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Abstract. We study the Horn theories of Kleene algebras and star con-
tinuous Kleene algebras, from the complexity point of view. While their
equational theories coincide and are PSpace-complete, their Horn theo-
ries differ and are undecidable. We characterise the Horn theory of star
continuous Kleene algebras in terms of downward closed languages and
we show that when restricting the shape of allowed hypotheses, the prob-
lems lie in various levels of the arithmetical or analytical hierarchy. We
also answer a question posed by Cohen about hypotheses of the form
1 = S where S is a sum of letters: we show that it is decidable.
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1 Introduction

Kleene algebras [6,10] are idempotent semirings equipped with a unary operation
star such that x∗ intuitively corresponds to the sum of all powers of x. They
admit several models which are important in practice: formal languages, where
L∗ is the Kleene star of a language L; binary relations, where R∗ is the reflexive
transitive closure of a relation R; matrices over various semirings, where M∗ can
be used to perform flow analysis.

A fundamental result is that their equational theory is decidable, and actually
PSpace-complete. This follows from a completeness result which was proved
independently by Kozen [11] and Krob [17] and Boffa [3], and the fact that
checking language equivalence of two regular expressions is PSpace-complete:
given two regular expressions, we have

KA � e ≤ f iff [e] ⊆ [f ]

(where KA � e ≤ f denotes provability from Kleene algebra axioms, and [e] is
the language of a regular expression e).
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Because of their interpretation in the algebra of binary relations, Kleene
algebras and their extensions have been used to reason abstractly about program
correctness [1,2,9,12,15]. For instance, if two programs can be abstracted into
two relational expressions (R∗;S)∗ and ((R ∪S)∗;S)=, then we can deduce that
these programs are equivalent by checking that the regular expression (a∗b)∗

and (a + b)∗b + 1 denote the same language. This technique made it possible to
automate reasoning steps in proof assistants [4,16,19].

In such a scenario, one often has to reason under assumptions. For instance,
if we can abstract our programs into relational expressions (R+S)∗ and S∗;R∗,
then we can deduce algebraically that the starting programs are equal if we
know that R;S = R (i.e., that S is a no-op when executed after R). When
doing so, we move from the equational theory of Kleene algebras to their Horn
theory: we want to know whether a given set of equations, the hypotheses, entails
another equation in all Kleene algebras. Unfortunately, this theory is undecidable
in general [13]. In this paper, we continue the work initiated by Cohen [5] and
pursued by Kozen [13], by characterising the precise complexity of new subclasses
of this general problem.

A few cases have been shown to be decidable in the literature, when we
restrict the form of the hypotheses:

– when they are of the form e = 0 [5],
– when they are of the form a ≤ 1 for a a letter [5],
– when they are of the form 1 = w or a = w for a a letter and w a word,

provided that those equations seen as a word rewriting system satisfy certain
properties [14,18]; this includes equations like idempotency (x = xx) or self-
invertibility (1 = xx).

(In the first two cases, the complexity can be shown to remain in PSpace.)
We add one positive case, which was listed as open by Cohen [5], and which is
typically useful to express that a certain number of predicates cover all cases:

– when hypotheses are of the form S = 1 for S a sum of letters.

Conversely, Kozen also studied the precise complexity of various undecidable
sub-classes of the problem [13]. For those, one has to be careful about the precise
definition of Kleene algebras. Indeed, these only form a quasi-variety (their def-
inition involves two implications), and one often consider ∗-continuous Kleene
algebras [6], which additionally satisfy an infinitary implication (We define these
formally in Sect. 2). While the equational theory of Kleene algebras coincides
with that of ∗-continuous Kleene algebras, this is not the case for their Horn
theories: there exist Horn sentences which are valid in all ∗-continuous Kleene
algebras but not in all Kleene algebras.

Kozen [13] showed for instance that when hypotheses are of the form pq = qp
for pairs of letters (p, q), then validity of an implication in all ∗-continuous Kleene
algebras is Π0

1 -complete, while it is only known to be ExpSpace-hard for plain
Kleene algebras. In fact, for plain Kleene algebras, the only known negative
result is that the problem is undecidable for hypotheses of the form u = v for
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1 =
∑

a a ≤ ∑
b a ≤ ∑

w a ≤ g

KAH � u ≤ f Decidable EXPTIME − complete Σ0
1−complete Σ0

1−complete
KAH � e ≤ f Decidable Undecidable Σ0

1−complete Σ0
1−complete

KA∗
H � u ≤ f Decidable EXPTIME − complete Σ0

1−complete Π1
1−complete

KA∗
H � e ≤ f Decidable Π0

1−complete Π0
2−complete Π1

1−complete

Fig. 1. Summary of the main results.

pairs (u, v) of words (Kleene star plays no role in this undecidability result: this
is just the word problem). We show that it is already undecidable, and in fact
Σ0

1 -complete when hypotheses are of the form a ≤ S where a is a letter and S is
a sum of letters. We use a similar encoding as in [13] to relate the Horn theories
of KA and KA∗ to runs of Turing Machines and alternating linearly bounded
automata. This allows us to show that deciding whether an inequality w ≤ f
holds where w is a word, in presence of sum-of-letters hypotheses, is EXPTIME-
complete. We also refine the Π1

1 -completeness result obtained in [13] for general
hypotheses, by showing that hypotheses of the form a ≤ g where a is a letter
already make the problem Π1

1 -complete.
The key notion we define and exploit in this paper is the following: given a set

H of equations, and given a language L, write clH(L) for the smallest language
containing L such that for all hypotheses (e ≤ f) ∈ H and all words u, v,

if u[f ]v ⊆ clH(L) then u[e]v ⊆ clH(L) .

