery of these biomarkers

through a traditional hypothesis-driven scientific method [213] is likely infeasible—

i.e. proposing a possible biomarker, testing to see if arterial disease can be detected

using this proposed indicator, and repeating until suitable features are discovered.

If a large database of pressure and flow-rate measurements taken from patients of

known arterial health is available, it is possible for a ML classifier to be trained to

not only discovery but also exploit any biomarkers held within pressure and flow-rate

profiles. This methodology involves a significantly greater initial expense associated

with the creation of the model, relative to a physics advised approach. Once the

model predicting arterial health has been created, however, the diagnosis of patients

is computationally inexpensive and near instantaneous. In the case of a data driven

approach the limit to the achievable accuracy is likely to be imposed by the data

set used to create the model. Creating the model mapping pressure and flow-rate

measurements to arterial health from an unrealistic or incomplete data set will result

in an imprecise and inaccurate diagnostic method.

A supervised ML classifier, essentially, uses pre-observed data to create an

estimate of the model mapping a series of input variables to a dependent outcome

[113]. This estimated model is then used to assign predicted outcomes to new

unseen input variables. Due to the versatility, potential for high accuracy, and

ever increasing ease of implementation [60] a large range of different classification

algorithms—that exploit the information held within the pre-observed data through

different mechanisms—exist [194, 103, 123, 172, 140]. In the case of this thesis,
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a model is desired that maps pressure and flow-rate measurements directly to the

arterial health of the patient from which the measurements have been taken.

ML has a history of being used for medical applications [112]. Classification

algorithms have been shown to be able to predict the presence of irregularities in

heart valves [42], arrhythmia [193], and sleep apnea [106] from recorded time domain

data. These studies suggest it is possible for a ML classifier to be trained to detect

arterial disease using only time domain pressure and flow-rate measurements.

To train ML classifiers, and then consequently test their performance, a large

database of measurements taken from patients of known arterial health is required.

One method for the obtainment of such a database is to record measurements from

a real cohort. While this method does ensure that the range and distribution of

pressure and flow-rate measurements is physiologically accurate—given that the

patient cohort is comprehensive—it also has several disadvantages. The difficulty

in diagnosing arterial disease is the major motivating factor for this thesis, and

thus obtainment of the health classification of patients is prohibitive. This issue is

further amplified when the large number of patients required to train and test a ML

classifier is factored in. A further limiting factor is the imbalance in the number of

healthy and unhealthy patients within a real population. The prevalence of arterial

disease is recorded to vary between approximately 1% and 20%. While medically

this prevalence is high, for a ML application it is not. The imbalance in the number

of healthy and unhealthy patients is likely to cause issues in the training and testing

of ML classifiers.

An alternative method to obtain a large database of pressure and flow-rate

profiles, and the corresponding health of patients, is to create a synthetic data set.

Physics based models of one dimensional pulse wave propagation, that compute the

pressure and flow-rate profiles produced by particular realisation of arterial networks,

have been extensively developed and tested [20, 64, 6, 145, 168, 131]. An available

pre-existing solver has been successfully validated against a 3D model of bloodflow

through stenosed arterial vessels [21]. Virtual patients (VPs) can be created by

sampling random realisations of arterial networks, and solving the physics based

model of pulse wave propagation to obtain the corresponding pressure and flow-

rate profiles. The generation of a virtual patient database (VPD) in this manner is

supported by the employment of a very similar methodology in [217]. Using VPs to

train and test ML classifiers provides several advantages, such as:
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� Expense: creating VPs is relatively inexpensive. The primary cost associated

with the creation of VPs is computational, and thus negligible in comparison

to data acquisition in a real population.

� Class imbalance: creating VPs allows for the control of the distribution of

different disease states. For example, in a real population the rate of arterial

disease can vary between 1% and 20%. During the creation of VPs, however,

50% are created with disease to ensure a balanced data set.

� Measurement availability: using VPs allows for measurements of pressure

and flow-rate to be taken at any location within the arterial system.

It is important to note that in a clinical application there will be limitations

to the measurements that can be non-invasively and inexpensively obtained. The

availability of pressure and flow-rate measurements throughout the arterial network

are useful, however, as they allow for an a priori assessment of ML classifiers to be

tested using all possible combinations of pressure and flow-rate measurements.

1.4 Aims and objectives

The primary aim of this thesis is to carry out an investigation into the potential of

using ML classification algorithms to predict the presence of stenosis or aneurysm,

directly from easily acquirable haemodynamic measurements. An exploratory stance

is taken to these classifiers with focus on uncovering behaviours and patterns in the

performance of classification, rather than optimisation and creation of increasingly

complex ML models for maximum accuracy.

The secondary aims of this thesis are as follows:

� Development of a frame work, through the employment of a physics based

model, for the creation of synthetic data sets. This frame work is to developed

to allow for: i) the creation of several different VPDs as the required balance

between simplicity and physiological realism progresses, and ii) the generation

of a generic methodology, given a mathematical description of a biological

system, that can be adopted to create virtual patients for any biological system

while accounting for all available information.
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� Exploitation of data driven methods, such as ML classifiers, to gain insight

into the haemodynamic effects of arterial disease.

1.5 Outline of Thesis

The remainder of this thesis is organised as following:

Chapter 2: Important methodologies. The second chapter of this thesis

provides an overview of the most important methodologies used. This chapter does

not aim to provide a comprehensive, in depth explanation and examination of these

methodologies. Instead a relatively simple understanding of the key elements and

processes involved with each method are described. This chapter aims to build a

sufficient understand of the key methodologies, so that the processes carried out

within the subsequent chapters of the thesis are more intuitive.

Chapter 3: Three vessel network proof-of-concept study. The third chapter

of this thesis carries out a proof-of-concept (PoC) study. The aim of this PoC is

to assess the ability of ML classifiers to predict the presence of a stenosis within a

simple three vessel arterial system. A series of ML classifiers—as previously outlined

in Chapter 2—are presented, trained, and tested using different combinations of

pressure and flow-rate measurements.

The majority of work in this chapter is published in: Jones G., Parr J.,

Nithiarasu P., Pant S. A proof of concept study for machine learning application

to stenosis detection. Medical and Biological Engineering and Computing. 2021

August http://dx.doi.org/10.1007/s11517-021-02424-9.

Chapter 4: Creation of a physiologically realistic virtual patient database.

To expand on the PoC study, Chapter 4 outlines the creation of a new physiologically

realistic healthy VPD. Within this study a reduced version of the anatomically

correct arterial network proposed by Blanco et al. [18, 17], referred to as the ADAN

network, is used as the basis for the creation of new VPs. To ensure physiological

realism across the new VPD, measurements of pressure and flow-rate are taken from

literature. Bayes’ theorem is used to incorporate the effect of these measurements

into the distributions from which VPs arterial network parameters are sampled.

Using an appropriate sampling method, in this case a Markov chain Monte-Carlo
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(MCMC) method [69, 71, 25], realisations of VPs arterial networks are sampled from

the distribution of arterial network parameters subject to the effect of literature

based measurements. The VPD created in this chapter is made publicly available

(https://doi.org/10.5281/zenodo.4549764).

The majority of work in this chapter is published in: Jones G., Parr J.,

Nithiarasu P., Pant S. A physiologically realistic virtual patient database for the

study of arterial haemodynamics. International Journal for Numerical Methods in

Biomedical Engineering. 2021 May 10:e3497.

Chapter 5: Pre-processing and creation of literature advised unhealthy

VPDs. Using the physiologically realistic healthy VPD created within Chapter

4, Chapter 5 outlines the pre-processing carried out to create a usable data set.

Physics based filters are applied to limit the occurrence of VPs displaying undesirable

behaviours. The filtered healthy VPD is used to create both aneurysm and stenosis

VPDs, paying consideration to the range of severities frequently observed in a real

world clinical environment.

Chapter 6: Application of machine learning classifiers to the

physiologically realistic VPDs. The literature advised unhealthy VPDs—

created within Chapter 5—are used along side the filtered physiological realistic

healthy VPD—created within Chapter 4—to train and test a series of ML classifiers.

Where possible and when appropriate, clinical and physiological restrictions and

considerations are applied to the training and testing of these classifiers.

The majority of work in this chapter is published in: Jones, G., Parr, J.,

Nithiarasu, P., Pant S. Machine learning for detection of stenoses and aneurysms:

application in a physiologically realistic virtual patient database. Biomechanics and

Modeling in Mechanobiology. 2021 July https://doi.org/10.1007/s10237-021-01497-

7.

Chapter 7: Use of physics advised haemodynamics features. Hitherto,

pressure and flow-rate profiles have been used in their raw form, i.e. a representation

of the measurable pressure and flow-rate profiles, to train and test ML classifiers.

It is possible, however, to use these raw pressure and flow-rate profiles to construct

complex physics advised features. Examples of physics advised features, based on

pressure and flow-rate profiles, include; ankle-brachial pressure index, pulse wave

velocity [12], and ballistocardiogram waveforms [93]. While some ML classifiers are

capable of combining input measurements to create high order features, the direct
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provision of these physics advised features may aid in classification. Classifiers

are trained and tested using physics advised features both in combination with

raw pressure and flow-rate measurements, and in isolation. These results are

compared with those achieved using solely raw pressure and flow-rate measurements

(as outlined in Chapter 6).

Chapter 8: Conclusions and contributions The penultimate chapter of this

thesis aims to put the results achieved within the previous chapters into the context

of the overriding objectives of this research. The potential for using ML classifiers to

detect arterial disease is evaluated both in an abstract sense and with consideration

to clinical restrictions and requirements. Possible limitations in the methodologies

taken within the thesis are identified and discussed, to build a rounded perspective of

the current work. Finally this chapter aims to identify and evaluate the contributions

of this thesis to both the computational engineering community, and specifically to

the problem of arterial disease detection.

Chapter 9: Future work The final chapter of this thesis uses the evaluation of the

progress achieved and limitations of this body of work—as outlined in Chapter 8—to

assess and discuss future work that can either strengthen the conclusions reached

within this thesis or progress the development of potential diagnostic methods.
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Chapter 2

Important methodologies

In this chapter, an overview of the most important methodologies is presented. This

presentation is relatively generic, with the implementation of each method being

discussed in the subsequent chapters. This chapters seeks to build a relatively simple,

intuitive, understanding of the methodologies. Sufficient references are provided to

allow the reader to gain a deeper understanding if desired. The methods outlined in

this chapter, and employed throughout the remainder of this thesis, are chosen due

to their simplicity and “robustness”. One of the primary purposes of this thesis is

to bridge physics based modelling, statistical modelling, and machine learning into

a framework that can be used to create and then subsequently exploit VPs for a

range of biological systems. While these methods may not be the “best” available—

when evaluated on their efficiency or accuracy—they are easily applied to a range

of different systems without the need for extensive problem specific optimisation

or in-depth specialist knowledge. Thus, the resulting framework is accessible and

implementable by future researchers with a wide range of different backgrounds and

experiences.

The remainder of this chapter is structured as follows: first, the physics based

model—used to compute the pressure and flow-rate profiles associated with VPs—

is presented in Section 2.1; next, two statistical methods (Bayes’ theorem and

Metropolis-Hastings Markov chain Monte-carlo) are outlined in Sections 2.2 and

2.3; and finally the ML classification methods used are described in Section 2.4.

2.1 Physics based model of pulse wave

propagation

To compute the pressure and flow-rate waveforms associated with VPs, a physics

based model of one-dimensional pulse wave propagation is adopted [20]. By

considering each vessel within the network to be a deforming tube, a system of

two governing equations can be derived. These equations represent conservation of

mass and momentum balance with the assumption that blood is incompressible and
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that the tube walls are impermeable. The system of equations is (see [6] for details):

∂A

∂t
+
∂(UA)

∂x
= 0, (2.1)

∂U

∂t
+ U

∂U

∂x
+

1

ρ

∂P

∂x
=

f

ρA
, (2.2)

where P (x, t), U(x, t), and A(x, t) represent the pressure, flow velocity, and arterial

cross sectional area, respectively, at spatial coordinate x and time t; ρ represents

the density of blood; and f represents the frictional force per unit length described

as follows:

f(x, t) = −2(ζ + 2)µπU, (2.3)

where ζ is a constant that depends on the velocity profile across the arterial cross

section, and µ represents the dynamic viscosity of blood. To close this system of

equations, a mechanical model of the displacement of the vessel walls [20] is included:

P − Pext = Pd + β

√
A−√Ad
Ad

, (2.4)

with

β =
4

3
Eh
√
π, (2.5)

where Pext represents the external pressure, Pd represents the diastolic blood

pressure, Ad represents the diastolic area of the vessel, β represents the mechanical

property of the vessel, E represents the vessel wall’s Young’s modulus, and h

represents the vessel wall’s thickness. This system of equations has been previously

used and tested extensively [20, 64, 6, 145, 168, 131].

A possible limitation associated with the use of one-dimensional models is the

inability to capture complex three-dimensional behaviours, particularly when high

severity diseases (i.e. large changes in vessel area) are introduced. Examples of

such behaviour which may not be captured include artificial lumens; and turbulence

and transitional flow (changing pressure drops). It is chosen to use one-dimensional

models (rather than more complex three-dimensional models) for two reasons:

� Similar one-dimensional models have been used to compute the pressure and

flow-rate profiles associated with patients with the presence of an aneurysm

in [33], [96] and [183]; and stenosis in [21] and [96]—suggesting the suitability
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of this model for use on both healthy and unhealthy patients.

� The significantly lower computational expense associated with one-

dimensional models makes them better suited to this initial exploratory study.

For the purposes of this thesis, it is computationally unpragmatic to model

the entire arterial network. Instead a sub-network of interest is identified, and

the arterial network truncated by incorporating all prior and subsequent vessels as

appropriated boundary conditions. The inlet and outlet boundary conditions are

explained next.

2.1.1 Inlet boundary conditions

The inlet of sub-networks are generally coupled to prescribed time domain

volumetric flow-rates. The effect of vessels prior to a sub-network are incorporated

into this inlet flow-rate. For this thesis all prescribed time domain inlet flow-rate

profiles are described using a Fourier series (FS). A FS describes a periodic function

through the synthesis of a series of harmonic components:

Qinlet(t) =
N∑
n=0

an sin(nωt) + bn cos(nωt), (2.6)

where an and bn represent the nth sine and cosine FS coefficients, respectively; N

represents the truncation order; and ω = 2π/T , with T as the time period of the

cardiac cycle.

2.1.2 Outlet boundary conditions

The terminal boundaries of sub-networks are generally coupled to three element

Windkessel models [215]. This model replicates the effect of peripheral arteries

using an electrical system. This system comprises of two resistors, R1 and R2,

which replicate the viscous resistance of large arteries and the micro-vascular system

respectively, and a capacitor C which replicate the compliance of large arteries. It

is common for the first resistor (R1) to be equal to the characteristic impedance of

the connecting one-dimensional vessel, to reduce reflections.
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Q1D

P1D Pout

R1 R2

C

Figure 2.1: The configuration of the three elements within the Windkessel model
are shown. Q1D and P1D represent the volumetric flow-rate and pressure at the
terminal boundary of the 1D system respectively.

The configuration of these three elements is shown in Figure 2.1.

2.2 Bayes’ theorem

Bayes’ theorem is a method used to update the prior knowledge and beliefs held

about the distribution of a parameter, given that new observations and data is

obtained [117, 55]. In this thesis Bayes’ theorem is primarily used to construct a

distribution for the parameters describing a virtual patients arterial network that

incorporates multiple pieces of dissimilar (geometric and haemodyanmic) pieces of

information. The prior knowledge held about a distribution, before the obtainment

of new data, is described as p(I). Given that the variable J is observed to be equal

to j, i.e. J = j, the updated conditional distribution of variable I incorporating

this new observation can be computed using the equation:

p (I | J = j)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p (J = j|I)

prior︷︸︸︷
p (I)

p (J = j)︸ ︷︷ ︸
evidence

, (2.7)

where p (I | J = j) represents the distribution of the variable I incorporating the

effect of observing J = j—referred to as the posterior distribution. Within Equation

(2.7) p (J = j | I) represents the likelihood of the parameters, given the data—

referred to as the likelihood. The final term in Equation (2.7), p (J = j), represents
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the probability of observing the measurement J = j, averaged (marginalised) over

all values of I. This is referred to as the evidence. This marginal probability can

be found by integrating the joint distribution of variables I and J , described by

p(J = j, I), across the support of variable I, i.e.:

p(J = j) =

∫
I

p(J = j, I)dI =

∫
I

p(J = j | I)p(I)dI. (2.8)

Due to the required integration it is often unpragmatic to compute the evidence

term. This term, however, is independent of the variable I and, thus, does not

affect the shape of the posterior distribution. Instead this term purely acts as a

normalising constant, ensuring the integral of the posterior is equal to 1. It is,

therefore, possible to evaluate the posterior distribution, up to the limit of the

normalising constant, without the need for computation of the evidence term, i.e.:

p (I | J = j) ∝ p (J = j | I) p (I) , (2.9)

where p (J = j | I) p (I) can be thought of as the unnormalised density of the

posterior distribution.

2.3 Metropolis-Hastings Markov chain Monte-

Carlo

Given that the probability density function (PDF), and ideally the cumulative

distribution function (CDF), is known the ideal method to draw a series of samples

from a distribution is to independently select points from the support based on the

CDF. If, however, the CDF is not directly known and computation from the PDF is

complex, or the CDF and PDF are both directly unknown this method can become

computationally expensive. An alternative method is a Markov chain Monte-Carlo

(MCMC) method [69, 71]. Starting from an initial sample, a chain of samples

is built sequentially. An iteration within a Markov chain is required to be only

dependent on the previous iteration of the chain, and thus given an adequate length

chain an MCMC method is able to accurately sample from a distribution when

independent sampling is unpragmatic. In this thesis an MCMC method is used to

draw random realisations of virtual patients arterial networks from the distribution
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created through the use of Bayes’ theorem (see Section 2.2).

While there are many different MCMC methods, within this thesis a Metropolis-

Hastings MCMC [40] is used. To draw samples from a distribution, an MCMC

chain requires an initialising position, described as I = i(k=0). The only restriction

imposed on the initialising position of a Metropolis-Hastings MCMC chain is that

all parameters must be within their support, and so the density of the distribution

at this position must be greater than zero [28]. Applying this to the posterior

distribution described by Equation (2.7), the restriction on the initialising position

is:

p
(
I = i(k=0) | J

)
> 0. (2.10)

From this initial position a candidate for the next sample is generated by a

proposal distribution which depends only on I = i(k=0), ensuring the Markov chain

has no memory (an important feature of the method). In this thesis this candidate

sample I = i∗ is proposed by sampling from the following Normal distribution:

i∗ ∼ N (i(k=0), σ2
step), (2.11)

where σ2
step represents the variance of the proposal distribution. This proposed

candidate I = i∗ is either accepted or rejected based on the following ratio κ of

posterior probabilities at I = i∗ and I = i(k=0):

κ =
p (I = i∗ | J)

p(I = i(k=0) | J)
, (2.12)

which, through the Bayes’ rule of Equation (4.17) applied to both the numerator

and the denominator, can be written as:

κ =
p (J |I = i∗) p (I = i∗)

p (J |I = i(k=0)) p (I = i(k=0))
. (2.13)

The first term and the second term in both the numerator and the denominator are

the likelihoods and priors at the candidate and current point, respectively. To accept

or reject the proposed candidate κ is compared to a random number υ drawn from

a uniform distribution between 0 and 1. If κ ≥ υ, the proposed candidate I = i∗

is accepted and the chain progresses with i(k=1) = i∗. Otherwise, the proposed

candidate is rejected and a new candidate is proposed through Equation (2.11).

Pg. 18 / 416



2.3. METROPOLIS-HASTINGS MARKOV CHAIN MONTE-CARLO

Using a constant variance in the proposal distribution (see Equation (2.11)) ensures

the acceptance criteria described above is reversible: the probability of accepting

the sample I = i(∗) given the current state of the chain is described by I = i(k=0) is

equal to the probability of accepting I = i(k=0) given the current state of the chain

is described by I = i(∗). This feature is a requirement of the Metropolis-Hastings

method [25]. The process of sampling candidate points through Equation (2.11),

computing κ, and either accepting or rejecting the candidate is repeated until the

chain is sufficiently long.

The acceptance rate, i.e. the proportion of candidate sample points that are

accepted, is tuned through the variance used in Equation (2.11). A high variance

results in the Markov chain exploring the support of posterior distribution quickly,

however a high proportion of candidate points being rejected. A low variance

results in the chain moving around the posterior distribution slowly, however a

high proportion of candidate points being accepted. An optimum acceptance rate

to balance these two opposing behaviours is stated in literature to be 0.234 [173].

The MCMC algorithm is sequential—each subsequent sample depends on the

previous sample and hence the chain grows only one sample at a time. Generating a

long chain this way, thus, leads to very high computational run times. To alleviate

this issue and achieve some level of parallelisation, the concept of pre-fetching [24,

196] is employed in this thesis, explained next.

2.3.1 Pre-fetching

At each iteration of the Markov chain there are two possible outcomes that may

happen; the candidate sample is accepted, or the candidate sample is rejected. If

the candidate sample is accepted it becomes the new current state of the chain,

progressing the Markov chain forward. If the candidate sample is rejected, the

current state of the Markov chain remains unchanged. By extending this process of

either accepting or rejecting at each step of the Markov chain to view multiple

steps, a decision tree is formed. Figure 2.2 shows such a decision tree with a

depth of η = 2. This results in 2η leaf-nodes at the end of the tree. A careful

consideration of the decision tree (see Figure 2.2) shows that the only unique

parameters in the entire decision tree correspond to those at the leaf-nodes—

due to the fact that when a candidate is rejected the Markov chain does not
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Figure 2.2: An example of an MCMC decision tree across two iterations of a chain.
i
(k)
(l) represents the lth possible set (candidates) of the arterial network parameter

scaling terms at the kth step of the chain. Green branches denote the path of the
chain taken if a candidate is accepted, while red branches show the path of the chain
if a candidate is rejected.

progress. Thus, computational simulations for all the leaf-node parameters can

be run simultaneously in-parallel. Then, η steps of the MCMC algorithm can be

taken together without any computational overhead by walking the decision tree.

The wall clock time required to complete each decision tree is ideally constant

irrespective of η. This is due to the fact that the time required to both propose

and walk the tree are assumed to be negligible, while computation of the posterior

probability—and so the time required to compute the acceptance ratio—is being

parallelised. Thus, the wall clock time required to complete an MCMC chain

should decrease linearly with η. It is likely, however, that inefficiencies will cause

an increase in wall clock time per decision tree as η increases. Despite this likely

reduction in performance, the major limiting factor associated with pre-fetching is

the computational resources associated with it. Ideally the entire MCMC chain

could be proposed, solved, and walked within a single decision tree. The number of

terminal nodes, and so consequently the number of times the posterior probability

is being computed in parallel, is equal to 2η. The computational impracticality of

using high values of η can be seen.
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2.4 Machine learning classifiers

A model mapping a vector of input measurements, y, to a discrete output

classification, z, can be described as:

z = m(y) z ∈ C, (2.14)

with

C = {C(1), C(2), .., C(j)}, (2.15)

where C represents the set describing all possible classifications, and C(j) represents

the jth possible classification. For the case of this thesis, the measured inputs and

known output classification represent the haemodynamic measurements taken from

patients and the corresponding health of those patients respectively. An ML classifier

is one possible method that can be used to learn the model of Equation (2.14).

All ML classifiers within this thesis are supervised algorithms. A database of

input measurements and corresponding output classifications for a large number of

previously observed events can be described as D = {(yi, zi) | i = 1..m}. Here yi

and zi represent the vector of input measurements and the true state classification

of event i; and m represents the total number of previously observed events. A

supervised ML classifier splits the available database into a training set and a test

set. The purpose of the training set is to allow the ML classifier to analyse the

relationship between input measurements and true state output classifications, based

on an algorithm specific optimisation criteria, to obtain a pseudo-mapping:

ẑ = m̂(y), (2.16)

where ẑ represents the predicted classification resulting from the input measurements

y, and m̂ represents the pseudo-mapping. The purpose of the test set is to evaluate

the accuracy of the pseudo-mapping, described by Equation (2.16). The input

measurements corresponding to all events within the test set are passed through

Equation (2.16) to obtain a prediction of the classification each event belongs to.

The accuracy is then assessed by evaluating the discrepancy between the true state

and the predicted classification of all events within the test set.

The methods used to create pseudo-mappings, as described by Equation (2.16),
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are outlined next.

2.4.1 Naive Bayes’ classifier

A Naive Bayes’ classification algorithm is a probabilistic multiclass method [172,

171]. Naive Bayes’ classifiers predict the health classification of a patient through

the use of a conditional probability model. Bayes’ theorem can be used to compute

the conditional probability of a patient belonging to each health classification, given

the input measurements taken from that patient have been observed:

p
(
ẑi = C(j) | y = yi

)
=

p
(
y = yi | ẑi = C(j)

)
p
(
ẑi = C(j)

)
p (y = yi)

, (2.17)

where the posterior probability, p
(
ẑi = C(j) | y = yi

)
, represents the probability

of the ith VP being assigned a health classification of C(j), given that the input

measurements yi have been taken from the VP. By computing the posterior

probability of each health classification, the classification that the patient is most

likely to belong to can be found, i.e.:

ẑi = arg max
C(j)∈C

p
(
ẑi = C(j) | y = yi

)
. (2.18)

In Equation (2.17) p
(
y = yi | ẑi = C(j)

)
represents the likelihood of the

measurements, given that the patient is predicted to belong to health classification

C(j). To simplify the computation of the likelihood, a naive Bayes’ classifier assumes

that all inputs are independent. The likelihood term can, therefore, be written as:

p
(
y = yi | ẑi = C(j)

)
=

N∏
n=1

p
(
y(n) = y

(n)
i | ẑi = C(j)

)
, (2.19)

where p
(
y(n) = y

(n)
i | ẑi = C(j)

)
represents the likelihood corresponding to the nth

input, and N represents the total number of measurements being taken. To allow

for computation of each component within Equation (2.19) an assumption must

be made about the distribution of the input measurements. Assuming all input

Pg. 22 / 416



2.4. MACHINE LEARNING CLASSIFIERS

measurements are normally distributed [139], Equation (2.19) can be written as:

p
(
y = yi | ẑi = C(j)

)
=

N∏
n=1

1

σ(n,j)
√

2π
exp

−1

2

(
y

(n)
i − µ(n,j)

σ(n,j)

)2
 , (2.20)

where µ(n,j) and σ(n,j) represents the mean and standard deviation of the nth input

measurement given that the ith VP is predicted to belong to health classification

C(j). The mean and standard deviation of each input measurement given each health

classification is found empirically through the training data. By splitting the training

data in subcategories based on the true state health classification, the mean and

standard deviation of each input measurement given each health classification is

found.

Within Equation (2.17) p
(
ẑi = C(j)

)
represents the probability of the ith VP

belonging to health classification C(j) irrespective of the input measurements. As

with the likelihood term, the parameters describing the statistics of the prior

probability for each health classification can empirically be found from the training

data:

p
(
ẑi = C(j)

)
=
m(j)

m
, (2.21)

where m(j) represents the number of patients in the training set for which zi = C(j),

and m represents the total number of patients within the training set.

The final term in Equation (2.17), p (y = yi), represents the probability of the

input measurements yi occurring irrespective of the health classification of a patient.

While the parameters describing the statistics of the input measurements irrespective

of the health classification can be empirically found from the training set, this is not

required. It can be seen that this term is independent of the health classification,

and so constant given a particular vector of values for y. This term is, therefore, not

required when comparing the posterior probability of different health classification

for a given patient.

2.4.2 Logistic regression

The LR classifier [194, 86] is a probabilistic binary classification method. Analysis

of the relationship between the measured inputs and the known output classification
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of the events within the training set allow a partition to be made between positive

and negative responses to input variables through the high dimensional input space.

A prediction of the classification of a new unseen event, i.e. an example of a set

of input measurements taken from the test set, is then made through the analysis

of the recorded input measurements corresponding to that event in relation to this

partition.

Given that patients belong to one of the two classifications, i.e. C = {C(1), C(2)},
the true state binary health ψ of patients is assigned to all subjects in the training

set:

ψi =

1 if zi = C(1)

0 if zi = C(2),
. (2.22)

To predict the binary health of a patient an activation function is used. A general

equation for an activation function h(yi,θ) can be written as:

p
(
ψ̂i = 1 | yi,θ

)
= h(yi,θ), (2.23)

where p
(
ψ̂i = 1 | yi,θ

)
represents the predicted probability that the ith VP belongs

to C(1), given that the patient specific input measurements yi have been observed,

and that the vector of measurement specific weightings are described by θ. An

activation function is visually shown in Figure 2.3. Typical choices for h(yi,θ) are

the sigmoid and tanh functions. The sigmoid function is shown below:

h(yi,θ) =
1

1 + exp (−θTyi)
. (2.24)

To obtain optimal measurement specific weightings θ, the logistic regression

algorithm is trained by minimising the mean error between the predicted probability

of VPs belonging to a positive binary classification and the true state classification

across the training set, i.e.:

θ̂ = arg min
θ

{
L(θ,Y train,ψtrain)

}
, (2.25)
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y
(N)
i

...
y
(2)
i

y
(1)
i

y(0)

h(yi, θ) p(ψ̂i = 1 | yi, θ)

Figure 2.3: A logistic regression algorithm returns a prediction of the probability
of an observed set of input data resulting in a positive binary classification using a
single activation function. {y(1)

i , .., y
(k)
i } represents the 1st to the N th measurement

taken from patient i, and y(0) represents a bias term—and so is patient independent.

with:

L(θ,Y train,ψtrain) = − 1

m

m∑
i=1

(
ψi log (h(yi,θ))+(1−ψi) log (1− h(yi,θ))

)
, (2.26)

where L(θ,Y train,ψtrain) represents the average cost, in this case computed as a

log loss, across the training set; Y train and ψtrain represent the matrix of input

measurements and the vector of the known correct binary classifications for all the

m VPs in the training set, respectively; yi and ψi represents the vector of input

measurements and the known true state classification corresponding to the ith VP,

respectively; and θ represents the measurement specific weightings. It can be seen

from Equation (2.26) that two different cost profiles are created dependent on the

correct binary classification of a particular patient. The numerical minimisation

can be carried out using many algorithms such as gradient descent, gradient descent

with momentum [161], Nesterov accelerated gradient (NAG) [141], Adadelta [223],

and Adam method [109]. All of these algorithms follow a similar procedure:

� Initialising values are assigned to all measurement specific weightings.
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� Initial predictions are made using Equation (2.24) and these weightings.

� The cost of these initial predictions are computed through the use of Equation

(2.26).

� An update function is used to update the vector of weightings to minimise the

error in the predictions made. An update function is described by the general

equation:

θs+1 = θs + ∆θs, (2.27)

where θs and ∆θs represents the vectors of measurement specific weightings

and the updates to be made to these weightings at iteration s, respectively.

� The sequential process of predicting the probability of each patient within the

training set belonging to a positive binary classification, calculating the cost of

these predictions, and updating the weightings based on this cost is repeated

until a set standard of convergence is reached.

Post training, the obtained weightings can be used to predict the health

classification of new unseen VPs, i.e. VPs within the test set, by equation (2.24)

through application of a threshold B, often referred to as the decision boundary, to

the predicted probabilities as follows:

ẑi =

C(1) if p
(
ψ̂i = 1 | yi,θ

)
≥ B

C(2) otherwise,
(2.28)

where ẑi represents the predicted health classification of the new unseen test VP,

p
(
ψ̂i = 1 | yi,θ

)
represents the predicted probability returned by the activation

function through equation (2.24), and B represents a chosen decision boundary.

2.4.3 Multi-layer Perceptron

A multi-layer perceptron (MLP) is a form of artificial neural network [140]. An

understanding of an MLP can be gained by first examining the structure of

an LR algorithm. An LR classifier passes a series of measured inputs into an

activation function, which contains pre-trained measurement specific weightings.
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y
(1)
i
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h(yi,θ
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h(yi,θ
(1,1))

h(yi,θ
(3,1))

p(ψ̂i = 1 | yi,Θ)h(ui,θ
(1,2))

Figure 2.4: A simple MLP classifier, containing one hidden layer consisting of
three neurons. {y(1)

i , .., y
(N)
i } represents the 1st to the N th measurement taken

from patient i, y(0) represents the bias term, and θ(i,j) represents the measurement
specific weightings associated with the ith parallel activation function within the
jth sequential layer. In the above figure ui represents the vector of inputs
into the output layer, and within the case shown above is equal to ui =
{h(yi,θ

(1,1)), h(yi,θ
(2,1)), h(yi,θ

(3,1))}. Θ represents the matrix of input specific
weightings for all activation function within the MLP.

This activation function returns a prediction of the probability of the input data

belonging to a positive binary classification. The architecture of the single activation

function within a logistic regression classifier is shown in Figure 2.3.

While an LR classifier is simple, and so requires little problem specific

optimisation, it is limited by the fact it can only produce linear partitions between

positive and negative classifications through the high dimensional input space. A

solution to this problem is to create a network of sequential layers containing multiple

parallel activation functions. Additional sequential layers of activation functions

between the input and output of an MLP are referred to as hidden layers. An

example of a simple MLP containing 1 hidden layer, which in turn consists of 3

activation functions—referred to as neurons—is shown in Figure 2.4. MLPs can be

constructed, in theory, using any number of hidden layers each consisting of any

number of neurons.
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It can be seen from Figure 2.4 that while the first hidden layer within an MLP

returns an output based on the raw input measurements, all subsequent layer use

a transformed version of the input data. The sequential processes of passing the

input data through each layer of an MLP allows for the creation of complex inter-

measurement features. As with an LR classifier the output layer of an MLP returns

a prediction of the probability of a set of inputs belonging to a positive binary

classification, given the input measurements and a series of input specific weightings.

A further similarity with LR is that an MLP is trained with the primary

objective of minimising the error between the predicted probability and the correct

classification across the training set. The complexity of training an MLP is increased

from that of LR, however, by the fact that the error in the predictions made is only

computed at the output layer. The error in the predictions across the training

set must, therefore, be “back propagated” [83] to compute the gradient of the error

with respect to each input specific weighting within each neuron of each hidden layer.

The weightings with each neuron of an MLP can then be updated using Equation

(2.27). An MLP is trained by repeatedly feeding the input measurements forward

from the input to the output layer, computing the error between the predicted

probabilities returned and the known correct health classification of all patients

within the training set, back propagating this error, and then updating the input

specific weightings. This processes is repeated until a set standard of convergence

is reached.

2.4.4 Support vector machine

A support vector machine (SVM) classifier also forms a partition between positive

and negative examples of an event through a high dimensional feature space [103].

In the case of LR and MLP speculative classifications are repeatedly proposed for

the training data, and the weights assigned to each input measurement optimised to

minimise the error in prediction. In the case of an SVM classifier, a hyperplane is

found that maximises the distance between itself and the nearest instances of both

classifications.

Given that all patients belong to the same two classifications seen in the examples

of LR and MLP, i.e. C = {C(1), C(2)}, an SVM classifier assigns a true state

classification of 1 to all patients belonging to C(1), and −1 to all patients belonging
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to C(2):

ψi =

1 if zi = C(1)

−1 if zi = C(2).
(2.29)

A general equation describing a linear hyper plane is given by:

d(y,θ, y(0)) = 0, (2.30)

where

d(y,θ, y(0)) = θTy + y(0), (2.31)

and θ represents the vector of measurement specific weightings, y represents the

position within the input measurement space, and y(0) represents a bias term. The

purpose of an SVM classifier is to find optimum values for θ and y(0) that best

partition positive and negative events. Once an optimum partition has been found,

classifications are assigned to new unseen VPs based on the inputs measurements

position relative to this separating hyperplane, i.e.:

ψ̂i =

1 if d(yi,θ, y
(0)) > 0

−1 if d(yi,θ, y
(0)) < 0,

(2.32)

where yi represents the input measurements belonging to the test patient, and ψ̂i

represents the predicted label assigned to the patient.

To determine the best partition between positive and negative events, the

“margin” is used. The nearest instances of each classification to the partitioning

hyperplane are referred to as the support vectors (SVs). The margin represents the

distant between the hyperplanes tangential to the partition, that pass through the

SVs. An example highlighting the SVs and the margin in a simple two dimensional

case is shown in Figure 2.5.

To simplify the mathematics associated with the computation of the hyperplane

that maximises the margin, the partitioning hyperplane is found in its canonical form

with respect to the training data. The partitioning hyperplane is in its canonical

form if:

min
yi∈Y train

|d(yi,θ, y
(0))|= 1. (2.33)
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x(1)

x
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Events belonging to C(1)

SV belonging to C(1)

Events belonging to C(2)

SV belonging to C(2)

Figure 2.5: Multiple instances of two different classifications are shown. The support
vector corresponding to each of the two classifications are highlighted, and the
resulting margin is represented by M . The partition between positive and negative
events is shown by the solid black line.

The margin associated with the partition is then equal to [102]:

M =
2

‖θ‖ , (2.34)

where:

‖θ‖ =

√√√√ N∑
n=1

(θ(n))2, (2.35)

and M represents the margin, θ represents the vector of measurement specific

weightings, and θ(n) represents the nth input measurement weighting. It can be

seen that the margin is maximised if ‖θ‖ is minimised. The minimisation of ‖θ‖
is treated as a quadratic optimisation problem, and the derivation of a solution

through the saddle point of the Lagrange function is found in [103].
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2.4.5 Random forest

A random forest (RF) classifier comprises of an ensemble of parallel weak decision

tree classifiers [123, 23]. A decision tree classification algorithm assigns a predicted

classification to a patient based on the “answers” given to a series of pre-determined

“questions”.

The training of a decision tree is initialised by obtaining the attribute—a feature

of the input measurements—that maximises an evaluation criteria—in this thesis the

information gained—when used to partition the full training set. The information

gained by partitioning the training set based on attribute c is computed using the

equation:

IG(Y train, c) = E(Y train)− E(Y train | c), (2.36)

where IG(Y train, c) represents the information gained when the data set Y train is

split using attribute c; and E(Y train) and E(Y train | c) represents the entropy of

the data set Y train and the entropy when the data is split based on attribute c,

respectively. The entropy of a data set can be thought of as the unpredictability

of the classifications within the set, and so is inversely related to the homogeneity.

The entropy of the training data is computed using the equation:

E(Y train) =
N∑
n=1

mn

m
log2

mn

m
, (2.37)

where N represents the length of C (see Equation (2.14)), m represents the total

number of patients within the data set, and mn represents the number of patients

within the data set for which zi = C(n). The entropy of the training set given the

data is being split based on attribute c is found through the weighted mean of the

entropy of the two resulting daughter nodes. By computing the information gain

achieved by splitting the data set using all available attributes, the attribute that

results in the greatest information gain—and so the greatest homogeneity at the

resulting daughter nodes—is found.

Training of a decision tree is progressed by sequentially splitting the training

set, with the attribute that maximises the information gain at each node in each

generation of the tree being found. This process of repeatedly splitting the data

based on the optimum attribute to maximise information gain is repeated until a
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stopping criteria is met. To assign a non-probabilistic classification to each terminal

node, the classification with the highest probability of occurrence is found. When

classifying new data, in this case determining the health of new patients, the tree is

walked from the root node to the appropriate terminal node.

A major issue with decision trees is that they are very sensitive to the data they

are trained on, i.e. they have high variance. To over come this issue a random

forest classification algorithm trains a series of decision trees employing a bootstrap

aggregation method. Bootstrap sampling refers to the process of uniformly sampling

with replacement. In the case of an RF algorithm a series of decision trees are

trained, each using a different subset of the training data created through bootstrap

sampling. When testing new unseen patients, the health classification returned by

each tree within the RF is found. The results of each tree within the forest are then

aggregated by computing the classification most frequently predicted. Generally

more decision trees within an RF will result in higher accuracy classification, up

to an asymptotic limit. This increase in accuracy, however, comes at the cost of

increased computational time. It is therefore important to consider the number of

trees used when training a random forest algorithm.

2.4.6 Gradient boosting classifier

In a similar manner to RF, a gradient boosting (GB) classifier [67, 57] is an ensemble

classifier. The output of a series of weak decision trees are combined to achieve

higher accuracy results. In the case of RF a series of decision trees are created

independently, and a classifications assigned to test patients by averaging the results

across these trees. A GB classifier differs from this by instead creating classifiers

within the ensemble sequentially. Each new classifier within the ensemble is trained

with respect to the error of all previous classifiers.

A GB classifier is a binary ML classifier, and so true state binary classifications

are assigned to VPs through Equation (2.22). Training of a GB classifier is

initialised by computing the probability of a patient belonging to a positive true

state classification, irrespective of the recorded input measurements. This initial

naive probability p(ψ̂i = 1) is found using the equation:

p(ψ̂i = 1) =
m(ψi=1)

m
, (2.38)
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where m(ψi=1) represents the number of patients within the training set who have

a positive true state classification, and m represents the total number of patients

within the training set. The residual between the naive prediction and the correct

binary classification is computed and recorded for all patients within the training

set using the equation:

χi = ψi − p(ψ̂i = 1), (2.39)

where χi represents the residual associated with patient i. A decision tree (see

Section 2.4.5) is created to predict the residual associated with each patient in the

training set, based on the input measurements. A probability correction factor γ is

then computed for each terminal leaf within this decision tree using the equation:

γ =

∑mleaf

i=1 χi∑mleaf

i=1 p(ψ̂i = 1)× (1− p(ψ̂i = 1))
, (2.40)

where mleaf represents the number of patients in the appropriate leaf node. The

initial naive probability of patients having a positive binary classification is updated

by including a scaled version of the probability correction factor corresponding to

the terminal leaf to which the patient belongs, i.e.:

p(ψ̂i = 1 | yi) = p(ψ̂i = 1) + αγ, (2.41)

where α represents the learning rate. The residual associated with each patient in the

training set is updated based on the new predicted probability, and the processes of

creating a decision tree to predict the residual, calculating the probability correction

factor, and incorporating this into the prediction is repeated. This sequential process

can in theory be repeated any number of times.

The predicted probability of disease associated with test patients is computed

by first finding the terminal leaf to which the patients belongs for all decision

trees within the ensemble. The predicted probability is then computed through

the summation of the the scaled probability correction factors associated with these

terminal leafs, i.e.:

p(ψ̂i = 1 | yi) = p(ψ̂i = 1) +
N∑
n=1

αγ(n), (2.42)

Pg. 33 / 416



2.4. MACHINE LEARNING CLASSIFIERS

where p(ψ̂i = 1 | yi) represents the predicted probability of patient i belonging to a

positive binary classification given the input measurements yi have been recorded,

p(ψ̂i = 1) represents the initial naive probability irrespective of the recorded

measurements, N represents the number of decision trees within the ensemble, and

γ(n) represents the probability correction factor associated with the nth decision tree.

In a similar manner to an LR classifier, the output of a GB is not a direct

prediction of the classification a patient belongs too. Instead a prediction of the

probability of a patient belonging to a positive binary classification is found. To

turn this predicted probability into a output classification a decision boundary is

applied, as is shown in Equation (2.28).

2.4.7 Motivation for the choice of methods

While the six aforementioned classification methods have all been previously

described as ML classifiers (for ease of description), MLP classifiers can be considered

a deep learning method. Other examples of deep learning methods—which are

not employed in this thesis—include convolutional neural network, and recurrent

neural networks. The purpose of this thesis is to perform an initial exploratory

investigation into the possibility of using ML classifiers to detect different forms of

arterial disease. Focus is, therefore, on uncovering patterns and behaviours—such

as which haemodynamic measurements are particularly informative—rather than

optimisation to achieve increasingly higher accuracy. With consideration for this

objective, it is not feasible to perform extensive optimisation and analysis on every

single ML classifier trained and tested. Thus, the ML methods used are chosen

based on their “robustness”—i.e. insensitivity to the hyper-parameters used and

unsusceptibility to problems such as over-fitting—relative to more complex deep

learning methods. It is difficult to make an a priori prediction of which modelling

approaches (tree-based, kernel-based, Bayesian, or neuron-base) are best suited to

haemodynamic classification. Thus, the methods chosen encompass a range of

probabilistic and non-probabilistic applications of different modelling approaches

(see Table 2.1)—to allow for an a posteriori evaluation of which approaches

are preferential for haemodynamic problems—while fulfilling the aforementioned

characteristics. Along with the five ML methods, the one deep learning method

(MLP) is also employed for comparison. It is a priori expected that multi-layer
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Modelling approach Non-probabilistic Probabilistic

Tree-based RF GB

Kernel-based SVM

Bayesian NB

Neuron-based LR, MLP

Table 2.1: The four different modelling approaches and how each classification
method aligns with these approaches.

perceptron classifiers will not perform to their full potential in this thesis, as they

are more reliant on complex hyper-parameter optimisation and monitoring for over-

fitting than the five ML methods. The use of multi-layer perceptron will, however,

provide some, albeit limited, comparison of ML and deep learning methods.
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Chapter 3

Three vessel network proof-of-

concept study

3.1 Introduction

The aim of this proof-of-concept (PoC) study is to carry out an initial investigation

into the potential of using ML classification algorithms to predict the presence of

arterial disease, using haemodynamic measurements. The likely considerations and

limitations that are involved with both creating and exploiting synthetic data sets

are also assessed. Thus, priority is on quick and inexpensive creation of the virtual

patient database (VPD) over the physiological realism of the resulting data sets.

This PoC is being carried out to create a template, that can then be expanded on to

increase the complexity, and consequently the physiological realism, in subsequent

chapters of this thesis.

A simple three vessel system representing the aortic bifurcation, as outlined in

[20], is used as the basis for the create of virtual patients (VPs). The resulting

VPD consists of healthy and stenosed patients. It is chosen to complete the PoC

using stenosed patients, rather than aneurysm, as the majority of previous work

has focused on the detection of aneurysms. While previously studies have already

shown that the presence of an aneurysm produces measurable biomarkers within

flow-rate profiles [183], to the authors’ knowledge no comparable work has yet been

completed for stenoses.

To create the VPD, a priori distributions are first constructed for the parameters

describing the arterial network of VPs. Random realisations are sampled from these

distributions, and the physics based model—as outlined in Chapter 2—is solved to

obtain the corresponding pressure and flow-rate profiles. Similar one-dimensional

models have been used to compute the pressure and flow-rate profiles associated

with patients with the presence of an aneurysm in [33], [96] and [183]; and stenosis

in [21] and [96]—suggesting the suitability of this model for use on both healthy and

unhealthy patients. Finally, “hard” filters, i.e. the direct imposition of bounds on
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the range of pressure profiles, are applied to the VPD to reduce the occurrence of

physiological unrealistic VPs. This virtual population is then used to train and test a

series of ML classifiers—also outlined in Chapter 2—to detect arterial disease, and

test their performance. Focus is on uncovering why some ML methods perform

better than others and which measurements (and their combinations) are more

informative.

The majority of work in this chapter is published in: Jones G., Parr J.,

Nithiarasu P., Pant S. A proof of concept study for machine learning application

to stenosis detection. Medical and Biological Engineering and Computing. 2021

August http://dx.doi.org/10.1007/s11517-021-02424-9.

3.2 Virtual patient database

3.2.1 Motivation and procedure

To train and test ML classifiers a large database of haemodynamic measurements

taken from a comprehensive cohort of patients is required. The corresponding correct

arterial health of these patients is also required. As opposed to using measurements

taken from real patients, VPs are created using a physics based model of pulse wave

propagation. As mentioned in Chapter 1, this VP approach has several advantages:

� Expense: creating VPs is relatively inexpensive.

� Class imbalance: creating VPs allows for the control of the distribution of

different disease states.

� Measurement availability: using VPs allows for measurements of pressure

and flow-rate to be taken at any location within the arterial system.

This final benefit is particularly important for this PoC where feasibility of the

ML approach is being assessed. A primary purpose of this study is to gain an

initial understanding of the patterns between the measurements and classification

accuracy. The availability of both pressure and flow-rate measurements throughout

the arterial network allows an in-depth a priori analysis of the importance of both

different measurement types, i.e. pressure vs flow-rate, and different measurement

locations to be carried out.

Pg. 37 / 416



3.2. VIRTUAL PATIENT DATABASE

To create a VPD the following four steps are sequentially completed:

1. Topology and parameterisation: the topology and parameterisation of

the arterial network of VPs is chosen. It is computationally unpragmatic

to model the entire arterial system, and so a subnetwork of interest is

identified. Prior and subsequent vessels to this subnetwork are lumped

into appropriate boundary conditions. While creating VPs with a larger

subnetwork of the arterial system, containing more vessels, increases the

physiological realism of the resulting synthetic data set, it also increases the

dimensionality and computational time associated with the creation of VPs.

This is undesirable for a PoC analysis. The parameterisation of the arterial

network being modelled must balance control over the random realisations

of arterial networks that can be created, with the ability to create variability

across the resulting VPD. Strict imposition of patterns and behaviours through

the parameterisation of the arterial network reduces the occurrence of VPs

with physiologically unrealistic pressure and flow-rate profiles, however also

decreases the variability in arterial networks seen across the VPD.

2. Probability distributions: appropriate distributions for the parameters

describing the arterial networks of VPs, across the resulting VPD, are chosen.

It is not possible to obtain exact distributions from which VPs arterial

networks should be sampled. Instead, an estimation of the distributions is

made. The complexity of this estimation is likely to be proportional to the

physiological realism of the resulting data set. The expense of creating the

VPD must therefore be carefully balanced against the required physiological

realism.

3. Sampling to create the VPD: random realisations of VPs arterial networks

are sampled from the distributions described above. For each VP, the physics

based model of pulse wave propagation is solved to obtain the corresponding

pressure and flow-rate profiles. The representation of the pressure and flow-

rate profiles being taken from VPs, which are used as input measurements

into ML classifiers, is chosen to balance the capturing of information with the

required dimensionality.

4. Post processing: post processing to create a usable data set from the raw
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VPD is carried out. Filters are applied to the VPD to remove VPs with

physiologically unrealistic pressure and flow-rate profiles.

Each of these aspects are described next.

3.2.2 Topology and parameterisation

Healthy subjects

This section presents the topology and parameterisation of the arterial network for

the creation of VPs. Once parameterised, random realisations of network parameters

can be sampled to create VPs. In this chapter, the network of interest is the

abdominal aorta bifurcating into the two common iliacs. A pre-existing model

for this is taken as the reference network from [20]. This is shown in Figure 3.1,

where the three vessels (abdominal aorta and two common iliacs) are represented

in 1D while suitable boundary conditions are imposed at the inlet and outlets. The

significant truncation of the arterial network of VPs results in a reduction in the

physiological realism of the resulting VPD, however a significant reduction in the

dimensionality of VPs arterial networks is achieved.

It can be seen that each VP contains one time domain inlet flow-rate, three

arterial vessels, and two terminal Windkessel models. Both the time domain inlet

flow-rate profile and the terminal Windkessel models are described within Chapter

2. For each arterial vessel, the model also requires the assignment of the length, the

wall thickness, the reference diameter, and the Young’s modulus.

As mentioned within Chapter 2, the inlet volumetric flow-rate, Qinlet(t), is

described using a Fourier series (FS). It is suggested in [180] that pressure profiles

can be described using a FS truncated at the 6th harmonics. To test if this is

true for flow-rate profiles, two flow-rate profiles are synthesised from the same FS,

however truncated at the 5th and 6th harmonic respectively. These profiles are

visually compared to the exact profile from which the FS coefficients are computed,

as shown in Figure 3.2. Figure 3.2 shows that while there are noticeable differences

between the exact profile and the FS synthesised up to the 4th order, no differences

can be seen by eye between the expansion truncated at the 5th order. Thus, the

Pg. 39 / 416



3.2. VIRTUAL PATIENT DATABASE

Figure 3.1: Coupling of the inlet and outlet boundary conditions to the numerical
model are shown. How this model represents the aortic bifurcation is also shown
through comparison to an angiogram [26].

time domain inlet flow-rate profile is described by:

Qinlet = {a0 = 0, b0, a1, b1, ..., a5, b5}, (3.1)

where an and bn represent the nth sine and cosine FS coefficients respectively—

resulting in the time domain inlet flow-rate profile requiring specification of 11

coefficients.

As a significantly truncated version of the arterial system is modelled to create

VPs, the length of vessels within the network are relatively short. The length of

the aorta and two iliacs within the reference model taken from [20] are 8.6cm and

8.5cm respectively. The short lengths of vessels within the arterial network results

in there likely being very little variation of the baseline arterial vessel properties,

i.e. excluding the variance introduced due to disease, along their lengths. It is,

therefore, assumed that the baseline properties of all the three vessels are constant

along their lengths.
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Figure 3.2: A comparison of the flow-rate profiles produced when expanding the
same FS, however truncated at different orders.

To impose geometric and mechanical symmetry on the lower extremities, the

two common iliac arteries are assumed to share baseline properties. This symmetry,

however, is not extended to the terminal Windkessel model parameters. To complete

the parameterisation of the arterial network of healthy VPs, it is assumed that

Pext = 0, and that the cardiac period of all VPs is the same. The parameterisation

of the network, thus, requires specification of the following 25 parameters:

� Six geometric properties: the two common iliac arteries require a single

length, a reference area, and a wall thickness. These properties are also

required for the aorta.

� Two mechanical properties: the Young’s modulus of the aorta and the

common iliacs needs to be specified.

� Six terminal boundary parameters: each of the Windkessel models

requires two resistances and a compliance.
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� 11 FS coefficients: the time domain inlet flow-rate profile is described using

a FS truncated at the 5th order.

Disease subjects

For an ML classifier to be trained to distinguish between healthy and unhealthy

patients, examples of both classifications are required within the VPD. A

parameterisation must, therefore, be chosen to describe stenosed arterial vessels.

For simplicity all VPs are limited to having a maximum of one diseased vessel. To

create a change in the reference area of a diseased vessel a normalised map of each

vessels area is produced. Both the length and cross sectional area of the vessel is

normalised between 0 and 1. This map, for a 60% stenosis, is shown in Figure

3.3, where the x-axis represents the reference position along the length of the vessel

and the y-axis represents the reference cross sectional area. For healthy vessels the

normalised reference cross sectional area is constant and equal to 1. For unhealthy

vessels a cosine curve is used to create a change in area. This cosine curve is scaled

to create variation in location and severity of disease between patients. To scale the

cosine curve three parameters are used. These parameters are the severity, the start

location, and the end location of the disease represented by S, o, and e respectively.

The normalised cross sectional area (An) of a diseased vessel at a spatial location

described by xn is equal to:

An =


(

1− S
2

)
+ S

2
cos

(
2(xn−o)π
e−o

)
for o ≤ xn ≤ e

1 otherwise

(3.2)

Thus, in addition to the 25 parameters for the description of healthy subjects,

three more parameters are required for specification of disease. Random realisations

of these parameters are sampled and the physics based model of pulse wave

propagation solved to produce each VP.

3.2.3 Probability distributions

Ideally the distribution of both arterial network parameters and the resulting

pressure and flow-rate profiles should be representative of those measured in a real

population. Since one-dimensional arterial network parameters are generally either
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Figure 3.3: An example of a 60% stenosis is shown. This disease is created with a
start location o = 0.2 and an end location e = 0.8.

expensive and invasive to obtain or non-physical (so cannot be directly measured),

their exact distributions are not known. Thus, a priori distributions are assumed

for both healthy and diseased virtual subjects, as described next.

Healthy subjects

A priori distributions are assumed for the arterial network parameters, based on

values reported in literature [20]. It is assumed that across a large population all

parameters required to describe VPs arterial networks, excluding disease parameters,

are independent and normally distributed. The mean value for each of these

parameters is taken from [20] and the standard deviation is set to be 20% of the

mean, as summarised in Table 3.1. VPs are assigned disease so that the VPD

consists of 50% healthy patients, and there is an equal number of aortic, first iliac,

and second iliac stenoses VPs.

Disease subjects

In addition to the parameters described for healthy patients above, a diseased patient

is characterised by three more parameters—disease severity, start location, and end

location—which are assigned uniform distributions based on physical considerations.

To impose a minimum possible length for stenoses a fourth parameter, the reference

location of the disease (represented by re), is introduced. The four parameters

Pg. 43 / 416



3.2. VIRTUAL PATIENT DATABASE

Parameter Mean Standard deviation

Aorta Iliac Aorta Iliac

Length 8.6cm 8.5cm 1.72cm 1.7cm

Wall thickness 1.03mm 0.72mm 0.21mm 0.14mm

Reference diameter 1.72cm 1.2cm 0.344cm 0.24cm

Young’s modulus 500kPa 700kPa 100kPa 140kPa

R1 - 6.81×107 Pa s m−3 - 1.36×106 Pa s m−3

R2 - 3.10×109 Pa s m−3 - 6.20×108 Pa s m−3

C - 3.67×10−10 m3 Pa−1 - 7.33×10−11 m3 Pa−1

Table 3.1: Arterial network parameter mean and standard deviation values. The
mean values for each parameter are taken from [20], and the standard deviation set
to 20% of the mean

required to describe disease are sequentially sampled from uniform distributions

within the following bounds:

Constraints :



0.2 ≤ re ≤ 0.8

0.1 ≤ o ≤ re − 0.05

re + 0.05 ≤ e ≤ 0.9.

0.5 ≤ S ≤ 0.9

(3.3)

3.2.4 Sampling to create the VPD

Random realisations of arterial networks are generated by drawing samples from

the assumed distributions outlined above, and the pressure and flow-rate waveforms

across the network associate with each are computed using the physics based model

of pulse wave propagation. The physical system is numerically solved using a

discontinuous Galerkin scheme [6]. This scheme is chosen as a pre-existing solver

is available that has been successfully validated against a 3D model of blood flow

through stenosed arterial vessels [21].

Representation of haemodynamic profiles

The output of the pulse wave propagation model is the pressure and flow-rate at

all temporal and spatial locations. These vectors of pressure or flow-rate at any
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location can be used directly as measurement inputs to the ML algorithms, i.e.:

q(x) = {q(x, t0), q(x, t0 + ∆t), q(x, t0 + 2∆t), · · · , q(x, t0 + k∆t)}, (3.4)

where:

k =
T

∆t
, (3.5)

and q(x) represents the vector describing the pressure or flow-rate profile at spatial

location x; q(x, t) represents the scalar pressure or flow-rate at the spatial and

temporal position x and t respectively; t0 represents the initial temporal position;

∆t represents the change in time between measurements; k represents the number of

measurements taken; and T represents the cardiac period. Using this representation

of pressure and flow-rate profiles is, however, not ideal as an input into an ML

classifier. To fully capture the information held within the pressure and flow-

rate profiles ∆t must be small, and so k large. This results in the subsequent

dimensionality of input measurements being provided to ML classifiers being large.

Furthermore, as severity of stenosis increases, resulting in additional non-linearities

in the model, the time step ∆t for a stable solution becomes very small. As pressure

and flow-rate profiles are periodic it seems natural to represent the time domain

haemodynamic profiles using a FS representation. Using this representation allows

the pressure and flow-rate profiles to be described to a high level of completeness in

much fewer dimensions.

The assumption that all arterial network parameters are independent and

normally distributed is physiologically incorrect. To correct for this assumption,

post simulation filters are applied to discard non-physiological patients. This is

described next.

3.2.5 Post processing

Through random sampling, there is a chance that VPs are assigned combinations

of arterial network parameters that result in physiologically unrealistic pressure and

flow-rate profiles. Thus, to remove these VPs from the VPD, a post simulation filter

is applied. “Hard filters” are applied to VPs—i.e. ranges within which pressure

profiles must fall are directly imposed. To create limits for this post simulation

filter it is first important to understand normal pressure ranges within the arterial
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system being replicated. It is stated in [192] that for patients who have undergone

endovascular repair on an aortic aneurysm the range of systolic and diastolic

pressures can be expected to be between 126mmHg–199mmHg and 60mmHg–

95mmHg respectively. To allow the full range of possible pressure waveforms present

in a real population to be expressed in the VPD these ranges are made more liberal.

The three conditions of the post simulation filter are:

Filters:


max(Pinlet) < 225mmHg

min(Pinlet) > 25mmHg

max(Pinlet)−min(Pinlet) < 120mmHg

where Pinlet represents the vector describing the time domain pressure profile at the

inlet of the system. Using the VPD created through the methodology described

above, the ability of ML classifiers to distinguish between healthy and unhealthy

VPs is assessed.

3.3 Available pressure and flow-rate

measurements

To use the VPD outlined above to assess the accuracy of ML classifiers, limitations

are imposed on the available pressure and flow-rate measurement. While pressure

and flow-rate profiles can be obtained at any location within the arterial network,

measurements are limited to the inlet and two outlets of the system, shown in Figure

3.1 by P1, Q1, P2, Q2, P3, and Q3 respectively. These measurements should be

sufficient to study the affect of measurement location and type on classification

accuracy, while maintaining a feasible maximum input dimensionality into ML

classifiers. How ML classifiers are used to predict the health of VPs from these

haemodynamic measurements is outlined next.
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3.4 Machine learning set up

A model mapping a vector of input features, y, to a discrete output classification,

z, can be described as:

z = m(y) z ∈ C, (3.6)

with

C = {C(1), C(2), .., C(j)}, (3.7)

where C represents the set describing all possible classifications, and C(j) represents

the jth possible classification. The input features, y, represents a vector describing

a user defined combination of the haemodynamic measurements [Q1, Q2, Q3, P1, P2,

P3] in FS form, and the output classification represent the corresponding health of

the VP. The methodologies used to both create models described by Equation (3.6)

and then subsequently assess their performances are explained next.

3.4.1 Test/train split

The VPD is split into two parts: training set and testing set. The training set is

used for learning in the ML algorithms and is set to two-thirds of the size of the

VPD. The remaining one-third of the VPs comprise the test set, which is used to

assess the accuracy of the ML algorithms on previously unseen data, i.e. the data

not used while training.

3.4.2 Standardisation of input data

As the FS coefficients describing the haemodynamic profiles vary by several orders

of magnitude, it is important to standardise this data before it is provided to ML

classifiers. Without this standardisation, it is likely that the information imparted

by different coefficients will be weighted according to their order of magnitude,

restricting the maximum information that can be extracted. In this study the data

set is transformed to standard score form (referred to as Z-score standardisation

[136]), based on the statistics of the training set. The raw VPD is described by an

m×d matrix:
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Y =


y11 . . . y1n

...
. . .

ym1 ymn

 ,
where each row describes a different VP—and so m represents the total number of

VPs within the VPD—and each column describes a different FS coefficient—and so

n represents the total number of FS coefficients and must be a multiplication of 11.

The standard score form of the jth coefficient corresponding to the ith VP, Z(yij),

is equal to:

Z(yij) =
yij − ȳtrain

j

σtrain
j

, (3.8)

where ȳtrain
j and σtrain

j represent the mean and standard deviation of the jth coefficient

across the training set, described in Section 3.4.1. Equation 3.6 can be written to

include this standardisation as:

zi = m̃(Z(yi)), (3.9)

where yi represents a singular row (corresponding to a singular VP) of matrix Y ,

and m̃ represents the standardised version of model m.

3.4.3 Machine learning algorithms

Within Chapter 2 six different ML classification methods are outlined. Here ML

classifiers are created using four of these different methods. These are logistic

regression (LR), support vector machine (SVM), naive Bayes’ (NB), and random

forest (RF). Two characteristics that can be used to distinguish between different ML

methods are if they are capable of producing linear or non-linear partitions between

different classifications, and if they return a probabilistic or non-probabilistic

output prediction. These four ML methods are chosen as they encompass all four

combinations of classifier characteristic behaviours, as shown in Table 3.2. Another

attractive feature of these methods is that they all require very little problem specific

optimisation. Before ML classifiers are trained and tested using each of the four

different methods, preliminary tests are carried out using an LR method. An LR

method is used for these initial tests as it is computationally inexpensive. Once
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Capable of linear partitions Capable of non-linear partitions

Probabilistic LR NB

Non-probabilistic
SVM with linear kernel SVM with radial basis function kernel

RF

Table 3.2: The four major classifier behaviour characteristics, and how each
classification method aligns with these characteristics.

an initial understanding of the VPD has been gained further classifiers are trained

using the other three ML classification methods.

3.4.4 Required size of the VPD

An important consideration in the creation of the VPD is its size – how many VPs

are sufficient for the ML algorithms to be applied? Here a priori evaluation of

the required size of the VPD is presented, while a posteriori analysis is found in

Section 3.5.1. A common rule of thumb within ML is that to train a classifier at

least 10 examples of each possible classification are required per input dimension,

known as events per variable or EPV [211]. To be able to determine how many

VPs are required, the maximum number of input dimensions provided to an ML

classifier must be understood. Obtainment of pressure and flow-rate measurements

is restricted to the inlet and two outlets of the system (as outlined in Section 3.3).

Thus, the maximum number of input dimensions into ML classifiers is 66 (each

measurement is described by 11 FS coefficients and all six measurements taken).

An estimate to the number of VPs required within the VPD is calculated by

assuming the minimum EPV of any one health classification must be 12, to be on

the conservative side of the rule of 10. It is chosen that two thirds of VPs within the

VPD are used for training classifiers, and the remaining one third used for testing.

From this, it is calculated that the VPD requires 1,188 (3/2 × 12 × 66) VPs with

disease in each of the three vessels. Since a balanced data set is desired, the number

of healthy patients required is 3,564 (1118× 3). This results in the EPV of healthy

patients being 36. With repeated sampling of arterial networks and application of

post simulation filters, the VPD of desired size is created.
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3.4.5 Classifier configurations

To use the VPD to train and test ML classifiers, precise classification objects

are outlined. Classification configurations are then constructed to allow for the

generalised ML classification methods outlined in Chapter 2, to be used to create

ML classifiers capable of meeting these objectives. The objectives and configurations

of classifiers can be split into two general categories. These two categories are binary

classifiers and multiclass classifiers. Binary ML classifiers are trained to predict the

outcome of Equation (3.9) when the output classification may belong to one of two

possible outcomes, i.e. C = {C(1), C(2)}. In contrast, when more than two classes

are present, multiclass classifiers are necessary.

Binary configurations

Binary classifiers are created using one of two different configurations.

� Entire network binary configuration

The first configuration of binary classifiers used are entire network binary

classifiers (ENBCs). The purpose of ENBCs is to predict the health of a VPs

entire arterial network, i.e. irrespective of the vessel in which the disease

is located. When creating ENBCs VPs with no disease present within their

arterial network are assigned to the first discrete output classification, C(1),

while all other VPs are assigned to the second discrete output classification,

C(2). The assignment of true state classifications to VPs when creating ENBCs

is described by:

zi =

C(1) if no disease is present,

C(2) else,
(3.10)

where zi represents the true state classification of the ith VP.

� Individual vessel binary configuration

The second configuration of binary classifiers are individual vessel binary

classifiers (IVBCs). The purpose of IVBCs are to predict if there is a

stenosis present within a particular vessel of a VP’s arterial network. When

creating IVBCs an arterial vessel of interest must be isolated, and VPs with
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disease present within this vessel are assigned to the first discrete output

classification, C(1). All other VPs are assigned to the second discrete output

classification, C(2). The assignment of true state classifications to VPs when

creating IVBCs is described by:

zi =


C(1) if disease is present within

vessel V
C(2) else,

(3.11)

where V represents the arterial vessel for which the binary health is being

predicted. It is chosen to include all VPs that do not have disease in vessel

V within classification C(2)—rather than just healthy VPs—as this allows for

a more complete analysis of the haemodynamic differences between different

disease states. Multiclass ML classifiers are discussed next.

Multiclass ML configurations

Multiclass classifiers predict the outcome of Equation (3.9) when the output may

belong to more than two different classifications. The purpose of multiclass classifiers

is to predict if there is a stenosis present within a VP’s arterial network, and if so

which vessel does that disease occur within. Thus, four different classifications exist:

C = {C(1), C(2), C(3), C(4)}, (3.12)

where C(1), C(2), C(3), and C(4) represents no disease present, disease present within

the aorta, disease present within the first iliac, and disease present within the second

iliac respectively. It is found through analysis of binary classification behaviours

(Section 3.5.2) that LR and SVM classifiers consistently achieve higher accuracy

classification than NB and RF classifiers. Thus, multiclass classifiers are only created

using these two methods. However, LR and SVM methods are both inherently

binary—only naturally capable of distinguishing between two classes. In order to

be used as multiclass classifiers they can be adopted through strategies such as

one-versus-all [170] and one-versus-one (OVO) [174]. These are described next.

