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1 Introduction

One of the most remarkable predictions of string theory is the existence of UV complete
quantum field theories in 5 (and 6) spacetime dimensions. This was argued for, long ago,
using a combination of considerations in terms of their effective gauge theory description in
the IR, their embedding into string/M-theory as the worldvolume theory of branes as well
as their holographic description in type IIA supergravity [1–5]. Now, over two decades after
these initial studies, each of these three avenues has been extensively studied and developed
further. Many authors have focused on possible classification of all 5d superconformal field
theories (SCFTs), for instance in [6–8]. On the supergravity front, type IIB solutions dual
to brane webs have been put to test by comparison with conformal field theory (CFT)
observables in [9, 10] among others.

A convenient way to realise 5d SCFTs is in terms of 5-brane webs in type IIB string
theory [3]. The web description is particularly useful for studying the moduli space of
vacua. 5d N = 1 theories admit a Coulomb branch (CB) which is real and will not play a
significant role in our discussion. The Higgs branch (HB) on the other hand is HyperKahler
and has been subject to many recent investigations [11–23]. The core idea is to encode
the Higgs branch chiral ring of a given 5d theory in terms of its magnetic quiver. The
magnetic quiver is a 3d N = 4 quiver gauge theory whose Coulomb branch is isomorphic
to the Higgs branch of the parent 5d theory of interest. The programme’s success is due
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to a flurry of recent results [24–27] in computing the Coulomb branch Hilbert series of 3d
N = 4 theories.

In this paper we initiate a study of the Higgs branch of 5d SCFTs engineered using
brane webs with O7+-planes. The relevance of this study is the following. The usual brane
web description of 5d SCFTs [3] can be enriched with the inclusion of orientifold planes.
There are two types of orientifold planes whose inclusion in the brane web leads to consistent
5d SCFTs, namely O5-planes [28, 29] and O7-planes [30]. Magnetic quivers for 5-brane
webs with O5-planes have already been explored in [11, 12, 18], but an analogous study of
brane webs with O7-planes is so far missing from the literature. There are two variants of
the O7-plane, namely the O7+ and O7−. The latter of these is non-perturbatively resolved
into a pair of (p, q) 7-branes at strong string coupling [31, 32], leading therefore to an
ordinary brane web. On the other hand the O7+ plane is an exact configuration and so
will give rise to novel magnetic quivers.

The strategy for proposing the magnetic quivers is the following. We focus on SO(N)
gauge theories with Nv hypermultiplets in the vector representation. This is a natural
set of theories to study, as they admit a realization with a brane-web involving an O7+

plane, and also another realization with a brane-web involving O5−/Õ5−-planes. Since the
magnetic quivers for the latter can be obtained using the techniques of [11, 18] they serve
as a consistency check for our proposal for the magnetic quivers obtained from the web
with O7+-plane.

As a main result, we find that the magnetic quivers for the webs with O7+-planes
are always framed non-simply-laced quivers. The derivation of the magnetic quivers was
performed with some educated guesswork loosely motivated by intuition stemming from
S-duality of type IIB, and some existing results on non-simply laced quivers and brane
systems [25]. What gives these conjectural magnetic quivers a firm basis is the agreement
of their CB Hilbert series with that computed from the magnetic quivers for the same
theory, derived from an O5-plane construction.

The main result of our study is summarised in table 1. Here we illustrate the non-
simply-laced quivers which are claimed to be the magnetic quivers for the UV fixed point
limit of 5d SO(N) gauge theory with Nv vectors. One advantage of these magnetic quivers
to the orthosymplectic (OSp) quivers obtained from the web with O5-planes is that they
are true for even or odd N .

The rest of the paper is organised as follows. In section 2 we review known results
about various aspects of Coulomb branch Hilbert series, and we discuss in particular the
peculiar aspects arising in the computation of such HS when the quiver is non-simply laced.
Section 3 contains the main results of our work. Here we explain how to read off the Higgs
branch directions from brane webs with O7+-plane and obtain the magnetic quivers. We
then proceed to compute the Hilbert series of the magnetic quivers obtained from brane
webs with O7+-plane and match the result with magnetic quivers obtained for the same
theory but constructed using an O5-plane. Section 4 contains our conclusions and hints
for further studies.
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MQ Symmetry

Nv = N − 3

1 2
· · ·

Nv Nv + 1 2

2

usp(2Nv + 2)

Nv = N − 4

1 2
· · ·

Nv − 1 Nv 2 1

2

usp(2Nv)⊕ usp(2)

0 ≤ Nv ≤ N − 5
Nv ∈ 2Z + 1

1 2
· · ·

Nv − 1 Nv 1

1 3⌈
N−Nv−6

2

⌉
usp(2Nv)⊕ u(1)

0 ≤ Nv ≤ N − 5
Nv ∈ 2Z

1 2
· · ·

Nv − 1 Nv 1

1 4−
⌈

N
2

⌉
+
⌊

N
2

⌋
⌈

N−Nv−6
2

⌉
usp(2Nv)⊕ u(1)

Table 1. Magnetic quivers for the infinite gauge coupling limit of 5d SO(N) gauge theory with
Nv hypermultiplets transforming in the vector representation of SO(N). The reader is referred to
section 2 for the notation we use in the quivers.