This notion makes it possible to characterise the Horn theory of ∗-continuous
Kleene algebras, and to approximate that of Kleene algebras: we have

KAH � e ≤ f ⇒ KA∗
H � e ≤ f ⇔ [e] ⊆ clH([f ])

where KAH � e ≤ f (resp. KA∗
H � e ≤ f) denotes provability in Kleene algebra

(resp. ∗-continuous Kleene algebra). We study downward closed languages and
prove the above characterisation in Sect. 3.

The first implication can be strengthened into an equivalence in a few cases,
for instance when the regular expression e and the right-hand sides of all hypothe-
ses denote finite languages, or when hypotheses have the form 1 = S for S a
sum of letters. We obtain decidability in those cases (Sect. 4).

Then we focus on cases where hypotheses are of the form a ≤ e for a a
letter, and we show that most problems are already undecidable there. We do
so by exploiting the characterisation in terms of downward closed languages to
provide encodings of various undecidable problems on Turing machines, total
Turing machines, and linearly bounded automata (Sect. 5).

We summarise our results in Fig. 1. The top of each column restricts the
type of allowed hypotheses. Variables e, f stand for general expressions, u,w for
words, and a, b for letters. Grayed statements are implied by non-grayed ones.



210 A. Doumane et al.

Notations. We let a, b range over the letters of a finite alphabet Σ. We let u, v, w
range over the words over Σ, whose set is written Σ∗. We write ε for the empty
word; uv for the concatenation of two words u, v; |w| for the length of a word w.
We write Σ+ for the set of non-empty words. We let e, f, g range over the regular
expressions over Σ, whose set is written ExpΣ . We write [e] for the language of
such a an expression e: [e] ⊆ Σ∗. We sometimes implicitly regard a word as a
regular expression. If X is a set, P(X) (resp. Pfin(X)) is the set of its subsets
(resp. finite subsets) and |X| for its cardinality.

A long version of this extended abstract is available on HAL [8], with most
proofs in appendix.

2 The Systems KA and KA∗

Definition 1 (KA,KA∗). A Kleene algebra is a tuple (M, 0, 1,+, ·, ∗) where
(M, 0, 1,+, ·) is an idempotent semiring and the following axioms and impli-
cations, where the partial order ≤ is defined by x ≤ y if x + y = y, hold for all
x, y ∈ M .

1 + xx∗ ≤ x∗ xy ≤ y ⇒ x∗y ≤ y

1 + x∗x ≤ x∗ yx ≤ y ⇒ yx∗ ≤ y

A Kleene algebra is ∗-continuous if it satisfies the following implication:

(∀i ∈ N, xyiz ≤ t) ⇒ xy∗z ≤ t

A hypothesis is an inequation of the form e ≤ f , where e and f are regular
expressions. If H is a set of hypotheses, and e, f are regular expressions, we
write KAH � e ≤ f (resp. KA∗

H � e ≤ f) if e ≤ f is derivable from the axioms
and implications of KA (resp. KA∗) as well as the hypotheses from H. We omit
the subscript when H is empty.

Note that the letters appearing in the hypotheses are constants: they are not
universally quantified. In particular if H = {aa ≤ a}, we may deduce KAH �
a∗ ≤ a but not KAH � b∗ ≤ b.

Languages over the alphabet Σ form a ∗-continuous Kleene algebra, as well
as binary relations over an arbitrary set.

In absence of hypotheses, provability in KA is coincides with provability in
KA∗ and with language inclusion:

Theorem 1 (Kozen [11]).

KA � e ≤ f ⇔ KA∗ � e ≤ f ⇔ [e] ⊆ [f ]
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We will classify the theories based on the shape of hypotheses we allow; we
list them below (I is a finite non-empty set):

Name of the hypothesis Its shape

(1 =
∑

x) − hypothesis 1 =
∑

i∈I ai where ai ∈ Σ

(w ≤ ∑
w) − hypothesis v ≤ ∑

i∈I vi where v, vi ∈ Σ∗

(x ≤ ∑
w) − hypothesis a ≤ ∑

i∈I vi where a ∈ Σ, vi ∈ Σ∗

(x ≤ ∑
x) − hypothesis a ≤ ∑

i∈I ai where a, ai ∈ Σ

(1 ≤ ∑
x) − hypothesis 1 ≤ ∑

i∈I ai where ai ∈ Σ

(x ≤ 1) − hypothesis a ≤ 1 where a ∈ Σ

We call letter hypotheses any class of hypotheses where the left-hand side is
a letter (the last four ones). In the rest of the paper, we study the following
problem from a complexity point of view: given a set of C-hypotheses H, where
C is one of the classes listed above, and two expressions e, f ∈ ExpΣ , can we
decide whether KAH � e ≤ f (resp. KA∗

H � e ≤ f) holds? We call it the problem
of deciding KA (resp. KA∗) under C-hypotheses.

3 Closure of Regular Languages

It is known that provability in KA and KA∗ can be characterised by language
inclusions (Theorem1). In the presence of hypotheses, this is not the case any-
more: we need to take the hypotheses into account in the semantics. We do so
by using the following notion of downward closure of a language.