� One-versus-all configuration
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An OVA strategy [170] trains multiple instances of binary classifiers, each

designed to predict the probability of a separate classification problem. These

probabilities are then combined to make a multiclass prediction.

In the case of this PoC, the OVA classifier trains four instances of a binary

classifier. Each binary classifier prescribes a correct binary health classification

of 1 to all VPs belonging to the corresponding possible classification. All other

patients, irrespective of which of the other three classifications they belong too,

are assigned a correct binary health classification of 0:

ψ
(j)
i =

1 if zi = C(j)

0 otherwise.
, j ∈ {1, 2, 3, 4}, (3.13)

where ψ
(j)
i represents the correct binary health classification of the ith VP

for the jth instance of a binary classifier. To assign a predicted multiclass

classification to a new subject, the predicted probability of producing a positive

binary health classification is found for all the four binary classifiers. The

classification that corresponds to the highest predicted probability is then

selected as the multiclass prediction, i.e.:

ẑi =



C(1) if p
(
ψ

(1)
i = 1 | yi,θ(1)

)
= max

(
p
(
ψ

(j)
i = 1 | yi,θ(j)

))
for j ∈ {1, 2, 3, 4}

C(2) if p
(
ψ

(2)
i = 1 | yi,θ(2)

)
= max

(
p
(
ψ

(j)
i = 1 | yi,θ(j)

))
for j ∈ {1, 2, 3, 4}

...

C(4) if p
(
ψ

(4)
i = 1 | yi,θ(4)

)
= max

(
p
(
ψ

(j)
i = 1 | yi,θ(j)

))
for j ∈ {1, 2, 3, 4}

(3.14)

where ẑi represents the predicted classification of the ith VP,

p
(
ψ

(j)
i = 1 | yi,θ(j)

)
represents the probability of the ith VP being predicted

to have a positive binary health classification for the jth instance of a classifier

within the ensemble, yi represent the vector of measurements for the test
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patient, and θ(j) represent the measurement specific weightings for the jth

classifier.

� One-versus-one configuration

An OVO strategy [174] creates binary classifiers for all the pairs of the classes.

Thus, if n total classes exist, then n(n − 1)/2 binary classifiers are created.

The most frequent class predicted among these binary classifiers is then used

as the multiclass prediction.

For the PoC problem, the OVO strategy creates six instances of a binary

classifier. Each binary classifier is designed to distinguish between two

different classes. Thus, the binary classifier created to distinguish between

classifications C(j) and C(k) uses:

ψ
(j,k)
i =

1 if zi = C(j)

0 if zi = C(k).
, j, k ∈ {1, 2, 3, 4}, j 6=k (3.15)

When predicting the classification of an unseen test VP, a voting scheme is

applied. The input measurements taken from the test VPs are passed through

each of the six instances of a binary classifier, and the predicted classifications

recorded. The classification that occurs most frequently is selected as the

multiclass prediction.

It is found that while both LR classifiers employing an OVA method and SVM

classifiers employing an OVO method achieve high aortic, first iliac, and second iliac

classification accuracy, they produce very low healthy VP classification accuracy

(see Section 3.5.4). To rectify the low healthy VP classification accuracies a custom

probabilistic configuration (CPC) is developed, as described next.

� Custom probabilistic configuration

In the case of both OVA and OVO methodologies, no initial assumption is

made about the classification of VPs before the obtainment of predictions from

the different instances of binary classifiers within the ensemble. In the case

of probabilistic binary ML methods, i.e. LR, an alternative CPC is to assign

all VPs a health classification corresponding to ‘no disease’ before running
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any binary classifiers. This strategy treats ‘no disease’ as the opposite to the

three other possible classifications a VP may belong to. The binary classifiers

employed in the CPC are identical to the OVA, with the exception that the

classifier for ‘no disease’ is omitted. Thus, as opposed to four binary classifiers

in the OVA strategy, this strategy uses only three binary classifiers—each

pertaining to diseased aorta, first iliac, and second iliac respectively. The

assignment of true state binary health classifications to VPs for the three

binary classifiers are:

ψ
(j)
i =

1 if zi = C(j)

0 otherwise.
, j ∈ {2, 3, 4}. (3.16)

Note that j = 1 for ‘no disease’ classification is not included. To predict a

multiclass classification for test VPs, the vessel that produces the highest

probability of being diseased among the three binary classifiers is first

found. The default multiclass classification is ‘no disease’ unless the highest

probability of disease occurring is greater than a prescribed threshold (decision

boundary), in which case the test VP is predicted to have disease in the arterial

vessel with this highest probability, i.e.

ẑi =



C(1) if max
(

p
(
ψ

(j)
i = 1 | yi,θ(j)

))
< B for j ∈ {2, 3, 4},

C(2) if p
(
ψ

(2)
i = 1 | yi,θ(2)

)
= max

(
p
(
ψ

(j)
i = 1 | yi,θ(j)

))
for j ∈ {2, 3, 4}
and p

(
ψ

(2)
i = 1 | yi,θ(2)

)
≥ B,

...

C(4) if p
(
ψ

(4)
i = 1 | yi,θ(4)

)
= max

(
p
(
ψ

(j)
i = 1 | yi,θ(j)

))
for j ∈ {2, 3, 4}
and p

(
ψ

(4)
i = 1 | yi,θ(4)

)
≥ B,

(3.17)

where B represents the threshold (decision boundary).

As opposed to the classical OVA, where the classification with highest

predicted probability, irrespective of the magnitude of this probability, is
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VP belongs to VP does not belongs to

classification C(j) classification C(j)

VP predicted to belong C(j) True positive (TP) C(1) False positive (FP)
to classification C(j)

VP predicted to not belong C(j) False negative (FN) C(j) True negative (TN)
to classification C(j)

Table 3.3: The process of determining whether a VP is classified correctly or
incorrectly, for a specific discrete classification C(j), is outlined above.

chosen, CPC requires a minimum certainty of disease being present to be

met before the default hypothesis ‘no disease’ can be overridden. It is not

possible to create multiclass classifiers in this manner using non-probabilistic

methods, such as SVM.

3.4.6 Quantification of results

Two different methods are used to quantify and compare the results achieved by

different classifiers. The first, and most intuitive, of these is to compute the

sensitivity and specificity of classification across the test set. Determination of

whether a VP is classified correctly or incorrectly can be achieved by comparison

against the true state, see Table 3.3. The proportion of VPs belonging to a

classification that are correctly classified, i.e. the sensitivity (Se), is computed using

the equation Se =TP/(TP+FN), while the proportion of VPs not belonging to a

classification that are correctly classified, i.e. the specificity (Sp), is compute using

the equation Sp=TN/(TN+FP). The relationships between the TP, FN, FP, TN,

Se, and Sp with respect to the class C(j) are shown within Figure 3.4.

In the case of multiclass classifiers, assessment of the accuracy of classification

requires provision of the sensitivity and specificity corresponding to each discrete

classification. Multiclass classifiers are created to predict which one of four different

classifications VPs belong to, thus the full accuracy of multiclass classifiers requires

eight different numbers (four sensitivities and four specificities). While quantifying

the accuracy of ML classifiers through the sensitivity and specificity of each

classification is simple and easily understood, the description of results through

two different numbers per classification can make comparison of different classifiers
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Figure 3.4: The differences between sensitivity, specificity, recall, and precision.
Each of there relationships to the TP, FN, FP, and TN classification accuracies is
also included.

difficult.

A more complex, however easier to compare, method for quantifying the accuracy

of ML classifiers is to use the F score [181]. The F score produces a single

quantitative score allowing for easy comparison. Higher values of F score imply

a better classification. To calculate the F score the precision (P) and recall (R) of

each discrete classification are calculated. A visual explanation of F score, precision,

and recall is included within Figure 3.4. Precision is the proportion of patients

predicted to belong to a classification, who do in fact belong to that classification

(TP/(TP+FP)). The recall is the portion of patients belonging to a classification

who are correctly classified, thus identical to the sensitivity (TP/(TP+FN)). The

difference between precision and recall can be seen in the denominator. The F score

combines the precision and recall as follows:

F =
(δ2 + 1)PR
δ2P +R , (3.18)

where δ represents a hyper parameter. Values of δ above 1 give preference to recall,

while values under 1 give preference to precision. Although there is a preference to

recall in the proposed application of the classifiers, δ = 1 is used to get a general
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sense of how classifiers perform without any bias. As δ = 1 is being used, the F

score is referred to as F1 score and is the harmonic mean of precision and recall.

While the F1 score balances the effect of precision and recall, it does not balance

the effect of the sensitivity and specificity. Given a situation in which there is an

equal number of healthy and unhealthy VPs, an ENBC which correctly predicts 80%

of healthy VPs (R = Se = 0.8) and 20% of unhealthy VPs (Sp = 0.2) will achieve

an F1 score of 0.61. An ENBC that correctly predicts the health of 20% of healthy

VPs (R = Se = 0.2) and 80% of unhealthy VPs (Sp = 0.8), however, will achieve

an F1 score of 0.28, despite the fact that the total number of VPs who have been

correctly classified is unchanged. The importance of using both the F1 score and the

sensitivity and specificity in combination can be seen from the example highlighted

above.

3.4.7 ML implementation

It is possible to simplify the process of training and testing different ML classifiers

by using available ML packages. These packages are created to allow for quick

application of ML methods to different problems. It is important, however, to

ensure the use of these pre-made packages does not have a detrimental effect on the

results achieved. The deliberate non-intensive nature of these pre-made packages

restricts the problem specific optimisation of the classifiers. To examine the affect

of using pre-made ML packages, in this case the Scikit-learn package [156], on the

accuracy of results achieved a series of LR classifiers are created using both a custom

written implementation and the Scikit-learn implementation of the LR method.

The Scikit-learn package offers 5 different solvers that can be used to train an

LR algorithm. The custom implementation of an LR method has been created

to use one of two different hypothesis functions—sigmoid or tanh—and one of

five different update functions—gradient descent, gradient descent with momentum

[161], Nesterov accelerated gradient (NAG) [141], Adadelta [223], and Adam [109].

This results in the custom implementation being capable of running ten different

LR set ups (each of the two different hypothesis functions being combined with each

of the five different update functions). To compare the accuracy of the 15 different

unique LR algorithms—the five Scikit-learn and ten custom implementations—-each

is used to train and test an ENBC, using the measurements of pressure and flow-
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rate taken from VPs at all three locations. For each LR set up, five instances of

a classifier are created. Each of these instances uses a different random subset of

VPs for training and testing the classifier. The average performance of these five

instances is then computed, reducing the affect of the VPs selected for training and

testing on the results achieved. This is referred to as five fold validation.

The highest accuracy results achieved by the Scikit-learn package produced

an average sensitivity for classification C(1), i.e. the percentage of healthy VPs

classified correctly, of 0.727, and an average specificity for classification C(1), i.e. the

percentage of unhealthy VPs classified correctly, of 0.522 across the five folds of the

VPD. These accuracies correspond to an F1 score of 0.581. The highest accuracy

results achieved by the custom implementation used a tanh activation function

and a Adam update function. This LR set up produced an average sensitivity for

classification C(1) of 0.729, and an average specificity for classification C(1) of 0.525

across the five folds. These accuracies correspond to an F1 score of 0.583, identical

to the result achieved by the Scikit-learn package when evaluated to two decimal

places. These results suggest using the Scikit-learn package to train future ML

classifiers will have little to no affect on the accuracy of classification achieved. Due

to the significant increase in ease of implementation, and so consequently decrease

in time to implement, the majority of future ML classifiers are created using the

Scikit-learn package. The custom LR implementation is only used when there is a

clear benefit to doing so.

3.4.8 Hyper-parameter optimisation

The architecture of LR, NB, and SVM classifiers can all be considered to be problem

independent. While these three algorithms are able to undergo varying levels of

problem specific optimisation, the underlying structure of the classifier cannot be

changed. The architecture of RF classifiers, however, is dependent on the specific

problem. The architecture choices for the classifiers and associated hyper-parameter

optimisation is described next.

LR, SVM, and NB

For LR, the ‘LIBLINEAR’ solver offered by the Scikits-learn [156] package is chosen.

In the case of SVM, a kernel is typically chosen to map the input measurements to a

Pg. 58 / 416



3.4. MACHINE LEARNING SET UP

higher order feature space [94]. All SVM classifiers use a radial basis function kernel

[184]. In the case of NB, the distribution of input measurements across the data set

is chosen to be Normal [139].

Random forest

In the case of RF the number of trees within the ensemble and the maximum depth

of each tree can be optimised for a specific problem. To optimise these two hyper-

parameters, a grid search is carried out. A grid is constructed by discretising the

number of trees within the ensemble between 10 and 400 at intervals of 10, and

discretising the maximum depth of each tree between 20 and 200 at intervals of 10.

An ENBC is created using an RF method and every permutation of number trees

within the ensemble and maximum depth of each tree, over five folds of the VPD, and

using all six measurements. The hyper-parameters describing the architecture that

produces the highest F1 score is found, and this combination of hyper-parameters

is then chosen for all subsequent classifiers. It is found that the highest F1 score

achieved is recorded for the RF classifier trained and tested using 20 trees with a

maximum depth of 60.

It is unlikely that a single architecture will consistently produce the maximum

accuracy results achievable when varying the input measurements provided. Due

to the exploratory stance of this study—with priority being given to uncovering

patterns and behaviours rather than optimisation for maximum accuracy—it is

computationally impractical to perform a grid search for every classifier. It is

instead assumed that the differences in optimum architectures when using different

input measurements is minor—fine-tuning rather than systemic restructuring—and

so reasonable representations of achievable accuracies can be produced using a fixed

architecture. Thus, all future RF classifiers are trained and tested using the optimum

hyperparameters found and outlined above. The likely affect of using a single

architecture for all RF classifiers created will be considered within the later chapters

of this thesis.
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3.5 Results and discussion

The results of the application of ML classifiers to the VPD are presented in the

subsequent section. A brief analysis on the statistics of the VPD is found in

Appendix A. Hitherto, all FS have been described by their sine-cosine coefficients.

There are, however, two forms of a FS. While these two forms of a FS require

the same dimensionality to represent a pressure or flow-rate profile, they do not

necessarily capture the same information about the haemodynamic profiles as one

another. A comparison of the use of these two forms as input measurements into

ML classifiers is presented in Appendix B. It is found that using the sine-cosine

form produces the highest accuracy classification, and so all profiles are described

by their sine-cosine coefficients.

3.5.1 A posteriori analysis of the size of the VPD

While an a priori estimation of the required size of the VPD has been made by

calculating the EPV, this can be checked more thoroughly by training and testing

a series of ML classifiers with successively larger numbers of available VPs. To fully

evaluate the adequacy of the number of VPs within the VPD, classifiers must be

trained and tested under the circumstances with the lowest number of points (i.e.

the lowest number of VPs) in the highest dimensional space (i.e. the most pressure

and flow-rate measurements) possible. Thus, this assessment is made for the case

with the largest input dimensionality—the pressure and flow-rate measurements at

all three available locations. Furthermore, classifiers must be trained and tested

with the lowest number of VPs belonging to a single classification—i.e. the lowest

number of VPs belonging to either C(1) or C(2) possible—and thus classifiers must

be trained to predict the health of each vessel individual. As the VPD has been

created so that there is an equal number of healthy and unhealthy VPs, for any

given number of available VPs an ENBC will have half of the number of available

VPs belonging to C(1) and half belonging to C(2). On the contrary, three series of

IVBCs are created (as described in Section 3.4.5), each predicting the health of a

different vessel. This results in each instance of an IVBC having 5/6 of the available

VPs belonging to a negative binary classification, however only 1/6 of the number of

available VPs belonging to a positive binary classification. By empirically showing
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there is an adequate number of VPs to train and test classifiers within this extreme

situation, it is reasonable to assume there is an adequate number of VPs to train

and test ENBCs.

Due to the class imbalance present, i.e. there are significantly more VPs

belonging to C(2) than C(1), a multiplier is applied to the cost of VPs belonging

to C(1) when training IVBCs. Without this multiplier IVBCs are biased towards

VPs belonging to C(2). The weighting w applied to the cost of the prediction of VPs

belonging to C(1) for each classifier is calculated by assigning a ratio ι to the effective

number of VPs belonging to classifications C(1) and C(2):

ι =
w ∗m(1)

m(2)
, (3.19)

where m(1) and m(2) represent the number of VPs belonging to classes C(1) and C(2),

respectively. The corresponding cost (loss) function of the LR classifier (as described

by Equation (2.26) in Chapter 2) is modified to include the weight w as:

L(θ,Y ,ψ) = − 1

m

m∑
i=1

(
wψi log (h(yi,θ)) + (1− ψi) log (1− h(yi,θ))

)
, (3.20)

where L(θ,Y ,ψ) represents the average cost across the data set; Y and ψ represents

the matrix of input measurements and the vector of the known correct binary

classifications taken from all patients within the data set respectively; yi and

ψi represents the vector of input measurements and the known correct binary

classification corresponding to patient i respectively; θ represents the measurement

specific weightings; and m represents the number of patients within the data set.

When ι = 1 is used, VPs belonging to C(1) and C(2) have the potential to contribute

equally to the total cost of prediction across the training set. If ι > 1 is used, bias

is given towards VPs belonging to C(1), and ι < 1 gives bias towards VPs belonging

to C(2). Unless stated otherwise, ι = 1 is used.

For successively increasing number of VPs, three IVBCs corresponding to disease

in the three vessels are trained and tested, over five folds of the VPD. The average

F1 scores achieved across the training and test sets with increasing numbers of VPs

are shown in Figure 3.5.

Figure 3.5 shows that both training and test accuracies are low when a small
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Figure 3.5: The results of the analysis of the adequacy of the size of the VPD, when
using pressure and flow-rate measurements at all the three locations, are shown
above. The first, second, and third rows show the results of aortic, first iliac, and
second iliac classification respectively.
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proportion of the VPD is made available to ML classifiers. This suggests that the

classifiers being trained are underfitting the training data, i.e. low variance but high

bias. The classifiers trained can neither fit the training data nor generalise to the test

data. As the number of available VPs increases the behaviour of classifiers differs

between the aorta and two common iliacs. In the case of the aorta, the training

accuracy remains relatively constant, while the test accuracy increases. In the case

of the two common iliac classifiers, both the training and test accuracy increase.

These behaviours suggest the classifiers are fitting the training data better, and as

a consequence are better able to classify test patients. Initially, between 1,000 and

5,000 available VPs, the changes made to the partition between VPs belonging to

C(1) and C(2) through the input measurement space are significant, and so there are

large jumps in change to the training and test accuracies. As the number of available

VPs continuous to increase the partition between healthy and unhealthy patients

through the input measurement space begins to converge to an optimum solution.

This causes the changes to the training and test accuracies to reduce, and eventually

flatten off. Figure 3.5 suggests that beyond 7,000 VPs the VPD contains enough

VPs to train and test ML classifiers. This is shown by the fact that the training and

test accuracies of each vessel are consistent for the final several numbers of available

VPs, and so the partitions between healthy and unhealthy patients are no longer

changing.

3.5.2 ENBC results

There are 63 possible combinations of input measurements that can be provided

to an ML classifier from the three locations at which pressure and flow-rate are

measured. A combination search is performed—for every combination of input

measurements, an ENBC is trained and then subsequently tested using each of

the four different classification methods. The average F1 score, sensitivity, and

specificity of healthy classification accuracy for each input measurement combination

and classification method across five folds of the VPD are recorded. Combinations

of interest are then further analysed. The full tables of results are shown in

Appendix C. The F1 score achieved by each ML method and combination of input

measurements are visually shown in Figure 3.6.
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Like for like input measurement comparison.

To gain a better understanding of what difference in F1 score can be considered

insignificant, classifiers that should theoretically achieve identical accuracies are

compared. Exploiting the symmetrical structure of the arterial network (see Figure

3.1), classifiers that use symmetrical measurements can be identified. These are

referred to as like-for-like measurements; two examples of such measurements are

shown in Figure 3.7. Any discrepancy between the F1 scores achieved by classifiers

trained using like-for-like input measurement combinations is therefore introduced

due to training and statistical errors.

There are 24 possible cases of like-for-like input measurement pairs. The

discrepancy in the F1 score achieved by the two classifiers within each of these pairs

is computed when using each of the four different classification methods. It is found

that NB classifiers show significantly greater magnitudes in the discrepancies of F1

scores produced than any of the three other methods. The maximum discrepancy in

F1 scores produced when using a NB method is equal to 0.18. This large discrepancy

points to something beyond statistical and training errors and is, therefore, most

likely related to the unsuitability of the NB method for this problem. It is, therefore,

decided to exclude the results achieved by the NB method from all subsequent

analysis carried out. The histograms of the discrepancies in the F1 score between

like-for-like input measurement combinations produced when using the remaining

three ML methods are shown in Figure 3.8.

Figure 3.8 shows that the discrepancy in F1 scores between like-for-like input

measurement combinations follow a very similar pattern for both the LR and RF

classification methods. For both of these methods it can be seen that the majority

of the 24 combinations produce a discrepancy in F1 score of less than 0.005. There is

then a clear decay in the number of occurrences as the F1 score discrepancy increases.

20 of the 24 LR pairs, and 16 of the 24 RF pairs achieved a discrepancy of less than

0.01. When looking at the F1 discrepancies of SVM classifiers, there appears to be no

real decay in the number of occurrences as the F1 discrepancy increases, and instead

a relatively consistent number of SVM pairs produce F1 discrepancies between 0 and

0.025.

The maximum discrepancy in F1 scores between like-for-like input measurement

combinations is equal to 0.0231. This discrepancy in F1 score is measured between
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two pairs of input measurements when using an SVM method. The firsts of these

two pairs is (Q3, P3) and (Q2, P2). When training a SVM classifier using (Q3, P3)

the sensitivity and specificity is equal to 0.71 and 0.51 respectively. When training

a SVM classifier using (Q2, P2) the sensitivity and specificity is equal to 0.74 and

0.47 respectively. The second pair of input measurements producing a discrepancy

in F1 score of 0.0231 is (Q3, P1) and (Q2, P1). When training SVM classifiers using

(Q3, P1) and (Q2, P1) the sensitivities and specificities are equal to 0.76 and 0.50;

and 0.8 and 0.46 respectively. It can be seen that in the case of both pairs of input

measurements highlighted above, while there are some differences in the sensitivities

and specificities produced, the differences in accuracies are relatively low and the

behaviours of each of the two classifiers are relatively consistent.

From Figure 3.8 and the aforementioned analysis, a difference in F1 score of

more than 0.01 between two LR, SVM, or RF classifiers trained using different

input measurements can be considered to significant and likely due to the behaviour

of the classifiers. It is important to remember, however, that a difference in F1 score

of approximately 0.025 is required to fully rule out the possibility that patterns are

due to training or statistical errors.

Effect of number of input measurements

Appendix C and Figure 3.6 show that there is a correlation between the number

of input measurements used to train and test ML classifiers and the F1 score

achieved. To investigate this further the average F1 score achieved by of all classifiers

trained using one to six input measurements is found for each of the three different

classification methods. The maximum and minimum F1 score are also recorded and

shown in Figure 3.9. It can be seen that as the number of input measurements

increases, the average F1 score achieved by all classification methods also increases.

The increase in F1 score is most noticeable for the SVM method. For the LR

and RF classification methods, the average F1 score achieved when using 1 input

measurement is approximately 0.5, representing naive classification (Se + Sp = 1).

The average F1 score achieved by SVM classifiers trained using 1 input measurement

is marginally better than naive classification. This finding that the average F1

score increases as the number of input measurements increases is expected as the

discriminatory information increases, on average, as more measurements are made
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Figure 3.7: Two examples of like for like input measurements that should result in
identical classification accuracies.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
F1 discrepancy

0

2

4

6

8

10

N
um

be
ro

fo
cc

ur
re

nc
es

LR
SVM
RF

Figure 3.8: Histograms of the discrepancy between the F1 score of like-for-like
classifiers, when employing the LR, SVM, and RF classification methods.
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Figure 3.9: The average, maximum, and minimum F1 score achieved by all classifiers
trained using different numbers of input measurements. The central markers
represent the average score achieved, while the error bars indicate the upper and
lower limits. The combination of input measurements that produces the highest
F1 score is identified for the SVM method when using each number of input
measurements, up to five input measurements.

available.

Observing the range of maximum to minimum F1 scores in Figure 3.9 it is seen

that as the number of input measurements increases, the range of F1 scores decreases.

An interesting pattern to note is that while the average and minimum F1 score

achieved increases when increasing the number of input measurements between four

and six, the maximum remains relatively constant. The maximum and minimum

F1 scores when using four to six measurements are shown in Table 3.4, along with

the corresponding sensitivities and specificities. Table 3.4 shows that the maximum

accuracy of classification—assessed by the F1 score, sensitivities, and specificities—

vary insignificantly between four, five, and six measurements. Thus, the analysis

shows that similar levels of accuracies can be achieved by using four measurements
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compared to the case when all six measurements are used, if these measurements

are chosen judiciously.

Importance of inlet pressure and flow-split

A further pattern noticed within the tables in Appendix C is that classifiers trained

using P1 generally perform better than those that do not use P1. To analyse this

further, the F1 score of classifiers trained with and without P1 are separated and

plotted in Figure 3.10. For LR and SVM classifiers, a clear improvement of ∆F1 ≈
0.05 is observed when P1 is included. This behaviour is expected, in part due to

design. There are a total of 32 combinations of input measurements that include the

use of P1, and 31 combinations of input measurements that exclude the use of P1.

The classifier trained using all six input measurements, and five of the six trained

using five input measurements contain P1. Only one classifier trained using five input

measurements does not include P1. It has previously been shown in Figure 3.9 that,

generally, classifiers trained using more input measurements achieve higher accuracy

classification results. There is, therefore, some expected skewing towards higher F1

scores in favour of classifiers trained with P1. This expected behaviour is further

amplified by the fact that only one combination of input measurements consists of a

single input measurement and contains P1. This compares to five combinations that

consist of a single input measurement and exclude P1. This results in an expectation

of more low scoring classifiers without P1.

Figure 3.10 shows that in the case of LR, only 11 of the 32 classifiers trained

using P1 achieve an F1 score of less than 0.54. This compares to all 31 LR classifiers

trained without P1 achieving an F1 score of less than 0.54. In the case of SVM

classifiers, only 1 combination of input measurements containing P1 achieves an F1

score of less than 0.54. This compares to 5 combinations of input measurements that

do not contain P1 that achieved an F1 score of less than 0.54. When the threshold

for comparison is increased to 0.6 it is found that 20 of the 32 SVM classifiers trained

with P1 exceed this threshold, compared to 14 of the 31 trained without P1 exceeding

this threshold.

Similar analysis is performed for the inclusion and exclusion of the measurement

Q1, shown in Figure 3.11. Figure 3.11 shows a high degree of consistency with Figure

3.10 and the aforementioned analysis. Thus, measurements of pressure and flow-rate
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at the inlet of the system appear to be particularly informative in differentiating

between healthy and unhealthy patients.

Another observation made by observing the highest scoring SVM classifiers in

Figure 3.9 is that the best performing classifiers include P1, Q1, and a secondary

flow-rate to allow for determination of the flow-split between the left and the right

iliacs. For example, when three measurements are used, the best combination

is (Q3, Q1, P1), which would enable the flow split to be known through mass

conservation (noting that compliance of the arteries is relatively small) in addition

to P1. This observation bears similarity to the classical inverse problem analysis

presented in [148], where the authors show that in order to find the parameters of

any arterial network, the inlet pressure and flow-splits to all the outlets should be

known.

Linear versus non-linear partitions

Comparing the results achieved by LR and SVM classifiers in all previous analysis,

it can be seen that SVM classifiers consistently achieve higher accuracy results than

LR classifiers. When using all six input measurements the LR and SVM classifiers

achieve sensitivities and specificities of 0.73 and 0.52; and 0.80 and 0.57, respectively.

Similarly, the F1 scores for LR and SVM classifiers are 0.58 and 0.65, respectively.

All SVM classifiers trained up to this point have mapped the input measurements

provided to a higher order feature space through the use of radial basis function. The

fact that the accuracy of SVM classifiers are consistently higher than LR classifiers

suggests that the partition between healthy and unhealthy VPs through the pressure

and flow-rate measurement space is non-linear. To test the hypothesis that the

increase in accuracy seen in SVM classifiers is due to this higher order mapping, an

SVM classifier is trained and tested with a linear kernel. If the increased accuracy

achieved by previous SVM classifiers is in fact due to the need for a higher order

partition through the input space, the SVM classifier trained and tested using the

linear kernel will perform comparably to the LR classifiers. If, however, the increase

in accuracy seen in SVM classifiers, when compared to LR classifiers, is unrelated

to the higher order partition between healthy and unhealthy patients, the SVM

classifier trained and tested using the linear kernel will perform comparably to the

previous SVM classifiers.
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Figure 3.10: The histograms of the F1 scores achieved by each of the three different
classification methods are shown for all input measurement combinations that
include P1 in the upper plot, and exclude P1 in the lower plot.
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Figure 3.11: The histograms of the F1 scores achieved by each of the three different
classification methods are shown for all input measurement combinations that
include Q1 in the upper plot, and exclude Q1 in the lower plot.
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It is found that an SVM classifier trained using all six pressure and flow-rate

measurements and a linear kernel produces an average sensitivity and specificity of

0.85 and 0.42 respectively over five folds of the VPD. This corresponds to an F1 score

of 0.53. The corresponding F1 scores achieved for LR and radial basis function SVM

are 0.58 and 0.65, respectively. The non-linear SVM outperforms the linear SVM

and LR (also linear), thus demonstrating that a non-linear mapping is beneficial in

discerning between healthy and diseased states.

Effect of disease severity

Here the effect of disease severity on the accuracy of classification is investigated.

This analysis is performed using an SVM classifier employing an RBF kernel and

an LR classifier, both using pressure and flow-rate measurements at all the three

locations.

A scatter plot of the predicted probability returned by the LR classifier against

the severity of disease (i.e. diseased VPs) for False Negatives and True Positives is

shown in Figure 3.12 (left), while a histogram of the predicted probabilities for all

the healthy VPs (i.e. zero severity) is shown in Figure 3.12 (right). Contrary to

intuitive reasoning, which suggests that higher severity of stenosis should be easier

to detect, no trends are observed in Figure 3.12, with classification accuracy being

independent of the severity. This suggests that the variability in the pressure and

flow-rate waveforms induced by the boundary conditions representing physiology

before and after the anatomical network (see Figure 3.1) is large and can overshadow

the variability induced by stenosis severity alone.

Since the SVM classifiers do not predict a probability of disease, but instead a

direct classification of the health of a subject, histograms of the distributions of True

Positives and False Negatives across the range of severities for diseased subjects are

considered to assess the effect of stenosis severity. These are shown in Figure 3.13.

For the healthy subjects, 224 False Positives and 1044 True Negatives are recorded.

Similarly to the LR results above, the SVM results do not show a strong trend of

severity affecting classifier performance.
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Figure 3.12: Logistic Regression: predicted probability of disease against stenosis
severity for diseased patients (left) and histogram of predicted probability of disease
for healthy subjects (right). TP: True Positive; FN: False Negative; FP: False
positive; and TN: True Negative.
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Figure 3.13: SVM with an RBF kernel: histograms of True Positives (TP) and False
Negatives (FN) against stenosis severity.
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3.5.3 IVBC results

Following an identical procedure to that employed for the ENBC combination search,

three IVBC combination searches—one for disease classification in each of the three

vessels—are performed using the LR and SVM methods. It is chosen to limit the

IVBC combination searches to these two classification methods due to the higher

computational expense, and the fact that these two methods have shown consistently

higher accuracy results. The full tables of results for the IVBC combination searches

are presented in Appendix D. The average, minimum, and maximum F1 score

achieved when using one to six input measurements are shown in Figure 3.14. There

is a good agreement between the overall behaviour seen across the IVBC and ENBC

(as shown in Figure 3.9) combination searches. These similarities include:

� The average and minimum F1 score achieved continuously increases when

increasing the number of input measurements from one to six.

� The maximum F1 score initially increases rapidly and reaches an asymptotic

limit between two and four input measurements.

� The SVM method consistently produces higher accuracy results than the LR

method.

For the SVM configurations corresponding to maximum F1 scores, the sensitivities,

specificities, and the combination of measurements is shown in Table 3.5. Table 3.5

shows that the combinations of input measurements that produce the highest F1

scores in the two common iliacs are not only identical, but also symmetrical (with

the same input measurements being taken from the right and left sides). While

the combinations of input measurements that produce the highest F1 scores differ

from the ENBC results (see Table 3.4), a similarity between the two is that the

best performing classifiers include a pressure measurement and a combination to

determine the flow-split. In Section 3.5.2 it is hypothesised that the combination

of pressure at the inlet and flow-split may be particularly informative. Table 3.5,

however, seems to suggest that it may be the pressure within the diseased vessel

and the flow-split that best captures the presence of a stenosis.

Comparing Tables 3.4 and 3.5 also shows that IVBCs, owing to their more

granular characterisation of diseases states, lead to higher F1 scores, sensitivities,
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Figure 3.14: The average, maximum, and minimum F1 score achieved by all IVBCs
when providing different numbers of input measurements to detect disease in each
of the three vessels are shown. The central markers represent the average score
achieved, while the error bars indicate the upper and lower limits.

and specificities, relative to the ENBCs. Neither of them are, however, good at

pointing to the precise vessel that is diseased in the network. Note that even if an

IVBC classifier has perfect accuracy it does not lead to knowledge of the precise

diseased vessel; for example, the aortic IVBC classifier only determines whether

disease is in the aorta, and considers both healthy and diseased iliac vessel patients

together in one class (see Section 3.4.5). When knowledge of not only the presence of

disease but also the precise location is required, multiclass classifiers are necessary,

and their results are presented next.

3.5.4 Multiclass analysis

Results of the multiclass configurations are presented here. Unlike the ENBC and

IVBC classifier results presented above, here the goal is also to determine which

vessel the disease is located within. A combination search is carried out with

multiclass classifiers. Due to the increased computational expense, this combination

search is not completed using all four classification methods used in the ENBC

search. Instead the multiclass combination search is only carried out using LR and
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No. of input F1 Sensitivity Specificity

measurements Vessel Combination score

4

Aorta (Q3, Q2, Q1, P1) 0.8437 0.8893 0.7814

Iliac 1 (Q3, Q2, P3, P2) 0.8256 0.8439 0.7996

Iliac 2 (Q3, Q2, P3, P2) 0.8163 0.8303 0.7961

5

Aorta (Q3, Q2, Q1, P2, P1) 0.8391 0.8775 0.7862

Iliac 1 (Q3, Q2, Q1, P3, P2) 0.8387 0.8333 0.8464

Iliac 2 (Q3, Q2, Q1, P3, P2) 0.8407 0.8406 0.8409

6 Aorta (Q3, Q2, Q1, P3, P2, P1) 0.8363 0.8734 0.7847

Iliac 1 (Q3, Q2, Q1, P3, P2, P1) 0.8348 0.8255 0.8479

Iliac 2 (Q3, Q2, Q1, P3, P2, P1) 0.8364 0.8276 0.8488

Table 3.5: The combinations of input measurements that produce the maximum F1

scores when providing four, five, and six input measurements to IVBCs employing
the SVM method are shown. The corresponding sensitivities and specificities are
also included.

SVM methods. These two classification methods are chosen for two reasons:

� LR and SVM classifiers have repeatedly performed better than all other

classification methods. While the accuracy of classification is not a primary

objective of this PoC, higher accuracy results are likely to emphasise any

patterns and behaviours in the results achieved.

� Using these two methods allows for comparison of linear and non-linear

partitions between healthy and unhealthy VPs. This characteristic of

classifiers is highlighted as being important within the ENBC analysis.

Initially LR and SVM classifiers employ the OVA and OVO strategies,

respectively. The full table of results of the multiclass combination searches are

shown in Appendix E.

Comparison of the accuracy of different classifications

Looking at the tables within Appendix E, it is seen that for both classification

methods the sensitivity of C(1), i.e. the sensitivities of healthy VP classification, is

consistently approximately 0, while the specificity of C(1) is approximately 1. While

the accuracy of classification of healthy VPs is poor the aortic disease, first iliac
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disease, and second iliac disease classification accuracies are much higher. When

using a LR method and pressure and flow-rate measurements at all three available

locations, the sensitivity and specificity of classification of C(2), C(3), and C(4) are

equal to 0.6421 and 0.8513; 0.8459 and 0.7295; and 0.8248 and 0.7255 respectively.

The fact that aortic disease, first iliac disease, and second iliac disease classification

accuracies are high, while healthy classification accuracies are low, suggests that it is

easier to differentiation between the pressure and flow-rate profiles taken from VPs

with disease in different vessels than it is to differentiation between the pressure

and flow-rate profiles taken from VPs with and without the inclusion of a stenosis.

This finding suggests that while the inclusion of a stenosis does create biomarkers

within pressure and flow-rate profiles, these biomarkers are not consistent between

different arterial vessels.

Using the sensitivities and specificities achieved, the F1 scores are computed.

Due to the fact that the sensitivity of healthy classification is consistently close to 0,

computation of the F1 score associated with this classification is not possible. Instead

the F1 score of C(2), C(3), and C(4) classification are computed for each combination

of input measurements and classification method. These results are included within

Appendix E.

A major difference that can immediately be seen across the binary and multiclass

input combination searches is that in the case of the ENBC and IVBC searches SVM

classifiers consistently perform better than LR. The opposite is seen to be true in

the multiclass combination search. When using all six input measurements the

multiclass LR classifier achieves F1 scores of 0.7171, 0.7993, and 0.7857 for aortic,

first iliac, and second iliac disease classification respectively. When using all six

input measurements the SVM classifier achieves F1 scores of 0.5811, 0.6284, and

0.6024 for aortic, first iliac, and second iliac disease classification respectively.

Importance of number of input measurements

As a clear relationship has previously been seen between the number of input

measurements used and the F1 score achieved, the average F1 score of C(2), C(3),

and C(4) classification achieved by all combinations of inputs using one to six

measurements are computed and plotted in Figure 3.15. As in the case of binary

classification, the maximum and minimum F1 score achieved when using each
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Figure 3.15: The average, maximum, and minimum F1 score achieved by all
classifiers trained within the multiclass combination search using different numbers
of input measurements. The central markers represent the average score achieved,
while the error bars indicate the upper and lower limits.

number of input measurements is also found and included within this comparison.

Figure 3.15 shows a high degree of similarity to the results achieved in the ENBC

and IVBC searches. When using a single input measurement the average F1 score

achieved for aortic, first iliac, and second iliac disease classification is close to 0.5—

representing naive classification—for both classification methods. As the number

of input measurements increases, so does the average F1 score associated with

classification of each vessel. In a very similar manner to what is seen in the case of

binary classification, the maximum F1 score achieved does not appear to significantly

increase between four and six input measurements. In the case of LR classifiers, the

maximum F1 score achieved when using four input measurements is equal to 0.69,

0.80, and 0.79 for aortic, first iliac, and second iliac disease classification respectively.

The maximum F1 score achieved when using five input measurements and a LR

method is equal to 0.71, 0.81, and 0.79 for aortic, first iliac, and second iliac disease

classification respectively. The combination of input measurements producing each

of the above listed F1 scores, and the corresponding sensitivities and specificities are

shown in Table 3.6. Comparing the sensitivities and specificities shown in Table 3.6,

it can be seen that there is very little difference between the maximum accuracy
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No. of

measurements Vessel Combination Sensitivity Specificity

Aorta (Q1, P1, P2, P3) 0.6004 0.8513

4 First iliac (Q3, Q2, P3, P2) 0.8360 0.7572

Second iliac (Q3, Q2, P3, P2) 0.8130 0.7517

Aorta (Q3, Q2, P3, P2, P1) 0.6279 0.8475

5 First iliac (Q3, Q2, P3, P2, P1) 0.8592 0.7273

Second iliac (Q3, Q2, P3, P2, P1) 0.8329 0.7226

Table 3.6: The combination of input measurements that produces the highest F1

score for aortic, first iliac, and second iliac disease classification when using four
and five input measurements and employing the LR method are shown above. The
corresponding sensitivities and specificities are also shown.

results achieved using four and five input measurements.

Importance of pressure at the inlet of the system

It is found in the binary input combination searches that classifiers trained using the

input measurement P1, generally, achieved higher accuracy results than those that

do not use P1. To test if this is also true for the multiclass search, the F1 scores of

all input combinations that include and exclude the measurement P1 are separated

and plotted for each classification. As LR outperforms SVM within the multiclass

combination search, it is chosen to complete this analysis on only the LR method.

The histograms of the F1 scores of aortic, first iliac, and second iliac accuracy when

including or excluding P1 are shown in Figure 3.16.

Figure 3.16 shows that there is no real difference between the accuracy of first

and second iliac disease classification when either including or excluding the input

measurement P1. For first iliac classification 22 of the 32 input combinations that

include P1 achieve an F1 score of less than 0.6. This compares to 23 of the 31 input

combinations that exclude P1 that achieve an F1 score of less than 0.6. In the case

of second iliac disease classification 24 of the 32 input combinations that include P1,

and 23 of the 31 input combinations that exclude P1 achieve an F1 score of less than

0.6. Better distinction can be made between the aortic classifiers trained with and

without P1. Only 9 of the 32 input combinations that include P1 achieve an aortic
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Figure 3.16: The histograms of the F1 scores achieved for aortic, first iliac, and
second iliac classification are shown for all input measurement combinations that
include P1 in the upper plot, and exclude P1 in the lower plot. This analysis is
shown for the results produced by the LR method.
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F1 score of less than 0.6. This compares to all 31 of the classifiers trained without

P1 that achieve an aortic F1 score of less than 0.6.

The analysis carried out on the multiclass combination search has shown that

similar relationships exist between the haemodynamic measurements used to train

and test ML classifiers and the accuracy of classification achieved to those seen in

the ENBC and IVBC combination searches. Currently, however, the performance of

multiclass classifiers is severally limited by the low accuracy of healthy classification.

To try and mitigate the low healthy classification accuracies, a CPC is trained and

tested next.

3.5.5 Custom probabilistic configuration analysis.

It is seen in Section 3.5.4 that due to the variability in biomarkers introduced by

disease in different vessels, the accuracy of classification of healthy VPs when using

an OVA or OVO method is very low. It is possible to improve the multiclass

results achieved by LR classifiers by instead training and testing CPC classifiers.

The configuration of each instance of an LR classifier within a CPC ensemble are

explained within Section 3.4.5. Rather than running a full grid search using CPC

multiclass classifiers, a single classifier is trained and tested. This classifier uses the

measurements of pressure and flow-rate at all three available locations. This analysis

is carried out to gain an understanding of the differences in behaviour of OVA, OVO,

and CPC multiclass configurations. The results achieved by the CPC classifier are

shown in Table 3.7. The results achieved by the OVA, and OVO classifiers using

pressure and flow-rate measurements at all three locations are also included in Table

3.7 to allow for comparison.

When comparing OVA and OVO against CPC, the highest improvement is

seen for the sensitivity of healthy classification, an increase to ∼50% for CPC

compared to ∼0% in OVA and OVO. For the aorta and iliacs, a re-balancing of

sensitivities and specificities is observed relative to OVA and OVO—an increase in

specificity is accompanied by a decrease in sensitivity, with their averages relatively

unchanged. Overall, Table 3.7 shows that the CPC achieves its purpose of improving

the classification accuracy for healthy (‘no disease’) class without significantly

compromising other classification accuracies.

When creating CPC multiclass classifiers, preference can be given to healthy
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or unhealthy VPs by adjusting the decision boundary B in equation (3.17)—i.e.

the certainty required to override the default classification that a VP has no disease

present. Reducing the certainty required to change the classification a VP is assigned

to, i.e. lowering the decision boundary, creates bias towards unhealthy VPs as the

CPC classifier is more willing to override the default classification that a VP is

healthy. Increasing the decision boundary will require more certainty to classify

a VP as diseased, giving bias toward healthy VPs, as the CPC is less willing to

override the default classification that a VP is healthy.

To analyse the aforementioned affect of the decision boundary used on the

classification of VPs, receiver operating characteristic (ROC) curves [4] are plotted.

ROC curves are obtained by plotting the true positive rates against the false positive

rates of each classification when different decision boundaries are applied. By

recording a series of discrete true-positive/false-positive points for various decision

boundaries, a curve is fitted that shows the characteristics of the accuracy of each

classification across all possible decision boundaries. A complete ROC curve must

start at the point representing a true positive and false positive rate of 0, i.e. no

VPs are predicted to belong to the classification being examined, and must end at

the point representing a true positive and false positive rate of 1, i.e. all VPs are

predicted to belong to the discrete classification being examined. A naive classifier,

achieving an accuracy of 50%, will produce a straight line between these two points,

and so the area under the curve (AUC) is equal to 0.5. A perfect classifier ascends

vertically along the the y-axis between the points (0, 0) and (0, 1), then transverses

the x axis between the points (0, 1) and (1, 1). This will result in a perfect AUC

score of 1. The point (0, 1) represents a perfect classifier, as 100% of positive VPs

are correctly classified, while 0% of negative patients are incorrectly classified.

Within the context of the multiclass CPC, when a decision boundary of 1 is

applied, all VPs are classified as healthy, and so the ROC curves of aortic disease,

first iliac disease, and second iliac disease classification all begin at the true positive

and false positive position (0, 0). When a decision boundary of 1 is applied, the

true positive and false positive position of healthy classification is (1, 1), i.e. all

VPs are being assigned to the classification of no disease present. When the decision

boundary is set to be 0 all VPs are classified as having disease in one of the three

vessels, and so the healthy classification will reach the point (0, 0). A complete

ROC curve can, therefore, be obtained for healthy classification accuracy. When
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Figure 3.17: The ROC curve of healthy VP classification within the CPC ensemble
trained and tested using pressure and flow-rate measurements at all three available
measurement locations are shown. The accuracy of classification is compared to
193 current screening methods (general methods shown in red, and cardiovascular
methods shown in blue), recorded in [132] and [7].

the decision boundary is set to be 0, while all VPs are classified as having disease in

one of the three vessels, this does not necessarily ensure that the true positive and

false positive classification accuracy is equal to 1 for disease classification in each

individual vessel. Complete ROC curves can, therefore, not be plotted for aortic,

first iliac, and second iliac disease classification.

The ROC curve of healthy VP classification accuracy is plotted against the

reported true positive and false positive rates of 193 current screening methods,

recorded in [132] and [7], and is shown in Figure 3.17. The current screening methods

are not necessarily cardiovascular related (i.e. this analysis does not compare the

results achieved here to current comparable methods), and instead Figure 3.17 gives

a comparison of the results achieved against the general landscape of clinically used

methods. While this will not allow for an evaluation of classification accuracy in

each vessel, it will allow for evaluate of the overall bias given to healthy or unhealthy

VPs. Figure 3.17 shows that the ROC curve of healthy VP classification follows a

desirable profile. The AUC of the ROC curve is computed to be 0.75. An AUC

of between 0.7 and 0.9 can be considered as moderate accuracy [62]. The overall
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correct classification of healthy VPs by the CPC outperforms approximately 20 of

the current methods.

The ROC curve of classifiers created in this PoC study can not be fairly compared

to current screening methods, as the affects of simplifications such as only using

a simple three vessel system, and limiting the number of diseased vessels to one

are not understood. However, Figure 3.17 provides some indication of how the

results achieved in this PoC study compare to currently used screening methods.

Overall, the results, despite simplifications and assumptions used in this study, are

encouraging and point towards the potential of increased classification accuracies

when larger networks and more sophisticated ML or deep learning algorithms are

used.

3.6 Conclusions

This PoC has shown encouraging results that a stenosis within a simple three vessel

arterial network can produce consistent biomarkers within pressure and flow-rate

measurements, which can be detected by ML algorithms. Four ML algorithms—

NB, LR, SVM, and RF—are analysed within the frameworks of both binary and

multiclass classifiers. It is shown that among the four ML methods employed, the

LR and SVM perform significantly better than NB and RF. These two methods

provide the further advantage that they both require little to no problem specific

optimisation. Within the binary analysis it is seen that classification methods

capable of producing non-linear partitions between healthy and unhealthy VPs, such

as radial basis function SVM, appear to be well suited to distinguishing between

healthy and unhealthy VPs. This behaviour, however, is not seen in the case

of multiclass classification. More work needs to be carried out in understanding

the importance of non-linear partitions between positive and negative examples of

classifications on the accuracy.

A key relationship shown is that the accuracy of classification is generally

proportional to the number of input measurements provided. This finding seems

intuitive, as the provision of more input measurements likely results in more

information being provided to ML classifiers. The correlation between the number of

input measurements provided to an ML classifier and the accuracy of results achieved
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may suggest a future limiting factor to using pressure and flow-rate measurements to

detect arterial disease. Within a clinical application, the need for more pressure or

flow-rate measurements will likely result in an increase in the cost of diagnosis. This

being said, it has been shown that if the input measurements are chosen judiciously

high accuracy results are achieved when using as few as four input measurements.

In this context, the importance of the inlet pressure (or pressure in the diseased

vessel) and the flow-split measurement (particularly when including inlet flow-rate)

is highlighted.

Overall, it is shown that the approach of using a VPD for assessment of ML

algorithms for disease classification and screening holds substantial potential. One of

the primary purposes of the PoC study is to create an advisory template that can be

expanded on within future studies. A detailed procedure for both the generation and

exploitation of synthetic data sets is presented. This procedure can now be expanded

on in subsequent chapters to increase the complexity, and consequently physiological

realism, of the VPD. The modular methodology used to create the VPD within this

PoC allow for the topology and parameterisation of VPs arterial networks; the

distribution of arterial network parameters; and description of diseased vessels to

all be easily changed to create more physiological realistic synthetic data sets. This

PoC must now be expanded upon through the application of more sophisticated

ML algorithms trained on a larger comprehensive arterial network. This assessment

forms the primary body of the remainder of this thesis.

3.7 Limitations

Several simplifications and assumptions are made during both the creation of the

VPD and the training and testing of ML classifiers. These are likely to affect the

accuracy of classification achieved within this study. Some of these major limitations

are:

� The arterial network, containing only three vessels, is small. It is not clear

whether this aids or hinders classification. On the one hand, due to small

nature of the network, the signals are less diffused, and on the other hand

specific features which may be the result of unique reflections in certain

anatomical locations is not accounted for. However, the small arterial network
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does allow for a preliminary analysis which, with encouraging results, points

towards exploration in larger networks.

� The distribution of all arterial network parameters across the VPD are

described using independent distributions. These simple distributions ignore

the complex inter-parameter relationships likely seen within real arterial

networks. The simplification of the distribution of arterial network parameters

likely results in a wider range of pressure and flow-rate profiles across the VPD,

making distinction between healthy and unhealthy VPs more difficult. This

may be potentially solved by first determining the probability distributions

through an inverse problem approach, for example a Markov-chain Monte

Carlo method.

� This study is completed without significant consideration for clinical

requirements. For example which measurements are really obtainable easily,

and what range of stenosis severities should a ML classifier be able to detect?

These questions are best explored on a larger network.
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Chapter 4

Creation of a physiologically

realistic virtual patient database

4.1 Introduction

In Chapter 3 the potential of using ML classifiers to predict the presence of stenosis,

using only pressure and flow-rate measurements, is shown. This study, however, is

limited by several factors:

� The PoC study is completed on a very small arterial network, containing only

three vessels.

� The distribution of all parameters describing the arterial networks of VPs,

excluding disease parameters, across the VPD are assumed to be independent

and normally distributed.

� The PoC study is completed without significant consideration for clinical

requirements, i.e. what range of stenosis severities should a ML classifier

be able to detect. There is also no consideration given to clinical limitations,

i.e. what measurements are available inexpensively.

To be able to more comprehensibly assess the potential of using ML classifiers

to detect arterial disease, a new VPD is required. To address the issues outlined

above it must be ensured that the new VPD is representative of a real population,

on both an individual patient level and across the database. This study presents a

probabilistic framework for creation of such a VPD based on a previously proposed

arterial network [20]. This network is referred to as the initial network and is a

reduced version of the anatomically detailed arterial network (ADAN) presented in

[18] [17].

In a similar manner to Chapter 3, the physics based model of pulse wave

propagation is used to compute the pressure and flow-rate profiles corresponding

to random realisations of VPs arterial networks. Unlike in the PoC, however,

overtly stated a priori distributions are not assumed for the parameters describing
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VPs. Instead prior distributions are constructed based on known physiological

restrictions and geometrical constraints. The affect of literature based measurements

of pressure and flow-rate are incorporate into these prior distributions—through the

employment of a Bayesian framework—creating a physiologically realistic posterior

distribution. An appropriate sampling method, in this case a Markov chain Monte-

Carlo (MCMC) method [69, 71], is used to draw random realisations of VPs arterial

networks from this posterior distribution. A recent study [36] has published a VPD

created by varying six cardiovascular properties by ± 1 SD from their age-specific

mean values for subjects of each age decade from 55 to 75 years. The approach

taken here differs from [36] as literature reported measurements are used to create

an informed distribution from which random realisations are sampled, as opposed

to using the literature reported measurement to dictate each individual realisation.

The approach taken by [36] will result in each VP being highly physiologically likely,

however significantly less variability across the resulting VPD.

This chapter begins by comparing the discontinuous Galerkin (DCG)

implementation, used to numerically solve the governing system of equations of the

physics based model in the previously completed PoC, to a more computationally

efficient subdomain collocation (SDC) implementation [30]. While adoption of the

SDC implementation has the potential to significantly reduce the computational

time required to create the new VPD, it is important to ensure the use of this

implementation does not have any adverse affects on the pressure and flow-rate

profiles produced.

Next an understanding of both where disease is likely to occur within the arterial

network, and where time varying pressure and flow-rate profiles can be obtainable is

gained. Using this information, the topology of the initial network is optimised by

removing vessels peripheral to both measurement obtainment and disease occurrence

locations, however ensuring this has minimal impact on the upstream pressure and

flow-rate profiles. The parameterisation used to describe the arterial network of VPs

is chosen to minimise the dimensionality associated with each VP, while imposing

required behaviours on the geometrical and mechanical properties of the network.

These imposed behaviours are carefully considered to maximise the variability in the

realisations of arterial networks, and so consequently pressure and flow-rate profiles,

produced across the final VPD.

Prior distributions are constructed for the parameters describing the arterial
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networks of VPs by examining and understanding the known physiological

restrictions and geometrical constraints each is subject to. The prior distributions

prescribed are uninformative or weakly informative and so primarily act as a

regularising term, while the literature based measurements incorporated into the

posterior distribution predominantly control the shape. The literature based

measurements being incorporated into the posterior distribution are carefully

selected to update this distribution with regards to particular behaviours of the

pressure flow-rate profiles produced across the final VPD.

Finally VPs are sampled from the posterior distribution through the use of a

Markov chain Monte-Carlo (MCMC) method [69, 71]. The pressure and flow-rate

profiles corresponding to VPs are computed using the SDC implementation of the

physics based model. This chapter culminates in the a posteriori behaviour of both

the arterial network parameters and the resulting pressure and flow-rate profiles

across the new VPD being examined.

The majority of work in this chapter is published in: Jones G, Parr J,

Nithiarasu P, Pant S. A physiologically realistic virtual patient database for the

study of arterial haemodynamics. International Journal for Numerical Methods in

Biomedical Engineering. 2021 May 10:e3497.

4.2 Key criteria of the new VPD

The arterial network used as a basis for the creation of new VPs is taken from [20],

and is based on a version of the ADAN network [18] [17]. This network is referred

to as the initial network. The new VPD is created with preference being given to

the variability of VPs produced. Behaviours and relationships that are expected to

be seen in the arterial networks of VPs, however are not required geometrically or

physiologically (for example symmetry between opposite extremities) are not forcibly

imposed. Instead it is expected that the incorporation of adequate literature based

measurements into the distribution of arterial network parameters will introduce

and impose required behaviours. The new VPD is designed to meet the following

five key criteria:

1. Consistency with initial network. A realisation of a VP’s arterial

network that results in geometric and mechanical properties comparable to
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the initial network must produce consistent pressure and flow-rate profiles at

key locations. By ensuring a comparable realisation produces pressure and

flow-rate profiles consistent with the initial network, it can be shown that no

intra- or inter-measurement details are being lost through simplifications.

2. Minimisation of dimensionality. The dimensionality required to describe

each VP must be minimised. Reductions to the dimensionality of VPs arterial

networks, however, must not come at the cost of the first key criteria.

3. Minimisation of computational time. The computational time required

to produce each VP must be minimised. As with the reduction of the

dimensionality of VPs, reductions in the computational time required to

produce VPs must not come at the cost of the first key criteria.

4. Freedom to produce variability. Stringent inter-parameter relationships

must be avoided. Inclusion of these relationships is only permitted if the

resulting reduction in the dimensionality, or the reduction in the likely

frequency at which unrealistic VPs occur significantly outweighs the reduction

in variability imposed.

5. Physiological realism. It must be ensured that the new VPD is

representative of a real cohort, on both an individual VP and population-

wide level. This is to be achieved through the incorporation of both

literature reported measurements, and known physiological restrictions and

geometrical constraints into the VPD. The known physiological restrictions

and geometrical constraints must be carefully balanced against the fourth key

criteria.

4.3 One-dimensional solver

In the previously completed PoC a discontinuous Galerkin (DCG) implementation

is used to numerically solve the governing system of equations of the physics based

model of pulse wave propagation, used to compute the pressure and flow-rate profiles

corresponding to random realisations of VPs arterial networks. This implementation

is chosen as a pre-existing solver is available that has successfully been validated
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against a 3D model of blood flow through stenosed arterial vessels [21]. The

drawback of this numerical implementation, however, is its computational expense

and so consequently the large time required to produce each VP. Before completion

of this secondary study a more computationally efficient solver is made available.

This solver implements the subdomain collocation (SDC) method. This solver and

the SDC implementation are outlined in [30].

Before adopting the SDC implementation, it is important to compare results

achieved by the DCG and SDC implementations. To compare these two

implementations the aortic bifurcation network set out in [20]—as used in PoC—is

solved using each for a healthy, stenosed, and aneurysm VP. Both the stenosed and

aneurysm VPs are created with their respective disease affecting the aorta, with the

vessel area profiles created using the method presented in the PoC chapter. Both

diseases are created with a start and end location of 20% and 80% of the vessel

length respectively. The stenosed VP has the inclusion of a 60% reduction in area,

while the aneurysm VP has a 150% increase in area.

To allow for fair comparison of the two methods a mesh independence study is

performed on each, presented in Appendix F. The healthy, stenosed, and aneurysm

VPs are solved using each implementation when applying the optimised meshes

detailed in Appendix F. The percentage discrepancy between the pressure and flow-

rate profiles recorded within each VP when using each of the two implementations

are computed using the error matrices given in [58]:

EP,avg =
1

N

N∑
i=1

∣∣∣∣PSDC,i − PDCG,i

PDCG,i

∣∣∣∣ , EQ,avg =
1

N

N∑
i=1

∣∣∣∣QSDC,i −QDCG,i

max(QDCG)

∣∣∣∣ ,
(4.1)

EP,sys =
max(PSDC)−max(PDCG)

max(PDCG)
, EQ,sys =

max(QSDC)−max(QDCG)

max(QDCG)
,

(4.2)

EP,dias =
min(PSDC)−min(PDCG)

min(PDCG)
, EQ,dias =

min(QSDC)−min(QDCG)

max(QDCG)
,

(4.3)

where EP,avg, EQ,avg, EP,sys, EQ,sys, EP,dias, and EQ,dias represent the average

pressure and flow-rate discrepancy; the systolic pressure and flow-rate discrepancy;
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and the diastolic pressure and flow-rate discrepancy respectively. In the above

equations PSDC,QSDC, PDCG, andQDCG represent the pressure and flow-rate profiles

associated with the SDC and DCG implementations respectively. For each time

point i the pressure produced by the SDC and DCG implementations are described

by PSDC,i and PDCG,i respectively; and the corresponding flow-rate measurements

are described by QSDC,i and QDCG,i respectively. Finally N represents the number

of discrete time points within the cardiac period.

The pressure profile percentage discrepancies are shown Table 4.1, and the flow-

rate in Table 4.2. A visual comparison of the pressure and flow-rate profiles produced

by each of the two implementations are shown in Figures 4.1, 4.2, and 4.3 for the

healthy, stenosed, and aneurysm VPs, respectively. Figures 4.1, 4.2, and 4.3 show

very little visual discrepancy between the pressure and flow-rate profiles produced

when using each of the two implementations. This is further supported by Tables

4.1 and 4.2. In the case of pressure, the maximum errors are consistently seen in

diastole. The maximum diastolic pressure error recorded in the healthy, stenosed,

and aneurysm VPs are equal to -0.701%, -0.630%, and -1.333%, respectively. In the

case of the flow-rate, the systolic and diastolic discrepancies are very similar. The

maximum diastolic flow-rate error recorded in the healthy, stenosed, and aneurysm

VPs are equal to 2.320%, 2.379%, and 2.117%, respectively. The corresponding

maximum systolic flow-rate errors are equal to -2.355%, -2.466%, and 2.210%,

respectively. While there are some discrepancy between the pressure and flow-rate

profiles produced using each of the two implementations, the maximum error does

not exceed 2.5%.

The wall clock time require to solve the healthy, stenosed, and aneurysm VPs

using each of the two implementations are shown in Table 4.3. Table 4.3 shows

significant reduction in wall clock time required to solve the physics based model

when employing the SDC implementation, relative to the DCG implementation.

Using the SDC implementation reduces the wall clock time required to solve the

healthy, stenosed, and aneurysm VPs by 99.69%, 99.50%, and 99.49% respectively.

Due to the large decrease in wall clock time and the relatively low discrepancies in

pressure and flow-rate profiles produced, all future VPs are solved using the SDC

implementation.

Pg. 95 / 416



4.3. ONE-DIMENSIONAL SOLVER

0.00 0.25 0.50 0.75 1.00
Time (s)

70

80

90

100

110

120

130

Pr
es

su
re

(m
m

H
g)

0.00 0.25 0.50 0.75 1.00
Time (s)

70

80

90

100

110

120

130

Pr
es

su
re

(m
m

H
g)

0.00 0.25 0.50 0.75 1.00
Time (s)

0

20

40

60

Fl
ow

ra
te

(m
ls
−

1 )

0.00 0.25 0.50 0.75 1.00
Time (s)

0

5

10

15

20

Fl
ow

ra
te

(m
ls
−

1 )

DCG SDC

Figure 4.1: Comparison of the pressure (upper row) and flow-rate (lower row) profiles
produced at the distal end of the abdominal aorta (left column) and first common
iliac (right column), using each of the two numerical methods to solve the healthy
VP.
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Figure 4.2: Comparison of the pressure (upper row) and flow-rate (lower row) profiles
produced at the distal end of the abdominal aorta (left column) and first common
iliac (right column), using each of the two numerical methods to solve the stenosed
VP.
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Figure 4.3: Comparison of the pressure (upper row) and flow-rate (lower row) profiles
produced at the distal end of the abdominal aorta (left column) and first common
iliac (right column), using each of the two numerical methods to solve the aneurysm
VP.
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Time (s)

Case DCG SDC

Healthy 8379.53 25.78

Stenosed 8170.71 40.42

Aneurysm 8389.02 42.14

Table 4.3: Wall clock time required to obtain the pressure and flow-rate profiles
corresponding to each of the three VPs when using both implementations to solve
the physics based model.

4.4 Arterial network topology

4.4.1 Initial network

The initial network contains the largest 56 vessels within the human arterial system,

described by 77 arterial vessel segments. The topology of this network is shown in

Figure 4.4, and each vessel within the network identified in Table 4.4. This network

is described by:

� 38 vessel segments with constant reference radii (r0) and vessel wall

mechanical properties (β) along their lengths. The description of each

of these segments requires three parameters: the length L, reference radius r0,

and mechanical property β of the segment.

� 39 vessel segments with linearly varying r0 and β along their

lengths. The description of each of these segments requires specification of

five parameters: the length L; the reference radii r0 at the proximal and the

distal ends of the segment; and β at the proximal and the distal ends of the

segment.

� 31 Windkessel models. Every Windkessel model at the outlets requires 2

resistances and a compliance.

� One inlet flow-rate profile. The inlet flow-rate is parameterised by a 5th

order FS (see Chapters 2 and 3). This requires specification of 11 coefficients.

Thus, to describe a VP through the direct specification of all the above parameters

results in the total dimensionality of 413 per VP. This high dimensionality is
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problematic leading to increased complexity in creating VPs [116]. In what follows,

methods to reduce the dimensionality of VPs description are presented. These

are primarily related to either reducing the network or employing a parsimonious

parameterisation. Since the primary purpose of the VPD is deployment of

ML methods for screening of stenosis and aneurysm through easily acquirable

measurements, it is important that the reduction in dimensionality does not

compromise i) the locations where disease and measurements are possible, and ii)

the precision and variability of measurements at such locations. Thus, before any

effort is made to reduce the dimensionality, the aforementioned locations must be

identified.

4.4.2 Important locations

A review of literature is carried out to understand both where disease is likely

to occur and where measurements can be obtained. The latter are restricted to

locations at which continuous profiles can be recorded non-invasively. While arterial

disease can occur in a large number of vessels within the network, for this study

vessels with only high prevalence stenosis or aneurysm are considered.

Locations of measurements

Based on literature the following locations where measurements can be taken are

identified:

Pressure in the radial and common carotid arteries: continuous non-

invasive arterial blood pressure profiles can be obtained in the radial and common

carotid arteries using applanation tonometry [3, 146]. This method measures blood

pressure by applying a mild pressure to the artery being examined. This pressure

causes the artery to flatten as both vessels are located above a bone—the radius

bone and cervical vertebra for the radial and common carotid artery, respectively.

The opposing pressure being applied by blood flow is then measured using a strain

gauge. A more complete explanation of this method can be found in [52] and [54].

Applanation tonometry is already clinically used [118]. The right and left radial and

common carotid arteries are identified in Figure 4.4 as vessels 8 and 22; and 5 and

14, respectively.
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Figure 4.4: The connectivity of the initial network, taken from [20]. At the inlet (free
end) of vessel 1, a volumetric flow-rate is specified and at all outlets (free ends of
the terminal vessels), a Windkessel model is specified. Locations at which pressure
and flow-rate can be measured; and disease is likely to occur are also highlighted,
see Section 4.4.2.
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Reference number Vessel name Reference number Vessel name

1 Aortic arch I 34 Celiac trunk

2 Brachiocephalic trunk 35 Abdominal aorta I

3 Aortic arch II 36 Common hepatic

4 Subclavian R I 37 Splenic I

5 Common carotid R 38 Left gastric

6 Vertebral R 39 Splenic II

7a Subclavian R II 40 Superior mesenteric

7b Axillary R 41 Abdominal aorta II

7c Brachial R 42 Renal L

8 Radial R 43 Abdominal aorta III

9 Ulnar R I 44 Renal R

10a Common interosseous R 45 Abdominal aorta IV

10b Posterior interosseous R 46 Inferior mesenteric

11 Ulnar R II 47 Abdominal aorta V

12 External carotid R 48 Common iliac R

13 Internal carotid R 49 Common iliac L

14 Common carotid L 50a External iliac R

15 Aortic arch III 50b Femoral R I

16 External carotid L 51 Internal iliac R

17 Internal carotid L 52 Profunda femoris R

18 Subclavian L I 53a Femoral R II

19a Aortic arch IV 53b Popliteal R I

19b Thoracic aorta I 54 Anterior tibial R

20 Vertebral L 55a Popliteal R II

21a Subclavian L II 55b Tibiofibular trunk R

21b Axillary L 55c Posterior tibial R

21c Brachial 56a External iliac L

22 Radial L 56b Femoral L I

23 Ulnar L I 57 Internal iliac L

24a Common interosseous L 58 Profunda femoris L

24b Posterior interosseous L 59a Femoral L II

25 Ulnar L II 59b Popliteal L I

26 Posterior intercostal R 1 60 Anterior tibial L

27 Thoracic aorta II 61a Popliteal L II

28 Posterior intercostal L 1 61b Tibiofibular trunk L

29 Thoracic aorta III 61c Posterior tibial L

30 Posterior intercostal R 2

31 Thoracic aorta IV

32 Posterior intercostal L 2

33a Thoracic aorta V

33b Thoracic aorta VI

Table 4.4: The 56 arterial vessels, described by 77 segments, within the initial
network, taken from [20]. The numbers assigned to each vessel within this table
align with those in Figure 4.4.
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Pressure in the brachial arteries: It is possible to estimate continuous blood

pressure at the brachial arteries through reconstruction of finger arterial pressure

[77]. This methods involves taking non-invasive continuous pressure measurements

in the finger, and then using a numerical model to compute the estimated pressure

in the brachial artery. Although the use of a model to estimate brachial pressure

will introduce errors, these recreated brachial pressure profiles have been shown

to meet the requirements set by the association for the advancement of medical

instrumentation [77, 76]. The right and left brachial arteries are identified in Figure

4.4 as vessels 7c and 21c, respectively.