2 Coulomb branch Hilbert series for non-simply laced quivers

In this section we recall some facts about the Hilbert series for the Coulomb branch of a
3d N = 4 gauge theory. After some general remarks, we will discuss peculiar features that
arise when the quiver is non-simply laced. We refer the reader to [24] for further discussion.

A Coulomb branch Hilbert series counts the number of dressed monopole operators,
graded by their conformal dimension. Let G = ∏n

i=1Gi be the gauge group of the theory,
which we assume for the moment to be described by a simply-laced quiver. A given bare
monopole operator has magnetic charges ( ~m1, . . . ~mn) taking values in the weight lattice
Γ(Ĝ) of the GNO dual of the gauge group Ĝ. The conformal dimension of a bare monopole
operator of magnetic charges ( ~m1, . . . ~mn) is given by the monopole dimension formula

∆(m) = −
∑
α∈∆+

|α(m)|+ 1
2

n∑
i=1

∑
ρi∈Ri

|ρi(m)| . (2.1)

The first sum in (2.1) is over the positive roots α ∈ ∆+ of the Lie algebra of the gauge group,
and correspond to the contributions of the vector multiplets to the monopole dimension.
The second sum is over the weights ρi ∈ Ri of the representations of the gauge Lie algebra in
which the hypermultiplets transform. Following the conventions of [33] we call a 3d N = 4
theory good, if all the monopole operators have dimension ∆ > 1

2 , which is the unitarity
bound for scalar operators in a 3d CFT. If all monopole operators have dimension ∆ ≥ 1

2
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and in particular some of them saturate the unitarity bound, we call the theory ugly. If
some monopole operator has dimension ∆ < 1

2 we call the theory bad.
Under the hypothesis that the theory is not bad, the Coulomb Branch Hilbert se-

ries reads
HSC(t) =

∑
~m1

∑
~m2

· · ·
∑
~mn

t∆( ~m1,..., ~mn)
n∏
i=1

PGi(t, ~mi) (2.2)

where the sums are performed over the Weyl chambers of the weight lattice Γ∗
Ĝ

of the
GNO dual of the gauge group, and PGi(t, ~mi) is a dressing factor to take into account
the fact that bare monopole operator can be dressed by the scalars in the adjoint of the
vectormultiplets of the subgroup H ⊂ G left unbroken by the monopole. For an explicit
discussion of the dressing factor, we defer the reader to the appendix of [24].

When the quiver consists only of unitary nodes, without the addition of flavors, there
is typically an overall U(1) which is decoupled. At the level of the HS computation, the
decoupling of the overall U(1) can be implemented in two ways. One can either treat
one U(N) gauge node as SU(N) since the beginning, or one can treat it as U(N) when
computing the monopole dimension formula, and then set to zero one of the magnetic
charges of such U(N) at the moment of computing the Hilbert Series. Furthermore, the
choice of the specific node at which the overall U(1) decouples is immaterial. We will see
that both these features cease to be true if we relax the original hypothesis that the quiver
is simply-laced.

Let us consider now a case in which the quiver itself is unitary and non-simply laced.
With this we mean that two nodes can be connected by n oriented lines. In the usual non-
simply laced case, a straight line between two gauge nodes is interpreted as a bifundamental
hypermultiplet. In the non-simply laced case, there is up to date no clear interpretation
of the oriented multiple-line, at the field theory level. Despite this, it was proposed in [25]
that one can still compute the Coulomb Branch Hilbert series of such a quiver. First of
all, the matter contribution to the dimension formula must be modified as follows:1

∆hyp =


1
2
∑M
i=1

∑N
j=1|2mi − nj |

M N

1
2
∑M
i=1

∑N
j=1|mi − nj |

M N
. (2.3)

Secondly, it turns out that for a unitary non-simply laced quiver with no flavor nodes
there is still an overall U(1) that needs to be decoupled. However, now the choice of
where to decouple the overall U(1) is crucial. Decoupling it at different nodes will result
in different CB Hilbert series. Therefore one denotes with the squircle the location at
which the overall U(1) has to be decoupled. See [34] for more details on this point.

Not just the node at which the decoupling is done, but also how this procedure is done
is important. In the simply-laced case we could have decoupled the overall U(1) both by
treating a U(N) node as an SU(N) when writing the monopole dimension formula, or at
a later stage. In this second option, one writes the monopole dimension formula as if all
nodes are unitary, and then simply does not sum over one of the magnetic charges when

1In case of multiplicity n, we replace the number 2 in |2mi − nj | with the number n.
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computing (2.2), namely, one sets mi = 0 for a given fugacity mi. We argue that the two
prescriptions are not in general equivalent, and in particular when the quiver is non-simply
laced, the second option is the correct one.