3.1 Definition of the Closure

Definition 2 (H-closure). Let H be a set of hypotheses and L ⊆ Σ∗ be a
language. The H-closure of L, denoted clH(L), is the smallest language K such
that L ⊆ K and for all hypotheses e ≤ f ∈ H and all words u, v ∈ Σ∗, we have

u[f ]v ⊆ C ⇒ u[e]v ⊆ K

Alternatively, clH(L) can be defined as the least fixed point of the function
φL : P(Σ∗) → P(Σ∗) defined by φL(X) = L ∪ ψH(X), where

ψH(X) =
⋃

(e≤f)∈H

{u[e]v | u, v ∈ Σ∗, u[f ]v ⊆ X}.

Example 1. If H = {ab ≤ ba} then clH([b∗a∗]) = [(a + b)∗], while clH([a∗b∗]) =
[a∗b∗].
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In order to manipulate closures more conveniently, we introduce a syntactic
object witnessing membership in a closure: derivation trees.

Definition 3. Let H be a set of hypotheses and L a regular language. We define
an infinitely branching proof system related to clH(L), where statements are regu-
lar expressions, and rules are the following, called respectively axiom, extension,
and hypothesis:

(u)
u ∈ Lu

(u)u∈[e]

e

ufv
w ∈ [e], e ≤ f ∈ H

uwv

We write �H,L e if e is derivable in this proof system, i.e. if there is a well-
founded tree using these rules, with root e and all leaves labelled by words in L.
Such a tree will be called a derivation tree for [e] ⊆ clH(L) (or e ∈ clH(L) if e
is a word).

Example 2. The following derivation is a derivation tree for bababa ∈ clH([b∗a∗]),
where H = {ab ≤ ba}.

bbbaaa

bbabaa

bbaaba

bababa

Derivation trees witness membership to the closure as shown by the following
proposition.

Proposition 1. [e] ⊆ clH(L) iff �H,L e.

(See [8, App. A] for a proof.)

3.2 Properties of the Closure Operator

We summarise in this section some useful properties of the closure. Lemma 1
shows in particular that the closure is idempotent, monotonic (both for the set
of hypotheses and its language argument) and invariant by context application.
Lemma 2 shows that internal closure operators can be removed in the evaluation
of regular expressions. Those two lemmas are proved in [8, App. A].

Lemma 1. Let A,B,U, V ⊆ Σ∗. We have

1. A ⊆ clH(A)
2. clH(clH(A)) = clH(A)
3. A ⊆ B implies clH(A) ⊆ clH(B)
4. H ⊆ H ′ implies clH(A) ⊆ clH′(A)
5. clH(A) ⊆ clH(B) if and only if A ⊆ clH(B).
6. A ⊆ clH(B) implies UAV ⊆ clH(UBV ).

Lemma 2. Let A,B ⊆ Σ∗, then

1. clH(A + B) = clH(clH(A) + clH(B)),
2. clH(AB) = clH(clH(A)clH(B)),
3. clH(A∗) = clH(clH(A)∗)
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3.3 Relating Closure and Provability in KAH and KA∗
H

We show that provability in KA∗ can be characterized by closure inclusions. In
KA, provability implies closure inclusions but the converse is not true in general.

Theorem 2. Let H be a set of hypotheses and e, f be two regular expressions.

KAH � e ≤ f ⇒ KA∗
H � e ≤ f ⇔ [e] ⊆ clH([f ])

Proof. Let CRegH,Σ = {clH(L) | L ∈ RegΣ}, on which we define the following
operations:

X ⊕ Y = clH(X + Y ) X 
 Y = clH(X · Y ) X� = clH(X∗).

We define the closure model FH,Σ = (CRegH,Σ , ∅, {ε},⊕,
,�).
We write ≤ for the inequality induced by ⊕ in FH,Σ : X ≤ Y if X ⊕ Y = Y .

Lemma 3. FH,Σ = (CRegH,Σ , ∅, {ε},⊕,
,�) is a ∗-continuous Kleene algebra.
The inequality ≤ of FH,Σ coincides with inclusion of languages.

Proof. By Lemma 2, the function clH : (P(Σ∗),+, ·, ∗) → (CRegH,Σ ,⊕,
,�) is
a homomorphism. We show that FH,Σ is a ∗-continuous Kleene algebra. First,
identities of LangΣ = (P(Σ∗),+, ·, ∗) are propagated through the morphism
clH , so only Horn formulas defining ∗-continuous Kleene algebras remain to
be verified. It suffices to prove that FH,Σ satisfies the ∗-continuity implication,
because the implication xy ≤ y → x∗y ≤ y and its dual can be deduced from
it. Let A,B,C ∈ FH,Σ such that for all i ∈ N, A 
 B

i 
 C ≤ D, where
B

i = B 
 · · · 
 B. By Lemma 2, A 
 B
i 
 C = clH(ABiC), so we have

clH(ABiC) ≤ D, and in particular ABiC ≤ D for all i. By ∗-continuity of
LangΣ , we obtain AB∗C ≤ D. By Lemma 1 and using D = clH(D), we obtain
clH(AB∗C) ≤ D and finally by Lemma2, A 
 B� 
 C ≤ D. This achieves the
proof that FH,Σ is a ∗-continuous Kleene algebra.

