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Abstract

Classical receptor theory is largely built on assumptions of monomeric receptors. In this
thesis, we contribute to receptor theory by considering the now widely accepted cases of
dimeric receptors. The implications of dimerisation for drug discovery and therapeutics
remain unclear. Therefore, a theoretical consideration of ligand binding and signalling
via receptor dimers is warranted. Here, we develop mathematical models for ligand bind-
ing at dimerised and dimerising receptors. A key factor in developing these theoretical
models is cooperativity across the dimer, whereby binding of a ligand to one protomer
affects the binding of a ligand to the other protomer. The effects of cooperativity on
binding dynamics are a primary point of interest.

The first models we present focus on G protein-coupled receptors, where we assume
that all receptors are pre-dimerised. Ligand binding models give linear systems of differ-
ential equations which we use to analyse time course behaviours. At equilibrium, these
models may exhibit multi-phasic log dose response curves, critically depending on co-
operativity factors. When considering receptor activation, we see dose response curves
that are indicative of non-standard ligand-receptor interactions, giving a quantitative
and qualitative platform for analysing and interpreting data when dimers are suspected.
A ligand induced model for vascular endothelial growth factor receptors is developed,
whereby receptors exist constitutively as monomers and dimerise in response to ligand
binding. The resulting nonlinear system of differential equations is investigated using
numerical computations and perturbation methods. We see an excellent fit to published
data, validating the model.

The utility of our models in parameter estimation is explored theoretically using
structural identifiability analysis. This determines which parameters can be theoretically
estimated from fitting. This analysis is valuable but often overlooked when fitting to
ligand-receptor interaction models. We explore the identifiability of some canonical lig-
and binding models, and our dimer binding models, providing a tutorial and results to
contribute to the receptor theory toolbox.
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1.2.1 Cell signalling: Ligand binding initiates a signalling cascade that results
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1.5.4 Schematic: The extended ternary complex model [68]. Receptors, in this
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1.6.3 The numerical solution (to equations (1.42))is plotted together with the
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2.1.2 LogDR curves (plotted using equation (2.9)) for α ranging from extreme

negative to extreme positive cooperativity. We see that extra inflections
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2.1.3 The binding of ligand A to a pre-dimerised receptor results in slight peaks
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operativity on the dose response curves. Competition ligand concentration

is fixed at B = 10−8M , while β = γ = 1.
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values are α+ = β+ = γ+ = 2, α− = β− = γ− = 0.01, while ligand

concentrations used are [A] = 10−8M , [B] = 2× 10−8M .

2.2.10Plotting the numerical solution to equations (2.28) with a varying α+ while

all other cooperativity factors equal 1. Increasing α+ results in increases

in [ARA]. Ligand concentrations are [A] = 10−8M , [B] = 2× 10−8M .

2.2.11Plotting the numerical solution to equations (2.28) with a varying β+ while

all other cooperativity factors equal 1. Increasing β+ results in increases

in [BRB]. Ligand concentrations are [A] = 10−8M , [B] = 2× 10−8M .
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[A] = 10−8M .

2.3.4 Plotting the numerical solution to equations (2.44) for a range of both

cooperativity factors (α+ and α−) result in peaks appearing in some of the

[AR1-R2] and [R1-R2A] curves. Ligand concentration used is [A] = 10−8M .



3.1.1 The binding of a ligand A, and activation of pre-dimerised receptors show

a spherical schematic describing interactions with ten dimer complexes.

Binding is determined by KA, while activation Kact. Cooperativity factors

α, λ, ν and ξ describe crosstalk and the more complex interactions.

3.3.1 The logDR Abound curve for this activation model (equation (3.8)) is plot-

ted alongside the logDR Abound curve for the binding model (Section 2.1,

equation (3.9)). With equal binding parameters we see that the curves
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parameter ν. This parameter determines whether the ligand acts as an
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increases the contribution symmetric dimers have to the signal, which then

increases the signal.
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3.4.2 We plot dose response curves (equation (3.6)) for α = 10−4, ν = 10 and

λ = 0.1, as well as for these each being set individually.

3.4.3 We fix ξ = ν and vary λ on each row, ν in each column and α within each

subplot. We see some extra inflections but now no overshoots in the curve.

4.1.1 Ligand binding and dimerisation is a two step process whereby a two poled

ligand (in red) first binds a monomeric receptor (blue) before then binding

a second and instantaneously dimerising the monomers.

4.1.2 Schematic representing the reactions resulting from the binding of a two

poled ligand to two monomeric receptors.

4.2.1 LogDR curves for varying cooperativity factor, ψ. The plots show the over-

all signal as well as concentrations of R (equation (4.7a)), AR (equation

(4.7b)) and RAR (equation (4.7c)).

4.3.1 A numerical investigation into the effects of cooperativity factors ψ+ and

ψ−. The columns show the overall signal as well as individual species

(equations 4.1) while in each row we fix the ψ+ value. Each plot then shows

a varied ψ−. Plots are created with ligand concentration [A] = 10−10M .

4.5.1 Both the solution to the full system in equations (4.32) is plotted along

side the solution of the reduced, approximated system (equations (4.34))

in red. Conservation of receptors is used to show the approximation for q.

Parameters used to create plots are α = β = 1 and γ = ε = 0.001.

4.5.2 Numerical solutions of the full system (equation (4.35)), on a log-log scale.

Plot created with α = 6.8, β = 1/ε, γ = 1.4 with ε = 10−4.

4.5.3 Plotting the numerical solution of equation (4.35) with inner (equation

(4.40))), intermediate (equation (4.65)) and outer (equations (4.52) and

(4.55)) solutions. The intermediate solution matches both the inner and

outer solution, creating a full approximation to the numerical solution.

Conservation of receptors is used to show the approximation for q. Plot

created with α = 6.8, γ = 1.4 and β = ε = 10−4.

4.5.4 Numerical solutions of the full system in equation (4.70) on a log-log scale.

Plot created with α=6.8, β=1, γ = ε = 10−4.



4.5.5 Plotting the numerical solution of equation (4.70) with asymptotic solu-

tions (4.88) and (4.108) show good agreement in both regions. Parameters

used to create plot are α=6.8, β=1, ε=1e-4.

4.6.1 Data published in [101] is used to estimate the model parameters. Exper-

iments were performed using five concentrations of three different VEGF

isoforms (VEGF 165a-TMR, VEGF 165b-TMR and VEGF 121a-TMR) and

are scaled with respect to Rtot. An excellent fit to the data is seen from

fitting to all data sets simultaneously. Parameter values returned can be

seen in Table 4.2.

4.6.2 Individual species curves using the estimated parameters show peaks some

of the [RAR] curves.

5.2.1 An algorithm for using the transfer function method to determine identi-

fiability.

5.2.2 An algorithm for using the Taylor series method to determine identifiabil-

ity.

5.2.3 An algorithm for using the similarity transformation method to determine

identifiability.

5.3.1 Three sets of parameters are used to plot the system given in equations

(5.23). All three parameter sets give the same measured output curve,

Abound. However, non-identifiability can be seen in the individual species

curves. Each set of plots is created using the values in Table 5.1 together

with [A] = 10−8M .

5.3.2 Three sets of parameters are used to plot the system given in equations

(5.45). All three parameter sets give the same measured output curve,

Abound. However, non-identifiability can be seen in the individual species

curves. Each set of plots is created using the values in Table 5.2 together

with [A] = 10−8M .



5.3.3 Three sets of parameters are used to plot the system given in equations

(5.90). All three parameter sets give the same measured output curve,

Abound. However, non-identifiability can be seen in the individual species

curves. Each set of plots is created using the values in Table 5.3 together

with [A] = 10−8M .

5.3.4 Three sets of parameters are used to plot the system given in equations

(5.125). All three parameter sets give the same measured output curve,

Abound. However, non-identifiability can be seen in the individual species

curves. Each set of plots is created using the values in Table 5.4 together

with [A] = 10−8M .

5.3.5 The STRIKE-GOLDD toolbox [129] confirms the identifiability of the pa-

rameters k+, k− and ψ−.

*



Chapter 1

Introduction

1.1 Motivations

In the pursuit of drug discovery and therapeutics, pharmacological analysis is required to

understand the interactions of drug/ligand molecules and cell surface receptors. Classical

pharmacological receptor theory falls short of analysing the dynamics of the range of these

interactions, despite an increased recognition of their importance. In this thesis, we will

develop new mathematical models to investigate ligand-cell interactions when receptor

dimerisation is suspected, and use mathematical techniques to analyse these models in

order to give important insights into the pharmacological impacts. In this chapter, we

review the underlying pharmacology as well as some of the mathematical techniques used

throughout the thesis.

1.2 Basic pharmacology principles

Pharmacology is a branch of medical science that studies the actions of ligands. Not

only is pharmacology essential in discovering new ligands and improving the effectiveness

of existing ligands, whilst reducing unwanted side effects, but is also used to help in

understanding why some ligands are effective for some people but not others. Although

pharmacology has been studied for over a century the underlying concepts remain the

same, and these begin with the ligand. A ligand is a substance that is either man-

made, natural or endogenous molecule that binds to a protein and causes a physiology or
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psychology effect on the body [66]. A detailed history of the development of pharmacology

can be found in [69].

1.2.1 Pharmacokinetics/pharmacodynamics

Pharmacology can be divided into two broad categories: pharmacokinetics and pharma-

codynamics. Pharmacokinetics describes the effect the body has on the ligand as it moves

through the body. This includes processes such as absorption, distribution, metabolism

and elimination [64]. Pharmacodynamics focuses on the effect the ligand has on the body

once it reaches the site of action, and so dose-dependent issues such as toxicity and effi-

cacy are considered. Pharmacodynamics is also used to determine what the appropriate

use for the ligand is and what disease or symptom it will target. In this thesis, we focus

on receptor theory, which falls under pharmacodynamics.

1.2.2 Cell surface receptors

A cell surface receptor is a protein that lies on the surface of a cell, and is the component

that interacts with the ligand and initiates the reactions that lead to an observed effect

[66]. There are many types of receptors in human cells, but the most well characterised

are G-protein coupled receptors (GPCRs), enzyme-linked receptors and ligand-gated ion

channels.

A ligand is a molecule that binds with a specific receptor and can be a drug or endoge-

nous molecules such as hormones [118]. When a ligand molecule is in close proximity to a

relevant receptor they bind together, by means of a chemical bond, setting off a chain of

reactions that alter the activities of the cell on which the receptor resides. For binding to

occur the ligand molecule must be the same shape as the receptor’s binding site, so that

these fit together in a lock and key style manner [64, 107]. The ‘strength’ with which a

ligand binds to a receptor is an important concept, known as affinity.
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1.2.3 Cell signalling

To elicit a response a signal needs to be transmitted into the interior of the cell. In Figure

1.2.1 we see an example of how ligand-receptor binding leads to a physiological response.

Ligands can act as agonists, antagonists or inverse agonists (see Section 1.2.6) based on

their effect on a cell’s signal. Upon an agonist binding, a receptor becomes activated,

which initiates a conformational change in the receptor, allowing for the binding of other

molecules or proteins. This subsequently initiates a chain of biochemical reactions within

the cell, which ultimately leads to a cellular response, that is, a change in the cell’s

behaviour or characteristic. This is known as a signal transduction pathway. Examples

of signalling pathways for GPCRs can be seen in Section 1.3.2.

Figure 1.2.1: Cell signalling: Ligand binding initiates a signalling cascade that results in
a cellular response.
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1.2.4 Ligand binding assays

A ligand-binding assay is an experiment that assesses or measures ligand binding, and is

used to characterise ligand-receptor interactions. There is a range of types of ligand bind-

ing assays, but most common methods are based on radioligand binding or fluorescence

detection [107, 69]. Radioligand binding requires the ligand molecules to be radiolabelled

and then radioactive decay is observed. Fluorescent detection techniques utilise molecules

that increase in fluorescence when in close proximity to a receptor. However, all methods

are based on being able to discern bound molecules from unbound ones. Ligand bind-

ing experiments can be categorised as either saturation, competition or kinetic binding

experiments [66, 57].

1.2.5 Saturation binding assays and dose-response curves

Saturation binding experiments measure the amount of ligand bound once equilibrium

(or steady-state) is reached, for a range of ligand concentrations. The primary aim of

these experiments is to estimate the total number of receptors as well as the equilibrium

binding rate of the ligand, that is, to determine the affinity of the ligand for the receptor

[66]. A common way to analyse this data is a Scatchard plot, where ‘bound ligand‘ is

plotted against ‘bound ligand divided by the number of free receptors’. However, this

method has limitations. As the concentration of bound ligand appears on both the x

and y axis, the effect of any experimental errors is compounded. Furthermore, nonlinear

plots are difficult to interpret. For these reasons we do not use Scatchard plots in our

analysis, however more information on these can be found in [69].

An alternative way to analyse the data is a dose-response curve, (as can be seen in

Figure 1.2.2) that is, a plot relating the ligand concentration to the amount of ligand

bound, or output response of a cell. We note that, we use term dose-response to also

encompass concentration-response. While these curves can be used to study the affinity

of a ligand, they are also used in experiments where a cell’s response is measured, as

opposed to ligand bound. In this case, it is a ligand’s efficacy, that is, a ligand’s ability to

activate receptors and produce a response, and potency that is analysed, as opposed to
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affinity [107]. A common measurement that is considered in dose-response curves is the

EC50, that is defined as the concentration of a drug that gives half-maximal response.

1.2.6 Agonists and antagonists

Ligands are classified as agonists, antagonists (also referred to as neutral agonist) or in-

verse agonists, depending on how they affect the activation of a receptor and therefore

the resulting response [64]. We can see how each of these affect the dose-response rela-

tionship in Figure 1.2.2. Once bound an agonist increases the chances of the receptor

activating, and therefore, as the ligand concentration increases so does the response, until

the maximal response is reached. Agonists can be either full or partial agonists, with a

full agonist able to increase the response to 100% of the maximum possible response,

whereas a partial agonist can only achieve a partial response, regardless of the amount of

ligand present. Antagonists bind a receptor but have no effect on the response [66, 64].

These are most commonly used in competition binding to block or reduce the activity

of an agonist. Thus if we consider the dose-response relationship of an agonist with an

antagonist present, it will require a higher concentration of agonist to reach maximal ef-

fect than if the antagonist wasn’t present. Many receptors exist in a state of spontaneous

equilibrium; a number of receptors within a cell will activate without any outside factors

affecting them [78]. GPCRs, in particular, are known to behave in this way. An inverse

agonist binds a receptor and forces it to become inactive, thus reducing the constitutive

activity, and as such the basal receptor-induced response from the cell.

1.2.7 Competition binding assays

Competition binding experiments (sometimes referred to as displacement binding exper-

iments) measure the binding of a single concentration of a labelled ligand whilst in the

presence of a second, unlabelled ligand [95]. Ligands bind to, and therefore compete for,

the same domain on the receptors. Usually, the experiment is performed for a range of

concentrations of the unlabelled ligand, and measurements are taken once equilibrium

is reached. For each of the unlabelled ligand concentrations, the observation of interest

is, how much the binding of the labelled ligand is displaced or otherwise affected [66].
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Figure 1.2.2: Drugs can be classified depending on how they affect the cell’s response.
Agonists increase the response and can be full or partial, antagonists produce no response
and inverse agonists reduce the response. Response is considered as a percentage of the
maximal response.