The reason for this is very evident working in the fugacity base of U(1)× SU(N). For
simplicity, let us consider N = 2. Let q be the fugacity associated to U(1) and p that
associated to SU(2). The change of base that connects these fugacities to the usual ones
is [35]: m1 = p+ q

m2 = p− q
. (2.4)

From this we see that setting to zero m1 means forcing p = q. This means decoupling a
U(1)diag which is not the U(1) factor in the product U(1)× SU(2), but rather it is a diag-
onal U(1)diag between the U(1) factor of U(1)× SU(2) and the Cartan U(1)car of SU(2).
On the other hand, treating the U(2) node as SU(2) from the beginning would correspond
to set to zero p when writing the monopole dimension formula. The two operations are
clearly different. In the simply laced case the end result of the HS computation will not
depend on which option is chosen, however this is just an accident. In the simply-laced
case the result will depend on this choice, and throughout this paper we find consistent
results if and only if the diagonal U(1) is the one to be ungauged.

Finally, in this paper, we will also use hypermultiplets transforming under the charge
2 representation of U(1) gauge nodes. In the quiver, we denote F of such hypermultiplets
by a wiggly line. In particular we write

1 F . (2.5)

3 Magnetic quivers from O7-planes

In this section we discuss how one can read off the Higgs branch directions from brane
webs with O7+-planes. We then combine this knowledge with known facts about the Higgs
branch of SO(N) gauge theories at infinite coupling, as well as existing results on non-simply
laced quivers and brane constructions to fix the structure of the corresponding magnetic
quivers. We then provide consistency checks by computing the HS of the proposed magnetic
quivers and matching with the corresponding computation on OSp magnetic quivers derived
from brane webs with O5-planes.

3.1 Pure SO(N) theory

The brane web for pure SO(N) gauge theory at the infinite gauge coupling limit using
an O7-plane was first proposed in [30] and is shown in figure 1. The integer k labels
the choice of SL(2,Z) frame, and in particular under the generator T , each of the web
diagrams in figure 1 is mapped to itself with k → k + 1. Note that the brane web looks
slightly different depending on whether the gauge algebra is of B-type or D-type. We
would first like to understand how to read off the Higgs branch directions from these web
diagrams. For the SO(2r) theory in figure 1, one can separate the (r − k − 2,−1) and
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O7+

(r − k − 2,−1) (r + k − 2, 1)

O7+

(r − k − 1,−1) (r + k − 2, 1)

Figure 1. Brane webs for pure SO(N) gauge theory at the infinite gauge coupling limit for the
case where N = 2r (left) and N = 2r + 1 (right).

the (r + k − 2, 1) 5-branes along the Higgs branch directions giving rise to a Higgs branch
of unit quaternionic dimension. That this is a one-dimensional space rather than a two
dimensional one is due to the fact that the moduli correspond to the relative positions
of the two independent subwebs. Equivalently one has the freedom to fix the position of
one of the subwebs to the origin of the transverse space. This is unlike the situation one
would encounter when dealing with brane webs with O5-planes due to the fact that the
O5-plane provides a reference point, and the number of available directions is equal to the
number of independent subwebs. But since an O7-plane spans all the directions transverse
to the plane in which the web is drawn, i.e. it is not localised to any point along the Higgs
branch directions it cannot serve as a reference point and the total available Higgs branch
directions are one less than the number of independent subwebs. For the SO(2r+1) theory
a similar statement holds for the (r − k − 1,−1) and the (r + k − 2, 1) 5-branes. The
naive prescription for obtaining the magnetic quiver, had the O7+-plane not been present,
would be [19] to assign a U(1) gauge node to each subweb and connect them together
by as many hypermultiplets as the Schwinger product, or bare stable intersection2 of the
(p, q) charges of the independent subwebs in figure 1, with the knowledge that an overall
U(1) acts trivially, corresponding to the freedom to fix the position of one independent
subweb to the origin. On the other hand, it is known [36] that the Higgs branch of the
infinite gauge coupling limit of a 5d N = 1 super Yang-Mills theory with gauge group
G should be given by the orbifold C2/Zh∨G , where h

∨
G denotes the dual Coxeter number

of the group G. Moreover, the Coulomb branch of 3d N = 4 QED with n1 charge one
hypermultiplets and n2 charge 2 hypermultiplets is C2/Zn1+2n2 . If we further require the
Higgs branch dimension of the magnetic quiver to be equal to the rank of the 5d theory,
then the magnetic quiver is uniquely determined to be

H∞ (SO(N)) = C2/Zh∨SO(N)
= C3d


1

⌈
N−6

2

⌉
4−
⌈

N
2

⌉
+
⌊

N
2

⌋  , (3.1)

where bxc, dxe denote the floor and ceiling function respectively, and are defined by

bxc = max {n ∈ Z | n ≤ x} , dxe = min {n ∈ Z | n ≥ x} . (3.2)
2We refer the reader to [19] for the precise definition.
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O7+

(r − k − 2,−1) (r + k − 2, 1)
Nv D7

O7+

(r − k − 1,−1) (r + k − 2, 1)
Nv D7

Figure 2. Brane webs for pure SO(N) gauge theory with Nv hypermultiplets in the vector repre-
sentation at the infinite gauge coupling limit for the case where N = 2r (left) and N = 2r+1 (right).