Let A,B ∈ CRegH,Σ . We have A ≤ B ⇔ A ⊕ B = B ⇔ clH(A + B) = B ⇔
A ⊆ B. Finally, if e ≤ f is a hypothesis from H, then we have clH [e] ⊆ clH([f ]),
so the hypothesis is verified in FH,Σ . ��

The implications KA
(∗)
H � e ≤ f ⇒ [e] ⊆ clH(f) follow from the fact that if

an inequation e ≤ f is derivable in KAH (resp. KA∗
H) then it is true in every

model, in particular in the model FH,Σ , thus clH([e]) ⊆ clH([f ]) or, equivalently.
[e] ⊆ clH([f ]).

Let us prove that for any regular expressions e, f , if [e] ⊆ clH([f ]) then
KA∗

H � e ≤ f . Let e, f be two such expressions and let T be a derivation tree
for [e] ⊆ clH([f ]), i.e. witnessing �H,L e ≤ f . We show that we can transform
this tree T into a proof tree in KA∗

H . The extension rule is an occurrence of [8,
App. A, Lem. 12]. Finally, the hypothesis rule is also provable in KA∗

H , using
the hypothesis e ≤ f together with compatibility of ≤ with concatenation, and
completeness of KA∗ for membership of u ∈ [e]. We can therefore build from the
tree T a proof in KA∗

H witnessing KA∗
H � e ≤ f . ��

When we restrict the shape of the expression e to words, and hypotheses to
(w ≤ ∑

w)-hypotheses, we get the implication missing from Theorem 2.
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Proposition 2. Let H be a set of (w ≤ ∑
w)-hypotheses, w ∈ Σ∗ and f ∈

ExpΣ.
KAH � w ≤ f ⇔ w ∈ clH([f ])

Proof. Let us show that w ∈ clH([f ]) implies KAH � w ≤ f . We proceed by
induction on the height of a derivation tree for w ∈ clH([f ]). If this tree is just
a leaf, then w ∈ [f ] and by Theorem 1 KA � w ≤ f . Otherwise, this derivation
starts with the following steps:

( . . .
uwiv

)

i

u(
∑

i wi)v
w ≤ ∑

i wi ∈ Huwv

Our inductive assumption is that KAH � uwiv ≤ f for all i, thus KAH �∑
i uwiv ≤ f . We also have KAH � w ≤ (

∑
i wi) hence KA � w ≤ f by

distributivity. ��

4 Decidability of KA and KA∗ with (1 =
∑

x)-Hypotheses

In this section, we answer positively the decidability problem of KAH , where H
is a set of (1 =

∑
x)-hypotheses, posed by Cohen [5]:

Theorem 3. If H is a set of (1 =
∑

x)-hypotheses, then KAH is decidable.

To prove this theorem we show that in the case of (1 =
∑

x)-hypotheses:

(P1) KAH � e ≤ f if and only if [e] ⊆ clH([f ]).
(P2) clH([f ]) is regular and we can compute effectively an expression for it.

Decidability of KAH follows immediately from (P1) and (P2), since it amounts
to checking language inclusion for two regular expressions.

To show (P1) and (P2), it is enough to prove the following result:

Theorem 4. Let H be a set of (1 =
∑

x)-hypotheses and let f be a regular
expression. The language clH([f ]) is regular and we can compute effectively an
expression c such that [c] = clH([f ]) and KAH � c ≤ f .

(P2) follows immediately from Theorem 4. To show (P1), it is enough to prove
that [e] ⊆ clH([f ]) implies KAH � e ≤ f , since the other implication is always
true (Theorem 2). Let e, f such that [e] ⊆ clH([f ]). If c is the expression given
by Theorem 4, we have KAH � c ≤ f and [e] ⊆ [c] so by Theorem 1 KA � e ≤ c,
and this concludes the proof.

To prove Theorem 4, we first show that the closure of (1 =
∑

x)-hypotheses
can be decomposed into the closure of (x ≤ 1)-hypotheses followed by the closure
of (1 ≤ ∑

x)-hypotheses:

Proposition 3 (Decomposition result). Let H = {1 = Sj | j ∈ J} be a set
of (1 =

∑
x)-hypotheses.

We set Hsum = {1 ≤ Sj | j ∈ J} and Hid = {a ≤ 1 | a ∈ [Sj ], j ∈ J}. For
every language L ⊆ Σ∗, we have clH(L) = clHsum

(clHid
(L)).
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Sketch. We show that rules from Hid can be locally permuted with rules of
Hsum in a derivation tree. This allows to compute a derivation tree where all
rules from Hid occur after (i.e. closer to leaves than) rules from Hsum . ��

Now, we will show results similar to Theorem 4, but which apply to (x ≤ 1)-
hypotheses and (1 ≤ ∑

x)-hypotheses (Propositions 5 and 6 below). To prove
Theorem 4, the idea is to decompose H into Hid and Hsum using the decom-
position property Proposition 3, then applying Propositions 5 and 6 to Hid and
Hsum respectively.

To show these two propositions, we make use of a result from [7]:

Definition 4. Let A = (Q,Δ, ι, F ) be an NFA, H be a set of hypotheses and
ϕ : Q → ExpΣ a function from states to expressions. We say that ϕ is H-
compatible with A if:

– KAH � 1 ≤ ϕ(q) whenever q ∈ F ,
– KAH � aϕ(r) ≤ ϕ(q) for all transitions (q, a, r) ∈ Δ.