For each of these experiments, the IC50 is determined. This is the amount of unlabelled

ligand that inhibits the response by 50%. This is the equivalent to the EC50, where the

IC50 relates to an antagonist ligand as opposed to an agonist.

Competition binding assays have a number of significant uses. Firstly, they are a fast

and efficient way to determine whether a ligand binds to a receptor. Also, results from

direct binding assays can be validated via competition binding. When competing with

a ligand where the potencies are known, this can validate that the correct receptor has

been identified. Finally, they are used to investigate the interactions of a ligand that has

a low affinity for the receptor, as these can be difficult to observe in direct binding assays

[86].

1.2.8 Kinetic binding assays

New technological developments, specifically fluorescence-based methods, have allowed

for real-time observations of ligand binding in living cells [70]. This has lead to a rise
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in kinetic binding studies, as more time-dependent data is available. These studies are

advantageous when compared to saturation and competition assays as they provide in-

formation about the rates at which a ligand binds to and dissociates from a receptor

individually, as opposed to only equilibrium values. This gives a more detailed view of

the ligand-receptor interactions and can aid in determining ligand safety levels. However,

kinetic binding methods can be more costly than saturation methods [51].

There are two general types of kinetic binding assays: association experiments and

dissociation (or washout) experiments. In an association binding experiment, all receptors

on the cell begin in an unbound form and binding is observed once the ligand is added.

This is useful, not only for determining the rate of association but also how long it takes

for equilibrium to be reached. Dissociation binding experiments are often performed

following association experiments, that is once the system is in equilibrium. At this point

the free ligand is removed by repeated washing, ensuring that no further ligand associates

with the receptors and the rate of decrease of effect is then observed. An example time

course of an association followed by dissociation curve can be seen in Figure 1.2.3. The

total number of receptors can be ascertained from dissociation experiments, as well as

the rate of dissociation [120].

1.3 G protein-coupled receptors

GPCRs are one of the largest families of cell surface receptors and one of the most

diverse. They mediate most of our cellular responses to hormones, neurotransmitters

and environmental stimulants, and are targets for up to approximately 50% of current

ligands [14]. GPCRs can be classified into four main families, rhodopsin (family A),

secretin (family B), glutamate (family C), adhesion and Frizzled/Taste2, although all

have a similar structure [126, 122]. This structure consists of an extracellular N-terminus,

an intracellular C-terminus and a middle section containing seven membrane-spanning

helices that pass through the cell membrane seven times in a serpentine pattern, with

three loops extending into the extracellular region [72]. This has led to them also being

referred to as seven-transmembrane domain receptors (7TM) receptors. This structure
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Figure 1.2.3: Ligand dissociation is observed by removing the ligand as it dissociates from
receptors.

can be seen in Figure 1.3.1. Ligand binding can occur on either the N-terminus or on any

of the extracellular loops [126]. Upon binding of an agonist, a conformational change in

the 7TM domain is initiated, activating the C-terminus which allows for the binding of

a G-protein.

Figure 1.3.1: The GPCR is made up of a N-terminus, C-terminus and 7 membrane
spanning domains [72].
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1.3.1 G-proteins

G-proteins are heterotrimeric proteins, in that they consist of three subunits, namely α,

β and γ. These are each encoded with a unique gene. There are at least 20 types of α

subunits, and can be divided into four classes: Gs, Gq, Gi and Gt with each stimulating

or inhibiting different enzymes [138]. Whilst in an inactive state a molecule of guanine

diphosphate (GDP) is bound to the α subunit. When the GPCR becomes ligand bound

and, therefore, activated, the G-protein is able to bind to the receptor creating a tempo-

rary complex. This causes the GDP molecule to dissociate from the G-protein, leaving

the G-protein in an ‘empty’ state. In this form either a GDP molecule can rebind, or

instead a molecule of guanosine triphosphate (GTP) is able to bind [122].

The binding of GTP forces the G-protein to dissociate from the receptor and a further

conformational change is initiated. Upon dissociation, the G-protein splits into two parts,

with the α subunit breaking away from the G-protein. The β and γ subunits remain

bound together. The G-protein is now said to be active and the two parts are now

referred to as Gα and Gβγ [52]. Once in this form, the Gα and Gβγ units act as effector

molecules causing the release of second messengers. Deactivation occurs once the Gα unit

hydrolyses the GTP molecule, that is, one phosphate molecule is removed, back into a

GDP molecule. This allows for the reassociation of the Gα and Gβγ. This G-protein cycle

can be seen in Figure 1.3.2 and is also explained in [138] and [137].

1.3.2 Signalling pathways

There are two primary pathways that are activated by G-proteins, namely the cyclic-

adenosine monophosphate (cAMP) pathway and the phosphatidylinositol signalling path-

way [52, 122]. Both Gα and Gβγ subunits activate second messengers and subsequently,

these pathways. However, while the Gα pathways have been well researched, the signal

elicited from the Gβγ unit has been considered less important, hence, there is still much

unknown about their role in GPCR signalling [52]. Gα subclasses Gα(s) and Gα(i) regulate

production the second messenger of cyclic-adenosine monophosphate (cAMP), with Gα(s)

stimulating and Gα(i/o) inhibiting production of cAMP. Whereas subtypes Gα(o) and Gα(q)
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Figure 1.3.2: The G protein cycle [138].

activate phosphoinositol phospholipase C enzyme (PLC) [52].

1.3.3 Dimerised receptors

It has recently become accepted that GPCRs may exist as dimers or higher oligomers

[91, 92]. An oligomer is formed by the joining of multiple receptors by molecular bonds,

creating a single unit. A dimer is a special case of an oligomer consisting of two receptors.

Single receptors are often referred to as monomers. A dimer can be made up of two

identical monomers, then known as a homodimer, or similar but not identical monomers,

creating a heterodimer. Theoretical models for GPCR binding and signalling are based

on assumptions that receptors are all monomeric [138, 14]. When one site of the dimer

becomes bound, this has an effect on the binding characteristics of the other sites. This

is termed cooperativity, and the effect of cooperativity and cross-talk within the dimer is

something that is yet to be fully explored. Understanding cooperativity and the resulting

effects on ligand binding and signalling, as well as how these can be exploited for ligand

development purposes, is one of the the main aims for this thesis.
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1.4 Vascular endothelial growth factors

The vascular endothelial growth factor (VEGF) family consists of five members, VEGF-A,

-B, -C, -D and placenta growth factor (PIGF), and is a sub-family of growth factors (GFs).

Similar to most GFs, VEGF is a multivalent ligand, in that each molecule possesses more

than one binding site, therefore, it can bind with as many receptors as there are sites

[3]. Many aspects of cellular function, including survival, proliferation, migration and

differentiation are regulated by VEGF [47, 99, 119]. VEGF binds to three VEGF receptors

(VEGFRs), namely VEGFR-1, -2 and -3. These are receptor tyrosine kinases that are

expressed predominately on endothelial cells and regulated by the VEGF ligand [99].

Like most other receptor tyrosine kinases (RTK), activation occurs upon dimerisation

[80, 3, 119]. It is thought that VEGFRs diffuse across the cell membrane as monomeric

receptors, although there is recent evidence suggesting that a percentage may exist as

dimers [82] (also see references within). Binding of a ligand to the extracellular domain

of the receptor triggers dimerisation with adjacent receptors, which leads to the receptors

becoming activated, then leading to trans-autophosphorylation of the receptors. This

provides a docking site for downstream signalling proteins, which results in the activation

of signalling pathways, and ultimately a response [99, 82, 80].

1.5 Mathematical modelling

Quantitative systems pharmacology (QSP) is a novel discipline within biomedical re-

search that uses mathematical and computational modelling techniques to address cur-

rent problems in the discovery and the development of therapies. QSP studies aim to

combine mechanistic modelling frameworks with clinical data to predict ligand efficacy

and toxicity and give insights into ligand action [116]. In turn this can help guide further

experiments to yield more meaningful results. The field of QSP has made many advances

in the past decade, with even the United States Food and Drug Administration (FDA)

accepting modelling and simulation results in evaluating ligand proposals [103, 104]. The

term mathematical pharmacology was officially coined by Van der Graaf [125] to describe

the recent emergence of the use of mathematical approaches to further understand phar-
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macological processes, and can be seen as a sub-discipline of QSP. In this section we

will review some key models, but first we present some of the underlying mathematical

techniques used in ligand modelling.

1.5.1 The law of mass action

The law of mass action was was first proposed by Guldberg and Waage over the period

1864-79 [79] and is the basis of all ligand- receptor modelling [69], although it was initially

derived to model only chemical reactions. Given two chemicals, the law of mass action

describes the rate at which these collide to form a new chemical complex. For example,

given chemicals A and B, with

A + B
k AB, (1.1)

then mass action, in its simplest form, states that the rate of the reaction is proportional

to the product of the concentrations of A and B. The parameter k is the rate constant

of the reaction. If we consider the reaction with respect to time we can say that the rate

of change of each concentration is

d [AB]

dt
= k [A] [B] , (1.2)

d [A]

dt
= −k [A] [B] , (1.3)

d [B]

dt
= −k [A] [B] , (1.4)

where the square brackets represent chemical concentrations. A concentration of ligand

is the number of moles of solute per litre of solution has units molar (M). It is important

to mention however, that the law of mass action is not a law in the sense that it holds

in any situation, for example, when dealing with particularly high or low concentrations

[65]. Reactions that do follow the law are described as elementary reactions.
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The reaction in (1.1) was used to demonstrate the law of mass action, however, many

reactions are reversible, thus we can extend this to

A + B
k+

k−
AB, (1.5)

This leads to the system of differential equations becoming

d [AB]

dt
= k+ [A] [B]− k−[AB], (1.6)

d [A]

dt
= −k+ [A] [B] + k−[AB], (1.7)

d [B]

dt
= −k+ [A] [B] + k−[AB], (1.8)

we can see that [AB] increases by consuming molecules of A and B but now also decreases

proportionally to the existing concentration of AB. Once the system reaches equilibrium,

thermodynamic principles (see Section 1.5.4) state that the rate of the forward reaction

is equal to the rate of the backward reaction. Hence at equilibrium

k+ [A] [B] = k− [AB] , (1.9)

which can be rearranged to

KD =
k−
k+

=
[A]eq [B]eq

[AB]eq
, (1.10)

where KD is generally called the equilibrium dissociation constant of the reaction. So far

the reactions have only accounted for single molecules of each reactant. Suppose instead
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the reaction is

2A + B
k+

k−
AB, (1.11)

In the forward reaction, two molecules of A are used, as opposed to one, to create the

complex AB. As the rate of reaction is proportional to the product of each concentration

the equation for A becomes

d [A]

dt
= −2k+ [A]2 [B] + k− [AB] . (1.12)

As every reaction uses two molecules of A but only one molecule of B to create a single

AB then the change in both B and AB is half that of the change in A, that is

d [A]

dt
=

1

2

d [B]

dt
=

1

2

d [AB]

dt
. (1.13)

1.5.2 The Langmuir isotherm, occupancy theory and the Hill

equation

The first model of ligand binding was based on ‘The Langmuir adsorption isotherm’

[73], published by Irving Langmuir, although originally this was designed to describe

chemicals binding to metal surfaces [66]. These ideas were extended by Clark [29] to

describe agonist-receptor binding, and are encapsulated by what is currently known as

occupancy theory. Assuming a reaction, with a ligand molecule, A , and receptor, R, we

have

A + R
k+

k−
AR, (1.14)
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giving an equilibrium dissociation constant as

KD =
[A][R]

[AR]
, (1.15)

where KD = k−/k+. However, Langmuir proposed that we instead consider the amount

of ligand bound as a fraction of the total number of receptors. Defining ρA as the fraction

of bound receptors, we then have 1−ρA as the fraction of unbound, or available, receptors.

Langmuir’s isotherm model asserts that the amount of ligand binding is proportional to

the fraction of available receptors, the forward reaction rate and the ligand concentration,

that is

k+[A](1− ρA). (1.16)

Similarly, the amount of ligand unbinding is proportional to the amount of ligand bound

to receptors and the reverse reaction rate, that is

k−ρA. (1.17)

At equilibrium it is assumed that these are in balance, so set

k+[A](1− ρA) = k−ρA. (1.18)

Solving for ρA, we have

ρA =
k+[A]

k− + k+[A]
=

[A]

KD + [A]
, (1.19)
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as the fraction of bound receptors. This gives a basic measurement and quantification

of a ligand’s affinity [66]. The Hill-Langmuir equation is an extension of this. If we

instead assume n ligand molecules simultaneously binding a single receptor, and so have

the reaction

nA + R
k+

k−
ARn, (1.20)

then the fraction of occupied receptors is given as

ρA =
[A]n

Kn
D + [A]n

. (1.21)

This n is known as the Hill coefficient [106].

In 1968, Wagner [130] proposed that there is a relationship between the concentration

of ligand and the cellular response, and gave a ‘new’ Hill equation describing this as

E

Emax
=

[A]n

(EC50)n + [A]n
(1.22)

where E is the effect (or response), Emax is the maximal response and EC50 is the ligand

concentration that gives half maximal response. This Hill equation is most commonly

used in pharmacology for fitting to equilibrium data. The n in this equation is still re-

ferred to as the Hill coefficient, however, where in equation (1.21) it had a mechanistic,

biological representation, in this case the n is more empirical. With the equation in this

form, the Hill coefficient is used to measure cooperativity, with n > 1 giving positive

cooperativity, that is, once a receptor is bound by a single molecule the affinity for ligand

binding on that receptor is increased. Conversely, with n ≤ 1, the affinity for binding

is decreased once a receptor has bound one ligand molecule. These are concepts we use

throughout this thesis, though in a slightly different context. Further background on the

different forms and origins of the Hill equations can be found in [43].
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Following the work of Clark, the occupancy model was built on by a number of au-

thors. Ariëns [5] noticed a limitation of Clark’s model was that it described only binding

and did not consider the response elicited from binding. To overcome this Ariëns intro-

duced a new parameter representing intrinsic activity and proposed that a theoretical

response should be composed of this new parameter as well as the affinity parameter [110].

Both the models given by Clark and Ariëns are based on the assumption that the

percentage of the maximal response is equal to the percentage of bound receptors, that

is, 50 percent of receptors being bound leads to 50 percent of the maximal response being

elicited [110]. This was later shown by Stephenson [117], Furchgott [42] and Nickerson

[97] to not always be true. Stephenson [117] proposed that ligands have varying capa-

bilities to elicit a response. Hence, some ligands are able to elicit the maximal response

with only a small proportion of receptors bound. This became known as efficacy. Fur-

thermore, he introduced the idea of a partial agonist, whereby a ligand is only able to

elicit a fraction of the maximal response, even at maximal binding.

There were many modifications of these models, with one of the most notable being by

Furchgott [42] who proposed that efficacy is the product of the intrinsic efficacy parameter

(as defined by Ariëns [5]) and the concentration of active receptors [110]. This was a

particularly important development as it highlighted the dependence of the response on

the properties of both the ligand and the tissue. Mathematically, it can be stated that

the response from an agonist ligand, A, as

Response = f

[
[A]εRtot

KD + [A]

]
. (1.23)

where f is a (usually hyperbolic) function relating receptor occupancy and response, ε

represents intrinsic efficacy and Rtot is the total concentration of receptors [67, 69].