(r + k − 2, 1)
(r − k − 2−Nv,−1)

O7+
· · ·

1 2 Nv − 1 Nv

1 1

(r + k − 2, 1)
(r − k − 1−Nv,−1)

O7+
· · ·

1 2 Nv − 1 Nv

1 1

Figure 3. Brane webs for SO(N)+Nv hypermultiplets in the vector representation at infinite gauge
coupling after taking all mass parameters to zero for N = 2r (left) and N = 2r + 1 (right). From
here onwards we will not indicate the monodromy cut associated with the 7-brane explicitly for
ease of presentation.

Our task now is to recover (3.1) from the data in the brane webs of figure 1. Let us first
take the Schwinger product of the (p, q) charges of the two independent subwebs in each
of the webs in figure 1 to find∣∣∣∣∣det

(
(r − k − 2) −1
(r + k − 2) 1

)∣∣∣∣∣ = 2r − 4∣∣∣∣∣det
(

(r − k − 1) −1
(r + k − 2) 1

)∣∣∣∣∣ = 2r − 3
(3.3)

Upon comparison with (3.1) we propose that the number of charge 2 hypermultiplets be
given by the formula

ncharge 2 =
⌈SI0 − 2

2

⌉
, (3.4)

where SI0 refers to the bare stable intersection number, i.e. those computed in (3.3). The
number of charge one hypermultiplets, is fixed to be 4 in the case of N = 2r and 3 in the
case when N = 2r + 1. We do not currently have a good microscopic understanding of
these hypermultiplets, but this should not stop us from proposing the magnetic quivers. At
this point the reader might question our assumption that only charge 1 or charge 2 hypers
could appear in the magnetic quiver. However, in the next section we provide examples
where an OSp dual is known and comparison of the HS of the non-simply-laced and OSp
quivers leads to a justification of this assumption.

3.2 SO(N) with Nv ≤ N − 5

Having gained some intuition about the Higgs branch of pure SO(N) theory at infinite
coupling, we can now proceed with more involved cases. We can add matter in the vector
representation of SO(N) by adding D7 branes to the brane configuration as in figure 2. To
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read off the magnetic quiver, we first perform a few Hanany-Witten moves [37] by moving
all flavour D7s, say, to the left of the (r − k − 2,−1) (resp. (r − k − 1,−1)) 5-brane in
figure 2. This creates Nv D5 branes and further changes the charge of the (r − k − 2,−1)
(resp. (r − k − 1,−1)) 7-brane to (r − k − 2 − Nv,−1) (resp. (r − k − 1 − Nv,−1)) for
N = 2r (resp. N = 2r + 1). As a final step we set all the mass parameters in the web to
zero and separate the D7 branes along the horizontal direction in the web diagram. The
end result of this process is depicted in figure 3. We immediately identify the independent
subwebs to be the D5 branes extended between the adjacent pairs of D7 branes, D5 branes
extended between the O7+-plane and the D7 closest to it in addition to the (r + k − 2, 1)
5-brane and the (r − k − 2 − Nv,−1) (resp. (r − k − 1 − Nv,−1)) for N = 2r (resp.
N = 2r + 1). Each of the aforementioned subwebs corresponds to a unitary gauge node
whose rank is determined by the number of 5-branes in the stack. We need to decouple an
overall U(1) to reflect the fact that the Higgs branch directions only care about the relative
positions of the aforementioned independent subwebs and we are free to fix the position
of one of the subwebs to be at the origin. We will decouple the U(1) node corresponding
to the (r + k − 2, 1) node. There is a single link connecting any two nodes corresponding
to subwebs which end on the same 7-brane from the opposite side, except for those lying
on either side of the 7-brane immediately to the left of the O7+-plane in figure 3, which
are connected by a double bond. This is essentially the T-dual of the brane system and
magnetic quiver in [25]. There are charge 1 and charge 2 hypermultiplets attached to nodes
corresponding to subwebs that end on the O7+. The number of charge 2 hypers is given
by the formula (3.4), where we take their SI with the subweb which we have frozen to the
origin. The number of charge 1 hypers are fixed by requiring the HS to agree with dual
OSp quivers, to be mentioned momentarily. The magnetic quiver that we propose in this
case is slightly different depending on whether the number Nv of hypermultiplets is even
or odd. We propose that for Nv even the magnetic quiver is given by

1 2
· · ·

Nv − 1 Nv 1

1 4−
⌈

N
2

⌉
+
⌊

N
2

⌋
⌈

N−Nv−6
2

⌉ ; Nv ∈ 2Z (3.5)

while for odd Nv it should be given by

1 2
· · ·

Nv − 1 Nv 1

1 3

⌈
N−Nv−6

2

⌉ ; Nv ∈ 2Z + 1 . (3.6)