We set ϕA = ϕ(ι).

Proposition 4 ([7]). Let A be a NFA, H be a set of hypothesis and ϕ be a
function H-compatible with A. We can construct a regular expression fA such
that:

[fA] = [A] and KAH � fA ≤ ϕA

Proposition 5. Let H be a set of (x ≤ 1)-hypotheses and let f be a regular
expression. The language clH([f ]) is regular and we can compute effectively an
expression c such that [c] = clH([f ]) and KAH � c ≤ f .

Proof. Let K = clH([f ]) and Γ = {a | (a ≤ 1) ∈ H}, we show that K is regular.
If A is a NFA for f , a NFA Aid recognizing K can be built from A by adding a
Γ -labelled loop on every state. It is straightforward to verify that the resulting
NFA recognizes K, by allowing to ignore any letter from Γ .

For every q ∈ Q, let fq be a regular expression such that [fq] = [q]A, where
[q]A denotes the language accepted from q in A. Let ϕ : Q → ExpΣ which maps
each state q of Aid (which is also a state of A) to ϕ(q) = fq. Let us show that ϕ is
H-compatible with A. If q ∈ F , then 1 ∈ [fq], so by completeness of KA, we have
KA � 1 ≤ fq. Let (p, a, q) be a transition of Aid . Either (p, a, q) ∈ Δ, in which
case we have a[fq] ⊆ [fp], and so by Theorem1 KA � afq ≤ fp. Or p = q (this
transition is a loop that we added). Then KAH � a ≤ 1, so KAH � afp ≤ fp,
and this concludes the proof.

By Proposition 4, we can now construct a regular expression c which satisfies
the desired properties. ��
Definition 5. Let Γ be a set of letters. A language L is said to be Γ -closed if:

∀u, v ∈ Σ∗,∀a ∈ Γ uv ∈ L ⇒ uav ∈ L

If H = {1 ≤ Si | i ∈ I} is a set of (1 ≤ ∑
x)-hypotheses, we say that a

language L is H-closed if if it is Γ -closed where Γ = ∪i∈I [Si].
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Remark 1. If H is a set of (x ≤ 1)-hypothesis, and Γ = {a | (a ≤ 1) ∈ H}, then
clH(L) is Γ -closed for every language L.

Proposition 6. Let H be a set of (1 ≤ ∑
x)-hypotheses and let f be a regular

expression whose language is H-closed. The language clH([f ]) is regular and we
can compute effectively an expression c such that [c] = clH([f ]) and KAH � c ≤ f .

Proof. We set L = [f ], H = {1 ≤ Sj | j ∈ J} and Γ = {a | a ∈ [Sj ], j ∈ J}.

Let us show that clH(L) is regular. The idea is to construct a set of words
L�, where each word u� is obtained from a word u of clH(L), by adding at the
position where a rule (1 ≤ Sj) is applied in the derivation tree for clH(L) � u, a
new symbol �j . We will show that this set satisfies the two following properties:

– clH(L) is obtained from L� by erasing the symbols �j .
– L� is regular.

Since the operation that erases letters preserves regularity, we obtain as a corol-
lary that clH(L) is regular.

Let us now introduce more precisely the language L� and show the properties
that it satisfies. Let Θ� = {�j | j ∈ J} be a set of new letters and Σ� = Σ ∪ Θ�

be the alphabet Σ enriched with these new letters.
We define the function exp : Σ� → P(Σ) that expands every letter �j into

the sum of the letters corresponding to its rule in H as follows:

exp(a) = a if a ∈ Σ
exp(�j) = {a | a ∈ [Sj ]} ∀j ∈ J

This function can naturally be extended to exp : (Σ�)∗ → P(Σ∗).
If L ⊆ Σ∗, we define L� ⊆ (Σ�)∗ as follows:

L� = exp−1(P(L)) = {u ∈ (Σ�)∗ | exp(u) ⊆ L}

We define the morphism π : (Σ�)∗ → Σ∗ that erases the letters from Θ� as
follows: π(a) = a if a ∈ Σ and π(�j) = ε for all j ∈ J . Our goal is to prove
that clH(L) = π(L�) and that L� is regular. To prove the first part, we need an
alternative presentation of L� as the closure of a new set of hypotheses H� which
we define as follows:

H� = {�j ≤ Sj | j ∈ J} ∪ {�j ≤ 1 | j ∈ J}

Lemma 4. We have L� = clH�
(L). In particular L� is Θ�-closed.

See App. B for a detailed proof of Lemma4.

Lemma 5. clH(L) = π(L�).
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Proof. If u ∈ π(L�), let v ∈ L� such that u = π(v). By Lemma 4, there is a
derivation tree Tv for v ∈ clH�

(L). Erasing all occurrences of �j in Tv yields a
derivation tree for u ∈ clH(L).

Conversely, if u ∈ clH(L) is witnessed by some derivation tree Tu, we show
by induction on Tu that there exists v ∈ L� ∩ π−1(u). If Tu is a single leaf, we
have u ∈ L, and therefore it suffices to take v = u.