17



1.5.3 The operational model of agonism

The operational model of agonism was developed by Black and Leff [11] and is an exten-

sion to the occupancy models. It was designed to overcome the limitations of existing

occupancy models, such as the reliance on the parameter ε which does not correlate to

any chemical identity. To derive their model they assumed a simple reversible reaction

between a agonist, A and receptor R, creating the complex AR, that follows the law of

mass action. At equilibrium this gives

[AR] =
[A]Rtot

KD + [A]
, (1.24)

where KD is the dissociation constant and Rtot is the total receptor concentration. This

function is a hyperbolic function (in fact, is a rectangular hyperbolic function). Black

and Leff assumed that the relationship between [AR] and the response must also be

hyperbolic, and so defined the observed effect, E, as

E =
Emax[AR]

KE + [AR]
, (1.25)

where Emax is the maximal effect and KE is the value of [AR] that elicits half maximal

effect. Combining equations (1.24) and (1.25), we have

E =
[A]RtotEmax

KDKE + (Rtot +KE)[A]
, (1.26)

that is, a hyperbolic curve describing the agonist-effect relationship. Defining the tran-

ducer ratio

τ =
Rtot

KE

, (1.27)
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as a constant that characterises the operational efficacy [12], that is, the propensity of

the agonist to elicit a response [69], and substituting this in to equation (1.26) gives

E =
[A]τEmax

KD + (τ + 1)[A]
, (1.28)

This is extended to include non-hyperbolic curves so as to encompass possible receptor

cooperativity by the reintroduction of the Hill coefficient, as

E =
[A]nτnEmax

(KD + [A])n + τn[A]n
. (1.29)

This model is canonical in receptor theory and is still widely accepted and used in much

of the pharmacology community [67]. However, there are still areas requiring further

exploration. While the operational model allows for an agonist that can elicit either a

full or partial response, it cannot account for ligands that have no effect on the given

signal, or ligands that decrease the signal below the basal level. Furthermore, it is useful

only for equilibrium studies, although Hoare et al [54] make some steps towards extending

it to include kinetics.

1.5.4 The two state model

In 1957, del Castillo and Katz [21], and later Katz and Thesleff [63], proposed the con-

cept of receptor activation, although originally it was applied to only ligand-gated ion

channels. They proposed that receptors undergo a conformational change and can exist

in two states, a resting state and an active one [76], and the response is elicited only from

receptors that are active.

In their first model, del Castillo and Katz proposed that receptors remain in an in-

active form, in the absence of ligand, and activation only occurs upon ligand binding.

A schematic of the model can be seen in Figure 1.5.1. The model assumes a ligand A,

binds a free receptor R which creates the complex AR. Activation occurs subsequently
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to binding, and so AR∗ represents the receptor in a bound-activated state. Parameters

KA and Kact represent equilibrium binding and activation constants respectively.

A + R
KA

AR
Kact

AR∗

Figure 1.5.1: The first two-state model. A ligand A binds a receptor R creating the
complex AR. Binding causes the receptor to activate, creating AR∗ and the signal is
altered [76].

This simple model was later modified by Monod, Wyman and Changeux [94] who

suggested that receptors also undergo a conformational change and become activated in

the absence of ligand. This modified model allows for a basal response, coming from

constitutive activity of the receptor, in the absence of ligand, and assumes that ligand

binding changes the ratio of active to inactive receptors and, therefore, the functional

response. The schematic of this model is presented in Figure 1.5.2, where α is introduced

to represent the intrinsic efficacy of the ligand.

R
KA

AR

Kact

R∗

αKA

AR∗
αKact

+A

+A

Figure 1.5.2: The modified two-state model [94]. A modification of the original two-state
model, a receptor can now also activate in the absence of ligand, represented by R∗.
Cooperativity factor α represents intrinsic efficacy of the ligand.

The advantage of this model is that it allows for a ligand to act as an antagonist or

inverse agonist, as well as a full or partial agonist. While an agonist will more likely bind

and stabilise an active receptor, an inverse agonist would act preferentially to an inactive

receptor. An antagonist would show no preference to either conformation [56].
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Detailed balance

The modified two-state model also includes the introduction of the new parameter α,

which multiplies the binding/activation rates of the second reactions. This parameter

must appear in both secondary reaction due to a concept called detailed balance, that

was introduced by Lewis [77] in 1925. Based upon the assumption that each elementary

reaction is reversible and should respect thermodynamics[48], detailed balance states that:

“Corresponding to every individual process there is a reverse process, and in a state

of equilibrium the average rate of every process is equal to the average rate of its reverse

process” [77]

In the model given in Figure 1.5.2, the parameter α represents the intrinsic efficacy of

the ligand and accounts for the change in propensity for receptor activation when ligand

is bound as well as change in affinity of the ligand for active receptors over inactive

receptors.

1.5.5 The ternary complex model

The first attempt to incorporate the G protein into receptor theory models was the ternary

complex model. developed by De Lean, Stadel and Lefkowitz[31] in 1980. They proposed

two models to describe the interactions between ligand, receptor, and G-protein. The

first assumes that the binding of a membrane component, such as a G protein, occurs se-

quentially to ligand binding (as we saw in Figure 1.3.2). The second, and more generally

accepted, is outlined schematically in Figure 1.5.3 and allows for the spontaneous binding

of a G protein in the absence of ligand. In this model, a ligand A or G protein, can bind

a free receptor R, creating the complexes AR and RG (with equilibrium binding rates

KA and KG) respectively. Furthermore, ligands and G proteins can bind a receptor that

is already bound by the alternate molecule, for example, a ligand can bind an already

formed RG complex, thus creating ARG. A signal is then assumed to be given from any

receptor with a coupled G protein.
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A + R
KA

AR

RG

+

G

ARG
γKA

+

G

+A

Figure 1.5.3: Schematic: The ternary complex model [31]. Ligands or G proteins can bind
a free receptor, creating AR and RG, or both can bind, creating ARG. Cooperativity
factor in this model is γ.

The model appears similar to the modified two-state model, with a signal being elicited

from an active receptor in the two-state model, or a bound G protein complex in the

ternary complex model. However, there is one key difference: in the two-state model the

efficacy of an agonist depends receptor density, while in the ternary model, the amount

of available G proteins also has a role in how sensitive the system is to an agonist [68].

1.5.6 The extended ternary complex model

The extended ternary complex model was developed in response to findings that showed

that GPCRs were able to spontaneously activate, and thus, activate G proteins, without

any ligand present [68]. The schematic of this model can be seen in Figure 1.5.4. This

model essentially combines the original ternary complex model and the two-state model.

In this model, a receptor can become active spontaneously, represented by R∗, or can be

induced upon ligand binding, AR∗. Similarly, a G protein can bind any active receptor.

It is assumed that a response is produced from active, G protein bound species, that is

R∗G and AR∗G [69]. The equilibrium constant for G protein binding is KG.

The cooperativity (or efficacy) parameters α and γ determine if a ligand acts as an

agonist/inverse agonist. If α > 1 and γ > 1, the ligand stabilises activation and G protein

binding, thus the ligand has positive efficacy and is considered an agonist. Conversely,

if α < 1, the inactive receptor state is stabilised, or γ < 1, the affinity of the G protein

for the receptor is reduced for the active receptor state, then the signal will be reduced

from the basal level. The ligand is then showing negative efficacy and acts as an inverse

22



A + R
KA

AR

Kact αKact

KG

R∗G

γKG

AR∗G
αγKA

+A

Figure 1.5.4: Schematic: The extended ternary complex model [68]. Receptors, in this
model, can bind a ligand (AR), activate (R∗ and AR∗), though G proteins can only bind
activate receptors (R∗G and AR∗G). This model contans both cooperativity factors α
(from the two-state model) and γ (from the first ternary complex model).

agonist. Although it is important to note that this only holds for systems that have a

basal level of activity. While this model is an improvement in terms of representing the

GPCR signalling mechanisms, the model is incomplete as interactions between inactive

receptors and G proteins are not represented.

1.5.7 The cubic ternary complex model

The cubic ternary complex model is the thermodynamically complete version of the ex-

tended ternary complex model which allows for interaction between the G protein and

inactive form of the receptor [133]. The model schematic can be seen in Figure 1.5.5.

Equilibrium rates KA, Kact and KG determine the equilibrium ratios of ligand binding,

receptor activation and G protein binding respectively. There are now four cooperativity

factors. While α and γ are defined as in the previous section when detailing the extended

ternary complex model, we also have the addition of two new cooperativity factors, β

and δ. In summary the effect of these parameters is as follows:

− The parameter α is the effect of ligand binding on activation and vice versa.

− The parameter β represents the effect of receptor activation on the coupling of a G

protein and vice versa.
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− The parameter γ is the effect ligand binding has on the coupling of a G protein and

vice versa.

− The parameter δ represents the effect of any two of ligand binding, receptor activa-

tion or G protein coupling, on the occurrence of the third.

Kact

R∗

αKact

AR∗

KG

RG

γKG

ARG

βKG

βγδKG

αKA

γKA

βK

Figure 1.5.5: Schematic: The cubic ternary complex model [133]. All combinations of
bound receptors, active receptors and receptors with G proteins attached are possible.
Along with the two existing cooperativity factors α and γ, two new cooperativity factors,
β and δ, are introduced.

These ternary complex models have formed the basis of much GPCR modelling work

done in recent decades. In particular, they underpin the work by Woodroffe et al [138, 137]

who have extended these models to include the full G protein cycle that was seen in Figure

1.3.2.

1.6 Mathematical methods

Throughout this thesis, we use a number of mathematical techniques, such as solving

systems of ordinary differential equations (ODEs) and asymptotic analysis. In this section

we will use relevant ligand binding models to explain the steps taken in these methods.
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1.6.1 Solving a linear system of ODEs

While there are multiple methods to solve systems of ODEs, we use the method of unde-

termined coefficients. In order to detail the steps in this method we use the competition

binding model presented by Motulsky and Mahan in [95], as this model also underlies

some of our later work, in Chapter 2. In [95] the authors develop a model that represents

a competition binding scenario with GPCRs. A labelled ligand, A, competes with an

unlabelled ligand, B, for the same binding site on a receptor, denoted R. Association

and dissociation rates for ligand A are ka+ and ka− respectively, and kb+ and kb− for

ligand B. The schematic for the model is given in Figure 1.6.1.

A + R
ka+

ka−
AR, B + R

kb+

kb−
BR,

Figure 1.6.1: Schematic for a competition binding scenario. Labelled ligand, A, competes
with unlabelled ligand, B, for receptor R.

The law of mass action gives the system of ODEs that govern the dynamics as

d[R]

dt
= −(ka+[A] + kb+[B])[R] + ka−[AR] + kb−[BR], (1.30a)

d[AR]

dt
= ka+[A][R]− ka−[AR], (1.30b)

d[BR]

dt
= kb+[B][R]− kb−[BR], (1.30c)

which, together with the initial conditions

[R](0) = Rtot, [AR](0) = 0, [BR](0) = 0, (1.30d)

where Rtot is the total receptor concentration, form the initial value problem describing

the kinetics of the system. We notice that

[R]′ + [AR]′ + [BR]′ = 0, (1.31)
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hence, the total number of receptors, that is Rtot, must be a conserved quantity, and so

we have

[R] + [AR] + [BR] = Rtot. (1.32)

This can be rearranged to give an expression for [R], which we substitute in to the system

of ODEs, leaving the reduced system of ODEs, in the form X′ = MX + f, as

M =

−(ka+[A] + ka−) −ka+[A]

−kb+[B] −(ka+[B] + kb−)

 , f =

ka+[A]

kb+[B]

 , X =

[AR]

[BR]

 .
(1.33)

To construct a solution to this system, we first calculate the eigenvalues of M , which are

λ1,2 =
1

2

(
Tr(M)±

√
(Tr(M))2 − 4 det(M)

)
, (1.34)

where Tr(M) is the trace of M and det(M) is the determinant of M . We note that

det(M) > 0 and Tr(M) < 0, hence we must have two real, negative eigenvalues. As such,

a solution to the system will be of the form

X(t) = c1v1e
λ1t + c2v2e

λ2t + Xp(t), (1.35)

where v1,v2 are the eigenvectors corresponding to eigenvalues λ1,2. The coefficients c1, c2

are arbitrary constants which account for the initial conditions, and Xp(t) is a particular

solution that shows the equilibrium concentrations. In this case we have

v1 =

kb+[B] + kb− + λ1

kb+[B]

 , v2 =

kb+[B] + kb− + λ2

kb+[B]

 . (1.36)
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We calculate Xp(t) by setting MX + f = 0 and solving for X. This gives

Xp =
Rtot

det(M)

ka+kb−[A]

ka−kb+[B]

 . (1.37)

Using the initial conditions, we calculate the constants c1 and c2 as

c1
c2

 =
Rtot

det(M)(λ1 − λ2)

ka−kb+[B]− ka+kb−[A] + ka−kb− + ka−λ2

ka+kb−[A]− ka−kb+[B]− ka−kb− − ka−λ1

 . (1.38)

The expressions for c1 and c2 can then be substituted back into (1.35), to give analytical

solutions for the concentration of labelled and unlabelled ligands. Solutions can then

be used to plot species curves as well as total ligand bound, under various parameter

regimes. This can give insights into possible system behaviours.

1.6.2 Perturbation analysis

In Chapter 4, we use perturbation analysis (or asymptotic analysis) to analyse a system

of ODEs with different parameter values. Perturbation analysis is useful when analysing

the complexities in the dynamics of biological systems. It allows for asymptotic solutions

of nonlinear problems dependent on a small parameter and is useful for problems requir-

ing a separation of timescales. Perturbation analysis is particularly advantageous over

other methods as it provides insights into the biological system as opposed to relying on

observations. It is also used to analyse models for GPCR signalling in [138] and [137].

To illustrate the method we use the canonical model, first published by Michaelis and

Menten [87, 60] in 1913, of the interactions of enzymes and substrates. The reactions in

this model are known as enzymatic catalytic, where it is assumed that the concentration

of substrate is greater than the concentration of enzyme. A more detailed analysis is

given in [96]. The schematic of the model is given as

In these reactions a molecule of the enzyme E reacts with a substrate S to create
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S + E
k1
k−1

ES
k2

P + E

the complex ES. This complex then dissociates into a product P and enzyme E. It is

generally assumed that there are very low concentrations of E and so the rate at which the

product can be created is limited, and the product P is removed by the body continually

by some other process. Applying the law of mass action and defining s = [S], e = [E],

c = [ES] and p = [P ], gives the system of differential equations governing the dynamics

as

ds

dt
=− k1es+ k−1c, (1.39a)

de

dt
=− k1es+ (k−1 + k2)c, (1.39b)

dc

dt
= k1es− (k−1 + k2)c, (1.39c)

dp

dt
= k2c, (1.39d)

with initial conditions initial conditions

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0. (1.39e)

From these we can see that

de

dt
+
dc

dt
= 0, (1.40)

and so we can conclude that the concentration of enzymes is conserved, hence we have

e+ c = e0, (1.41)

which can be used to reduce the system by one equation. Also, as p does not appear
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explicitly in any of the equations, we can solve this individually once we have a solution

for c. This leaves the two equations to solve, as

ds

dt
=− k1e0s+ (k1s+ k−1)c, (1.42a)

dc

dt
=k1e0s− (k1s+ k−1 + k2)c, (1.42b)

s(0) =s0, c(0) = 0. (1.42c)

In order to analyse the system, we first nondimensionalise the system by setting

τ = k1e0t, λ =
k2
k1s0

. ε =
e0
s0
, κ =

k−1 + k2
k1s0

,

u(τ) =
s(t)

s0
, v(τ) =

c(t)

e0
.