Note that except for the rightmost U(1) node, all other nodes in these quivers are balanced.
This suggests that the Coulomb branch isometry of this quiver is usp(2Nv) ⊕ u(1). From
the 5d point of view this would suggest no enhancement of the global symmetry at the
UV fixed point. For future comparison, with orthosymplectic quivers, we compute the

– 8 –
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Coulomb branch Hilbert series for this quiver for Nv = 2, 4 and various values of N . For
Nv = 2 the results are as follows

N HSNv=2

7 1+11t2 +60t4 +10t5 +225t6 +80t7 +665t8 +350t9 +1694t10 +O(t11)
8 1+11t2 +60t4 +10t5 +225t6 +80t7 +665t8 +350t9 +1694t10 +O(t11)
9 1+11t2 +60t4 +225t6 +10t7 +665t8 +80t9 +1666t10 +O(t11)
10 1+11t2 +60t4 +225t6 +10t7 +665t8 +80t9 +1666t10 +O(t11)

. (3.7)

For Nv = 4 the Hilbert series reads

N HSNv=4

9 1 + 37t2 + 675t4 + 8130t6 + 84t7 + 73047t8 +O(t9)
10 1 + 37t2 + 675t4 + 8130t6 + 73131t8 + 526815t10 +O(t11)
11 1 + 37t2 + 675t4 + 8130t6 + 73047t8 +O(t9)
12 1 + 37t2 + 675t4 + 8130t6 + 73047t8 + 524505t10 +O(t11)

(3.8)

3.2.1 N = 2r

An immediate consistency check to see whether our conjectured magnetic quiver for SO(N)
with Nv ≤ N5 (3.5), (3.6) is to compare its Coulomb branch Hilbert series with the or-
thosymplectic magnetic quiver for the same theory obtained from an O5-plane construction.
Let us focus on N = 2r as this is the best understood case. The brane web for SO(2r)
gauge theory with Nv ≤ N − 5 takes on a slightly different form depending on whether Nv
is odd or even. In the case when Nv ∈ 2Z the brane web is given by

(r − 2− Nv
2 ,−1) (r − 2− Nv

2 , 1)

· · · · · ·
O5+ O5+1 1 Nv

2
Nv
2

Nv
2

Nv
2

1 1

. (3.9)

The magnetic quiver that one reads off from this brane web using the methods of [11, 12] is

1 2 3
· · ·

Nv Nv + 1 Nv

· · ·
3 2 1

1

3 r − Nv
2 − 3

(3.10)

Let us compute its Coulomb branch Hilbert series for Nv = 2. Following the Hall-
Littlewood and gluing technique developed in [26, 27], the expression we need to evaluate
is the following

∞∑
m=0

PSU(2)(m, t) HS2
T [SO(3)](m, t)

−m∑
−∞

+
0∑

−m+1
+

m∑
1

+
∞∑
m+1

 t∆(m,n,N)

1− t , (3.11)
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where PSU(2) is the dressing factor for the central SO(3) gauge group, the factor 1
1−t is the

dressing factor for the U(1) gauge group. The Hilbert series for each T[SO(3)] leg in the
presence of a background magnetic charge is given by

HST [SO(3)](m, t) = t
m
2 (1 +m+ t−mt)

(1− t)2 . (3.12)

Finally, the conformal dimension, for generic values of N = 2r takes the form

∆(m,n,N) = −|m|+ 1
2 (|n−m|+ |n+m|+ |n|+ (N − 5)|n|) (3.13)

=


−m− nN

2 + n −∞ < n ≤ −m
−(N − 4)n2 m < n ≤ 0
(N − 4)n2 0 < n ≤ m

(N − 2)n2 −m m < n <∞

(3.14)

Putting all of this together and evaluating the summations in (3.11) we obtain the following:

HSNv=2(t,N) = 1
(1− t2)7(1− tN−2)4

[
1 + 4t2 + 4t4 + t6 + 6tN−2 − 16tN+2 − 4tN+4

−6t2N−4 − 22t2N−2 − 6tN + 22t2N − 6t3N + 6t2N+2

+4t3N−6 + 16t3N−4 + 6t3N−2 − t4N−8 − 4t4N−6 − 4t4N−4 − t4N−2
]
.