Otherwise, the rule applied at the root of Tu partitions u into u = wz, and has
premises {wbz | b ∈ [Sj ]} for some j ∈ J and w, z ∈ Σ∗. By induction hypothesis,
for all b ∈ [Sj ], there is vb ∈ L� ∩ π−1(wbz). Let w = w1 . . . wn and z = z1 . . . zm

be the decompositions of w, z into letters of Σ. By definition of π, for all b ∈ [Sj ],
vb can be written vb = αb,1w1αb,2w2 . . . wnαb,nbαb,n+1z1αb,n+2 . . . zmαb,n+m+3,
with αb,0 . . . αb,n+m+3 ∈ (Θ�)∗. For each k ∈ [0, n+m+3], let αk = Πb∈[Sj ]αb,k.
Let w′ = α0w1α1 . . . wnαn+1 and z′ = αn+2z1αn+3 . . . zmαn+m+3. By Lemma 4,
L� is Θ�-closed, so for each b ∈ [Sj ] the word v′

b = w′bz′ is in L�, since v′
b is

obtained from vb by adding letters from Θ�. We can finally build v = w′�jz
′. We

have exp(v) =
⋃

b∈[Sj ]
exp(v′

b) ⊆ L, and π(v) = π(w′)π(z′) = wz = u. ��
Lemma 6. L� is a regular language, computable effectively.

Sketch. From a DFA A = (Σ,Q, q0, F, δ) for for L, we first build a DFA A∧ =
(Σ,P(Q), q0,P(F ), δ∧), which corresponds to a powerset construction, except
that accepting states are P(F ). This means that the semantic of a state P is the
conjunction of its members. We then build A� = (Σ,P(Q), q0,P(F ), δ�) based
on A∧, which can additionally read letters of the form �j , by expanding them
using the powerset structure of A∧. ��
Lemma 7. We can construct a regular expression c such that [c] = clH(L) and
KAH � c ≤ f .

Proof. Let A� be the DFA constructed for L� in the proof of Lemma 6. We will
use the notations of this proof in the following.

Let π(A�) = (Σ,P(Q), q0,P(F ), π(δ�)) be the NFA obtained from A�

by replacing every transition δ�(P, �j) = R, where j ∈ J , by a transition
π(δ�)(P, ε) = R. By Lemma 5, the automaton π(A�) recognizes the language
clH(L). Let us construct a regular expression c for this automaton such that
KAH � c ≤ f .

For every P ∈ P(Q), let fP be a regular expression such that [fP ] = [P ]A∧ .
Let ϕ : P(Q) → ExpΣ be the function which maps each state P of π(A�) to

ϕ(P ) = fP . Let us show that ϕ is H-compatible.
If P ∈ P(F ), then P is a final state of A∧, so 1 ∈ [fP ], and by completeness

of KA, KA � 1 ≤ fP . Let (P, a,R) ∈ π(Δ�). Either a ∈ Σ, so (P, a,R) ∈ Δ∧ and
a[fR] ⊆ [fP ], so by Theorem 1 KA � afR ≤ fP . Or a = ε so there is j ∈ J such
that (P, �j , R) ∈ Δ�. This means that R = ∪b∈[Sj ]Rb where δ∧(P, b) = Rb,∀b ∈
[Sj ]. We have then that b[fRb

] ⊆ [fP ] for all b ∈ [Sj ]. Note that for all b ∈ [Sj ],
Rb ⊆ R, so [fR] ⊆ [fRb

] and then Sj [fR] ⊆ [fP ]. By Theorem 1 KA � SjfR ≤ fP .
We have also that KAH � �j ≤ Sj , so KAH � �jfR ≤ fP .

By Proposition 4, we can construct the desired regular expression c. ��
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5 Complexity Results for Letter Hypotheses

In this section, we give a recursion-theoretic characterization of KAH and KA∗
H

where H is a set of letter hypotheses or (w ≤ ∑
w)-hypotheses. In all the section,

by “deciding KA
(∗)
H ” we mean deciding whether KA

(∗)
H � e ≤ f , given e, f,H as

input.
Theses various complexity classes will be obtained by reduction from some

known problems concerning Turing Machines (TM) and alternating linearly
bounded automata (LBA), such as halting problem and universality.

To obtain these reductions, we build on a result which bridges TMs and LBAs
on one hand and closures on the other: the set of co-reachable configurations of
a TM (resp. LBA) can be seen as the closure of a well-chosen set of hypotheses.

We present this result in Sect. 5.1, and show in Sect. 5.2 how to instantiate
it to get our complexity classes.

5.1 Closure and Co-reachable States of TMs and LBAs

Definition 6. An alternating Turing Machine over Σ is a tuple M =
(Q,QF , Γ, ι, B,Δ) consisting of a finite set of states Q and final states QF ⊆ Q,
a finite set of states Q, a finite working alphabet Γ ⊇ Σ, an initial state ι ∈ Q,
B ∈ Γ the blank symbol and a transition function Δ : (Q \ QF ) × Γ →
P(P({L,R} × Γ × Q)). Let #L,#R /∈ Γ be fresh symbols to mark the ends
of the tape, and Γ# = Γ ∪ {#L,#R}.

A configuration is a word uqav = #LΓ ∗QΓ+#R, where #L and #R are
special symbols not in Γ , meaning that the head of the TM points to the letter
a. We denote by C the set of configurations of M. A configuration is final if it
is of the form #LΓ ∗QF Γ+#L.