Flow-rate in the brachial, carotid, and femoral arteries: Using Doppler

ultrasound techniques it is possible to measure blood velocity in both the upper and

lower extremities. Doppler ultrasound computes blood velocity from the frequency

shift between high frequency sound waves sent from a probe placed above an artery,

and the returning reflected wave. Doppler ultrasound has been shown to work on

the brachial [27], common carotid [144], and femoral [164] arteries. The first and

second right and left femoral arterial segments are identified in Figure 4.4 as vessels

50b and 53a; and 56b and 59a, respectively.

While Doppler ultrasound can be used to determine arterial vessel area, and so

consequently the volumetric flow-rate can be computed, use of these measurements

must be carefully considered. There are two common methods used to estimate

volumetric flow-rate using Doppler ultrasound [72]:

� The velocity profile measurement method records the velocity at a series of

points, and then sums the flow-rate contribution of each across the vessel area.

This method is reliant on high spatial resolution.

� The uniform insonification method finds the average velocity across the vessel,

and then multiplies this by the vessel area. This method can not be used when

vessels are very small, or very large.

Both of the above methods rely on knowing information about the vessel area.

Measuring vessel area using Doppler ultrasound often introduces errors due to the

fact that:

� While the time varying diameter of an artery can be recorded, it is not possible

to measure both the diameter and the blood velocity during the same cardiac
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period [56].

� Computation of the cross sectional area is often based on the assumption that

the vessel being examined is cylindrical, and so any variations to this shape

induces error. Computing the cross sectional area from the diameter of the

vessel also results in any errors in the measurement being increased due to the

diameter being squared.

Locations of disease

Four of the most common forms of arterial disease are carotid artery stenosis

(CAS), subclavian artery stenosis (SAS), peripheral arterial disease (PAD, a form of

stenosis), and abdominal aortic aneurysm (AAA). The locations of each are outlined

next.

CAS: the carotid arteries consist of the common carotid, external carotid, and

internal carotid segments. While the narrowing of an arterial vessel can occur within

any of the three carotid segments [53], it is chosen to limit its occurrence to the

common carotid arteries. The right and left common carotid arteries are identified

in Figure 4.4 as vessels 5, and 14 respectively.

SAS: The initial network splits the subclavian arteries into two segments. The

right and left instances of the first and second subclavian artery segments are

identified in Figure 4.4 as vessels 4 and 7a; and 18 and 21a respectively.

PAD: The third frequent form of stenosis is PAD, referring to the stenosis of

any peripheral vessel. Isolating arterial vessels that are likely to experience stenosis

at a high prevalence in patients with PAD is more difficult relative to CAS or SAS.

Both CAS and SAS have short and relatively easy to define lists of possible vessels

they can affect. PAD, on the other hand, can cover a large range of different vessels

depending on the definition prescribed. Allowing stenosis to be created in a very

high number of vessels will likely introduce difficulties when training and testing ML

classifiers. As has been seen in Chapter 3, the haemodynamic biomarkers introduced

vary dependent on the location of disease. Allowing disease to be created in a high

number of vessels will likely result in more diverse pressure and flow-rate profiles,

and so a more challenging classification problem. While it is important to ensure

ML classifiers are able to detect all major forms of stenosis, within the scope of this

thesis limitations must be imposed on the number of vessels in which disease can
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occur. Studies into PAD primarily focus on the lower extremities [115, 39, 1] and,

thus, it is assumed that patients with PAD have the location of stenosis limited to

the legs. PAD within the lower extremities is split into two categories—proximal

and distal—in [39]. Proximal PAD is considered to affect the common femoral, while

distal PAD is considered to affect the posterior tibial and dorsalis pedis. In study

[39] it is stated that 77% of patients with any form of PAD have proximal PAD,

either in isolation or in combination with the occurrence of distal PAD. Within

[1] the number of subcategories is increased to three: aorta-iliac, femoral-popliteal,

and infragenicular. It is reported in study [1] that 94.2% of patients with PAD have

aorta-iliac or femoral-popliteal stenosis either in isolation or in combination with one

of the other three sub-categories. It is chosen, based on studies [39] and [1], that

the vessels in which PAD can occur will be restricted to the common iliacs; external

iliacs; first and second femoral segments; and the first popliteal segments. The right

and left instances of each of these vessels are identified in Figure 4.4 as vessels 48

and 49; 50a and 56a; 50b and 56b; 53a and 59a; and 53b and 59b respectively.

AAA: The most common form of arterial aneurysm is AAA, with a prevalence

of 4.8% [122]. The initial network splits the abdominal aorta into five segments.

These five segments are identified in Figure 4.4 as vessels 35, 41, 43, 45, and 47

respectively.

4.4.3 Network reduction

In this section, the reduction of the network by removing vessels while preserving the

disease and measurement locations is presented. It is important to ensure that the

removal of any vessels does not have a significant impact on the upstream pressure

and flow-rate profiles. Network reduction can be performed by removing terminal

vessels and merging them into the lumped parameter (Windkessel) boundary

conditions [58]. This process is adopted in this study and summarised in Figure

4.5.

In [58], the accuracy of reduced networks is computed through comparison of

pressure and flow-rate measurements taken at the aortic root and thoracic aorta from

the full and reduced networks. It is seen that when peripheral vessels are removed

there is little discrepancy between the pressure and flow-rate profiles produced by

the full and reduced networks. As more central vessels are removed, for example
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Computation of lumped parameters

Compaction into a single

Windkessel model

Transform to three elements

(Q1, P1)
(Q2, P2)

R1 R2

C

(Q3)

(P3)

(Q1, P1)
(Q2)

Rv R1 R2

CCv (P3)(P2)

(Q3)

(Q1, P1)

Cnew

Rnew (Q3)

(P3)

(Q1, P1)

(P3)

R1, new R2, new

Cnew

(Q3)

Figure 4.5: The process of incorporating peripheral 1D vessels into the 0D terminal
boundary Windkessel model parameters is outlined above. In the above figure Q1

and P1 represent the flow-rate and pressure at the proximal end of the vessel that
is being removed; Q2 and P2 represent the flow-rate and pressure at the distal end
of the vessel that is being removed; Q3 and P3 represent the the flow-rate and
pressure at the outlet of the system; R1, R2, and C represent the resistances and
compliance of the original terminal Windkessel model; Rv, and Cv represent the
viscous resistance and compliance of the vessel being removed; and Rnew and Cnew

represent the resistance and compliance of the new 2 element Windkessel model
after the incorporation of the 1D vessel.
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the abdominal aorta, the pressure and flow-rate discrepancies between full and

reduced networks increases. Peripheral vessels are smaller and have lower flow-

rate than central vessels. This means that—relative to the large volumetric flow-

rate of the proximal aorta—errors in central vessel pressure and flow-rate profiles

are likely to cause more significant affects than the same percentage discrepancy,

however in pressure and flow-rate profiles at peripheral locations. As pressure

and flow-rate measurements are being taken from VPs within several bifurcation

of terminal boundaries, discrepancies in low flow-rate peripheral vessels do not have

the same opportunity to be diluted. It is, therefore, important to ensure there are

no significant differences to the pressure and flow-rate measurements taken from

the full 77 segment network and any proposed reduced network at all measurement

locations.

Vessels within the initial network that are distal to both disease occurrence and

measurement obtainment locations are identified. The following three groups of

vessels eligible for removal are identified:

� Group 1: The first and second splenic segments; the left gastric; and the

common hepatic (identified in Figure 4.4 as vessels 37 and 39; 38; and 36).

� Group 2: The common interosseous, the posterior interosseous, and the

second ulnar segment (identified in Figure 4.4 as vessels 10a and 24a; 10b

and 24b; and 11 and 25).

� Group 3: The second popliteal segment, the anterior tibial, the tibiofibular

trunk, and the posterior tibial (identified in Figure 4.4 as vessels 55a, 54, 55b,

and 55c on the right side; and 61a, 60, 61b, and 61c on the left side).

Three possible reduced networks are proposed, each with the removal of a single

group of vessels (group 1, 2, or 3 in isolation). The pressure and flow-rate profiles

produced by each reduced network are compared against the initial network at all

measurement locations (see Section 4.4.2). If the maximum error induced by the

removal of a group of vessels is less than 2%—computed using the error matrices

in Section 4.3 and [58], and relative to the reference network—the full group of

vessels are omitted from the arterial network. Otherwise, the vessel segments at

the proximal end of the group are re-introduced into the reduced network. The

process of re-introducing vessels if the error exceeds 2% is iteratively repeated until
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the maximum number of vessels that can be removed from each group individually

without exceeding the imposed allowable error is found. Finally these vessels from

the three groups are removed simultaneously, to ensure there is no significant

amplifying affect on the errors produced. The results of this process are shown

in Figures 4.6–4.11 and Tables 4.5–4.10.

The first group of vessels to be trialled for removal from the initial network

consists of the first and second splenic segments; the left gastric; and the common

hepatic arteries. This group of arteries forms a sub-network within the aortic

region, connected across two bifurcations and resulting in three terminal boundaries.

It is expected that the removal of these four vessels will produce low errors at

all measurement locations, as these vessels are not directly in series with any

measurement locations and have low average flow-rate. Figure 4.6 shows no visual

differences between the pressure and flow-rate profiles at each measurement location.

Table 4.5 shows the largest flow-rate error is occurring in the second femoral

segments, with the right and left second femoral segments producing systolic errors

of 0.52% and 0.515%, respectively. The largest pressure errors are occurring in the

brachial arteries, with the right and left brachial arteries producing systolic errors

of 0.636% and 0.642%, respectively. The errors produced when removing the first

group of vessels are significantly lower than the 2% threshold imposed, and so the

full group of vessels are removed from the arterial network used to create VPs. This

reduction compacts four vessels with constant properties along their length and three

Windkessel models, into a single Windkessel model.

The second group of vessels to be trialled for removal from the initial network

consists of the common interosseous, posterior interosseous, and the second ulnar

segments. This group of vessels forms a sub-network at the peripheries of the

right and left arms, connected across one bifurcation and resulting in two terminal

boundaries within each arm. This group are directly in series and close in spatial

location to the brachial and radial arteries. Thus, it is expected that the removal of

these vessels will induce larger errors within the brachial and radial arteries. The

low average flow-rate in this group of vessels, however, will likely result in the error

being significantly mitigated by the time it propagates to all other measurement

locations. Figure 4.7 shows that, as is expected, there are large discrepancies

between the pressure and flow-rate profiles in the brachial and radial arteries. No

visual differences can be seen in the carotid and femoral arteries. Table 4.6 shows
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Figure 4.6: Comparison of pressure or flow-rate profiles at all measurement locations
taken from the initial network and the reduced network produced by the removal
of the first and second splenic segments; the left gastric; and the common hepatic
arteries.
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the maximum pressure error is occurring in the radial arteries, with the right and

left artery experiencing systolic errors of 4.847% and 3.981%, respectively. The

maximum flow-rate error is occurring in the brachial arteries, with systolic errors of

16.158% and 16.031% in the right and left artery, respectively.

As the errors induced by the removal of the full second group of vessels

exceeds the maximum allowable limit of 2%, the second ulnar segment and the

common interosseous are re-introduced into the arterial network. The percentage

discrepancies between the initial network and the reduced network produced by

the removal of the posterior interosseous only are shown in Figure 4.8 and Table

4.7. Table 4.7 shows that, as is the case when removing the full group of vessels, the

maximum pressure errors are occurring in the radial arteries and the maximum flow-

rate errors are occurring in the brachial arteries. The re-introduction of the second

ulnar segment and the common interosseous have reduced these errors, however.

The maximum pressure errors are now equal to 0.678% in the right radial artery and

0.684% in the left radial artery. The maximum flow-rate errors are equal to 1.119%

in the right brachial artery and 1.096% in the left brachial artery. As all errors are

now below 2%, the posterior interosseous is removed from the arterial network of

VPs. This reduction compacts one arterial vessel with constant properties and one

Windkessel model into a single Windkessel model within each arm, removing a total

of two arterial vessel segments.

The third group of vessels to be trialled for removal consists of the second

popliteal segment, the anterior tibial, the tibiofibular trunk, and the posterior

tibial. These vessels form a sub-network at the peripheries of the right and left

legs, connected across one bifurcation and resulting in two terminal boundaries in

each leg. As with the removal of peripheral vessels in the arms, it is expected

that measurement locations directly in series and spatially nearby to this group of

vessels will experience the greatest discrepancies when they are removed. Large

discrepancies are, therefore, expected in the right and left femoral arteries. As

the average flow-rate within the third group of vessels is greater than the average

flow-rate in the peripheral arteries in the arms, the discrepancies experienced at

measurement locations further from the reduction location are expected to be larger

than those seen in Figure 4.7. Figure 4.9 shows the largest discrepancies are

occurring in the femoral arteries, as is expected. Also as is expected, larger errors

can be seen to be occurring at all other measurement locations, relative to those
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Figure 4.7: Comparison of pressure or flow-rate profiles at all measurement locations
taken from the initial network and the reduced network produced by the removal of
the common interosseous, the posterior interosseous, and the second ulnar segment.
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Figure 4.8: Comparison of pressure or flow-rate profiles at all measurement locations
taken from the initial network and the reduced network produced by the removal of
the the posterior interosseous.
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seen when removing either of the other two groups of vessels. Table 4.8 shows that

the maximum flow-rate error is the average error in the second femoral segment.

The average flow-rate error in the right and left second femoral segment is equal

to 11.015% and 11.081%, respectively. The maximum pressure error is the average

error in the right and left radial arteries, equal to 1.595% and 1.533%, respectively.

As the errors induced by the removal of the third group of vessels are greater

than the allowable limit of 2% the second popliteal segment, the anterior tibial,

and the tibiofibular trunk are re-introduced into the third proposed network. The

pressure and flow-rate profiles corresponding to the reduced network produced by

the removal of the posterior tibial only are shown in Figure 4.10. It can be seen

from this figure that the re-introduction of the second popliteal segment, the anterior

tibial, and the tibiofibular trunk have significantly reduced the discrepancies seen

throughout the arterial network. Table 4.9 shows that the largest flow-rate errors

are still occurring in the second femoral segments. The systolic error in the right

and left second femoral segments are equal to 6.072% and 6.109%, respectively. The

maximum pressure error remains in the radial arteries, with systolic errors in the

right and left arteries of 0.776% and 0.750%, respectively. As the removal of even

a single vessel within the peripheries of the legs results in flow-rate errors of more

than 2%, it is not possible to remove any of these vessels from the arterial network

of VPs.

Currently the affect of the removal of the first and second splenic segments; the

left gastric; and the common hepatic and the removal of the right and left posterior

interosseous have been examined independently. Before finalising the removal of

these vessels from the arterial network of VPs, it is important to make sure that

there is no significant amplifying affect on the errors induced when all vessels are

removed in combination. The pressure and flow-rate profiles corresponding to the

reduced arterial network produced by the removal of the first and second splenic

segments; the left gastric; the common hepatic; and the posterior interosseous are

shown in Figure 4.11. Figure 4.11 shows there are no significant errors induced

when all 6 arterial vessels are removed in combination. Table 4.10 shows that, as

is expected, greater errors are induced when both groups of vessels are removed in

combination rather than isolation. These errors remain within the 2% allowable

range, however. The maximum pressure error is the systolic error in the right and

left radial arteries, equal to 1.236% and 1.231%, respectively. The maximum flow-
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Figure 4.9: Comparison of pressure or flow-rate profiles at all measurement locations
taken from the initial network and the reduced network produced by the removal
of the the first and second popliteal segments; the anterior tibial; the tibiofibular
trunk; and the posterior tibial.
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Figure 4.10: Comparison of pressure or flow-rate profiles at all measurement
locations taken from the initial network and the reduced network produced by the
removal of the posterior tibial.
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rate error is occurring in the brachial arteries, with a systolic flow-rate error in the

right and left brachial arteries of 1.223% and 1.131%, respectively.

It is found that the first and second splenic segments; left gastric; common

hepatic; and the left and right posterior interosseous vessels can all be removed

from the arterial network without introducing errors larger than 2%, relative to

the full initial network. These six vessels are highlighted within in Figure 4.12.

VPs are, therefore, created with these six vessels omitted from their arterial

networks. All of the removed segments have constant reference radii and vessel

wall mechanical properties along their lengths. The removal of these segments

results in the need for two fewer Windkessel models. Thus, the removal of these

six vessels reduces the dimensionality of VPs arterial networks by a total of 24—

assuming the parameterisation used within the initial network. This network and

its associated parameters—either directly taken from or computed based off of the

initial network—forms the reference network for this study, and has a dimensionality

of 389. A parameterisation of the arterial networks of VPs must be decided upon

to both reduce this dimensionality further and enforce required physiological and

geometrical behaviours, outlined next.

4.5 Parameterisation of the arterial network

A parsimonious representation is sought for the aforementioned reference (reduced)

network so that its dimensionality can be further reduced. When deciding upon the

parameterisation of the arterial network of VPs, two pairs of opposing characteristics

must be considered and balanced:

� Physiological precision versus dimensionality. Requiring a high number

of parameters to describe the arterial networks of VPs results in the creation of

the new VPD being complex and likely computationally expensive. Excessive

simplification of VPs, on the other hand, results in the pressure and flow-rate

profiles produced being unrepresentative of the profiles seen throughout a real

arterial network.

� Variability versus control. Strict relationships and behaviours can be

imposed on the arterial networks of VPs, to ensure highly physiologically likely

VPs are produced. This, however, comes at the cost of the variability of arterial
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Figure 4.11: Comparison of pressure or flow-rate profiles at all measurement
locations taken from the initial network and the reduced network produced by the
removal of the first and second splenic segments, left gastric, common hepatic, and
posterior interosseous. Percentage errors have been computed based on error metric
presented in [58].
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4.5. PARAMETERISATION OF THE ARTERIAL NETWORK

Figure 4.12: The location of the vessels that have been found to be able to be
removed from the initial network without inducing errors of greater than 2%. In
the above figure ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’ indicate the second ulnar segments, the
common hepatic artery, the first splenic segment, the left gastric artery, and the
second splenic segment respectively.
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networks, and so consequently pressure and flow-rate profiles, seen across the

final VPD. More variability can be produced across the VPD by apply a non-

restrictive parameterisation to the arterial network. This is likely to result in

an increase in the frequency of the occurrence of physiologically unlikely VPs.

The vessels in the reference network can be split into the following three

categories, which are also indicated in Figure 4.13:

� Category 1: 33 vessel segments with varying β and r0, and continuous

variation with respect to the prior and subsequent vessels.

� Category 2: six vessel segments with varying β and r0, and discontinuous

variation with respect to the prior and subsequent vessels.

� Category 3: 32 vessels where β and r0 are constant along their lengths.

When solving the physics based model of pulse wave propagation, vessel segments

are split into a series of elements. The radii and vessel wall mechanical properties

of the nodes at the proximal and distal ends of each element are computed based

on a given profile of the vessel properties. The SDC implementation being used

to solve the physics based model of pulse-wave propagation assumes that the

properties of elements vary linearly along their lengths. It can, therefore, be seen

that vessel properties are subject to two profiles; an intra-vessel profile dictating

the properties at each nodal position, and an intra-elemental profile dictating the

profile of properties between these nodes. The intra-elemental profile is forced to

be linear by the SDC implementation being used, while the intra-vessel profile is

decided upon through the parameterisation of the arterial network chosen. Given a

fine enough spatial discretisation, i.e. a small enough element length, the successive

intra-elemental property profiles should accurately approximate the desired intra-

vessel profile. For Categories 1 and 2 with varying intra-vessel property profiles, the

reference network assumes a linear variation [20]. Thus, any property g(x) (reference

radius r0 or β) varies along length x as:

g(x) = g0 − (g0 − gL)
x

L
, (4.4)

where g0, and gL represents the properties at the proximal end x = 0 and the distal

end x = L, respectively. A re-parameterisation of these properties to reduce the
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4.5. PARAMETERISATION OF THE ARTERIAL NETWORK

total dimensionality is presented next. For all the aforementioned three categories

of vessels, a unified parameterisation is proposed, which also results in reduction

in the dimensionality associated with the description of Category 1 vessels. This

parameterisation includes description of the mechanical properties (Section 4.5.1),

geometric properties (Section 4.5.2) and boundary conditions (Section 4.5.3).

4.5.1 Mechanical properties.

Exponential property profiles

As opposed to describing the property variations linearly, see Equation (4.4), the

key idea is to use exponential variations. The re-parameterisation of mechanical

properties β for the three categories is as follows:

Category 1: These vessels have continuous variation in properties between

successive vessels. Thus, successive vessels can be lumped together into chains and

a single parameterisation adopted. The 33 vessel segments (Category 1) that meet

this description can be lumped into the following chains:

� The aortic chain. This chain of vessel segments includes the first to forth

aortic arch segments; the first to sixth thoracic aorta segments; and the first

to fifth abdominal aorta segments.

� The right and left arm chains. These chains of vessels include the first

and second subclavian segments; the axillary artery; and the brachial artery.

� The right and left leg chains. These chains of vessels include the external

iliac; the first and second femoral segments; and the first and second popliteal

segments.

The β profiles for an entire vessel chain can now be described using a single function

as opposed to separate functions (and hence separate parameters) for each individual

vessel.

When vessel segments are lumped into chains, as is being done within this study,

linear intra-chain property profiles are problematic. Proximal vessels within the

network are expected to have steeper property profile gradients, while distal vessels

are expected to have shallower property profile gradients. Describing the property

profiles of vessel chains through a linear variation of the properties at the proximal
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end of the chain results in a constant gradient along the entire length of the chain.

This consequently results in too little decay of vessel properties in segments at the

proximal end of the chain, and too great decay of vessel properties in segments at

the distal end of the chain. An appropriate choice for intra-chain variation is an

exponential decay of the properties at the proximal end of the chain:

β(x) = β0 exp(−Ωvx), (4.5)

where β(x) and β0 represents the mechanical properties of the chain at the spatial

position x and the proximal end of the chain, respectively; and Ωv > 0 represent a

decay parameter.

Category 2: These vessels do not form part of any chain but show an intra-

vessel property variation. For consistency and uniformity, their variation is also

described by the exponential re-parameterisation of Equation (4.5).

Category 3: These vessels are also not part of a chain and have constant intra-

vessel properties. Again, for uniformity, the re-parameterisation of Equation (4.5)

is used, with the added explicit condition that Ωv = 0.

Hierarchical assignment of vessel properties

The assignment of β properties of the entire network, as described by Equation (4.5),

is presented here. Proximal-distal coherence dictates that the β properties at the

distal end of a vessel segment must be greater than or equal to the corresponding

property at the proximal end of any subsequent daughter segments [17]. To ensure

this a hierarchical procedure is adopted.

The β properties of the arterial network are initialised by explicitly assigning a

value at the inlet of the first aortic arch segment. The property profile of the aortic

chain, and so consequently the vessel wall mechanical property at the proximal and

distal ends of each segment within the chain, is computed using Equation (4.5).

The properties at the proximal end of any vessel segments branching from the

aorta are computed by applying a scaling term (introduced to ensure proximal-

distal coherence) to the corresponding property at the distal end of the parent aortic

segment:

βd0 = βpLp
Ωs, (4.6)
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Figure 4.13: The location of the vessels within each of the five chains. The aortic chain consists of:
the first to forth aortic arch segments denoted by “a” through to “d”, the first to sixth thoracic
aorta segments denoted by “e” through to “j”, and the first to fifth abdominal aorta segments
denoted by “k” through to “o”. The right and left arm chains consist of: the first and second
subclavian segments denoted by “p” and “q” respectively, the axillary artery denoted by “r”, and
the brachial artery denoted by “s”. The right and left leg chains consist of: the external iliac
denoted by “t”, the first and second femoral segments denoted by “u” and “v” respectively, and
the first and second popliteal segments denoted by “w” and “x” respectively.
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where βd0 represents the property at the proximal end of the daughter segment, βpLp

represents the property at the distal end of the parent segment, and Ωs represents

a daughter-parent scaling term, where:

0 < Ωs ≤ 1. (4.7)

The intra-vessel or intra-chain property profiles of all daughter branches bifurcating

from the aorta are computed using Equation (4.5). This process is sequentially

repeated through each generation of the arterial network until all terminal

boundaries are reached.

The β property profile of the aortic chain is fully described by Equation

(4.5), as β0 is overtly stated to initialise the network. To fully understand

the parameterisation of vessel segment property profiles beyond the aortic chain

Equations (4.5) and (4.6) must be synthesised, i.e.:

βd(xd) = βpLp
Ωs exp(−Ωvxd), (4.8)

where βd(xd) represents the β property of the daughter vessel at position xd. The

number of parameters required to describe the intra-chain property profiles and the

intra-vessel property profiles of vessels with varying properties along their length,

beyond the aortic chain, can be seen to remain as two. The property at the distal

end of the parent vessel, denoted by βpLp
, is described by the parameters of the parent

intra-chain or intra-vessel property profile.

There are two arterial vessel segments with a daughter-parent ratio of one, each

with a right and left instance. These vessels are the second ulnar segment, and the

tibiofibular trunk. The daughter-parent ratio for these four vessels is subject to the

explicit condition Ωs = 0, removing the need for four dimensions. The β properties

of all arterial vessel segments, therefore, requires provision of 50 parameters.

Figure 4.14 shows an example of the assignment of vessel properties across

two generations of the arterial network. From this figure, the formation of a

Bayesian network can be seen [37]. The parameters of an intra-vessel or intra-

chain property profile are independent of the parameters of the parent intra-vessel

or intra-chain property profile. If the intra-vessel or intra-chain property profile of

a vessel of interest is known, however, a conditional dependency is formed between

Pg. 131 / 416
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(...)

Ω
(n−1,1)
v , Ω

(n−1,1)
s β(n−1,1)(x)

Ω
(n,1)
v , Ω

(n,1)
s β(n,1)(x) β(n,2)(x) Ω

(n,2)
v , Ω

(n,2)
s

(...) (...) (...) (...)

Figure 4.14: Illustration of hierarchical procedure used to assign intra-vessel and
intra-chain property profiles to segments within the arterial network. Ω

(n,m)
v and

Ω
(n,m)
s represent the decay and scaling parameters of the mth branch at the nth

generation respectively; and β(n,m)(x) represents the vessel wall mechanical property
or radius of the mth branch at the nth bifurcation generation at location x

the parameters of the profile and the parameters of property profile of the parent.

4.5.2 Geometric properties

Here, the re-parameterisation of geometric properties—reference radius and length—

is presented.

Arterial vessel reference radius

Since the variation of reference radius (r0) is subject to the same requirements as

those for the variation of β, the variation of r0 is described in exactly the same

manner as β, as presented in 4.5.1. Lumping arterial vessels into chains, where

appropriate, and applying exponential functions to describe the properties β and
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r0 of all the vessels reduced the number of dimensions from 389 in the reference

network to 269.

Arterial vessel length

Each arterial vessel requires specification of its length. To individually assign a

length to every vessel requires 71 parameters, accounting for a large proportion of

the 269 remaining dimensions. It is thus proposed to reduce the dimensionality

of the network by applying a single scaling term to the lengths of all vessels. It

is empirically found that behaviours, patterns, and overall variability observed in

the pressure and flow-rate profiles when allowing maximum freedom to the length

of vessels, i.e. assigning independent lengths to each arterial vessel, are not lost

when applying a singular vessel length scaling term to all the vessels. This analysis

justifies the use of a single scaling term and can be found in Appendix G. With this

assumption, the dimensionality is reduced from 269 to 199.

4.5.3 Boundary conditions

The boundary conditions consist of the inlet flow-rate and the terminal lumped

parameters. These are parameterised as follows:

Inlet flow-rate

The volumetric inlet flow-rate to the network—at the free end of vessel ‘a’ in Figure

6.1—is described using a Fourier series (FS), as previously employed in the PoC

study. It is found in Chapter 3 that a time domain inlet flow-rate profile can be

described to a high level of precision using a FS truncated at the 5th order. Thus,

the time domain inlet flow-rate profiles can be described by:

Qinlet = {a0 = 0, b0, a1, b1, · · · , a5, b5}, (4.9)

and requires specification of 11 coefficients.
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Terminal lumped models

There are 29 terminal boundaries in the network. Each of these terminal boundaries

is coupled to a Windkessel model. Each Windkessel model requires three parameters;

two resistances, and a compliance. It is chosen that the parameters of all Windkessel

models will be treated as a priori independent—i.e. no direct inter- or intra-

Windkessel model relationships are stated. These Windkessel models, therefore,

require specification of a total of 87 parameters.

4.5.4 Final network summary

The final parsimonious representation consists of:

� 33 category 1 vessel segments, for which the intra-vessel property profiles

are described through the use of one of five vessel chains. Each chain of

vessels requires two exponential functions—one describing the r0 intra-chain

profile, and one describing the β intra-chain profile. Each exponential function

requires two parameters. In the case of the aortic chain these parameters are

an initialising term and an exponential decay term. For the other four vessel

chains the two required parameters are a daughter-parent ratio term and an

exponential decay term. These 33 vessel segments, therefore, require a total

of 20 dimensions to describe their properties.

� Six category 2 vessel segments, for which the intra-vessel property profiles

are described by their own individual exponential function. Each of these

segments requires two profiles described by two parameters. These six vessel

segments require a total of 24 dimensions to describe their properties.

� 32 category 3 vessel segments. 28 of these vessels have properties that

differ from that of their parent vessel. The properties of these 28 vessels are,

therefore, described using two parameters—a daughter-parent scaling term for

their r0 and β property, respectively. The remaining four vessel segments with

constant properties along their length have r0 and β properties equal to that

of their parent. These four vessels require no parameters to be described, as

their daughter-parent ratio is set to one. The 32 vessel segments with constant
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properties along their lengths, therefore, require a total of 56 dimensions to

describe their properties.

� The inlet flow-rate, described using a FS truncated at the 5th order (see

Section 4.5.3).

� 29 Windkessel models, requiring 87 parameters (see Section 4.5.3).

� The lengths of all vessels in the network are computed based on a single

scaling term (see Section 4.5.2).

The above description has 199 parameters. These represent 22 decay parameters Ωv,

78 daughter-parent scaling parameters Ωs, 87 Windkessel parameters at the outlets,

11 FS coefficients describing the inlet flow-rate, and 1 length scaling term. These 199

parameters represent a reduction of approximately 48% with respect to the original

description with 389 parameters. The final step in parameterisation is to describe

all these 199 parameters relative to the reference network, and is described next.

4.5.5 Scaling with respect to the reference network

Instead of describing the network by directly stating values of the 199 parameters,

they are specified relative to the reference network:

Ω = ΦTΩref, (4.10)

where Φ = [Φ1,Φ2 · · ·Φ199]T represents the scaling vector in relation to the reference

network, and Ωref represents the vector of reference network parameters. The

reference network parameters for the vessel wall mechanical property and radius

exponential profiles (see Sections 4.5.1 and 4.5.2) are computed by curving fitting

each to the reference (reduced) network presented in Section 4.4.3. The pressure and

flow-rate profiles corresponding to the reference network presented in Section 4.4.3

and those produced when using the reference network parameters (employing the

aforementioned parsimonious parameterisation) are not compared, as the purpose

of the reference network parameters is not to perfectly recreate the ADAN network

but instead act as a known physiologically highly likely example of the parsimonious

parameterisation. By applying scaling terms to a reference set of parameters, easy
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comparison can be made to a known reference patient. Random sampling from the

distribution of Φ will result in the VPD. This is described in the next section.

4.6 Statistical modelling

In Sections 4.4 and 4.5 a reduced version of the initial network, consisting of 71

arterial vessel segments, and the parameterisation of this network, which is fully

described by 199 parameter scaling terms, is outlined. Random realisations of

these 199 arterial network parameter scaling terms are sampled to create the VPD.

When creating the VPD it is important to ensure that both the arterial network

parameter scaling terms assigned to VPs and the resulting pressure and flow-rate

profiles capture the range and distribution measured in a real population. The

information used to impose physiological realism on the VPD can be split into two

general categories:

� Literature reported measurements: The literature reported

measurements used to impose realism on the VPD are primarily based

on pressure and flow-rate profiles. This is due to the fact that pressure and

flow-rate measurements can be taken at certain locations within the arterial

network relatively inexpensively and non-invasively, and so are frequently

reported in literature. Parameters required to describe VPs arterial networks,

on the other hand, are generally either non-physical, and so can not be

directly measured, or are invasive to obtain. As a consequence of this there

are significantly fewer cases of reported one-dimensional arterial network

parameters. The distributions of the literature based measurements being

incorporated into the VPD, to ensure physiological realism, is described as:

N (µlit,Σlit), (4.11)

where µlit is the vector of the mean measurements, and Σlit represents

the measurement covariance matrix. Each literature based measurement is

assumed to be independent and so Σlit is diagonal.

� Known physiological restrictions and geometrical constraints: The

known physiological restrictions and geometrical constraints are used to impose
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bounds on the supports of the distributions of arterial network parameter

scaling terms.

To create the VPD, random samples of Φ from their joint probability distribution

are required. This distribution should satisfy the two aforementioned pieces of

information.

The pulse wave propagation model, denoted as M, takes the parameters Φ as

inputs and outputs the pressure and flow-rates, collectively denoted as the vector

Λ, at all the locations:

Λ =M(Φ), (4.12)

The specific measurements of the model—corresponding to the literature reported

measurements—are denoted by τ , and are essentially transformations of Λ corrupted

by measurement noise E :

τ = H(Λ) + E , (4.13)

where H represents the observation operator. Commonly, the observation operator

H represents an identity transform of selected components of Λ. The measurement

error E is typically assumed to be a zero-mean multivariate normal:

E ∼ N (0,Σerror), (4.14)

where 0 is a zero-vector and Σerror represents the error covariance matrix (diagonal

when errors are independent).

Classical inversion problem

One method to create a distribution of arterial network parameter scaling terms is

to treat the distribution of measurements taken from literature as targets that must

be recreated across the final VPD, i.e.:

τ ∼ N (µlit,Σlit). (4.15)

To find the distribution of arterial network parameter scaling terms required to

recreate the literature based measurements across the VPD, the forward model

described by Equations (4.12) and (4.13) is assumed to be fully deterministic, i.e.

Σerror is a zero-matrix. The required distribution of arterial network parameter
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scaling terms is found through the inversion of Equations (4.12):

Φ =M−1 (Λ) , (4.16)

whereM−1 (Λ) represents the inverted backward model mapping the distribution of

model outputs to the distribution of arterial network parameter scaling terms. Two

problems with this method for determining a distribution from which VPs must be

sampled are:

� It is difficult to incorporate the known physiological restrictions and

geometrical constraints.

� The inverse model M−1 is difficult to be obtained. Even if a numerical

approach was taken, the solution of the inverse problem is expensive.

Bayesian formulation

As opposed to considering the distribution of measurements taken from literature to

be target distributions, they are instead treated as observations (measurements) of

τ from Equations (4.12) and (4.13). A Bayesian formulation is adopted to find the

posterior distribution of the parameters Φ, subject to the affect of the observations

τ . This is suitable because the geometric and physiological constraints, in the form

of a prior, can be combined with the literature reported measurements, in the form

of a likelihood, to result in a posterior distribution that considers both the pieces of

available information. The Bayes’ theorem allows such a combination naturally:

p (Φ | τ )︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p (τ |Φ)

prior︷ ︸︸ ︷
p (Φ)

p (τ )︸ ︷︷ ︸
evidence

. (4.17)

The prior distributions p(Φ) are described in section 4.6.1 and are constructed

based on the known physiological restrictions and geometrical constraints. Strong

prior beliefs are not held about the distributions of arterial network parameter

scaling terms, and so these prior distributions are weakly informative or

uninformative. Their primary purpose is to impose appropriate bounds on the

supports of the distributions based on geometric and physiological constraints.
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For the computation of the likelihood, in the context of the statistical model

described by Equations (4.12)–(4.17), it is assumed that τ is measured to be equal

to τ = µlit and the error covariance is Σerror = Σlit. The likelihood for individual

measurements is described in Section 4.6.2.

The evidence term within Bayes’ theorem is independent of the distribution of

arterial network parameter scaling terms. This means that the evidence does not

affect the shape of the posterior distribution, and instead purely acts as a normalising

constant, ensuring the integral of the posterior is equal to one. It is, therefore,

possible to evaluate the posterior distribution, up to the limit of the normalising

constant, without the need for computation of the evidence term.

4.6.1 Prior distributions

Known physiological restrictions and geometrical constraints are imposed on the

posterior distribution of arterial network parameter scaling terms through the

use of the prior distribution. When choosing appropriate prior distributions for

each parameter it is important to consider the affect they have on not only the

individual parameter, but also on the overall posterior distribution from which VPs

are sampled. Prior distributions can be split into three categories, dependent on the

strength of specific beliefs held about the parameter they are being applied to:

� Informative prior distributions are applied when strong specific beliefs are

held about a parameter. An informative prior distribution has low variance,

and so a high probability corresponding to its mean value. Due to the low

variance, an informative prior significantly restricts the values a parameter

can take, as any deviation from the mean results in a significant penalisation

to the probability of that parameter. The high mean probability associated

with an informative prior has a significant affect on the shape of the posterior

distribution.

� Weakly informative prior distributions are applied when looser or partial

beliefs are held about a parameter. A weakly informative prior has higher

variance than an informative prior, constraining a parameter to a high

probability region rather than a particular value. Weakly informative priors

generally have lower mean probability than informative priors, and so have
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less affect on the shape of the posterior distribution.

� Uninformative priors are the final common form of prior distribution.

The name “uninformative” is misleading as these prior distributions do

provide information about parameters. The information provided, however, is

generally objective—for example the parameter must be within an allowable

range. Uninformative priors are often based on the principle of indifference

[143], assigning a constant probability to all values within a parameters

support. Uninformative priors, therefore, provide little or no regularisation

to a parameter within its support, and subsequently have little influence on

the shape of the posterior distribution.

Since scarce information is available about the variations of the parameters, the

prior distributions are primarily constructed based on the known physiological

and geometrical bounds that should be observed. Thus, weakly informative or

uninformative priors are applied to all arterial network parameter scaling terms.

This allows the shape of the posterior distribution to be driven by the likelihood term

within Bayes’ theorem, while the prior distribution acts purely as a regularisation

term. One of three general distributions are used as the prior distribution of all

parameter scaling terms, dependent on the support of that particular parameter:

1. Bounded parameters: A uniform prior distribution is chosen for all the

scaling parameters which are supported on a bounded interval. The daughter-

parent ratio (see Equations (4.6)) is the only example of such a parameter. For

the ith pair of vessels with reference parent-daughter ratio Ωi,ref, it can be seen

that when the bounds imposed on the daughter-parent ratio in the parameter

space (see Equation (4.7)) are mapped to the parameter scaling space (see

Equation (4.10)) the corresponding scaling term Φi is bounded between 0 and

1/Ωi,ref. The prior probability density function (PDF) is thus:

p(Φi) =

Ωi,ref if Φi ∈ (0, 1/Ωi,ref]

0 otherwise
, (4.18)

and shown in the left plot of Figure 4.15.

2. Semi-bounded parameters: A log-normal prior distribution is chosen for

Pg. 140 / 416



4.6. STATISTICAL MODELLING

all the scaling parameters with semi-infinite support. These parameters with

a lower bound of zero and no upper bound are:

� initial values of radii r0 and vessel wall mechanical properties β at the

inlet of the aorta (see Sections 4.5.1, and 4.5.2);

� the decay terms used within all exponential property profiles (see Sections

4.5.1, and 4.5.2);

� the length of arterial vessels (see Section 4.5.2); and

� the terminal boundary Windkessel model parameters (see Section 4.5.3).

The prior PDF of the ith such parameter is thus described by the following

log-normal distribution:

p(Φi) =
1

Φiσi
√

2π
exp

(
−(ln (Φi)− µi)2

2σ2
i

)
, (4.19)

where µi and σi represent the mean and standard deviation of the underlying

Normal distribution, i.e. ln (Φi) ∼ N (µi, σ
2
i ). This log-normal distribution is

created with large variance, resulting in a weakly informative prior. For all

the scaling parameters µi is set to 0.5 and and σ2
i is set to 0.8, respectively.

This PDF is shown in the middle plot of Figure 4.15.

3. Unbounded parameters: A normal prior distribution is chosen for all the

scaling parameters with infinite support. The only such parameters are the

inlet flow-rate FS coefficients (see section 4.5.3). The prior PDF of the ith FS

coefficient with mean µi and standard deviation σi is thus described as:

p(Φi) =
1

σi
√

2π
exp

(
−1

2

(
Φi − µi
σi

)2
)
. (4.20)

While the FS scaling parameters do have infinite support, they are expected

to be within physiological range and hence within several multiplications of

the reference FS coefficients. Thus, µi = 1 and a standard deviation σi = 2 is

set, resulting in a weakly informative prior.
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Figure 4.15: The three type of prior distributions used for all arterial network scaling
parameters.

It is assumed that all the priors are independent of each other, thus a singular

joint prior PDF is:

p(Φ) =
N∏
i=1

p(Φi), (4.21)

where N = 199 is the total number of scaling parameters.

4.6.2 Likelihood

The likelihood term within Bayes’ theorem represents the likelihood of observing

the measurements µlit from the model described by Equations (4.12), and (4.13).

To construct a function for the likelihood term, examples of observed measurements

taken from the model described by Equations (4.12), and (4.13) must be obtained

from literature. The literature based measurements being incorporated into the

VPD are split into three components. These three components are:

� Scalar pressure and flow-rate measurements.

� A time varying inlet flow-rate and cardiac output measurement.

� A vessel length scaling term measurement.
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Each of these components is explained next.

Scalar pressure and flow-rate measurements

Scalar pressure (diastolic and systolic) and flow-rate (average) measurements at

locations (radial artery, ascending aorta, common carotid, and femoral artery)

reported in literature are incorporated into the likelihood. Their statistics and

sources are shown in Table 4.11. When multiple measurements are available for the

same quantity, they are pooled together into a single mean and variance [178]. The

pooling method used accounts for not only the mean and variance of each individual

measurements, but also the number of patients from which each measurement

has been computed. Due to the interconnected nature of the arterial network, if

physiologically realistic scalar pressure and flow-rate measurements are incorporated

at multiple discrete locations throughout the arterial network, it is reasonable

to assume that physiologically realistic distributions are occurring continuously

throughout the network across the resulting VPD. A break down of the demographics

of patients included within these literature based measurements are as follows:

� Two radial artery pressure measurements, one for systolic and one for diastolic

pressure, are created based on 71 patients taken from two studies. The first

study [152] contains 45 males and 6 females, with age ranges of 48 to 77

years old, all of whom have been recorded to have coronary artery disease.

The second study used to create the radial artery pressure measurement [38]

contains 16 males and 4 females, with age range of 36 to 78 years old, with a

range of cardiac diseases.

� Systolic and diastolic ascending aorta pressure measurements are created based

on 69 patients taken from two studies. The first study [152] is the same as

the first study used for the radial artery measurement. The second study

[138] contains 18 patients, with age range of 19 to 54 years old, with no

cardiovascular disease detectable through hemodynamic measurements.

� Systolic and diastolic common carotid artery pressure measurements are

created based on 134 patients taken from 3 studies. The first study [199]
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contains 4 males and 2 females with heart disease, and a mean age of 45 years

old. The second study [11] contains 9 healthy subjects with age range between

24 and 34 years old. The third study [80] contained 118 patients, 54 of whom

are female and 65 males, with age range between 9 and 75 years old.

� An average femoral artery flow-rate measurement is created based on 63

patients from two studies. The first study [128] contains 12 healthy patients,

8 male and 4 female, with an average age of 55 years old. The second study

[121] contains 51 patients with no evidence of peripheral vascular disease. 26

of these patients are males and 25 females, with age range of 18 to 75 years

old.

For each measurement τi (either directly measured or pooled together) to be

µi,dis with standard deviation σi,dis, the likelihood is:

p (τi=µi,dis|Φ) =
1

σi,dis

√
2π

exp

(
−1

2

(
µi,dis −Hi(M(Φ))

σi,dis

)2
)
, (4.22)

where Hi represents the observation operator (see Section 4.6) that extracts the

τi component of the model output. Denoting all such discrete measurements

collectively with the vector τdis, the combined likelihood with the assumption of

independence is:

p (τdis = µdis|Φ) =
N∏
i

p (τi=µi,dis|Φ) . (4.23)

Time varying inlet flow-rate and cardiac output measurement.

While the incorporation of the above pressure and flow-rate measurements updates

the posterior distribution with regards to expected ranges, it provides no information

about the expected shape of pressure and flow-rate profile. Some time-varying

information about the behaviour of pressure and flow-rates over the cardiac cycle is

necessary to obtain a physiologically realistic posterior. Statistics on any such time-

varying behaviour is not reported in literature to the authors’ knowledge. Thus,

a time-varying pseudo measurement is constructed by combining the reference (see

[20]) time varying inlet flow-rateQref(t) and a measurement of average cardiac output

[92, 35]. It must be ensured that this pseudo measurement accurately captures not
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only the mean and standard deviation of the inlet flow-rate profile at any time point

within the cardiac period, but also the covariance between any two time points. An

appropriate method to create such a pseudo measurement is a Gaussian Random

Field (GRF, also referred to as a Gaussian Process) [167, 91]. Using a GRF allows for

a description of the mean (see Equation (4.24)), standard deviation (Equation (4.25),

and covariance (Equation (4.26)) to be chosen, and then these components combined

into a time-varying distribution. The pseudo measurement Qmeas(t) is described by

a GRF with the following mean µmeas(t) and standard deviation σmeas(t):

µmeas(t) = Qref(t), (4.24)

σmeas (t) =

(
1 +

Qref(t)−min(Qref)

max(Qref)−min(Qref)

)
F , (4.25)

where F is a positive scaling parameter. The scaling of σmeas(t) is to ensure

that i) the standard deviation is positive, and ii) the variance is proportional

to the magnitude of the flow rate (i.e. the percentage variance with respect to

the magnitude remains fixed). This behaviour is shown in Figure 4.16. Qref(t)

varies between approximately 550mls−1 and 0mls−1. Applying a constant standard

deviation (i.e. σmeas (t) is fixed) based on the maximum measured flow-rate results in

time points corresponding to low flow-rates having very large variance proportional

to their measured value, and vice versa. The value of F is empirically tuned after

the GRF has been described.

The covariance between the pseudo measurements at any two times ti and tj is

described through a periodic kernel [167]:

cov (Qmeas(ti), Qmeas(tj)) = σmeas (t1)σmeas (t2) exp

(−2 sin2 (π|ti − tj|/T )

(υT )2

)
,

(4.26)

where T represents the cardiac period, and υ represents the ratio of the correlation

length to the cardiac period. The correlation length dictates the distance within

which two points have a strong affect on one another. Instead of directly stating

the correlation length, it is decided to computed it based on the cardiac period.

In this study the cardiac period of all VPs is being kept constant. Describing the

correlation length in this way, however, ensures that if the cardiac period of VPs were
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Figure 4.16: On the left the measured flow-rate profile taken from the initial network,
being incorporated into the posterior distribution, is shown. On the right the
corresponding standard deviation profile, computed using Equation (4.25), is shown
in terms of the parameter F .

to be randomised in future studies two discrete points at a fixed proportion of the

period apart will have the same influence on each other, irrespective of the cardiac

period. The affect of different correlation lengths, as a proportion of the cardiac

period, on the correlation between time points is shown in Figure 4.17. The purpose

of the pseudo measurement being incorporated into the posterior distribution is to

impose control over the shapes of pressure and flow-rate profiles being produced. If

the correlation length used to create the GRF is too low, adequate control will not

be imposed on the realisations of inlet flow-rate profiles that can be produced. A

high correlation between time points throughout the entire cardiac period, however,

will result in a heavy penalisation to the likelihood of the measured inlet flow-rate

profile occurring if it is not a direct translations of the observed profile extracted

from the model. A correlation length to cardiac period ratio of υ = 1
2

is chosen.

This ratio can be seen to maintain a high correlation for a reasonable proportion

of the cardiac period while still allowing the correlation to drop to 0, balancing the
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Figure 4.17: The affect of correlation length as a proportion of the cardiac period
on the correlation between time points. The x-axis represents the relative distance
between two time points as a proportion of the cardiac period, and the y-axis
represents the correlation between these time points. Each line shows the correlation
profile when a different correlation length to cardiac period ratio is used.

two aforementioned behaviours.

Using the measurement of average cardiac output and the associated standard

deviation taken from [92] and [35] the value assigned to the scaling term within

Equation (4.25), denoted by F , is tuned empirically. The pooled measurement of

average cardiac output and the standard deviation taken from literature is equal to

98ml/sec and 35.55ml/sec, respectively. A series of unique GRFs are created using

standard deviation profiles computed using Equation (4.25) and different values of

F between 50mls−1 and 200 mls−1. 100,000 realisations of inlet flow-rate profiles

are drawn from each GRF. The average cardiac output of each of these realisations is

computed, and the mean of the average cardiac output and the associated standard

deviation across each GRF is empirically found. The absolute percentage difference

between the empirical mean and the associated standard deviation of the average

cardiac output of each GRF, and the literature based measurement is computed.

This analysis is shown in Figure 4.18.
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Figure 4.18: The percentage difference between the empirical mean of the average
cardiac output and the associated standard deviation of 100,000 realisations drawn
from GRFs with different standard deviation scaling terms, and the measured
average cardiac output and associated standard deviation taken from literature
[92][35].

The discrepancy between the empirical mean of the average cardiac output of

each GRF and the literature based measurement should not change when different

values of F are used. Any oscillatory behaviour seen in the percentage discrepancy of

the mean average cardiac output will therefore be introduced due to statistical errors.

Figure 4.18 shows that the amplitude of the oscillations of the mean average cardiac

output discrepancy are negligible, with a difference between maximum and minimum

of 1.01%. Figure 4.18 shows that setting F = 59.09 produces a clear and significant

minimum total discrepancy. Using this value of F produces a mean average cardiac

output of 97.80ml/sec, compared to the literature based measurement of 98ml/sec,

and a standard deviation of 34.84ml/sec, compared to the literature based standard

deviation of 35.55ml/sec.

To be able to incorporate the affect of observing the pseudo measurement

Qmeas(t) into the posterior distribution, the GRF created above is discretised into

a series of time points. As with the correlation length ratio used within Equation

(4.26), the number of evaluation points used must be carefully considered to balance

control over the shape of flow-rate profiles produced with freedom to produce

variability across the final VPD. Evaluating the likelihood of the time domain inlet
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flow-rate measurement occurring at a high number of discrete points results in more

control being imposed over the shape of realisations of inlet flow-rate profiles assigned

to VPs, and so less variability across the final VPD. Due to the greater range of

both magnitudes and gradients seen within the first half of the cardiac period, it is

decided that two thirds of the evaluation points are in the first half of the cardiac

period. The two thirds of evaluation points assigned to the first half of the cardiac

period and the one third assigned to the second half are evenly spread across their

respective half’s. The resulting positioning of evaluation points when discretising

the time domain inlet flow-rate profile into six, nine, and twelve points are shown

in Figure 4.19. From the left two plots, six and nine evaluation points can be seen

to provide too little information about the shape of the time domain inlet flow-rate

profile. When using six evaluation points, the shape of the time domain inlet flow-

rate profile is not evaluated between the start of the cardiac period and the peak

systolic flow-rate. There is also no evaluation of the profile around the minimum

flow-rate position. When using nine evaluation points there appears to be better

monitoring of the minimum flow-rate value, however there is still a lack of evaluation

points between the start of the cardiac period and the peak flow-rate. Using twelve

evaluation points appears to alleviate both of these problems. The likelihood of

the time domain inlet flow-rate profile occurring is, therefore, evaluated at twelve

discrete evaluation points.

Denoting these twelve evaluation time points as {t1, t2, · · · , t12}, the vector

of measurements at these times with τinflow, the mean GRF vector as µinflow =

[µmeas(t1), µmeas(t2), · · · , µmeas(t12)] computed through Equation (4.24), and the

vector of inlet flow-rates produced by the network parameters as Qinflow =

[Qinflow(t1), Qinflow(t2), · · · , Qinflow(t12)], the likelihood for flow-rate can be written

as:

p (τinflow = µinflow|Φ) = (2π)−
k
2 det(Σ)−

1
2 exp

(
− 1

2
ξTΣ−1ξ

)
, (4.27)

where:

ξ = µinflow −Qinflow, (4.28)

and Σ is the GRF covariance matrix whose ith row and jth column element Σi,j =

cov (Qmeas(ti), Qmeas(tj)) can be computed from Equation (4.26); and k is the number

of time points at which the GRF is evaluated (k = 12).
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Figure 4.19: The discrete time points at which the likelihood of the time domain
inlet flow-rate profiles is evaluated is shown on the mean flow-rate profile when
different numbers of evaluation points are used. The left, middle, and right plots
show the locations of evaluation points when using 6, 9, and 12 points respectively.

Vessel length scaling term measurement

As mentioned in Section 4.5.2, the length of the vessels are parameterised by a single

scaling term relative to the reference network. Since statistics of any direct vessel

length measurement are not available, it is assumed that the lengths of arterial

vessels are directly proportional to the height of a subject. A study of 25,945 twins

from eight countries (Australia, Denmark, Finland, Italy, Netherlands, Norway,

Sweden, and the UK) found the mean and standard deviation of the height of

the full cohort to be 172.0cm and 9.308cm respectively [191]. Since the reference

arterial network has a patient of height 170 cm, the measurement data corresponds

to a mean of µlen = 1.0118 and the standard deviation of σlen = 0.0548 for the

vessel length scaling term. Denoting this measurement as τlen, the likelihood for the

scaling parameters Φlen is thus

p (τlen = µlen|Φ) =
1

σlen

√
2π

exp

(
−1

2

(
µlen − Φlen

σlen

)2
)
, (4.29)

Assuming all the measurements to be independent, the combined likelihood in
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Equation (4.17) is:

p (τ |Φ) = p (τdis =µdis|Φ)× p (τinflow =µinflow|Φ)× p (τlen =µlen|Φ) , (4.30)

where the RHS terms can be computed from Equations (4.23), (4.27), and (4.29).

In summary, the prior distributions for the 199 network parameters are specified

in Section 4.6.1. These priors will be modified through the likelihood—specified by

7 scalar measurements of pressure and flow-rate, 1 time-varying flow-rate profile

evaluated at 12 time points in the cardiac cycle, and a measurement of vessel

lengths—to yield the posterior distribution of the parameters through Equation

(4.17). Random sampling from this posterior will result in the virtual patient

database. The sampling procedure is presented next.

4.7 Sampling from the posterior distribution

With the prior and the likelihood specified, the posterior distribution is given

by Equation (4.17), and can be evaluated at any given Φ up to a normalising

constant (the evidence term in the denominator of the equation). Sampling from

this analytically intractable posterior is achieved through the Markov-chain Monte

Carlo (MCMC) method [69, 71] (see Chapter 2), which is a widely used method to

sample from unnormalised distributions.

Given an initialising position within a distribution of interest, an MCMC method

draws sequential dependent samples from that distribution. An iteration within a

Markov chain is required to be only dependent on the previous iteration of the chain.

Therefore, given an adequate length chain, an MCMC method is able to accurately

sample from a distribution when direct sampling is infeasible. It is chosen that

75,000 VPs are to be sampled from the posterior distribution.

The MCMC algorithm is sequential—each subsequent sample depends on the

previous sample and hence the chain grows only one sample at a time. Generating

a long chain this way thus leads to very high computational run times, since

computation of the likelihood requires running a pulse wave propagation simulation

at each step. It is shown in Section 4.3 that the physic based model of pulse wave

propagation takes approximately 25 seconds to solve for a healthy VP (using the

optimum mesh found for healthy patients in Section 4.3, an initial pressure of 75
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mmHg, and running for eight cardiac cycles to allow for enough time to converge

to periodic solutions). It is likely that for some VPs convergence will be reached

in significantly fewer than eight cardiac cycles, however it is chosen to use eight to

ensure more than enough time for all VPs to converge. The process of VP creation

could be optimised (i.e. a reduction in the computational expense) in future studies

by automatically adapting the mesh used to solve VPs and the number of cardiac

cycles run to better suit individual VPs. It is known that 75,000 VPs are to be

sampled from the posterior distribution. It is empirically found that using a standard

deviation of 0.0375—equivalent to 3.75% of the reference values—within the proposal

distribution (see Equation (2.11)) for the scaling terms applied to the inlet flow-rate

FS coefficients, and 0.025—equivalent to 2.5% of the reference values—within the

proposal distribution of all other scaling terms results in an acceptance rate of

approximately 0.2 (see Chapter 2 for details). This analysis is based on MCMC

chains of short length, and so the acceptance rate of the final chain is likely to differ

from this estimate. Assuming that the acceptance rate of the chain is equal to the

previously estimated value of 0.2, however, the required wall clock time to complete

the MCMC chain is computed to be 109 days.

To achieve some level of parallelisation pre-fetching is employed (see Chapter

2 for details). For this study a decision tree depth η = 4 is used. Assuming an

acceptance rate of 0.2 and no increase in time per decision tree as the depth increase,

this results in the creation of 75,000 VPs taking 28 days. Before this new VPD is

used to train and test machine learning classifiers, the a posteriori behaviour of the

new VPD itself must be analysed, presented next.

4.8 Results and discussion

The VPD is created by generating samples through the MCMC algorithm. The

results for the MCMC method and the VPD are presented and discussed here.

4.8.1 Burn-in analysis and chain diagnostics

Formally there are no restrictions on the starting position of a Metropolis-Hastings

MCMC chain, other than it must be within the support of all parameters. It is

common, however, for the initial iterations of an MCMC chain to be considered
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as the “burn-in” period, during which the chain converges on an equilibrium

distribution. This burn-in period is therefore discarded from the final sampled

posterior distribution. Intuitively this practice of discarding the initial portion of

a MCMC chain does not make sense. A defining feature of a Markov chain is its

memorylessness, and so the samples drawn from the posterior distribution should be

independent of the initialising position. Ideally an MCMC chain is run for infinite

length, in which case a very high number of samples are drawn from the entire

distribution. In this case the initialising position of the chain has no influence

on the final distribution from which samples have been drawn. It is not possible,

however, to run a MCMC chain of infinite length, and instead the chain must be

truncated. This results in the distribution from which samples are drawn being an

estimate of the real posterior distribution.

While an MCMC chain is within a region of high posterior density it will move

around in a random manner. Eventually the chain will move beyond the region of

high density, into a region of low density. Once the chain is within a region of low

density it can be thought of as behaving pseudo-randomly. While successive steps

in the chain will have no clear pattern, it is expected that while in a region of low

density there will be a net movement towards regions of higher density. As the

chain once again drifts towards regions of high density, the net “pull” on the chain

is alleviated, allowing it to behave in a manner more similar to its desired random

walk. This pattern of behaviour is repeatedly completed, building a clearer picture

of the posterior distribution each time it is. If a MCMC chain is initialised within

a region of low posterior density, the chain will begin within a “migratory” period.

Initialising an MCMC chain of finite length within a region of low density results

in an inflation in the number of samples drawn from that region comparative to

the number of samples drawn from regions of high density. The magnitude of this

inflation is dependent on two factors i) how long the chain initially takes to reach a

region of high density, and ii) the total length of the chain. If the chain is run for a

very short period, so that only a small number of samples are drawn from the region

of post migration high density, this inflation is great. As the length of the chain

increases, and so more samples are drawn from the entire distribution, the affect of

this initial migration is mitigated. In a similar manner if the MCMC chain moves

slowly through the distribution, and so takes a long time to reach the region of high

density, the affect of this inflation on the estimated posterior distribution is greater.
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If the initial migratory period of the chain is reduced, the affect of this period on the

estimate of the posterior distribution is also reduced. Aside from simply running

the MCMC chain for more iterations, removing a burn-in period from the samples

drawn is one of the simplest ways of increasing the accuracy of the estimate of the

posterior distribution. A burn-in period is used with the intention of removing the

initial migratory period, so that the chain starts within a region of high density.

This method is not exact, and it is often impossible to ensure all parameters are

starting within a high density region. The MCMC chain is initialised at the reference

network, which is known to be a reasonable realisation of an arterial network, and

thus should be in a region of high density.

To estimate the required initial burn-in period, trace plots for every parameter

at each iteration of the MCMC chain are plotted. An example of a trace plot is

shown for the scaling terms applied to the length of VPs arterial vessels in Figure

4.20, and all other trace plots are shown in Appendix H. To aid visualisation, these

plots are thinned out by plotting every 100th iteration of the chain. These trace plots

are visually assessed to determine burn-in. Essentially, if there is an initial period

where a clear migration of the chain is seen away from the sample used to start

the chain, then the burn-in is selected to be until this initial migration is complete.

If no initial migratory period is seen, and so the initial position is suspected to be

within a region of high density, a precautionary initial burn-in period is still applied.

Aside from determining the required initial burn-in period, the trace plots of the

values assigned to each parameter at each step of the chain allows the movement of

the chain around the distribution, referred to as the “mixing” of the chain, to be

examined.

Generally figures in Appendix H show that most parameters are initialised in

a region of high density and hence no net migration is observed—the samples

oscillate around a central mean value. Some interesting behaviours in the trace

plots, including features that deviate from such a general/desired behaviour, are:

� The scaling terms applied to the initial β at the inlet of the aortic chain are

seen to centre around 5. The maximum scaling term applied is approximately

7.5.

� The scaling terms applied to the reference decay term of the left leg chain

β profile initially oscillates around a value of approximately 1 for 25,000
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Figure 4.20: MCMC trace plot of the scaling term applied to the length of the
arterial vessels at every 100th iteration. In this case, not net migration of the chain
is observed.

iterations, before migrating and oscillating around a value of approximately 7

(see Figure H.1). This may suggest that this distribution is multi-modal.

� The scaling terms applied to the reference decay term of the brachiocephalic

trunk β profile oscillates around a value of 1 for the first 40,000 iterations,

before migrating and oscillating around a value of 9 (see Figure H.2). The

scaling terms applied to the reference decay term of the brachiocephalic trunk

r0 profile shows no complimentary behaviour and remains within the region of

0–4 throughout. This may again suggest a multi-modal distribution.

� A spike is seen in the scaling terms applied to the compliance of the right

external carotid Windkessel model at approximately 55,000 iterations (see

Figure H.16). This behaviour is not seen within the scaling terms applied

to the compliance of the left external carotid Windkessel model which remains

within the region of 0–3 throughout.

Even though most of the parameters do not show a clear migration, an initial

burn-in period of 10,000 iterations is chosen as a precautionary measure to minimise

any affect the initial sample position may have. Once this burn-in period has been
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removed, the VPD contains 65,000 VPs. Along with the burn-in period, all VPs

with negative average flowrate in any arterial vessel are removed from the VPD.

These VPs are removed as it is physiological unlikely for a patient to have negative

average flowrate in any vessel. Of the 65,000 post burn-in VPs, 12,857 are removed

due to the presence of negative average flowrate, reducing the VPD to 52,143

For the assessment of convergence diagnostics, the measure of integrated auto-

correlation time (IACT) [155, 41, 176] for the parameters and the measurements

(pressure and flow-rate) is employed. The IACT represents the average temporal

distance within which two samples are correlated—i.e. two samples at a temporal

distance greater than the IACT are independent of one another. In theory samples

draw by an MCMC chain are only dependent on the previous iteration of the chain,

thus the IACT can be thought of as the computational inefficiency of the chain. The

IACT is computed by first finding the autocorrelation (AC)—i.e. the correlation of

the MCMC chain with its future self, as a function of the lag length (the temporal

distance between which the correlation is evaluated)—across all possible lag lengths.

The AC of the jth arterial network parameter scaling term (Φj) at a lag length of

‘lag’—described as Autocorr(j,lag)—is equal to:

Autocorr.(j,lag) =

∑m−lag
i=1 (Φ(j,i) − Φ̄j)(Φ(j,i+lag) − Φ̄j)∑m−lag

i=1 (Φ(j,i) − Φ̄j)2
, (4.31)

where m represents the total number of VPs sampled (m = 65, 000 as this analysis

is performed post burn-in however pre-removal of negative average flow-rate VPs),

Φ(j,i) represents the jth arterial network parameter scaling term for the ith VP, and

Φ̄j represents the mean value of the jth arterial network parameter scaling term

across the m VPs. For the parameter representing the scaling term for the vessel

lengths, and for the measurement of diastolic pressure in the ascending aorta, plots of

autocorrelation versus lag length [155, 41, 176] are shown in Figure 4.21. From these

AC values, the IACT of the jth arterial network parameter scaling term (IACTj) is

equal to:

IACTj = 1 + 2
m−2∑
lag=1

Autocorr.(j,lag). (4.32)

The maximum lag length is equal to m− 2 as this is the distance between the first

and last sample. A lower IACT is desirable as this suggested less inefficiency in the
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Figure 4.21: Autocorrelation as a function of lag-length in the MCMC chain for the
vessel length scaling parameter (left), and for the diastolic pressure in the ascending
aorta (right). IACT denotes the integrated autocorrelation time [41, 155, 176].

MCMC chain.

It is found that most of the parameters and the measurements show an IACT

of less than 50, comparable to those reported in previous studies utilising 1D flow

models[155]. For some parameters, even higher IACT (> 200) are observed. While

this does not invalidate the VPD, it does imply that the chain efficiency can be

improved by either (i) reducing the dimensionality of the problem further; (ii) further

tuning individual step-sizes in Equation (2.11); or (iii) by utilising more efficient

MCMC samplers; see, for example, the work by Paun and Husmeier[153]. One

reason for higher IACTs for some parameters may be the correlation between the

parameters in the posterior. Across the 19,701 pair combinations, a histogram of

the correlation coefficients is shown in Figure 4.22, showing that most pairs show

low to moderate correlations |r|< 0.5, with few combinations showing more extreme

correlations. Since the dimensionality is high, even moderate correlations can make

the navigation of chain harder because of the curse of dimensionality[14].

4.8.2 Posterior vs. literature reported measurements

The joint posterior distribution of the 199 parameters is difficult to visualise.

Even if only pairwise slices of the joint distribution are considered, the number

of pairs (19,701) is too high to be shown in this thesis. To be consistent
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Figure 4.22: Histogram of correlation coefficient (r) between the 19,701 pairs of
parameters in the posterior.