This gives the dimensionless system as

du

dτ
=− u+ (u+ κ− λ)v, (1.43a)

ε
dv

dτ
= u− (u+ κ)v, (1.43b)

u(0) =1, v(0) = 0, (1.43c)

noting that κ− λ > 0 and 0 < ε� 1, hence ε is the required small parameter.

We first determine the type of perturbation problem we have. If having small, nonzero

values of ε gives qualitatively the same system as having a zero ε, we have a regular pertur-

bation problem. However, if this is not the case, and the problem cannot be approximated

by setting ε = 0, then we say we have a singular perturbation problem. Typically, this
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is when the small parameter is multiplying the highest derivative. Singular perturbation

problems usually indicate that a problem is evolving on multiple timescales.

The general method of perturbation analysis involves representing each variable by

a power series expansion about the small parameter, so for a variable x = (x1...xn) and

small parameter ε, the approximation would be

x ≈
∞∑
n=0

εnxn. (1.44)

In equations (1.43), we have ε multiplying the highest derivative in the second equa-

tion and so we have a singular perturbation problem. This can also be seen in Figure

1.6.2 where we plot each concentration on a log-log scale to highlight the dynamics in the

different timescales. In this, we see how we have growth in the concentration of v on a

much lower timescale than the concentration of u curves. For singular perturbation prob-
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Figure 1.6.2: Concentration of u and v (equations (1.43)) are plotted on a log-log scale
to highlight the time course dynamics on the different timescales. Parameters used for
the plot are λ = 3.4, κ = 6.7, ε = 1e− 2.

lems such as this we seek solutions to the two timescales individually, these are known as

the inner (or boundary) solution, covering the time scale where changes are rapid, and

outer solution for the slower part of the dynamics.

Outer Solution
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We first consider what happens in the outer region. We make use of big O notation to

describe the timescale that the curve is evolving on. Big O notation describes the growth

rate of a variable or function. For this outer solution, we have time increasing at O(1).

We first assume asymptotic approximations

u ≈ u0 + εu1 + ε2u2 + ..., v ≈ v0 + εv1 + ε2v2 + ..., (1.45)

where u0 � εu1 � ε2u2 � ... and v0 � εv1 � ε2v2 � .... Substituting these into

equations (1.43) and collecting the leading order terms (that is the largest terms), gives

du0
dτ

=− u0 + (u0 + κ− λ)v0, (1.46a)

0 = u0 − (u0 + κ)v0. (1.46b)

The initial conditions for the outer system are unknown and will be determined later by

matching to the inner solution. The second of these equations gives the relation

v0 =
u0

u0 + κ
, (1.47)

which in turn gives

du0
dτ

= − λu0
u0 + κ

, (1.48)

which solves to give the implicit solution for u0(τ) as

u0 + κ log(u0) = c1 + λτ, (1.49)

for some constant c1. The relation in equation (1.47) then gives the impicit solution for
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v0(τ) as

κv0
1− v0

+ κ log

(
κv0

1− v0

)
= c1 + λτ. (1.50)

Inner Solution

As neglecting the term εdv/dτ in the previous solution means that the initial condition

v(0) = 0 cannot be satisfied by the outer solution so we rescale variables

τ = εT, U(T ) = u(τ), V (T ) = v(τ), (1.51)

to magnify the neighbourhood around τ = 0. Substituting these into equation (1.43), we

have the system of equations governing the dynamics in this inner region as

dU

dT
= ε(−U + (U + κ− λ)V ), (1.52a)

dV

dT
= U − (U + κ)V, (1.52b)

U(0) = 1, V (0) = 0. (1.52c)

Assuming asymptotic approximations

U ≈ U0 + εU1 + ε2U2 + ..., V ≈ V0 + εV1 + ε2V2 + ..., (1.53)

where U0 � εU1 � ε2U2 � ... and V0 � εV1 � ε2V2 � ..., gives a leading order problem
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of

dU0

dT
= 0, (1.54a)

dV0
dT

= U0 − (U0 + κ)V0, (1.54b)

U0(0) =1, V0(0) = 0. (1.54c)

which solves to give

U0(T ) = 1, V0(T ) =
1− e−(κ+1)t

κ+ 1
. (1.55)

This clearly demonstrates how only the concentration of v is changing on this timescale.

Matching

In order to determine the constant, c1 that appears in the outer region solutions

(equations (1.49) and (1.50)) we use matching, where we require the inner and outer

solutions to match in some intermediate timescale. As the inner solution is only valid

whilst time is O(ε), and the outer solution valid for time O(1), there must exist some

intermediate region, when ε� τ � 1, that both of these hold. That is, we require

lim
τ→0

u(τ) = lim
T→∞

U(T ) (1.56)

lim
τ→0

v(τ) = lim
T→∞

V (T ). (1.57)

From the first condition, we take the limits of equations (1.49) and (1.55), giving

c1 = 1, (1.58)
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whilst calculation of each of the limits in the second condition (equations (1.50) and

(1.55)) confirms that this also matches. In Figure 1.6.3 we plot the approximations in

both regions against the numerical solution, where the agreement between them is clear,

hence we have good approximations for each region.
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Figure 1.6.3: The numerical solution (to equations (1.42))is plotted together with the
inner and outer approximated solutions. The approximations in each region show a good
approximation to the curves. Parameters used for the plot are λ = 3.4, κ = 6.7, ε = 1e−2.

1.6.3 Structural identifiability analysis

We previously discussed how ligand binding assays are used to observe ligand-receptor

interactions. Mathematical models of pharmacodynamics systems have become key in

understanding these interactions, between ligands and living cells, and as such play a

significant role in the development of new therapeutic medicines. These models are of-

ten comprised of ODEs that have many mechanistic parameters that represent biological

processes and are largely unknown [28]. An essential step in using these models requires

establishing the values of these parameters [129] by fitting to experimental data from

ligand binding assays. This helps to quantify ligand-receptor interactions. Parameter

estimation for biological systems often involves global search or optimisation algorithms

[36]. However, these fitting routines can result in inaccurate and unreliable estimates

[89, 36].

Identifiability analysis is the process of assessing whether it is theoretically possible

to estimate a set of parameters from experimental observations and the dynamic equa-

tions [46, 129]. This is therefore needed to determine the reliability of these estimates.
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In particular, structural identifiability analysis (SIA) uses the model structure, together

with observed outputs, to determine whether parameters can be returned successfully,

given perfect, noiseless and bias-free observations [128, 8].
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Figure 1.6.4: Plotting the concentration curves for all species individually, for a com-
petition binding with monomeric receptor model, using three different parameter sets.
Although all curves have the same measured output (concentration of [AR]) curve, non-
identifiability can be seen from the differences in the different species curves.

An example of a system with non-identifiable parameters can be seen in Figure 1.6.4,

where we plot time courses for the competition binding model that we described in Section

1.6.1. We assume that the only measured quantity is the amount of labelled ligand [A]

that is bound, that is the concentration [AR]. However, when plotting the solutions for

all concentrations, using three different parameter sets, we see how these all result in

the same measured output curve, even though the concentrations of [R] and [BR] evolve

very differently. In a case such as this, it is then not possible to determine the model

parameters from the measured output. We note that the parameter values for this plot

along will the full analysis can be found in Chapter 5.
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1.7 Thesis overview

In this thesis, we develop mathematical models, first for ligand binding and later include

receptor activation, where receptors have the ability to form dimers. We follow a frame-

work of analysis for each model, where we first look at equilibrium solutions, followed by

then exploring time-dependent behaviours. The main goal for this thesis is to contribute

to existing receptor theory by giving qualitative and quantitative information for ligand-

receptor interactions, and provide models that can be of practical use to pharmacologists.

The remainder of the thesis is laid out as follows.

In Chapter 2 we present three models for ligand binding to pre-dimerised GPCRs.

In the first model we assume all dimers are homodimers and consider binding with a

single ligand, focussing on the effect and quantification of cooperativity across the dimer.

At equilibrium we give analytical solutions and find conditions on the model parameters

that give biphasic dose-response curves (curves with multiple points of inflections). As

the system is small and linear, we compute time-dependent analytical solutions and use

these to understand possible time course dynamics. We then build upon this model,

where we first introduce a second ligand, then also consider binding to a pre-dimerised

heterodimer. In these, we again give analytical expressions for equilibrium solutions, but

instead use numerical methods to examine time course behaviours under various param-

eter regimes.

In Chapter 3 we build on the single ligand, homodimer equilibrium model, by includ-

ing receptor activation. As each receptor within the dimer has the ability to bind a ligand

molecule and activate individually we treat each receptor as an individual entity, as op-

posed to a single dimer unit. This results in a much larger system, with more complex

behaviours to explore and understand. At equilibrium, varying the different cooperativity

factors leads to the emergence of some unusual signal curves, such as extra inflections

and overshoots in the curve.

In Chapter 4 we look at the binding of VEGF to VEGFRs. This receptor system
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is within the growth factor family of receptors and is known to dimerise in response to

ligand binding. Including the dimerisation process leads to a nonlinear system, whereas

our previous models have been linear. Numerical results for time course dynamics show

peaks and curves evolving on multiple scales and we use asymptotic analysis to under-

stand these. The model is validated by fitting to published data.

In Chapter 5 we study the identifiability of model parameters when fitting to data,

using existing structural identifiability analysis techniques. We apply these to a range of

classical ligand binding models as well as some of our existing dimer models. For each

model, we apply relevant techniques to determine identifiability from a single set of time

course data, in order to give a comparison of the methods. For non-identifiable models

we give identifiable parameter combinations and explore ways to make all parameters,

and therefore the whole system, identifiable. This includes using equilibrium data, data

from washout experiments and multiple time courses to identify the parameters.

In Chapter 6, we summarise the work done throughout the thesis, discuss ongoing

work, and suggest possible directions for future work.
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Chapter 2

Binding Models for GPCR

homodimers

We note that much of the work in this chapter is published by White and Bridge in [135].

Furthermore, some paragraphs are quoted verbatim from this paper.

Mathematical modelling of binding to dimerised GPCRs has largely focused on equi-

librium binding models, such as those presented by Franco et al [40, 41, 39] and Durroux

[33]. Typically, these equilibrium models yield analytical solutions for total bound labelled

ligand, derived algebraically using mass action and receptor conservation considerations.

Corresponding log dose-response (logDR) curves for bound ligand may be multiphasic,

exhibiting multiple inflections [37, 19, 108]. For models of dimerised receptor binding, this

departure from monophasic logDR curves (typical of monomeric receptor binding) may

be quantified by a dimer cooperativity index [44, 20, 38], which relates to the apparent

binding cooperativity in the Hill function sense. Within a Hill function analysis, however,

there is the possibility that information is missed due to the inability of Hill coefficients

to distinguish interaction mechanisms [106]. These works appear to be the state-of-the

art in practical GPCR models, while more mathematically abstract approaches are taken

elsewhere: an algebra of dimerisation is presented in [139], and generalised multi-site

binding models are analysed in [61].

Dynamic models of binding and signalling for dimerised receptors are less common
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than equilibrium models. Spatial models of the dimerisation process and subsequent sig-

nalling are developed in [85], while dynamics of receptor and transducer protein dimeri-

sation are studied using an ordinary differential equation (ODE) model in [127], wherein

it is suggested that homodimerisation may serve to regulate signalling over multiple time

scales. Ligand-induced dimerisation of VEGF receptors is modelled using ODEs in [80].

In order to lay the foundations for dynamic modelling of signalling via dimerised GPCRs,

we refer to a more recent study of GPCR ligand binding dynamics (May et al. [83]).

Therein, linear ODE models of single-ligand and competition dynamics at pre-dimerised

homodimeric receptors are presented, with a brief model analysis and numerical data

fitting, without presenting analytical solutions to the ODE systems. In the current work,

we describe a simplified formulation of the May et al. models, and derive their ana-

lytical solutions. For the single-ligand model, the solution structure (bi-exponential in

time, reflecting two distinct eigenvalues) is reminiscent of Motulsky-Mahan competition

dynamics at a monomer [95].

In this Chapter, we develop mathematical models for the dynamics of ligand binding

at pre-dimerised receptors. In Section 2.1, we formulate and solve (analytically) a linear

ODE model for single-ligand (A) binding kinetics at constitutively dimerised receptors.

We first relate our model to existing models, and find an analytical equilibrium solution

for total bound ligand. From this solution, we derive a condition under which multiple

inflections in the logDR curve appear, in terms of the mechanistic binding cooperativity

coefficient (α). Further, we show that the time-dependent problem has an analytical

solution which may be easily constructed and computed without the need for numerical

ODE solvers, and use this solution to simulate the binding dynamics. In Section 2.2, we

extend our model to account for the presence of a second competing ligand (B). Again,

we relate to previous models, and begin by finding the equilibrium solution. This enables

us to derive a condition for multiple inflections in the logDR curve for total bound ligand

A, which this time depends on multiple mechanistic binding cooperativity coefficients and

the concentration of B. The ODE model for competition dynamics is linear as before,

but its analytical solution is more laborious to compute. We again simulate the binding

dynamics to explore the effects of the dynamic cooperativity factors. In Section 2.3 we
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again consider a single ligand binding a pre-dimerised receptor, however, assume this

dimer is a heterodimer, in that it consists of two similar but non-identical receptors. We

follow the framework of analysis as in the previous sections to analyse results both at

equilibrium and for time-course dynamics.

2.1 A single drug binding model

In this initial model, we consider a single ligand, A, binding to a pre-dimerised receptor

complex. In this model, we assume all dimers are homodimers, so consist of two identical

receptors bound together. We denote these dimers as R for simplicity in the model but

keep the assumption that ligand molecules can bind to either side of the dimer. Associ-

ation and dissociation rates are ka+ and ka− respectively and we assume there is no bias

to which protomer the ligand molecule binds to first. As the second ligand binding may

be affected by one side of the dimer being already bound we introduce α = α+/α− which

represents the equilibrium binding cooperativity, that is the factor change in affinity for

the dimer when it is already ligand-bound. The value α = 1 represents neutral cooper-

ativity, and α > 1 and α < 1 represent positive and negative cooperativity respectively.

Figure 2.1.1 shows the system of biochemical reactions. Since R represents a dimer, AR

is the complex created by a single ligand molecule binding to a protomer and ARA is a

dual bound receptor.

A + R
ka+

ka−
AR

A + AR
α+ka+

α−ka−
ARA

Figure 2.1.1: Schematic: A ligand A binds to one side of a dimer, R, creating AR. A
second ligand subsequently binds this complex, creating ARA.