(3.15)
A similar computation for the Nv = 4 case leads to

HS|N=10 = 1 + 37t2 + 675t4 + 8130t6 + 73131t8 + 526815t10 + 3179939t12 +O(t13)
HS|N=12 = 1 + 37t2 + 675t4 + 8130t6 + 73047t8 + 524505t10 + 3147881t12 +O(t13)
HS|N=14 = 1 + 37t2 + 675t4 + 8130t6 + 73047t8 + 524421t10 + 3145571t12 +O(t13)

(3.16)
The brane web for SO(2r) gauge theory with Nv ≤ N − 5 and Nv ∈ 2Z + 1 is given by

(r − 2− Nv+1
2 ,−1) (r − 2− Nv−1

2 ,−1)

· · · · · ·
O5+ O5+1 1 Nv−1

2
Nv−1

2
Nv+1

2
Nv+1

2
1 1

. (3.17)

The corresponding magnetic quiver, obtained following the methods of [11, 12] is

1 2 3
· · ·

Nv Nv + 1 Nv

· · ·
3 2 1

1

3 r − Nv−1
2 − 3

. (3.18)

Notice that the central USp(Nv + 1) node appearing in this magnetic quiver is bad in the
sense of Gaiotto and Witten [33]. Due to this technical reason we are not able to perform an
explicit computation of its Coulomb branch Hilbert series. There is however an alternative
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N HSH(t)

6 1+t+6t2+9t3+15t4+12t5+15t6+9t7+6t8+t9+t10

(1−t)6(1+t)4(1+t+t2)3

8 1+t+7t2+21t3+39t4+58t5+90t6+110t7+118t8+110t9+90t10+58t11+39t12+21t13+7t14+t15+t16

(1−t)8(1+2t+2t2+t3)4(1+t+t2+t3+t4)

10 1+t+10t2+35t3+82t4+171t5+324t6+517t7+740t8+961t9+1113t10+1158t11+1113t12+···palindrome···+t22

(1−t)10(1+t)4(1+t+t2)5(1+t+t2+t3+t4)2

Table 2. Higgs branch Hilbert series of (3.6) and (3.18) for Nv = 1 and various values of N .

consistency check one could perform for Nv = 1, by comparing the Higgs branch Hilbert
series. Note that in this limit, the non-simply-laced edge in (3.6) disappears and such a
computation is accessible. Concretely, one has to compare the Molien-Weyl formula for
the N = 2r, Nv = 1 limit of (3.6)

∮
|p|=1

dp

2πip

∮
|q|=1

dq

2πiq
PE

[(
p
q + q

p

)
t+ (p+ p−1)t+ (r − 3)(q2 + q−2)t+ 3(q + q−1)t

]
PE [2t2] ,

(3.19)
with the Molien-Weyl formula for the Nv = 1 limit of (3.18)

∑
p∈{1,−1}

∮
|q|=1

dq

2πiq

∮
|u|=1

du

2πiu(1− u2)

× PE
[
(q + q−1)[1]ut+ (r − 3)(q2 + q−2)t+ 3(q + q−1)t+ (2 + p+ p−1)[1]ut

]
PE [(1 + [2]u) t2]

. (3.20)

Indeed, evaluating these integrals by computing their residues one finds an exact agreement.
We collect the results for several values of N in table 2. Finally, let us mention that for
the SO(6)+1v, namely for the case when N = 6 and Nv = 1, there is also a unitary web
description, that of SU(4)0+1 AS, depicted in figure 4. Indeed the magnetic quiver one
obtains from this ordinary web diagram at infinite coupling is

1

1 1

←→

1 1

3 1

, (3.21)

where the two quivers above are related by decoupling an overall U(1), and furthermore
the quiver on the right matches our proposed magnetic quiver for SO(6)+1v (3.6) on the
nose. This provides us with yet another consistency check.

3.3 SO(N) with Nv = N − 4 flavours

Let us now consider SO(N) gauge theories with Nv = N − 4 hypermultiplets in the vector
representation. The starting configurations are the web diagrams in figure 2 with Nv =
N−4 flavour D7 branes. The Higgs branch directions are most easily read off, by performing
a few Hanany-Witten moves which we now describe. One first moves all flavour D7 branes
through, say, the left 5-brane, creating Nv D5 branes in the process and changing the charge
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(1,−1) (1, 1)

(3, 1)

(1,−1)

(1,−1)

Figure 4. Brane web for SU(4)0+1AS.

of the 5 brane which crosses their monodromy cut. In the SO(2r) (resp. SO(2r + 1)) web
in figure 2 this results in the (r− k− 2,−1) (resp. (r− k− 1,−1)) being converted into an
(r+k−2, 1) leading, after tuning all mass parameters to zero, to the following web diagram

(r + k − 2, 1)

O7+
· · ·

1 2 N − 5 N − 4

1

2
, (3.22)

from here, following a similar logic that led us to the magnetic quiver (3.6) from the brane
web in figure 3, we obtain the following magnetic quiver

1 2
· · ·

N − 5 N − 4 2 1

2

. (3.23)

Notice that generically the only unbalanced node is the squircle, which suggests the
Coulomb branch isometry in the generic case to be usp(2N − 8) ⊕ su(2). The only ex-
ception to this happens for N = 4. As we will describe in more detail below, in this
case the moduli space is actually two copies of C2/Z2 and hence one has an su(2)⊕ su(2)
Coulomb branch symmetry. Note that the number of flavours attached to the squircle is
due to the O7+-plane. The reason that this is 2, rather than 4 as in the previous cases, is
purely fixed by trial and error and by the requirement to match the computation on the
OSp side as outlined below. For now let us conjecture this quiver and slowly build up the
evidence in its support.