The execution of the TM M over input w ∈ Σ may be seen as a game-like
scenario between two players ∃loise and ∀belard over a graph C�(C×P({L,R}×
Γ × Q)), with initial position ιw which proceeds as follows.

– over a configuration uqav with a ∈ Γ , u, v ∈ Γ ∗
#, ∃loise picks a transition

X ∈ Δ(q, a) to move to position (uqav,X)
– over a position (uqav,X) with a ∈ Γ , u, v ∈ Γ ∗, ∀belard picks a triple

(d, c, r) ∈ X to move in configuration
• ucrB#R if v = #R and d = R
• ucrv if v �= #R and d = R
• #LrBcv if u = #L and d = L
• u′rbcv if u = #Ru′b and d = L

Given a subset of configurations D ⊆ C, we define Attr∃loise(D) the ∃loise
attractor for D as the set of configurations from which ∃loise may force the
execution to go through D.

A deterministic TM M is one where every Δ(q, a) ⊆ {{(d, c, r)}} for some
(d, c, r) ∈ {L,R}×Γ ×Q In such a case, we may identify M with the underlying
partial function [M] : Σ∗ ⇀ QF .
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An alternating linearly bounded automaton over the alphabet Σ is a tuple
A = (Q,QF , Γ, ι,Δ) where (Q,QF , Γ �{B}, ι, B,Δ) is a TM that does not insert
B symbols. This means that the head can point to �d, and for every X ∈ Δ(q,#d)
and (d′, a, r) ∈ X, we have d �= d′ and a = #d.

An LBA is deterministic if its underlying TM is.

Definition 7. A set of (w ≤ ∑
w)-hypotheses is said to be length-preserving if

for every (v ≤ ∑
i∈I vi) ∈ H, we have that |v| = |vi| for all i ∈ I.

The following lemma generalizes a similar construction from [13].

Lemma 8. For every TM M of working alphabet Γ , there exists a set of (w ≤∑
w)-hypotheses HM over the alphabet Θ = Q ∪ Γ such that, for any set of

configurations D ⊆ C we have that: clHA(D) = Attr∃loise(D). Furthermore, this
reduction is polytime computable, and HA is length-preserving if M is an LBA.

A configuration c is co-reachable if ∃loise has a strategy to reach a final
configuration from c. Lemma 8 shows that the set of co-reachable configurations
can be seen as the closure by (w ≤ ∑

w)-hypotheses. Since we are also interested
in (x ≤ ∑

x)-hypotheses, we will show that (w ≤ ∑
w) hypotheses can be

transformed into letter hypotheses. Moreover, this transformation preserves the
length-preserving property.

Theorem 5. Let Σ be an alphabet, H be a set of (w ≤ ∑
w)-hypotheses over

Σ. There exists an extended alphabet Σ′ ⊇ Σ, a set of (x ≤ ∑
w)-hypotheses

H ′ over Σ′ and a regular expression h ∈ ExpΣ′ such that the following holds for
every f ∈ ExpΣ and w ∈ Σ∗.

w ∈ clH([f ]) if and only if w ∈ clH′([f + h])

Furthermore, we guarantee the following:

– (Σ′,H ′, h) can be computed in polynomial time from (Σ,H).
– H ′ is length-preserving whenever H is.

5.2 Complexity Results

Lemma 9. If H is a set of length-preserving (w ≤ ∑
w)-hypotheses (resp. a

set of (x ≤ ∑
x)-hypotheses), w ∈ Σ∗ and f ∈ ExpΣ, deciding KAH � w ≤ f is

EXPTIME − complete.

Proof. We actually show that our problem is complete in alternating-PSPACE
(APSPACE), which enables us to conclude as EXPTIME and APSPACE coin-
cide. First, notice that by completeness of KAH over this fragment (Proposi-
tion 2), we have KAH � w ≤ f ⇔ w ∈ clH([f ]). Hence, we work directly with the
latter notion. It suffices to show hardness for the (x ≤ ∑

x) case and membership
for the (w ≤ ∑

w) case.
Given an arbitrary alternating Turing Machine M in APSPACE there exists

a polynomial p ∈ N[X] such that executions of M over words w are bisimilar to
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executions of the LBA(M) over wBp(|w|). Hence, by Lemma 8 and Theorem 5,
the problem with (x ≤ ∑

x)-hypotheses is APSPACE-hard. Conversely, we may
show that our problem with (w ≤ ∑

w)-hypotheses falls into APSPACE. On
input w, the alternating algorithm first checks whether w ∈ [f ] in linear time.
If it is the case, it returns “yes”. Otherwise, it non-deterministically picks a fac-
torization w = uxv with x ∈ Σ∗ and a hypothesis x ≤ ∑

i yi. It then universally
picks yi ∈ Σ|x|, and replaces x by yi on the tape, so that the new tape content
is w′ = uyiv. Then the algorithm loops back to its first step. In parallel, we
keep track of the number of steps and halt by returning “no” as soon as we
reach |Σ||w| steps. This is correct because, if there is a derivation tree witnessing
w ∈ clH([f ]), there is one where on every path, all nodes have distinct labels, so
the nondeterministic player can play according to this tree, while the universal
player selects a branch. ��
Theorem 6. Deciding KA∗

H is Π0
1−complete for (x ≤ ∑

x)-hypotheses.