0.8 1.0 1.2
Vessel length scaling term (Φa)

0

2

4

6

P
ro
b
a
b
il
it
y

Literature measurement MCMC distribution

0.8 1.0
Φa

0.0

0.5

1.0

Φ
b

0.8 1.0
Φa

0

2

4

Φ
c

Figure 4.23: Posterior marginal distribution for the vessel length scaling term,
denoted as Φa (left); joint distribution between Φa and the right arm chain’s scaling
factor for the β daughter/parent ratio denoted as Φb (mid); and joint distribution
between Φa and the brachiocephalic trunk’s scaling factor for β decay denoted as Φc

(right). While Φa and Φb show a largely uniform joint distribution, Φa and Φc show
a potentially multi-modal distribution with local peaks at Φc ≈ 1.0 and Φc ≈ 3.2.
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with the trace-plot presented in the previous section for the vessel length scaling

parameter (described here as Φa), its posterior distribution is shown in Figure

4.23 (left). The remaining two plots (centre and right) show pairwise slices of

the joint distribution of this parameter with two other parameters—the right arm

chain’s scaling factor for the β daughter/parent ratio (described as Φb) and the

brachiocephalic trunk’s scaling factor for β decay (described as Φc). Since the

goal of this work is not to make inference about the parameters but to produce

a VPD consisting of realistic measurements (pressure and flow-rate), the posterior

distribution of the measurements within the VPD is important to be considered.

As described in Section 4.6, the posterior distribution is a combination of the

prior distribution and the likelihood term within Bayes’ theorem. Since the

chosen prior distributions are weakly informative or uninformative (see Section

4.6.1), the distributions of measurements within the VPD should be close to the

literature based measurements incorporated through the likelihood. These are

not necessarily identical though, as the prior distribution corrects the posterior to

account for the geometrical and physiological constraints. Furthermore, since the

incorporated measurements are taken from several different sources, the posterior

distribution resolves inconsistencies between such measurements, the physics of

pulse-wave propagation, and the constraints imposed by the prior. For example,

if the prior distribution corresponds to lower valued outputs compared to the

literature measurements, the posterior distribution will underestimate the literature

measurements, and vice versa. A comparison of the VPD pressure and flow-rate

distributions to the literature based measurements (see Table 4.11 and Section 4.6.2)

are shown in Figure 4.24 and Table 4.12. A similar comparison for the vessel length

scaling term (see Section 4.6.2) is shown in Figure 4.23 (left). Finally, the statistics

of the time varying inlet flow-rate profiles in the VPD are compared to the GRF

(see Section 4.6.2) in Figure 4.26.

Generally, a good agreement between the scalar pressure and flow-rate

measurements are seen in Figure 4.24. This agreement enforces confidence in the

overall approach. However, for the average flow-rates in the left and right femoral

arteries, larger than expected differences are observed. This is likely due to the

following reasons:

� A large inconsistency between the femoral flow-rate measurements and the
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Figure 4.24: Histograms of the MCMC distributions of the pressure and flow-rate measurements at
all measurement locations. The literature based measurements and associated error distribution
at each location are overlaid in black. Diastolic and systolic pressure in the right radial artery
are shown in (a) and (b), respectively; the diastolic and systolic pressure in the left radial artery
are shown in (c) and (d), respectively; the diastolic and systolic pressure in the ascending aorta
are shown in (e) and (f), respectively; the diastolic and systolic pressure in the right common
carotid artery are shown in (g) and (h), respectively; the diastolic and systolic pressure in the
left common carotid artery are shown in (i) and (j) ,respectively; and the average flow-rate in the
second segments of the right and left femoral artery are shown in (k) and (l), respectively.
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Measurement Measurement Source Side Measured Measured

location type mean (µdis) std. (σdis)

Radial artery

Diastolic pressure
Literature Both 65 12.84

(mmHg) Posterior
Right 67.91 6.76

Left 67.69 6.29

Systolic pressure
Literature Both 123 22.75

(mmHg) Posterior
Right 108.07 15.48

Left 114.60 13.66

Ascending aorta

Diastolic pressure Literature - 65 7.14

(mmHg) Posterior - 75.52 3.69

Systolic pressure Literature - 103 8.24

(mmHg) Posterior - 110.70 6.03

Diastolic pressure
Literature Both 75.58 6.01

(mmHg) Posterior
Right 74.43 3.72

Common carotid Left 74.80 3.75

artery
Systolic pressure

Literature Both 122.78 12.01

(mmHg) Posterior
Right 111.91 6.25

Left 111.45 6.19

Femoral artery Average flow-rate
Literature Both 5.84 2.11

(left and right) (ml/sec) Posterior
Right 1.30 0.77

Left 1.08 0.81

Table 4.12: The measurement of the discrete pressure and flow-rate taken from
literature and the corresponding posterior distributions. See Table 4.11 for details
and sources of the literature measurements.

other pressure measurements. Note that they are taken from different sources

and hence not from the same population. The percentage difference between

the average flow-rate in the right and left femoral arteries taken from the

reference network and the literature based measurements are equal to -73.11%

and -74.14% respectively, while all other pressure and flow-rate measurements

exhibit a percentage difference from the reference network of less than 30%.

Furthermore, there may be an inconsistency between the cardiac output

measurement used for generating the pseudo-measurement for the time varying

inlet flow-rate measurement (see Section 4.6.2).
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Figure 4.25: Histograms of the MCMC distributions of the average flow-rate in the
first segment of the right femoral artery (a), and the first segment of the left femoral
artery (b). The literature based measurement of average flow-rate in the femoral
arteries is overlaid in black.

� The presence of more measurements for pressure as opposed to flow-rates.

Since the likelihoods for all the measurements are weighted equally, it may be

possible that the chain is influenced weakly by the few flow-rate measurements.

Such an issue can be resolved in future studies by assigning variable weightings

to the measurements.

� In the network the femoral arteries are split into the first (I) and second

(II) segments, shown in Figure 4.13 by ‘u’ and ‘v’, respectively. The precise

location at which the literature based femoral flow-rate measurement has been

taken is unknown. In this study, it is assumed that this measurement was

acquired at the centre of the second segment ‘v’, as this vessel has a reference

length of 31.92cm accounting for 90.86% of the reference length of the two

femoral segments. Since, the first segment ‘u’ bifurcates into ‘v’ and another

segment profunda femoris (Figure 4.13), the flow-rate in ‘v’ is smaller than that

in ‘u’. Thus, it is possible that the measured flow-rate was in ‘u’. A comparison

of VPD flow-rate in the first femoral segment against the measurement is

shown in Figure 4.25, showing the agreement is significantly better.

Figure 4.23 shows a good agreement between the vessel length scaling term in

the VPD and the literature based measurement. The mean and standard deviation

of this term in the VPD are 0.9819 and 0.0551, respectively, which compare well to

those reported in literature with values of 1.0118 and 0.0548, respectively.

Figure 4.26 shows a good agreement between the statistics of the time varying
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Figure 4.26: Comparison of the empirical distribution of the time varying inlet
flow-rate profiles between the MCMC samples and the pseudo measurement created
through a GRF. All standard deviation curves in dashed lines depict mean ± 1
standard deviation. See Section 4.6.2 for details on the GRF and the literature
reported measurements used to create it.

inlet flow-rate profile in the VPD and the pseudo measurement constructed through

the GRF (Section 4.6.2). The mean profile closely follows that of the GRF

throughout the cardiac cycle, with maximum difference of approximately 10% at

peak systole. Figure 4.26 also shows ± one standard profiles for both the VPD flow-

rate and the GRF pseudo measurement. Throughout the cardiac cycle, a high degree

of agreement is seen, with largest errors of approximately 10% magnitudes, again,

at peak systole. The VPD mean inlet flow-rate profile having a lower magnitude

than the literature based pseudo measurement maybe partially responsible for the

mean average femoral flow-rates being lower than the measurement taken from

literature. The difference between the VPD distribution of inlet flow-rate profiles

and the literature based measurement does not appear to be severe enough to be

entirely responsible for the differences in the distribution of average femoral flow-

rate, however.

Correlation profiles—similar to that shown in Figure 4.17—are produced for the
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posterior inlet flow-rate profiles at each discrete evaluation point. For each profile,

a different evaluation point is treated as the initial position, and the correlation

between the flow-rate at this point and all other discrete evaluation points is

computed across the VPD. The profiles of correlation between the flow-rate at each

initial position and all other evaluation points are plotted against the temporal

distance between the points as a proportion of the cardiac period. These profiles

are shown within Figure 4.27. Ideally all twelve correlation profiles—one starting

at each discrete evaluation point—should closely match the correlation profile used

when creating the GRF. The individual correlation profiles within Figure 4.27 have

not been identified as they all follow very similar shapes, and so the overall patterns

and behaviours are more important than the behaviour of the profile corresponding

to each discrete evaluation point. Overall, it appears as if all correlation profiles

show relatively good agreement with the desired shape. While it first appears as if

there is significant negative correlation in the posterior profiles, looking at the y-axis

of Figure 4.27 it can be seen that the maximum magnitude of negative correlation is

approximately 0.5. The correlation between most discrete evaluation points beyond

the correlation length, for which the correlation should be equal to 0, are greater

than -0.2.

4.8.3 Evaluation of individual VPs

While analysis of the distribution of measurements is very useful for understanding

the overall patterns and behaviours of the VPD, it is also important to look at what

pressure and flow-rate profile shapes are occurring through out the arterial network

of individual VPs. To determine if sufficient restraint has been imposed on the

range of arterial networks that can be produced, the pressure and flow-rate profiles

of individual VPs must be examined. Random samples from the VPD are assessed

to gain further insights on the VPs and the behaviour of pressure and flow-rate

profiles. Pressure profiles are examined at the ascending aorta; right and left radial

arteries; and right and left common carotid arteries. Flow-rate profiles are examined

at the right and left second femoral segments. Along with the distributions, these

examination locations should be sufficient to understand the behaviour of pressure

and flow-rate profiles throughout the arterial networks of VPs, while limiting the

number of profiles being visualised to a feasible number. 15 VPs are randomly drawn
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Figure 4.27: Each blue line shows the profile of correlation between a different
starting position and all other evaluation points. The black line shows the correlation
profile used within the pseudo measurement GRF, outlined in Section 4.6.2.

from the VPD (excluding the burn-in and VPs with negative average flow-rate), and

the pressure and flow-rate profiles associated with each are shown at all examination

locations in Appendix I. Five VPs of interest are extracted from Appendix I and

shown in Figure 4.28.

Figures in Appendix I show that pressure profiles in proximal vessels, i.e. the

ascending aorta and two common iliacs, show more consistency and similarity to the

reference profiles compared to the pressure and flow-rate profiles in distal vessels,

i.e. the radial artery pressure and the femoral artery flow-rate. This suggests that

the pseudo measurement of the time varying inlet flow-rate profile is sufficient to

impose control over the shape of pressure and flow-rate profiles in the proximal

vessels. As the spatial distance from the inlet of the aorta increases, an increase in

the variability of pressure and flow-rate profiles is observed. Thus, access to more

measurements, distributed across the network in both space and time, will result in

an even more realistic database as the likelihood at several such locations will guide

the posterior.

Figure 4.28 shows a selection of undesirable behaviour in the VPD profiles.
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Figure 4.28: In the above figure the subplots show the: pressure profiles in the
ascending aorta (a), pressure profiles in the right radial artery (b), pressure profiles
in the left radial artery (c), pressure profiles in the right common carotid artery (d),
pressure profiles in the left common carotid artery (e), flow-rate profiles in the right
second femoral artery (f), and flow-rate profiles in the left second femoral artery
(g). In each figure the profiles taken from the reference network are shown in black;
and the literature reported measurements and associated error (see Table 4.11) are
shown by the solid and dashed grey lines, respectively.
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Highly oscillatory pressure profiles are observed in the left radial artery, shown

in Figure 4.28(c), of Patient-A and Patient-E. In the case of Patient-E, oscillatory

behaviour is seen within all the pressure and flow-rate profiles. This suggests that

the cause of oscillations is systemic, and possibly the shape of the inlet flow-rate

profile prescribed. While this behaviour is not very common in the database, if

needed its occurrence can be further reduced by imposing stronger correlations

between inlet flow-rates at two time points through the parameter υ in Equation

(4.26) in the GRF. In the case of VP Patient-A there is no significant oscillatory

behaviour in any other profile, but the pressure waveform in the right radial artery is

featureless with no clear systolic and diastolic points. This apparent over- and under-

damping of the pressure profiles in the radial arteries may suggest an imbalance in

the compliances or resistances of the right and left arms. This hypothesis of left-

right imbalance is further supported by Figures 4.28(f) and (g) when the femoral

flow-rates are observed for Patient-I: the flow-rate in the right femoral artery shows

a high-mean high-oscillation behaviour while in the left femoral artery it is low-mean

with significantly lower oscillations. Similar behaviour is seen within Patient-J and

Patient-O. In future studies, a symmetry metric that balances, while still allowing

for some variability, the left and right side parameters for symmetric left and right

side vessels may be implemented.

4.8.4 Analysis of resistance and compliance ratios of

opposite extremities

In the previous subsection it is seen that there appears to be inadequate control

imposed on the properties of opposite extremities. To examine the affect of the

compliances and resistances of opposite extremities on the pressure and flow-rate

profiles produced, the resistances and compliances of the lower extremities are

computed (see Section 4.4.3 and Figure 4.5) up to the second bifurcation in the

leg vessels, i.e up to the end of vessels labelled ‘u’ in Figure 4.13. To assess the left-

right imbalance, the ratio of femoral pulse (maximum flow-rate minus the minimum

flow-rate) on the left and right sides is considered:

RFFP =
max(QRSF)−min(QRSF)

max(QLSF)−min(QLSF)
, (4.33)
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Figure 4.29: The relationship between the ratio of femoral flow-rate pulse to the
compliance and resistance ratios.

where RFFP represents the ratio of the femoral flow-rate pulse; max(QRSF) and

min(QRSF) represent the maximum and minimum flow-rate in the right second

femoral segment; and max(QLSF) and min(QLSF) represent the maximum and

minimum flow-rate in the left second femoral segment. If, as hypothesised, the

observed over- and under-damping of flow-rate profiles in opposite extremities is

due to an imbalance in the properties of the each extremity, then there should be a

clear relationship between either the ratio of resistances or the ratio of compliances

to the ratio of the femoral flow-rate pulse. The relationship between the resistance

ratio and RFFP, and the compliance ratio and RFFP is shown in Figure 4.29. Other

variables and combinations (such as the product of resistance and compliance) are

tested, however it is found that the resistance and compliance show the greatest

correlation to the RFFP. The left-right imbalance is apparent in Figure 4.29, which

shows that the ratio of left-to-right femoral pulses varies from 10−4 and 104 across

the VPD.

While Figure 4.29 shows a high correlation between the RFFP and both the

resistance and compliance ratios, it is found that the femoral flow-rate pulse ratio

shows highest correlation against the ratio of reduced network compliances. While
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the compliance ratio is largest, the physical cause of this positive correlation is

unclear. Intuitively it is expected that a highly compliant vessel will significantly

flatten the flow-rate profile, resulting in a low flow-rate pulse. One possible

hypothesis is the inverse relationship between the resistance and compliance of an

arterial vessel. The compliance of an arterial vessel increases as the reference radius

of the vessel increases, whereas the resistance of the vessel decreases as the reference

radius increases.

The strong negative and positive correlations between the ratios of resistances

and compliances to the ratios of femoral flow-rate pulses, respectively, suggests that

an imbalance in the properties of opposite extremities is the cause of the over- and

under-damping seen in VPs flow-rate profiles, as hypothesised. How this insufficient

control over realisations can be mitigated within the already created VPD, and

future VPDs can be improved from this a posteriori finding, are outlined in the

next section.

4.9 Conclusions

A physiologically realistic virtual patient database is presented for the human

arterial network. A methodology to create virtual patients guided by prior

beliefs, geometrical/physiological constraints, and literature reported measurements

is presented. Starting from a reference network describing the arterial network,

the methodology includes: i) network reduction without compromising relevant

behaviour; ii) re-parameterisation to reduce dimensionality; iii) incorporation of

geometrical and physiological constraints in the form of a prior; iv) incorporation

of literature reported clinical measurements in the form of the likelihood; v)

combination of the prior and likelihood to generate the posterior; and vi) sampling

from the posterior with MCMC to create the VPD. This generic methodology, given

a mathematical description of a biological system, can be adopted to create virtual

patients for any biological system while accounting for all available information.

There appears to be an imbalance in the resistances and compliances of opposite

extremities in certain VPs, that results in over- and under-damped pressure and

flow-rate profiles. To correct for this a post simulation filter is applied in the next

chapter. The underlying physical cause of the undesirable pressure and flow-rate
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profiles seen, i.e. the imbalance of properties in opposite extremities, is understood

and so the VPD can be filtered based on this. If the VPD were to be remade the

a posteriori finding of the need for control of the ratios of properties in opposite

extremities could be directly built into the parameterisation of the arterial network,

or the posterior distribution from which VPs are sampled. A possible future

adaptation to the VPD—to remove the need for post simulation filters—could be

to introduce correlations into the prior distributions assigned to the parameters

describing opposite extremities.

Overall, the high degree of agreement between the literature reported

measurements and the posterior distributions in the VPD enforce confidence in

the approach taken. While some computational expense has been wasted, creating

unrealistic VPs that are then filtered out of the VPD, this can i) be easily corrected

if the VPD were to be remade ii) does not detract from the viability of the remaining

VPs. The VPD created here can now be exploited to train and test ML classifiers

in the subsequent chapters of this thesis.
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Chapter 5

Pre-processing and creation of

literature advised unhealthy VPDs

5.1 Introduction

In the previously completed chapter (Chapter 4) a low dimensional parameterisation

is chosen to describe the arterial networks of VPs, a physiologically realistic

distribution is constructed for these parameters by incorporating literature based

measurements into prior distributions, and random realisations of arterial networks

are sampled from this distribution. The pressure and flow-rate profiles associated

with random realisations of arterial networks are computed using the physics based

model of pulse wave propagation. Ideally this new VPD could directly be used to

create unhealthy VPs, and then subsequently train and test ML classifiers. It is

found through analysis of the a posteriori behaviour of the VPD, however, that

certain VPs exhibit physiologically highly unlikely behaviours. It is desirable to

remove these VPs from the VPD. Before the previously created VPD is used to

train and test ML classifiers it is, therefore, important to apply a post simulation

filter. The filtered healthy VPD can then used to create unhealthy VPs. This

chapter outlines the pre-processing carried out on the VPD created in Chapter 4,

to create a data set that can be used to train and test ML classifiers.

This chapter begins by explaining how undesirable VPs are removed from the

previously created VPD. It is chosen to apply a physics advised filter to the

new VPD, as opposed to a hard filter as used within the PoC study (Chapter

3). To construct this physics advised filter the underlying physical cause of the

physiologically highly unlikely behaviours is examined. Next, unhealthy VPs are

created. As outlined in Chapter 1 the four most common forms of arterial disease

are carotid artery stenosis (CAS), subclavian artery stenosis (SAS), peripheral artery

disease (PAD), and abdominal aortic aneurysm (AAA). The prevalence of SAS

and PAD have been recorded to vary between 1.9% and 18.83% within different

demographics [66, 186], while CAS has been recorded to affect 3.8% of men and
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2.7% of women [129]. The prevalence of AAA is estimated to be 4.8% [122]. The

second section of this chapter outlines how VPs are created containing each of these

four forms of disease. To create unhealthy VPs the likely locations and severity of

disease present within stenosed and aneurysm VPs is outlined; the parameterisation

of diseased vessels is presented; and the distribution of disease parameters is chosen

and explained.

This chapter culminates in the analysis of the a posteriori behaviour of both

the filtered healthy, and the unhealthy VPDs. Analysis of pressure and flow-rate

profiles taken from VPs randomly sampled from the filtered healthy VPD is carried

out to evaluate the ability of the physics advised filter to remove undesirable VPs.

Finally the empirical distributions of pressure and flow-rate measurements across

the healthy and unhealthy VPDs are analysed.

5.2 Application of physics advised filters to the

healthy VPD

Through analysis of the a posteriori behaviour of the physiologically realistic VPD

in Chapter 4, it is seen that certain VPs exhibit excessively over- and under-damped

pressure and flow-rate profiles within opposite extremities. It is desirable to remove

these VPs from the VPD, as they can be considered to be physiologically highly

unlikely. In the PoC (Chapter 3) a hard filter, i.e. the direct imposition of bounds

on pressure profiles, is applied. This hard filter is undesirable for several reason:

� No consideration is given to the underlying physical cause of haemodynamic

behaviours.

� No restrictions are imposed on the shape of pressure profiles, as long as the

magnitudes remain within the allowable range.

� This filter is not based on any geometrical, mechanical, or physiologically

restrictions. It instead employs haemodynamic expectations.

A more appropriate choice of post simulation filter to apply is a physics advised filter.

In Chapter 4 the probable physical cause of the excessively over- and under-damped

pressure and flow-rate profiles in opposite extremities is identified as significant
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Figure 5.1: The limits imposed on the ratios of the post second bifurcation lower
extremity compliances in opposite lower extremities are plotted over the ratios of
compliances of all post burn-in VPs sampled from the posterior distribution with
positive average flow-rate in all vessels.

asymmetry in the resistances and compliances. By imposing limits on the ratios of

the resistances or compliances in opposite extremities, a filter can be constructed

that alleviates the problems associated with the previous hard filter.

In the previous chapter the left-right lower extremity imbalance is assessed by

reducing the network up to the second bifurcation in the leg vessels. To assess

the left-right imbalance, the ratio of femoral pulse (maximum flow-rate minus the

minimum flow-rate) on the left and right sides is considered. It is found that this

ratio shows highest correlation against the ratio of reduced network compliances on

the left and right sides. A plot of the femoral pulse ratio against the compliance ratio

is shown in Figure 5.1. To limit the left-right imbalance, a filter on the left-to-right

compliance ratio between 0.2–5 is introduced. These limits are shown as vertical

lines in Figure 5.1 and constrains the femoral ratio between 10−2 and 102 across the

data set. With this filter, approximately 45% (23,275 patients) of the patients are

discarded, leaving with 28,868 physiologically realistic patients in the VPD.
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5.3 Creation of unhealthy VPDs

A filtered physiologically realistic VPD containing healthy subjects is created in

Chapter 4 and Section 5.2, and forms the starting point for diseased VP creation.

The arterial network contains 71 vessel segments and is shown in Figure 5.2, along

with the locations where disease occurs in high prevalence (see Chapter 4 for details).

The filtered healthy VPD contains 28,868 VPs and is referred as VPDH. Disease is

introduced into these healthy arterial networks as described next.

5.3.1 Disease forms

The four most common forms of arterial disease are carotid artery stenosis (CAS),

subclavian artery stenosis (SAS), peripheral arterial disease (PAD, a form of

stenosis), and abdominal aortic aneurysm (AAA) [53, 115, 1, 39, 122]. Their

prevalence is restricted to the following vessels (see Chapter 4 for details) and shown

in Figure 5.2:

� CAS is assumed to only affect the common carotid arteries. For simplification

and consistency of notation these vessels are referred to as the carotid artery

chains (CAx).

� SAS is assumed to affect the first and second subclavian segments. These

two chains of vessels (one on the right and left side) are referred to as the

subclavian artery chains (SAx).

� PAD is assumed to affect the common iliacs; external iliacs; first and second

femoral segments; and the first popliteal segments. These chains are referred

to as the peripheral artery chains (PAx).

� AAA is assumed to affect the first to forth abdominal aorta segment. This

chain of vessels is referred to as the abdominal aortic chain (AAx).

It is assumed that each diseased VP has only one of the four forms of arterial

disease. Four complementary databases corresponding to VPDH are constructed,

each pertaining to one form of arterial disease. To create the diseased VPD

corresponding to CAS, referred to as VPDCAS, for every subject in VPDH, disease is
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CAx

SAx

AAx

PAx

Figure 5.2: The connectivity of the arterial network. The location of the four forms
of disease (see Chapter 4) are highlighted.
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introduced in CAx (i.e. the left or right carotid artery). This is achieved by taking

the arterial network of a subject from VPDH, artificially introducing a stenosis in

CAx, and then re-running the pulse wave propagation model to compute the pressure

and flow-rate waveforms. Thus, VPDCAS contains 28,868 VPs with CAS. Similarly,

the databases corresponding to SAS, PAD, and AAA are created, and referred to

as VPDSAS, VPDPAD, and VPDAAA, respectively. The disease severities, locations,

and shapes are varied randomly across these databases as described next.

5.3.2 Severities of diseases

It must be ensured that the created unhealthy VPDs encompass not only the

full range of highly likely disease locations, but also the likely range of disease

severities. When deciding upon the range of disease present within the unhealthy

VPDs the balance between variability and control must be carefully considered.

The magnitude of any biomarkers introduced into pressure and flow-rate profiles,

and so likely ease of detection, is likely to be proportional to the severity of disease

present—i.e. more significant changes to the area of a vessel are likely to produce

more significant changes to the pressure and flow-rate profiles of blood.

Stenosis severities

The severity of stenoses (percentage reduction in area) is varied between 50% and

95%. The lower 50% limit is set for the stenoses to be haemodynamically significant

[1, 197] and the upper limit of 95% reflects near total occlusion. Stenosed VPs are

not created with a complete occlusion, although this behaviour can physiologically

occur [53], as VPs with a complete blockage can obviously and easily be identified

by a lack of downstream flow-rate.

Aneurysm severities

Determination of the range of severities of disease to include in VPDAAA is more

difficult than in the case of stenosed VPDs, as there are no fixed geometrical

restrictions on the maximum increase in vessel area. It is stated in [59] that only 2%

of AAA with diameter less than 4cm rupture, and so these aneurysms are unlikely

to be operated on, while 25%–41% of AAAs with diameter greater than 5cm rupture
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within 5 years. The current AAA screen program offered by the United Kingdom’s

National Health Service splits patients into four categories, dependent on the severity

of the AAA present [48]:

� If the aorta of a patient is found to have a diameter less than 3cm, the patient

is discharged with no future scanning carried out.

� If the aorta of a patient has a diameter between 3cm and 4.4cm the patient is

invited back for a follow up scan in 1 years time.

� If the aorta of a patient has a diameter between 4.5cm and 5.4cm the patient

is invited back for a follow up scan in 3 months time.

� If the diameter of a patient’s aorta is found to be greater than 5.4cm the

patient is invited to undergo surgery.

A further studying breaking down patients into categories, based on the severity of

any AAAs present, is [44]. In [44] patients with AAA are split into three categories:

� Patients with a AAA with diameter less than 2.6cm are discharged.

� Patients with a AAA with diameter between 2.6cm–5.4cm are monitored.

� Patients with a AAA with diameter greater than 5.4cm are treated.

Based on these studies an allowable range of AAA severities of 4cm–6cm diameters

is chosen. Assuming that arterial vessels are cylindrical, this severity range results

in a vessel cross sectional area range of 12.56cm2–28.27cm2. The diameter of the

abdominal aorta in the reference network in Chapter 4 has a range of between 1.5cm–

1.18cm, resulting in a cross sectional area range of between 1.76cm2–1.09cm2. The

minimum severity of AAAs to be included within unhealthy VPs is computed by

finding the required increase in area to produce the minimum clinically significant

cross sectional area, i.e. 12.56cm2, from the maximum area of the reference arterial

network, i.e. 1.76cm2. The maximum severity of AAA to be included within

unhealthy VPs is computed by finding the required increase in area to produce

the maximum clinically significant cross sectional area, i.e. 28.27cm2, from the

minimum area of the reference arterial network, i.e. 1.09cm2. The corresponding

AAA severities are set to vary between 713% (12.56/1.76) and 2,593% (28.27/1.09).
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Figure 5.3: An example of a stenosis of severity 0.6 and aneurysm of severity 8.0
are shown. These disease profiles are created with a start location of 0.2 and an end
location of 0.8.

5.3.3 Parameterisation of diseased vessels

With the above ranges, parameterisation of area increase/reduction proposed in the

PoC is adopted (see Chapter 3 for details), see Figure 5.3. For a chain of diseased

vessels (CAx, SAx, PAx, or AAx), the normalised area An as a function of the

normalised x-coordinate, xn, is represented as:

An=


(

1∓S
2

)
± S

2
cos

(
2(xn − o)π
e− o

)
for o ≤ xn ≤ e

1 otherwise

(5.1)

where S represents the severity, o represents the normalised starting location of the

disease in the vessel chain, e represents the normalised end location, An is normalised

with respect to the healthy version of the vessel in VPDH, and± creates an aneurysm

or stenosis, respectively. In CAx, SAx, and PAx, the left and right side vessels are

chosen with equal probability.

The disease severity S, start location o, and end location e are assigned

uniform distributions based on physical considerations. To sample values for these

parameters, a fourth parameter, the reference location of the disease (represented

by r) is introduced. This is included to impose a minimum length of 10% of the

chain length on the disease profiles. Thus, the parameters for disease are sampled
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sequentially from uniform distributions within the following bounds:

Bounds:



0.2 ≤ re ≤ 0.8,

0.1 ≤ o ≤ re − 0.05,

re + 0.05 ≤ e ≤ 0.9,0.5 ≤ S ≤ 0.95 stenosis

7.13 ≤ S ≤ 25.93 aneurysm.

(5.2)

Based on the above parameterisation, examples of healthy and diseased SAx, PAx,

and AAx area profiles are shown in the left and right columns of Figure 5.4,

respectively.

5.4 Results and discussion

5.4.1 Evaluation of pressure and flow-rate profiles measured

within individual VPs.

Similar to the analysis carried within Chapter 4, 15 VPs are randomly sampled

from VPDH (containing 28,868 usable VPs). The pressure and flow-rate profiles

associated with these randomly sampled VPs are plotted, to allow for evaluation

of the behaviour of individual VPs in VPDH. Pressure profiles are examined at

the ascending aorta; right and left radial arteries; and right and left common

carotid arteries. Flow-rate profiles are examined at the right and left second femoral

segment. The pressure and flow-rate profiles associated with the 15 VPs randomly

sampled from VPDH are shown within Figures 5.5, 5.6, and 5.7.

Looking at the three figures listed above, it is seen that there now appears to be

more consistency in the pressure profiles within the radial arteries (shown in plots

(b) and (c) of the three figures), than was seen in the unfiltered VPD. While some

oscillatory behaviour is seen in the radial pressure profiles (Patient-E, Patient-F,

and Patient-O) the amplitude of these oscillations is much lower than previously

observed (see Figure 4.28 for the original profiles).

Figures 5.5, 5.6, and 5.7, show that the some under- and over-damped femoral

flow-rate profiles are still occurring. Previously, however, the occurrence of under-

and over-damped profiles was asymmetrical. There appears to be a higher degree of
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Figure 5.4: Examples of healthy and diseased SAx, PAx, and AAx area profiles. The
geometrical boundaries between vessel segments that form the chains are indicated
by red dashed lines. See Section 5.3.1 for details of the vessels in each chain.
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symmetry between the flow-rate profiles in opposite extremities in VPDH. Under-

damped flow-rate profiles are seen to be occurring in both the right and left lower

extremities in VPs Patient-B (shown in Figure 5.5), Patient-L (shown in Figure 5.7),

and Patient-N (shown in Figure 5.7). Over-damped flow-rate profiles are seen within

both the right and left lower extremities of VPs Patient-A (shown in Figure 5.5),

Patient-H (shown in Figure 5.6), and Patient-O (shown in Figure 5.7). Overall, it

appears as if the physics advised filter has successfully served its purpose of removing

VPs that exhibit excessive asymmertrical profiles in opposite extremities.

5.4.2 Analysis of scalar pressure and flow-rate distributions

In Chapter 4 histograms of the distributions of systolic and diastolic pressure in the

radial arteries, ascending aorta, and common iliac arteries; and average flow-rate

in the second femoral segments are shown. These histograms are now recreated

first for the filtered healthy VPD (VPDH), and then for each of the five VPDs

(VPDH, VPDCAS, VPDSAS, VPDPAD, and VPDAAA) created within this chapter.

The distributions of pressure and flow-rate measurements across VPDH (overlayed

with the literature based measurements built into the likelihood term in Section

4.6.2) are shown in Figure 5.8. The histograms of the distributions of measurements

across all five of the VPDs are shown in Figure 5.9.

Comparing the distributions of measurements across the filtered (Figure 5.8)

and unfiltered (Figure 4.24) healthy VPDs, it is seen that there is very little visual

difference between the distributions of pressure measurements across each of the two

databases. The most obvious difference between the two is seen in the distribution of

average femoral flow-rate. There is a significant reduction in the proportion of VPs

belonging to the lowest flow-rate bin (with a lower band of 0ml/sec) in the filtered

VPD relative to the unfiltered VPD. This suggests that the post simulation filter is

able to remove a large proportion of the VPs with very low (near zero) flow-rate in

either of the two lower extremities.

The differences between the distributions of measurements taken from each of

the five VPDs (as shown in Figure 5.9) are expected to be minor. The indicative

biomarkers of arterial disease captured within pressure and flow-rate profiles are

expected to consist of micro inter- and intra-measurement details, and so there is

not expected to be significant differences to these discrete pressure and flow-rate
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Figure 5.5: The subplots show the: pressure profiles in the ascending aorta (a),
pressure profiles in the right radial artery (b), pressure profiles in the left radial
artery (c), pressure profiles in the right common carotid artery (d), pressure profiles
in the left common carotid artery (e), flow-rate profiles in the right second femoral
artery (f), and flow-rate profiles in the left second femoral artery (g). In each figure
the profiles taken from the reference network are shown in black; and the literature
reported measurements and associated error are shown by the solid and dashed grey
lines respectively (see Chapter 4 for details).
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Figure 5.6: The subplots show the: pressure profiles in the ascending aorta (a),
pressure profiles in the right radial artery (b), pressure profiles in the left radial
artery (c), pressure profiles in the right common carotid artery (d), pressure profiles
in the left common carotid artery (e), flow-rate profiles in the right second femoral
artery (f), and flow-rate profiles in the left second femoral artery (g). In each figure
the profiles taken from the reference network are shown in black; and the literature
reported measurements and associated error are shown by the solid and dashed grey
lines respectively (see Chapter 4 for details).

Pg. 184 / 416



5.4. RESULTS AND DISCUSSION

0.00 0.25 0.50 0.75 1.00

Time (s)

75

100

125

P
re
ss
u
re

(m
m
H
g
) (a) Ascending aorta

Reference network

Patient-K

Patient-L

Patient-M

Patient-N

Patient-O

0.00 0.25 0.50 0.75 1.00

Time (s)

50

100

150

P
re
ss
u
re

(m
m
H
g
) (b) Right radial

0.00 0.25 0.50 0.75 1.00

Time (s)

50

100

150

P
re
ss
u
re

(m
m
H
g
) (c) Left radial

0.00 0.25 0.50 0.75 1.00

Time (s)

75

100

125

P
re
ss
u
re

(m
m
H
g
) (d) Right common carotid

0.00 0.25 0.50 0.75 1.00

Time (s)

75

100

125

P
re
ss
u
re

(m
m
H
g
) (e) Left common carotid

0.00 0.25 0.50 0.75 1.00

Time (s)

−25

0

25

F
lo
w
-r
a
te

(m
ls

−
1
) (f) Right femoral

0.00 0.25 0.50 0.75 1.00

Time (s)

−10

0

10

F
lo
w
-r
a
te

(m
ls

−
1
) (g) Left femoral

Figure 5.7: The subplots show the: pressure profiles in the ascending aorta (a),
pressure profiles in the right radial artery (b), pressure profiles in the left radial
artery (c), pressure profiles in the right common carotid artery (d), pressure profiles
in the left common carotid artery (e), flow-rate profiles in the right second femoral
artery (f), and flow-rate profiles in the left second femoral artery (g). In each figure
the profiles taken from the reference network are shown in black; and the literature
reported measurements and associated error are shown by the solid and dashed grey
lines respectively (see Chapter 4 for details).
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Figure 5.8: Histograms of the filtered distributions of the pressure and flow-rate measurements at
all measurement locations. The literature based measurements and associated error distribution
at each location are overlaid in black. Diastolic and systolic pressure in the right radial artery
are shown in (a) and (b), respectively; the diastolic and systolic pressure in the left radial artery
are shown in (c) and (d), respectively; the diastolic and systolic pressure in the ascending aorta
are shown in (e) and (f), respectively; the diastolic and systolic pressure in the right common
carotid artery are shown in (g) and (h), respectively; the diastolic and systolic pressure in the
left common carotid artery are shown in (i) and (j) ,respectively; and the average flow-rate in the
second segments of the right and left femoral artery are shown in (k) and (l), respectively.
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measurements.

Figure 5.9 shows that there does not appear to be any significant differences

between the distributions of measurements taken from VPDH, VPDCAS, VPDSAS,

and VPDPAD. While there are some minor differences between the distributions

measured in each of these four VPDs, there does not appear to be any consistent

or significant patterns present. This suggests that, as is a priori expected, the

haemodynamic affects of arterial disease can not be sufficient captured by scalar

pressure and flow-rate measurements.

Greater distinction can, however, be made between the distribution of

measurements taken from VPDAAA. Figure 5.9 shows a consistent increase in

diastolic pressure—shown in plots (a), (c), (e), (g), and (i)—and a decrease in the

systolic pressure—shown in plots (b), (d), (f), (h), and (j)—in VPDAAA, relative

to VPDH. This suggests that the pressure profiles of VPs in VPDAAA are being

flattened. This finding suggests strong potential for the use of pressure and flow-rate

profiles to detect AAAs, as physical changes are producing consistent haemodynamic

differences.

5.5 Conclusions

In this chapter pre-processing has been carried out on the physiologically realistic

VPD previously created in Chapter 4 to allow for the training and testing of ML

classifiers. A physics advised filter has been applied to the raw VPD to remove

VPs exhibiting physiologically unlikely behaviours. This filter removes VPs with

highly asymmetric compliances in the lower extremities. Before filtering, the VPD

contained 52,143 (75,000-10,000-12,857) VPs. The physics advised filter removes

23,275 VPs, and the remaining 28,868 VPs are referred to as VPDH.

Four complimentary VPDs are then created for four of the most common

forms of arterial disease (CAS, SAS, PAD, and AAA). Each of the four unhealthy

VPDs contains 28,868 VPs that share identical underlying arterial networks to the

corresponding parent healthy VP, however with the inclusion of disease in the

appropriate location. The pressure and flow-rate profiles associated with these

unhealthy VPs are computed using the previously employed physics based model of

pulse-wave propagation.
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Figure 5.9: The histograms of the scalar pressure and flow-rate measurements taken
from each of the five VPDs are shown above.
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The five VPDs presented within this chapter (VPDH, VPDCAS, VPDSAS,

VPDPAD, and VPDAAA) can now be used to train and test ML classifiers. The

subsequent chapters of this thesis use the processed healthy and unhealthy data to

analysis the ability of ML classifiers to detect arterial disease.
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Chapter 6

Application of machine learning

classifiers to the physiologically

realistic VPDs

6.1 Introduction

In the previous chapter of this thesis a usable healthy VPD, referred to as VPDH,

is created by applying physics advised filters to the raw VPD created in Chapter

4. VPDH is then used to create four complimentary VPDs containing VPs with

the presence of carotid artery stenosis (CAS), subclavian artery stenosis (SAS),

peripheral artery disease (PAD), and abdominal aortic aneurysm (AAA). These

four unhealthy VPDs are referred to as VPDCAS, VPDSAS, VPDPAD, and VPDAAA,

respectively.

This chapter now utilises the aforementioned VPDs to train and set a series of ML

classifiers to predict the presence of the four forms of disease, using easily acquirable

peripheral measurements. The exploratory stance of the previously completed proof-

of-concept (PoC)—see Chapter 3—is adopted in this study. The primary objective

of this chapter is to extend the work presented in the PoC to a more physiologically

realistic data set. Focus is given to uncovering patterns and behaviours in

classification accuracy when using varying haemodynamic measurements, and under

various conditions (such as when the severity of disease is reduced) to gain an

understanding of both the potential and limitations of the proposed method.

This chapter begins by explaining the methods by which ML classifiers are

applied to the five VPDs, including: the available measurements, the configuration of

classifiers used, and the optimisation of hyper-parameters. Next the results achieved

are presented: ML classifiers are trained and tested using various combinations of

pressure and flow-rate measurements; and additional, complimentary, analysis is

performed. Finally, this chapter concludes by evaluating what has been discovered

about arterial disease detection through easily acquirable measurements.
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The majority of work in this chapter is published in: Jones, G., Parr, J.,

Nithiarasu, P., Pant S. Machine learning for detection of stenoses and aneurysms:

application in a physiologically realistic virtual patient database. Biomechanics and

Modeling in Mechanobiology. 2021 July https://doi.org/10.1007/s10237-021-01497-

7.

6.2 Methodology

The methods by which ML classifiers are applied to the five VPDs (VPDH, VPDCAS,

VPDSAS, VPDPAD, and VPDAAA) created in Chapter 5 is presented here.

6.2.1 Available measurements

A review of potential measurements that can be acquired in the network is presented

in Chapter 4. Based on this, the locations at which time-varying pressure and flow-

rate measurements can be acquired are shown in Figure 6.1 and described below.

The location of each disease chain (as described in Chapter 5) are also shown in

Figure 6.1. The available measurements are:

� Pressure in the carotid and radial arteries measured using applanation

tonometry [3, 146]. To simplify annotation and description the right and left

carotid artery pressures are referred as P
(R)
1 and P

(L)
1 , respectively. Similarly,

the radial artery pressures are referred to P
(R)
3 and P

(L)
3 , respectively.

� Pressure in the brachial arteries estimated through reconstruction of

finger arterial pressure [77]. The right and left brachial artery pressures are

referred to as P
(R)
2 and P

(L)
2 respectively.

� Flow-rate in the carotid, brachial, and femoral arteries measured using

Doppler ultrasound [27, 144, 164]. The right and left carotid, brachial, and

femoral artery flow-rates are referred to as Q
(R)
1 , Q

(L)
1 ; Q

(R)
2 , Q

(L)
2 ; and Q

(R)
3 ,

Q
(L)
3 , respectively.
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Figure 6.1: The connectivity of the arterial network. The location of the four forms
of disease (see Chapter 5); and six pressure and flow-rate measurements (see Section
6.2.1) are highlighted.
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Provision of measurements to ML classifiers

Unless specified otherwise, the measurements to ML classifiers are bilateral, i.e.

when Q1 is specified it is implied that both right and left carotid flow-rates are

used:

Q1 = {Q(R)
1 , Q

(L)
1 }. (6.1)

There are, therefore, six bilateral measurements—three pressure and three flow-

rate. To reduce the dimensionality required to describe each, the periodic profiles

are described through a Fourier series (FS), as employed in Chapter 3. Thus,

each individual measurement is described by 11 FS coefficients, and each bilateral

measurement by 22 FS coefficients (see Chapter 3 for further detail).

6.2.2 Machine learning classifiers

As previously outlined in Chapter 3 a model mapping a vector of input

measurements, y, to a discrete output classification, z, can be described as:

z = m(y) z ∈ {C(1), C(2)}, (6.2)

where C(j) represents the jth possible classification. In the context of this chapter,

the measured inputs, y, represents the FS coefficients of a user defined combination

of the haemodynamic measurements {Q1, Q2, Q3, P1, P2, P3} (see Section 6.2.1)

taken from VPs, and the output classification represents the corresponding health of

those VPs : C(1)= ‘healthy’ and C(2)= ‘diseased’. As with the PoC study, to account

for large differences in magnitudes of the components of y, they are individually

transformed with the Z-score standardisation method [136] to have zero-mean and

unit variance.

As stated in Chapter 5, it assumed that disease is limited to only one of the four

forms in each patient. As a first exploratory study, the ML classifiers are created

for each form independently. All classifiers are therefore binary (see Chapter 3

for details), i.e. four independent classifiers are trained to predict the following

questions independently: “Does a VP belong to VPDH or VPDx”, where x can be

either CAS, SAS, PAD, or AAA.
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Training and test sets

Each VP in VPDCAS, VPDSAS, VPDPAD, and VPDAAA shares an identical

underlying arterial network, apart from the diseased chain, with the corresponding

healthy subject in VPDH. It is, therefore, important to ensure that the same subset

of VPs is not included in both their healthy and diseased forms in the data set used

for ML classifiers. As each form of disease is mutually exclusive, four independent

training and test sets, each corresponding to one form of disease, are constructed in

the following three stages:

� Step 1: Half of the available VPs are randomly selected from VPDH for

inclusion within the ML data set; this is referred to as VPDH-ML. The

unhealthy VPs corresponding to the remaining unused half are taken from

the appropriate unhealthy VPD (VPDCAS, VPDSAS, VPDPAD, or VPDAAA)

and incorporated into the ML data set. These data sets are referred to as

VPDCAS-ML, VPDSAS-ML, VPDPAD-ML, or VPDAAA-ML.

� Step 2: The data sets of Step 1 are combined to create four complete data

sets each containing 50% healthy and 50%, unhealthy VPs:

1. VPDH-ML ∪ VPDCAS-ML

2. VPDH-ML ∪ VPDSAS-ML

3. VPDH-ML ∪ VPDPAD-ML

4. VPDH-ML ∪ VPDAAA-ML

� Step 3: The four data sets of Step 2 are randomly split into a training set

containing 2/3 of all the VPs in the data set, and a test set containing 1/3 of

all the VPs.

The performance of all ML classifiers is evaluated using a five fold validation (see

Chapter 3 for details). For each fold, the same data set from Step 2 is used but

different subsets are sampled in Step 3 for training and testing.

ML methods

In this chapter all six ML methods (NB, LR, MLP, SVM, GB, and MLP) outlined

in Chapter 2 are employed. Note that the last of these, the multi-layer perceptron,
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Modelling approach Non-probabilistic Probabilistic

Tree-based RF GB

Kernel-based SVM

Bayesian NB

Neuron-based LR, MLP

Table 6.1: The four different modelling approaches and how each classification
method aligns with these approaches, are outlined.

may be considered as a deep learning method. These methods are chosen as they

encompass a range of probabilistic and non-probabilistic applications of different

modelling approaches, see Table 6.1, while requiring minimal problem specific

optimisation. All implementations of the above algorithms in the Python package

Scikits-learn [156] are used. Some of these methods require optimisation of the

hyper-parameters. This is described in Section 6.2.4.

Quantification of results

Classifier performance is assessed by the same two metrics employed in Chapter 3:

sensitivity and specificity in combination; and the F1 score. It is desirable to have

both sensitivities and specificities to be high. Similarly, a higher F1 score is desirable.

Since the F1 score is a single scalar metric that balances both precision and recall,

it is a good metric to compare classifiers when tuning the hyper-parameters of ML

algorithms. For a discussion on these metrics and their relevance, refer to Chapter

3.

6.2.3 Adequacy of the number of VPs within the VPD

In the PoC study the number of VPs within the VPD is assessed from both an a

priori and a posteriori stand point. The same analysis is not performed in this large

network study. In the PoC, as independent sampling is performed, the number of

VPs drawn from the distribution of arterial network parameters is purely driven from

a ML perspective, i.e. how many VPs are required to train and test ML classifiers.

In contrast, the number of VPs sampled from the posterior distribution in Chapter

4 is chosen based on statistical considerations, i.e. the likely number of samples for
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the MCMC method to approximate the posterior distribution. The 28,868 VPs in

the data sets outlined in Section 6.2.2 have an EPV of 145 (28, 868÷ 2÷ 3/2÷ 66)

when used to train binary ML classifiers. This EPV is significantly higher than the

rule of thumb value of 10, and thus it is assumed that there are sufficient VPs to

train and test ML classifiers. It is possible to reduce the computational expense

associated with creating ML classifiers by finding the optimum number of VPs, i.e.

removing excessive VPs from the VPD, however this process is unpragmatic for the

following reasons:

� As the ML methods used are relatively computationally inexpensive, relative to

other methods such as deep learning, the reduction in computational expense

achieved by reducing the number of VPs is unlikely to be relatively small.

� Determination of the optimum number of VPs is likely to be computationally

expensive in its self. A series of ML classifiers would need to be trained using

varying numbers of VPs for each form of disease, using each ML method.

Due to the aforementioned reasons, it is chosen to train and test ML classifiers using

the full VPD.

6.2.4 Hyper-parameter optimisation

The architecture of LR, NB, and SVM classifiers can all be considered to be problem

independent. While these three algorithms are able to undergo varying levels of

problem specific optimisation, the underlying structure of the classifier usually

does not change. The architectures of RF, MLP, and GB classifiers, however, are

dependent on the specific problem. The architecture choices for the classifiers and

associated hyper-parameter optimisation is described next. For all six methods, all

non-specified hyper-parameters are left in their default Scikits-learn states.

LR, SVM, and NB

For LR, the ‘LIBLINEAR’ solver offered by the Scikits-learn [156] package is chosen.

In the case of SVM, a kernel is typically chosen to map the input measurements to

a higher order feature space [94]. All SVM classifiers use a radial basis function

kernel [184], with the Scikits-learn hyper-parameter ‘gamma’ set to ‘scale’. In the
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case of NB, the distribution of input measurements across the data set is chosen to

be Normal [139].

Random Forest

In the case of RF, the number of trees in the ensemble and the maximum depth

of each tree is optimised. Other hyper-parameters that can be tuned include the

minimum number of data points allowed in a leaf node, and the maximum number

of different features considered for splitting each node—although the affect of these

are not investigated here as they are likely to be less significant. To optimise the two

hyper-parameters, a grid search is carried out. A grid is constructed by discretising

the possible number of trees within the ensemble between 10 and 400 at intervals of

10; and the possible depth of each tree between 20 and 200 at intervals of 10. RF

classifiers are trained using every combination of number of trees and depth of trees,

with all six pressure and flow-rate measurements (see Section 6.2.1) across all the

four forms of arterial disease. The hyper-parameters describing the architecture that

produces the highest F1 score is found for each form of disease, and this combination

of hyper-parameters is then chosen for all subsequent classifiers. The optimal hyper-

parameters for each of the four forms of disease are shown in Table 6.2, along with

the F1 score achieved by each. Contour plots of the F1 scores achieved when using

each combination of number of trees and depth of each tree are shown in Appendix

J.

It is unlikely that a single architecture will consistently produce the highest

accuracy when varying the combination of input measurements. In this study,

re-optimisation of the hyper-parameters when varying the input measurement

combination is avoided to minimise computational cost. It is found that when all

six input measurements are used the F1 score produced is relatively insensitive to

the hyper-parameter combination (see Appendix J for details). Thus, it is likely

that a reasonable estimation of the maximum achievable accuracy can be obtained

using a fixed architecture when varying the input measurements. It should be noted,

however, that some improvements in classification accuracy may be possible with

such re-optimisation.

In this study the available data set is partitioned into two components—a

training set and a test set. It is more common, however, for data sets to be
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Disease Trees Depth F1

CAS 100 80 0.8878

SAS 150 80 0.8292

PAD 100 100 0.8935

AAA 100 50 0.9912

Table 6.2: The hyper-parameters describing the architecture of the RF classifiers
that produce the highest F1 scores, when using all six pressure and flow-rate
measurements.

broken down into three components—training, validation, and test. Under this

three component framework all ML classifiers are trained using the training set.

The accuracy of ML classifiers, however, is assessed using the validation set when

tuning hyper-parameters and the test set when evaluating the final tuned model.

This allows for unbiased assessment of the final accuracy. It is chosen to only break

down the data set into two components due to the lack of repeated hyper-parameter

tuning. Using a single test set to assess both optimum hyper-parameters and final

tuned accuracy results in classifiers being bias to the test set when using all six

measurements, and thus an inflation in the accuracy. It is a posteriori found in

Section 6.3, however, that this inflation is minor. There is no blatant inflation in

the accuracy of classifiers using six input measurements, relative to those using five

measurements (which are expected to exhibit a deflation in accuracy due to the

lack of configuration specific hyper-parameter optimisation). This suggests that the

results achieved when using six input measurement are a reasonable representation

of the likely unbiased accuracies, despite the fact that the final tuned accuracy is

assessed on the same test set as that used to determine optimum hyper-parameters.

Gradient Boosting

Similar to RF architecture, the GB architecture is optimised for the problem of

this study by varying the number of trees within the ensemble and the maximum

depth of each tree. Other hyper-parameters which may be varied, however are not

considered here, are the minimum number of data points allowed in a leaf node, the

maximum number of different features considered for splitting each node, and the

impact of each tree on the final outcome (i.e. the learning rate). A grid search is
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Disease Trees Depth F1

CAS 100 6 0.9343

SAS 100 7 0.8574

PAD 100 10 0.9187

AAA 80 7 0.9970

Table 6.3: The hyper-parameters describing the architecture of the GB classifiers
that produce the highest F1 scores, when using all six pressure and flow-rate
measurements.

carried out to find the combination producing the highest F1 score when using all the

six input measurements. It is common for GB classifiers to use weaker, shallower

decision trees (relative to RF classifiers) to deliberately create high bias and low

variance [82]. The possible depth of each tree is, therefore, discretised between 2

and 20 at intervals of 1. As a high number of trees is not required to compensate

for over fitting, contrary to the RF method, the possible number of trees within the

ensemble is discretised between 10 and 100 at intervals of 10. The optimal hyper-

parameters for each of the four forms of disease are shown in Table 6.3, and contour

plots shown in Appendix J.

Multi-layer perceptron

As is common with deep learning methods, relative to ML methods, there is

significantly more hyper-parameter optimisation that can be performed for MLP

classifiers than Gradient Boosting or Random Forest. Examples of hyper-parameters

that significantly affect the performance of an MLP classifier include—however

are not limited to—batch-size, learning rate, activation functions, drop-out, and

individual units per hidden layers. With consideration for the exploratory stance of

this study, it is not possible to optimise all of these hyper-parameters. It is chosen

to use a logistic activation function for all hidden layers. The number of neurons

within each hidden layer, and the number of hidden layers is optimised to create

the optimal architecture for the classification problem of this study. For simplicity,

it is assumed that all the hidden layers contain an identical number of neurons. It

is likely that this simplistic hyper-parameter optimisation will limit the accuracy of

classification achieved by MLP classifiers.
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Disease Neurons Depth F1

CAS 60 4 0.7785

SAS 190 2 0.6040

PAD 120 2 0.6681

AAA 30 2 0.9785

Table 6.4: The hyper-parameters describing the architecture of the MLP classifiers
that produce the highest F1 scores, when using all six pressure and flow-rate
measurements.

Similar to RF and GB, the hyper-parameters that produce the highest F1 score

are found through a grid search. The number of neurons within each layer is

discretised between 10 and 200 at intervals of 10, and the number of hidden layers is

discretised between 1 and 6 at intervals of 1. The optimal hyper-parameters found

for each of the four forms of disease are shown in Table 6.4, and contour plots in

Appendix J. Table 6.4 shows that relative to RF and GB, there is less consistency

in the maximum F1 scores achieved by MLP— it classifies AAA and CAS to high

levels of accuracies, but performs relatively poorly for SAS and PAD.

6.3 Results and discussion

6.3.1 Input measurement grid search

There are 63 possible combinations of input measurements that can be provided

to an ML classifier from the six bilateral pressure and flow-rate measurements (see

Section 6.2.1). A combination search is performed for each of the four forms of

disease. For every combination of input measurements all the six ML classification

methods are trained, and then subsequently tested to quantify their performance.

The average F1 score, sensitivity, and specificity for each case across five folds are

recorded. Combinations of interest are then further analysed.

The full tables of results achieved for CAS, SAS, PAD, and AAA classification

are shown in Appendices K, L, M, and N respectively. The F1 score achieved by each

ML method and combination of input measurements are visually shown for CAS,

SAS, PAD, and AAA classification in Figures 6.2, 6.3, 6.4, and 6.5 respectively.
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They show that for all forms of arterial disease, NB and LR classifiers consistently

produce low accuracy. It has previously been shown in the PoC (Chapter 3) that the

partition between the pressure and flow-rate profiles taken from healthy and stenosed

patients is likely to be non-linear. The fact that LR consistently produces low

accuracy results supports this finding, as LR is the only linear classification method

used. The finding that NB classifiers also produce low accuracy classification is also

consistent with the results of the PoC, which found that the NB method is poorly

suited to the problem of distinguishing between haemodynamic profiles. On the

contrary, across all the four forms of disease, the tree based methods (RF and GB)

consistently produce high accuracy results. This finding is in contradiction to the

finding in the PoC, and is likely due to the inadequate architecture optimisation or

because of the unsuitability of RF on the smaller network used in the PoC. The fact

that both RF and GB classifiers are producing high accuracy classification in this

study suggests that not only are tree based methods well suited to distinguishing

between haemodynamic profiles, but also emphasises the importance of adequate

architecture optimisation.

There is less consistency in the results achieved by SVM and MLP classifiers when

detecting different forms of disease. SVM classifiers produce accuracies comparable

with RF and GB classifiers in the case of AAA detection, however low accuracy

results for the three other forms of disease. MLP classifiers produce accuracies

comparable with RF and GB classifiers in the case of CAS and AAA detection,

however relatively low accuracy results for SAS and PAD classification. Overall, it

is found that tree-based methods of RF and GB perform best, with GB performance

slightly superior to that of RF.

Measurement combinations

To investigate the importance of both the number of input measurements provided

to the ML algorithms and the specific combination of measurements, the average

F1 scores achieved by all classifiers when providing one, two, three, four, five, or six

input measurements are found. In each case, the specific combinations that achieve

the maximum and minimum F1 scores are also recorded. These results for different

forms of disease are presented next.
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Figure 6.6: The average, maximum, and minimum F1 score achieved by all classifiers
trained using different numbers of input measurements are shown for carotid artery
stenosis classification. The central markers represent the average score achieved,
while the error bars indicate the upper and lower limits.

CAS classification: The average, maximum and minimum F1 score achieved

when providing different number of input measurements for CAS classification are

shown in Figure 6.6. It shows that NB, and LR classifiers consistently produce

an F1 score of approximately 0.5, which is comparable to naive classification, i.e.

randomly assigning the health of VPs with an equal probability to each outcome.

SVM performs slightly better with F1 scores averaging 0.5 – 0.6. The other three

classification methods (RF, MLP, and GB) perform significantly better with F1

scores generally averaging between 0.7 and 0.95 and showing a clear increase in

the average F1 score as the number of input measurements increases. While the

average and minimum F1 score achieved by RF and GB classifiers continuously

increases, the maximum F1 score achieved can be seen to quickly reach a plateau

(at one input measurement for RF, and three input measurements for GB). For a

fixed number of measurements, the wide range of F1 scores in Figure 6.6 across
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all classifiers suggests that specific combinations of measurements may be more

important than others for optimal classification. To explore this further, the

combinations of input measurements that produce the highest F1 scores and the

corresponding accuracies when employing the RF and GB methods are shown in

Table 6.5. Two observations are made from this table. First that for a fixed number

of measurements, the best combinations are not identical for the two methods. For

example, when two measurements are used the best combination for RF is (Q2,

Q1) while the best combination for GB is (P2, P1). This suggests that the best

combination of measurements is likely dependent on the particular ML method

chosen. Second, some patterns stand out with respect to which measurements may

be more informative than others. For example, across the Table 6.5 Q1 appears in

11 out of 12 combinations and P1 appears in 8 out of 12 combinations. This suggests

that Q1 is most informative about identifying the presence of CAS followed by P1.

Physiologically, this is not surprising as Q1 and P1 are flow-rates and pressures in

the carotid arteries and the disease under consideration is carotid artery stenosis.

It is encouraging that the ML methods are indeed placing more importance to the

relevant physiological measurements. In fact, it is remarkable that RF and GB both

achieve F1 scores above 0.85 and sensitivities and specificities larger than 85% with

only Q1. Also notable is that these accuracies can be taken to beyond 93% (see GB

row for 3 measurements in Table 6.5) when adding two more measurements as long

as the additional two measurements are carefully chosen.

An interesting pattern to note is that while the average and minimum F1 score

achieved by MLP classifiers continuously increases in Figure 6.6, the maximum F1

score decreases beyond three input measurements. The maximum F1 scores achieved

by MLP classifiers, and the corresponding sensitivities and specificities, when using

three to six input measurements are shown in Table 6.6. It shows that the decrease

in F1 scores is also accompanied by an associated decrease in both the sensitivities

and specificities, as opposed to the balance between them (increase in sensitivity

and decrease in specificity and vice versa). This behaviour is unusual as intuitively

more input measurements should generally provide more information. This finding

may suggest that MLP classifiers are able to extract maximum information from

the haemodynamic profiles when using as little as three input measurements, and

are susceptible to over fitting when using more than three measurements (hence the

decrease in accuracy).
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No. of input Method Combination F1 Sens. Spec.

measurements score

1
RF (Q1) 0.8809 0.8704 0.8893

GB (Q1) 0.8521 0.8547 0.8502

2
RF (Q2, Q1) 0.8913 0.8765 0.9032

GB (P2, P1) 0.8950 0.9026 0.8889

3
RF (Q2, Q1, P1) 0.8941 0.8825 0.9035

GB (Q1, P2, P1) 0.9389 0.9433 0.9351

4
RF (Q2, Q1, P2, P1) 0.8944 0.8858 0.9015

GB (Q3, Q1, P2, P1) 0.9395 0.9417 0.9376

5
RF (Q3, Q2, Q1, P2, P1) 0.8934 0.8858 0.8996

GB (Q2, Q1, P3, P2, P1) 0.9391 0.9416 0.9370

6
RF

(Q3, Q2, Q1, P3, P2, P1)
0.8878 0.8747 0.8984

GB 0.9343 0.9364 0.9325

Table 6.5: The combinations of input measurements that produce the maximum F1

scores when providing one to six input measurements and employing the RF and
GB methods to detect CAS. The corresponding sensitivities and specificities are also
included.

To investigate this hypothesis, the log loss cost across the training and test sets

are recorded at each sequential iteration of the training process (up too the 200th

iteration) when using each input measurement combination presented in Table 6.6.

This analysis is shown in Figure 6.7. MLP classifiers are trained using the principle

of gradient descent, i.e. each sequential iteration takes a ‘step’ in the opposite

direction to the gradient of the cost of predictions. Thus, at a low number of

training iterations both the training and test costs are expected to be high (the

classifier can neither fit the training data nor generalise to the test data). As the

training process progresses, the training and test costs are expected to exponentially

decay (maintaining a relatively constant difference between training and test costs),

before asymptoting when a global minima is reached. Figure 6.7 shows that when

using three input measurements the training cost continuously decreases, while the

test cost quickly reaches a minimum which is then approximately maintained (with

some minor gradual increase in test cost). This is a close to desired profile. It

is seen that as the number of input measurements increases i) the training cost

still continuously decreases, ii) the minimum test cost achieved increases, and iii)

the rate of increase in test cost after the minimum has been achieved significantly
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No. of input Combination F1 Sensitivity Specificity

measurements score

3 (P3, P2, P1) 0.8831 0.8731 0.8911

4 (Q3, Q1, P2, P1) 0.8683 0.8538 0.8545

5 (Q3, Q2, P3, P2, P1) 0.8463 0.8308 0.8577

6 (Q3, Q2, Q1, P3, P2, P1) 0.7785 0.7916 0.7703

Table 6.6: The combinations of input measurements that produce the maximum
F1 scores when providing three to six input measurements and employing the MLP
method to detect CAS. The corresponding sensitivities and specificities are also
included.

increases. These behaviours are all signs of overfitting and suggest that, as is a

priori expected, the more intensive nature of MLP classifiers make them less suited

to this exploratory study.

For comparison the training and test cost profiles of the GB and RF classifiers,

when using the combination of three to six input measurements that are found to

produce the highest F1 scores, are also included in Figure 6.7. GB classifiers are

also trained using the principle of gradient descent, however with each new tree

in the ensemble taking a step down the gradient (rather than training iteration,

like in the case of MLP). Thus, the desired training and test cost profiles of GB

classifiers are identical to that of MLP, with the exception of number of training

iterations being replaced with number of trees. RF classifiers are not based on the

principle of gradient descent. Each decision tree within an RF ensemble should

be a self contained, albeit high variance, classifier. Thus, with a low number of

trees within the ensemble the RF classifier is expected to produce relatively low

training accuracies, however high test accuracies (i.e. the classifier begins in a state

of over-fitting). As more trees are included within the ensemble, the training costs

are expected to quickly reach there asymptotic minimum. The test costs, however,

will experience a ‘lag’, before enough trees are eventually included to allow the

aggregation of the predictions of different trees to counteract the high variance of

each individual tree. Over-fitting is shown in the training and test cost profiles

of RF classifiers by a significant, maintained difference between the training and

test costs. Figure 6.7 shows that both GB and RF classifiers are producing desired

profiles when using all numbers of input measurements, with no signs of over-fitting
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present.

Although the primary purpose of this study is not to perform classifier specific

optimisation, to achieve increasingly higher accuracies, an investigation into the

achievable MLP performance increase, without the need for more complex hyper-

parameter optimisation, is presented in Section 6.3.5.

SAS classification: The results of the analysis for SAS classification are shown

in Figure 6.8. As is seen in the case of CAS classification, Figure 6.8 shows that

NB, LR, and SVM classifiers consistently produce accuracies comparable to naive

classification, irrespective of the number of input measurements used. A clear

difference between Figures 6.6 and 6.8 is the accuracy achieved by MLP classifiers.

Compared to the CAS case, the MLP performance is further degraded for SAS,

while still being better than NB, LR, and SVM, although only marginally.

A high degree of similarity can be seen between the behaviours of RF and GB

classifiers for CAS and SAS. Figure 6.8 shows that the average and minimum F1

score achieved by RF and GB classifiers continuously increases as the number of

input measurements used increases. The maximum F1 score achieved is seen to

quickly reach an asymptotic limit (at three input measurements for both RF and

GB classifiers). Peak F1 score of approximately 0.85 is achieved by GB, along with

sensitivities and specificities higher than 85%.

The combination of input measurements that produce the highest F1 scores and

the corresponding accuracies are shown in Table 6.7. It shows a higher degree

of consistency between the best combinations for the two methods relative to the

case for CAS, i.e. the best combinations are generally identical (or with minimal

differences) between RF and GB. It also shows that Q1 is particularly informative,

with this measurement appearing in all of the best combinations. Physiologically

this may be due to its proximity to the disease location.

PAD classification: The results for PAD classification are shown in Figure

6.9. Comparing Figures 6.8 and 6.9, a high degree of similarity is seen between

the behaviours of SAS and PAD classification. As is previously seen for SAS

classification, Figure 6.9 shows that the NB, LR, and SVM methods are all

consistently producing accuracies comparable to naive classification. While the

MLP method performs slightly better than naive classification, the accuracy still
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Figure 6.7: The average log loss cost across the training and test sets when using the
combination of six to three input measurements that achieve the highest accuracies
(as detailed in Tables 6.5 and 6.6).
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Figure 6.8: The average, maximum, and minimum F1 score achieved by all
classifiers trained using different numbers of input measurements are shown for SAS
classification. The central markers represent the average score achieved, while the
error bars indicate the upper and lower limits.

remains relatively low. High accuracy can be seen in Figure 6.9 for the two tree

based methods of RF and GB. As has been previously seen for CAS and SAS, while

the average and minimum F1 score achieved by the RF and GB methods increases

as the number of input measurements increases, the maximum F1 score achieved

quickly reaches an asymptotic limit (at 3 input measurements for both the RF and

GB methods).

The combination of input measurements that produce the highest F1 scores for

PAD classification when employing the RF and GB methods are shown in Table

6.8. Table 6.8 not only shows good consistency between the combinations of input

measurements that produce the highest F1 scores when employing each of the two

ML methods, but also good agreement with the combinations presented in Table

6.7. Very similar combinations of input measurements (with some minor differences)

can be seen to produce the highest F1 score when providing all numbers of input
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No. of input Method Combination F1 Sens. Spec.

measurements score

1
RF (Q1) 0.7779 0.7582 0.7905

GB (Q1) 0.7529 0.7224 0.7714

2
RF (Q2, Q1) 0.8450 0.8374 0.8507

GB (Q2, Q1) 0.8461 0.8293 0.8585

3
RF (Q3, Q2, Q1) 0.8447 0.8271 0.8576

GB (Q3, Q2, Q1) 0.8552 0.8453 0.8626

4
RF (Q3, Q2, Q1, P2) 0.8432 0.8303 0.8527

GB (Q3, Q2, Q1, P2) 0.8585 0.8487 0.8660

5
RF (Q3, Q2, Q1, P3, P1) 0.8399 0.8256 0.8504

GB (Q3, Q2, Q1, P2, P1) 0.8600 0.8525 0.8657

6
RF

(Q3, Q2, Q1, P3, P2, P1)
0.8292 0.8102 0.8427

GB 0.8574 0.8504 0.8627

Table 6.7: The combinations of input measurements that produce the maximum F1

scores when providing one to six input measurements and employing the RF and
GB methods to detect SAS. The corresponding sensitivities and specificities are also
included.

measurements. As has previously been observed in Tables 6.5 and 6.7, the input

measurement Q1 appears to be most informative, appearing in all the best scoring

classifiers. Since the location of Q1 is far from the location of disease, it is not

obvious why this measurement is particularly informative of PAD.