Applying the law of mass action, the binding kinetics are governed by the following system
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of ordinary differential equations (ODEs):

d[R]

dt
= ka−[AR]− ka+[A][R], (2.1a)

d[AR]

dt
= ka+[A][R]− ka−[AR]− α+ka+[A][AR] + α−ka−[ARA], (2.1b)

d[ARA]

dt
= α+ka+[A][AR]− α−ka−[ARA], (2.1c)

The number of receptors is a conserved quantity. Similarly, as we are replicating in vitro

(lab experiment) conditions, the cell (or cell membrane) is also a constant. As such,

the concentration of receptors is also conserved, hence, this allows us to give the total

concentration of dimerised receptors as

Rtot = [R] + [AR] + [ARA], (2.2)

which we use to reduce the system to two ODEs. We also assume that the concentration

of ligand is much larger than the concentration of receptors (this is usually the case

experimentally), hence the depletion of ligand is negligible and the ligand concentration

can be assumed to be constant. Thus, taking [A] as a constant, we state the system in

the form d
dt

X(t) = MX(t) + f where X = ([AR], [ARA])T ,

M =

−(ka− + ka+[A] + α+ka+[A]) α−ka− − ka+[A]

α+ka+[A] −α−ka−

 and f =

ka+[A]Rtot
0

 (2.3)

with initial conditions

 [AR](0)

[ARA](0)

 =

0

0

 . (2.4)
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2.1.1 Equilibrium analysis

We later look at a time course analysis and find analytical solutions to the the system,

but in the spirit of classical receptor theory, we first investigate the equilibrium behaviour

of the system, in particular the effect of α. The law of mass action allows us to state the

equilibrium relationships as

[AR] = KA[A][R], (2.5a)

[ARA] = αKA[A][AR], (2.5b)

where KA = ka+/ka− is the equilibrium association constant and α = α+/α− is the

equilibrium binding cooperativity. The total concentration of dimers is

Rtot = [R] + [AR] + [ARA]

= [R](1 +KA[A] + αK2
A[A]2), (2.6)

which we can combine with equations (2.5) to express the equilibrium concentrations in

terms of parameters only, giving us

[R] =
1

1 +KA[A] + αK2
A[A]2

Rtot, (2.7a)

[AR] =
KA[A]

1 +KA[A] + αK2
A[A]2

Rtot, (2.7b)

[ARA] =
αK2

A[A]2

1 +KA[A] + αK2
A[A]2

Rtot. (2.7c)

We can clearly see that as [A]→∞ the concentrations of [R] and [AR] fall to 0, whereas

[ARA] tends to Rtot. The total amount of ligand bound at equilibrium is:

Abound = [AR] + 2[ARA], (2.8)
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due to a single ligand molecule being bound in [AR] and two ligand molecules being

bound in [ARA]. Using equations (2.7) we can therefore state this quantity as

Abound =
(KA[A] + 2αK2

A[A]2)

1 +KA[A] + αK2
A[A]2

Rtot. (2.9)

This result is equivalent to the result Giraldo [44] states when discussing the mechanistic

model for a single ligand binding to a dimerised receptor. We see the equivalence to his

model if we take KA = 1/KD1 and α = KD1/KD2. Letting [A] tend to infinity in this

result gives us the maximal ligand bound as 2Rtot, thus we can state that half of the

maximal Abound is Rtot. Setting Abound = Rtot and solving for [A] gives us the amount of

ligand needed to get this response, that is the EC50 value, as

A50 =
1

KA

√
α
. (2.10)

Figure 2.1.2 shows how the equilibrium cooperativity factor α affects the log dose-response

(logDR) binding relationship. In the majority of cases the concentration curves behave as

expected, with increasing cooperativity leading to dimers becoming dual-bound for lower

concentrations of [A] along with smaller peaks in [AR]. However, if we look to the plot

of total ligand bound we see a curve that is not usual for monomer binding. Clearly as

α increases we see a leftward shift in the curve. However, we can also see that for small

values of α we get three inflections in the curve instead of just one.

Since the existence of extra inflections depends on α we seek a condition on α for

when these appear. Following the calculation in Appendix B, with a = 1, b = α, c = 1

and X = KA[A], we find that there is always an inflection point at

[A] =
1

KA

√
α
, (2.11)
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Figure 2.1.2: LogDR curves (plotted using equation (2.9)) for α ranging from extreme
negative to extreme positive cooperativity. We see that extra inflections appear in Abound
when we have extreme low cooperativity.

that corresponds to the A50, and two further inflection points at

[A]± =
−(8α− 1)±

√
(8α− 1)2 − 4α

2
, (2.12)

under the conditions of

0 < α < 1/16. (2.13)

When α is within this range the inflection at α = A50 changes from a rising inflection

point to a falling one and we get two extra inflection points, one for [A] < A50 and one

for [A] > A50. We see in Figure 2.1.2 that this results in a biphasic curve. We note

here that a biphasic logDR curve with three inflections as shown would not be seen for

monomeric receptors, and this is suggestive of the possibility of pre-dimerised receptors

and very negative cooperativity. If the extra inflections are evident in a data set, and the

receptors are homodimers, then we can conclude that α < 1/16.

2.1.2 Binding dynamics - analytical solutions

Analytical solutions aid pharmacologists by allowing them to easily run simulations.

Recall the differential equations representing the binding kinetics of the system d
dt

X(t) =
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MX(t) + f where

M =

−(ka− + ka+[A] + α+ka+[A]) α−ka− − ka+[A]

α+ka+[A] −α−ka−

 and f =

ka+[A]Rtot
0

 , (2.14)

with initial conditions

 [AR](0)

[ARA](0)

 =

0

0

 . (2.15)

As this is a linear system we are able to solve it to find exact solutions as functions of time,

using the method outlined in Section 1.6.1. We note that det(M) > 0 and Tr(M) < 0,

as in $1.6.1. Using this method, we find the solutions to the system to be

[AR](t) =
ka+[A]Rtot

det(M)

(
λ2(α−ka− + λ1)e

λ1t − λ1(α−ka− + λ2)e
λ2t

λ1 − λ2
+ α−ka−

)
, (2.16)

[ARA](t) =
α+k

2
a+[A]2Rtot

det(M)(λ1 − λ2)
(
λ2e

λ1t − λ1eλ2t + λ1 − λ2
)
. (2.17)

where

λ1,2 =
Tr(M)±

√
Tr(M)2 − 4 det(M)

2
. (2.18)

are the eigenvalues of the system. From these solutions we can say that the total ligand

bound is

Abound(t) =
ka+[A]Rtot
det(M)

( λ2(α−ka− + λ1 + 2α+ka+[A])e
λ1t − λ1(α−ka− + λ2

+ 2α+ka+[A])e
λ2t + α−ka− + 2α+ka+[A]

λ1 − λ2

)
. (2.19)
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Looking more closely at the components of these solutions we see that we have two

exponential components meaning we would expect to see biphasic curves. As λ1 and λ2

are real, distinct and always negative, providing all parameters in the model are positive

we can say with certainty that as t −→ ∞ the exponential components will reduce to

zero and we can state the equilibrium concentrations as

[AR] =
α−ka+ka−[A]Rtot

det(M)
, (2.20)

[ARA] =
α+k

2
a+[A]2Rtot

det(M)
, (2.21)

giving the total ligand bound at equilibrium as

Abound =
ka+[A]Rtot

det(M)

(
α−ka− + 2α+ka+[A]

)
. (2.22)

Expanding det(M) and simplifying in MATLAB [2] confirms the equivalence of these to

equations (2.7).

Having these analytical solutions (equations (2.16) and (2.17)) to the ODE system

allows time courses to be plotted without the need for numerical ODE solvers. This

is particularly useful for pharmacologists without numerics expertise, allowing them to

construct exact solutions for any parameter values in software packages such as Excel [88]

and Graph Pad [1].

2.1.3 Single ligand time course results

Here we present numerical results which demonstrate the effects of cooperative dynam-

ics across dimerised receptors, particularly contrasting with the dynamics observed for

monomeric receptors. Figure 2.1.3 shows the binding of ligand [A] to the dimerised re-
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ceptor [R] with the ligand being added as a constant 10−8M . Initially, ligand molecules

bind singularly to dimers, creating an increase in [AR]. As time increases, a positive

cooperativity factor means that the chance of a second ligand molecule binding to the

singularly bound dimer is increased; thus, [ARA] increases. This increase in [ARA] also

has the effect of reducing [AR] which then falls towards zero. Hence, we see a peak in [AR].
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Figure 2.1.3: The binding of ligand A to a pre-dimerised receptor results in slight peaks
in [AR], while positive cooperativity leads to all dimers becoming dual bound. The plot
shows a numerical solution to the system in equations (2.1). We use a ligand concentration
of [A] = 10−8M while the cooperativity factors were set at α+ = 2 and α− = 0.01 giving
positive cooperativity.

In fact, this peak becomes a point of interest as we look at Figure 2.1.4. In this, we

consider a range of values of [A] and study the effect this has on the binding dynamics.

It is clear that not only does Abound increase to a higher equilibrium concentration as

[A] increases, but also, equilibration is reached in a shorter timescale. While [A] is

low, [AR] approaches equilibrium monotonically, whereas a peak in [AR] occurs for high

concentrations of A.

We notice in Figure 2.1.4 that as [A] increases there is a leftward shift in the peak as

the time at which it occurs decreases. Using equation (2.16) we can find when this peak

occurs exactly. To find a solution we differentiate this equation with respect to t then set
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Figure 2.1.4: Plot shows a numerical solution to equations (2.1) for a varying ligand
concentration. With high levels of [A] in the system we no longer see peaks in [AR].
Cooperativity values are fixed at α+ = 2 and α− = 0.01.

this equal to zero before solving to find that the peak occurs at time

t = −
ln

(
α−ka− + λ1
α−ka− + λ2

)
λ1 − λ2

. (2.23)

For peak existence, we therefore require

α−ka− + λ1
α−ka− + λ2

> 0, (2.24)

where λ2 < λ1 < 0. Hence we require, for a positive peak time,

0 <
α−ka− + λ1
α−ka− + λ2

< 1,

which requires that

α−ka− + λ1 < 0.
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Substituting in the full expression (equation (2.18)) for λ1, gives

α− < KA[A]. (2.25)

To evaluate the peak concentration [AR], we substitute the peak time, equation (2.23),

into equation (2.16) (the analytical solution for [AR]), giving, after some simplification

[AR] =
ka+[A]Rtot

det(M)

(
−(α−ka− + λ1)

(
α−ka− + λ1
α−ka− + λ2

) λ1
λ2−λ1

+ α−ka−

)
(2.26)

as the corresponding concentration of [AR].
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Figure 2.1.5: Plot shows a numerical solution to equations (2.1) for a varying forward
cooperativity factor. As we move from positive to negative cooperativity we see a more
pronounced peak in [AR] with Abound tending to lower concentrations. Ligand concen-
tration for the plot is [A] = 10−8M .The value α− = 1 was fixed so that cooperativity
depends solely on α+.

In Figure 2.1.5 we look at how a range of cooperativity factors affect the binding of ligand

[A]. Clearly, the binding rate for a second ligand to the dimer increases and decreases

for positive and negative cooperativity, respectively. We see a peak in [AR] whose timing

and concentration are dependent on α+. As α+ increases, the peak in [AR] decreases and

occurs earlier. Both [ARA] and Abound increase as α+ increases.
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2.2 A two drug binding model

We now introduce a second ligand, B, to the system. The rationale for this is that

quantification of effects of unlabeled ligands can be achieved by competition experiments

with labeled and unlabeled ligands, as seen in previous studies involving monomeric and

dimeric receptors [95, 83]. The kinetics of this system are key in highlighting and quan-

tifying allosteric interactions across dimerised receptors, as indicated by May et al [83],

who discuss the influence of an unlabeled ligand on the dissociation (washout) kinetics

of a labeled ligand, when dimers are present.

We assume the association rates remain as they were in the previous model, along

with the cooperativity factor α to describe the cross talk across a dimer dual bound by

[A]. We express the association and dissociation of ligand B by the rates kb+ and kb−

respectively and now require two extra cooperativity factors. We denote β = β+/β− as

the influence a protomer bound by ligand B has on a second B binding, and vice-versa,

and γ = γ+/γ− as the cooperativity factor describing the interaction between A and B

bound receptors. This extended system gives a set of six reactions, as can be seen in

Figure 2.2.1.

A + R
ka+

ka−
AR B + R

kb+

kb−
BR

A + AR
α+ka+

α−ka−
ARA B + AR

γ+kb+

γ−kb−
ARB

A + BR
γ+ka+

γ−ka−
ARB B + BR

β+kb+

β−kb−
BRB

Figure 2.2.1: Schematic: Two ligands, A and B compete for binding sites on dimer R.

2.2.1 Differential equations

We use the law of mass action to derive from these reactions a system of differential

equations that govern the binding kinetics of the system:
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As the total concentration of receptors is conserved we can state that

Rtot = [R] + [AR] + [BR] + [ARA] + [ARB] + [BRB]. (2.27)

Using this conservation law allows us to reduce the system to 5 equations by eliminating

[R], leaving

d[AR]

dt
= −(ka+[A] + ka− + α+ka+[A]− γ+kb+[B])[AR]− ka+[A][BR]

+ (α−ka− − ka+[A])[ARA] + (γ−kb− − ka+[A])[ARB]− ka+[A][BRB] + ka+[A]Rtot,

(2.28a)

d[BR]

dt
= −kb+[B][AR]− (kb+[B] + kb− + γ+kb+[A] + β+kb+[B])[BR]

− kb+[B][ARA] + (γ−kb− − kb+[B])[ARB] + (β−kb− − kb+[B])[BRB] + kb+[B]Rtot,

(2.28b)

d[ARA]

dt
= α+ka+[A][AR]− α−ka−[ARA], (2.28c)

d[ARB]

dt
= γ+kb+[B][AR] + γ+ka+[A][BR]− γ−kb−[ARB]− γ−ka−[ARB], (2.28d)

d[BRB]

dt
= β+kb+[B][BR]− β−kb−[BRB]. (2.28e)

with initial conditions



[AR](0)

[BR](0)

[ARA](0)

[ARB](0)

[BRB](0)


=



0

0

0

0

0


. (2.29)

We note that this system is a simplification of the one developed by May et al [83]. We

recall the model presented in [83] in Figure 2.2.2. When translating the schematic to a

system of ODEs, May et al. assume assuming symmetry across the dimer, thus assuming
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AR-RB
γKB

AR-R
αKA

AR-RA

γKA KA αKA

βKB

BR-RB

KB

BR-R

γKB

BR-RA
βKB γKA

Figure 2.2.2: Schematic of the two-ligand dimer model presented by May et al. in [83].