Proof. By Lemma 9 and the fact that regular expressions are in recursive bijec-
tion with natural numbers, our set is clearly Π0

1 . To show completeness, we effec-
tively reduce the set of universal LBAs, which is known to be Π0

1−complete, to
our set of triples. Indeed, by Lemma 8, an LBA A is universal if and only if
#L{ι}Σ∗#R ⊆ clH(CF ) where CF is the set of final configurations. ��
Theorem 7. If H is a set of (x ≤ ∑

w)-hypotheses, w ∈ Σ∗ and f ∈ ExpΣ,
deciding KA

(∗)
H � w ≤ f is Σ0

1−complete.

Proof. As KAH is a recursively enumerable theory, our set is Σ0
1 . By the com-

pleteness theorem (Proposition 2), we have KAH � w ≤ f ⇔ KA∗
H � w ≤

f ⇔ w ∈ clH([f ]), so we may work directly with closure. In order to show
completeness, we reduce the halting problem for Turing machines (on empty
input) to this problem. Let M be a Turing machine with alphabet Σ and final
state qf , and HM be the set of (w ≤ ∑

w)-hypotheses given effectively by
Lemma 8. Let f = Σ∗qfΣ∗, by Lemma 8 we have M halts on empty input
if and only if q0 ∈ clHM(f). Notice that hypotheses of H ′ are of the form
u ≤ V where u ∈ Θ3 and V ⊆ Θ3. By Theorem 5, we can compute a set
H ′ of (x ≤ ∑

x)-hypotheses, and an expression h on an extended alphabet such
that q0 ∈ clHM([f ]) ⇔ q0 ∈ clH′([f + h]). ��
Theorem 8. Deciding KA∗

H is Π0
2−complete for (x ≤ ∑

w)-hypotheses.

Proof. This set is Π0
2 by Theorem 7. It is complete by reduction from the set

of Turing Machines accepting all inputs, which is known to be Π0
2 . Indeed, let

M be a Turing Machine on alphabet Σ with final state qf , by Lemma 8, we
can compute a set of (w ≤ ∑

w)-hypotheses HM with finite language in second
components such that c ∈ clHM(c′) if and only if configuration c′ is reachable
from c. As before, by Theorem 5, we can compute a set of letter hypotheses
H ′ with finite languages in second components, and a regular expression h on
an extended alphabet, such that for any clH′([f + h]) ∩ Θ∗ = clH([f ]) for any
f ∈ ExpΘ. Let Cf = Σ∗qfΣ∗, we obtain that M accepts all inputs if and only
if [q0Σ∗] ⊆ clH′([Cf + h]), which achieves the proof of Π0

2 -completeness. ��
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Theorem 9. Deciding KA∗
H is Π1

1−complete for (x ≤ g)-hypotheses (g ∈
ExpΣ).

Sketch. It is shown in [13] that the problem is complete with hypotheses of the
form H = Hw ∪ {x ≤ g}, where Hw is a set of length-preserving (w ≤ ∑

w)
hypotheses. A slight refinement of Theorem 5 allows us to reduce this problem
to hypotheses of the form x ≤ g. ��

5.3 Undecidability of KAH for Sums of Letters

Fix an alphabet Σ, a well-behaved coding function �·� of Turing machines with
final states {0, 1} into Σ∗ and a recursive pairing function 〈·, ·〉 : Σ∗ ×Σ∗ → Σ∗.
A universal total F : Σ∗ → {0, 1} is a function such that, for every total Turing
machine M and input w ∈ Σ∗ we have F (〈�M�, w〉) = [M ](w). In particular,
F should be total and is not uniquely determined over codes of partial Turing
machines. The next folklore lemma follows from an easy diagonal argument.

Lemma 10. There is no universal total Turing machine.

Our strategy is to show that decidability of KAH with (x ≤ ∑
x) hypothe-

ses would imply the existence of a universal total TM. To do so, we need one
additional lemma.

Lemma 11. Suppose that M = (Q,QF , Γ, ι, B,Δ) is a total Turing machine
with final states {0, 1} and initial state ι. Let w ∈ Σ∗ be an input word for M.

Then there is effectively a set of length-preserving (w ≤ ∑
w)-hypotheses H

and expressions ew, h such that [M](w) = 1 if and only if KAH � ew ≤ h.

Theorem 10. KAH is undecidable for (x ≤ ∑
x)-hypotheses.

Proof. Assume that KAH is decidable. This means that we have an algorithm A
taking tuples (Σ,w, f,H), with H consisting only of sum-of-letters hypotheses
and returning true when KAH � w ≤ f and false otherwise. Without loss of
generality, we can assume that A is total. By Theorem 5, we may even provide
an algorithm A′ taking as input tuples (w, f,H) where H is a set of length-
preserving (w ≤ ∑

w)-hypotheses with a similar behaviour: A′ returns true
when KAH � w ≤ f and false otherwise.

Given A′, consider M defined so that [M](�N�, w) = [A′](ew, h,H), where
the last tuple is given by Lemma 11. We show that M is a total universal Turing
machine. Since such a machine cannot exist by Lemma 10, this is enough to con-
clude. Since A′ is total, so is M. For total Turing Machines N , Lemma 11 guar-
antees that [N ](w) = 1 if and only if [A′](ew, h,H) = [M](�N�, w) = 1. Since
both [A′] and [M] are total with codomain {0, 1}, we really have [M](�N�, w) =
[N ](w). ��
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