AAA classification: The results for AAA classification are shown in Figure 6.10.

As has been previously seen for all of the three other forms of disease the NB, and

LR classifiers consistently produce accuracies comparable to naive classification,

irrespective of the number of input measurements used. The consistency of this

finding (as seen in Figures 6.6, 6.8, and 6.9), irrespective of the form of disease

being classified, highlights both the importance of non-linear partitions between

healthy and unhealthy VPs and the unsuitability of the NB method for distinction

between haemodynamic profiles.

In the case of AAA classification the SVM, RF, MLP, and GB methods

consistently produce good accuracies. Figure 6.10 shows that these methods produce

high accuracies even with a single input measurement. While there is some increase

in the average F1 score as the number of input measurements increases, due to the
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Figure 6.9: The average, maximum, and minimum F1 score achieved by all
classifiers trained using different numbers of input measurements are shown for PAD
classification. The central markers represent the average score achieved, while the
error bars indicate the upper and lower limits.

very high initial average F1 score achieved (when using a single input measurement)

this increase is limited (as the F1 score can not exceed 1). Two possible reasons

of the higher accuracies in aneurysm classification relative to stenosis classification

are:

� Aneurysms, owing to an increase in area as opposed to decrease in the area

for stenoses, may actually produce more significant or consistent biomarkers

in the pressure and flow-rate profiles. This hypothesis is supported by [127],

which found that even low severity AAAs have a global impact on the pressure

and flow-rate profiles.

� While the severities of aneurysms cannot be directly compared to severities

of stenosis, it may be that the severity of aneurysms in VPDAAA are

disproportionately large relative to the severities of stenoses. The significance
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No. of input Method Combination F1 Sens. Spec.

measurements score

1
RF (Q1) 0.8240 0.8959 0.8320

GB (Q1) 0.8183 0.8126 0.8214

2
RF (Q3, Q1) 0.8140 0.8825 0.9068

GB (Q3, Q1) 0.9041 0.8950 0.9117

3
RF (Q3, Q2, Q1) 0.9061 0.8885 0.9208

GB (Q3, Q2, Q1) 0.9168 0.9055 0.9265

4
RF (Q3, Q2, Q1, P2) 0.8997 0.8868 0.9104

GB (Q3, Q2, Q1, P1) 0.9196 0.9068 0.9306

5
RF (Q3, Q2, Q1, P3, P2) 0.8971 0.8802 0.9110

GB (Q3, Q2, Q1, P2, P1) 0.9170 0.9041 0.9281

6
RF

(Q3, Q2, Q1, P3, P2, P1)
0.8935 0.8813 0.9035

GB 0.9187 0.9102 0.9261

Table 6.8: The combinations of input measurements that produce the maximum F1

scores when providing one to six input measurements and employing the RF and
GB methods to detect PAD. The corresponding sensitivities and specificities are
also included.

of any indicative biomarkers introduced into pressure and flow-rate profiles is

likely to be proportional to the severity of the change in area. This implies

that the increase in vessel area of 712%–2,593% in VPDAAA is perhaps on the

extreme end of aneurysm severity, thereby making the classifications relatively

easier. This is further explored in section 6.3.3.

The combination of input measurements that produce the highest F1 scores when

providing one to six input measurements and employing the RF and GB methods

are shown for AAA classification in Table 6.9. It shows that F1 scores range from

0.97–0.997 and sensitivities and specificities range from 99% to 99.8%. Due to

the high accuracies across all the number of measurements, the analysis of specific

combinations is not very meaningful. However, the measurementQ1 again appears in

all the best combinations. It should also be noted that the high accuracies for AAA

classification are also consistent with those reported in [33]— where deep-learning

methods are applied on a VPD created by varying seven network parameters,

and classification accuracies of ≈ 99.9% are reported—and [214]—where machine

learning methods are applied on a VPD, and sensitivities and specificities of ≈ 86%
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Figure 6.10: The average, maximum, and minimum F1 score achieved by all
classifiers trained using different numbers of input measurements are shown for AAA
classification. The central markers represent the average score achieved, while the
error bars indicate the upper and lower limits.

are reported.

Importance of carotid artery flow-rate

Appendices K–N, along with the above analysis show that classifiers trained using

flow-rates in the common carotid arteries (Q1) consistently produce the highest

accuracy. To analyse this further, the F1 scores of classifiers with combinations that

do and do not contain Q1 are separated and compared for CAS, SAS, PAD, and AAA

in Figures 6.11, 6.12, 6.13, and 6.14 respectively. For each disease form, results are

only shown for the classification methods consistently producing reasonable accuracy

results. Generally the aforementioned figures shown a clear positive shift in the

histograms when Q1 is included, pointing to the particularly informative nature of

Q1. Important behaviours that are observed include:
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No. of input Method Combination F1 Sens. Spec.

measurements score

1
RF (Q1) 0.9741 0.9654 0.9825

GB (Q1) 0.9805 0.9799 0.9811

2
RF (Q2, Q1) 0.9868 0.9810 0.9926

GB (Q2, Q1) 0.9928 0.9919 0.9938

3
RF (Q3, Q2, Q1) 0.9912 0.9864 0.9961

GB (Q3, Q2, Q1) 0.9962 0.9954 0.9970

4
RF (Q3, Q2, Q1, P2) 0.9923 0.9879 0.9967

GB (Q3, Q2, Q1, P2) 0.9972 0.9959 0.9986

5

RF (Q3, Q2, Q1, P3, P1) 0.9920 0.9873 0.9967

GB
(Q3, Q2, Q1, P3, P2)

0.9970
0.9959 0.9981

(Q3, Q2, Q1, P3, P1) 0.9963 0.9978

6
RF

(Q3, Q2, Q1, P3, P2, P1)
0.9912 0.9861 0.9964

GB 0.9970 0.9959 0.9981

Table 6.9: The combinations of input measurements that produce the maximum F1

scores when providing one to six input measurements and employing the RF and
GB methods to detect AAA. The corresponding sensitivities and specificities are
also included.

� While there is generally an increase in F1 score achieved when including Q1,

it is also simultaneously observed that the maximum accuracy achieved are

relatively less sensitive to the inclusion of Q1.

� The greatest distinction between F1 scores when including or excluding Q1 is

seen for CAS classification when using the RF method. There is no overlap

between the two RF histograms in Figure 6.11.

� Observing the lower plots in Figures 6.12 and 6.13, a clear subgroup of low-

accuracy classifiers can be seen when excluding Q1 for SAS and PAD, which

does not exist when including Q1.

6.3.2 Feature importance

An important aspect of the GB method is that the measurement importance, which

determines the influence that individual measurements have towards classification,

can be computed. This split-improvement feature importance [224] of a feature
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Figure 6.11: The histograms of the F1 scores achieved for CAS classification are
shown for all input measurement combinations that include Q1 in the upper plot,
and exclude Q1 in the lower plot.
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Figure 6.12: The histograms of the F1 scores achieved for SAS classification are
shown for all input measurement combinations that include Q1 in the upper plot,
and exclude Q1 in the lower plot.
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Figure 6.13: The histograms of the F1 scores achieved for PAD classification are
shown for all input measurement combinations that include Q1 in the upper plot,
and exclude Q1 in the lower plot.
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Figure 6.14: The histograms of the F1 scores achieved for AAA classification are
shown for all input measurement combinations that include Q1 in the upper plot,
and exclude Q1 in the lower plot.
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Q1 (%) Q2 (%) Q3 (%) P1 (%) P2 (%) P3 (%)

CAS 67.38 8.02 3.89 11.07 7.692 1.93

SAS 41.90 29.98 8.40 6.80 5.97 6.921

PAD 38.01 15.98 31.11 4.62 4.63 5.62

AAA 69.34 19.10 4.95 2.41 2.61 1.55

Table 6.10: The total importance of each input measurement, based on the GB
classifiers provided with all six measurements.

can be thought of as the contribution of that feature to the total information gain

achieved in a decision tree, averaged across all the trees in the ensemble. A high

feature importance suggests that the given feature is contributing heavily to the

classification accuracies achieved. As the features provided to the GB classifiers are

the FS coefficients describing the haemodynamic profiles, the total importance of

each bilateral pressure or flow-rate measurement is found by summing the feature

importance of the associated 22 FS coefficients. The total importance of each

input measurement for each disease form is shown in Table 6.10. Three important

observations from this table are:

� The input measurement Q1 consistently produces the highest importance for

all forms of disease. This finding supports the findings of Section 6.3.1.

� The importance of each input measurement changes between disease forms

based on the spatial proximity to the disease location. Generally, the

measurements in close proximity to the disease location have higher

importance. For example the importance of Q3 (flow-rate in the femoral

arteries) is highest for PAD classification (see Figure 6.1 for locations of disease

and measurements). Similarly, P1 (pressure in carotid arteries) has highest

importance for CAS and SAS.

� The feature importance, when viewed in collection, also shed some light on why

Q1 is important for PAD even though the measurement location is far from the

disease location. For PAD the two most informative measurements are Q1 and

Q3. From Figure 6.1, it is clear that this combination forms a pair of flow-rate

before and at the disease location. Thus, the measurement locations bound

the disease location to provide more information on the presence of disease.
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6.3.3 Lower severity aneurysms

In Section 6.3.1 it is found that AAAs can be classified to a very high levels of

accuracy with only one input measurement. Whether these accuracies are affected

when lower severity aneurysms are considered is assessed here. For this assessment,

a new lower severity AAA VPD, referred to as VPDAAA-L, is created in an identical

manner to the other diseased databases (see Chapter 5), with the following two

differences:

� The severity of aneurysms introduced into the virtual subjects is sampled from

a uniform distribution bounded as follows: 3.0 ≤ Saneurysm ≤ 7.0.

� To reduce the computational expense associated with the creation of virtual

patients, the size of VPDAAA-L is restricted to 5,000 VPs.

A combination search is carried out with only the GB method as it is the best

overall method. The F1 scores, sensitivities, and specificities achieved by all the

measurement combinations are presented in Appendix O. For comparison, the GB

F1 scores for all forms of disease (including AAA-L) are shown in Appendix P.

The ratios of the GB F1 scores achieved for AAA-L classification relative to AAA

classification are shown in Figure 6.15. The observations from this figure are:

� The F1 scores for AAA-L classification are consistently lower (ranging from

1% to 10% lower) than that for AAA classification. This finding supports the

physiological expectation that the significance of biomarkers in pressure and

flow-rate profiles is proportion to the severity.

� The ratios of F1 scores are lowest for combinations of inputs that

predominantly rely on pressure measurements. This suggests that pressure

measurements are, in general, less informative about disease severity. This is

in support of the, generally, lower feature importance of pressure measurements

in Table 6.10.

� The F1 score ratios are highest for input combinations that include Q1. This

finding further suggests that Q1 contains consistent biomarkers.

� The ratios range between 0.9 and 0.99, implying a maximum degradation

of only 10% relative to high-severity classification accuracies. Thus, even in

Pg. 223 / 416



6.3. RESULTS AND DISCUSSION

the low-severity aneurysms many combinations of classifiers achieve F1 scores

higher than 0.95 and corresponding sensitivities and specificities larger than

95%.

6.3.4 Unilateral aneurysm measurement tests

Hitherto, all ML classifiers used bilateral measurements, i.e. both the right and

left instances of each measurement are simultaneously provided. Here, the ability

of unilateral measurements, i.e. only the right or left instance of a measurement,

to detect AAAs is assessed. This analysis is restricted to the GB method as it

consistently outperforms other methods. GB classifiers are trained and tested to

detect AAAs using four different unilateral measurements:

� Flow-rate in the right carotid artery, shown in Figure 6.1 as Q
(R)
1 .

� Flow-rate in the left carotid artery, shown in Figure 6.1 as Q
(L)
1 .

� Pressure in the right radial artery, shown in Figure 6.1 as P
(R)
3 .

� Pressure in the left radial artery, shown in Figure 6.1 as P
(L)
3 .

Carotid artery flow-rate is chosen as it has been shown to be the best measurement

for disease classification. Radial artery pressure is chosen due to the location

of the radial artery on the human wrist. Recent advancements have resulted in

wearable devices capable of measuring continuous radial pressure profiles, such

as the TLT Sapphire monitor (Tarilian Laser Technologies, Welwyn Garden City,

U.K.) [125], and thus if AAAs can be detected to satisfactory accuracies using

these measurements, it may suggest the possibility of future home monitoring of

abdominal aortic health through such wearables. The sensitivities and specificities

achieved by the four unilateral GB classifiers are shown in Table 6.11. It shows that

relative to the bilateral case, while there is a decrease in the classification accuracies,

the magnitude of the decrease is less than 10%. This finding suggests that there may

be sufficient biomarkers of AAA presence captured within the intra-measurement

details of a single pressure or flow-rate profile. The fact that similar accuracies are

achieved with either the right or left instances of any measurement is likely due to

physiological symmetry. While there are some minor asymmetries between the right
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Side Sensitivity Specificity

Carotid Right 0.9369 0.9161

flow-rate Left 0.9065 0.9146

(Q1) Both 0.9799 0.9811

Radial Right 0.8356 0.8533

pressure Left 0.8633 0.8605

(P3) Both 0.9202 0.9248

Table 6.11: The sensitivities and specificities achieved when using the measurements
of flow-rate in the right, left, and both CAs and pressure in the right, left, and both
radial arteries.

and left upper extremities, due to the topology of the arterial network (as shown in

Figure 6.1) changes to the cross sectional area of the abdominal aorta are expected

to produce relatively consistent changes in both the right and left side of the body.

6.3.5 MLP over-fitting

It is shown in Section 6.3.1 that the accuracy of MLP classifiers is hindered

by the presence of significant over-fitting. One method to reduce the presence

of over-fitting is to perform more complex hyper-parameter optimisation (such

as introducing regularisation). This method is prohibitive, however, due to the

increased dimensionality, and so consequently complexity, associated with the

tuning of hyper-parameters. Here, the impact on the accuracy of classification by

reducing over-fitting without introducing further hyperparameters is investigated by

employing an early-stopping criteria to the training process [160, 220]. Essentially,

rather than splitting the available data in two (as described in Section 6.2.2), training

the MLP classifier until a stopping criteria is met on the training set, and then

assessing the accuracy on the test set:

� A third partition to the available data (the validation set) is introduced. The

combined healthy and unhealthy data sets in 6.2.2 are split so that the training

set contains 50%, the validation set 25%, and the test set 25% of the available

data.

� Classifiers are trained on the training set, however with the stopping criteria
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being assessed on the validation set. At each sequential iteration in the training

process, the average log loss cost is computed across the validation set. If

more than 75 iterations have been performed, and the improvement in log loss

cost across the validation set between two consecutive iterations is less than

1× 10−3, training is stopped.

� The final accuracy is assessed on the test set.

This analysis is performed for CAS and AAA, as the behaviour of SAS and PAD

is very similar to that of CAS. MLP classifiers are trained using early-stopping and

the combination of input measurements found to produce the highest F1 score when

providing three to six input measurements. As the available data set is now being

partitioned into three components the hyper-parameter optimisation performed in

Section 6.2.4 is re-completed, however with the three amendments that:

� Early-stopping is employed throughout the grid search.

� Optimum architecture is chosen based on the F1 score achieved across the

validation set (rather than the test set previously used). This results in the

test set being completely unseen by the classifiers until the assessment of the

final accuracy, removing any bias that maybe present.

� As there are significantly fewer combinations of input measurements being

tested (four CAS and four AAA classifiers), hyper-parameter optimisation is

performed for each individual classifier.

The hyper-parameters describing the optimum architecture when using each number

of input measurements are shown for CAS in Table 6.12, and AAA in Table 6.13. The

cost profiles of the CAS classifiers are shown in Figure 6.16, and AAA classifiers in

Figure 6.17. A comparison of the F1 scores achieved with and without early-stopping

are shown for CAS classification in Table 6.14, and AAA classification in 6.15.

Table 6.12 shows an extremely high, almost remarkable, degree of consistency

between the optimum hyper-parameters for each number of input measurements.

Besides some relatively minor differences for the case of three input measurements,

all other classifiers return an identical optimum architecture. This finding strongly

supports the previous simplification of using a single architecture for all classifiers.

An interesting finding to note, however, is that there is less consistency with the
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No. measurements Neurons Depth F1

3 140 3 0.8817

4 180 4 0.8824

5 180 4 0.8355

6 180 4 0.8464

Table 6.12: The hyper-parameters describing the architecture of the MLP classifiers
that produce the highest F1 scores on the validation set with early-stopping for
CAS classification, when using the best performing combination of three to six
input measurements.

previous optimum hyper-parameters presented in Table 6.4, which found that four

layers containing 60 neurons produced the highest F1 score when providing six input

measurements. There is also a relatively high degree of consistency in the optimum

hyper-parameters for AAA classification (shown in Table 6.13), however to a lesser

extent than CAS classification. Comparing Tables 6.13 and 6.4, it is again seen

that the new hyper-parameters are inconsistent with the old. Initially this finding

may seem to undermine the results achieved, however while the optimum hyper-

parameters are inconsistent the F1 scores achieved show much more similarity—

0.9785 in Table 6.4 and 0.9870 in Table 6.13. The consistency in F1 scores,

despite the inconsistency in hyper-parameters, may suggest an unsusceptibility to

the architecture used (i.e. the F1 score plane in the two-dimensional grid search

space is relatively flat, with statistical differences in the data sets used to train and

test playing a more significant role than the hyper-parameters chosen). This again

supports the simplification of using a single architecture for all classifiers.

Figure 6.16 shows that generally the early stopping criteria fulfils its purpose of

stopping the training process near to the minimum validation cost point, minimising

over-training (and hence over-fitting). It is seen that for all numbers of input

measurements, training is stopped as soon as the 75 minimum iterations have been

completed. While this early stopping criteria greatly reduces over-fitting in all cases,

it is seen that the minimum number of training iterations (75) is to high for the

six measurement case (the validation cost has already started to significantly rise),

suggesting further refinement may reduce the validation and test costs even further.

Looking at Table 6.14 it is seen that while early stopping has reduced the log loss cost
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No. measurements Neurons Depth F1

3 140 2 0.9889

4 60 2 0.9858

5 150 1 0.9915

6 160 1 0.9870

Table 6.13: The hyper-parameters describing the architecture of the MLP classifiers
that produce the highest F1 scores on the validation set with early-stopping for
AAA classification, when using the best performing combination of three to six
input measurements.

No. of input Combination F1 score

measurements Without With

early-stopping early-stopping

3 (P3, P2, P1) 0.8831 0.8621

4 (Q3, Q1, P2, P1) 0.8683 0.8693

5 (Q3, Q2, P3, P2, P1) 0.8463 0.7975

6 (Q3, Q2, Q1, P3, P2, P1) 0.7785 0.8394

Table 6.14: F1 scores achieved when using the three to six input measurement
combinations found to produce the highest accuracies for CAS, when assessing
convergence on the training set (i.e. the original results presented in Table 6.6)
and on the validation set (i.e employing early stopping).

across the test set, this does not generally translate to a difference in the F1 score.

The log loss cost will decrease without increasing the F1 score if easy to classify

patients are predicted with a higher degree of certainty (for example predicting 95%

rather than 75%), however no new additional patients are correctly classified. Some

increase in F1 score is seen in Table 6.14 for the case when all six input measurements

are used.

Figure 6.17 shows no major signs of over-fitting when using MLP classifiers to

detect AAA. As a result, the employment of an early-stopping criteria has little

affect on the final log loss cost achieved across the test set. From Table 6.15 it

is seen that, as no real differences are achieved in the log loss costs, there is no

significant differences in the F1 scores achieved when employing early-stopping for

AAA classification. These findings, for both CAS and AAA classification, suggest

Pg. 229 / 416



6.4. CONCLUSIONS

No. of input Combination F1 score

measurements Without With

early-stopping early-stopping

3 (Q1, P2, P1) 0.9827 0.9852

4 (Q2, Q1, P2, P1) 0.9800 0.9784

5 (Q2, Q1, P3, P2, P1) 0.9808 0.9876

6 (Q3, Q2, Q1, P3, P2, P1) 0.9785 0.9836

Table 6.15: F1 scores achieved when using the three to six input measurement
combinations found to produce the highest accuracies for AAA, when assessing
convergence on the training set and on the validation set.

that to significantly improve the accuracy of MLP classifiers more extensive hyper-

parameter optimisation is required. This is prohibitive for an initial exploratory

study, and hence suggests the unsuitability of the MLP (and more generally deep

learning) methods.

6.4 Conclusions

The main conclusion of this study is that machine learning methods are suitable

for detection of arterial disease—both stenoses and aneurysms—from peripheral

measurements of pressure and flow-rates across the network. Amongst various

ML methods, it is found that tree-based methods of Random Forest and Gradient

Boosting perform best for this application. Across the different forms of disease, the

Gradient Boosting method outperforms Random Forest, Support Vector Machine,

Naive Bayes, Logistic Regression, and even the deep learning method of Multi-layer

Perceptron.

The results of this study, generally, support those found in the PoC. Similarities

between both include: the Naive Bayes method appears poorly suited to

haemodynamic distinction; the ability to form non-linear partitions appears to be

an important characteristic of the ML method used; certain input measurements are

particularly informative; and high accuracy can be achieved when using even a low

number of input measurements, if these measurements are chosen judiciously. The

most obvious difference seen in this study, relative to the PoC, is the high accuracy

achieved by tree based methods. This, however, is likely due to the inadequate
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architecture optimisation in the PoC study.

While the maximum scores are for the case when all the six measurements are

used, it is also shown that the performance degradation is less than 5% when using

only three measurements and less than 10% when using only two measurements, as

long as the these measurements are carefully chosen in specific combinations. For

the case of AAA, it is further demonstrated that when only a single measurement

(either on the left or right side) is used, F1 scores larger than 0.85 and corresponding

sensitivities and specificities larger than 85% are achievable. This aspect encourages

the application of AAA monitoring and/or screening through the use of a wearable

device, such at the TLT Sapphire monitor (Tarilian Laser Technologies, Welwyn

Garden City, U.K.) [125], although requires validation when multiple forms of disease

are present. Finally, it is shown through the analysis of several classifiers and

feature-importance that, amongst the measurements, the carotid artery flow-rate

is a particularly informative measurement to detect the presence of all the four

forms of disease considered.

In this chapter ML classifiers have been created using representations of the

measurable pressure and flowrate profiles. To extend this analysis, the next chapter

of this thesis uses these haemodynamic profiles to create easily acquirable physics

advised features. These physics advised features are then used both in isolation and

in combination with the measurable profiles to train and test ML classifiers.
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Figure 6.16: The log loss cost profiles across the training and test sets when using
the best performing combination containing three to six input measurements for
CAS classification and employing early stopping.
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Figure 6.17: The log loss cost profiles across the training and test sets when using
the best performing combination containing three to six input measurements for
AAA classification and employing early stopping.

Pg. 233 / 416



Chapter 7

Use of physics advised

haemodynamic features

7.1 Introduction

Hitherto, pressure and flow-rate profiles have been used in their raw form—i.e.

a representation of the measurable haemodynamic profiles—to train and test ML

classifiers. It is possible, however, to use these raw pressure and flow-rate profiles

to construct complex physics advised features (PAFs). Examples of such PAFs

include; ankle-brachial pressure index (ABPI) [5], pulse wave velocity (PWV) [12],

and ballistocardiogram waveforms (BCG) [93]. To expand on the results previously

achieved, this chapter now uses raw pressure and flow-rate profiles to construct

PAFs. ML classifiers are then trained and tested using these PAFs both in isolation,

and combination with the raw pressure and flow-rate measurements.

The use of PAFs may increase the maximum accuracy of classification. While

some ML methods are capable of combining input measurements to create high

order features, the direct provision of PAFs may aid in classification. It is found

in Chapter 6 that when using all six measurements maximum F1 scores larger than

0.9 are achieved for CAS and PAD, larger than 0.85 for SAS, and larger than 0.98

for both low- and high-severity AAAs. Due to the high accuracy achieved when

using raw pressure and flow-rate profiles it is unlikely that the use of PAFs will

significantly increase the maximum classification accuracy. Instead, the primary

advantage is likely to be the need for fewer individual measurements. While it is

found in Chapter 6 that AAA can be classified to a high level of accuracy when

using a single pressure or flow-rate measurement, the accuracy of CAD, SAS, and

PAD is seen to degrade by ≈ 25% when using a single measurement, relative to

the maximum accuracy achieved. This suggests that the accuracy of classification

of CAD, SAS, and PAD is reliant on complex inter-profile relationships. It maybe

possible for PAFs to capture these relationships in a single feature. This would,

in turn, allow for high accuracy classification to be achieved using fewer individual
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measurements taken from patients.

The remainder of this chapter is structured as follow: first, the PAFs being

examined (ABPI, PWV, and BCG) are outlined; next how these features are used

to create ML classifiers, using the binary configuration in Chapter 6, is presented;

and finally, the accuracy of disease classification is reported and analysed.

7.2 Methodology

7.2.1 Physics advised features

Three easily acquirable PAFs—ABPI, PWV, and BCG—are used to train and test

ML classifiers to predict the presence of four forms of arterial disease—CAS, SAS,

PAD, and AAA. In this section the three aforementioned features are presented,

including: the physiological behaviour they capture; how they are computed from

the raw pressure and flowrate profiles; and any a priori expectations of which form of

disease each feature is likely to be most informative about. The mathematical models

describing the PAFs must be carefully chosen to balance physiological realism with

complexity. The PAFs, particularly BCG waveforms (see Section 7.2.1), capture

complex physiological behaviours. The purpose of this thesis is to perform an initial

exploratory study into the potential of using ML classifiers to predict the presence of

arterial disease, and thus the mathematical models employed here favour simplicity

over realism. This allows for an initial assessment of the viability of using PAFs,

which if successful can be extended in future work through the use of more complex

mathematical models.

Ankle-brachial pressure index

The ankle-brachial pressure index (ABPI) represents the ratio of the systolic blood

pressure in the ankle, most commonly measured in the posterior tibial, to the systolic

blood pressure in the brachial artery [5]. The locations of these vessels are shown

in Figure 7.1. The ABPI is equal to:

ABPI =
Ankle systolic blood pressure

Brachial systolic blood pressure
. (7.1)
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ABPI is already clinically used to assess arterial health, most commonly to detect

PAD [218]. To predict the health of a patient from their ABPI the Society for

Vascular Technology suggests applying the discrete classifications [5]:

� ABPI> 1.4, calcification may be present.

� ABPI> 1.0, probably no arterial disease.

� ABPI ∈ [0.81−1.0], no significant arterial disease, or mild/insignificant disease.

� ABPI ∈ [0.5− 0.8], moderate disease.

� ABPI< 0.5, severe disease.

� ABPI< 0.3, critical ischemia.

ABPI significantly differs from the raw pressure and flow-rate profiles used in

Chapters 3 and 6 as it is a single scalar measurement, rather than time varying.

Intuitively it would seem that ABPI would not capture enough information to

accurately predict the presence of arterial disease due to the natural variability

in systolic pressure throughout the arterial network, and the non-unique nature of

ABPI (i.e. moderate ankle pressure and high brachial pressure will produce similar

values of ABPI to low ankle pressure and moderate brachial pressure). A previous

meta-analysis study into the performance of ABPI as a diagnostic method for PAD,

however, has shown high levels of specificity (83.3 – 99.0%) and varying levels of

sensitivity (15 – 79%) [218]. Thus, it may in fact be possible to predict the presence

of at least one form of arterial disease (PAD) using ABPI and ML classifiers.

There are two instances of ABPI per patient, on the right and left side on the

body. The right and left instance of ABPI are referred to as ABPIR and ABPIL,

respectively. Computation of either the right or left instance requires measurements

of pressure in the corresponding brachial artery and ankle, and thus two individual

measurements from a patient.

Pulse wave velocity

Pulse wave velocity (PWV) is a measure of the rate at which pressure waves

propagate through the arterial network [47]. PWV is found by recording the time

delay (referred to as the transit time) between pressure pulses at different locations in
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the arterial network which are at known distances apart. Transit time is often found

by recording the time delay between the ‘foot’ waveform (the commencement of the

systolic upstroke) [198] at different locations in the arterial network. While PWV

can be measured between several different vessels in the network, here the transit

time is recorded between the brachial artery and the ankle, as these measurements

can be easily obtained [219]. For consistency with ABPI, it is assumed that ankle

pressure is measured in the posterior tibial.

It is infeasible to manually determine the foot waveform for all 28,868 VPs. A

commonly used automated method to determine the foot waveform—that finds the

intersection between the tangent of the minimum pressure and the tangent of the

maximum pressure gradient—is presented in [84]. This method is not suitable for

the VPD due to the variability in pressure profiles. Examples of brachial artery and

ankle pressure profiles taken from VPs for which determination of the footwaves

through the aforementioned tangent method is suitable is highlighted in Figure 7.2,

and problematic is highlighted in Figure 7.3. One method to improve the reliability

of the determination of the foot waveform could be to incorporate physics based

knowledge into the geometrical prediction—for example estimating the time point

at which the footwave will occur through the use of the physics based model of pulse

wave propagation (see Chapter 2), and then examining the geometrical properties

of the pressure profile around this estimated time point. Employment of such a

method, however, is not feasible within the scope of this thesis. Instead, to simplify

implementation, the time point corresponding to peak systolic pressure is used as an

easily acquirable surrogate to the foot waveform. The transit time is then estimated

to be the time point corresponding to peak systolic pressure in the brachial artery

minus the time point corresponding to peak systolic pressure in the ankle. While this

method is simple, two issues associated with it are: peak systolic pressure may occur

at the same time point in both the brachial artery and ankle in certain VPs; and if

the transit time is large enough, so that the systolic pressures are an entire cardiac

period out of phase, the transit time will appear negative. Determination of the

PWV of VPs with either of these characteristics is not possible through the method

being employed, and so these VPs are removed from the VPD when using PWV to

train and test ML classifiers. Approximately 40% of each of the four combined data

sets described in Section 7.2.3 are discarded due to the above characteristics when

using PWV.

Pg. 237 / 416



7.2. METHODOLOGY

It is suggested in [219] that the distance between the brachial and ankle

measurement locations can be computed from superficial measurements of a patients

height using the equation:

Lba = 0.5933h+ 14.40139, (7.2)

where Lba represents the distance between the brachial arteries and the ankle, and

h represents the height of the patient (in cm). The height of each VP is calculated

by multiplying the height of the reference ADAN patient (170cm) by the vessel

length scaling term applied (as it is assumed that the length of arterial vessels are

proportional to the height of the patient, as detailed in Section 4.6.2). From the

recorded transit time ∆tba and distance between measurement locations Lba the

PWV is computed using the relationship:

PWV =
Lba

∆tba

. (7.3)

There are no strong a priori expectations of any form of disease for which PWV

should be particularly informative. As with ABPI, there are two instances of PWV

per patient, one on each side of the body. The right and left instance of PWV are

referred to as PWVR and PWVL, respectively. As with ABPI computation of each

of these instances requires measurement of pressure in the corresponding brachial

artery and ankle.

Ballistocardiogram waveforms

The ballistocardiogram (BCG) waveform represents the reactionary force

experienced by the body due to the propagation of blood through the arterial

network. A simple mathematical model of the BCG waveform is presented in [108].

This model is created by analysing the forces exerted on the blood in the aorta

(the largest arterial vessel in the human body), with the following assumptions: the

aorta can be approximated as two segments, a short ascending segment (ascending

aorta) and a long descending segment (descending aorta); blood is homogeneous

and incompressible; there is little change to the cross sectional area of the arterial

vessel (i.e. the vessel is rigid and geometric tapering is small); and blood flow is
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longitudinal with uniform velocity profile. The resulting mathematical model is:

FBCG(t) ≈

AD

[(
P1(t) + ρ

(
Q1(t)

AD

)2
)
−
(
P2(t) + ρ

(
Q2(t)

AD

)2
)]

− AA
[(

P0(t) + ρ

(
Q0(t)

AA

)2
)
−
(
P1(t) + ρ

(
Q1(t)

AA

)2
)]

,

(7.4)

where FBCG(t) represents the BCG force at time t; ρ represents the density of blood;

AD and AA represent the area of the descending and ascending aortic segments; P0,

P1, and P2 represent the pressure at the inlet of the ascending segment, the boundary

of the ascending and descending segments (i.e. the outlet of the ascending and inlet

of the descending), and the outlet of the descending segment respectively; and Q0,

Q1, and Q2 represent the corresponding flow-rate measurements. The locations in

the network at which P0, P1, P2, Q0, Q1, Q2 are measured is shown in Figure 7.4.

Aortic blood velocities are around 0.45–0.6ms−1, and thus ρ
(
Q(t)
A

)2

yields values of

1.6–1.9mmHg. Blood pressure in the aorta is typically around 100mmHg, and so it

is seen that this is primary mechanism for the BCG waveform. The mathematical

model in [108] is, therefore, reduced to:

FBCG(t) ≈ AD (P1(t)− P2(t))− AA (Po(t)− P1(t)) . (7.5)

This model must be adapted for application to VPs to account for: the area of

the aorta changes both spatially (along the length of the aorta) and temporally

(throughout the cardiac period); and the velocity profile of blood is parabolic in

the physics based model of pulse wave propagation. Including these adaptations,

Equation (7.4) is written as:

FBCG(t) ≈[
A1(t)

(
P1(t) +

4

3
ρ

(
Q1(t)

A1(t)

)2
)
− A2(t)

(
P2(t) +

4

3
ρ

(
Q2(t)

A2(t)

)2
)]

−
[
A0(t)

(
P0(t) +

4

3
ρ

(
Q0(t)

A0(t)

)2
)
− A1(t)

(
P1(t) +

4

3
ρ

(
Q1(t)

A1(t)

)2
)]

,

(7.6)
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where A0, A1, and A2 represent the cross sectional area at the inlet of the ascending

segment, the boundary of the ascending and descending segments, and the outlet

of the descending segment respectively. The locations at which A0, A1, and A2 are

measured are included in Figure 7.4. Removing the momentum terms, this model

becomes:

FBCG(t) ≈ 2A1(t)P1(t)− A0(t)P0(t)− A2(t)P2(t). (7.7)

BCG waveforms are computed for five VPs when using the initial model described

by Equation (7.5); allowing only spatial cross sectional area variation; and allowing

both spatial and temporal cross sectional area variation. This comparison is shown

in Figure 7.5. When using constant cross sectional areas AD and AA are computed

as the average of the mean cross sectional area through out the cardiac period at

the inlet and outlet of each segment respectively, i.e.:

AA =
1

2

(
1

N

N∑
n=1

A0(t = tn) +
1

N

N∑
n=1

A1(t = tn)

)
, (7.8)

where Ax(t = tn) represents the cross sectional area at location x and time tn,

respectively; and N represents the total number of time points in the cardiac

period. Similarly, AD is computed using Equation (7.8), however with A0 replaced

by A2. To compute the BCG waveforms when only allowing spatial cross sectional

area variation, the mean cross sectional area through out the cardiac period at

each location is used. Figure 7.5 shows the BCG waveforms computed using a

constant cross sectional area show good consistency with those in [108], which in

turn have been compared and show good agreement with measurements from real

subjects. When allowing spatial cross sectional area variation the BCG waveform

is smoothed and the magnitude of the force increased, relative to the constant area

waveform. Very little difference is seen in the BCG waveform produced when either

assuming that vessels are rigid, or using the time varying cross sectional area profiles.

Thus, it is seen that when more complexity is added to the model describing BCG

waveforms the resulting profiles show greater differences to those taken from real

subjects. This is counter-intuitive, as the inclusion of more complexity and more

physiologically realistic behaviour is expected to produce a more realistic model.

This suggests that more work needs to go into creating a comprehensive, realistic

model for BCG waveforms. While Equation (7.6) amends the model in [108] to
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accommodate parabolic velocity profiles and varying cross sectional areas, it still

does not account for: momentum changes within the control volume; the curvature

of the aorta; and other large arterial vessels such as the axillary, carotid, and iliac

arteries.

Due to the pressure gradient in the aorta being the primary mechanism

responsible for the BCG waveform, this PAF is expected to be particularly

informative for AAA classification. Unlike ABPI and PWV, the BCG

waveform is directly measured (rather than computed from pressure and flow-rate

measurements), and so requires a single measurement from patients. Multiple

methods have been proposed for non-invasive measurement of BCG waveforms

including the use of sensors built into chairs [111], and through modified bathroom

scales [70, 216]. These methods suggest strong potential for home monitoring of

arterial health through BCG waveforms, if this PAF captures sufficient information

about the presence of arterial disease.

7.2.2 Available measurements

In Chapter 6 the locations of six easily acquirable haemodynamic measurements—

pressure in the carotid, brachial, and radial arteries; and flow-rate in the carotid,

brachial, and femoral arteries—are detailed, and the bilateral provision of these

measurements, described through a Fourier series (FS), is presented. These six

measurements are made available to ML classifiers in an identical form to Chapter

6—i.e. bilaterally and described by a FS—and each measurement referred to by the

same notation, Q1 to Q3 and P1 to P3 (see Chapter 6 for details).

Along with these six bilateral pressure and flow-rate measurements, there are

now three PAFs available to ML classifiers, two of which (ABPI and PWV) have a

right and left instance. It is chosen to provide PAFs to ML classifiers unilaterally

and mutually exclusively—i.e. when ABPI is used ML classifiers are provided with

ABPIx, where x can be either R or L. These features are provided unilaterally

and mutually exclusively as the expected primary advantage of using PAFs is a

reduction in the number of individual measurements required. For both ABPI and

PWV, computation of either the right or left instance requires measurements of

pressure in the corresponding brachial artery and ankle, and thus using either of

these features bilaterally requires four individual measurements to be taken from
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patients (two in the right side, and two in the left side), significantly mitigating the

advantage of using PAFs over raw pressure and flow-rate measurements.

As the BCG is a periodic time varying profile, to reduce the dimensionality this

feature is described through a FS truncated at the 5th order (in an identical manner

to the raw pressure and flow-rate profiles). Thus, the BCG profile is described by 11

FS coefficients (see Chapter 3 for further detail). Both the ABPI and PWV are scalar

values, and so are described by a single dimension. As with the PoC and Chapter

6, to account for large differences in magnitudes of the different inputs provided to

ML classifiers, they are individually transformed with the Z-score standardisation

method [136] to have zero-mean and unit variance.

7.2.3 Machine learning classifiers

The four unhealthy VPDs (VPDCAS, VPDSAS, VPDPAD, and VPDAAA) and one

healthy VPD (VPDH)—created in Chapters 4 and 5; and employed in Chapter 6—

are now used to create ML classifiers for each of the four forms of arterial disease,

using the previously described PAFs. In an identical manner to Chapter 6, the

ML classifiers are created for each disease form independently. All classifiers are

therefore binary (see Chapters 3 and 6 for details), i.e. four independent classifiers

are trained to predict the following questions independently: “Does a VP belong to

VPDH or VPDx”, where x can be either CAS, SAS, PAD, or AAA.

Training, validation, and test sets

Combined data sets, to be provided to ML classifiers, containing 50% healthy and

50% unhealthy VPs are created using an identical methodology to Chapter 6, i.e.:

� Step 1: Half of the available VPs are randomly selected from VPDH for

inclusion within the ML data set; this is referred to as VPDH-ML. The

unhealthy VPs corresponding to the remaining unused half are taken from

the appropriate unhealthy VPD (VPDCAS, VPDSAS, VPDPAD, or VPDAAA)

and incorporated into the ML data set. These data sets are referred to as

VPDCAS-ML, VPDSAS-ML, VPDPAD-ML, or VPDAAA-ML.

� Step 2: The data sets of Step 1 are combined to create four complete data

sets each containing 50% healthy and 50%, unhealthy VPs:
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1. VPDH-ML ∪ VPDCAS-ML

2. VPDH-ML ∪ VPDSAS-ML

3. VPDH-ML ∪ VPDPAD-ML

4. VPDH-ML ∪ VPDAAA-ML

In Chapters 6 the four complete data sets of Step 2 are broken down into two

components, a training set (containing 2/3 of all the VPs) and a test set (containing

the remaining used 1/3 of all the VPs). It chosen to split the data set into

two components, rather than the more commonly used three, as repeated hyper-

parameter optimisation is not performed when the input measurement combinations

are varied.

In this chapter, one of the primary aims is to assess the accuracy of disease

detection when using PAFs in isolation. Due to the lower number of different

input combinations available to ML classifiers when using PAFs in isolation, hyper-

parameter optimisation is performed for each (see Section 7.2.4). It is, there,

important to minimise any inflation in the accuracy of classification achieved when

using PAFs in isolation caused by bias towards to the test set. To minimise this,

the complete data sets are split into three components:

� A training set, containing 60% of the available data. All ML classifiers are fit

on the same training set.

� A validation set containing 20% of the data. When tuning the hyper-

parameters describing the architectures of classifiers to each individual PAF

in Section 7.2.4, the validation set is used to assess the accuracy.

� A test set containing the remaining 20% of the data. The final accuracies of

classification when using both PAFs in isolation and in combination with raw

pressure and flow-rate profiles, presented in Section 7.3, are assessed on this

test set.

The performance of all ML classifiers is evaluated using a five fold validation (see

Chapters 3 and 6 for details).
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ML methods

In this chapter only the gradient boosting (GB) method is used, to reduce

computational expense. This method is chosen as it found to consistently produce

the highest accuracy classification in the previous chapter (Chapter 6). The

implementation of the GB algorithm in the Python package Scikits-learn [156]

is used. The hyper-parameter optimisation of GB classifiers is described after

presenting performance quantification metrics in the next section.

Quantification of results

Classifier performance is assessed by the same two metrics employed in Chapters 3

and 6: sensitivity and specificity in combination; and the F1 score. Higher values

of all three metrics are desirable. Since the F1 score is a single scalar metric that

balances both precision and recall, it is a good metric to compare classifiers when

tuning the hyper-parameters of ML algorithms, described next.

7.2.4 Hyper-parameter optimisation

As detailed in Chapter 6 GB architecture is optimised for a specific problem by

varying the number of trees within the ensemble and the maximum depth of

each tree. Previously, hyper-parameter optimisation is not performed for each

individual configuration of ML classifiers—i.e. when the input pressure and flow-

rate measurements provided are varied—due to the large number of different input

measurement combinations used, and so consequently high computational expense

associated with tuning the hyper-parameters to each. When PAFs are used in

combination with raw pressure and flow-rate profiles it remains infeasible, within

the scope of this thesis, to perform hyper-parameter optimisation for every classifier

configuration. Thus, the optimal number of trees and depth of each tree found for

each disease form in Chapter 6 are reused here when PAFs are used in combination

with raw pressure and flow-rate profiles.

When ML classifiers are created using PAFs in isolation it is feasible to perform

configuration specific hyper-parameter optimisation. Three different PAFs are used,

two of which (ABPI and PWV) have a left and right instance. Due to imposed

condition of PAFs being provided unilaterally and mutually exclusively (see Section
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7.2.2) there are five different configurations of PAFs per disease form (ABPIR,

ABPIL, PWVR, PWVL, BCG)—a feasible number to perform hyper-parameter

optimisation on. The optimisation of the hyper-parameters to each of these 20

configurations (four disease forms each with five configurations) is presented next.

ABPI

A grid search is carried out to find the combination of hyper-parameters that

produces highest F1 score when using the right and left ABPI in isolation for each

form of disease. The possible depth of each tree is discretised between 2 and 20 at

intervals of 1, and the possible number of trees within the ensemble is discretised

between 10 and 100 at intervals of 10. The optimum hyper-parameter combination

for each disease form is detailed in Table 7.1, along with the F1 scores achieved.

Table 7.1 shows that, generally, the optimum hyper-parameters and the resulting

maximum F1 scores are relatively consistent when using either the right or left ABPI

for each disease form. A further observation is that the maximum F1 score is only

marginally better than naive classification (i.e. an F1 score of 0.5) for all disease

forms, excluding PAD. Further analysis is not performed on the accuracies presented

in Table 7.1, as these results may show a bias to the validation set. Analysis of the

accuracy of classification on the unbiased test set is presented in 7.3.1.

Disease Side Trees Depth F1

CAS
Right 60 3 0.5388

Left 40 4 0.5588

SAS
Right 30 2 0.5980

left 40 4 0.5497

PAD
Right 10 2 0.6435

Left 10 2 0.6161

AAA
Right 20 3 0.5760

Left 20 2 0.5851

Table 7.1: The hyper-parameters describing the architecture of the GB classifiers
that produce the highest F1 scores, when using either the right or left ABPI.
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PWV

Identical grid searches are carried out to those presented above, however using

the right and left PWVs rather than ABPIs. The optimum hyper-parameter

combination for each disease form, and corresponding F1 scores, are detailed in

Table 7.2.

Disease Side Trees Depth F1

CAS
Right 10 3 0.5109

Left 10 3 0.62764

SAS
Right 10 2 0.5633

left 10 2 0.6771

PAD
Right 40 4 0.5997

Left 40 3 0.5182

AAA
Right 40 4 0.5668

Left 60 4 0.6545

Table 7.2: The hyper-parameters describing the architecture of the GB classifiers
that produce the highest F1 scores, when using either the right or left PWV.

Table 7.2 shows that, while some improvement has been made relative to

ABPI, the maximum F1 scores achieved are still only marginally better than

naive classification for all forms of disease. The fact that both ABPI and PWV

are achieving accuracies only marginally better than naive classification suggests

that, as is a priori expected, there is insufficient information captured in scalar

measurements to distinguish between healthy and unhealthy patients.

Table 7.2 shows that while the optimum hyper-parameters are, generally,

consistent when using either the right or left instance of PWV, the left instance

produces higher F1 scores for all forms of disease excluding PAD. The exact cause

of this imbalance in accuracy is unclear. It is unlikely that the higher accuracies

achieved using the left PWV is due to physiological behaviours as the arterial

network is, generally, symmetrical. A more likely explanation is that, due to the

lack of informative available from the PWVs, the accuracies recorded are susceptible
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to statistical errors and the bias of the F1 score towards sensitivity over specificity.

Analysis on the accuracy of classification on the unbiased test set is presented in

Section 7.3.2

BCG

As with ABPI and PWV, a grid search is carried out to find the combination of

hyper-parameters that produce the highest F1 score when using BCG waveforms to

predict each form of disease (employing the same grids as those in Sections 7.2.4 and

7.2.4). The hyper-parameters describing the optimum architecture for each disease

form are outlined in Table 7.3.

Disease Trees Depth F1

CAS 70 9 0.5413

SAS 50 7 0.5252

PAD 50 8 0.5984

AAA 80 9 0.9741

Table 7.3: The hyper-parameters describing the architecture of the GB classifiers
that produce the highest F1 scores, when using the BCG waveform.

Table 7.3 shows that the accuracy of CAS, SAS, and PAD classification are,

again, only marginally better than naive classification. The accuracy of AAA

classification, however, is much higher. Further analysis on the unbiased test set

is presented in Section 7.3.3.

7.3 Results and discussion

7.3.1 ABPI

ML classifiers are trained and tested using ABPI first in isolation and then in

combination with the pressure and flowrate measurements found to produce the

highest accuracy when providing one to six measurements (see Chapter 6 for

details). To reduce computational expense this analysis is only carried out using
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Combination F1 Sens. Spec.

score

(ABPIR) 0.5332 0.5724 0.4255

(Q1) 0.8521 0.8547 0.8502

(Q1, ABPIR) 0.8531 0.8530 0.8533

(P2, P1) 0.8950 0.9026 0.8889

(P2, P1, ABPIR) 0.8944 0.8877 0.9027

(Q1, P2, P1) 0.9389 0.9433 0.9351

(Q1, P2, P1, ABPIR) 0.9359 0.9350 0.9370

(Q3, Q1, P2, P1) 0.9395 0.9417 0.9376

(Q3, Q1, P2, P1, ABPIR) 0.9351 0.9302 0.9406

(Q2, Q1, P3, P2, P1) 0.9391 0.9416 0.9370

(Q2, Q1, P3, P2, P1, ABPIR) 0.9340 0.9312 0.9372

(Q3, Q2, Q1, P3, P2, P1) 0.9343 0.9364 0.9325

(Q3, Q2, Q1, P3, P2, P1, ABPIR) 0.9398 0.9425 0.9369

Table 7.4: The F1 scores achieved when using ABPI in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for CAS. The
corresponding sensitivities and specificities are also included.

the right ABPI, and it is seen in Section 7.2.4 that the right and left instances

of ABPI produce similar accuracies. The F1 scores, sensitivities, and specificities

achieved for CAS classification are shown in Table 7.4, SAS classification in Table

7.5, PAD classification in Table 7.6, and AAA classification in Table 7.7. The

accuracies achieved in Chapter 6 for each combination of pressure and flow-rate

profiles (without the inclusion of ABPI) are included in these tables to allow for

comparison.

The four aforementioned tables (Tables 7.4, 7.5, 7.6, and 7.7) show that the

ABPI provides no significant additional information about the health of VPs. It

is seen that for all forms of disease (including PAD) the ABPI produces accuracies

comparable to naive classification when used in isolation. Table 7.6 suggests that

the marginally higher accuracies seen for PAD when tuning the hyper-parameters

(see Section 7.2.4) are due to statistical errors and bias, rather than a true increase
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Combination F1 Sens. Spec.

score

(ABPIR) 0.5080 0.5228 0.4646

(Q1) 0.7529 0.7224 0.7714

(Q1, ABPIR) 0.7473 0.7333 0.7709

(Q2, Q1) 0.8461 0.8293 0.8585

(Q2, Q1, ABPIR) 0.8408 0.8332 0.8513

(Q3, Q2, Q1) 0.8552 0.8453 0.8626

(Q3, Q2, Q1, ABPIR) 0.8498 0.8423 0.8601

(Q3, Q2, Q1, P2) 0.8585 0.8487 0.8660

(Q3, Q2, Q1, P2, ABPIR) 0.8514 0.8434 0.8624

(Q3, Q2, Q1, P2, P1) 0.8600 0.8525 0.8657

(Q3, Q2, Q1, P2, P1, ABPIR) 0.8608 0.8556 0.8679

(Q3, Q2, Q1, P3, P2, P1) 0.8574 0.8504 0.8627

(Q3, Q2, Q1, P3, P2, P1, ABPIR) 0.8591 0.8525 0.8679

Table 7.5: The F1 scores achieved when using ABPI in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for SAS. The
corresponding sensitivities and specificities are also included.

in accuracy. When the ABPI is used in combination with pressure and flow-rate

profiles there is no increase in accuracy, relative to that achieved by the pressure

and flow-rate profiles without inclusion of ABPI. These results suggest, that as is

expected, a singular scalar measurement is unable to capture enough information to

accurately distinguish between healthy and unhealthy VPs.

7.3.2 PWV

Similar to the analysis performed for ABPI, ML classifiers are trained and tested

using PWV first in isolation and then in combination with the pressure and flowrate

measurements found to produce the highest accuracy when providing one to six

measurements. This analysis is performed using the left PWV as it is seen in Section

7.2.4 that the left instances of PWV generally produces higher accuracies than the

right. The results achieved for CAS, SAS, PAD, and AAA classification are shown
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Combination F1 Sens. Spec.

score

(ABPIR) 0.5514 0.6136 0.3880

(Q1) 0.8183 0.8126 0.8214

(Q1, ABPIR) 0.8533 0.8071 0.8286

(Q3, Q1) 0.9041 0.8950 0.9117

(Q3, Q1, ABPIR) 0.9030 0.8989 0.9080

(Q3, Q2, Q1) 0.9168 0.9055 0.9265

(Q3, Q2, Q1, ABPIR) 0.9172 0.9106 0.9252

(Q3, Q2, Q1, P1) 0.9196 0.9068 0.9306

(Q3, Q2, Q1, P1, ABPIR) 0.9141 0.9056 0.9243

(Q3, Q2, Q1, P2, P1) 0.9170 0.9041 0.9281

(Q3, Q2, Q1, P2, P1, ABPIR) 0.9179 0.9107 0.9266

(Q3, Q2, Q1, P3, P2, P1) 0.9187 0.9102 0.9261

(Q3, Q2, Q1, P3, P2, P1, ABPIR) 0.9131 0.9048 0.9231

Table 7.6: The F1 scores achieved when using ABPI in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for PAD. The
corresponding sensitivities and specificities are also included.

in Tables 7.8, 7.9, 7.10, and 7.11 respectively.

Tables 7.8, 7.9, 7.10, and 7.11 show that the PWV provides very little information

about the presence of arterial disease. The accuracies achieved for all forms of disease

when using PWV in isolation is seen to be comparable to naive classification. The

F1 score achieved when using PWV to detect CAD is lower than naive classification

(an F1 score of 0.35 is achieved, compared to a naive value of 0.5), however

this is seen to be due to an imbalance in the sensitivity and specificity. When

using PWV in combination with pressure and flow-rate measurements there is no

significant increase in the accuracies achieved, relative to when pressure and flow-

rate measurements are used without the inclusion of PWV. The uninformative

nature of both ABPI and PWV suggest that, as is a priori expected, a single scalar

measurement does not capture enough information to allow for the classification of

VPs.
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Combination F1 Sens. Spec.

score

(ABPIR) 0.4413 0.3961 0.6012

(Q1) 0.9805 0.9799 0.9811

(Q1, ABPIR) 0.9806 0.9800 0.9814

(Q2, Q1) 0.9928 0.9919 0.9938

(Q2, Q1, ABPIR) 0.9930 0.9926 0.9936

(Q3, Q2, Q1) 0.9962 0.9954 0.9970

(Q3, Q2, Q1, ABPIR) 0.9958 0.9939 0.9975

(Q3, Q2, Q1, P2) 0.9972 0.9959 0.9986

(Q3, Q2, Q1, P2, ABPIR) 0.9971 0.9964 0.9979

(Q3, Q2, Q1, P3, P2)
0.9970

0.9959 0.9981

(Q3, Q2, Q1, P3, P1) 0.9963 0.9978

(Q3, Q2, Q1, P3, P2, ABPIR) 0.9971 0.9962 0.9981

(Q3, Q2, Q1, P3, P1, ABPIR) 0.9965 0.9959 0.9973

(Q3, Q2, Q1, P3, P2, P1) 0.9970 0.9959 0.9981

(Q3, Q2, Q1, P3, P2, P1, ABPIR) 0.9969 0.9959 0.9980

Table 7.7: The F1 scores achieved when using ABPI in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for AAA. The
corresponding sensitivities and specificities are also included.

7.3.3 BCG

The results achieved when using BCG waveforms both in isolation and in

combination with the best performing pressure and flow-rate measurements are

shown for CAS in Table 7.12, SAS in Table 7.13, PAD in Table 7.14, and AAA

in Table 7.15. Tables 7.12, 7.13, and 7.14 shows that the BCG waveform contains

very little information about the presence of CAS, SAS, and PAD. The accuracy of

classification for these three forms of disease when using BCG in isolation is, again,

only marginally better than naive classification. These tables also show no increase

in the accuracy of classification when BCG is used in combination with pressure and

flow-rate profiles, relative to the accuracy achieved when the pressure and flow-rate

profiles are used without the inclusion of the BCG.
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Combination F1 Sens. Spec.

score

(PWVL) 0.3516 0.2729 0.7207

(Q1) 0.8521 0.8547 0.8502

(Q1, PWVL) 0.8222 0.8620 0.7652

(P2, P1) 0.8950 0.9026 0.8889

(P2, P1, PWVL) 0.8756 0.8800 0.8700

(Q1, P2, P1) 0.9389 0.9433 0.9351

(Q1, P2, P1, PWVL) 0.9282 0.9236 0.9336

(Q3, Q1, P2, P1) 0.9395 0.9417 0.9376

(Q3, Q1, P2, P1, PWVL) 0.9295 0.9285 0.9308

(Q2, Q1, P3, P2, P1) 0.9391 0.9416 0.9370

(Q2, Q1, P3, P2, P1, PWVL) 0.9298 0.9271 0.9331

(Q3, Q2, Q1, P3, P2, P1) 0.9343 0.9364 0.9325

(Q3, Q2, Q1, P3, P2, P1, PWVL) 0.9240 0.9408 0.9318

Table 7.8: The F1 scores achieved when using PWV in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for CAS. The
corresponding sensitivities and specificities are also included.

Table 7.15, however, shows significantly better results when the BCG waveforms

are used to classify AAA. Due to the very high accuracy achieved for AAA

classification when using pressure and flow-rate measurements, there is little

improved made when also including the BCG waveforms. The most important

observation from Table 7.15 is the very high accuracy (F1 score of 0.97) achieved

when using the BCG waveforms in isolation. The accuracy achieved by the BCG in

isolation is comparable to that achieved when using Q1, i.e. bilateral measurements

of carotid flow-rate. It is important to consider the BCG waveform is directly

measured, and so requires a single measurement from patients, whereas Q1 requires

measurements of flow-rate in both the right and left carotid artery. BCG waveforms

are, therefore, achieving comparable accuracies while requiring half the number of

individual measurements from patients.

As the BCG waveform requires a single measurement from patients it is fitting
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Combination F1 Sens. Spec.

score

(PWVL) 0.4351 0.3869 0.6085

(Q1) 0.7529 0.7224 0.7714

(Q1, PWVL) 0.7477 0.7373 0.7652

(Q2, Q1) 0.8461 0.8293 0.8585

(Q2, Q1, PWVL) 0.8366 0.8245 0.8536

(Q3, Q2, Q1) 0.8552 0.8453 0.8626

(Q3, Q2, Q1, PWVL) 0.8436 0.8333 0.8579

(Q3, Q2, Q1, P2) 0.8585 0.8487 0.8660

(Q3, Q2, Q1, P2, PWVL) 0.8518 0.8414 0.8659

(Q3, Q2, Q1, P2, P1) 0.8600 0.8525 0.8657

(Q3, Q2, Q1, P2, P1, PWVL) 0.8548 0.8483 0.8637

(Q3, Q2, Q1, P3, P2, P1) 0.8574 0.8504 0.8627

(Q3, Q2, Q1, P3, P2, P1, PWVL) 0.8540 0.8480 0.8621

Table 7.9: The F1 scores achieved when using PWV in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for SAS. The
corresponding sensitivities and specificities are also included.

to compare it to the unilateral classification accuracies achieved in Chapter 6. This

comparison is made in Table 7.16. Table 7.16 shows that the BCG out performs

all unilateral measurements. These results suggest strong potential for the home

monitoring of AAAs through the use of BCG waveforms, especially when considered

along the side the numerous non-invasive methods proposed for BCG measurement

[111, 70, 216].

7.4 Conclusions

The results achieved in this chapter lead to two conclusions:

1. There is insufficient information captured in a singular scalar measurement

to allow for distinction between healthy and unhealthy VPs. the results of

Sections 7.3.1 and 7.3.2 suggest that ABPI and PWV provide no additional
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Combination F1 Sens. Spec.

score

(PWVL) 0.4654 0.4322 0.5750

(Q1) 0.8183 0.8126 0.8214

(Q1, PWVL) 0.8190 0.8145 0.8256

(Q3, Q1) 0.9041 0.8950 0.9117

(Q3, Q1, PWVL) 0.8900 0.8854 0.8958

(Q3, Q2, Q1) 0.9168 0.9055 0.9265

(Q3, Q2, Q1, PWVL) 0.9069 0.8977 0.9182

(Q3, Q2, Q1, P1) 0.9196 0.9068 0.9306

(Q3, Q2, Q1, P1, PWVL) 0.9126 0.9063 0.9203

(Q3, Q2, Q1, P2, P1) 0.9170 0.9041 0.9281

(Q3, Q2, Q1, P2, P1, PWVL) 0.9070 0.9013 0.9139

(Q3, Q2, Q1, P3, P2, P1) 0.9187 0.9102 0.9261

(Q3, Q2, Q1, P3, P2, P1, PWVL) 0.9068 0.9005 0.9145

Table 7.10: The F1 scores achieved when using PWV in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for PAD. The
corresponding sensitivities and specificities are also included.

information about the presence of arterial disease, relative to that extracted

purely from raw pressure and flow-rate profiles. This finding suggests that

further investigation into the use of ABPI and PWV, employing the use of

more complex mathematical models, is not warranted.

2. There is significant potential in the use of BCG waveforms for the monitoring

of AAAs. It is shown in Section 7.3.3 that when BCG waveforms are used in

isolation the accuracy achieved is comparable to that when using a singular

bilateral measurement and greater than when using a unilateral measurement.

The high accuracies achieved using BCG waveforms and the potential ease

by which these measurements can be obtained suggest significant potential in

the home monitoring of abdominal aortic health. To further investigate this

potential the work presented here must be repeated, however using a more

realistic mathematical model of the BCG waveforms than that outlined in
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Combination F1 Sens. Spec.

score

(PWVL) 0.4760 0.4522 0.5523

(Q1) 0.9805 0.9799 0.9811

(Q1, PWVL) 0.9798 0.9813 0.9784

(Q2, Q1) 0.9928 0.9919 0.9938

(Q2, Q1, PWVL) 0.9903 0.9886 0.9922

(Q3, Q2, Q1) 0.9962 0.9954 0.9970

(Q3, Q2, Q1, PWVL) 0.9941 0.9921 0.9963

(Q3, Q2, Q1, P2) 0.9972 0.9959 0.9986

(Q3, Q2, Q1, P2, PWVL) 0.9952 0.9937 0.9969

(Q3, Q2, Q1, P3, P2)
0.9970

0.9959 0.9981

(Q3, Q2, Q1, P3, P1) 0.9963 0.9978

(Q3, Q2, Q1, P3, P2, PWVL) 0.9940 0.9928 0.9954

(Q3, Q2, Q1, P3, P1, PWVL) 0.9934 0.9929 0.9940

(Q3, Q2, Q1, P3, P2, P1) 0.9970 0.9959 0.9981

(Q3, Q2, Q1, P3, P2, P1, PWVL) 0.9945 0.9945 0.9946

Table 7.11: The F1 scores achieved when using PWV in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for AAA. The
corresponding sensitivities and specificities are also included.

Section 7.2.1.
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Combination F1 Sens. Spec.

score

(BCG) 0.5442 0.5511 0.5261

(Q1) 0.8521 0.8547 0.8502

(Q1, BCG) 0.8681 0.8696 0.8662

(P2, P1) 0.8950 0.9026 0.8889

(P2, P1, BCG) 0.8951 0.8878 0.9042

(Q1, P2, P1) 0.9389 0.9433 0.9351

(Q1, P2, P1, BCG) 0.9355 0.9314 0.9403

(Q3, Q1, P2, P1) 0.9395 0.9417 0.9376

(Q3, Q1, P2, P1, BCG) 0.9368 0.9431 0.9313

(Q2, Q1, P3, P2, P1) 0.9391 0.9416 0.9370

(Q2, Q1, P3, P2, P1, BCG) 0.9414 0.9387 0.9446

(Q3, Q2, Q1, P3, P2, P1) 0.9343 0.9364 0.9325

(Q3, Q2, Q1, P3, P2, P1, BCG) 0.9363 0.9321 0.9411

Table 7.12: The F1 scores achieved when using BCG in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for CAS. The
corresponding sensitivities and specificities are also included.
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Brachial artery

Posterior tibial

Figure 7.1: The topological positions of the brachial arteries and the posterior tibials.
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Figure 7.2: An example of brachial artery and ankle pressure profiles taken from a
VP for which determination of the footwaves from geometric properties is suitable.
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Figure 7.3: An example of brachial artery and ankle pressure profiles taken
from a VP for which determination of the footwaves from geometric properties
is problematic. Due to the oscillatory pressure profile in the brachial artery, the
minimum pressure and maximum pressure gradient occur during different features
in the waveform.
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Figure 7.4: The topological positions of the boundaries of the short ascending
and long descending aortic segments, used in the mathematical model of the BCG
waveform.
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Figure 7.5: Examples of BCG waveforms taken from five VPs when using constant
cross sectional areas for the ascending and descending aortas; allowing spatial cross
sectional area variation; and allowing spatial and temporal cross sectional area
variation. When using constant cross sectional areas the BCG waveform is computed
using Equation (7.5), and AD and AA are computed as the average of the mean
cross sectional area through out the cardiac period at the inlet and outlet of each
segment respectively. When spatial cross sectional area variation is allows the BCG
waveform is computed using Equation (7.7) and A0, A1, A2 computed as the mean
cross sectional area through out the cardiac period at each location.
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Combination F1 Sens. Spec.

score

(BCG) 0.5461 0.5609 0.5069

(Q1) 0.7529 0.7224 0.7714

(Q1, BCG) 0.7610 0.7485 0.7814

(Q2, Q1) 0.8461 0.8293 0.8585

(Q2, Q1, BCG) 0.8470 0.8377 0.8598

(Q3, Q2, Q1) 0.8552 0.8453 0.8626

(Q3, Q2, Q1, BCG) 0.8557 0.8486 0.8652

(Q3, Q2, Q1, P2) 0.8585 0.8487 0.8660

(Q3, Q2, Q1, P2, BCG) 0.8738 0.8553 0.8978

(Q3, Q2, Q1, P2, P1) 0.8600 0.8525 0.8657

(Q3, Q2, Q1, P2, P1, BCG) 0.8624 0.8557 0.8714

(Q3, Q2, Q1, P3, P2, P1) 0.8574 0.8504 0.8627

(Q3, Q2, Q1, P3, P2, P1, BCG) 0.8589 0.8550 0.8641

Table 7.13: The F1 scores achieved when using BCG in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for SAS. The
corresponding sensitivities and specificities are also included.
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Combination F1 Sens. Spec.

score

(BCG) 0.5582 0.53500 0.6183

(Q1) 0.8183 0.8126 0.8214

(Q1, BCG) 0.8324 0.8310 0.8346

(Q3, Q1) 0.9041 0.8950 0.9117

(Q3, Q1, BCG) 0.9039 0.8997 0.9090

(Q3, Q2, Q1) 0.9168 0.9055 0.9265

(Q3, Q2, Q1, BCG) 0.9156 0.9054 0.9277

(Q3, Q2, Q1, P1) 0.9196 0.9068 0.9306

(Q3, Q2, Q1, P1, BCG) 0.9205 0.9135 0.9289

(Q3, Q2, Q1, P2, P1) 0.9170 0.9041 0.9281

(Q3, Q2, Q1, P2, P1, BCG) 0.9202 0.9130 0.928

(Q3, Q2, Q1, P3, P2, P1) 0.9187 0.9102 0.9261

(Q3, Q2, Q1, P3, P2, P1, BCG) 0.9170 0.9095 0.9259

Table 7.14: The F1 scores achieved when using BCG in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for PAD. The
corresponding sensitivities and specificities are also included.
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Combination F1 Sens. Spec.

score

(BCG) 0.9742 0.9785 0.9698

(Q1) 0.9805 0.9799 0.9811

(Q1, BCG) 0.9939 0.9943 0.9936

(Q2, Q1) 0.9928 0.9919 0.9938

(Q2, Q1, BCG) 0.9974 0.9975 0.9973

(Q3, Q2, Q1) 0.9962 0.9954 0.9970

(Q3, Q2, Q1, BCG) 0.9984 0.9984 0.9986

(Q3, Q2, Q1, P2) 0.9972 0.9959 0.9986

(Q3, Q2, Q1, P2, BCG) 0.9977 0.9972 0.9984

(Q3, Q2, Q1, P3, P2)
0.9970

0.9959 0.9981

(Q3, Q2, Q1, P3, P1) 0.9963 0.9978

(Q3, Q2, Q1, P3, P2, BCG) 0.9982 0.9981 0.998

(Q3, Q2, Q1, P3, P1, BCG) 0.9979 0.9978 0.9982

(Q3, Q2, Q1, P3, P2, P1) 0.9970 0.9959 0.9981

(Q3, Q2, Q1, P3, P2, P1, BCG) 0.9980 0.9978 0.9984

Table 7.15: The F1 scores achieved when using BCG in both isolation and
combination with the pressure and flow-rate measurements found to produce the
highest F1 score for each given number of inputs (see Chapter 6, for AAA. The
corresponding sensitivities and specificities are also included.