AR-R is the same as R-RA, for example, and denoting this [AR]. We take this one step

further by assuming symmetry in the model initially, thus reducing the both the number

of reactions, and number of species. The two models are equivalent by taking

ka+ =
k̃a+
2
, ka− = k̃a− kb+ =

k̃b+
2
, kb− = k̃b−, (2.30)

α+ = 2α̃+, α− =
α̃−
2
, β+ = 2β̃+, β− =

β̃−
2
, γ+ = 2γ̃+, γ− =

γ̃−
2
, (2.31)

noting that

[AR] =
[̃AR]

2
, [BR] =

[̃BR]

2
, [ARB] =

˜[ARB]

2
, (2.32)

where a tilde denotes a parameter or variable in the May et al [83] model.
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2.2.2 Equilibrium analysis

Once the system reaches equilibrium we have the set of relations

[AR] = KA[A][R], [ARA] = αKA[A][AR] = αK2
A[A]2[R], (2.33a)

[BR] = KB[B][R], [BRB] = βKB[B][BR] = βK2
B[B]2[R]. (2.33b)

[ARB] = γKA[A][BR] = γKAKB[A][B][R], (2.33c)

Since we can write the total concentration of dimerised receptors as

Rtot = [R] + [AR] + [BR] + [ARA] + [ARB] + [BRB]

= [R](1 +KA[A] +KB[B] + αK2
A[A]2 + γKAKB[A][B] + βK2

B[B]2), (2.34)

we find the concentrations of each of the molecular complexes in terms of parameters as

follows:

[R] =
1

D
Rtot, [AR] =

KA[A]

D
Rtot,

[BR] =
KB[B]

D
Rtot, [ARA] =

αK2
A[A]2

D
Rtot,

[ARB] =
γKAKB[A][B]

D
Rtot, [BRB] =

βK2
B[B]2

D
Rtot. (2.35)

where

D = 1 +KA[A] +KB[B] + αK2
A[A]2 + γKAKB[A][B] + βK2

B[B]2 (2.36)

Here we consider, as in May et al [83], competition experiments where ligand A is
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labelled and ligand B is unlabelled. We can clearly see that, providing [B] is fixed

[R], [AR], [BR], [ARB], [BRB]→ 0, and [ARA]→ Rtot as [A]→∞. (2.37)

The total concentration of bound ligand A (assumed an experimentally measurable quan-

tity) is

Abound = [AR] + 2[ARA] + [ARB]

= [R](KA[A] + 2αK2
A[A]2 + γKAKB[A][B]). (2.38)

which, using equation (2.33), gives us

Abound =
KA[A] + 2αK2

A[A]2 + γKAKB[A][B]

1 +KA[A] +KB[B] + αK2
A[A]2 + γKAKB[A][B] + βK2

B[B]2
Rtot. (2.39)

As the maximal Abound, for varying [A], remains as 2Rtot we can calculate the EC50 of

Abound as

A50 =
1

KA

√
1 +KB[B] + βK2

B[B]2

α
, (2.40)

which we note is independent of the A-B cooperativity factor γ (we return to this point

when varying γ). In the following sections we show the effects of each of the cooperativity

factors α, β, γ in turn. We vary each of the equilibrium cooperativity factors individually

while keeping the others set to 1 to give neutral cooperativity to be able to study the

effects the individual cooperativity factors has on the system. In each case we plot logDR

curves for Abound for a range of values for [B]. To begin we consider a range of values of

α, hence fix β and γ.
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The effects of α cooperativity
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Figure 2.2.3: Plotting logDR curves, using equation (2.39), for varying α shows extra
inflections when we have low A-A cooperativity regardless of [B]. Other cooperativity
factors are fixed at β = γ = 1.

Again we see extra inflections for low values of α, similarly to the single ligand system,

as shown in Figure 2.2.3. While [A] � [B] dimers are primarily bound by molecules of

B. As [A] increases we see increases in concentrations of AR. However, low cooperativity

means that these become bound by molecules of [B], forming ARB complexes, but few

become bound by a second molecule of A, and as such, [ARA] remains low. It is not until

[A]� [B] that the low cooperativity is countered, where we then see increases in [ARA],

corresponding to a fall in dimers bound by a single molecule of [A], thus creating peaks

in these. It is this that changes the nature of the original inflection point for Abound, as

well as creating two extra inflections. This is clear if we look to the individual species

plots in Figure 2.2.4.

The effects of β cooperativity

Figure 2.2.5 shows the effect of varying the B-B cooperativity factor, β. We see inflections

still appear when we have both low β and high [B]. In Figure 2.2.6 we look at the

individual species curves, with [B] fixed at a high concentration, showing inflections for

all Abound curves where β < 1. With β < 1, these become then bound by a molecule of

A, giving an increase in [ARB]. However, as [A] → ∞ this is countered and all dimers

become dual bound by A, so [ARA] → Rtot while all other complexes fall to zero. This

increased peak in [ARB] results in an extra inflection in the Abound curve.
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Figure 2.2.4: Individual species plots (equations (2.35)) for a varying α help to understand
the effects of cooperativity on the dose response curves. Competition ligand concentration
is fixed at B = 10−8M , while β = γ = 1.
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Figure 2.2.5: Plotting logDR curves, using equation (2.39), for varying β shows extra
inflections appear when we have both low B-B cooperativity and low [B]. Other cooper-
ativity factors are fixed at α = γ = 1.

The effects of γ cooperativity

In Figure 2.2.7 we look at the effects of A-B cooperativity factor γ and see slightly differ-

ent results. To get extra inflections, γ is required to be high as opposed to low. We again

require there to be a high concentration of B in the system for inflections to appear. We

again fix B at a high concentration to study the individual species curves, in Figure 2.2.8.

With a large γ (and sufficiently large [B]), we see large increases in [ARB], creating a

peak once [A] ≈ [B]. A much higher concentration of A is required for concentrations of

ARB to fall. This large peak creates the extra inflections in the Abound curve. We also

note that, γ does not shift the curve, as α and β do. Varying γ changes the slope of the

curve, but the point of inflection and thus the A50 value, remain the same for all curves.
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Figure 2.2.6: Individual species plots for a varying β help to understand the effects of
cooperativity on the dose response curves. Competition ligand concentration is fixed at
B = 10−5M , while α = γ = 1.
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Figure 2.2.7: Plotting logDR curves, using equation (2.39), for varying γ shows extra
inflections when we have high A-B cooperativity as well as low [B]. Other cooperativity
factors are fixed at β = γ = 1.

This can be seen in the Abound curve in Figure 2.2.8.

Investigating the inflections

Similarly to the single ligand system we also get extra inflections in the Abound curve

when we have two ligands in the system. Investigating these extra inflections in Abound

(Appendix B with a = 1 + γKA[B], b = α, c = 1 + KB[B] + βK2
B[B]2 and X = KA[A]),
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Figure 2.2.8: Individual species plots for a varying γ help to understand the effects of
cooperativity on the dose response curves. Competition ligand concentration is fixed at
B = 10−8M , while β = γ = 1.

we find that there is always an inflection point at

[A] =
1

KA

√
1 +KB[B] + βK2

B[B]2

α
. (2.41)

We further find that extra inflections appear under the condition

16α(1 +KB[B] + βK2
B[B]2) < (γKB[B] + 1)2, (2.42)

with an extra inflection at either side of the original one, at the points

[A]± =
−(8bc− a2)±

√
(a2 − 16bc)(a2 − 4bc)

2abKA

. (2.43)

2.2.3 Time course results

Analytical solutions for the system (2.28) are theoretically possible, given that the system

is linear. However, the task of computing eigenvalues exactly becomes laborious and im-

practical; we instead construct the solutions by numerical evaluation of the eigenvalues.
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A numerical ODE solver could also be used.
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Figure 2.2.9: In the time course plot, we have a numerical solution to the system in
equations (2.28), where we see peaks in both [AR] and [BR]. Cooperativity values are
α+ = β+ = γ+ = 2, α− = β− = γ− = 0.01, while ligand concentrations used are
[A] = 10−8M , [B] = 2× 10−8M .

We now consider two-ligand competition in time course simulations. The concentra-

tion of [A] remains the same as in the single ligand binding section, and a second ligand

[B] is introduced, with [B] > [A]. Association and dissociation rates kb+ and kb− are set

such that kb+ < ka+ and kb− > ka−. Figure 2.2.9, with all forward and reverse cooper-

ativity factors fixed at 2 and 0.01 respectively, shows [AR] and [ARA] dynamics similar

to that of the single ligand problem.

While the curves of [BR] and [BRB] are similar to those of [AR] and [ARA], as

[B] > [A], this results in an increased peak in [BR] and an increased equilibrium concen-

tration of BRB. As [ARB] has a contribution from both ligands A and B, it increases

in the same way but tends to an equilibrium between [ARA] and [BRB].

In Figure 2.2.10 we see the effect α+ has on the time course dynamics of the system.

Varying α+, while keeping all other cooperativity factors fixed equal to one isolates the

effects of forward A− A binding cooperativity. Clearly, peaks appear in [AR] and [BR]
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Figure 2.2.10: Plotting the numerical solution to equations (2.28) with a varying α+

while all other cooperativity factors equal 1. Increasing α+ results in increases in [ARA].
Ligand concentrations are [A] = 10−8M , [B] = 2× 10−8M .

for all values of α+. However, increasing α+ results in a smaller peak in [AR], as these

quickly become bound by two molecules of A, thus we see [ARA] increasing more quickly

and to a higher concentration. This in turn means that we see decreases in [BR], [ARB]

and [BRB] due to less available receptors.

In Figure 2.2.11 we vary β+ while all other cooperativity factors are equal to one. In

this, we see the results mirrored in [A] and [B] from when we varied α+. Increasing β+

shows a decreased peak in [BR] and consequently, an increase in [BRB]. Concentrations

of [AR], [ARA] and [ARB] are reduced as there are less available free receptors for the

binding of [A].

In Figure 2.2.12 we demonstrate the effect of varying γ+. As molecules of A and B

become bound to free receptors we again see [AR] and [BR] increase. Once a dimer

becomes bound by a ligand molecule, a small γ+ means that it is less likely to become

bound by an alternate molecule, so dimers become bound by two of the same ligand,

hence [ARA] and [BRB] increase while [ARB] remains low. As γ+ increases, the con-

verse happens and instead we see increases in [ARB].
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Figure 2.2.11: Plotting the numerical solution to equations (2.28) with a varying β+
while all other cooperativity factors equal 1. Increasing β+ results in increases in [BRB].
Ligand concentrations are [A] = 10−8M , [B] = 2× 10−8M .
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Figure 2.2.12: Plotting the numerical solution to equations (2.28) with a varying γ+
while all other cooperativity factors equal 1. Increasing γ+ results in increases in [ARB].
Ligand concentrations are [A] = 10−8M , [B] = 2× 10−8M .
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2.3 A heterodimer binding model

It is widely acknowledged that GPCRs can also exist as heterodimers, that is a dimer

consisting of two non-identical receptors [91, 92, 93, 115]. In the previous dimer model,

we used the symmetry inherent in the homodimer model to reduce the model, resulting

in a clean formulation amenable to algebraic manipulation. In this section we extend

this to a more general model which will encompass heterodimers. This model is similar

in form to the May et al schematic [83], with an implicit asymmetry which will allow for

an “extra level of complexity” [6].

The proposed model consists of a single ligand, A, binding to a pre-bound heterodimer,

R1-R2 and we assume that the ligand is able to bind to either of the receptors. The first

reaction consists of a molecule of ligand A binding to either of these receptors creating

the complexes AR1-R2 or R1-R2A. Association and dissociation rates of ligand binding

to the R1 receptor are ka1+ and ka1− respectively, while binding rates of the R2 receptor

are ka2+ and ka2−. We also introduce a cooperativity factor α = α+/α− which describes

the crosstalk between the receptors. This affects the binding rates of the second ligand

molecule to the dimer, upon when the complex AR1-R2A is created. We have positive

cooperativity when α > 1, so the equilibrium binding affinity of the second ligand binding

is increased and negative cooperativity for α < 1. We have a total of four possible

reactions as can be seen in Figure 2.3.1. These reactions can be transcribed to a system

A + R1-R2

ka1+

ka1−
AR1-R2 A + R1-R2

ka2+

ka2−
R1-R2A

A + AR1-R2

α+ka2+

α−ka2−
AR1-R2A A + R1-R2A

α+ka1+

α−ka1−
AR1-R2A

Figure 2.3.1: Schematic: the binding of a single ligand to a pre-formed heterodimer.

of ordinary differential equations (ODEs) that govern the binding kinetics of the system

62



by applying the law of mass action. Fixing [A] as a constant we express these as

d[R1-R2]

dt
= −(ka1+ + ka2+)[A][R1-R2] + ka1−[AR1-R2] + ka2−[R1-R2A], (2.44a)

d[AR1-R2]

dt
= ka1+[A][R1-R2]− (ka1− + α+ka2+[A])[R1-R2A] + α−ka2−[AR1-R2A], (2.44b)

d[R1-R2A]

dt
= ka2+[A][R1-R2]− (ka2− + α+ka1+[A])[AR1-R2] + α−ka1−[AR1-R2A], (2.44c)

d[AR1-R2A]

dt
= α+ka2+[A][AR1-R2] + α+ka1+[A][R1-R2A]− (α−ka1− + α−ka2−)[AR1-R2A].

(2.44d)

The total concentration of receptors is

Rtot = [R1-R2] + [AR1-R2] + [R1-R2A] + [AR1-R2A], (2.45)

which is a conserved quantity, hence we can use this to reduce the system of ODEs by

one, which we can write in the form d
dt

X(t) = MX(t) + f, where

X(t) =


[AR1-R2]

[R1-R2A]

[AR1-R2A]

 , f =


ka1+[A]Rtot

ka2+[A]Rtot

0

 , (2.46)

and

M =


−(ka1−[A] + ka1− + α+ka2+[A]) −ka1+[A] α−ka2− − ka1+[A]

−ka2+[A] −(ka2+[A] + ka2− + α+ka1+[A]) α−ka1− − ka2+[A]

α+ka2+[A] α+ka1+[A] −(α−ka1− + α−ka2−)

,
(2.47)
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The system has the initial conditions


[AR1-R2]

[R1-R2A]

[AR1-R2A]

 =


0

0

0

 . (2.48)

2.3.1 Equilibrium analysis

Investigating the behaviour of the system at equilibrium allows us to see the effect of α.

At equilibrium we have the relationships

[AR1-R2] = KA1[A][R1-R2], (2.49a)

[R1-R2A] = KA2[A][R1-R2], (2.49b)

[AR1-R2A] = αKA2[A][AR1-R2] = αKA1KA2[A]2[R1-R2], (2.49c)

where KA1 = ka1+/ka1− and KA2 = ka2+/ka2− are the equilibrium association constants.

The total concentration of dimers can be given as

Rtot = [R1-R2] + [AR1-R2] + [R1-R2A] + [AR1-R2A] (2.50)

= [R1-R2](1 +KA1[A] +KA2[A] + αKA1KA2[A]2), (2.51)
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which we combine with equations (2.49) to express the concentrations in terms of param-

eters only, as

[R1-R2] =
1

(1 +KA1[A] +KA2[A] + αKA1KA2[A]2)
Rtot, (2.52a)

[AR1-R2] =
KA1[A]

(1 +KA1[A] +KA2[A] + αKA1KA2[A]2)
Rtot, (2.52b)

[R1-R2A] =
KA2[A]

(1 +KA1[A] +KA2[A] + αKA1KA2[A]2)
Rtot, (2.52c)

[AR1-R2A] =
αKA1KA2[A]2

(1 +KA1[A] +KA2[A] + αKA1KA2[A]2)
Rtot. (2.52d)

From these it is clear that as [A]→∞ the concentrations [R1-R2], [AR1-R2], [R1-R2A]→

0 and [AR1-R2A] → Rtot. As the primary interest is the total amount of ligand bound,

due to it generally being a measurable quantity in experiments. At equilibrium this is

Abound = [AR1-R2] + [R1-R2A] + 2[AR1-R2A] (2.53)

=
KA1[A] +KA2[A] + 2αKA1KA2[A]2

(1 +KA1[A] +KA2[A] + αKA1KA2[A]2)
Rtot. (2.54)

As [A]→∞, Abound → 2Rtot hence, we calculate

A50 =

√
1

αKA1KA2

. (2.55)

In Figure 2.3.2 we look at the curves of Abound along with the individual species curves

to study the effect the equilibrium cooperativity factor α has on the binding relationships.

We fix association constants with KA1 > KA2. It is clear in this figure that the curves are

similar in shape to the logDR curves in the homodimer model. As α increases the curves

shift towards the left, with a higher concentration of ligand required to reach equilibrium.

We also notice we again have inflections in the Abound curve for low cooperativity values,

in much the same way as we did in the homodimer model. We also point out that,

although the curves of [AR1-R2] and [R1-R2A] are identical in shape, having KA2 < KA1
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results in a much lower concentration of [R1-R2A].
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Figure 2.3.2: Plotting logDR curves, using equation (2.54), for varying α show extra
inflections appear for heterodimers, similar to those in the homodimer binding curves.