We can compare the Coulomb branch of (3.23) for N = 2r, with the OSp magnetic
quiver for SO(2r) with Nv = 2r−4, obtained from the brane web of this theory which uses
O5+-planes:

· · · · · ·

1

2

O5+ O5+1 1 r − 2 r − 2 r − 2 r − 2 1 1

. (3.24)
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(1,-1) (1,1)

(1,1) (1,-1)

(1,-1) (1,1)

2

2
2

2

Figure 5. Brane web for USp(4)+1 AS.

The magnetic quiver one obtains from this web diagram is given by

1 2 3
· · ·

2r − 4 2r − 3 2r − 4
· · ·

3 2 1

2 3

1

. (3.25)

We computed the Coulomb branch HS for the two quivers in (3.23) and (3.25) and found
agreement. We provide the results for small values of N below.

3.3.1 N = 4

For N = 4 this theory is the pure SO(4) so it can be engineered as two copies of pure
SU(2) without the need of an O7 plane. From this analysis the ordinary magnetic quiver
expected, gives two copies of C2/Z2 [12]. The CB HS that we expect is then

HS|N=4 = 1 + 2t2 + t4

(1− t2)4 (3.26)

Indeed, we computed the CB HS of (3.23) for N = 4 and we find a match.

3.3.2 N = 5

When N = 5, the 5d theory in question is SO(5)+1v, which is the same as USp(4)+1AS.
The latter theory can be engineered using an ordinary brane web which we depict in figure 5.
The magnetic quiver that one reads from the brane web at infinite coupling is

2 2 . (3.27)

Note that this quiver is bad in the sense of Gaiotto and Witten and so we cannot compute
its Coulomb branch. However, we can make a prediction about what its Coulomb branch
Hilbert series would be, utilising the non-simply-laced description. There is actually a
third quiver, which should also have the same CB HS, as first discussed in [11]. This is
the OSp magnetic quiver for SO(5)+1v, obtained from the brane web using Õ5+-plane. In
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(1,-1)

(1,-1) (1,1)

(1,-1)

(1,-1)(1,1)

(1,-1)

(1,-1)

(1,1)

(1,1)

2

1

2

1
2

2

Figure 6. Brane web for SU(4)0+2 AS.

particular, we claim the following three quivers to have identical Coulomb branch HS

1 2 1

2

←→

1 2 3

3

←→

2

2

(3.28)

The HS one computes for the non-simply-laced quiver in (3.28) is

HS|N=5 = 1 + t+ 3t2 + 6t3 + 8t4 + 6t5 + 8t6 + 6t7 + 3t8 + t9 + t10

(1− t)6(1 + t)4(1 + t+ t2)3 . (3.29)

We recognise this as the HS for the reduced moduli space of two-SU(2) instantons on
C2 [38].

3.3.3 N = 6

This theory is SO(6) with 2 vectors. Since this theory is isomorphic to SU(4)0+ 2 AS, we
can extract a unitary magnetic quiver from a brane system that doesn’t involve O7 planes.
The brane web for SU(4)0 + 2 AS is depicted in figure 6. From this brane web one can
readily obtain the following magnetic quiver

1 2 1

2

(3.30)

We therefore claim that the following three quivers should have the same Coulomb branch

1 2 2 1

2

←→

1 2 3 2 1

2 3

1

←→

1 2 1

2

. (3.31)
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The expected CB HS for the magnetic quiver is then

HS|N=6 = 1 + 8t2 + 40t4 + 107t6 + 199t8 + 234t10 + 199t12 + · · · palindrome · · ·+ t20

(1− t2)10(1 + t2)5

(3.32)
We computed the CB HS of (3.23) for N = 6 and we find a match.

3.4 SO(N) with Nv = N − 3

We now analyse the final possible family of theories, SO(N) gauge theories with Nv = N−3
hypermultiplets in the vector representation. This is the highest possible number of vector
matter that has a UV completion in 5d. The web diagram for the fixed point limit can be
obtained by adding D7 branes to the pure gauge theory cases as in figure 2. To read off the
Higgs branch directions we first perform the following sequence of Hanany-Witten moves.
First, one has to move all 2r − 3 (resp. 2r − 2) D7s to, say, the left of the (r − k − 2,−1)
(resp. (r − k − 1,−1)) 5-brane in the web for the SO(2r) (resp. SO(2r + 1)) theory in
figure 2. In doing so, the (r−k−2,−1) and (r−k−1,−1) 5-branes are both converted into
an (r+ k− 1, 1). Next we pull the (r+ k− 1, 1) 5-brane through the (r+ k− 2, 1) 5-brane,
which creates an additional (r + k − 1, 1) 5-brane ending on the (r + k − 1, 1) 7-brane in
addition to converting the (r+ k− 2, 1) 5-brane into a D5. Setting all mass parameters to
zero and separating the D7s to make the Higgs branch directions manifest, we arrive at

(r + k − 1, 1)

O7+
· · ·

1 2 N − 3 N − 2

2

. (3.33)

The magnetic quiver we propose in this case is given by

1 2
· · ·

N − 3 N − 2 2

2

, (3.34)

where all the gauge nodes and hypermultiplet contributions are read off following a discus-
sion analogous to that outlined in the previous cases. We stress that the rank of the flavour
node attached to the squircle is fixed by the requirement that the CB HS matches that of
the OSp quiver below. It would be interesting to understand the number of flavours more
clearly. Except for the squircle, all other nodes in this quiver all balanced, with the bal-
anced subquiver forming the Dynkin diagram of CN−2, implying that the Coulomb branch
isometry is generically usp(2N − 4).