Side F1 score Sensitivity Specificity

BCG - 0.9742 0.9785 0.9698

Carotid Right 0.9272 0.9369 0.9161

flow-rate Left 0.9101 0.9065 0.9146

(Q1) Both 0.9804 0.9799 0.9811

Radial Right 0.8430 0.8356 0.8533

pressure Left 0.8620 0.8633 0.8605

(P3) Both 0.9223 0.9202 0.9248

Table 7.16: The F1 scores, sensitivities, and specificities achieved when using the
BCG waveforms; measurements of flow-rate in the right, left, and both carotid
arteries; and pressure in the right, left, and both radial arteries.
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Chapter 8

Conclusions and contributions

The penultimate chapter of this thesis outlines the contributions and conclusions

reached. These contributions and conclusions are split into three components: those

relating to the haemodynamic affects of arterial disease, presented in Section 8.1;

discussion on the potential for disease detection, presented in Section 8.2; and general

tools and frameworks that facilitate future work in Section 8.3.

8.1 Haemodynamic affects of arterial disease

The conclusions reached with regards to the general haemodynamic affects of arterial

disease are presented here, with a more specific discussion on the potential for

disease detection outlined in Section 8.2. It is shown that the inclusion of a diseased

vessel (either stenosis or aneurysm) produces consistent and significant biomarkers in

haemodynamic profiles, irrespective of a patients unique underlying arterial network.

These biomarkers are found to be differentiable from the natural variability present

across a large cohort of patients, showing that arterial disease has a clear and unique

affect on pressure and flow-rate profiles.

It is found that the affects of arterial disease on pressure and flow-rate profiles

at different locations are dependent on the location of the disease. In Chapter

3 it is shown that classification accuracy increases when the health of each

individual vessel is predicted, rather than the health of the entire network. This

suggests that the indicative biomarkers of arterial disease differ when disease

affects different vessels. This finding is further supported by Chapter 6 which

shows that the informativeness—with regards to the presence of arterial disease—

of different pressure and flow-rate profiles changes as the disease location changes.

An unexpected finding is that the informativeness of different pressure and flow-rate

profiles is affected to a greater extent by the topological position at which the profile

is measured, than by the spatial distance from the disease location. For example

it is shown in Chapter 6 that flow-rate in the carotid artery is highly informative

for all forms of disease, despite the large spatial distance from the arterial vessels

in which PAD is assumed to affect. It remains unclear why pressure and flow-rate
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profiles in certain arterial vessels—particularly the carotid arteries—are so heavily

influenced by the presence of arterial disease, irrespective of the form or location of

disease, although a hypothesis is presented in Chapter 6.

It is a priori expected that the indicative biomarkers of arterial disease consist

of micro inter- and intra-measurement details, suggesting the ability to differentiate

between healthy and unhealthy patients is reliant on provision of measurements at

multiple locations. It is shown in Chapter 6, however, that AAAs can be classified

to a high level of accuracy from a single unilateral measurement. This shows that

there is sufficient biomarkers of arterial disease captured in intra-profile details to

allow for distinction from healthy patients, without the need for inter-profile details.

Unilateral measurements have not been tested for the classification of the three

forms of stenosis. It is seen in Chapter 6 that the accuracy of stenosis classification

is consistently lower than aneurysm classification. Two possible causes for this

difference in accuracy are: i) the severity range of aneurysms is disproportional

to the severity range of stenosis, causing more severe changes to the pressure and

flow-rate profiles; and ii) aneurysm have a more consistent and global affect on

pressure and flow-rate profiles. The low levels of degradation seen in the accuracies

when classifying low-severity AAAs, relative to high-severity AAAs, suggests that

the latter is the more likely cause.

The differentiating partition between the pressure and flow-rate profiles,

described through a Fourier series, taken form healthy and diseased patients appears

to be non-linear. It is shown in Chapter 3 that SVM classifiers employing an

RBF kernel (which allows for non-linear partitions between different classifications)

produces significantly higher accuracy classification than both SVM classifiers

employing a linear kernel and LR classifiers (both of which do not allows for non-

linear partitions). This finding is supported by Chapter 6 which shows that the

LR method, the only linear method used in this chapter, consistently produces the

lowest accuracy.
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THROUGH EASILY ACQUIRABLE PERIPHERAL MEASUREMENTS

8.2 Potential for arterial disease detection

through easily acquirable peripheral

measurements

This thesis has shown strong potential in the possibility of arterial disease detection

from easily acquirable peripheral haemodynamic measurements. It is shown in

Chapter 6 that when using six measurements of pressure and flow-rate, maximum F1

scores larger than 0.9 are achieved for CAS and PAD, larger than 0.85 for SAS, and

larger than 0.98 for both low- and high-severity AAAs. Corresponding sensitivities

and specificities are larger than 90% for CAS and PAD, larger than 85% for SAS, and

larger than 98% for both low- and high-severity AAAs. When reducing the number

of measurements, it is found that the performance is degraded by less than 5% when

three measurements are used, and less than 10% when only two measurements are

used for classification.

The current potential of large scale screening for stenosis through haemodynamic

measurements is limited by the fact that the accuracy of classification is degraded

by approximately 25% when a single bilateral measurement is used. No analysis

has been carried out on the accuracy of stenosis classification when using unilateral

measurements. The results achieved in this thesis are likely, however, to be easily

improved by performing classifier specific optimisation (discussed in Chapter 9).

If the results achieved for stenosis classification when using a single peripheral

measurement of pressure or flow-rate is improved the viability of a stenosis screening

program, similar to the AAA screening program currently offered by the United

Kingdom’s National Health Service (NHS), would be significantly improved.

The greatest potential shown in this thesis is for AAA classification. Three viable

methods for AAA classification are shown in this thesis:

� Through the use of unilateral carotid artery flow-rate measurements. In

Chapter 6 AAAs are classified using unilateral measurements of right and

left carotid flow-rate with sensitivities and specificities of 93.69% and 91.61%,

respectively; and 90.65% and 91.46%, respectively. Carotid artery flow-rate

is easily acquirable in a clinical environment (see Chapter 4 for details), and

so this method could possess the potential to be used to expand the AAA
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screening program currently offered by the NHS.

� Through the use of unilateral radial pressure measurements. In Chapter 6

classification using unilateral measurements of right and left radial pressure

achieves sensitivities and specificities of 83.56% and 85.33%, respectively; and

86.33% and 86.05%, respectively. The use of radial pressure holds potential

due to its location in the human wrist. Through wearable devices that can

measure continuous radial pressure profiles, such at the TLT Sapphire monitor

(Tarilian Laser Technologies, Welwyn Garden City, U.K.) [125], this method

holds the potential for constant home monitoring of abdominal aortic health.

� Through the use of BCG waveforms. It is shown in Chapter 7 that AAAs can

be classified using BCG waveforms with sensitivities and specificities of 97.85%

and 96.98%, respectively. As with unilateral radial pressure measurements,

this method holds the potential for constant home monitoring of abdominal

aortic health. The potential of BCG waveforms is increased from that of

radial pressure measurements as multiple methods already exist that allow for

acquisition of the BCG waveform from home (see Chapter 7 for details).

8.3 Tools and frameworks

A discussion of the general tools and frameworks outlined in this thesis, that can be

used to facilitate future work is presented in this section.

8.3.1 Creation of a physiologically realistic virtual patient

database, for the study of arterial haemodynamic

A major contribution of this thesis is the creation of the physiologically

realistic virtual patient database (VPD) in Chapter 4. This VPD contains

28,868 physiologically realistic virtual patients (VPs), each containing 71

arterial vessel segments. The pressure, flow-rate, and area profiles associated

with each VP are included. This VPD is made publicly available

(https://doi.org/10.5281/zenodo.4549764). This database can now be used by

others who intend to study arterial haemodynamic over large cohorts (for example

statistical and ML studies).
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8.3.2 Methodology for the creation of physiologically

realistic virtual patients

Aside from the VPD, a further contribution of Chapter 4 is the detailing of a generic

methodology for the creation of physiologically realistic VPs. In Chapter 4 this

methodology is broken down into the following steps: i) network reduction without

compromising relevant behaviour; ii) re-parameterisation to reduce dimensionality;

iii) incorporation of geometrical and physiological constraints in the form of a prior;

iv) incorporation of literature reported clinical measurements in the form of the

likelihood; v) combination of the prior and likelihood to generate the posterior; and

vi) sampling from the posterior with MCMC to create the VPD. Examples of the

incorporation of both scalar and time varying (through the use of a Gaussian random

process) literature reported clinical measurements are presented in Chapter 4. With

minor modifications this methodology can now be applied to a range of biological

systems, given a mathematical description. Possible adaptions to this generic

methodology include: the incorporation of expected physiological inter-parameter

relationships into the re-parameterisation, to further reduce dimensionality and

impose stricter control over the realisations of VPs sampled; the imposition of a

symmetry metric, for example introducing correlations into the prior distribution;

and the creation of higher dimensional literature based pseudo measurements

(through high dimensional Gaussian random fields). VPs created through the

aforementioned methodology can be used for in-silico trials, along with data-mining.

The potential of the VP approach for data-mining is highlighted by Section 8.1. A

further advantage of the VP approach is that it can be used to a priori examine ML

effectiveness, to access potential, and guide what measurements should be acquired

to tackle clinical problems, such as diagnosis. This benefit is particularly valuable

for physiological problems, as obtaining measurements from a real cohort is often

invasive and expensive.

8.3.3 Primer for the application of machine learning

classifiers

In Chapters 2, 3, 6, and 7 a range of methodologies, considerations, and behaviours

are detailed with regards to the application of machine learning classifiers. These
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include:

� A description of six different machine learning classification methods, that

encompass a range of probabilistic and non-probabilistic applications of

different modelling approaches (see Chapter 2 for details).

� The use of events per variable (EPV) to produce an a priori estimation of the

required quantity of data to accurately train and test classifiers (Chapter 3).

� A method to a posteriori assess if the quantity of data is sufficient (Chapter

3).

� Two different methods—sensitivity and specificity in combination; and the F1

score—to quantify and compare the results achieved by different classifiers.

The relevance and limitations of these are also discussed (Chapter 3).

� When and why bias maybe introduced due to class imbalance (Chapter 3), and

the subset of data on which the accuracy of classification is assessed (Chapters

3, 6, and 7).

� The application of a grid search to optimise the hyper-parameters describing

the architecture of a range of different classifiers to a particular problem

(Chapters 3, 6, and 7).

All of the above information is presented in a relatively non-intensive intuitive

manner, to facilitate their use by those who have mathematical and computational

knowledge, however lack experience in the application of machine learning

classifiers—such as computational mechanics. This work can, therefore, be thought

of as a primer presenting relatively simple however robust and widely applicable

methods that can be employed by non-specialists carrying out initial investigations

into the application of ML classifiers.
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Chapter 9

Future work

The final chapter of this thesis outlines possible future work arising from the results

achieved and conclusions reached. The future work suggested in this chapter is

broken down into three categories: improvements to the classification accuracies

achieved in this thesis, presented in Section 9.1; expansions to the current analysis

to build a better understanding of both the potential for arterial disease detection

and the haemodynamic affects of arterial disease, presented in Section 9.2; and work

that can be completed to validate the results and conclusions reached in this thesis,

presented in Section 9.3.

9.1 Improving classification accuracies

Throughout this thesis an exploratory stance has been taken to the training and

testing of ML classifiers, with focus being on uncovering patterns and behaviours,

rather than optimisation for increased accuracy. This has allowed for a wide

range of classifiers to be created using different combinations of haemodynamic

measurements—in the input combination search presented in Chapter 6 ML

classifiers are created for four forms of disease using 63 combinations of pressure

and flow-rate measurements over five folds of the data sets, thus totalling 1,260

(4 × 63 × 5) ML classifiers trained and tested. This width, however, has come at

the cost of the “depth” of each individual classifier. Key classifiers can now be

identified—either due to the patterns and behaviours they show or the potential

they possess—and optimisation performed to improve the accuracies presented in

this thesis. This optimisation may involve the use of more complex classification

methods, measurement specific hyper-parameter optimisation, feature selection (i.e.

identifying the most informative FS coefficients), and changing the representation

of the pressure and flow-rate profiles used. Classifiers which warrant further

optimisation, and the reasons why each are of interest, are:

� Carotid artery stenosis (CAS) classification when using only the measurement

of common carotid artery flow-rate (Q1). It is seen in Chapter 6 that a
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sensitivity and specificity of 87.04% and 88.93%, respectively, are achieved

for CAS classification when using only the measurement Q1. This shows

that there is sufficient information captured in the inter-profile features of

carotid flow-rate to allow for high accuracy classification. Optimisation of this

classifier could be performed to find the maximum accuracy to which CAS can

be classified using a single measurement.

� Subclavian artery stenosis (SAS) classification when using only the

measurement Q1. As with CAS classification, reasonable accuracies are

achieved in Chapter 6 by this classifier (sensitivity and specificity of 75.82%

and 79.05%, respectively), and so further work could be carried out to find the

maximum accuracy achievable.

� Peripheral arterial disease (PAD) classification when using only the

measurement Q1. Sensitivity and specificity of 89.59% and 83.20%,

respectively, are achieved by this classifier in Chapter 6. As with CAS and

SAS, further optimisation could be performed to find the maximum accuracy

achievable.

� Abdominal aortic aneurysm (AAA) classification using unilateral

measurements of carotid flow-rate. When AAAs are classified using

unilateral measurements of right and left carotid flow-rate sensitivities and

specificities of 93.69% and 91.61%; and 90.65% and 91.46% are achieved,

respectively. This compares to a sensitivity and specificity of 97.99% and

98.11%, respectively, when both the right and left carotid artery flow-rates

are used bilaterally. This suggests that i) there is sufficient information in

unilateral carotid flow-rate measurements to classify AAA to a high accuracy,

and ii) near perfect accuracy can be achieved using a single unilateral

measurements if only marginally more information is available.

� Similar analysis to that presented above could be completed for AAA

classification using unilateral measurements of radial pressure. Current

accuracies (achieved in Chapter 6) are sensitivities and specificities of 83.56%

and 85.33% when using the right radial pressure; 86.33% and 86.05% when

using the left radial pressure; and 92.02% and 92.48% when using both the

right and left radial pressure, respectively. The use of unilateral radial pressure
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measurements holds the additional benefit of the location of the radial artery

in the wrist (see Chapter 8).

9.2 Expanding the current analysis

Future work can be performed to gain a deeper understanding of both the potential

of different classifiers, and the physical cause of certain behaviours. Patterns and

behaviours that warrant further investigation, that can be completed to build further

insight into the haemodynamic affects of arterial disease, include:

� Why the ability to create non-linear partitions between classifications appears

to be important in the binary classification analysis presented in Chapter 3,

however not in the multiclass analysis.

� Why flow-rate in the carotid artery (Q1) is so informative. This measurement

is seen in Chapter 6 to be highly informative for all forms of disease

classification, including PAD, irrespective of the distance between the disease

and measurement locations. In Chapter 6 it is hypothesised that carotid flow-

rate is informative as it acts as a pre-disease reference profile, which when

combined with a post-disease measurement bound the disease location to

provide more information. This hypothesised could be further investigated.

To further explore the potential of using machine learning classifiers to predict

the presence of arterial disease, and expand the analysis carried out in this thesis,

the healthy VPD created in Chapter 4 can be used to complete the follow analysis:

� In Chapter 6 ML classifiers are trained to first predict the presence of AAAs

with a severity range of 713%–2,593% increase in cross sectional area, and

then 300%–700% increase in cross sectional area. High accuracy classification

is achieved for both high- and low-severity aneurysm classification individually

(see Chapter 6 for details). To expand on these results a new AAA VPD could

be created, containing VPs with a severity range of 300%–2,593% (i.e. the

full range of both low- and high-severities), and classifiers trained and tested

using this new VPD. It is likely that classifiers trained to predict both low-

and high-severity AAAs in combination will produce lower accuracies than

either severity ranges in isolation, as there is likely to be greater variability
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in the pressure and flow-rate profiles across the data set. Future work could

investigate the degree to which accuracy is degraded when classifying both

low- and high-severity AAAs in combination.

� In Chapter 5 it is chosen to created VPs containing only one form of disease

(i.e. each unhealthy VPs has either CAS, SAS, PAD, or AAA). Chapter 6

then furthers this assumption of mutual exclusivity by creating classifiers for

each form of disease independently. ML classifiers could now be created to

predict the presence of each form of arterial disease when more than one form

of disease maybe present. This further analysis can be completed in two stages:

1. The previously created unhealthy VPDs (each containing only one form

of disease) can be used to created mixed disease data sets, i.e. each

VP has only one form of disease however the data sets contains multiple

forms of disease. Binary ML classifiers can then be created to predict if

a VP is subject to a particular form of disease, and multiclass classifiers

to determine which form of disease a VP has.

2. New VPDs can be created, in which each VP may contain more than one

form of disease. In this case binary classifiers can be created to predict the

presence of each individual form of disease within a VP, and multiclass

classifiers to predict the combination of disease forms present.

� While it has been shown in Chapters 6 and 7 that both stenosis and

aneurysm can be classified to high levels of accuracy using haemodynamic

measurements, no analysis has been carried out on the ability to predict

the severity of disease. The potential to not only determine the presence,

but also estimate the severity of disease can now be assessed. Initially,

predicting the severity of disease can be treated as a multiclass classification

problem, with ML classifiers being created to predict if a VP has: no

disease present, mild disease present, moderate disease present, or severe

disease present. If this is successful ML regression algorithms can be used to

further this analysis, and provide a prediction of the change in cross sectional

area. This further analysis is particularly fitting for AAA classification using

unilateral radial pressure measurements and BCG waveforms (see Chapter 7).

Both unilateral radial pressure measurements and BCG waveforms offer the
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possibility of home monitoring of abdominal aortic health, and thus showing

these measurements can be used to predict the severity of disease suggest the

potential for continuous monitoring of disease progression. If it is shown that

the severity of AAAs can be continuously monitored through radial pressure

measurements or BCG waveforms, it may have significant implications on

current clinical practices. Rather than assessing the relative risk posed to a

patient based on a single “snapshot” in time, the aforementioned method

allows for automatic continuous assessment, independent of human input,

based on severity and growth rate. Patients deemed to be at high risk can then

be further assessed through traditional clinical methods, such as angiography

and Doppler ultrasound.

9.3 Validating results and conclusions

It is shown in Chapter 7 that BCG waveforms have the potential to be used to

predict the presence of AAAs to a high level of accuracy from a single measurement.

The mathematical model used to compute the BCG waveforms associated with VPs,

however, is relatively simplistic and does not account for: momentum changes within

the control volume; the curvature of the aorta; and other large arterial vessels such

as the axillary, carotid, and iliac arteries. Before further work is carried out on

the potential of BCG waveforms, such as the aforementioned regression problem,

a more physiologically realistic model should be developed that accounts for and

rectifies the simplifications made in Chapter 7. The results achieved when using

BCG waveforms in Chapter 7 can then be validated against those achieved when

employing a more detailed model.

All ML classifiers created in this thesis have been trained and tested using

synthetic data sets. While the VPD created in Chapter 4—used in Chapters 5,

6, and 7—is designed to be as physiologically realistic as possible (incorporating

literature reported measurements of pressure and flow-rate; and known physiological

restrictions and geometrical constraints), it is likely that the use of this synthetic

data set will have an affect on the accuracy of classification, relative to using data

obtained from a real cohort. The resulting effect on the classification accuracies

achieved, i.e. an increase or decrease in accuracy, is unclear and difficult to predict.
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9.3. VALIDATING RESULTS AND CONCLUSIONS

To understand both the effect of using synthetic data sets and the “true” accuracy

of disease classification, data measured from a real cohort is required. The ML

classifiers trained on the synthetic data sets in this thesis can be used to predict the

health of real patients, for which the true state classification is already known. The

true accuracy of classification (achieved on the data set taken from a real cohort)

can then be compared to that achieved on the synthetic data set.
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Appendix A

Evaluation of the distribution of

pressure and flow-rate profiles

across the VPD

During the creation of the VPD, a priori distributions are assigned to the parameters

describing the arterial networks of VPs. While a post simulation filter has been

applied to VPs, to constrain the range of pressure profiles at the inlet of the

system, no active consideration has been given to the the distribution of pressure

profiles within these ranges. It is instead assumed that due to the cause and effect

relationship between arterial networks and the corresponding pressure and flow-

rate profiles, that the physiological realism of the distributions of pressure and

flow-rate profiles is proportional to the physiological realism of the distributions

of arterial network parameters. It is therefore important to examine the a posteriori

distribution of the pressure and flow-rate profiles across the VPD. The distribution

of pressure and flow-rate profiles across the VPD are empirically found at the inlet

and two outlets of the arterial system, and are shown in Figure A.1.

Figure A.1 shows that the standard deviation of the inlet flow-rate distribution is

significantly lower as a proportion of the mean value than any other pressure or flow-

rate profile. This is likely due to the fact that the inlet flow-rate profile prescribed

to VPs is solely produced by the FS coefficients describing the profile. This means

that the variability in inlet flow-rate profiles seen across the VPD is solely caused by

the the distribution of the FS coefficients. The pressure and flow-rate profiles at all

other locations within the network are caused by inter-parameters relationships, and

so the variability in pressure and flow-rate profiles at all other locations is caused

by complex inter-distribution relationships.

Generally the standard deviation of pressure profiles seems to be more consistent

than that of flow-rate profiles. It is seen from the lower two left subplots within

Figure A.1 that there is a constriction in the standard deviation of the distribution

of flow-rate profiles at the two outlets at approximately 0.75 seconds. This temporal

position corresponds to the peak systolic pressure.
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Figure A.1: The mean and standard deviation envelope, i.e. the mean ± one
standard deviation, are shown at all measurement obtainment locations. The
subplots show the flow-rate at the inlet of the system (a), pressure at the inlet
of the system (b), flow-rate at the outlet of the first iliac (c), pressure at the outlet
of the first iliac (d), flow-rate at the outlet of the second iliac (e), and pressure at
the outlet of the second iliac (f).
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As no consideration has been given to the likely distribution of pressure and

flow-rate profiles across the resulting VPD, it is hard to pass a posteriori judgement

on the resulting empirical distributions. Generally, however, the magnitude of the

standard deviations of pressure and flow-rate profiles across the VPD is reasonable.

A very large standard deviation, as a proportion of the mean value, will likely make

it difficult for ML classifiers to distinguish between healthy and unhealthy VPs,

as there will be a large amount of naturally variability within the VPD. On the

other hand, overly constricted standard deviations will result in the variability of

pressure and flow-rate profiles not being representative of a that measured in a real

population. Looking at Figure A.1, the distribution of pressure and flow-rate profiles

seems to reasonably balance these two opposing behaviours.
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Appendix B

Fourier representation

There are two possible forms of a FS. A FS can be described using either a sine-cosine

form:

q(x) =
N∑
n=0

a(n,x) sin(nωt) + b(n,x) cos(nωt), (B.1)

or using a phase-amplitude form:

q(x) =
N∑
n=0

Z(n,x) cos(nωt+ φ(n,x)) for, (B.2)

where:

ω =
2π

T
. (B.3)

and a(n,x), b(n,x), Z(n,x), and φ(n,x) represents the nth sine, cosine, amplitude, and

phase FS coefficients at the spatial position x respectively. Within the above

equations q(x) represents the vector describing the pressure or flow-rate profile at

spatial location x, n represents the FS coefficient order, N represent the order at

which the FS is being truncated, t represents the temporal position, and T represents

the cardiac period.

While these two forms of a FS require the same dimensionality to represent a

pressure or flow-rate profile, they do not necessarily capture the same information

about the haemodynamic profiles as one another. ML classifiers trained and tested

using pressure and flow-rate profiles represented through each of the two forms of

a FS will, therefore, exhibit different behaviours and accuracies. To compare the

use of these two forms of a FS as input measurements into ML classifiers, a series

of LR classifiers are created using each. The first comparison carried out trains two

ENBCs, using the pressure and flow-rate measurements at all three locations. The

input measurements into the first and second classifier trained are the sine-cosine

coefficients and the phase-amplitude coefficients of the FS describing each pressure

or flow-rate profile respectively.

For this comparison the custom implementation of a LR method is used as,

unlike Scikit-learn, it allows the cost of the predicted probabilities (as described by
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Figure B.1: Comparison of the use of the A/B and Z/φ forms of a FS to describe
the pressure and flow-rate profiles used as inputs into ENBC classifiers.

Equation (3.20)) to be recorded at every sequential iteration within the training

process across the training and test sets. This allows for not only a comparison of

the end accuracy, but also an evaluate of the differences in behaviours of training

when using each of the two FS forms.

The highest accuracy results achieved by the custom LR implementation with

Section 3.4.7 are obtained when using a tanh activation function and the Adam

update function. Based on this finding, both instance of a LR algorithm within

this test are trained for ten thousand iterations of Adam, using a tanh activation

function. The average logloss cost across the training and test set are recorded at

regular iterations during the training of each LR algorithms. The average logloss

cost profiles, over the five folds of the VPD, are shown in Figure B.1.

Figure B.1 shows that the A/B FS coefficients produce lower costs across both

the training and test sets. The cost profiles show no obvious signs of over-fitting.

While there is a relatively large discrepancy between training and test costs, the test
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cost profile of both representations can be seen to smoothly reduce, before reaching

a plateau. This is a desired profile.

To further compare the use of A/B and Z/φ forms of a FS as inputs into

ML classifiers three IVBCs are created using each representation of a FS. The

three IVBCs created using each representation predict the health of the aorta, the

first iliac, and the second iliac respectively. As in the case of the ENBCs, these

classifiers are trained and tested using each representation of the FS describing all

six measurements. The training and test profiles of the three IVBCs trained using

each representation are shown in Figure B.2.

Figure B.2 shows that all three IVBC produce very consistent training and test

cost profiles when using each of the two forms of a FS. When using either of the

two forms of a FS for all three IVBCs there is a continuous smooth decrease in

the training and test costs as the number of sequential training iterations increases.

In the case of aortic classification, shown within the upper subplot of Figure B.2,

it is seen that both the A/B and Z/φ forms of a FS quickly reach an asymptotic

minimum training and test cost. Neither form of a FS appear to have reached

their asymptotic minimum training and test cost in the case of the first and second

common iliac classifiers, shown in the middle and bottom subplot of Figure B.2. For

all three binary classifiers, it is seen that after a very low number of sequential

training iterations the A/B form of a FS is producing lower training and test

costs than the Z/φ form. The lower costs produced by the A/B form of a FS

are maintained throughout the training process.

From the comparison of the two forms of a FS outlined above, it can be seen

that using an A/B form of the FS describing the pressure and flow-rate profiles

taken from VPs produces lower training and test costs. An A/B form of the FS

describing the pressure and flow-rate profiles taken from VPs is used as the input

measurements into all future ML classifiers created.
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Figure B.2: Comparison of the use of the A/B and Z/φ forms of a FS to describe
the pressure and flow-rate profiles used as inputs into IVBC classifiers. Comparison
is made on the classifiers trained to predict the health of the aorta within the top
subplot, the first iliac within the middle subplot, and second iliac within the bottom
subplot.
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Appendix C

ENBC combination search results

The F1 scores, sensitivities, and specificities achieved across the ENBC combination

search are shown in Tables C.1, C.2, and C.3, respectively.

Classification method

Input combination NB LR SVM RF

Q3 0.3494 0.4915 0.5138 0.4789

Q2 0.5318 0.4824 0.4989 0.4965

Q1 0.3008 0.4932 0.5621 0.4540

P3 0.4328 0.4908 0.5292 0.4926

P2 0.4413 0.5060 0.5287 0.5122

P1 0.3059 0.4924 0.5307 0.4705

Q3, Q2 0.4930 0.4878 0.5510 0.4852

Q3, Q1 0.3126 0.5136 0.6015 0.4756

Q3, P3 0.4244 0.4989 0.5710 0.5053

Q3, P2 0.4342 0.5032 0.5757 0.5109

Q3, P1 0.3208 0.5077 0.5801 0.4910

Q2, Q1 0.4228 0.4962 0.5892 0.4916

Q2, P3 0.4916 0.5057 0.5559 0.5080

Q2, P2 0.4934 0.5081 0.5479 0.5046

Q2, P1 0.3997 0.5054 0.5570 0.4861

Q1, P3 0.3698 0.5163 0.6050 0.4956

Q1, P2 0.3806 0.5316 0.6121 0.5086

Q1, P1 0.3140 0.5190 0.6152 0.4776

P3, P2 0.4378 0.5052 0.5391 0.5200

P3, P1 0.3668 0.5267 0.5617 0.5065

P2, P1 0.3729 0.5397 0.5620 0.5106

Q3, Q2, Q1 0.4181 0.5091 0.6098 0.4901

Q3, Q2, P3 0.4739 0.5079 0.5883 0.5080

Q3, Q2, P2 0.4778 0.5092 0.5824 0.5090

Q3, Q2, P1 0.3957 0.5104 0.5918 0.4945

Q3, Q1, P3 0.3728 0.5292 0.6240 0.4957

Q3, Q1, P2 0.3840 0.5292 0.6279 0.5138

Q3, Q1, P1 0.3205 0.5290 0.6356 0.4909

Q3, P3, P2 0.4360 0.5041 0.5769 0.5085

Q3, P3, P1 0.3702 0.5420 0.5983 0.5049

Q3, P2, P1 0.3770 0.5435 0.5985 0.5160

Q2, Q1, P3 0.4444 0.5223 0.6117 0.5036

Q2, Q1, P2 0.4437 0.5348 0.6105 0.5013

Q2, Q1, P1 0.3780 0.5262 0.6182 0.4901

Q2, P3, P2 0.4741 0.5090 0.5629 0.5179

Q2, P3, P1 0.4119 0.5378 0.5769 0.5103

Q2, P2, P1 0.4165 0.5478 0.5761 0.5153

Q1, P3, P2 0.4121 0.5344 0.6143 0.5196

Q1, P3, P1 0.3433 0.5470 0.6221 0.4948

Q1, P2, P1 0.3507 0.5549 0.6228 0.5146
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Classification method

Input combination NB LR SVM RF

P3, P2, P1 0.3938 0.5518 0.5740 0.5239

Q3, Q2, Q1, P3 0.4376 0.5292 0.6280 0.5023

Q3, Q2, Q1, P2 0.4395 0.5384 0.6273 0.5060

Q3, Q2, Q1, P1 0.3797 0.5350 0.6368 0.4947

Q3, Q2, P3, P2 0.4696 0.5098 0.5929 0.5183

Q3, Q2, P3, P1 0.4105 0.5466 0.6100 0.5119

Q3, Q2, P2, P1 0.4144 0.5482 0.6078 0.5175

Q3, Q1, P3, P2 0.4104 0.5364 0.6240 0.5079

Q3, Q1, P3, P1 0.3516 0.5588 0.6429 0.5043

Q3, Q1, P2, P1 0.3540 0.5587 0.6407 0.5103

Q3, P3, P2, P1 0.3956 0.5596 0.6025 0.5163

Q2, Q1, P3, P2 0.4511 0.5387 0.6153 0.5093

Q2, Q1, P3, P1 0.3956 0.5538 0.6268 0.5053

Q2, Q1, P2, P1 0.3982 0.5676 0.6274 0.5170

Q2, P3, P2, P1 0.4238 0.5597 0.5836 0.5229

Q1, P3, P2, P1 0.3773 0.5698 0.6277 0.5180

Q3, Q2, Q1, P3, P2 0.4455 0.5397 0.6275 0.5161

Q3, Q2, Q1, P3, P1 0.3955 0.5670 0.6469 0.5129

Q3, Q2, Q1, P2, P1 0.4000 0.5686 0.6432 0.5139

Q3, Q2, P3, P2, P1 0.4251 0.5595 0.6140 0.5127

Q3, Q1, P3, P2, P1 0.3791 0.5695 0.6434 0.5191

Q2, Q1, P3, P2, P1 0.4100 0.5718 0.6306 0.5188

Q3, Q2, Q1, P3, P2, P1 0.4139 0.5815 0.6454 0.5246

Table C.1: The F1 scores achieved across the combination search by each of the four
classification methods.
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Classification method

Input combination NB LR SVM RF

Q3 0.7431 0.5516 0.6868 0.5961

Q2 0.4624 0.5896 0.6932 0.5669

Q1 0.8321 0.5348 0.7154 0.5956

P3 0.6755 0.5833 0.7289 0.5654

P2 0.6732 0.6038 0.7445 0.5681

P1 0.8094 0.6309 0.7634 0.6168

Q3, Q2 0.5447 0.5686 0.7186 0.59611

Q3, Q1 0.8127 0.5355 0.7220 0.6413

Q3, P3 0.6817 0.5738 0.7144 0.5741

Q3, P2 0.6710 0.5928 0.7183 0.5704

Q3, P1 0.7803 0.6239 0.7603 0.6121

Q2, Q1 0.6912 0.5684 0.7387 0.6150

Q2, P3 0.5907 0.5840 0.7311 0.5791

Q2, P2 0.5941 0.5879 0.7466 0.5812

Q2, P1 0.7303 0.6213 0.8000 0.6344

Q1, P3 0.7664 0.5754 0.7532 0.5930

Q1, P2 0.7657 0.5946 0.7595 0.5926

Q1, P1 0.8299 0.6406 0.7934 0.6283

P3, P2 0.6731 0.5984 0.7402 0.5729

P3, P1 0.7607 0.7386 0.8009 0.6027

P2, P1 0.7631 0.7349 0.8067 0.6047

Q3, Q2, Q1 0.6952 0.5706 0.7693 0.6200

Q3, Q2, P3 0.6100 0.5784 0.7379 0.5835

Q3, Q2, P2 0.6075 0.5798 0.7378 0.5880

Q3, Q2, P1 0.7167 0.6201 0.7854 0.6255

Q3, Q1, P3 0.7560 0.5708 0.7516 0.6052

Q3, Q1, P2 0.7507 0.6032 0.7607 0.6034

Q3, Q1, P1 0.8129 0.6330 0.7857 0.6217

Q3, P3, P2 0.6699 0.5949 0.7297 0.5813

Q3, P3, P1 0.7507 0.7209 0.7966 0.6173

Q3, P2, P1 0.7485 0.7198 0.7910 0.6094

Q2, Q1, P3 0.6925 0.5963 0.7723 0.5982

Q2, Q1, P2 0.6950 0.5896 0.7773 0.5999

Q2, Q1, P1 0.7711 0.6376 0.8059 0.6420

Q2, P3, P2 0.6308 0.5890 0.7418 0.5811

Q2, P3, P1 0.7187 0.7151 0.7992 0.6095

Q2, P2, P1 0.7181 0.7290 0.8165 0.6140

Q1, P3, P2 0.7330 0.5935 0.7623 0.5968

Q1, P3, P1 0.7951 0.7096 0.7934 0.6220

Q1, P2, P1 0.7926 0.7060 0.8023 0.6264

P3, P2, P1 0.7391 0.7388 0.8016 0.5958

Q3, Q2, Q1, P3 0.6903 0.6116 0.7872 0.6062

Q3, Q2, Q1, P2 0.6872 0.6169 0.7861 0.5911

3, Q2, Q1, P1 0.7593 0.6470 0.8098 0.6410

Q3, Q2, P3, P2 0.6325 0.5846 0.7370 0.5868

Q3, Q2, P3, P1 0.7089 0.7115 0.7963 0.6096

Q3, Q2, P2, P1 0.7081 0.7219 0.7970 0.6134

Q3, Q1, P3, P2 0.7266 0.6026 0.7680 0.6088

Q3, Q1, P3, P1 0.7760 0.6973 0.7994 0.6221
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Classification method

Input combination NB LR SVM RF

Q3, Q1, P2, P1 0.7754 0.6911 0.7965 0.6211

Q3, P3, P2, P1 0.7314 0.7321 0.7962 0.6056

Q2, Q1, P3, P2 0.6908 0.6039 0.7773 0.5978

Q2, Q1, P3, P1 0.7517 0.6999 0.8006 0.6297

Q2, Q1, P2, P1 0.7514 0.7156 0.8152 0.6207

Q2, P3, P2, P1 0.7081 0.7386 0.8059 0.6005

Q1, P3, P2, P1 0.7682 0.7115 0.7982 0.6213

Q3, Q2, Q1, P3, P2 0.6872 0.6186 0.7858 0.6013

Q3, Q2, Q1, P3, P1 0.7402 0.7121 0.8115 0.6127

Q3, Q2, Q1, P2, P1 0.7394 0.7175 0.8103 0.6386

Q3, Q2, P3, P2, P1 0.7022 0.7310 0.7947 0.6029

Q3, Q1, P3, P2, P1 0.7587 0.7016 0.7968 0.6182

Q2, Q1, P3, P2, P1 0.7390 0.7234 0.8022 0.6149

Q3, Q2, Q1, P3, P2, P1 0.7322 0.7267 0.8050 0.6106

Table C.2: The sensitivities achieved across the combination search by each of the
four classification methods.
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Classification method

Input combination NB LR SVM RF

Q3 0.2660 0.4720 0.4540 0.4421

Q2 0.5570 0.4484 0.4344 0.4733

Q1 0.2067 0.4797 0.5022 0.4125

P3 0.3657 0.4608 0.4574 0.4689

P2 0.3757 0.4730 0.4512 0.4930

P1 0.2150 0.4472 0.4467 0.4255

Q3, Q2 0.4762 0.4618 0.4873 0.4497

Q3, Q1 0.2199 0.5061 0.5497 0.4239

Q3, P3 0.3550 0.4741 0.5137 0.4821

Q3, P2 0.3685 0.4732 0.5181 0.4906

Q3, P1 0.2331 0.4682 0.5065 0.4517

Q2, Q1 0.3508 0.4724 0.5268 0.4515

Q2, P3 0.4594 0.4793 0.4885 0.4838

Q2, P2 0.4604 0.4810 0.4729 0.4788

Q2, P1 0.3171 0.4663 0.4633 0.4385

Q1, P3 0.2799 0.4958 0.5407 0.4635

Q1, P2 0.2900 0.5089 0.5471 0.4800

Q1, P1 0.2179 0.4764 0.5361 0.4304

P3, P2 0.3718 0.4738 0.4649 0.5015

P3, P1 0.2784 0.4510 0.4683 0.4740

P2, P1 0.2834 0.4676 0.4664 0.4784

Q3, Q2, Q1 0.3448 0.4882 0.5399 0.4480

Q3, Q2, P3 0.4317 0.4840 0.5260 0.4823

Q3, Q2, P2 0.4372 0.4852 0.5186 0.4820

Q3, Q2, P1 0.3166 0.4729 0.5104 0.4515

Q3, Q1, P3 0.2850 0.5143 0.5662 0.4597

Q3, Q1, P2 0.2969 0.5027 0.5672 0.4829

Q3, Q1, P1 0.2265 0.4917 0.5658 0.4484

Q3, P3, P2 0.3707 0.4736 0.5150 0.4838

Q3, P3, P1 0.2837 0.4756 0.5137 0.4670

Q3, P2, P1 0.2908 0.4778 0.5164 0.4835

Q2, Q1, P3 0.3734 0.4962 0.5410 0.4718

Q2, Q1, P2 0.3721 0.5149 0.5373 0.4684

Q2, Q1, P1 0.2863 0.4865 0.5343 0.4408

Q2, P3, P2 0.4254 0.4817 0.4929 0.4959

Q2, P3, P1 0.3324 0.4726 0.4869 0.4764

Q2, P2, P1 0.3371 0.4795 0.4789 0.4811

Q1, P3, P2 0.3288 0.5129 0.5487 0.4926

Q1, P3, P1 0.2497 0.4859 0.5448 0.4530

Q1, P2, P1 0.2568 0.4970 0.5417 0.4759

P3, P2, P1 0.3092 0.4806 0.4825 0.4985

Q3, Q2, Q1, P3 0.3668 0.4996 0.5551 0.4675

Q3, Q2, Q1, P2 0.3697 0.5095 0.5548 0.4773

Q3, Q2, Q1, P1 0.2908 0.4942 0.5560 0.4466

Q3, Q2, P3, P2 0.4196 0.4843 0.5322 0.4944

Q3, Q2, P3, P1 0.3335 0.4847 0.5282 0.4784

Q3, Q2, P2, P1 0.3376 0.4827 0.5252 0.4841

Q3, Q1, P3, P2 0.3287 0.5122 0.5587 0.4736

Q3, Q1, P3, P1 0.2610 0.5051 0.5688 0.4646
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Classification method

Input combination NB LR SVM RF

Q3, Q1, P2, P1 0.2634 0.5074 0.5673 0.4724

Q3, P3, P2, P1 0.3127 0.4927 0.5190 0.4853

Q2, Q1, P3, P2 0.3813 0.5147 0.5434 0.4791

Q2, Q1, P3, P1 0.3078 0.4979 0.5475 0.4633

Q2, Q1, P2, P1 0.3104 0.5090 0.5416 0.4809

Q2, P3, P2, P1 0.3473 0.4903 0.4920 0.4954

Q1, P3, P2, P1 0.2865 0.5134 0.5497 0.4819

Q3, Q2, Q1, P3, P2 0.3762 0.5106 0.5552 0.4865

Q3, Q2, Q1, P3, P1 0.3105 0.5096 0.5683 0.4785

Q3, Q2, Q1, P2, P1 0.3151 0.5095 0.5640 0.4708

Q3, Q2, P3, P2, P1 0.3504 0.4930 0.5340 0.4816

Q3, Q1, P3, P2, P1 0.2902 0.5170 0.5707 0.4844

Q2, Q1, P3, P2, P1 0.3251 0.5112 0.5516 0.4852

Q3, Q2, Q1, P3, P2, P1 0.3308 0.5221 0.5694 0.4941

Table C.3: The specificities achieved across the combination search by each of the
four classification methods.
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Appendix D

IVBC combination search results

The F1 scores, sensitivities, and specificities achieved across the IVBC combination

searches are shown in Tables D.1, D.2, and D.3, respectively.

LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q3 0.5588 0.4356 0.4974 0.6431 0.5043 0.6056

Q2 0.5661 0.4953 0.4810 0.6515 0.6057 0.5750

Q1 0.5423 0.4895 0.5103 0.7010 0.6452 0.6686

P3 0.5664 0.5226 0.5659 0.6700 0.6354 0.6647

P2 0.5666 0.5650 0.5233 0.6716 0.6596 0.6309

P1 0.6395 0.5065 0.5171 0.7332 0.6143 0.6035

Q3, Q2 0.5622 0.4891 0.5144 0.6909 0.6326 0.6654

Q3, Q1 0.5626 0.4816 0.5266 0.7323 0.6715 0.7166

Q3, P3 0.5654 0.5210 0.5631 0.6939 0.6519 0.6869

Q3, P2 0.5701 0.5759 0.5401 0.6941 0.7083 0.6894

Q3, P1 0.6391 0.5081 0.5283 0.7717 0.6444 0.6632

Q2, Q1 0.5629 0.5033 0.5168 0.7339 0.6878 0.6844

Q2, P3 0.5638 0.5273 0.5806 0.6981 0.6782 0.7108

Q2, P2 0.5622 0.5652 0.5205 0.6965 0.6850 0.6528

Q2, P1 0.6405 0.5208 0.5199 0.7733 0.6584 0.6534

Q1, P3 0.5832 0.5226 0.5834 0.7586 0.7118 0.7456

Q1, P2 0.5893 0.5865 0.5320 0.7590 0.7448 0.7098

Q1, P1 0.6843 0.5040 0.5125 0.8301 0.6996 0.7059

P3, P2 0.5658 0.7746 0.7800 0.6829 0.7478 0.7437

P3, P1 0.7233 0.5425 0.6456 0.7853 0.6477 0.7149

P2, P1 0.7235 0.6392 0.5303 0.7854 0.7156 0.6270

Q3, Q2, Q1 0.5628 0.5014 0.5374 0.7572 0.7192 0.7422

Q3, Q2, P3 0.5651 0.5369 0.5783 0.7221 0.7069 0.7328

Q3, Q2, P2 0.5675 0.5754 0.5498 0.7210 0.7355 0.7175

Q3, Q2, P1 0.6417 0.5144 0.5369 0.7935 0.6844 0.7020

Q3, Q1, P3 0.5806 0.5271 0.5794 0.7693 0.7267 0.7687

Q3, Q1, P2 0.5949 0.6066 0.5367 0.7739 0.7763 0.7475

Q3, Q1, P1 0.6844 0.5028 0.5327 0.8346 0.7149 0.7409

Q3, P3, P2 0.5745 0.7821 0.7680 0.7024 0.7825 0.7728

Q3, P3, P1 0.7300 0.5465 0.6477 0.7980 0.6670 0.7329

Q3, P2, P1 0.7201 0.6455 0.5400 0.7940 0.7368 0.6892

Q2, Q1, P3 0.5881 0.5240 0.6055 0.7745 0.7331 0.7824

Q2, Q1, P2 0.5864 0.5815 0.5354 0.7701 0.7546 0.7239

Q2, Q1, P1 0.6901 0.5169 0.5151 0.8329 0.7246 0.7182

Q2, P3, P2 0.5620 0.7650 0.7857 0.7076 0.7680 0.7721

Q2, P3, P1 0.7220 0.5492 0.6507 0.7953 0.6869 0.7366

Q2, P2, P1 0.7373 0.6330 0.5290 0.7960 0.7272 0.6632

Q1, P3, P2 0.5926 0.7646 0.7647 0.7631 0.7775 0.7717

Q1, P3, P1 0.7291 0.5439 0.6408 0.8259 0.7084 0.7606

Q1, P2, P1 0.7329 0.6481 0.5392 0.8249 0.7614 0.7052
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LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

P3, P2, P1 0.7265 0.7698 0.7728 0.7869 0.7499 0.7414

Q3, Q2, Q1, P3 0.5866 0.5330 0.6016 0.7857 0.7489 0.8039

Q3, Q2, Q1, P2 0.5947 0.6009 0.5501 0.7858 0.7918 0.7641

Q3, Q2, Q1, P1 0.6898 0.5156 0.5412 0.8437 0.7388 0.7538

Q3, Q2, P3, P2 0.5693 0.8255 0.8167 0.7259 0.8256 0.8163

Q3, Q2, P3, P1 0.7288 0.5538 0.6481 0.8053 0.7107 0.7550

Q3, Q2, P2, P1 0.7358 0.6402 0.5517 0.8049 0.7557 0.7175

Q3, Q1, P3, P2 0.5975 0.7783 0.7686 0.7769 0.8188 0.8115

Q3, Q1, P3, P1 0.7358 0.5490 0.6459 0.8322 0.7266 0.7857

Q3, Q1, P2, P1 0.7352 0.6461 0.5562 0.8309 0.7851 0.7465

Q3, P3, P2, P1 0.7309 0.7762 0.7693 0.7967 0.7880 0.7910

Q2, Q1, P3, P2 0.5932 0.7752 0.7818 0.7789 0.8033 0.8144

Q2, Q1, P3, P1 0.7325 0.5551 0.6498 0.8310 0.7359 0.7857

Q2, Q1, P2, P1 0.7438 0.6422 0.5397 0.8322 0.7717 0.7197

Q2, P3, P2, P1 0.7353 0.7655 0.7771 0.7968 0.7898 0.7784

Q1, P3, P2, P1 0.7358 0.7606 0.7583 0.8213 0.7759 0.7707

Q3, Q2, Q1, P3, P2 0.5932 0.8147 0.8069 0.7875 0.8387 0.8407

Q3, Q2, Q1, P3, P1 0.7412 0.5568 0.6498 0.8387 0.7550 0.8028

Q3, Q2, Q1, P2, P1 0.7466 0.6401 0.5616 0.8391 0.7961 0.7622

Q3, Q2, P3, P2, P1 0.7352 0.8241 0.8139 0.8051 0.8219 0.8180

Q3, Q1, P3, P2, P1 0.7391 0.7764 0.7728 0.8283 0.8208 0.8190

Q2, Q1, P3, P2, P1 0.7440 0.7738 0.7733 0.8269 0.8096 0.8125

Q3, Q2, Q1, P3, P2, P1 0.7461 0.8208 0.8086 0.8363 0.8348 0.8364

Table D.1: The F1 scores achieved across the IVBC combination searches by the LR
and SVM classification methods.
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LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q3 0.5937 0.3853 0.4850 0.6992 0.4245 0.5942

Q2 0.6166 0.4791 0.4844 0.7289 0.6135 0.5500

Q1 0.5691 0.4990 0.5216 0.7338 0.5971 0.6517

P3 0.6065 0.5310 0.5868 0.7239 0.6156 0.6873

P2 0.6096 0.5847 0.5390 0.7212 0.6410 0.6332

P1 0.6932 0.5064 0.5276 0.7930 0.5808 0.5705

Q3, Q2 0.6020 0.4694 0.5210 0.7591 0.5777 0.6411

Q3, Q1 0.5861 0.4751 0.5303 0.7549 0.6045 0.7036

Q3, P3 0.6055 0.5236 0.5784 0.7258 0.6110 0.6891

Q3, P2 0.6117 0.6006 0.5435 0.7248 0.7045 0.6733

Q3, P1 0.6958 0.5048 0.5442 0.8258 0.5967 0.6457

Q2, Q1 0.5957 0.4969 0.5320 0.7694 0.6324 0.6541

Q2, P3 0.6086 0.5149 0.6119 0.7536 0.6376 0.7327

Q2, P2 0.6030 0.5772 0.5377 0.7538 0.6744 0.6407

Q2, P1 0.6978 0.5183 0.5374 0.8416 0.6327 0.6285

Q1, P3 0.6262 0.5325 0.6023 0.7755 0.6488 0.7341

Q1, P2 0.6302 0.5988 0.5343 0.7764 0.7207 0.6854

Q1, P1 0.7549 0.4968 0.5078 0.8779 0.6385 0.6629

P3, P2 0.6108 0.8456 0.8583 0.7330 0.7637 0.7817

P3, P1 0.8102 0.4944 0.7059 0.8471 0.6036 0.7590

P2, P1 0.8065 0.6963 0.4919 0.8454 0.7481 0.5741

Q3, Q2, Q1 0.5902 0.4941 0.5501 0.7899 0.6566 0.7202

Q3, Q2, P3 0.6072 0.5351 0.6046 0.7635 0.6667 0.7376

Q3, Q2, P2 0.6101 0.5912 0.5629 0.7614 0.7339 0.6940

Q3, Q2, P1 0.6986 0.5144 0.5577 0.8508 0.6394 0.6857

Q3, Q1, P3 0.6177 0.5405 0.5851 0.7826 0.6695 0.7583

Q3, Q1, P2 0.6400 0.6358 0.5318 0.7919 0.7631 0.7136

Q3, Q1, P1 0.7532 0.4911 0.5272 0.8790 0.6522 0.7067

Q3, P3, P2 0.6239 0.8500 0.7952 0.7356 0.8219 0.7660

Q3, P3, P1 0.8069 0.4988 0.6968 0.8548 0.6122 0.7529

Q3, P2, P1 0.8023 0.6937 0.5076 0.8503 0.7523 0.6437

Q2, Q1, P3 0.6329 0.5124 0.6436 0.8043 0.6743 0.7861

Q2, Q1, P2 0.6292 0.5812 0.5465 0.7978 0.7328 0.6938

Q2, Q1, P1 0.7612 0.5049 0.5232 0.8811 0.6683 0.6797

Q2, P3, P2 0.6059 0.7882 0.8550 0.7607 0.7520 0.8307

Q2, P3, P1 0.8055 0.5029 0.7119 0.8524 0.6340 0.7709

Q2, P2, P1 0.8169 0.6692 0.5051 0.8576 0.7400 0.6165

Q1, P3, P2 0.6354 0.8278 0.8265 0.7876 0.7660 0.7731

Q1, P3, P1 0.8070 0.5115 0.6879 0.8700 0.6476 0.7670

Q1, P2, P1 0.8049 0.6871 0.5168 0.8662 0.7595 0.6538

P3, P2, P1 0.8067 0.8150 0.8229 0.8487 0.7658 0.7633

Q3, Q2, Q1, P3 0.6289 0.5288 0.6266 0.8076 0.6904 0.8054

Q3, Q2, Q1, P2 0.6365 0.6110 0.5596 0.8077 0.7937 0.7322

Q3, Q2, Q1, P1 0.7537 0.5016 0.5509 0.8893 0.6819 0.7169

Q3, Q2, P3, P2 0.6162 0.8627 0.8549 0.7631 0.8439 0.8303

Q3, Q2, P3, P1 0.8086 0.5132 0.6983 0.8581 0.6552 0.7652

Q3, Q2, P2, P1 0.8138 0.6736 0.5337 0.8574 0.7631 0.6761

Q3, Q1, P3, P2 0.6424 0.8407 0.7974 0.7949 0.8245 0.8028

Q3, Q1, P3, P1 0.8091 0.5181 0.6845 0.8729 0.6630 0.7847
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LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q3, Q1, P2, P1 0.8083 0.6830 0.5379 0.8686 0.7800 0.7047

Q3, P3, P2, P1 0.8054 0.8194 0.7916 0.8514 0.8050 0.7969

Q2, Q1, P3, P2 0.6359 0.8010 0.8413 0.8105 0.7784 0.8351

Q2, Q1, P3, P1 0.8104 0.5246 0.7019 0.8735 0.6765 0.7940

Q2, Q1, P2, P1 0.8219 0.6682 0.5249 0.8762 0.7607 0.6734

Q2, P3, P2, P1 0.8133 0.7799 0.8236 0.8561 0.7863 0.8126

Q1, P3, P2, P1 0.8093 0.8070 0.8024 0.8633 0.7673 0.7711

Q3, Q2, Q1, P3, P2 0.6387 0.8516 0.8452 0.8109 0.8333 0.8406

Q3, Q2, Q1, P3, P1 0.8164 0.5283 0.6906 0.8796 0.6936 0.7987

Q3, Q2, Q1, P2, P1 0.8213 0.6673 0.5517 0.8775 0.7907 0.7172

Q3, Q2, P3, P2, P1 0.8133 0.8496 0.8457 0.8571 0.8300 0.8187

Q3, Q1, P3, P2, P1 0.8103 0.8190 0.7974 0.8658 0.8197 0.8138

Q2, Q1, P3, P2, P1 0.8218 0.7905 0.8176 0.8696 0.7923 0.8236

Q3, Q2, Q1, P3, P2, P1 0.8197 0.8451 0.8408 0.8734 0.8255 0.8276

Table D.2: The sensitivities achieved across the IVBC combination searches by the
LR and SVM classification methods.

Pg. 293 / 416



LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q3 0.4688 0.6165 0.5352 0.5250 0.7410 0.6320

Q2 0.4382 0.5448 0.4703 0.4915 0.5879 0.6371

Q1 0.4703 0.4602 0.4777 0.6405 0.7463 0.7023

P3 0.4652 0.4989 0.5133 0.5633 0.6781 0.6195

P2 0.4580 0.5150 0.4793 0.5735 0.6976 0.6260

P1 0.5255 0.5070 0.4871 0.6300 0.6899 0.6799

Q3, Q2 0.4605 0.5502 0.4956 0.5619 0.7514 0.7144

Q3, Q1 0.5026 0.5023 0.5166 0.6934 0.8042 0.7401

Q3, P3 0.4638 0.5139 0.5242 0.6341 0.7365 0.6828

Q3, P2 0.4658 0.5150 0.5312 0.6366 0.7153 0.7202

Q3, P1 0.5184 0.5181 0.4842 0.6857 0.7448 0.6985

Q2, Q1 0.4793 0.5225 0.4734 0.6729 0.7937 0.7428

Q2, P3 0.4500 0.5623 0.5041 0.5949 0.7574 0.6711

Q2, P2 0.4581 0.5348 0.4718 0.5893 0.7056 0.6780

Q2, P1 0.5189 0.5281 0.4703 0.6652 0.7109 0.7049

Q1, P3 0.4791 0.4947 0.5377 0.7312 0.8260 0.7651

Q1, P2 0.4917 0.5571 0.5258 0.7307 0.7856 0.7544

Q1, P1 0.5487 0.5256 0.5265 0.7628 0.8132 0.7849

P3, P2 0.4521 0.6623 0.6576 0.5865 0.7214 0.6797

P3, P1 0.5700 0.6718 0.5194 0.6899 0.7400 0.6358

P2, P1 0.5771 0.5179 0.6370 0.6927 0.6573 0.7430

Q3, Q2, Q1 0.4931 0.5235 0.5032 0.7038 0.8308 0.7795

Q3, Q2, P3 0.4582 0.5420 0.5137 0.6489 0.7805 0.7247

Q3, Q2, P2 0.4601 0.5363 0.5153 0.6496 0.7383 0.7596

Q3, Q2, P1 0.5214 0.5146 0.4805 0.7065 0.7711 0.7323

Q3, Q1, P3 0.4902 0.4900 0.5656 0.7481 0.8271 0.7855

Q3, Q1, P2 0.4885 0.5397 0.5501 0.7456 0.7972 0.8045

Q3, Q1, P1 0.5524 0.5380 0.5481 0.7727 0.8278 0.7991

Q3, P3, P2 0.4522 0.6766 0.7246 0.6412 0.7213 0.7837

Q3, P3, P1 0.5963 0.6736 0.5452 0.7127 0.7767 0.6986

Q3, P2, P1 0.5742 0.5445 0.6277 0.7087 0.7104 0.7759

Q2, Q1, P3 0.4807 0.5569 0.5180 0.7275 0.8349 0.7768

Q2, Q1, P2 0.4833 0.5823 0.5051 0.7259 0.7907 0.7772

Q2, Q1, P1 0.5553 0.5517 0.4920 0.7654 0.8239 0.7870

Q2, P3, P2 0.4499 0.7278 0.6786 0.6109 0.7937 0.6791

Q2, P3, P1 0.5744 0.6717 0.5240 0.7090 0.7882 0.6779

Q2, P2, P1 0.6012 0.5550 0.5956 0.7030 0.7050 0.7576

Q1, P3, P2 0.4910 0.6625 0.6649 0.7236 0.7956 0.7697

Q1, P3, P1 0.5935 0.6307 0.5409 0.7633 0.8193 0.7503

Q1, P2, P1 0.6086 0.5670 0.6002 0.7662 0.7647 0.7998

P3, P2, P1 0.5862 0.6977 0.6933 0.6918 0.7235 0.7045

Q3, Q2, Q1, P3 0.4847 0.5449 0.5435 0.7519 0.8467 0.8018

Q3, Q2, Q1, P2 0.4962 0.5774 0.5252 0.7521 0.7891 0.8157

Q3, Q2, Q1, P1 0.5685 0.5562 0.5154 0.7814 0.8360 0.8150

Q3, Q2, P3, P2 0.4518 0.7727 0.7614 0.6608 0.7996 0.7961

Q3, Q2, P3, P1 0.5898 0.6600 0.5434 0.7270 0.8114 0.7383

Q3, Q2, P2, P1 0.6020 0.5693 0.5993 0.7271 0.7436 0.7916

Q3, Q1, P3, P2 0.4922 0.6805 0.7225 0.7488 0.8107 0.8244

Q3, Q1, P3, P1 0.6100 0.6309 0.5653 0.7752 0.8381 0.7874
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LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q3, Q1, P2, P1 0.6096 0.5688 0.6038 0.7780 0.7930 0.8169

Q3, P3, P2, P1 0.6017 0.7082 0.7338 0.7141 0.7619 0.7821

Q2, Q1, P3, P2 0.4921 0.7347 0.6891 0.7296 0.8405 0.7843

Q2, Q1, P3, P1 0.5978 0.6345 0.5418 0.7713 0.8381 0.7730

Q2, Q1, P2, P1 0.6119 0.5873 0.5798 0.7707 0.7893 0.8022

Q2, P3, P2, P1 0.6012 0.7425 0.7040 0.7074 0.7954 0.7248

Q1, P3, P2, P1 0.6096 0.6850 0.6861 0.7612 0.7895 0.7702

Q3, Q2, Q1, P3, P2 0.4856 0.7612 0.7505 0.7516 0.8464 0.8409

Q3, Q2, Q1, P3, P1 0.6137 0.6308 0.5653 0.7821 0.8563 0.8090

Q3, Q2, Q1, P2, P1 0.6212 0.5825 0.5870 0.7862 0.8045 0.8354

Q3, Q2, P3, P2, P1 0.6010 0.7878 0.7677 0.7281 0.8103 0.8172

Q3, Q1, P3, P2, P1 0.6177 0.7093 0.7338 0.7755 0.8226 0.8266

Q2, Q1, P3, P2, P1 0.6128 0.7475 0.7032 0.7665 0.8352 0.7964

Q3, Q2, Q1, P3, P2, P1 0.6225 0.7859 0.7614 0.7847 0.8479 0.8488

Table D.3: The specificities achieved across the IVBC combination searches by the
LR and SVM classification methods.
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Appendix E

OVA and OVO multiclass

combination search results

The F1 scores, sensitivities, and specificities achieved across the multiclass

combination searches are shown in Tables E.1, E.2, and E.3, respectively.