To determine the point of these extra inflections and derive a condition under which

these appear we again follow the analysis outlined in Appendix B (with a = KA1 +

KA2, b = αKA1KA2, c = 1 and X = [A]). We have an inflection point that is always

present at

[A] =

√
1

αKA1KA2

. (2.56)

We further find that extra inflections appear at the points

[A]± =

−(8αKA1KA2 − (KA1 +KA2)
2)

±
√

((KA1 +KA2)2 − 16αKA1KA2)((KA1 +KA2)2 − 4αKA1KA2)

2αKA1KA2(KA1 +KA2)
, (2.57)
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if the following holds

(KA1 +KA2)
2 > 16αKA1KA2. (2.58)

Under these conditions we see that, as in the homodimer model, the inflection at the A50

value changes from a rising to a falling inflection and we get two extra inflections, one at

either side of the A50 value.

2.3.2 Single ligand time course results

Here we move on to consider the effects cooperativity has on time course binding dy-

namics of the system, and observe how having a system consisting of heterodimers differs

from that of a homodimer system. In theory, analytical solutions can be found, however

these are impractical to compute, so we use numerical methods to create simulations of

the results.

In Figure 2.3.3 we fix ka1+ � ka2+ and ka1− � ka2−, and cooperativity is fixed to
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Figure 2.3.3: Plotting the numerical solution to equations (2.44) shows peaks appearing
in the time course curves for [AR1-R2] and [R1-R2A]. Cooperativity values used for the
plot are α+ = 2 and α− = 0.01, while ligand concentration is [A] = 10−8M .

give positive cooperativity, though we look at other possibilities later. For the purposes

of discussion we describe R1 receptors as being on the left side of the dimer with R2
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receptors on the right. The curves have clear similarities to the homodimer results (as

in Figure 2.1.3), in that we have peaks in the singularly bound receptors followed by an

increase in dual bound dimers. Though, as ka1+ � ka2+ we initially see a much larger

peak in [AR1-R2] while [R1-R2A] remains lower.

Figure 2.3.4: Plotting the numerical solution to equations (2.44) for a range of both
cooperativity factors (α+ and α−) result in peaks appearing in some of the [AR1-R2] and
[R1-R2A] curves. Ligand concentration used is [A] = 10−8M .

In Figure 2.3.4 we see a number effects arising from varying the cooperativity factors
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α+ and α−. In the Abound curves we see that increasing α+ results in an increase in the

total concentration of ligand bound by equilibrium, while decreasing α− gives the same

effect. Peaks form in the curves of both [AR1-R2] andf [R1-R2A], predominantly when

α− is small, although α+ also plays a role in the effect. The rate of increase in [AR1-R2]

is ka1+, hence this initially increases the same for all cooperativity values. With an in-

creased α+ these quickly become dual bound, hence [AR1-R2] falls, and we see an increase

in [AR1-R2A]. Increasing α+ results in the peak and then fall happening more quickly

and therefore a smaller peak also. This has the added effect that the system then also

reaches equilibrium more quickly. The same argument also holds for [R1-R2A], although

as ka1+ > ka2+ and ka1− > ka2− the overall concentration levels are lower. However, if

α− is increased, when the dimers become dual bound one of the bound ligand molecules

quickly become unbound, hence we do not see the fall in [AR1-R2] and [R1-R2A], and

instead [ARA] remains low.

2.4 Conclusions

In this Chapter, we have presented dynamic models of ligand binding to pre-dimerised

GPCR homodimers, for both a single ligand and two-ligand competition, and single lig-

and heterodimers. The models are linear ODE systems, allowing analytical solutions for

time-dependent and equilibrium responses. The model formulation, solution and results

serve as a contribution to the field of pharmacological modelling, and are expected to be

of practical use, given the ease with which we can compute solutions. In particular, the

bi-exponential single-ligand binding kinetics show a similar model solution structure to

the widely-used Motulsky-Mahan model for competition binding at monomers [95]. We

therefore propose that these models can be adopted, interpreted and implemented with

relative ease by pharmacologists, and as such we have provided a recipe for computational

solution.

There are interesting features in the equilibrium logDR curves for the experimental

readout (signal) Abound. We have noted the possibility for multiple inflections in logDR
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curves, for all models. Multiphasic features in logDR curves are not reproducible by

standard Hill functions [32] which only support single-inflection curves. For single-ligand

binding, multiphasic logDR curves theoretically rule out monomeric receptor binding

as the only ligand binding mechanism; such experimental data therefore would suggest

another binding setup, possibly due to dimeric receptors. The existence of multiple inflec-

tions depends on the level of cooperativity across a dimerised receptor, and importantly

we are able to give conditions on cooperativity factors for a three-inflection curve. The

practical use of these conditions is clearly in assessing the sign and magnitude of co-

operativity towards quantitative classification of drug-receptor interactions. Given that

Hill functions are not suitable for fully characterising multiphasic logDR curves [32], our

analysis here goes beyond dimer cooperativity indices which stem in part from coopera-

tivity in the Hill function sense [44]; the present work concerns mechanistic cooperativity

which is explicit in the original model schematic, as opposed to empirical measures from

a more limited model. In [32], it is noted that multiphasic logDR curves have particular

importance in a number of contexts including cancer pharmacology, and effort should be

made to move beyond Hill function fitting wherever possible.
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Chapter 3

Modelling GPCR binding and

activation

Dimeric receptors can theoretically elicit a diverse range of pharmacological effects [91].

With the implications of these on downstream signalling yet to be fully explored, many

questions remain, such as, how ligand-receptor crosstalk can be distinguished from down-

stream crosstalk when interpreting experimental results [92, 93, 22]. The logical next

steps in the modelling of dimeric receptors and exploring these possible downstream ef-

fects involves extending our GPCR models to include receptor activation [44], G protein

binding [93, 6], and ultimately G protein activation and cycling [137, 13].

In this chapter, to begin understanding the downstream effects we extend the GPCR

binding models we presented in Chapter 2 to include receptor activation. There are

currently few mathematical models of GPCR binding and activation where receptors

have formed dimers. Franco et al. [40] present a model for the binding and activation

of homodimers, where they consider each receptor within the dimer to have its own

orthosteric binding site, however, activation occurs for the unit as whole. In [141], Zhou

and Giraldo extend the canonical operational model to include homodimers. In their

paper they simulate and analyse the functional effect curves seen at equilibrium. Rovira et

al [109] present a model that describes the binding and activation of homodimers. In their

model, they define a dimer with only one protomer active as ’asymmetric’, while a dimer

with both protomers active as ’symmetric’. They propose that dimers in an asymmetric
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state activate a different pathway to those in a symmetric state, hence, compare the

signalling outcomes for the two individual pathways. In contrast to the models in the

literature, we now present a more complete model, free of any restrictive assumptions.

3.1 The model

The schematic of the model we present is shown in Figure 3.1.1. In this model, we

consider a single ligand, A, binding to a pre-dimerised receptor complex. We assume all

dimers are homodimers, so the receptors within the complex are identical. Each protomer

within the dimer has the ability to bind a ligand molecule and/or activate individually.

R∗R

R∗AR
∗

R∗ARA

RAR

R∗R∗

R∗AR
∗
A

RR

RARA

RAR
∗

R∗AR

Kact

KA

νξKact

αKA

λKact

νξKA

νξλKact

ανξKA

νKact ξλKact

ξKact νλKact

νKA

αξKA

ξKA

ανKA

Figure 3.1.1: The binding of a ligand A, and activation of pre-dimerised receptors show a
spherical schematic describing interactions with ten dimer complexes. Binding is deter-
mined by KA, while activation Kact. Cooperativity factors α, λ, ν and ξ describe crosstalk
and the more complex interactions.
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3.1.1 Notation

The notation we have used to describe the state of each species is as follows:

− Each protomer is denoted by R, hence an unbound, inactive dimer is RR.

− A subscripted A attached to an R indicates that the receptor is bound by a ligand

molecule. As such RAR implies that one of the protomers in the dimer is bound,

while RARA represents a dimer that is dual bound. We assume there is no preference

for which protomer the ligand molecule binds to first.

− Ligand association and dissociation kinetic rate constants, for inactive receptors are

ka+ and ka− respectively, and KA = ka+/ka− is the equilibrium binding constant.

− An active receptor is represented by an asterisk, hence, R∗R indicates that one

receptor within the dimer is active. Similarly, R∗R∗ is a dimer with both protomers

active. We follow the work of Rovira et al and denote these ’asymmetric’ and

’symmetric’.

− We have kact+ and kact− as the activation and deactivation rates, and Kact =

kact+/kact− is the equilibrium activation constant. These account for the basal

activation of receptors in the absence of ligand, otherwise known as constitutive

activity.

As the dimer consists of two identical receptors we assume symmetry throughout, hence

RAR, for example, describes a dimer with a single molecule bound, regardless of which

side it is bound to. Furthermore, for simplicity of notation, we order the receptors within

the dimer such that a receptor that is bound will be listed first, followed by an active

receptor, then finally a free receptor. This means that, a dimer that has one protomer

bound by ligand, and the other active, will be written RAR
∗. We highlight however, the

reaction

A + R∗R RAR
∗
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to make note of the ordering. This reaction simply binds a ligand molecule to the inactive

protomer, giving one active unbound protomer and one inactive bound protomer within

the dimer. Whilst before binding ordering is such that the active receptor is on the left,

once binding occurs, ordering dictates that the bound receptor is written first, hence

the active receptor appears on the right. This ordering is simply a necessity in order to

exploit the symmetry of the dimer.

3.1.2 Cooperativity factors

We also require some extra cooperativity factors to fully describe all binding and activa-

tion processes:

− The parameter α remains the same as in Figure 2.1.1, in Chapter 2, where its

effects were explored extensively. It represents equilibrium binding cooperativity,

that is the change in ligand affinity for the dimer when it is already ligand-bound.

The value α = 1 represents neutral cooperativity, and α > 1 and α < 1 represent

positive and negative cooperativity respectively. With positive cooperativity, less

ligand is required for the dimer to become bound by a second molecule, due to the

dimer already being bound, and more ligand is needed for negative cooperativity.

− Similarly we have the equilibrium activation cooperativity factor λ which allows for

the change in propensity for receptor activation of one receptor within the dimer

when the other side is already active. With λ > 1 there is an increased propensity

for activation of the second protomer, while the converse is true if λ < 1.

− The parameter ν represents the intrinsic efficacy of the ligand and accounts for the

change in propensity for receptor activation when ligand is bound as well as change

in affinity of the ligand for active protomers over inactive protomers, where detailed

balance states that these must be equal. This parameter specifically represents these

changes when ligand binding and activation occur on the same receptor within the

dimer. Hence, with ν > 1, if a protomer is ligand bound, there is an increased

propensity that the same protomer will become active. Similarly, for ν > 1, if a

protomer is active it will have a higher affinity for the ligand. The parameter ν
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has no effect on the binding and activation rates of the opposite receptor within

the dimer. In the two-state model by Leff [76], the parameter K∗A is defined as

an alternate binding rate grouping the cooperativity factor and binding constant

together.

− The parameter ξ accounts for the change in propensity for receptor activation when

ligand is bound as well as change in affinity of the ligand, where ligand binding

and activation occur on opposite receptors. For example, with ξ > 1, when one

protomer becomes bound, the propensity for activation of the other protomer is

increased, and similarly activation of one of the protomers increases the affinity for

ligand binding to the opposite protomer.

3.2 Equilibrium analysis

We explore the behaviour of the system, particularly focusing on the effects of the pa-

rameters α, λ, ν and ξ, at equilibrium. The equilibrium relationships are

[RAR] = KA[A][RR],

[R∗R] = Kact[RR],

[RARA] = αKA
2[A]2[RR],

[R∗AR] = νKAKact[A][RR],

[RAR
∗] = ξKAKact[A][RR],

[R∗R∗] = λKact
2[RR],

[R∗ARA] = ανξKA
2[A]2Kact[RR],

[R∗AR
∗] = νλξKAKact

2[A][RR],

[R∗AR
∗
A] = αν2λξ2KA

2Kact
2[A]2[RR].

(3.1)

The total concentration of receptors, a conserved quantity, can be stated as

Rtot = [RR]+[RAR]+[R∗R]+[RARA]+[R∗AR]+[RAR
∗]+[R∗R∗]+[R∗ARA]+[R∗AR

∗]+[R∗AR
∗
A],

(3.2)
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which we combine with equations (3.1) to give the equilibrium concentration of each

species in terms of model parameters as

[RR] =
Rtot

σ
,

[RAR] =
KA[A]Rtot

σ
,

[R∗R] =
KactRtot

σ
,

[RARA] =
αKA

2[A]2Rtot

σ
,

[R∗AR] =
νKAKact[A]Rtot

σ
,

[RAR
∗] =

ξKAKact[A]Rtot

σ
,

[R∗R∗] =
λKact

2Rtot

σ
,

[R∗ARA] =
ανξKA

2[A]2KactRtot

σ
,

[R∗AR
∗] =

νλξKAKact
2[A]Rtot

σ
,

[R∗AR
∗
A] =

αν2λξ2KA
2Kact

2[A]2Rtot

σ
.

(3.3)

where

σ = 1 +Kact + λK2
act +KA[A] + (ν + ξ)KAKact[A] + νξλKAK

2
act[A]

+ αK2
A[A]2 + ανξK2

AKact[A]2 + αν2ξ2λK2
AK

2
act[A]2. (3.4)

It is well documented that, receptors in an active state elicit a biochemical response

[76]. Although this response will also depend on the downstream signalling pathway,

here we define a cursory signal as simply the response coming from an active receptor.

However, it is unknown whether a dimer with both protomers active simply gives twice

the signal as a single active protomer, or whether other factors may affect this. So in

deriving a signal, we introduce an extra parameter ω to account for this. If ω = 2, we

assume that the signal arising from a symmetric dimer is exactly twice the signal of an

asymmetric dimer, while ω = 1 assumes that, although both protomers within the dimer

are active, the signal being transmitted is unchanged by the activation of the second

receptor. We therefore state the proposed signal as

S = [R∗R] + [R∗AR] + [RAR
∗] + [R∗ARA] + ω([R∗R∗] + [R∗AR

∗] + [R∗AR
∗
A]). (3.5)
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This gives the equilibrium signal as

Seq =

Kact + νKAKact[A] + ξKAKact[A] + ανξKA
2Kact[A]2

+ ω(λKact
2 + νξλKAKact

2[A] + αν2ξ2λKA
2Kact

2[A]2)

1 +Kact + λK2
act +KA[A] + (ν + ξ)KAKact[A] + νξλKAK

2
act[A]

+ αK2
A[A]2 + ανξK2

AKact[A]2 + αν2ξ2λK2
AK

2
act[A]2

Rtot. (3.6)

which we will use to analyse the effect each cooperativity factor has on the dose-response

curves.

3.3 Dose-response curves: single parameter effects

We now explore how the parameters α, λ, ν and ξ affect the dose-response relationship. In

the following sections, we vary each of these individually while keeping the others fixed,

to isolate the effects of a single parameter. The parameters KA, Kact and Rtot are fixed in

each case with values taken from Woodroffe [138], though we note that these are taken for

illustrative computations only, as the values given by Woodroffe are for monomers. All

parameter values can be found in Table A.4 in Appendix A. The weighting parameter in

the signal is set to ω = 2, so that the signal given from a symmetric dimer is twice that of

an asymmetric dimer, although we also later discuss the possible effects of this parameter

being other values. All dose-response plots are normalised with respect to Rtot, and as

such, when referring to the signal, or Seq, we are assuming this to be the normalised

signal. All plots in this chapter were created using equation (3.6) for the overall signal

and equations (3.3) for the individual species plots.