Since SO(N) theory with Nv = N − 3 hypers in the vector representation can also
be engineered using an O5-plane, we can provide a consistency check of the magnetic
quiver (3.34). The infinite coupling limit of the web with O5-plane in the case where
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N = 2r is given by

· · · · · ·
2

O5+ O5+1 1 r − 1 r − 1 r − 1 r − 1 1 1

, (3.35)

from which one can obtain the following OSp magnetic quiver

1 2 3
· · ·

2r − 2 2r − 1 2r − 2
· · ·

3 2 1

2

3

. (3.36)

The computation of the CB HS of this OSp quiver is a close analog of (3.11), so let us skip
the details and quote the final results

HS|r=3 = 1 + 36t2 + 681t4 + 8688t6 + 83376t8 + 640695t10 + 4110730t12 +O
(
t13
)

(3.37)

3.4.1 N = 4

For the N = 4 case this theory is SO(4) with one vector, which can be realized without an
orientifold plane as SU(2)0× SU(2)0 with a bifundamental. The magnetic quiver for this
theory is

1 2 1

1

(3.38)

Which leads us to claim that the following three quivers should have identical Coulomb
branches

1 2 2

2

←→

1 2 3 2 1

2

3

←→

1 2 1

1

. (3.39)

The unitary simply-laced quiver (3.38) is the 3d mirror dual of U(2) with Nf = 4 funda-
mental hypermultiplets. The refined Hilbert series for the CB of (3.38) reads

HS(t;x) =
∑
n1,n2

χ[n1,2n2,n1](x)tn1+2n2 . (3.40)

We computed the unrefined HS for the CB of the non-simply laced quiver of (3.34) finding
agreement of the results. In fact both the CB HS and the HB HS of the OSp quiver in (3.39)
and the unitary simply-laced quiver (3.38) were computed and found to agree in [11]. We
see that there is actually a third description of the Coulomb branch of these theories in
terms of a non-simply-laced quiver.
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4 Discussion

In this paper we studied the Higgs branch of the UV fixed point limit of 5d N = 1
gauge theories with gauge group SO(N) and matter in the vector representation. Our
main approach was to use the brane web description of these theories which make use of
an O7+-plane. We used the brane configuration to conjecture the corresponding magnetic
quivers, which were subsequently used to compute the Coulomb branch Hilbert series of the
magnetic quivers. We then verified these computations by matching against OSp magnetic
quivers for the same 5d theories, derived from brane webs with O5-planes. In the following
we summarise some potential avenues for future explorations which are made possible due
to our results.

In the current work, we restricted ourselves to 5d theories which flow to a single
gauge node in the IR, an interesting immediate question one may ask, is the magnetic
quivers for the fixed point limit of 5d quiver gauge theories which make use of an O7+-
plane. One may add another layer of complexity by considering brane webs with both
O5 and O7-planes [39], which is likely going to lead to non-simply-laced orthosymplectic
magnetic quivers. We made use of the Hilbert series computations, only as a way to verify
our conjectured non-simply-laced magnetic quivers. But the Hilbert series, when refined,
contains information that could be used to illuminate dynamical phenomena, for instance
by comparing with the finite coupling results. We hope to report on some of these issues
in future work.

We found several interesting families of non-simply-laced unitary quivers whose mod-
uli spaces of vacua, we conjecture, are isomorphic to orthosymplectic magnetic quivers,
obtained from brane webs with O5-planes. These conjectures are difficult to fully justify
rigorously, as typically, either the Higgs or Coulomb branch Hilbert series computation is
beyond known methods on one or both sides of the correspondence. On the other hand,
whenever a Hilbert series computation was successfully performed, we found a match be-
tween the two sides. It would clearly be desirable to make further progress on this front.
Two concrete potential application in this direction are;

• making use of the Higgs branch Hilbert series results of the OSp side as a starting
point in order to find an algorithm for computing the Higgs branch Hilbert series of
non-simply-laced quivers,

• the Coulomb branch Hilbert series for some bad OSp or simply laced unitary quivers,
were conjecturally obtained via their correspondence with good non-simply-laced
quivers. Further verification of these proposals would be of interest.

Finally, our results beg for a bottom-up perspective rooted in 3d physics that would make
the match of the Hilbert series of the unitary non-simply-laced quivers with the OSp quivers
more intuitive.
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