LR SVM

Input combination Aorta Iliac 1 Iliac 2 Aorta Iliac 1 Iliac 2

Q3 0.4459 0.4396 0.3545 0.3521 0.4645 0.4344

Q2 0.3697 0.4555 0.3907 0.3490 0.4349 0.4754

Q1 0.4515 0.3722 0.3856 0.3888 0.4332 0.4123

P3 0.3521 0.4618 0.4951 0.3764 0.4661 0.4613

P2 0.3732 0.4887 0.4749 0.3904 0.4662 0.4217

P1 0.5676 0.3791 0.3967 0.5337 0.4054 0.4315

Q3, Q2 0.3791 0.4551 0.4065 0.3712 0.4871 0.4852

Q3, Q1 0.4615 0.3904 0.4242 0.4258 0.4491 0.4345

Q3, P3 0.3657 0.4607 0.4865 0.3699 0.4666 0.4561

Q3, P2 0.3791 0.4875 0.4956 0.4044 0.5050 0.4929

Q3, P1 0.5676 0.4327 0.3974 0.5346 0.4596 0.4467

Q2, Q1 0.4422 0.4358 0.3847 0.4178 0.4640 0.4118

Q2, P3 0.3295 0.5138 0.4980 0.3945 0.5351 0.4794

Q2, P2 0.3306 0.5012 0.4671 0.3757 0.4723 0.4625

Q2, P1 0.5507 0.4148 0.4068 0.5175 0.4672 0.4713

Q1, P3 0.4217 0.4756 0.5004 0.4472 0.4789 0.4627

Q1, P2 0.4284 0.5190 0.4848 0.4462 0.4712 0.4508

Q1, P1 0.6028 0.4289 0.4309 0.5673 0.4341 0.4314

P3, P2 0.4763 0.7395 0.7516 0.4524 0.5658 0.5556

P3, P1 0.6246 0.6222 0.5357 0.5619 0.5459 0.4938

P2, P1 0.6240 0.5302 0.5962 0.5609 0.4701 0.5302

Q3, Q2, Q1 0.4294 0.4232 0.4302 0.4250 0.4651 0.4474

Q3, Q2, P3 0.3417 0.5018 0.4983 0.4011 0.5232 0.4928

Q3, Q2, P2 0.3369 0.5117 0.4904 0.3939 0.5181 0.5222

Q3, Q2, P1 0.5543 0.4454 0.4167 0.5300 0.4997 0.4815

Q3, Q1, P3 0.4230 0.4602 0.5103 0.4498 0.4748 0.4736

Q3, Q1, P2 0.4319 0.5069 0.5180 0.4659 0.5099 0.4859

Q3, Q1, P1 0.6000 0.4341 0.4511 0.5530 0.4684 0.4634

Q3, P3, P2 0.4685 0.7450 0.7662 0.4535 0.5703 0.5994

Q3, P3, P1 0.6401 0.6107 0.5529 0.5333 0.5383 0.4943

Q3, P2, P1 0.6166 0.5482 0.5994 0.5485 0.5211 0.5364

Q2, Q1, P3 0.4111 0.5345 0.4884 0.4503 0.5155 0.4941

Q2, Q1, P2 0.3912 0.5354 0.4782 0.4338 0.4757 0.4505

Q2, Q1, P1 0.5974 0.4746 0.4337 0.5398 0.4612 0.4321

Q2, P3, P2 0.4690 0.7608 0.7523 0.4638 0.6110 0.5518

Q2, P3, P1 0.6202 0.6228 0.5397 0.5537 0.5641 0.5098

Q2, P2, P1 0.6457 0.5608 0.5730 0.5351 0.4829 0.5308
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LR SVM

Input combination Aorta Iliac 1 Iliac 2 Aorta Iliac 1 Iliac 2

Q1, P3, P2 0.5185 0.7395 0.7433 0.4691 0.5443 0.5281

Q1, P3, P1 0.6414 0.5945 0.5607 0.5686 0.5272 0.5021

Q1, P2, P1 0.6538 0.5631 0.5780 0.5651 0.4877 0.4960

P3, P2, P1 0.6681 0.7511 0.7486 0.5722 0.5958 0.5775

Q3, Q2, Q1, P3 0.4076 0.5209 0.5042 0.4437 0.5234 0.5074

Q3, Q2, Q1, P2 0.4058 0.5354 0.5093 0.4629 0.5129 0.5018

Q3, Q2, Q1, P1 0.5996 0.4683 0.4357 0.5398 0.4964 0.4747

Q3, Q2, P3, P2 0.5214 0.8043 0.7888 0.4883 0.6390 0.6024

Q3, Q2, P3, P1 0.6307 0.6179 0.5470 0.5365 0.5617 0.5106

Q3, Q2, P2, P1 0.6440 0.5660 0.5840 0.5373 0.5320 0.5430

Q3, Q1, P3, P2 0.5198 0.7382 0.7614 0.5031 0.5801 0.5721

Q3, Q1, P3, P1 0.6626 0.5818 0.5780 0.5535 0.5252 0.5003

Q3, Q1, P2, P1 0.6592 0.5710 0.5896 0.5515 0.5264 0.5162

Q3, P3, P2, P1 0.6808 0.7548 0.7687 0.5636 0.6330 0.6196

Q2, Q1, P3, P2 0.5172 0.7670 0.7399 0.4945 0.5996 0.5562

Q2, Q1, P3, P1 0.6422 0.6018 0.5615 0.5682 0.5383 0.5177

Q2, Q1, P2, P1 0.6619 0.5812 0.5633 0.5644 0.4877 0.4961

Q2, P3, P2, P1 0.6682 0.7728 0.7422 0.5839 0.6371 0.6040

Q1, P3, P2, P1 0.6865 0.7493 0.7457 0.5723 0.5625 0.5468

Q3, Q2, Q1, P3, P2 0.5572 0.7951 0.7884 0.5021 0.6162 0.5877

Q3, Q2, Q1, P3, P1 0.6593 0.5875 0.5795 0.5507 0.5507 0.5187

Q3, Q2, Q1, P2, P1 0.6639 0.5857 0.5719 0.5477 0.5243 0.5265

Q3, Q2, P3, P2, P1 0.7053 0.8060 0.7893 0.5780 0.6584 0.6244

Q3, Q1, P3, P2, P1 0.6921 0.7478 0.7678 0.5735 0.6159 0.5917

Q2, Q1, P3, P2, P1 0.6943 0.7741 0.7398 0.5905 0.6184 0.5814

Q3, Q2, Q1, P3, P2, P1 0.7171 0.7993 0.7857 0.5811 0.6284 0.6024

Table E.1: The F1 scores achieved across the multiclass combination search on the
stenosis VPD by the LR and SVM classification methods.
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LR SVM

Input combination Healthy Aorta Iliac 1 Iliac 2 Healthy Aorta Iliac 1 Iliac 2

Q3 0.0008 0.3792 0.3918 0.2754 0.0116 0.2619 0.4325 0.3661

Q2 0 0.2845 0.4134 0.3252 0.0073 0.2593 0.3648 0.4481

Q1 0 0.3920 0.3048 0.3155 0.0095 0.3063 0.3801 0.3474

P3 0 0.2620 0.4205 0.4436 0.0127 0.2883 0.4265 0.3947

P2 0 0.2822 0.4320 0.4372 0.0102 0.3049 0.4064 0.3680

P1 0.0006 0.5216 0.3074 0.3311 0.0102 0.4420 0.3405 0.3852

Q3, Q2 0.0005 0.2977 0.4074 0.3406 0.0260 0.2831 0.4382 0.4286

Q3, Q1 0.0009 0.3997 0.3217 0.3566 0.0313 0.3455 0.4002 0.3559

Q3, P3 0.008 0.2788 0.4163 0.4299 0.0270 0.2860 0.4227 0.3842

Q3, P2 0.0005 0.2895 0.4227 0.4660 0.02.0 0.3251 0.4402 0.4383

Q3, P1 0.0017 0.5147 0.3743 0.3228 0.0349 0.4361 0.4112 0.3862

Q2, Q1 0 0.3705 0.3772 0.3164 0.0233 0.3318 0.4081 0.3494

Q2, P3 0 0.2402 0.4913 0.4398 0.0192 0.3099 0.5058 0.4052

Q2, P2 0.0005 0.2437 0.4505 0.4260 0.0158 0.2872 0.4075 0.4201

Q2, P1 0.0009 0.4894 0.3462 0.3455 0.0222 0.4142 0.4073 0.4319

Q1, P3 0.0003 0.3314 0.4346 0.4421 0.0459 0.3577 0.4379 0.3846

Q1, P2 0.0011 0.3413 0.4624 0.4411 0.0450 0.3589 0.3998 0.3993

Q1, P1 0.0008 0.5314 0.3692 0.3738 0.0380 0.4600 0.3806 0.3787

P3, P2 0 0.3916 0.7497 0.7734 0.0214 0.3851 0.5078 0.4970

P3, P1 0 0.5290 0.6783 0.4402 0.0273 0.4538 0.5499 0.4131

P2, P1 0 0.5316 0.4363 0.6360 0.0233 0.4512 0.3844 0.5373

Q3, Q2, Q1 0.0005 0.3579 0.3607 0.3643 0.0495 0.3408 0.4101 0.3755

Q3, Q2, P3 0.0006 0.2543 0.4702 0.4408 0.0399 0.3191 0.4825 0.4175

Q3, Q2, P2 0.0011 0.2495 0.4581 0.4556 0.0391 0.3138 0.4450 0.4791

Q3, Q2, P1 0.0012 0.4890 0.3875 0.3492 0.0478 0.4325 0.4496 0.4245

Q3, Q1, P3 0.0009 0.3362 0.4084 0.4584 0.0563 0.3640 0.4279 0.3938

Q3, Q1, P2 0.0022 0.3440 0.4337 0.4949 0.0 636 0.3826 0.4339 0.4335

Q3, Q1, P1 0.0019 0.5262 0.3765 0.3940 0.0595 0.4475 0.4229 0.4006

Q3, P3, P2 0.008 0.3839 0.7467 0.8053 0.0437 0.3904 0.4922 0.5559

Q3, P3, P1 0.0022 0.5489 0.6571 0.4596 0.0471 0.4269 0.5304 0.4139

Q3, P2, P1 0.0019 0.5223 0.4624 0.6329 0.0504 0.4460 0.4466 0.5191

Q2, Q1, P3 0.0002 0.3203 0.5232 0.4120 0.0562 0.3620 0.4810 0.4114

Q2, Q1, P2 0.0023 0.3024 0.4881 0.4317 0.0428 0.3454 0.4023 0.4029

Q2, Q1, P1 0.0008 0.5207 0.4258 0.3724 0.0459 0.4326 0.4087 0.3783

Q2, P3, P2 0.0017 0.3841 0.7955 0.7593 0.0351 0.3987 0.5740 0.4739

Q2, P3, P1 0.0019 0.5216 0.6775 0.4474 0.0412 0.4504 0.5577 0.4351

Q2, P2, P1 0.0025 0.5575 0.4769 0.5941 0.0345 0.4255 0.3987 0.5321

Q1, P3, P2 0.0062 0.4360 0.7451 0.7617 0.0688 0.3831 0.49.5 0.4642

Q1, P3, P1 0.0009 0.5485 0.6226 0.4808 0.0512 0.4633 0.5087 0.4274

Q1, P2, P1 0.0028 0.5685 0.4849 0.5934 0.0504 0.4601 0.4113 0.4721

P3, P2, P1 0.0073 0.5758 0.7881 0.7807 0.0446 0.4701 0.5600 0.5463

Q3, Q2, Q1, P3 0.0015 0.3174 0.4989 0.4351 0.0707 0.3560 0.4904 0.4194

Q3, Q2, Q1, P2 0.0036 0.3175 40.745 0.4772 0.0732 0.3791 0.4317 0.4540

Q3, Q2, Q1, P1 0.0026 0.5258 0.4188 0.3722 0.0695 0.4349 0.4497 0.4137

Q3, Q2, P3, P2 0.0020 0.4527 0.8360 0.8130 0.0605 0.4369 0.5723 0.5396

Q3, Q2, P3, P1 0.0040 0.5363 0.6626 0.4588 0.0631 0.4348 0.5480 0.4328

Q3, Q2, P2, P1 0.0047 0.5557 0.4903 0.6001 0.0611 0.4370 0.4575 0.5222

Q3, Q1, P3, P2 0.0077 0.4389 0.7437 0.7849 0.0928 0.4291 0.5124 0.5121

Q3, Q1, P3, P1 0.0034 0.5738 0.5974 0.5064 0.0730 0.4491 0.5049 0.4180
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LR SVM

Input combination Healthy Aorta Iliac 1 Iliac 2 Healthy Aorta Iliac 1 Iliac 2

Q3, Q1, P2, P1 0.0051 0.5775 0.4908 0.6088 0.0753 0.4499 0.4550 0.4823

Q3, P3, P2, P1 0.0172 0.5931 0.7889 0.8087 0.0820 0.4699 0.5977 0.5829

Q2, Q1, P3, P2 0.0075 0.4352 0.7895 0.7508 0.0847 0.4178 0.5586 0.4785

Q2, Q1, P3, P1 0.0023 0.5479 0.6351 0.4803 0.0714 0.46.64 0.5150 0.4425

Q2, Q1, P2, P1 0.0056 0.5763 0.5133 0.5667 0.0574 0.4596 0.4104 0.4718

Q2, P3, P2, P1 0.0177 0.5735 0.8184 0.7726 0.0642 0.4950 0.6024 0.5674

Q1, P3, P2, P1 0.0163 0.6004 0.7807 0.7739 0.0789 0.4713 0.5192 0.4961

Q3, Q2, Q1, P3, P2 0.0140 0.4922 0.8197 0.8103 0.1042 0.4311 0.5588 0.5184

Q3, Q2, Q1, P3, P1 0.0057 0.5679 0.6061 0.5083 0.0889 0.4473 0.5300 0.4377

Q3, Q2, Q1, P2, P1 0.0078 0.5787 0.5183 0.5772 0.0825 0.4463 0.4495 0.4941

Q3, Q2, P3, P2, P1 0.0433 0.6279 0.8592 0.8329 0.0980 0.4961 0.6158 0.5846

Q3, Q1, P3, P2, P1 0.0276 0.6073 0.7766 0.8036 0.1144 0.4805 0.5729 0.5383

Q2, Q1, P3, P2, P1 0.0245 0.6060 0.8141 0.7700 0.1082 0.5002 0.5823 0.5234

Q3, Q2, Q1, P3, P2, P1 0.0563 0.6421 0.8459 0.8248 0.1206 0.4925 0.5839 0.5495

Table E.2: The sensitivities achieved across the multiclass combination search on
the stenosis VPD by the LR and SVM classification methods.
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LR SVM

Input combination Healthy Aorta Iliac 1 Iliac 2 Healthy Aorta Iliac 1 Iliac 2

Q3 0.9995 0.6787 0.6095 0.7217 0.9889 0.7743 0.5706 0.6809

Q2 0.9997 0.7456 0.5986 0.6605 0.9915 0.7734 0.6873 0.5632

Q1 1.0 0.6559 0.6670 0.6793 0.9891 0.7310 0.6254 0.6625

P3 1.0 0.7742 0.5995 0.6518 0.9877 0.7568 0.5965 0.6836

P2 0.9997 0.7699 0.6643 0.5963 0.9881 0.7430 0.6632 0.6230

P1 0.9995 0.6838 0.6860 0.6622 0.9863 0.7858 0.6609 0.6002

Q3, Q2 0.9992 0.7273 0.6174 0.6651 0.9779 0.7580 0.6392 0.6620

Q3, Q1 0.9983 0.6677 0.6740 0.6754 0.9673 0.7229 0.6181 0.7179

Q3, P3 0.9997 0.7541 0.6091 0.6628 0.9738 0.7400 0.6111 0.6997

Q3, P2 0.9995 0.7624 0.6886 0.5855 0.9734 0.7175 0.6971 0.6600

Q3, P1 0.9980 0.7011 0.6445 0.6984 0.9724 0.8047 0.6219 0.6571

Q2, Q1 0.9991 0.6951 0.6463 0.6718 0.9768 0.7435 0.6494 0.6527

Q2, P3 0.9995 0.7823 0.5790 0.6738 0.9777 0.7391 0.6155 0.7149

Q2, P2 0.9998 0.7696 0.6529 0.6021 0.9808 0.7585 0.6821 0.6035

Q2, P1 0.9994 0.7121 0.6773 0.6472 0.9783 0.8135 0.6639 0.5992

Q1, P3 0.9997 0.7597 0.6072 0.6754 0.9559 0.7583 0.6095 0.7225

Q1, P2 0.9985 0.7483 0.6808 0.6217 0.9621 0.7503 0.7032 0.6278

Q1, P1 0.9986 0.7684 0.6477 0.6391 0.9618 0.8383 0.6272 0.6232

P3, P2 0.9998 0.7476 0.7223 0.7155 0.9799 0.6828 0.7130 0.7080

P3, P1 0.9989 0.8353 0.4980 0.7970 0.9754 0.8386 0.5356 0.7402

P2, P1 0.9994 0.8279 0.7906 0.5025 0.9762 0.8426 0.7492 0.5107

Q3, Q2, Q1 0.9980 0.6910 0.6562 0.6709 0.9563 0.7374 0.6469 0.6972

Q3, Q2, P3 0.9994 0.7662 0.5962 0.6718 0.9645 0.7281 0.6381 0.7234

Q3, Q2, P2 0.9992 0.7686 0.6677 0.5978 0.9655 0.7208 0.7275 0.6442

Q3, Q2, P1 0.9991 0.7248 0.6477 0.6735 0.9622 0.8007 0.6504 0.6613

Q3, Q1, P3 0.9986 0.7468 0.6337 0.6620 0.9488 0.7456 0.6255 0.7308

Q3, Q1, P2 0.9971 0.7512 0.7226 0.5841 0.9446 0.7402 0.7320 0.6495

Q3, Q1, P1 0.9965 0.7724 0.6422 0.6472 0.9513 0.8293 0.6174 0.6720

Q3, P3, P2 0.9991 0.7453 0.7422 0.7033 0.9651 0.6688 0.7662 0.7012

Q3, P3, P1 0.9974 0.8339 0.5052 0.7971 0.9613 0.8262 0.5601 0.7395

Q3, P2, P1 0.9989 0.8284 0.7756 0.5213 0.9604 0.8198 0.7328 0.5838

Q2, Q1, P3 0.9983 0.7623 0.5655 0.7250 0.9492 0.7542 0.6149 0.7464

Q2, Q1, P2 0.9975 0.7564 0.6651 0.6262 0.9616 0.7532 0.7112 0.6143

Q2, Q1, P1 0.9985 0.7775 0.6316 0.6554 0.9611 0.8300 0.6364 0.6277

Q2, P3, P2 1.0 0.7464 0.7043 0.7407 0.9673 0.6795 0.6953 0.7564

Q2, P3, P1 0.9983 0.8398 0.5021 0.7897 0.9676 0.8238 0.5807 0.7284

Q2, P2, P1 0.9991 0.8309 0.7762 0.5205 0.9688 0.8354 0.7475 0.5274

Q1, P3, P2 0.9962 0.7543 0.7301 0.7124 0.9453 0.7501 0.6858 0.7065

Q1, P3, P1 0.9977 0.8383 0.5281 0.7661 0.9541 0.8339 0.5789 0.7252

Q1, P2, P1 0.9971 0.8295 0.7628 0.5402 0.9550 0.8318 0.7249 0.5688

P3, P2, P1 0.9960 0.8522 0.6898 0.6952 0.9676 0.8270 0.6803 0.6546

Q3, Q2, Q1, P3 0.9977 0.7603 0.5836 0.7093 0.9361 0.7515 0.6166 0.7664

Q3, Q2, Q1, P2 0.9965 0.7529 0.7020 0.6035 0.9381 0.7413 0.7484 0.6447

Q3, Q2, Q1, P1 0.9968 0.7720 0.6304 0.6639 0.9475 0.8238 0.6379 0.6708

Q3, Q2, P3, P2 0.9985 0.7164 0.7572 0.7517 0.9515 0.6475 0.7812 0.7481

Q3, Q2, P3, P1 0.9980 0.8358 0.5182 0.7813 0.9536 0.8141 0.5971 0.7376

Q3, Q2, P2, P1 0.9982 0.8301 0.7579 0.5451 0.9544 0.8106 0.7378 0.5991

Q3, Q1, P3, P2 0.9965 0.7503 0.7289 0.7234 0.9261 0.7236 0.7461 0.7220

Q3, Q1, P3, P1 0.9959 0.8420 0.5439 0.7543 0.9367 0.8266 0.5824 0.7472
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LR SVM

Input combination Healthy Aorta Iliac 1 Iliac 2 Healthy Aorta Iliac 1 Iliac 2

Q3, Q1, P2, P1 0.9948 0.8256 0.7719 0.5440 0.9398 0.8185 0.7265 0.6137

Q3, P3, P2, P1 0.9931 0.8508 0.6987 0.7048 0.9444 0.8027 0.7093 0.7016

Q2, Q1, P3, P2 0.9954 0.7523 0.7310 0.7214 0.9349 0.7282 0.6956 0.7579

Q2, Q1, P3, P1 0.9975 0.8416 0.5245 0.7697 0.9464 0.8250 0.6017 0.7331

Q2, Q1, P2, P1 0.9958 0.8351 0.7470 0.5548 0.9558 0.8310 0.7276 0.5701

Q2, P3, P2, P1 0.9945 0.8572 0.7004 0.6908 0.9538 0.7996 0.7114 0.6889

Q1, P3, P2, P1 0.9923 0.8513 0.6969 0.6985 0.9420 0.8245 0.6733 0.6818

Q3, Q2, Q1, P3, P2 0.9951 0.7256 0.7579 0.7550 0.9189 0.7142 0.7453 0.7543

Q3, Q2, Q1, P3, P1 0.9959 0.8454 0.5430 0.7542 0.9295 0.8231 0.6055 0.7502

Q3, Q2, Q1, P2, P1 0.9939 0.8355 0.7486 0.5590 0.9308 0.8167 0.7351 0.6172

Q3, Q2, P3, P2, P1 0.9908 0.8475 0.7273 0.7226 0.9364 0.7797 0.7454 0.7122

Q3, Q1, P3, P2, P1 0.9885 0.8525 0.6996 0.7104 0.9184 0.8049 0.7127 0.7189

Q2, Q1, P3, P2, P1 0.9908 0.8605 0.7108 0.6884 0.9305 0.8061 0.6991 0.7231

Q3, Q2, Q1, P3, P2, P1 0.9863 0.8513 0.7295 0.7255 0.9159 0.7977 0.7256 0.7254

Table E.3: The specificities achieved across the multiclass combination search on
the stenosis VPD by the LR and SVM classification methods.
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Appendix F

Mesh independence study

To allow for fair comparison of the two implementations, a mesh independence study

is completed for each. For both the DCG and SDC implementations the following

four steps are carried out:

1. The physics based model is solved for the healthy aortic bifurcation network

using a very fine temporal and spatial discretisation to obtain a “ground truth”

solution. The SDC implementation being used assumes that vessel properties,

and so consequentially pressure and flow-rate profiles, vary linearly across the

length of each element. A very fine spatial discretisation of 1 × 10−3mm is,

therefore, applied when obtaining the ground truth solutions for the SDC

implementation. As the DCG implementation is capable of applying non-

linear profiles to vessel properties, and so consequentially pressure and flow-

rate profiles, across the length of each element a coarser spatial discretisation

of 4.3× 10−1mm for the aorta and 4.25× 10−1mm for the two common iliacs

is applied. The SDC implementation ground truth solution is obtained using

a temporal discretisation of 1× 10−4s, while the DCG implementation ground

truth solution is obtained using a temporal discretisation of 1× 10−6s.

2. The target element size, i.e the targeted spatial discretisation, is repeatedly

increased. For each target element size the physics based model is solved,

and the discrepancies between the ground truth solution and the current

solution is computed. The discrepancies between the ground truth and current

solutions are computed in the aorta and the right common iliac. Computation

of the discrepancies in the left common iliac is omitted as the right and

left common iliacs, and there respective terminal boundaries, are identical

and so these two vessels have identical pressure and flow-rate profiles. The

discrepancies between the ground truth and current solution is quantified using

a modified version of the six error metrics outlined in [58]. These metrics are

the discrepancy between the mean, systolic, and diastolic pressure and flow-
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rate values, and are computed using the equations:

EP,avg =
mean(PC)−mean(PG)

mean(PG)
, EQ,avg =

mean(QC)−mean(QG)

max(QG)
,

(F.1)

EP,sys =
max(PC)−max(PG)

max(PG)
, EQ,sys =

max(QC)−max(QG)

max(QG)
,

(F.2)

EP,dias =
min(PC)−min(PG)

min(PG)
, EQ,dias =

min(QC)−min(QG)

max(QG)
,

(F.3)

where EP,avg, EQ,avg, EP,sys, EQ,sys, EP,dias, and EQ,dias represent the mean

pressure and flow-rate discrepancy; the systolic pressure and flow-rate

discrepancy; and the diastolic pressure and flow-rate discrepancy respectively.

In the above equations PC, QC, PG, and QG represent the current pressure

and flow-rate profile, and the ground truth pressure and flow-rate profile

respectively. The error metrices used have been edited from those in [58] as

the mean absolute error between ground truth and current profiles at each

discrete time point can not be computed when the temporal discretisation is

varied.

3. The largest target element size that can be used while still producing results

with a negligible discrepancy to the ground truth solution is found. The spatial

discretisation is fixed using this maximum usable target element size. The

aneurysm and stenosed VPs are then solved using this maximum usable target

element size, however with a mesh refinement applied to the target element

size of the diseased vessel. This mesh refinement is given as a factor by which

the target element size is divided. Initially the mesh refinement is set to be

very high, i.e. there is a very small target element size for diseased vessels. As

the SDC implementation is only capable of producing linear element property

profiles, as outlined in step one, a spatial mesh refinement factor of 100 is
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applied to the stenosed and aneurysm vessels. As the DCG implementation is

capable of non-linear vessel property profiles, a spatial mesh refinement factor

of 20 is applied to the stenosed and aneurysm vessels. The solutions obtained

when applying these large mesh refinement factors are taken as the ground

truth stenosed and aneurysm VP solutions. A similar process to step 2 is

then carried out, with the mesh refinement being gradually decreased and the

discrepancies at each diseased vessel target element size recorded.

4. Once a maximum target element size and minimum mesh refinement has been

found that produce results with negligible discrepancy to the ground truth

solutions, the temporal discretisation is optimised. A similar process to step

2 is repeated on the healthy, stenosed, and aneurysm VPs however with the

time step, i.e. the temporal discretisation, being increased at each iteration.

The largest possible time step that produces consistent results with the ground

truth solution for all VPs is found.

The results produced when carrying out step one and two of the mesh

independence study are shown for the SDC implementation in Figure F.1, and for

the DCG implementation in Figure F.2. Figure F.1 shows that, as is expected, small

target element sizes produce low discrepancies between the current and ground

truth solutions. A clear point of destabilisation is seen at a target element size

of approximately 0.05mm, beyond which the discrepancies increase. Despite this

destabilisation, the discrepancies incurred still remain low. The SDC method

being used assumes that vessel properties taper linearly across the length of each

element. As the aortic bifurcation network being solved has constant radii and

vessel wall mechanical properties along each vessels length, the SDC method is

able to accurately capture the vessel property profiles using just a single element.

This likely explains why even when using the largest target element size of 4mm,

resulting in four elements per vessel due to the fact that the implementation of

the SDC method being used creates an even number of elements, the percentage

discrepancies all have a magnitude less than 0.004%. When solving VPs with non-

linear radius profiles, i.e. stenosed and aneurysm VPs, large element sizes will

not be able to fully capture the profile of vessel properties and so higher errors

are expected. Imposing a maximum allowable discrepancy from the ground truth

solutions of 1 × 10−3% for all errors results in the maximum usable target element
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Figure F.1: The results of the second step of the mesh independence study, i.e.
the pressure and flow-rate discrepancies produced when the spatial discretisation
applied to the healthy VP is varied, are shown for the SDC implementation. Mean,
systolic, and diastolic pressure and flow-rate discrepancies in the centre of the aorta
and the right common iliac are shown in the top and bottom plots respectively.

size being 0.93mm for the SDC method.

Initially looking at Figure F.2 it appears as if the pressure and flow-rate profiles

produced when using the DCG implementation are more sensitive to the spatial

discretisation used. Unlike in the case of the SDC implementation, there is not

a clear point of destabilisation of the discrepancies produced. Instead oscillatory

behaviour can be seen across the full range of target element sizes. Looking at the

ranges of discrepancies produced, however, it is seen that while the discrepancies do

oscillate, their magnitudes are very low. Even when using a target element size of

4.3mm for the aorta and 4.25mm for the two common iliacs, resulting in 2 elements

per vessel, the magnitude of all percentage discrepancies remain less than 5×10−6%.
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Figure F.2: The results of the second step of the mesh independence study, i.e.
the pressure and flow-rate discrepancies produced when the spatial discretisation
applied to the healthy VP is varied, are shown for the DCG implementation. Mean,
systolic, and diastolic pressure and flow-rate discrepancies in the centre of the aorta
and the right common iliac are shown in the top and bottom plots respectively.

The maximum usable target element size is, therefore, equal to 4.3mm for the aorta

and 4.25mm for the two common iliacs when using the DCG implementation.

Using a target element size of 0.93mm and a temporal discretisation of 1 ×
10−4s, ground truth stenosis and aneurysm solutions are obtained using the SDC

implementation by applying a mesh refinement factor of 100 to diseased vessels. The

results of the iterative process of decreasing the mesh refinement factor; solving the

governing system of equations to compute the pressure and flow-rate profiles using

the SDC implementation; and calculating the discrepancies between the ground

truth and current solutions are shown for the stenosed VP in Figure F.3 and for the

aneurysm VP in Figure F.4. Figures F.3 and F.4 show that, in a similar manner
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Figure F.3: The results of the third step of the mesh independence study, i.e.
the pressure and flow-rate discrepancies produced when the spatial discretisation
applied to diseased vessels is varied, are shown for the stenosed VP. Mean, systolic,
and diastolic pressure and flow-rate discrepancies in the centre of the aorta and the
right common iliac are shown in the top and bottom plots respectively.

to the case of the obtainment of the maximum usable element size, there are low

discrepancies between the ground truth solutions and the current solutions when

applying a large mesh refinement factor, i.e. a small target element size for diseased

vessels. In the case of both diseased VPs a clear point of destabilisation is seen at a

mesh refinement factor of approximately 20. The minimum mesh refinement factor,

that can be applied to the target element size of diseased vessels, that results in

discrepancies of less than 1 × 10−3% from the ground truth stenosis and aneurysm

solutions, when using the the SDC method is 17. This results in a target element

size for the diseased vessels of 0.055mm when using the SDC implementation.

Ground truth stenosis and aneurysm solutions are obtained using the DCG
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Figure F.4: The results of the third step of the mesh independence study, i.e. the
pressure and flow-rate discrepancies produced when the spatial discretisation applied
to diseased vessels is varied, are shown for the aneurysms VP. Mean, systolic, and
diastolic pressure and flow-rate discrepancies in the centre of the aorta and the right
common iliac are shown in the top and bottom plots respectively.

implementation by applying a target element size of 4.3mm to the aorta and 4.25mm

to the two common iliacs, a temporal discretisation of 1 × 10−6s, and a mesh

refinement factor for diseased vessels of 20. The results of the process of obtaining

the minimum usable mesh refinement factor for diseased vessels when solving the

stenosed and aneurysm VPs using the DCG implementation are shown in Figures F.5

and F.6 respectively. The pattern of behaviour seen in the discrepancies produced by

the DCG implementation when varying the mesh refinement is very similar to that

seen in the case of the SDC implementation. When using a large mesh refinement

factor, in the case of the DCG implementation the maximum mesh refinement used

is equal to 20, there is very little discrepancy between the results produced and the
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Figure F.5: The results of the third step of the mesh independence study, i.e.
the pressure and flow-rate discrepancies produced when the spatial discretisation
applied to diseased vessels is varied, are shown for the stenosed VP. Mean, systolic,
and diastolic pressure and flow-rate discrepancies in the centre of the aorta and the
right common iliac are shown in the top and bottom plots respectively.

ground truth solutions. A clear visual point of destabilisation of the pressure and

flow-rate profiles produced occurs at a mesh refinement factor of approximately 5.

This point of destabilisation is significantly lower than that seen when using the

SDC method. This is likely due to the fact that the DCG method is capable of

applying non-linear profiles to the properties of arterial vessels. The minimum mesh

refinement factor, that can be applied to the target element size of diseased vessels,

that results in discrepancies of less than 1× 10−3% from the ground truth stenosis

and aneurysm solutions is 12. This results in a target element size of 0.36mm when

either a stenosis or aneurysm is included within the aorta.

The results of the final step of the mesh independence study, i.e. the obtainment
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Figure F.6: The results of the third step of the mesh independence study, i.e. the
pressure and flow-rate discrepancies produced when the spatial discretisation applied
to diseased vessels is varied, are shown for the aneurysm VP. Mean, systolic, and
diastolic pressure and flow-rate discrepancies in the centre of the aorta and the right
common iliac are shown in the top and bottom plots respectively.

of the maximum usable temporal discretisation, are shown when using the SDC

implementation for the healthy VP within Figure F.7, the stenosed VP within Figure

F.8, and the aneurysm VP within Figure F.9. In a very similar manner to what

is seen in the previous steps of the mesh independence study, the discrepancies

produced from the ground truth solutions can be seen to be very low and stable when

using a very fine temporal discretisation. A clear point of visual destabilisation,

beyond which the discrepancies produced both increase in magnitude and begin

to oscillate, is seen at a temporal discretisation of approximately 1 × 10−3s for

both vessels and all three VPS. The maximum usable temporal discretisation, that

produces discrepancies of less than 1 × 10−3% within all 3 vessels of the 3 VPs, is
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Figure F.7: The results of the forth step of the mesh independence study, i.e. the
pressure and flow-rate discrepancies produced when the temporal discretisation is
varied, are shown for the healthy VP. Mean, systolic, and diastolic pressure and
flow-rate discrepancies in the centre of the aorta and the right common iliac are
shown in the top and bottom plots respectively.

found to be 1.2× 10−4s for the SDC implementation.

The results of the forth step of the mesh independence study when using the

DCG implementation are shown for the healthy VP in Figure F.10, the stenosed

VP in Figure F.11, and the aneurysm VP in Figure F.12. The maximum temporal

discretisation trialled when completed the forth step of the mesh independence study

using the DCG implementation is found to be limited to 1.33×10−4s. It is found that

the DCG implementation being used is unable to converge on static solutions for

all three VPs when using a temporal discretisation greater than this limit. Figures

F.10, F.11, and F.12 show that, unlike in the case of the SDC implementation,

there is not a point of clear destabilisation beyond which the errors produced
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Figure F.8: The results of the forth step of the mesh independence study, i.e. the
pressure and flow-rate discrepancies produced when the temporal discretisation is
varied, are shown for the stenosed VP. Mean, systolic, and diastolic pressure and
flow-rate discrepancies in the centre of the aorta and the right common iliac are
shown in the top and bottom plots respectively.

increase. Instead the DCG implementation appears to be sensitive to the temporal

discretisation used, with oscillatory behaviour occurring throughout the full range

of different temporal discretisation applied. It is found that, due to the sensitivity

of the temporal discretisation on the pressure and flow-rate profiles produced, any

deviation from the temporal discretisation used to obtain ground truth solutions

resulted in discrepancies of more than 1× 10−3%.
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Figure F.9: The results of the forth step of the mesh independence study, i.e. the
pressure and flow-rate discrepancies produced when the temporal discretisation is
varied, are shown for the aneurysm VP. Mean, systolic, and diastolic pressure and
flow-rate discrepancies in the centre of the aorta and the right common iliac are
shown in the top and bottom plots respectively.
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Figure F.10: The results of the forth step of the mesh independence study, i.e. the
pressure and flow-rate discrepancies produced when the temporal discretisation is
varied, are shown for the healthy VP. Mean, systolic, and diastolic pressure and
flow-rate discrepancies in the centre of the aorta and the right common iliac are
shown in the top and bottom plots respectively.
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Figure F.11: The results of the forth step of the mesh independence study, i.e. the
pressure and flow-rate discrepancies produced when the temporal discretisation is
varied, are shown for the stenosed VP. Mean, systolic, and diastolic pressure and
flow-rate discrepancies in the centre of the aorta and the right common iliac are
shown in the top and bottom plots respectively.
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Figure F.12: The results of the forth step of the mesh independence study, i.e. the
pressure and flow-rate discrepancies produced when the temporal discretisation is
varied, are shown for the aneurysm VP. Mean, systolic, and diastolic pressure and
flow-rate discrepancies in the centre of the aorta and the right common iliac are
shown in the top and bottom plots respectively.
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Appendix G

Arterial vessel length

Each arterial vessel requires specification of its length. To individually assign a

length to every vessel requires 71 parameters, accounting for a large proportion of

the 269 remaining dimensions. It is thus proposed to reduce the dimensionality of

the network by applying a singular scaling term to the lengths of all the vessels.

Generating the lengths of vessels in this way removes 70 dimensions from the

parameterisation, however will likely restrict the variability seen in pressure and

flow-rate profiles in VPs. It is important to ensure that any efforts to reduce the

complexity of VPs does not come at the cost of significant restriction or reduction

to the physiological realism of the VPD.

To assess the importance of vessel length on the variability of pressure and flow-

rate profiles two sets of VPs are created using the reference network outlined in

Section 4.4.3. For all VPs, all parameters are set to their reference values, except

for the length of each vessel. For the first set of VPs the length of each vessel is

randomised by applying an individual independent scaling term to the reference

length of each. The scaling term applied to the reference length of each vessel is

sampled from a normal distribution with a mean of 1 and a standard deviation of

0.2. For the second set of VPs a single scaling term is applied to the reference length

of all vessels within the arterial network. As with the first case, this scaling term is

sampled from a normal distribution with mean of 1 and standard deviation of 0.2.

For each of the two cases outlined above 30,000 VPs are sampled, and the pressure

and flow-rate profiles associated with each computed.

Pressure or flow-rate profiles are taken from each VP at all non-invasive

measurement locations—highlighted within Section 4.4.2—and the average,

maximum, and minimum of each profile recorded. The average, maximum, and

minimum pressure is also recorded at the inlet of the aorta, to compare the affect

of vessel length on pressure profiles at a location with known flow-rate. The mean

and standard deviation of the average, maximum and minimum pressure at each

appropriate examination location is shown for patients with a constant length scaling

term in Figure G.1, and individual scaling terms in Figure G.2. The mean and the

standard deviation of the flow-rate measurements at the appropriate examination
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Figure G.1: The mean and standard deviation of the average, maximum, and
minimum pressure at all appropriate examination locations for the 30,000 VPs
created using a constant length scaling term.

locations are shown for patients produced using a constant length scaling term in

Figure G.3, and individual scaling terms in Figure G.4. It is expected that the mean

of the average, maximum, and minimum pressure and flow-rate measurements will

be constant for both methods of creation of VPs. As the mean of the distribution

used to sample vessel length scaling terms is the same for both methods, the mean

arterial network—and so consequently the mean pressure and flow-rate profiles—

produced using each of the two methods should be identical.

Figures G.1 and G.2 show that, as is expected, the mean of all pressure

measurements are relatively consistent when using each of the two methods for

generating VPs. The standard deviation of all pressure measurements is larger

when applying a constant length scaling term to all vessels within the arterial

network rather than individual scaling terms applied to each vessel. This increase in

standard deviation is most noticeable when comparing the maximum and minimum

pressure values. The standard deviation of the average pressure at each location is

relatively low for both methods of VP creation. Figures G.3 and G.4 show that,
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Figure G.2: The mean and standard deviation of the average, maximum, and
minimum pressure at all appropriate examination locations for the 30,000 VPs
created using individual length scaling terms applied to each vessel within the
network.

as with mean pressure measurements and as is expected, the mean of the flow-

rate measurements are relatively consistent when using each of the two sampling

methods. Unexpectedly, the standard deviations of the flow-rate measurements are

higher when using a constant length scaling term, rather than individual scaling

terms.

From the current analysis it appears as if applying a constant scaling term to

the length of all vessels within the network increases the variability seen within

pressure and flow-rate profiles produced, rather than restricts it. To fully understand

the affect of applying a singular scaling factor to the length of all arterial vessels,

however, it is important to look at not only the mean and standard deviation of

pressure and flow-rate measurements but also the correlation between different

measurements. The Pearson correlation coefficient [15] between the average,

maximum, and minimum pressure or flow-rate measurement at every location is

computed and plotted. Due to the high number of individual correlations computed,
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Figure G.3: The mean and standard deviation of the average, maximum, and,
minimum flow-rate at all appropriate examination locations for the 30,000 VPs
created using a constant length scaling term.

it is not possible to show all in a single figure. Instead the pressure and flow-rate

measurements are split into a grid, and a series of sub-figures produced. These sub-

figures are then arranged, using the positioning shown in Figure 35, to produce a

singular large corner plot of the correlation between all measurements.

The correlations between the measurements of average pressure and flow-rate at

each location are shown in Figure G.6 for VPs created with a constant vessel length

scaling term, and Figure G.7 for VPs created with individual vessel length scaling

terms. The correlations between the maximum and average; minimum and average;

maximum and maximum; minimum and maximum; and minimum and minimum

pressure and flow-rate measurements at each location are shown in Figures G.8,

G.10, G.12, G.14, and G.16 for VPs created using a constant length scaling term

respectively, and Figures G.9, G.11, G.13, G.15, and G.17 for VPs created using

an individual scaling terms respectively. It is expected that the correlation between

measurements taken from VPs created using a constant scaling term applied to the

length of all vessels within the network will be consistently larger in magnitude
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Figure G.4: The mean and standard deviation of the average, maximum, and
minimum flow-rate at all appropriate examination locations for the 30,000 VPs
created using individual length scaling terms applied to each vessel within the
network.

than the correlation recorded between measurements taken from VPs created using

individual scaling terms. The differences between the correlation recorded using

each of the two methods is expected to be significant in this analysis, as the two

most extreme possible cases are being compared. Even if a single scaling term is

not used, it is unlikely that when creating VPs the length of each vessel will be

independent of one another. Comparing independent scaling terms to a constant

scaling term will magnify any differences between the two methods.

Looking at all figures listed above it can be seen that, as is expected, VPs created

using a constant vessel length scaling term produce higher magnitude correlations

than VPs created using individual independent length scaling terms. Certain

behaviours and patterns that are seen within the correlations between measurements

taken from VPs created using a constant vessel length scaling term, however, are

preserved, to a lesser magnitude, within the correlations between measurements

taken from VPs created using individual vessel length scaling terms. Within Figure
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Figure G.5: Due to the high number of individual correlations, it is not possible to
show all in a singular plot. Instead the pressure and flow-rate measurements have
been broken down into a grid, and a series of subplots created. The location of each
subplot within the larger correlation corner plot.

G.6 it is seen that there is strong negative correlations between:

1. The average flow-rate in the brachial arteries;

2. and the average pressure in the brachial arteries, and the average pressure and

flow-rate in the carotid arteries.

There is a rectangle of further strong negative correlation between:

1. The average flow-rate in the four femoral artery segments;

2. and the average pressure and flow-rate in the two common carotid arteries,

and the average pressure in the two brachial arteries.

A further correlation pattern seen within Figure G.6 is that there is strong negative

correlation between:

1. The average pressure in the radial arteries;

2. and the average pressure and flow-rate in the two common carotid arteries,

and the average pressure in the brachial arteries.
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Figure G.6: The Pearson correlation coefficients between the average of pressure and
flow-rate profiles at all examination locations are shown above. These correlations
are computed using measurements taken from patients that have been generated
using a single constant scaling factor applied to the length of all vessels within the
network.

Pg. 323 / 416



The strong negative correlation between average brachial and average radial

pressures is unexpected, as the radial artery bifurcates off of the brachial artery.

These areas of low correlation can also be seen when computing the correlation

between measurements taken from VPs created using individual length scaling

terms, shown in Figure G.7, however to a lesser magnitude. Further patterns that

are mirrored between the two methods of producing VPs are:

� The strong negative correlations shown in Figures G.8 and G.9 between:

1. The average common carotid pressure and flow-rate, and the average

brachial pressure;

2. and the maximum of all pressure and flow-rate measurements, excluding

the maximum common carotid flow-rate.

When independent scaling terms are applied to the length of each vessel,

however, negative correlation can be seen between the average and maximum

of flow-rate within each common carotid artery that is not present when using

a constant scaling term.

� When creating VPs using a single length scaling term strong negative

correlations can be seen between:

1. The maximum common carotid flow-rate;

2. and the maximum of all other pressure and flow-rate profiles.

This pattern is shown in Figure G.12. While these correlations are not

present when using independent length scaling terms applied to each vessel

individually, shown in Figure G.13, there is a lack of positive correlation at

these locations.

� Within Figure G.14, strong positive correlations can be seen between:

1. The maximum flow-rate in the right and left common carotid arteries;

2. and the minimum pressure in the brachial arteries, the minimum pressure

in the common carotid arteries, and the minimum pressure in the radial

arteries.
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As with the correlation patterns listed above, these correlation patterns can not

be directly seen when using individual vessel length scaling terms. Looking at

Figure G.15, however, it can be seen that there is a lack of negative correlation

at these locations.

� High correlation can be seen within Figure G.16 between:

1. The minimum brachial pressure;

2. and the minimum common carotid pressure, and minimum radial

pressure.

These areas of high correlation can be directly seen when generating patients

using individual vessel length scaling terms, shown in Figure G.17.

While it can be seen from this analysis that using a constant length scaling

term does increase the correlation between measurements, it is important to again

remember that this analysis is being carried out in the most extreme case possible.

It is highly likely, due to the indirect affect of vessel length on pressure and flow-

rate profiles, that the high correlations between measurements seen when using a

constant length scaling term will be mitigated by the variability introduced through

the randomisation of all other parameters describing a VP’s arterial network. This

analysis has shown that behaviours and patterns seen in pressure and flow-rate

profiles when allowing maximum freedom to the length of vessels is not lost when

applying a singular vessel length scaling term. It is therefore decided that, to reduce

the dimensionality associated with the generation of VPs, the length of all vessels

within a VP’s arterial network is scaled by applying a singular term to the reference

length of all vessels.
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Figure G.7: The Pearson correlation coefficients between the average of pressure and
flow-rate profiles at all examination locations are shown above. These correlations
are computed using measurements taken from patients that have been generated
using an individual scaling factors applied to the length of each vessel within the
network.
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Figure G.8: The Pearson correlation coefficients between the maximum and average
of pressure and flow-rate profiles at all examination locations are shown above.
These correlations are computed using measurements taken from patients that have
been generated using a single constant scaling factor applied to the length of all
vessels within the network.
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Figure G.9: The Pearson correlation coefficients between the maximum and average
of pressure and flow-rate profiles at all examination locations are shown above.
These correlations are computed using measurements taken from patients that have
been generated using a individual scaling factors applied to the length of each vessel
within the network.
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Sub-figure C.1: Min-Average correlation using a constant scaling factor.
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Figure G.10: The Pearson correlation coefficients between the minimum and average
of pressure and flow-rate profiles at all examination locations are shown above. These
correlations are computed using measurements taken from patients that have been
generated using a single constant scaling factor applied to the length of all vessels
within the network.
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Figure G.11: The Pearson correlation coefficients between the minimum and average
of pressure and flow-rate profiles at all examination locations are shown above. These
correlations are computed using measurements taken from patients that have been
generated using a individual scaling factors applied to the length of each vessel
within the network.
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Figure G.12: The Pearson correlation coefficients between the maximum of pressure
and flow-rate profiles at all examination locations are shown above. These
correlations are computed using measurements taken from patients that have been
generated using a single constant scaling factor applied to the length of all vessels
within the network.
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Figure G.13: The Pearson correlation coefficients between the maximum of pressure
and flow-rate profiles at all examination locations are shown above. These
correlations are computed using measurements taken from patients that have been
generated using a individual scaling factors applied to the length of each vessel
within the network
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Figure G.14: The Pearson correlation coefficients between the minimum and
maximum of pressure and flow-rate profiles at all examination locations are shown
above. These correlations are computed using measurements taken from patients
that have been generated using a single constant scaling factor applied to the length
of all vessels within the network.
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Figure G.15: The Pearson correlation coefficients between the minimum and
maximum of pressure and flow-rate profiles at all examination locations are shown
above. These correlations are computed using measurements taken from patients
that have been generated using a individual scaling factors applied to the length of
each vessel within the network.
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Figure G.16: The Pearson correlation coefficients between the minimum of pressure
and flow-rate profiles at all examination locations are shown above. These
correlations are computed using measurements taken from patients that have been
generated using a single constant scaling factor applied to the length of all vessels
within the network.
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Figure G.17: The Pearson correlation coefficients between the minimum of pressure
and flow-rate profiles at all examination locations are shown above. These
correlations are computed using measurements taken from patients that have been
generated using a individual scaling factors applied to the length of each vessel
within the network.
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Appendix H

MCMC trace plots

The trace plots of all parameters within each VPs arterial network are split into the

following figures:

� The scaling terms applied to the reference parameters of the vessel wall

mechanical property profiles of vessels with varying properties along their

lengths are shown in Figures H.1, H.2, and H.3.

� The scaling terms applied to the reference parameters of the vessel radius

property profiles of vessels with varying properties along their lengths are

shown in Figures H.4, H.5, and H.6.

� The scaling terms applied to the reference daughter-parent ratios of the vessel

wall mechanical properties and the radii of all vessels bifurcating off of the

aorta with constant properties are shown in Figures H.7 and H.11 respectively.

� The scaling terms applied to the reference daughter-parent ratios of the vessel

wall mechanical properties and the radii are shown for vessels with constant

properties in the right upper extremities in Figures H.8 and H.12 respectively,

and left upper extremities in Figures H.9 and H.13 respectively.

� The scaling terms applied to the reference daughter-parent ratios of the vessel

wall mechanical properties and the radii of vessels with constant properties

within the lower extremities are shown in Figures H.10 and H.14 respectively.

� The scaling terms applied to the reference parameters of the Windkessel models

in the aortic region, right upper extremities, left upper extremities, and the

legs are shown in Figures H.15, H.16, H.17, and H.18 respectively.

To aid in visualisation of the results shown in the above listed figures, all trace plots

are thinned out by plotting only each 100th iteration of the chain. This is done

to filter out high frequency noise, clarifying the low frequency behaviour of the chain.
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Figure H.1: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the: aorta chain initialising value (a), aorta chain decay term
(b), right arm chain daughter/parent ratio (c), right arm chain decay term (d),
left arm chain daughter/parent ratio (e), left arm chain decay term (f), right leg
chain daughter/parent ratio (g), right leg chain decay term (h), left leg chain
daughter/parent ratio (i), and the left leg chain decay term (j) for the β properties
of the network.
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Figure H.2: The parameter scaling terms at each 100th iteration of the Markov chain
applied to the: brachiocephalic trunk daughter/parent ratio (a), brachiocephalic
trunk decay term (b), right common carotid daughter/parent ratio (c), right common
carotid decay term (d), left common carotid daughter/parent ratio (e), and the left
common carotid decay term (f) for the β properties of the network.
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Figure H.3: The parameter scaling terms at each 100th iteration of the Markov chain
applied to the: celiac trunk daughter/parent ratio (g), celiac trunk decay term (h),
right common iliac daughter/parent ratio (i), right common iliac decay term (j), left
common iliac daughter/parent ratio (k), and the left common iliac decay term (l)
for the β properties of the network.
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Figure H.4: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the: aorta chain initialising value (a), aorta chain decay term
(b), right arm chain daughter/parent ratio (c), right arm chain decay term (d),
left arm chain daughter/parent ratio (e), left arm chain decay term (f), right leg
chain daughter/parent ratio (g), right leg chain decay term (h), left leg chain
daughter/parent ratio (i), and the left leg chain decay term (j) for the r0 properties
of the network.
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Figure H.5: The parameter scaling terms at each 100th iteration of the Markov chain
applied to the: brachiocephalic trunk daughter/parent ratio (a), brachiocephalic
trunk decay term (b), right common carotid daughter/parent ratio (c), right common
carotid decay term (d), left common carotid daughter˙parent ratio (e), the left
common carotid decay term (f) for the r0 properties of the network.
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Figure H.6: The parameter scaling terms at each 100th iteration of the Markov chain
applied to the: celiac trunk daughter/parent ratio (g), celiac trunk decay term (h),
right common iliac daughter/parent ratio (i), right common iliac decay term (j), left
common iliac daughter/parent ratio (k), and the left common iliac decay term (l)
for the r0 properties of the network.

Pg. 343 / 416



0 20000 40000 60000 80000
Iteration

0

1

Sc
al

in
g

te
rm

(a)

0 20000 40000 60000 80000
Iteration

0

1

Sc
al

in
g

te
rm

(b)

0 20000 40000 60000 80000
Iteration

0

1

Sc
al

in
g

te
rm

(c)

0 20000 40000 60000 80000
Iteration

0

1
Sc

al
in

g
te

rm

(d)

0 20000 40000 60000 80000
Iteration

0

2

Sc
al

in
g

te
rm

(e)

0 20000 40000 60000 80000
Iteration

0

2

Sc
al

in
g

te
rm

(f)

0 20000 40000 60000 80000
Iteration

0

2

Sc
al

in
g

te
rm

(g)

0 20000 40000 60000 80000
Iteration

0

2

Sc
al

in
g

te
rm

(h)

Figure H.7: The parameter scaling terms at each 100th iteration of the Markov chain
applied to the daughter/parent ratio of the: inferior mesenteric (a), right renal (b),
left renal (c), superior mesenteric (d), second left posterior intercostal (e), second
right posterior intercostal (f), first left posterior intercostal (g), first right posterior
intercostal (h) for the β properties of the network.
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Figure H.8: The parameter scaling terms at each 100th iteration of the Markov chain
applied to the daughter/parent ratio of the: first right ulnar (a), right common
interosseous (b), right radial (c), right vertebral (d), right external carotid (e), right
internal carotid (f) for the β properties of the network.
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Figure H.9: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the daughter/parent ratio of the: first left ulnar (a), left common
interosseous (b), left radial (c), left vertebral (d), left external carotid (e), left
internal carotid (f) for the β properties of the network.
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Figure H.10: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the daughter/parent ratio of the: right anterior tibial (a), left
anterior tibial (b), right posterior tibial (c), left posterior tibial (d), right profunda
femoris (e), left profunda femoris (f), right internal carotid (g), left internal carotid
(h) for the β properties of the network.
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Figure H.11: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the daughter/parent ratio of the: inferior mesenteric (a), right
renal (b), left renal (c), superior mesenteric (d), second left posterior intercostal (e),
second right posterior intercostal (f), first left posterior intercostal (g), first right
posterior intercostal (h) for the r0 properties of the network.
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Figure H.12: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the daughter/parent ratio of the: first right ulnar (a), right common
interosseous (b), right radial (c), right vertebral (d), right external carotid (e), right
internal carotid (f) for the r0 properties of the network.
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Figure H.13: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the daughter/parent ratio of the: first left ulnar (a), left common
interosseous (b), left radial (c), left vertebral (d), left external carotid (e), left
internal carotid (f) for the r0 properties of the network.
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Figure H.14: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the daughter/parent ratio of the: right anterior tibial (a), left
anterior tibial (b), right posterior tibial (c), left posterior tibial (d), right profunda
femoris (e), left profunda femoris (f), right internal carotid (g), left internal carotid
(h) for the r0 properties of the network.
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Figure H.15: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the Windkessel model parameters at the terminal boundary of the:
inferior mesenteric (a), right renal (b), left renal (c), superior mesenteric (d), second
left posterior intercostal (e), second right posterior intercostal (f), first left posterior
intercostal (g), and the first right posterior intercostal (h).
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Figure H.16: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the Windkessel model parameters at the terminal boundary of the:
second right ulnar (a), right common interosseous (b), right radial (c), right vertebral
(d), right external carotid (e), and the right internal carotid (f).
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Figure H.17: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the Windkessel model parameters at the terminal boundary of the:
second left ulnar (a), left common interosseous (b), left radial (c), left vertebral (d),
left external carotid (e), and the left internal carotid (f).
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Figure H.18: The parameter scaling terms at each 100th iteration of the Markov
chain applied to the Windkessel model parameters at the terminal boundary of the:
right anterior tibial (a), left anterior tibial (b), right posterior tibial (c), left posterior
tibial (d), right profunda femoris (e), left profunda femoris (f), right internal iliac
(g), left internal iliac (h).
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Appendix I

Pressure and flow-rate profiles

from random VPs

Within the subsequent three figures (Figures I.1, I.2, and I.3) pressure and flow-rate

profiles are shown from 15 VPs randomly sampled from the VPD. The pressure

or flowrate profile at each location measured within the reference network is

also included, as well as the literature based measurements and associated error

incorporated into the posterior distribution.
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Figure I.1: In the above figure the subplots show the: pressure profiles in the
ascending aorta (a), pressure profiles in the right radial artery (b), pressure profiles
in the left radial artery (c), pressure profiles in the right common carotid artery (d),
pressure profiles in the left common carotid artery (e), flow-rate profiles in the right
second femoral artery (f), and flow-rate profiles in the left second femoral artery (g).
In each figure the profiles taken from the reference network are shown in black; and
the literature reported measurements and associated error are shown by the solid
and dashed grey lines respectively.
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Figure I.2: In the above figure the subplots show the: pressure profiles in the
ascending aorta (a), pressure profiles in the right radial artery (b), pressure profiles
in the left radial artery (c), pressure profiles in the right common carotid artery (d),
pressure profiles in the left common carotid artery (e), flow-rate profiles in the right
second femoral artery (f), and flow-rate profiles in the left second femoral artery (g).
In each figure the profiles taken from the reference network are shown in black; and
the literature reported measurements and associated error are shown by the solid
and dashed grey lines respectively.

Pg. 358 / 416



0.00 0.25 0.50 0.75 1.00

Time (s)

75

100

125

P
re
ss
u
re

(m
m
H
g
) (a) Ascending aorta

Reference network

Patient-K

Patient-L

Patient-M

Patient-N

Patient-O

0.00 0.25 0.50 0.75 1.00

Time (s)

50

100

150

P
re
ss
u
re

(m
m
H
g
) (b) Right radial

0.00 0.25 0.50 0.75 1.00

Time (s)

50

100

150

P
re
ss
u
re

(m
m
H
g
) (c) Left radial

0.00 0.25 0.50 0.75 1.00

Time (s)

75

100

125

P
re
ss
u
re

(m
m
H
g
) (d) Right common carotid

0.00 0.25 0.50 0.75 1.00

Time (s)

75

100

125

P
re
ss
u
re

(m
m
H
g
) (e) Left common carotid

0.00 0.25 0.50 0.75 1.00

Time (s)

0

10

F
lo
w
-r
a
te

(m
ls

−
1
) (f) Right femoral

0.00 0.25 0.50 0.75 1.00

Time (s)

0

10

F
lo
w
-r
a
te

(m
ls

−
1
) (g) Left femoral

Figure I.3: In the above figure the subplots show the: pressure profiles in the
ascending aorta (a), pressure profiles in the right radial artery (b), pressure profiles
in the left radial artery (c), pressure profiles in the right carotid artery (d), pressure
profiles in the left carotid artery (e), flow-rate profiles in the right second femoral
artery (f), and flow-rate profiles in the left second femoral artery (g). In each figure
the profiles taken from the reference network are shown in black; and the literature
reported measurements and associated error are shown by the solid and dashed grey
lines respectively.
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Appendix J

Hyperparameter contour plots

J.1 CAS

The contour plots of the F1 score achieved when using all six measurements and

different combinations of hyper-parameters are shown when employing the RF, GB,

and MLP methods in Figures J.1, J.2, and J.3, respectively. It is seen from the

three aforementioned figures that there are not clear sharp peaks and troughs in

the F1 score achieved, and thus accuracy appears to be relatively insensitive to the

combination of hyper-parameters used.

J.2 SAS

The contour plots of the F1 score achieved when using all six measurements and

different combinations of hyper-parameters are shown when employing the RF, GB,

and MLP methods in Figures J.4, J.5, and J.6, respectively. As with CAS, the

accuracy appears to be relatively insensitive to the combination of hyper-parameters

used.

J.3 PAD

The contour plots of the F1 score achieved when using all six measurements and

different combinations of hyper-parameters are shown when employing the RF, GB,

and MLP methods in Figures J.7, J.8, and J.9, respectively. As with CAS and

SAS the accuracy appears to be relatively insensitive to the combination of hyper-

parameters used.

J.4 AAA

The contour plots of the F1 score achieved when using all six measurements and

different combinations of hyper-parameters are shown when employing the RF,
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Figure J.1: The contour plot of the F1 scores achieved for CAS classification when
employing the RF method, using all six measurements, and different combinations
of hyper-parameters.
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Figure J.2: The contour plot of the F1 scores achieved for CAS classification when
employing the GB method, using all six measurements, and different combinations
of hyper-parameters.
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Figure J.3: The contour plot of the F1 scores achieved for CAS classification when
employing the MLP method, using all six measurements, and different combinations
of hyper-parameters.
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Figure J.4: The contour plot of the F1 scores achieved for SAS classification when
employing the RF method, using all six measurements, and different combinations
of hyper-parameters.
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Figure J.5: The contour plot of the F1 scores achieved for SAS classification when
employing the GB method, using all six measurements, and different combinations
of hyper-parameters.

50 100 150 200

Number of nodes

1

2

3

4

5

6

N
u

m
b

er
o

f
la

y
er

s

0.00

0.35

0.50

0.54

0.58

0.70

Figure J.6: The contour plot of the F1 scores achieved for SAS classification when
employing the MLP method, using all six measurements, and different combinations
of hyper-parameters.
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Figure J.7: The contour plot of the F1 scores achieved for PAD classification when
employing the RF method, using all six measurements, and different combinations
of hyper-parameters.
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Figure J.8: The contour plot of the F1 scores achieved for PAD classification when
employing the GB method, using all six measurements, and different combinations
of hyper-parameters.
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Figure J.9: The contour plot of the F1 scores achieved for PAD classification when
employing the MLP method, using all six measurements, and different combinations
of hyper-parameters.

GB, and MLP methods in Figures J.10, J.11, and J.12, respectively. As with the

previous three forms of disease, the accuracy appears to be relatively insensitive to

the combination of hyper-parameters used.
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Figure J.10: The contour plot of the F1 scores achieved for AAA classification when
employing the RF method, using all six measurements, and different combinations
of hyper-parameters.
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Figure J.11: The contour plot of the F1 scores achieved for AAA classification when
employing the GB method, using all six measurements, and different combinations
of hyper-parameters.
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Figure J.12: The contour plot of the F1 scores achieved for AAA classification when
employing the MLP method, using all six measurements, and different combinations
of hyper-parameters.
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Appendix K

CAS combination search results

The F1 scores, sensitivities, and specificities achieved for CAS classification when

using each of the six ML methods are shown in Table K.1, K.2, and K.3 respectively.

Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.5547 0.5110 0.5157 0.5807 0.4365 0.5606

Q2 0.5105 0.5080 0.4955 0.6858 0.4410 0.6565

Q1 0.5676 0.5033 0.5953 0.8809 0.6459 0.8521

P3 0.4927 0.5023 0.4991 0.5441 0.4805 0.5131

P2 0.4413 0.5066 0.5260 0.5628 0.3741 0.5412

P1 0.5473 0.4917 0.5712 0.6681 0.7013 0.7082

Q3, Q2 0.5684 0.4955 0.5104 0.6955 0.4915 0.6889

Q3, Q1 0.4831 0.5050 0.5544 0.8790 0.6944 0.8629

Q3, P3 0.5213 0.4935 0.5124 0.5825 0.4929 0.5659

Q3, P2 0.5853 0.5018 0.5142 0.5918 0.4904 0.5849

Q3, P1 0.5048 0.5034 0.5576 0.6601 0.6864 0.7105

Q2, Q1 0.4600 0.4975 0.5540 0.8913 0.6648 0.8824

Q2, P3 0.4804 0.4940 0.5109 0.6833 0.4158 0.6805

Q2, P2 0.5290 0.5037 0.5125 0.6836 0.5618 0.6908

Q2, P1 0.4434 0.4978 0.5597 0.7204 0.6741 0.7562

Q1, P3 0.4470 0.4990 0.5595 0.8732 0.6860 0.8577

Q1, P2 0.5341 0.5029 0.5629 0.8774 0.7090 0.8684

Q1, P1 0.4927 0.5018 0.6233 0.8837 0.7822 0.8850

P3, P2 0.5507 0.5117 0.5263 0.5581 0.5313 0.5431

P3, P1 0.5266 0.4963 0.5725 0.6837 0.7384 0.7539

P2, P1 0.5089 0.4944 0.6885 0.7938 0.8878 0.8950

Q3, Q2, Q1 0.4299 0.4995 0.5425 0.8907 0.6838 0.8868

Q3, Q2, P3 0.4822 0.4980 0.5058 0.6910 0.5300 0.7072

Q3, Q2, P2 0.5346 0.4975 0.5204 0.6962 0.5211 0.7102

Q3, Q2, P1 0.5267 0.5024 0.5428 0.7229 0.6084 0.7693

Q3, Q1, P3 0.4636 0.5016 0.5317 0.8685 0.6699 0.8660

Q3, Q1, P2 0.5186 0.4960 0.5580 0.8751 0.6469 0.8728

Q3, Q1, P1 0.5257 0.5020 0.5888 0.8843 0.7532 0.8903

Q3, P3, P2 0.4493 0.5032 0.5119 0.5923 0.5418 0.5888

Q3, P3, P1 0.5019 0.4892 0.5527 0.6751 0.7159 0.7602

Q3, P2, P1 0.4312 0.5042 0.6303 0.7564 0.8623 0.8923

Q2, Q1, P3 0.5222 0.5041 0.5300 0.8840 0.6354 0.8776

Q2, Q1, P2 0.5155 0.4957 0.5586 0.8847 0.7001 0.8844

Q2, Q1, P1 0.5251 0.4940 0.6039 0.8941 0.7611 0.8968

Q2, P3, P2 0.4893 0.5041 0.5241 0.6824 0.5335 0.6929

Q2, P3, P1 0.4067 0.4965 0.5421 0.7249 0.7185 0.8064

Q2, P2, P1 0.5479 0.4858 0.6415 0.7740 0.8735 0.9040

Q1, P3, P2 0.4766 0.4969 0.5505 0.8700 0.7048 0.8651

Q1, P3, P1 0.5037 0.4908 0.5975 0.8777 0.7645 0.8956

Q1, P2, P1 0.4997 0.4972 0.6772 0.8872 0.8680 0.9389
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Classification method

Input combination NB LR SVM RF MLP GB

P3, P2, P1 0.5090 0.4997 0.6451 0.7694 0.8831 0.8936

Q3, Q2, Q1, P3 0.4569 0.4921 0.5408 0.8835 0.6258 0.8855

Q3, Q2, Q1, P2 0.4253 0.5022 0.5462 0.8871 0.6655 0.8887

Q3, Q2, Q1, P1 0.4934 0.5068 0.5783 0.8925 0.7163 0.9004

Q3, Q2, P3, P2 0.4875 0.5026 0.5234 0.6852 0.5483 0.7145

Q3, Q2, P3, P1 0.4481 0.4945 0.5399 0.7231 0.6714 0.8125

Q3, Q2, P2, P1 0.4329 0.5034 0.6043 0.7619 0.8618 0.9025

Q3, Q1, P3, P2 0.4934 0.4972 0.5400 0.8717 0.6299 0.8761

Q3, Q1, P3, P1 0.5365 0.5011 0.5802 0.8789 0.7197 0.8978

Q3, Q1, P2, P1 0.5068 0.4974 0.6338 0.8852 0.8542 0.9395

Q3, P3, P2, P1 0.4329 0.4980 0.6137 0.7393 0.8471 0.8906

Q2, Q1, P3, P2 0.5669 0.4933 0.5468 0.8822 0.6524 0.8844

Q2, Q1, P3, P1 0.5193 0.4978 0.5783 0.8878 0.7207 0.9065

Q2, Q1, P2, P1 0.4638 0.5037 0.6413 0.8944 0.8683 0.9383

Q2, P3, P2, P1 0.4868 0.4999 0.6142 0.7694 0.8503 0.9084

Q1, P3, P2, P1 0.4735 0.5025 0.6320 0.8807 0.8547 0.9353

Q3, Q2, Q1, P3, P2 0.5005 0.5015 0.5387 0.8848 0.6322 0.8927

Q3, Q2, Q1, P3, P1 0.4652 0.4962 0.5760 0.8875 0.7079 0.9093

Q3, Q2, Q1, P2, P1 0.5108 0.4994 0.6088 0.8934 0.8313 0.9381

Q3, Q2, P3, P2, P1 0.4994 0.5105 0.5808 0.7540 0.8463 0.9052

Q3, Q1, P3, P2, P1 0.5330 0.5024 0.6108 0.8849 0.8380 0.9364

Q2, Q1, P3, P2, P1 0.4899 0.5054 0.6026 0.8900 0.8371 0.9391

Q3, Q2, Q1, P3, P2, P1 0.4634 0.5018 0.5862 0.8878 0.7785 0.9343

Table K.1: The F1 scores achieved across the combination search by each of the six
classification methods.
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Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.1531 0.5527 0.4283 0.5572 0.6084 0.5736

Q2 0.6641 0.5097 0.6418 0.6575 0.6228 0.6744

Q1 0.5426 0.4525 0.5694 0.8704 0.4243 0.8547

P3 0.5024 0.5098 0.4999 0.5139 0.5355 0.5158

P2 0.6490 0.4979 0.5052 0.5366 0.7038 0.5491

P1 0.2410 0.4992 0.6588 0.6510 0.7052 0.7215

Q3, Q2 0.5055 0.5035 0.5651 0.6655 0.5439 0.7044

Q3, Q1 0.7217 0.5094 0.5461 0.8681 0.6288 0.8661

Q3, P3 0.4462 0.5091 0.4944 0.5615 0.5226 0.5583

Q3, P2 0.3652 0.5090 0.5111 0.5731 0.5572 0.5777

Q3, P1 0.3032 0.5049 0.6510 0.6411 0.7334 0.7149

Q2, Q1 0.4543 0.5091 0.5770 0.8765 0.6372 0.8845

Q2, P3 0.5395 0.5117 0.5263 0.6555 0.6691 0.6926

Q2, P2 0.6043 0.4987 0.5436 0.6563 0.3867 0.7117

Q2, P1 0.5766 0.4905 0.6442 0.6962 0.6879 0.7668

Q1, P3 0.4718 0.5003 0.5461 0.8679 0.7167 0.8601

Q1, P2 0.3903 0.5068 0.5438 0.8672 0.7467 0.8664

Q1, P1 0.6488 0.4978 0.6672 0.8798 0.8290 0.8848

P3, P2 0.4744 0.5034 0.5251 0.5383 0.4863 0.5335

P3, P1 0.3334 0.4815 0.6303 0.6599 0.7469 0.7842

P2, P1 0.4943 0.5001 0.6699 0.7762 0.8995 0.9026

Q3, Q2, Q1 0.4935 0.4812 0.5598 0.8789 0.6425 0.8896

Q3, Q2, P3 0.5586 0.4913 0.5454 0.6647 0.5014 0.7219

Q3, Q2, P2 0.4348 0.5091 0.5336 0.6788 0.5298 0.7313

Q3, Q2, P1 0.2964 0.5165 0.6068 0.6975 0.6471 0.7783

Q3, Q1, P3 0.4427 0.5021 0.5321 0.8620 0.6388 0.8677

Q3, Q1, P2 0.4268 0.4974 0.5605 0.8718 0.6645 0.8721

Q3, Q1, P1 0.5134 0.4687 0.6341 0.8735 0.7474 0.8936

Q3, P3, P2 0.6823 0.4939 0.5076 0.5698 0.4853 0.5905

Q3, P3, P1 0.3887 0.4941 0.5882 0.6691 0.6907 0.7866

Q3, P2, P1 0.6288 0.4919 0.6251 0.7473 0.8593 0.8928

Q2, Q1, P3 0.4599 0.5056 0.5474 0.8735 0.6999 0.8819

Q2, Q1, P2 0.4296 0.5085 0.5728 0.8766 0.6703 0.8853

Q2, Q1, P1 0.5235 0.5037 0.6393 0.8825 0.7635 0.8991

Q2, P3, P2 0.3581 0.4902 0.5484 0.6566 0.5249 0.7098

Q2, P3, P1 0.6042 0.4816 0.6079 0.7001 0.7140 0.8277

Q2, P2, P1 0.5758 0.4826 0.6481 0.7516 0.8780 0.9114

Q1, P3, P2 0.4530 0.4984 0.5521 0.8616 0.6733 0.8651

Q1, P3, P1 0.4760 0.4859 0.6233 0.8721 0.7403 0.8993

Q1, P2, P1 0.4610 0.4917 0.6744 0.8807 0.8797 0.9433

P3, P2, P1 0.4001 0.5159 0.6442 0.7562 0.8731 0.8930

Q3, Q2, Q1, P3 0.5792 0.4903 0.5548 0.8700 0.6711 0.8916

Q3, Q2, Q1, P2 0.6211 0.4961 0.5726 0.8788 0.6622 0.8933

Q3, Q2, Q1, P1 0.5018 0.4831 0.5948 0.8837 0.7442 0.9015

Q3, Q2, P3, P2 0.5499 0.4981 0.4938 0.6722 0.4844 0.7277

Q3, Q2, P3, P1 0.4381 0.5052 0.5948 0.7055 0.6997 0.8337

Q3, Q2, P2, P1 0.7010 0.5049 0.6401 0.7463 0.8600 0.9129

Q3, Q1, P3, P2 0.4629 0.5000 0.5424 0.8597 0.6331 0.8747

Q3, Q1, P3, P1 0.4436 0.4937 0.6099 0.8747 0.7555 0.9017
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Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q1, P2, P1 0.5362 0.5062 0.6300 0.8761 0.8538 0.9417

Q3, P3, P2, P1 0.6073 0.5011 0.6165 0.7243 0.8391 0.8993

Q2, Q1, P3, P2 0.4973 0.5056 0.5779 0.8729 0.6427 0.8874

Q2, Q1, P3, P1 0.4225 0.5065 0.6115 0.8813 0.7596 0.9100

Q2, Q1, P2, P1 0.5115 0.4954 0.6345 0.8858 0.8618 0.9416

Q2, P3, P2, P1 0.5582 0.4877 0.6266 0.7498 0.8573 0.9133

Q1, P3, P2, P1 0.5769 0.4891 0.6309 0.8674 0.8667 0.9375

Q3, Q2, Q1, P3, P2 0.5446 0.4929 0.5686 0.8759 0.6487 0.8949

Q3, Q2, Q1, P3, P1 0.4676 0.4933 0.6021 0.8775 0.7169 0.9117

Q3, Q2, Q1, P2, P1 0.5403 0.5015 0.6142 0.8858 0.8288 0.9415

Q3, Q2, P3, P2, P1 0.6396 0.5042 0.6070 0.7375 0.8308 0.9120

Q3, Q1, P3, P2, P1 0.5330 0.4920 0.6171 0.8795 0.8345 0.9399

Q2, Q1, P3, P2, P1 0.4640 0.4919 0.6149 0.8774 0.8273 0.9416

Q3, Q2, Q1, P3, P2, P1 0.6224 0.5116 0.6012 0.8747 0.7916 0.9364

Table K.2: The sensitivities achieved across the combination search by each of the
six classification methods.
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Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.7090 0.4968 0.5462 0.5904 0.3886 0.5556

Q2 0.4579 0.5075 0.4474 0.7006 0.3896 0.6479

Q1 0.5776 0.5204 0.6063 0.8893 0.7517 0.8502

P3 0.4896 0.4998 0.4989 0.5555 0.4632 0.5122

P2 0.3826 0.5096 0.5335 0.5732 0.2983 0.5384

P1 0.6628 0.4893 0.5363 0.6767 0.6993 0.7010

Q3, Q2 0.5935 0.4929 0.4917 0.7116 0.4745 0.6808

Q3, Q1 0.4072 0.5036 0.5576 0.8876 0.7293 0.8605

Q3, P3 0.5478 0.4884 0.5187 0.5912 0.4832 0.5690

Q3, P2 0.6764 0.4995 0.5153 0.5998 0.4687 0.5879

Q3, P1 0.5730 0.5030 0.5215 0.6696 0.6619 0.7081

Q2, Q1 0.4618 0.4937 0.5453 0.9032 0.6786 0.8808

Q2, P3 0.4618 0.4883 0.5057 0.6978 0.3494 0.6743

Q2, P2 0.5020 0.5055 0.5018 0.6978 0.6303 0.6798

Q2, P1 0.4055 0.5003 0.5269 0.7341 0.6672 0.7498

Q1, P3 0.4399 0.4987 0.5648 0.8774 0.6701 0.8560

Q1, P2 0.5865 0.5016 0.5704 0.8855 0.6883 0.8701

Q1, P1 0.4417 0.5032 0.6035 0.8869 0.7522 0.8853

P3, P2 0.5798 0.5146 0.5268 0.5659 0.5477 0.5467

P3, P1 0.5958 0.5013 0.5494 0.6961 0.7335 0.7356

P2, P1 0.5140 0.4926 0.6983 0.8054 0.8785 0.8889

Q3, Q2, Q1 0.4125 0.5057 0.5361 0.9002 0.7054 0.8846

Q3, Q2, P3 0.4580 0.5003 0.4925 0.7049 0.5404 0.6992

Q3, Q2, P2 0.5711 0.4937 0.5158 0.7055 0.5181 0.6986

Q3, Q2, P1 0.6091 0.4977 0.5190 0.7374 0.5915 0.7638

Q3, Q1, P3 0.4700 0.5015 0.5316 0.8735 0.6857 0.8648

Q3, Q1, P2 0.5508 0.4956 0.5571 0.8777 0.6386 0.8734

Q3, Q1, P1 0.5302 0.5132 0.5699 0.8929 0.7568 0.8877

Q3, P3, P2 0.3818 0.5064 0.5135 0.6018 0.5629 0.5882

Q3, P3, P1 0.5399 0.4877 0.5392 0.6782 0.7300 0.7441

Q3, P2, P1 0.3769 0.5084 0.6328 0.7620 0.8646 0.8920

Q2, Q1, P3 0.5443 0.5037 0.5238 0.8924 0.6055 0.8743

Q2, Q1, P2 0.5454 0.4916 0.5531 0.8913 0.7162 0.8838

Q2, Q1, P1 0.5258 0.4909 0.5886 0.9035 0.7597 0.8950

Q2, P3, P2 0.5319 0.5088 0.5156 0.6959 0.5367 0.6840

Q2, P3, P1 0.3563 0.5015 0.5177 0.7390 0.7211 0.7921

Q2, P2, P1 0.5374 0.4869 0.6385 0.7882 0.8701 0.8979

Q1, P3, P2 0.4840 0.4965 0.5500 0.8766 0.7220 0.8651

Q1, P3, P1 0.5131 0.4924 0.5866 0.8822 0.7795 0.8927

Q1, P2, P1 0.5126 0.4991 0.6787 0.8925 0.8592 0.9351

P3, P2, P1 0.5462 0.4944 0.6456 0.7777 0.8911 0.8942

Q3, Q2, Q1, P3 0.4208 0.4928 0.5357 0.8943 0.6053 0.8807

Q3, Q2, Q1, P2 0.3725 0.5043 0.5363 0.8938 0.6672 0.8852

Q3, Q2, Q1, P1 0.4907 0.5149 0.5716 0.8996 0.7008 0.8995

Q3, Q2, P3, P2 0.4675 0.5042 0.5340 0.6921 0.5725 0.7072

Q3, Q2, P3, P1 0.4510 0.4911 0.5196 0.7331 0.6572 0.7981

Q3, Q2, P2, P1 0.3589 0.5029 0.5888 0.7716 0.8632 0.8941

Q3, Q1, P3, P2 0.5034 0.4963 0.5392 0.8811 0.6285 0.8773

Q3, Q1, P3, P1 0.5706 0.5037 0.5681 0.8823 0.6997 0.8947
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Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q1, P2, P1 0.4969 0.4946 0.6357 0.8926 0.8545 0.9376

Q3, P3, P2, P1 0.3848 0.4970 0.6126 0.7481 0.8530 0.8837

Q2, Q1, P3, P2 0.5945 0.4893 0.5352 0.8896 0.6571 0.8822

Q2, Q1, P3, P1 0.5533 0.4950 0.5648 0.8930 0.6989 0.9037

Q2, Q1, P2, P1 0.4495 0.5065 0.6446 0.9015 0.8734 0.9355

Q2, P3, P2, P1 0.4639 0.5040 0.6088 0.7818 0.8452 0.9045

Q1, P3, P2, P1 0.4415 0.5070 0.6326 0.8912 0.8458 0.9335

Q3, Q2, Q1, P3, P2 0.4859 0.5044 0.5277 0.8919 0.6246 0.8911

Q3, Q2, Q1, P3, P1 0.4646 0.4972 0.5655 0.8956 0.7031 0.9073

Q3, Q2, Q1, P2, P1 0.5008 0.4988 0.6065 0.8996 0.8332 0.9351

Q3, Q2, P3, P2, P1 0.4528 0.5127 0.5701 0.7641 0.8577 0.8996

Q3, Q1, P3, P2, P1 0.5331 0.5060 0.6081 0.8892 0.8406 0.9334

Q2, Q1, P3, P2, P1 0.4984 0.5101 0.5974 0.9002 0.8442 0.9370

Q3, Q2, Q1, P3, P2, P1 0.4155 0.4986 0.5800 0.8984 0.7703 0.9325

Table K.3: The specificities achieved across the combination search by each of the
six classification methods.
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Appendix L

SAS combination search results

The F1 scores, sensitivities, and specificities achieved for SAS classification when using each of the six ML methods

are shown in Table L.1, L.2, and L.3 respectively.

Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.5041 0.5288 0.4897 0.5723 0.5403 0.5592

Q2 0.4681 0.5004 0.4839 0.7577 0.5691 0.7415

Q1 0.3799 0.5028 0.4923 0.7779 0.6176 0.7529

P3 0.4931 0.4972 0.5097 0.5530 0.5474 0.5331

P2 0.4698 0.4990 0.5528 0.5627 0.4895 0.5453

P1 0.5344 0.5023 0.5035 0.5171 0.5571 0.5060

Q3, Q2 0.4529 0.5136 0.5075 0.7623 0.4939 0.7608

Q3, Q1 0.4588 0.4893 0.5053 0.7814 0.5414 0.7758

Q3, P3 0.4992 0.4963 0.5207 0.5824 0.5463 0.5746

Q3, P2 0.5497 0.5068 0.5306 0.5869 0.5215 0.5850

Q3, P1 0.4195 0.5099 0.4992 0.5685 0.4776 0.5627

Q2, Q1 0.5064 0.5010 0.5025 0.8450 0.5853 0.8461

Q2, P3 0.4818 0.5020 0.5294 0.7555 0.6054 0.7694

Q2, P2 0.5116 0.5020 0.5405 0.7586 0.5454 0.7711

Q2, P1 0.5468 0.4913 0.5353 0.7568 0.5124 0.7609

Q1, P3 0.4564 0.4963 0.5252 0.7697 0.5067 0.7522

Q1, P2 0.5209 0.4986 0.5388 0.7708 0.5833 0.7606

Q1, P1 0.5186 0.5005 0.5327 0.7744 0.5426 0.7751

P3, P2 0.5450 0.5031 0.5256 0.5695 0.4960 0.5626

P3, P1 0.5464 0.4996 0.5282 0.5450 0.5510 0.5338

P2, P1 0.5399 0.5041 0.5447 0.5669 0.5133 0.5766

Q3, Q2, Q1 0.4574 0.5081 0.5284 0.8447 0.5866 0.8552

Q3, Q2, P3 0.5499 0.4925 0.5254 0.7624 0.5847 0.7830

Q3, Q2, P2 0.4591 0.4936 0.5272 0.7629 0.5742 0.7829

Q3, Q2, P1 0.4240 0.4980 0.5099 0.7627 0.4969 0.7800

Q3, Q1, P3 0.4810 0.4994 0.5173 0.7808 0.5511 0.7691

Q3, Q1, P2 0.4098 0.5069 0.5354 0.7749 0.5611 0.7750

Q3, Q1, P1 0.5414 0.4999 0.5095 0.7761 0.5230 0.7880

Q3, P3, P2 0.4492 0.5021 0.5330 0.5892 0.5636 0.5900

Q3, P3, P1 0.4912 0.4971 0.5248 0.5767 0.5253 0.5759

Q3, P2, P1 0.4476 0.4914 0.5259 0.5883 0.5758 0.5961

Q2, Q1, P3 0.5243 0.5008 0.5154 0.8381 0.5874 0.8427

Q2, Q1, P2 0.4994 0.5029 0.5349 0.8402 0.6139 0.8469

Q2, Q1, P1 0.4988 0.5042 0.5279 0.8413 0.5861 0.8492

Q2, P3, P2 0.5272 0.4992 0.5284 0.7549 0.5760 0.7802

Q2, P3, P1 0.4351 0.5048 0.5351 0.7479 0.5724 0.7726

Q2, P2, P1 0.5318 0.5081 0.5316 0.7563 0.5258 0.7752

Q1, P3, P2 0.5152 0.5030 0.5454 0.7624 0.5782 0.7579

Q1, P3, P1 0.4607 0.5022 0.5235 0.7690 0.5069 0.7680

Q1, P2, P1 0.5437 0.5019 0.5319 0.7670 0.5930 0.7733

P3, P2, P1 0.5314 0.4984 0.5352 0.5661 0.5518 0.5826

374



Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q2, Q1, P3 0.4910 0.4925 0.5169 0.8407 0.5706 0.8541

Q3, Q2, Q1, P2 0.5113 0.5036 0.5301 0.8432 0.5952 0.8585

Q3, Q2, Q1, P1 0.5097 0.5078 0.5191 0.8404 0.5828 0.8558

Q3, Q2, P3, P2 0.4738 0.4968 0.5206 0.7549 0.5628 0.7879

Q3, Q2, P3, P1 0.4721 0.4944 0.5224 0.7545 0.5605 0.7857

Q3, Q2, P2, P1 0.5592 0.5081 0.5331 0.7616 0.5854 0.7911

Q3, Q1, P3, P2 0.4762 0.4987 0.5259 0.7738 0.5791 0.7711

Q3, Q1, P3, P1 0.4558 0.5108 0.5339 0.7749 0.5766 0.7850

Q3, Q1, P2, P1 0.4066 0.4957 0.5279 0.7719 0.5785 0.7813

Q3, P3, P2, P1 0.5257 0.4878 0.5395 0.5866 0.5695 0.5988

Q2, Q1, P3, P2 0.5318 0.4975 0.5487 0.8357 0.6064 0.8488

Q2, Q1, P3, P1 0.5348 0.4987 0.5326 0.8350 0.5879 0.8516

Q2, Q1, P2, P1 0.5537 0.5113 0.5337 0.8362 0.6258 0.8545

Q2, P3, P2, P1 0.4863 0.4966 0.5394 0.7458 0.6102 0.7797

Q1, P3, P2, P1 0.4711 0.5010 0.5358 0.7635 0.6088 0.7738

Q3, Q2, Q1, P3, P2 0.4763 0.5038 0.5312 0.8330 0.5966 0.8534

Q3, Q2, Q1, P3, P1 0.4953 0.4998 0.5212 0.8399 0.5809 0.8571

Q3, Q2, Q1, P2, P1 0.4917 0.5099 0.5304 0.8390 0.6070 0.8600

Q3, Q2, P3, P2, P1 0.5344 0.5069 0.5292 0.7540 0.5963 0.7913

Q3, Q1, P3, P2, P1 0.5205 0.4991 0.5309 0.7734 0.5740 0.7828

Q2, Q1, P3, P2, P1 0.4912 0.5012 0.5353 0.8325 0.6302 0.8502

Q3, Q2, Q1, P3, P2, P1 0.4642 0.5016 0.5301 0.8292 0.6040 0.8574

Table L.1: The F1 scores achieved across the combination search by each of the six
classification methods.
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Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.2997 0.4576 0.5129 0.5678 0.4059 0.5585

Q2 0.5460 0.5348 0.6918 0.7517 0.3839 0.7366

Q1 0.7074 0.4613 0.6338 0.7582 0.1873 0.7224

P3 0.4402 0.5127 0.5616 0.5453 0.3978 0.5431

P2 0.5140 0.4981 0.4783 0.5629 0.5704 0.5717

P1 0.4446 0.4836 0.4741 0.5177 0.3803 0.5244

Q3, Q2 0.5683 0.4928 0.5411 0.7612 0.5901 0.7585

Q3, Q1 0.4887 0.4947 0.5036 0.7630 0.4709 0.7504

Q3, P3 0.6479 0.5019 0.5147 0.5720 0.4578 0.5808

Q3, P2 0.5719 0.4985 0.5163 0.5849 0.5223 0.5999

Q3, P1 0.6081 0.4947 0.4958 0.5633 0.5570 0.5788

Q2, Q1 0.6572 0.5008 0.6082 0.8374 0.4909 0.8293

Q2, P3 0.5785 0.4860 0.5626 0,.7505 0.4320 0.7710

Q2, P2 0.4241 0.4801 0.5294 0.7560 0.6660 0.7763

Q2, P1 0.2405 0.5006 0.5127 0.7500 0.5838 0.7601

Q1, P3 0.5330 0.4970 0.5596 0.7534 0.5809 0.7305

Q1, P2 0.4943 0.5180 0.5282 0.7545 0.4884 0.7434

Q1, P1 0.5761 0.4991 0.5430 0.7516 0.6004 0.7549

P3, P2 0.4714 0.4939 0.5388 0.5668 0.6677 0.5744

P3, P1 0.5408 0.4954 0.5252 0.5406 0.4456 0.5421

P2, P1 0.4115 0.4958 0.4761 0.5761 0.6175 0.6056

Q3, Q2, Q1 0.5695 0.5019 0.5106 0.8271 0.5303 0.8453

Q3, Q2, P3 0.5651 0.5115 0.5075 0.7621 0.5044 0.7826

Q3, Q2, P2 0.5768 0.5219 0.5101 0.7590 0.5941 0.7882

Q3, Q2, P1 0.6416 0.5013 0.5350 0.7494 0.5963 0.7766

Q3, Q1, P3 0.4649 0.5074 0.5237 0.7550 0.5783 0.7491

Q3, Q1, P2 0.6031 0.50 0.5056 0.7584 0.5796 0.7514

Q3, Q1, P1 0.3262 0.4942 0.5535 0.7527 0.6028 0.7677

Q3, P3, P2 0.5316 0.4904 0.5184 0.5924 0.4985 0.6109

Q3, P3, P1 0.3543 0.4949 0.5116 0.5765 0.5444 0.5855

Q3, P2, P1 0.5225 0.5038 0.5041 0.5864 0.5018 0.6186

Q2, Q1, P3 0.4531 0.4826 0.5427 0.8186 0.6309 0.8303

Q2, Q1, P2 0.4642 0.5029 0.5481 0.8277 0.6178 0.8312

Q2, Q1, P1 0.5179 0.5049 0.5544 0.8268 0.5788 0.8388

Q2, P3, P2 0.5155 0.4806 0.5642 0.7500 0.6050 0.7757

Q2, P3, P1 0.6119 0.4972 0.5365 0.7486 0.5358 0.7752

Q2, P2, P1 0.5590 0.5214 0.5403 0.7578 0.7119 0.7791

Q1, P3, P2 0.4890 0.5159 0.5345 0.7414 0.5886 0.7437

Q1, P3, P1 0.5256 0.5041 0.5548 0.7498 0.6421 0.7479

Q1, P2, P1 0.4038 0.5014 0.5175 0.7490 0.5995 0.7621

P3, P2, P1 0.4461 0.4995 0.5216 0.5697 0.6360 0.6026

Q3, Q2, Q1, P3 0.6262 0.5155 0.5310 0.8274 0.6144 0.8411

Q3, Q2, Q1, P2 0.4646 0.5158 0.5531 0.8303 0.6113 0.8487

Q3, Q2, Q1, P1 0.4913 0.5011 0.5522 0.8242 0.5723 0.8466

Q3, Q2, P3, P2 0.5435 0.4831 0.54 0.7566 0.64 0.7924

Q3, Q2, P3, P1 0.5466 0.4884 0.5173 0.7534 0.5521 0.7874

Q3, Q2, P2, P1 0.4776 0.5022 0.5413 0.7555 0.5892 0.7900

Q3, Q1, P3, P2 0.5274 0.5010 0.5377 0.7587 0.5758 0.7545

Q3, Q1, P3, P1 0.4177 0.4823 0.5051 0.7560 0.5163 0.7675
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Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q1, P2, P1 0.5806 0.5103 0.5087 0.7550 0.5940 0.7735

Q3, P3, P2, P1 0.46 0.5052 0.5204 0.5857 0.6047 0.6121

Q2, Q1, P3, P2 0.4529 0.5117 0.5461 0.8241 0.6431 0.8413

Q2, Q1, P3, P1 0.2714 0.4964 0.5150 0.8186 0.6153 0.8437

Q2, Q1, P2, P1 0.5132 0.5057 0.5357 0.8214 0.6157 0.8386

Q2, P3, P2, P1 0.4464 0.5042 0.5606 0.7407 0.6294 0.7833

Q1, P3, P2, P1 0.4715 0.5032 0.5476 0.7439 0.6014 0.7599

Q3, Q2, Q1, P3, P2 0.44 0.4889 0.5266 0.8175 0.5881 0.8510

Q3, Q2, Q1, P3, P1 0.3896 0.4988 0.5447 0.8256 0.6080 0.8443

Q3, Q2, Q1, P2, P1 0.5676 0.50 0.5270 0.8274 0.6084 0.8525

Q3, Q2, P3, P2, P1 0.4376 0.5137 0.5454 0.7499 0.6264 0.7859

Q3, Q1, P3, P2, P1 0.4463 0.4941 0.5332 0.7509 0.6137 0.7634

Q2, Q1, P3, P2, P1 0.6175 0.4940 0.5561 0.8159 0.5996 0.8451

Q3, Q2, Q1, P3, P2, P1 0.5047 0.4996 0.5342 0.8102 0.6133 0.8504

Table L.2: The sensitivities achieved across the combination search by each of the
six classification methods.
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Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.5731 0.5544 0.4823 0.5742 0.5901 0.5596

Q2 0.4444 0.4890 0.4176 0.7615 0.6429 0.7445

Q1 0.3032 0.5168 0.4462 0.7905 0.8099 0.7714

P3 0.5105 0.4921 0.4920 0.5560 0.6038 0.5295

P2 0.4563 0.4993 0.5814 0.5627 0.4633 0.5355

P1 0.5672 0.5087 0.5135 0.5170 0.6254 0.4999

Q3, Q2 0.4192 0.5208 0.4962 0.7631 0.4624 0.7623

Q3, Q1 0.4499 0.4876 0.5059 0.7932 0.5676 0.7920

Q3, P3 0.4498 0.4945 0.5229 0.5867 0.5796 0.5722

Q3, P2 0.5414 0.5097 0.5359 0.5878 0.5213 0.5789

Q3, P1 0.3695 0.5152 0.5004 0.5706 0.4528 0.5565

Q2, Q1 0.4553 0.5012 0.4671 0.8507 0.6244 0.8585

Q2, P3 0.4512 0.5074 0.5175 0.7586 0.6807 0.7685

Q2, P2 0.5418 0.5094 0.5447 0.7603 0.5002 0.7679

Q2, P1 0.6622 0.4884 0.5436 0.7610 0.4879 0.7614

Q1, P3 0.4338 0.4961 0.5130 0.7800 0.4816 0.7653

Q1, P2 0.5303 0.4922 0.5428 0.7811 0.6224 0.7712

Q1, P1 0.4985 0.5010 0.5290 0.7889 0.5211 0.7880

P3, P2 0.5726 0.5062 0.5209 0.5707 0.4394 0.5581

P3, P1 0.5486 0.5011 0.5293 0.5467 0.5912 0.5309

P2, P1 0.5874 0.5069 0.5704 0.5633 0.4774 0.5649

Q3, Q2, Q1 0.4242 0.5103 0.5348 0.8576 0.6101 0.8626

Q3, Q2, P3 0.5442 0.4864 0.5319 0.7626 0.6180 0.7834

Q3, Q2, P2 0.4241 0.4844 0.5334 0.7654 0.5662 0.7795

Q3, Q2, P1 0.3655 0.4970 0.5014 0.7710 0.4641 0.7822

Q3, Q1, P3 0.4862 0.4968 0.5152 0.7974 0.5408 0.7816

Q3, Q1, P2 0.3600 0.5093 0.5464 0.7854 0.5539 0.7900

Q3, Q1, P1 0.6213 0.5018 0.4945 0.7911 0.4948 0.8013

Q3, P3, P2 0.4254 0.5061 0.5384 0.5879 0.5892 0.5813

Q3, P3, P1 0.5358 0.4979 0.5295 0.5769 0.5186 0.5721

Q3, P2, P1 0.4261 0.4874 0.5338 0.5892 0.6058 0.5866

Q2, Q1, P3 0.5497 0.5069 0.5060 0.8522 0.5694 0.8519

Q2, Q1, P2 0.5112 0.5029 0.5301 0.8494 0.6123 0.8585

Q2, Q1, P1 0.4925 0.5040 0.5184 0.8519 0.5892 0.8569

Q2, P3, P2 0.5315 0.5055 0.5156 0.7579 0.5643 0.7831

Q2, P3, P1 0.3860 0.5075 0.5347 0.7476 0.5871 0.7710

Q2, P2, P1 0.5220 0.5036 0.5285 0.7555 0.4595 0.7728

Q1, P3, P2 0.5244 0.4987 0.5495 0.7755 0.5740 0.7667

Q1, P3, P1 0.4414 0.5016 0.5125 0.7810 0.4611 0.7806

Q1, P2, P1 0.5960 0.5021 0.5372 0.7782 0.5904 0.7804

P3, P2, P1 0.5624 0.4981 0.5403 0.5647 0.5198 0.5745

Q3, Q2, Q1, P3 0.4471 0.4850 0.5120 0.8504 0.5532 0.8638

Q3, Q2, Q1, P2 0.5274 0.4996 0.5219 0.8527 0.5884 0.8660

Q3, Q2, Q1, P1 0.5160 0.5102 0.5076 0.8522 0.5872 0.8627

Q3, Q2, P3, P2 0.4522 0.5014 0.5138 0.7540 0.5326 0.7851

Q3, Q2, P3, P1 0.4492 0.4964 0.5243 0.7553 0.5639 0.7847

Q3, Q2, P2, P1 0.5909 0.5102 0.5302 0.7654 0.5839 0.7919

Q3, Q1, P3, P2 0.4603 0.4980 0.5218 0.7834 0.5805 0.7816

Q3, Q1, P3, P1 0.4671 0.5206 0.5444 0.7869 0.6011 0.7964
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Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q1, P2, P1 0.3623 0.4910 0.5348 0.7826 0.5723 0.7864

Q3, P3, P2, P1 0.5492 0.4823 0.5466 0.5870 0.5555 0.5932

Q2, Q1, P3, P2 0.5604 0.4929 0.5497 0.8441 0.5905 0.8545

Q2, Q1, P3, P1 0.6311 0.4995 0.5390 0.8468 0.5765 0.8575

Q2, Q1, P2, P1 0.5693 0.5133 0.5330 0.8469 0.6304 0.8664

Q2, P3, P2, P1 0.4992 0.4941 0.5316 0.7489 0.6018 0.7774

Q1, P3, P2, P1 0.4710 0.5003 0.5315 0.7757 0.6121 0.7826

Q3, Q2, Q1, P3, P2 0.4877 0.5089 0.5329 0.8442 0.6003 0.8552

Q3, Q2, Q1, P3, P1 0.5301 0.5002 0.5130 0.8504 0.5699 0.8668

Q3, Q2, Q1, P2, P1 0.4670 0.5133 0.5317 0.8475 0.6064 0.8657

Q3, Q2, P3, P2, P1 0.5697 0.5046 0.5234 0.7566 0.5836 0.7950

Q3, Q1, P3, P2, P1 0.5467 0.5008 0.5302 0.7876 0.5581 0.7954

Q2, Q1, P3, P2, P1 0.4502 0.5037 0.5278 0.8444 0.6443 0.8540

Q3, Q2, Q1, P3, P2, P1 0.4520 0.5023 0.5287 0.8427 0.60 0.8627

Table L.3: The specificities achieved across the combination search by each of the
six classification methods.
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Appendix M

PAD combination search results

The F1 scores, sensitivities, and specificities achieved for PAD classification when using each of the six ML methods

are shown in Table M.1, M.2, and M.3 respectively.

Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.5017 0.5115 0.6645 0.8224 0.6897 0.8169

Q2 0.5621 0.5222 0.5266 0.7127 0.4734 0.7076

Q1 0.3927 0.4822 0.5310 0.8240 0.4713 0.8183

P3 0.5162 0.5053 0.5182 0.5613 0.4131 0.5406

P2 0.5030 0.4954 0.5242 0.5753 0.4741 0.5529

P1 0.4290 0.5031 0.5038 0.5517 0.5487 0.5335

Q3, Q2 0.4740 0.5099 0.5926 0.8480 0.7040 0.8557

Q3, Q1 0.5355 0.4965 0.5786 0.8959 0.7254 0.9041

Q3, P3 0.4800 0.4932 0.5808 0.8050 0.6676 0.8151

Q3, P2 0.5118 0.4998 0.5824 0.8152 0.7057 0.8201

Q3, P1 0.5672 0.4979 0.5768 0.8103 0.7206 0.8221

Q2, Q1 0.5236 0.4962 0.5239 0.8556 0.5610 0.8637

Q2, P3 0.4929 0.4980 0.5069 0.7134 0.6117 0.7200

Q2, P2 0.5323 0.4956 0.5133 0.7126 0.5233 0.7255

Q2, P1 0.4602 0.5075 0.5222 0.7117 0.5585 0.7221

Q1, P3 0.5293 0.5116 0.5420 0.8136 0.5602 0.8204

Q1, P2 0.5335 0.4926 0.5406 0.8187 0.5818 0.8314

Q1, P1 0.5549 0.5011 0.5417 0.8181 0.6514 0.8307

P3, P2 0.4829 0.4996 0.5319 0.5810 0.5386 0.5733

P3, P1 0.4823 0.4976 0.5142 0.5624 0.5141 0.5559

P2, P1 0.5434 0.5035 0.5145 0.5904 0.4662 0.6002

Q3, Q2, Q1 0.5209 0.4891 0.5619 0.9061 0.7004 0.9168

Q3, Q2, P3 0.4717 0.5146 0.5605 0.8370 0.6864 0.8556

Q3, Q2, P2 0.4651 0.5049 0.5640 0.8424 0.7074 0.8606

Q3, Q2, P1 0.4643 0.5064 0.5610 0.8408 0.7040 0.8592

Q3, Q1, P3 0.4947 0.4976 0.5679 0.8833 0.7148 0.9009

Q3, Q1, P2 0.5615 0.4984 0.5741 0.8858 0.7100 0.9022

Q3, Q1, P1 0.4149 0.4941 0.5760 0.8850 0.7361 0.9046

Q3, P3, P2 0.4800 0.5065 0.5598 0.8005 0.6804 0.8215

Q3, P3, P1 0.5214 0.5050 0.5642 0.8005 0.6886 0.8179

Q3, P2, P1 0.4792 0.5065 0.5630 0.8004 0.7104 0.8178

Q2, Q1, P3 0.5208 0.5006 0.5334 0.8469 0.6300 0.8617

Q2, Q1, P2 0.4874 0.4974 0.5318 0.8472 0.5992 0.8703

Q2, Q1, P1 0.5340 0.4938 0.5311 0.8472 0.6472 0.8682

Q2, P3, P2 0.5306 0.4996 0.5162 0.7147 0.5581 0.7379

Q2, P3, P1 0.5012 0.4989 0.5152 0.7062 0.5165 0.7311

Q2, P2, P1 0.5165 0.4983 0.5232 0.7118 0.5659 0.7322

Q1, P3, P2 0.5324 0.4941 0.5382 0.8086 0.6117 0.8302

Q1, P3, P1 0.4632 0.5047 0.5322 0.8116 0.6127 0.8324

Q1, P2, P1 0.4524 0.4930 0.5429 0.8146 0.6441 0.8380

P3, P2, P1 0.5016 0.5023 0.5262 0.5838 0.5654 0.6078
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Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q2, Q1, P3 0.5480 0.5086 0.5600 0.8992 0.6988 0.9138

Q3, Q2, Q1, P2 0.4505 0.4997 0.5564 0.8997 0.7017 0.9164

Q3, Q2, Q1, P1 0.4973 0.5053 0.5601 0.8990 0.7030 0.9196

Q3, Q2, P3, P2 0.3998 0.4993 0.5601 0.8376 0.6688 0.8612

Q3, Q2, P3, P1 0.5253 0.4973 0.5558 0.8330 0.6738 0.8556

Q3, Q2, P2, P1 0.4726 0.4972 0.5650 0.8385 0.6811 0.8597

Q3, Q1, P3, P2 0.5030 0.4976 0.5684 0.8803 0.6845 0.8999

Q3, Q1, P3, P1 0.5189 0.5019 0.5595 0.8839 0.6849 0.9013

Q3, Q1, P2, P1 0.5692 0.4994 0.5715 0.8805 0.6962 0.9025

Q3, P3, P2, P1 0.4801 0.4991 0.5576 0.7940 0.6746 0.8170

Q2, Q1, P3, P2 0.4681 0.4966 0.5404 0.8417 0.6239 0.8624

Q2, Q1, P3, P1 0.5009 0.5015 0.5278 0.8378 0.6146 0.8677

Q2, Q1, P2, P1 0.5278 0.4979 0.5304 0.8433 0.6327 0.8690

Q2, P3, P2, P1 0.5242 0.5024 0.5180 0.7022 0.5806 0.7376

Q1, P3, P2, P1 0.4996 0.5033 0.5355 0.8087 0.6158 0.8328

Q3, Q2, Q1, P3, P2 0.5012 0.5006 0.5495 0.8971 0.6889 0.9169

Q3, Q2, Q1, P3, P1 0.5025 0.4969 0.5562 0.8952 0.6887 0.9151

Q3, Q2, Q1, P2, P1 0.5023 0.5019 0.5502 0.8969 0.6895 0.9170

Q3, Q2, P3, P2, P1 0.4946 0.4923 0.5488 0.8279 0.6545 0.8597

Q3, Q1, P3, P2, P1 0.4489 0.4972 0.5666 0.8758 0.6688 0.9042

Q2, Q1, P3, P2, P1 0.5377 0.4995 0.5391 0.8389 0.6154 0.8655

Q3, Q2, Q1, P3, P2, P1 0.4479 0.4974 0.5573 0.8935 0.6681 0.9187

Table M.1: The F1 scores achieved across the combination search by each of the six
classification methods.
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Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.3598 0.5048 0.6806 0.8219 0.5998 0.8188

Q2 0.5441 0.4878 0.5879 0.6858 0.5536 0.6922

Q1 0.5735 0.5026 0.6065 0.8126 0.5959 0.8140

P3 0.4246 0.4935 0.5472 0.5358 0.6388 0.5425

P2 0.4565 0.4985 0.5368 0.5532 0.5572 0.5576

P1 0.6253 0.5001 0.5571 0.5245 0.3899 0.5261

Q3, Q2 0.5595 0.4912 0.6297 0.8414 0.7176 0.8532

Q3, Q1 0.4753 0.5087 0.6324 0.8825 0.7460 0.8950

Q3, P3 0.6086 0.5025 0.5980 0.8021 0.6523 0.8173

Q3, P2 0.3310 0.4895 0.5919 0.8089 0.7679 0.8269

Q3, P1 0.3079 0.5280 0.6021 0.8051 0.7461 0.8266

Q2, Q1 0.4323 0.4902 0.5878 0.8346 0.6016 0.8521

Q2, P3 0.5419 0.4877 0.5744 0.6826 0.2813 0.7126

Q2, P2 0.5505 0.5051 0.5776 0.6862 0.5169 0.7275

Q2, P1 0.6100 0.4976 0.5697 0.6875 0.4716 0.7127

Q1, P3 0.3309 0.4971 0.5476 0.8001 0.5911 0.8168

Q1, P2 0.5495 0.5063 0.5827 0.8019 0.5508 0.8288

Q1, P1 0.3834 0.4930 0.5778 0.8059 0.6787 0.8272

P3, P2 0.4789 0.4946 0.5458 0.5569 0.5443 0.5709

P3, P1 0.5309 0.5066 0.5642 0.5425 0.5406 0.5484

P2, P1 0.5325 0.4961 0.5863 0.5651 0.6096 0.5998

Q3, Q2, Q1 0.4948 0.5163 0.5976 0.8885 0.7801 0.9055

Q3, Q2, P3 0.3895 0.4985 0.5568 0.8323 0.7286 0.8572

Q3, Q2, P2 0.5612 0.5051 0.5851 0.8388 0.6953 0.8545

Q3, Q2, P1 0.4521 0.4890 0.5787 0.8278 0.7259 0.8559

Q3, Q1, P3 0.5637 0.5045 0.5826 0.8707 0.7050 0.8913

Q3, Q1, P2 0.4240 0.5030 0.5974 0.8710 0.7409 0.8923

Q3, Q1, P1 0.6578 0.5094 0.6104 0.8663 0.6902 0.8928

Q3, P3, P2 0.3869 0.4995 0.5834 0.7984 0.6967 0.8211

Q3, P3, P1 0.2820 0.5009 0.5706 0.7914 0.6994 0.8208

Q3, P2, P1 0.5814 0.4880 0.5824 0.7970 0.6789 0.8163

Q2, Q1, P3 0.3260 0.4775 0.5663 0.8303 0.5969 0.8540

Q2, Q1, P2 0.4239 0.4959 0.5625 0.8309 0.6028 0.8636

Q2, Q1, P1 0.3205 0.5176 0.5610 0.8289 0.6418 0.8595

Q2, P3, P2 0.4276 0.4900 0.5714 0.6920 0.5968 0.7328

Q2, P3, P1 0.5554 0.4896 0.5560 0.6859 0.6252 0.7136

Q2, P2, P1 0.4250 0.5134 0.5664 0.6845 0.5546 0.7245

Q1, P3, P2 0.5668 0.4987 0.5330 0.7935 0.5752 0.8208

Q1, P3, P1 0.4876 0.5104 0.5537 0.7998 0.6082 0.8287

Q1, P2, P1 0.6109 0.4885 0.5572 0.8022 0.5978 0.8313

P3, P2, P1 0.3959 0.4901 0.5652 0.5688 0.5532 0.6022

Q3, Q2, Q1, P3 0.3678 0.4879 0.5510 0.8819 0.7136 0.9035

Q3, Q2, Q1, P2 0.4522 0.5111 0.5909 0.8868 0.7224 0.9085

Q3, Q2, Q1, P1 0.5593 0.4867 0.5680 0.8846 0.7250 0.9068

Q3, Q2, P3, P2 0.5688 0.4972 0.5879 0.8231 0.7166 0.8574

Q3, Q2, P3, P1 0.4517 0.5112 0.5707 0.8201 0.7036 0.8504

Q3, Q2, P2, P1 0.5414 0.4904 0.5642 0.8247 0.7091 0.8526

Q3, Q1, P3, P2 0.6603 0.4851 0.5512 0.8655 0.7055 0.8936

Q3, Q1, P3, P1 0.3708 0.4993 0.5781 0.8655 0.7178 0.8951
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Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q1, P2, P1 0.4094 0.4967 0.5752 0.8612 0.7042 0.8926

Q3, P3, P2, P1 0.5180 0.5097 0.5724 0.7834 0.6593 0.8182

Q2, Q1, P3, P2 0.3984 0.4901 0.5564 0.8199 0.6451 0.8568

Q2, Q1, P3, P1 0.3787 0.5159 0.5556 0.8243 0.6639 0.8587

Q2, Q1, P2, P1 0.4432 0.5153 0.5587 0.8324 0.6442 0.8633

Q2, P3, P2, P1 0.4612 0.4878 0.5385 0.6811 0.5837 0.7262

Q1, P3, P2, P1 0.4762 0.4917 0.5679 0.7953 0.6449 0.8315

Q3, Q2, Q1, P3, P2 0.3675 0.5049 0.5659 0.8802 0.6844 0.9133

Q3, Q2, Q1, P3, P1 0.3552 0.4925 0.5784 0.8766 0.6848 0.9073

Q3, Q2, Q1, P2, P1 0.4635 0.4996 0.5754 0.8829 0.6910 0.9041

Q3, Q2, P3, P2, P1 0.4797 0.5169 0.5518 0.8142 0.6891 0.8544

Q3, Q1, P3, P2, P1 0.5274 0.5069 0.5507 0.8625 0.6738 0.8986

Q2, Q1, P3, P2, P1 0.3947 0.4911 0.5493 0.8258 0.6190 0.8556

Q3, Q2, Q1, P3, P2, P1 0.6385 0.4859 0.5511 0.8813 0.6588 0.9102

Table M.2: The sensitivities achieved across the combination search by each of the
six classification methods.
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Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.5493 0.5139 0.6566 0.8228 0.7371 0.8157

Q2 0.5692 0.5344 0.5047 0.7276 0.4486 0.7161

Q1 0.3486 0.4758 0.5038 0.8320 0.4329 0.8214

P3 0.5481 0.5093 0.5081 0.5713 0.3544 0.5399

P2 0.5187 0.4945 0.5198 0.5843 0.4484 0.5512

P1 0.3754 0.5042 0.4859 0.5622 0.6088 0.5362

Q3, Q2 0.4475 0.5164 0.5770 0.8529 0.6967 0.8576

Q3, Q1 0.5576 0.4926 0.5568 0.9068 0.7137 0.9117

Q3, P3 0.4395 0.4902 0.5738 0.8070 0.6754 0.8137

Q3, P2 0.5740 0.5033 0.5785 0.8196 0.6718 0.8155

Q3, P1 0.6699 0.4880 0.5666 0.8140 0.7063 0.8190

Q2, Q1 0.5561 0.4983 0.5013 0.8714 0.5452 0.8726

Q2, P3 0.4769 0.5015 0.4840 0.7305 0.7573 0.7243

Q2, P2 0.5257 0.4926 0.4912 0.7273 0.5257 0.7245

Q2, P1 0.4155 0.5109 0.5055 0.7252 0.5922 0.7275

Q1, P3 0.6008 0.5166 0.5400 0.8229 0.5482 0.8230

Q1, P2 0.5277 0.4882 0.5251 0.8305 0.5946 0.8334

Q1, P1 0.6209 0.5039 0.5284 0.8266 0.6383 0.8333

P3, P2 0.4842 0.5013 0.5269 0.5910 0.5365 0.5743

P3, P1 0.4669 0.4947 0.4970 0.5703 0.5050 0.5589

P2, P1 0.5476 0.5061 0.4897 0.6010 0.4227 0.6004

Q3, Q2, Q1 0.5302 0.4803 0.5480 0.9208 0.6575 0.9265

Q3, Q2, P3 0.4972 0.5203 0.5620 0.8405 0.6644 0.8545

Q3, Q2, P2 0.4360 0.5049 0.5558 0.8451 0.7141 0.8653

Q3, Q2, P1 0.4681 0.5123 0.5541 0.8504 0.6922 0.8618

Q3, Q1, P3 0.4721 0.4954 0.5622 0.8933 0.7204 0.9088

Q3, Q1, P2 0.6153 0.4970 0.5648 0.8976 0.6931 0.9104

Q3, Q1, P1 0.3514 0.4892 0.5621 0.9000 0.7629 0.9144

Q3, P3, P2 0.5095 0.5090 0.5507 0.8020 0.6720 0.8218

Q3, P3, P1 0.6059 0.5064 0.5617 0.8066 0.6830 0.8159

Q3, P2, P1 0.4470 0.5129 0.5555 0.8028 0.7279 0.8189

Q2, Q1, P3 0.5894 0.5084 0.5215 0.8592 0.6453 0.8677

Q2, Q1, P2 0.5079 0.4979 0.5207 0.8593 0.5977 0.8755

Q2, Q1, P1 0.6118 0.4860 0.5203 0.8607 0.6498 0.8749

Q2, P3, P2 0.5679 0.5029 0.4971 0.7274 0.5432 0.7410

Q2, P3, P1 0.4831 0.5021 0.5011 0.7173 0.4787 0.7413

Q2, P2, P1 0.5484 0.4934 0.5080 0.7270 0.5704 0.7368

Q1, P3, P2 0.5200 0.4927 0.5402 0.8190 0.6278 0.8369

Q1, P3, P1 0.4559 0.5028 0.5245 0.8198 0.6148 0.8351

Q1, P2, P1 0.4061 0.4945 0.5376 0.8232 0.6662 0.8430

P3, P2, P1 0.5371 0.5064 0.5123 0.5900 0.5703 0.6103

Q3, Q2, Q1, P3 0.6161 0.5157 0.5636 0.9135 0.6910 0.9226

Q3, Q2, Q1, P2 0.4501 0.4960 0.5432 0.9104 0.6906 0.9231

Q3, Q2, Q1, P1 0.4769 0.5116 0.5571 0.9108 0.6911 0.9306

Q3, Q2, P3, P2 0.3576 0.5001 0.5493 0.8481 0.6448 0.8642

Q3, Q2, P3, P1 0.5516 0.4927 0.5502 0.8423 0.6587 0.8596

Q3, Q2, P2, P1 0.4514 0.4995 0.5654 0.8485 0.6667 0.8652

Q3, Q1, P3, P2 0.4502 0.5018 0.5753 0.8920 0.6736 0.9052

Q3, Q1, P3, P1 0.5708 0.5029 0.5523 0.8986 0.6678 0.9065
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Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q1, P2, P1 0.6328 0.5003 0.5701 0.8957 0.6920 0.9107

Q3, P3, P2, P1 0.4682 0.4956 0.5519 0.8011 0.6825 0.8163

Q2, Q1, P3, P2 0.4894 0.4988 0.5346 0.8577 0.6144 0.8667

Q2, Q1, P3, P1 0.5418 0.4968 0.5179 0.8477 0.5928 0.8747

Q2, Q1, P2, P1 0.5582 0.4922 0.5202 0.8513 0.6274 0.8734

Q2, P3, P2, P1 0.5467 0.5073 0.5109 0.7137 0.5794 0.7443

Q1, P3, P2, P1 0.5075 0.5073 0.5237 0.8179 0.6029 0.8338

Q3, Q2, Q1, P3, P2 0.5460 0.4992 0.5434 0.9110 0.6913 0.9201

Q3, Q2, Q1, P3, P1 0.5520 0.4984 0.5477 0.9103 0.6909 0.9218

Q3, Q2, Q1, P2, P1 0.5154 0.5028 0.5407 0.9084 0.6888 0.9281

Q3, Q2, P3, P2, P1 0.4996 0.4843 0.5478 0.8377 0.6378 0.8638

Q3, Q1, P3, P2, P1 0.4262 0.4940 0.5729 0.8862 0.6664 0.9089

Q2, Q1, P3, P2, P1 0.5904 0.5024 0.5354 0.8485 0.6138 0.8732

Q3, Q2, Q1, P3, P2, P1 0.3930 0.5013 0.5597 0.9035 0.6729 0.9261

Table M.3: The specificities achieved across the combination search by each of the
six classification methods.
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Appendix N

AAA combination search results

The F1 scores, sensitivities, and specificities achieved for AAA classification when using each of the six ML methods

are shown in Table N.1, N.2, and N.3 respectively.

Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.4670 0.4881 0.8454 0.9095 0.8606 0.9294

Q2 0.5754 0.4952 0.8246 0.9516 0.9092 0.9640

Q1 0.4440 0.4843 0.9481 0.9741 0.9697 0.9805

P3 0.4999 0.5102 0.8664 0.9027 0.8692 0.9226

P2 0.5782 0.4944 0.8717 0.9087 0.8793 0.9311

P1 0.4790 0.4826 0.8212 0.8771 0.8416 0.8884

Q3, Q2 0.3850 0.4983 0.8895 0.9753 0.9249 0.9843

Q3, Q1 0.4982 0.5029 0.9521 0.9840 0.9749 0.9919

Q3, P3 0.5126 0.4960 0.9215 0.9483 0.9249 0.9767

Q3, P2 0.6111 0.4958 0.9355 0.9543 0.9385 0.9770

Q3, P1 0.4737 0.4971 0.9286 0.9498 0.9448 0.9702

Q2, Q1 0.5523 0.4970 0.9523 0.9868 0.9718 0.9928

Q2, P3 0.5080 0.4994 0.9305 0.9604 0.9430 0.9805

Q2, P2 0.4756 0.4996 0.9371 0.9712 0.9552 0.9849

Q2, P1 0.4032 0.4975 0.9168 0.9689 0.9413 0.9828

Q1, P3 0.5350 0.5046 0.9630 0.9808 0.9741 0.9870

Q1, P2 0.4613 0.4981 0.9681 0.9820 0.9756 0.9900

Q1, P1 0.4909 0.5003 0.9747 0.9798 0.9801 0.9852

P3, P2 0.5343 0.5018 0.9247 0.9335 0.9305 0.9677

P3, P1 0.4857 0.5078 0.9321 0.9345 0.9311 0.9675

P2, P1 0.5431 0.5039 0.9213 0.9365 0.9405 0.9625

Q3, Q2, Q1 0.4890 0.5164 0.9603 0.9912 0.9729 0.9962

Q3, Q2, P3 0.5485 0.4993 0.9452 0.9771 0.9436 0.9905

Q3, Q2, P2 0.5359 0.4998 0.9542 0.9791 0.9568 0.9910

Q3, Q2, P1 0.4374 0.5070 0.9518 0.9803 0.9503 0.9906

Q3, Q1, P3 0.5193 0.5085 0.9663 0.9861 0.9740 0.9936

Q3, Q1, P2 0.5325 0.5034 0.9747 0.9884 0.9784 0.9939

Q3, Q1, P1 0.4819 0.4943 0.9781 0.9850 0.9796 0.9936

Q3, P3, P2 0.4106 0.4991 0.9479 0.9586 0.9434 0.9807

Q3, P3, P1 0.4291 0.4901 0.9560 0.9598 0.9491 0.9846

Q3, P2, P1 0.4537 0.4948 0.9492 0.9647 0.9515 0.9804

Q2, Q1, P3 0.5071 0.5051 0.9685 0.9877 0.9795 0.9944

Q2, Q1, P2 0.4853 0.4951 0.9724 0.9893 0.9797 0.9957

Q2, Q1, P1 0.4459 0.4994 0.9752 0.9885 0.9816 0.9952

Q2, P3, P2 0.4060 0.4932 0.9566 0.9714 0.9576 0.9873

Q2, P3, P1 0.5857 0.4972 0.9577 0.9722 0.9582 0.9882

Q2, P2, P1 0.4776 0.5030 0.9497 0.9755 0.9671 0.9892

Q1, P3, P2 0.4224 0.4974 0.9729 0.9823 0.9788 0.9904

Q1, P3, P1 0.4944 0.4987 0.9747 0.9813 0.9797 0.9897

Q1, P2, P1 0.5362 0.5051 0.9756 0.9828 0.9827 0.9917

P3, P2, P1 0.4406 0.5001 0.9479 0.9455 0.9517 0.9750

386



Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q2, Q1, P3 0.5284 0.5135 0.9711 0.9914 0.9756 0.9965

Q3, Q2, Q1, P2 0.5279 0.5066 0.9784 0.9923 0.9794 0.9972

Q3, Q2, Q1, P1 0.4331 0.4983 0.9790 0.9903 0.9792 0.9961

Q3, Q2, P3, P2 0.5090 0.5041 0.9636 0.9797 0.9582 0.9930

Q3, Q2, P3, P1 0.5250 0.4963 0.9665 0.9784 0.9633 0.9922

Q3, Q2, P2, P1 0.4600 0.4887 0.9646 0.9829 0.9724 0.9937

Q3, Q1, P3, P2 0.4994 0.5003 0.9759 0.9880 0.9771 0.9939

Q3, Q1, P3, P1 0.5058 0.5060 0.9779 0.9867 0.9782 0.9942

Q3, Q1, P2, P1 0.4981 0.4974 0.9781 0.9869 0.9778 0.9950

Q3, P3, P2, P1 0.4679 0.5050 0.9634 0.9651 0.9595 0.9856

Q2, Q1, P3, P2 0.4910 0.4989 0.9776 0.9901 0.9759 0.9954

Q2, Q1, P3, P1 0.4893 0.5041 0.9794 0.9892 0.9772 0.9948

Q2, Q1, P2, P1 0.4849 0.4994 0.9771 0.9911 0.9800 0.9957

Q2, P3, P2, P1 0.4963 0.5081 0.9644 0.9748 0.9684 0.9903

Q1, P3, P2, P1 0.5090 0.5054 0.9763 0.9857 0.9788 0.9910

Q3, Q2, Q1, P3, P2 0.4588 0.4997 0.9781 0.9915 0.9739 0.9970

Q3, Q2, Q1, P3, P1 0.5224 0.4957 0.9800 0.9920 0.9767 0.9970

Q3, Q2, Q1, P2, P1 0.5003 0.4947 0.9823 0.9912 0.9808 0.9966

Q3, Q2, P3, P2, P1 0.4667 0.4900 0.9708 0.9828 0.9668 0.9948

Q3, Q1, P3, P2, P1 0.5322 0.4962 0.9801 0.9874 0.9775 0.9938

Q2, Q1, P3, P2, P1 0.4450 0.5064 0.9801 0.9892 0.9808 0.9961

Q3, Q2, Q1, P3, P2, P1 0.5083 0.4991 0.9820 0.9912 0.9785 0.9970

Table N.1: The F1 scores achieved across the combination search by each of the six
classification methods.
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Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.5683 0.5120 0.8568 0.8878 0.8661 0.9300

Q2 0.5738 0.5089 0.8136 0.9355 0.9100 0.9638

Q1 0.4451 0.4962 0.9517 0.9654 0.9673 0.9799

P3 0.4846 0.5035 0.8785 0.8765 0.8660 0.9202

P2 0.4451 0.5110 0.8712 0.9005 0.8818 0.9352

P1 0.6616 0.4902 0.8491 0.8514 0.8308 0.8770

Q3, Q2 0.5927 0.4676 0.8868 0.9652 0.9308 0.9835

Q3, Q1 0.5541 0.5333 0.9508 0.9757 0.9747 0.9907

Q3, P3 0.4269 0.4894 0.9222 0.9282 0.9266 0.9746

Q3, P2 0.4746 0.5016 0.9325 0.9382 0.9379 0.9819

Q3, P1 0.5850 0.4760 0.9213 0.9317 0.9462 0.9694

Q2, Q1 0.2504 0.5034 0.9534 0.9810 0.9738 0.9919

Q2, P3 0.4111 0.4591 0.9285 0.9464 0.9439 0.9793

Q2, P2 0.5865 0.5093 0.9345 0.9604 0.9544 0.9836

Q2, P1 0.5669 0.4940 0.9227 0.9552 0.9471 0.9817

Q1, P3 0.4266 0.4741 0.9626 0.9729 0.9743 0.9850

Q1, P2 0.5075 0.4991 0.9664 0.9743 0.9780 0.9895

Q1, P1 0.5143 0.5055 0.9742 0.9715 0.9806 0.9841

P3, P2 0.4414 0.4981 0.9287 0.9209 0.9379 0.9673

P3, P1 0.5355 0.4956 0.9461 0.9109 0.9337 0.9631

P2, P1 0.4090 0.4957 0.9311 0.9260 0.9359 0.9596

Q3, Q2, Q1 0.6548 0.5014 0.9592 0.9864 0.9760 0.9954

Q3, Q2, P3 0.4363 0.4885 0.9445 0.9689 0.9482 0.9897

Q3, Q2, P2 0.5720 0.5284 0.9506 0.9704 0.9620 0.9904

Q3, Q2, P1 0.4962 0.5110 0.9455 0.9723 0.9511 0.9914

Q3, Q1, P3 0.5329 0.4857 0.9666 0.9793 0.9774 0.9913

Q3, Q1, P2 0.3570 0.4931 0.9701 0.9820 0.9794 0.9929

Q3, Q1, P1 0.3667 0.5022 0.9771 0.9755 0.9805 0.9924

Q3, P3, P2 0.6250 0.5064 0.9434 0.9445 0.9426 0.9822

Q3, P3, P1 0.4716 0.4865 0.9564 0.9413 0.9473 0.9843

Q3, P2, P1 0.5103 0.4982 0.9447 0.9522 0.9575 0.9819

Q2, Q1, P3 0.4499 0.4986 0.9676 0.9815 0.9797 0.9933

Q2, Q1, P2 0.6389 0.4936 0.9689 0.9838 0.9795 0.9947

Q2, Q1, P1 0.6675 0.5043 0.9741 0.9817 0.9811 0.9945

Q2, P3, P2 0.5890 0.4948 0.9564 0.9609 0.9598 0.9864

Q2, P3, P1 0.4238 0.5033 0.9606 0.9619 0.9578 0.9868

Q2, P2, P1 0.5582 0.5024 0.9540 0.9660 0.9686 0.9881

Q1, P3, P2 0.5561 0.4904 0.9703 0.9736 0.9786 0.9898

Q1, P3, P1 0.6229 0.5165 0.9753 0.9725 0.9799 0.9881

Q1, P2, P1 0.4489 0.5084 0.9753 0.9750 0.9837 0.9896

P3, P2, P1 0.6036 0.5139 0.9563 0.9278 0.9522 0.9726

Q3, Q2, Q1, P3 0.4318 0.5058 0.9684 0.9870 0.9803 0.9953

Q3, Q2, Q1, P2 0.5271 0.4841 0.9751 0.9879 0.9791 0.9959

Q3, Q2, Q1, P1 0.6257 0.4871 0.9768 0.9848 0.9794 0.9944

Q3, Q2, P3, P2 0.4330 0.5113 0.9615 0.9692 0.9620 0.9922

Q3, Q2, P3, P1 0.4955 0.4973 0.9639 0.9675 0.9661 0.9925

Q3, Q2, P2, P1 0.4783 0.4925 0.9610 0.9737 0.9660 0.9930

Q3, Q1, P3, P2 0.4914 0.4957 0.9741 0.9818 0.9795 0.9932

Q3, Q1, P3, P1 0.5768 0.5028 0.9778 0.9794 0.9788 0.9928
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Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q1, P2, P1 0.4613 0.4924 0.9749 0.9805 0.9771 0.9940

Q3, P3, P2, P1 0.6938 0.5114 0.9619 0.9516 0.9633 0.9856

Q2, Q1, P3, P2 0.5969 0.4915 0.9770 0.9861 0.9772 0.9944

Q2, Q1, P3, P1 0.5361 0.5044 0.9800 0.9846 0.9770 0.9938

Q2, Q1, P2, P1 0.5999 0.5042 0.9753 0.9867 0.9815 0.9944

Q2, P3, P2, P1 0.4892 0.4885 0.9676 0.9650 0.9693 0.9887

Q1, P3, P2, P1 0.3810 0.5027 0.9761 0.9790 0.9791 0.9887

Q3, Q2, Q1, P3, P2 0.5180 0.5006 0.9749 0.9866 0.9752 0.9959

Q3, Q2, Q1, P3, P1 0.4600 0.4811 0.9805 0.9873 0.9794 0.9963

Q3, Q2, Q1, P2, P1 0.4965 0.5034 0.9824 0.9870 0.9808 0.9952

Q3, Q2, P3, P2, P1 0.4020 0.5030 0.9704 0.9745 0.9692 0.9944

Q3, Q1, P3, P2, P1 0.4284 0.5086 0.9809 0.9804 0.9763 0.9925

Q2, Q1, P3, P2, P1 0.5795 0.4863 0.9812 0.9836 0.9811 0.9949

Q3, Q2, Q1, P3, P2, P1 0.4242 0.5024 0.9802 0.9861 0.9778 0.9959

Table N.2: The sensitivities achieved across the combination search by each of the
six classification methods.
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Classification method

Input combination NB LR SVM RF MLP GB

Q3 0.4362 0.4805 0.8371 0.9276 0.8565 0.9290

Q2 0.5761 0.4908 0.8324 0.9663 0.9087 0.9643

Q1 0.4437 0.4806 0.9450 0.9825 0.9720 0.9811

P3 0.5050 0.5126 0.8572 0.9244 0.8718 0.9248

P2 0.6324 0.4890 0.8722 0.9156 0.8775 0.9277

P1 0.4215 0.4803 0.8018 0.8972 0.8496 0.8976

Q3, Q2 0.3355 0.5086 0.8917 0.9851 0.9200 0.9851

Q3, Q1 0.4797 0.4927 0.9533 0.9922 0.9751 0.9931

Q3, P3 0.5422 0.4982 0.9210 0.9666 0.9235 0.9788

Q3, P2 0.6712 0.4939 0.9383 0.9691 0.9392 0.9724

Q3, P1 0.4392 0.5041 0.9351 0.9662 0.9436 0.97103

Q2, Q1 0.6675 0.4949 0.9514 0.9926 0.9701 0.9938

Q2, P3 0.5410 0.5129 0.9324 0.9735 0.9423 0.9817

Q2, P2 0.4411 0.4964 0.9394 0.9815 0.9561 0.9862

Q2, P1 0.3619 0.4987 0.9119 0.9819 0.9363 0.9840

Q1, P3 0.5747 0.5149 0.9635 0.9885 0.9741 0.9890

Q1, P2 0.4475 0.4979 0.9697 0.9896 0.9734 0.9906

Q1, P1 0.4834 0.4986 0.9753 0.9879 0.9797 0.9863

P3, P2 0.5682 0.5031 0.9213 0.9447 0.9241 0.9681

P3, P1 0.4698 0.5120 0.9199 0.9552 0.9289 0.9718

P2, P1 0.5932 0.5067 0.9130 0.9459 0.9446 0.9652

Q3, Q2, Q1 0.4354 0.5217 0.9615 0.9961 0.9700 0.9970

Q3, Q2, P3 0.5910 0.5030 0.9460 0.9850 0.9396 0.9914

Q3, Q2, P2 0.5227 0.4904 0.9575 0.9876 0.9522 0.9917

Q3, Q2, P1 0.4210 0.5057 0.9576 0.9880 0.9496 0.9899

Q3, Q1, P3 0.5146 0.5163 0.9662 0.9928 0.9708 0.9960

Q3, Q1, P2 0.5963 0.5069 0.9792 0.9947 0.9775 0.9950

Q3, Q1, P1 0.5186 0.4918 0.9792 0.9944 0.9789 0.9949

Q3, P3, P2 0.3553 0.4967 0.9520 0.9716 0.9442 0.9794

Q3, P3, P1 0.4176 0.4913 0.9557 0.9769 0.9509 0.9850

Q3, P2, P1 0.4371 0.4938 0.9533 0.9764 0.9461 0.9791

Q2, Q1, P3 0.5266 0.5074 0.9695 0.9939 0.9794 0.9956

Q2, Q1, P2 0.4362 0.4957 0.9758 0.9948 0.9799 0.9967

Q2, Q1, P1 0.3824 0.4979 0.9764 0.9952 0.9822 0.9959

Q2, P3, P2 0.3595 0.4928 0.9568 0.9814 0.9557 0.9882

Q2, P3, P1 0.6529 0.4952 0.9552 0.9821 0.9586 0.9896

Q2, P2, P1 0.4524 0.5033 0.9460 0.9847 0.9658 0.9903

Q1, P3, P2 0.3867 0.4998 0.9754 0.9908 0.9791 0.9910

Q1, P3, P1 0.4523 0.4929 0.9743 0.9898 0.9796 0.9913

Q1, P2, P1 0.5683 0.5040 0.9759 0.9904 0.9819 0.9939

P3, P2, P1 0.3946 0.4955 0.9405 0.9614 0.9513 0.9774

Q3, Q2, Q1, P3 0.5631 0.5162 0.9738 0.9958 0.9713 0.9977

Q3, Q2, Q1, P2 0.5282 0.5143 0.9816 0.9967 0.9797 0.9986

Q3, Q2, Q1, P1 0.3799 0.5021 0.9813 0.9958 0.9792 0.9978

Q3, Q2, P3, P2 0.5350 0.5018 0.9657 0.9899 0.9548 0.9939

Q3, Q2, P3, P1 0.5356 0.4960 0.9690 0.9890 0.9608 0.9921

Q3, Q2, P2, P1 0.4546 0.4875 0.9680 0.9918 0.9785 0.9944

Q3, Q1, P3, P2 0.5021 0.5019 0.9777 0.9941 0.9749 0.9947

Q3, Q1, P3, P1 0.4818 0.5072 0.9781 0.9939 0.9778 0.9956

Pg. 390 / 416



Classification method

Input combination NB LR SVM RF MLP GB

Q3, Q1, P2, P1 0.5104 0.4991 0.9813 0.9932 0.9785 0.9961

Q3, P3, P2, P1 0.3990 0.5029 0.9648 0.9777 0.9561 0.9856

Q2, Q1, P3, P2 0.4566 0.5014 0.9782 0.9942 0.9748 0.9964

Q2, Q1, P3, P1 0.4742 0.5041 0.9789 0.9938 0.9774 0.9958

Q2, Q1, P2, P1 0.4481 0.4979 0.9790 0.9955 0.9786 0.9970

Q2, P3, P2, P1 0.4987 0.5149 0.9615 0.9843 0.9677 0.9919

Q1, P3, P2, P1 0.5527 0.5064 0.9765 0.9924 0.9787 0.9933

Q3, Q2, Q1, P3, P2 0.4412 0.4995 0.9813 0.9965 0.9727 0.9981

Q3, Q2, Q1, P3, P1 0.5446 0.5006 0.9796 0.9967 0.9743 0.9978

Q3, Q2, Q1, P2, P1 0.5016 0.4919 0.9823 0.9955 0.9808 0.9981

Q3, Q2, P3, P2, P1 0.4864 0.4858 0.9712 0.9910 0.9647 0.9952

Q3, Q1, P3, P2, P1 0.5699 0.4922 0.9794 0.9944 0.9788 0.9951

Q2, Q1, P3, P2, P1 0.4066 0.5133 0.9792 0.9947 0.9806 0.9973

Q3, Q2, Q1, P3, P2, P1 0.5370 0.4981 0.9839 0.9964 0.9792 0.9981

Table N.3: The specificities achieved across the combination search by each of the
six classification methods.
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Appendix O

AAA-L combination search results

The F1 scores, sensitivities, and specificities achieved for AAA-L classification when employing the GB method are

shown in Table O.1.

Input combination F1 Sen. Spec.

Q3 0.8633 0.8561 0.8689

Q2 0.9010 0.9103 0.8934

Q1 0.9528 0.9630 0.9436

P3 0.8305 0.8383 0.8250

P2 0.8380 0.8529 0.8274

P1 0.8005 0.7700 0.8209

Q3, Q2 0.9387 0.9390 0.9385

Q3, Q1 0.9683 0.9681 0.9685

Q3, P3 0.9045 0.8968 0.9109

Q3, P2 0.9151 0.9127 0.9172

Q3, P1 0.8989 0.8942 0.9028

Q2, Q1 0.9711 0.9741 0.9683

Q2, P3 0.9176 0.9256 0.9109

Q2, P2 0.9229 0.9328 0.9145

Q2, P1 0.9234 0.9258 0.9215

Q1, P3 0.9569 0.9558 0.9580

Q1, P2 0.9606 0.9645 0.9570

Q1, P1 0.9618 0.9609 0.9628

P3, P2 0.8852 0.8889 0.8824

P3, P1 0.8877 0.8889 0.8869

P2, P1 0.884 0.8858 0.8838

Q3, Q2, Q1 0.9777 0.9788 0.9767

Q3, Q2, P3 0.9454 0.9513 0.9402

Q3, Q2, P2 0.9455 0.9498 0.9417

Q3, Q2, P1 0.9481 0.9537 0.9431

Q3, Q1, P3 0.9693 0.9743 0.9647

Q3, Q1, P2 0.9695 0.9748 0.9647

Q3, Q1, P1 0.9668 0.9642 0.9693

Q3, P3, P2 0.9148 0.9105 0.9186

Q3, P3, P1 0.9178 0.9232 0.9133

Q3, P2, P1 0.9217 0.9163 0.9265

Q2, Q1, P3 0.9770 0.9788 0.9753

Q2, Q1, P2 0.9715 0.9729 0.9702

Q2, Q1, P1 0.9737 0.9762 0.9714

Q2, P3, P2 0.9327 0.9434 0.9234

Q2, P3, P1 0.9285 0.9299 0.9273

Q2, P2, P1 0.9345 0.9304 0.9381

Q1, P3, P2 0.9606 0.9640 0.9575

Q1, P3, P1 0.9637 0.9676 0.9601

Q1, P2, P1 0.9607 0.9625 0.9592

P3, P2, P1 0.8996 0.9038 0.8963

Q3, Q2, Q1, P3 0.9767 0.9781 0.9755
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Input combination F1 Sen. Spec.

Q3, Q2, Q1, P2 0.9788 0.9786 0.9791

Q3, Q2, Q1, P1 0.9759 0.9791 0.9729

Q3, Q2, P3, P2 0.9484 0.9510 0.9462

Q3, Q2, P3, P1 0.9487 0.9525 0.9453

Q3, Q2, P2, P1 0.9472 0.9529 0.9421

Q3, Q1, P3, P2 0.9670 0.9654 0.9685

Q3, Q1, P3, P1 0.9673 0.9678 0.9669

Q3, Q1, P2, P1 0.9704 0.9683 0.9724

Q3, P3, P2, P1 0.9217 0.9227 0.9210

Q2, Q1, P3, P2 0.9754 0.9781 0.9729

Q2, Q1, P3, P1 0.9774 0.9784 0.9765

Q2, Q1, P2, P1 0.9772 0.9776 0.9770

Q2, P3, P2, P1 0.9352 0.9436 0.9280

Q1, P3, P2, P1 0.9587 0.9659 0.9522

Q3, Q2, Q1, P3, P2 0.9744 0.9731 0.9758

Q3, Q2, Q1, P3, P1 0.9820 0.9834 0.9808

Q3, Q2, Q1, P2, P1 0.9802 0.9796 0.9808

Q3, Q2, P3, P2, P1 0.9513 0.9541 0.9489

Q3, Q1, P3, P2, P1 0.9725 0.9712 0.9738

Q2, Q1, P3, P2, P1 0.9757 0.9815 0.9702

Q3, Q2, Q1, P3, P2, P1 0.9809 0.9808 0.9810

Table O.1: The F1 scores, sensitivities and specificities achieved across the
combination search by the GB method.
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Appendix P

GB results for all disease forms

The F1 scores achieved for all forms of disease classification (including AAA-L) when providing each combination

of input measurements are shown when employing the GB method in Figure P.1.
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