3.3.1 Varying binding cooperativity parameter α

The first parameter we analyse the effects of is the binding cooperativity factor, α. To

do this we fix all other cooperativity factors as λ = ν = ξ = 1, to focus on the effects of α

alone. Although we note, that these values indicate that the ligand is an antagonist and

also constitutive activity is low, and so the signal will also be low. However, fixing the

values in this way allows us to isolate the effects of α in order to gain a fuller understand-
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ing of the potential consequences of having positive or negative binding cooperativity. We

later vary all parameters simultaneously to explore a range of possible signal outcomes.

Before analysing the signal curves, and as α is a binding parameter, we first comment

on the amount ligand bound. This allows us to directly compare the results with the

previous binding results, in Section 2.1, where we recall the concentration of ligand bound,

scaled against Rtot, was stated, in equation (2.9), as

Abbound
Rtot

=
KA[A] + 2αK2

A[A]2

1 +KA[A] + αK2
A[A]2

. (3.7)

The superscript b indicates that the expression is from the binding model. To find the

equivalent expression for this model we use the expressions that were given in equations

(3.1), while setting λ = ν = ξ = 1. Noting that

Aabound
Rtot

= [RAR] + [R∗AR] + [RAR
∗] + [R∗ARA] + 2([RARA] + [R∗ARA] + [R∗AR

∗
A]), (3.8)

where the superscript a indicates the activation model, we calculate

Aabound
Rtot

=
(1 + 2Kact +K2

act)KA[A] + 2α(1 +Kact +K2
act)K

2
A[A]2)

1 +Kact +K2
act + (1 + 2Kact +K2

act)KA[A] + α(1 +Kact +K2
act)K

2
A[A]2

.

(3.9)

We note that

1 + 2Kact +K2
act ≈ 1 +Kact +K2

act, (3.10)

as Kact � 1 (although this also holds for Kact � 1), which then gives

Aabound ≈ Abbound. (3.11)
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Hence, we can conclude that the concentration of ligand bound in the two models is,

for all intents and purposes, approximately equal. This is also confirmed in Figure 3.3.1

where we plot dose-response curves showing ligand bound, using the expressions from

both the previous binding model and this activation model.
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Figure 3.3.1: The logDR Abound curve for this activation model (equation (3.8)) is plotted
alongside the logDR Abound curve for the binding model (Section 2.1, equation (3.9)).
With equal binding parameters we see that the curves appear to be the equal.

In Figure 3.3.2 we explore the signalling implications of a varied α while fixing

λ = ν = ξ = 1. On the x axis we have ligand concentration, on a log scale. On

the top row, we have the overall signal plotted beside the Abound plot. Underneath these

we plot dose-response curves for each individual species in order to assist in understand-

ing the signal plot.

Unlike the sigmoidal shape we see for monomer dose-response curves (as we discussed

in Chapter 1), we instead have a bell-shaped signal curve. The signal increases as the

ligand concentration increases, and then falls back to the basal level. Research has shown

that this can be indicative of non-standard monomer-ligand binding [100]. To understand

why this effect occurs we look at the individual species curves.

While the ligand concentration is very low, the signal remains close to the basal level,

with most dimers being in the form of either RR, R∗R or R∗R∗. As the ligand in the

system increases we first see an increase in singularly bound dimers, that is, [RAR],
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Figure 3.3.2: Plotting a logDR curve (equation (3.12)) for a range of values for binding
cooperativity factor α. While all signal curves have a bell shape, increasing α decreases
the peak size.

[R∗AR], [RAR
∗] and [R∗AR

∗]. This is followed by a fall in these same concentrations once

all dimers become dual bound by the ligand, thus causing a peak in singularly bound

species concentrations. This phenomenon was explored extensively in Chapter 2, where

we saw that low cooperativity exaggerated the effect, thereby causing a larger peak in

singularly bound dimers. Cooperativity values that caused this larger peak also gave an
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extra inflection in the total bound ligand curve. In fact, with this Abound plot (top right)

alongside the signal (top left), we see how the extra inflection correlates to the largest

peaks in the signal curve.

The bell shape in the signal curve comes from the concentrations [R∗AR] and [RAR
∗].

Notice that, when binding cooperativity is taken to be extremely low, the peak value of

the signal is exactly double that of the basal level. This low cooperativity, combined with

sufficient ligand, means most dimers become trapped in a form with only one receptor in

each dimer bound. There are then two ways a singularly bound dimer can be also active

(and therefore eliciting a signal), hence we have increases in both [R∗AR] and [RAR
∗],

which leads to the signal doubling in this phase.

This can also be seen mathematically. Taking the signal expression, as in equation

(3.6), with ν = ξ = λ = 1 and ω = 2 gives

Seq =
Kact(1 + 2Kact + 2(1 +Kact)KA[A] + α(1 + 2Kact)K

2
A[A]2)

1 +Kact +K2
act + (1 +Kact)2KA[A] + α(1 +Kact +K2

act)K
2
A[A]2

. (3.12)

Differentiating this with respect to [A] gives

dSeq
d[A]

=
KAKact(1−K2

act)(1− αK2
A[A]2)

(1 +Kact +K2
act + (1 +Kact)2KA[A] + α(1 +Kact +K2

act)K
2
A[A]2)2

, (3.13)

which gives a single stationary point at

[A] =
1

KA

√
α
. (3.14)

This is clearly identical to the [A]50 value and point of inflection in the Abound curve given

in Chapter 2 when considering single ligand binding, hence the inflection in the Abound

curve directly relates to the peak in the signal curve. Substituting this back into equation
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(3.12) gives the signal at this point as

Seq

∣∣∣∣[A]= 1
KA
√
α

=
2Kact(1 +Kact +

√
α(1 + 2Kact)

(1 +Kact)2 + 2
√
α(1 +Kact +K2

act)
. (3.15)

As the signal appears to reach a maximum value when the binding cooperativity factor

is small, we let α→ 0 to find this maximum peak value as

lim
α→0

(
Seq

∣∣∣[A]= 1
KA
√
α

)
=

2Kact

1 +Kact

. (3.16)

Furthermore, taking the limit of the signal, as given in equation (3.12), as [A]→ 0, and

also taking the limit as [A]→∞ gives

lim
[A]→0

Seq = lim
[A]→∞

Seq =
Kact(1 + 2Kact)

1 +Kact +K2
act

, (3.17)

confirming that at high ligand concentrations the signal falls to the same level as when

ligand concentrations are low. One particular point of interest occurs when binding

cooperativity is extremely low, enough so that the maximum peak is reached. With the

parameters as we fixed them in Figure 3.3.2, the signal does not begin decreasing until

the ligand concentration reaches 10−4M . Typically, concentrations used in experiments

are much lower than this. This could potentially result in curves that appear to be

monomeric, sigmoidal shaped curves. Not only would this lead to flawed assumptions

being inferred, but would also result in the fitting to a model that is not representative

of the biological system, and inaccurate binding estimates made.

3.3.2 Varying activation cooperativity parameter λ

We now fix α = ν = ξ = 1 and instead vary λ, to investigate the effects of the acti-

vation cooperativity factor. Again, these values mean signal is overall very low, but it

is necessary to understand the effects of λ without influence from other cooperativity
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values. In Figure 3.3.3 we again plot the overall signal curve, along with all individual

species curves. In order to be able to see the details in the curves that are on a lower

order concentration, we split the signal plot across two subplots. Clearly the shape of the

signal curve is similar to that of the signal curve when we varied α (Figure 3.3.2), that is,

a bell-shaped curve. However, we notice that varying λ appears to shift the whole curve,

with an increased λ resulting in an increase in concentration at all points.

Again, the individual species curves give explanation for this. It is clear that varying

λ has little effect on many of the curves. As the only reactions involving the parameter

λ are those that involve the activation of a second protomer, it follows that the concen-

trations primarily affected by varying λ are the symmetric species, [R∗R∗], [R∗AR
∗] and

[R∗AR
∗
A]. If we focus on these three concentrations, the reason for the changes in the signal

curve become clear. While concentration of A is low, then it follows that [R∗R∗] is high,

while [R∗AR
∗] and [R∗AR

∗
A] are close to zero. As [A] increases, we see an increase in [R∗AR

∗]

and a decrease in [R∗R∗] as free dimers become bound by a single ligand molecule. As

[A] continues to increase, all dimers eventually become dual bound due to an abundance

of ligand, hence we see an interchange of [R∗AR
∗] and [R∗AR

∗
A], thus creating the peak in

[R∗AR
∗].

As we increase λ, however, we see that this effect becomes more exaggerated, as re-

gardless of the amount of ligand in the system, increasing λ means more asymmetric

dimers becoming symmetric. If λ is high, more dimers are in the form [R∗R∗] in the

absence of ligand, hence the basal signal is increased with λ. Similarly, once the ligand

concentration increases, a high λ leads to an increased peak in [R∗AR
∗], as well as a higher

concentration of [R∗AR
∗
A] once there is sufficient ligand for all receptors to become bound.

To determine how much the signal increases at the peak, we consider the equilibrium
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Figure 3.3.3: Plotting a logDR curve (equation (3.18)) for a range of values for activation
cooperativity factor λ. Increasing λ increases the signal for all concentration of [A].

signal, with α = ν = ξ = 1 and ω = 2, which gives

Seq =
Kact(1 + 2λKact + 2(1 + λKact)KA[A] + (1 + 2λKact)KA

2[A]2)

1 +Kact + λK2
act + (1 + 2Kact + λK2

act)KA[A] + (1 +Kact + λK2
act)K

2
A[A]2

.

(3.18)
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First taking the limit as [A]→ 0, and also as [A]→∞ gives

lim
[A]→0

Seq = lim
[A]→∞

Seq =
Kact(1 + 2λKact)

1 +Kact + λK2
act

, (3.19)

confirms that the signal is equal at both zero and infinity. Furthermore, if we let λ→∞

in equation (3.18) we have

lim
λ→∞

Seq = 2, (3.20)

which verifies that, as equilibrium cooperativity increases, the signal tends to a constant,

maximal signal.

We also use equation (3.18) to investigate the peak in the signal curve. Differentiating

this with respect to [A], gives

dSeq
d[A]

=
KAKact(1−K2

A[A]2)(1− λK2
act)

(1 +Kact + λK2
act + (1 + 2Kact + λK2

act)KA[A] + (1 +Kact + λK2
act)K

2
A[A]2)2

.

(3.21)

which gives a single stationary point at

[A] =
1

KA

. (3.22)

This confirms that the peak occurs at the same point regardless of the value of λ. Sub-

stituting equation (3.22) into equation (3.18) gives the signal at the stationary point as

Seq

∣∣∣∣[A]= 1
KA

=
2Kact(2 + 3λKact)

3 + 4Kact + 3λK2
act

. (3.23)
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The difference between the peak and the basal signal can then be calculated as

Sp =
Kact(1− λK2

act)

(1 +Kact + λK2
act)(3 + 4Kact + 3λK2

act)
. (3.24)

As this expression contains the parameter λ, we find that the height of the peak, in

relation to the basal signal, does change as the parameter λ changes. Furthermore, if we

let λ→∞ we have

lim
λ→∞

Sp = 0, (3.25)

which confirms that, for a high enough λ, the peak decreases until the curve flattens out,

giving a constant maximal signal.

3.3.3 Varying efficacy parameter ν

We now fix α = λ = ξ = 1 and instead vary the efficacy parameter, ν. We see in Figure

3.3.4 that varying ν results in dose-response curve that are shaped similar to monomeric

curves (with the exception of the ν = 1 curve), as opposed to the bell-shaped curves we

saw when varying α and λ. As ν is an efficacy parameter, increasing ν by one order of

magnitude causes a large increase in signal, until the maximum signal is reached. This,

however, means that the signal with ν < 1 are on a much smaller scale than with ν > 1,

and so when plotting the signal we have again separated these in order to see the full

details of each curve.

Whilst there is little ligand available, varying ν has no effect on any of the concen-

trations, and therefore the signal. It then follows that the basal level of activity is the

same for all values of ν. Once the ligand concentration increases, we then see the effect

ν has on the curves. Increasing ν leads to a typical agonist response. The signal curve

is sigmoidal in shape, with an increasing ligand concentration leading to an increase in

signal. Increasing ν leads to an increased peak in [R∗AR], which results in increases in
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Figure 3.3.4: Plotting a logDR curve (equation (3.26)) for a range of values for efficacy
parameter ν. This parameter determines whether the ligand acts as an agonist (when
ν > 1), or inverse agonist (ν < 1), while ν = 1 shows a curve with a small peak.

R∗AR
∗ and R∗ARA, and also [R∗AR

∗
A]. Whilst increasing ν does mean we also see a decrease

in [RAR
∗], we note that this concentration is on a much smaller scale than the increasing

concentrations, and as such, the increases far outweigh the decreases.

Conversely, if ν decreases, such that ν � 1, then the ligand acts as an inverse agonist
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and decreases the signal below the basal level. With a small ν, ability for a protomer to

be both bound and active is almost blocked, which leads to an increase in [RAR
∗], and a

decrease in [R∗AR]. As the ligand concentration increases the system becomes flooded by

the ligand, leading to more dimers becoming bound on both sides. In turn the low value

of ν stops either protomer from becoming active, hence we see a drop in active receptors

and, therefore, the signal.

To determine how much of an increase (or decrease) in signal is gained from increasing

(or decreasing) ν, we set α = ξ = λ = 1 and ω = 2 in equation (3.6), giving

Seq =
Kact(1 + 2Kact + (1 + ν + νKact)KA[A] + ν(1 + 2νKact)KA

2[A]2)

1 +Kact +K2
act + (1 + (ν + 1)Kact + νK2

act)KA[A] + (1 + νKact + ν2K2
act)K

2
A[A]2

.

(3.26)

First taking the limit as [A]→ 0 gives

lim
[A]→0

Seq =
Kact(1 + 2Kact)

1 +Kact +K2
act

, (3.27)

as the basal signal under these conditions, which we notice depends only on Kact and,

therefore, does not change when varying ν (which confirms our earlier observations). We

also have

lim
[A]→∞

Seq =
νKact(1 + 2νKact)

1 + νKact + ν2K2
act

, (3.28)

as the increased or decreased signal level (once saturation is reached). We use this

to find the order of magnitude of the signal under a varying ν, noting that this will

depend on both ν and Kact. First we point out that, if νKact � 1 then it follows that

(νKact)
2 > νKact. We can then state that, if

νKact � 1, ⇒ Seq ≈ 1. (3.29)
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Conversely, if

νKact � 1, ⇒ Seq ≈ νKact. (3.30)

Furthermore, we have

lim
ν→∞

νKact(1 + 2νKact)

1 + νKact + ν2K2
act

= 2, (3.31)

that is, as ν → ∞ the saturation signal tends to the maximum signal, as expected.

Conversely,

lim
ν→0

νKact(1 + 2νKact)

1 + νKact + ν2K2
act

= 0, (3.32)

concluding that as ν → 0 the signal is inhibited entirely, with constitutive activity being

suppressed, giving the ligand as a full inverse agonist.
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Figure 3.3.5: We plot the signal curve (equation (3.26)) for values of ν close to one,
showing the smoothing out of the peak.
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We also explore the peak seen in the ν = 1 curve. For a monomeric model, having

both ν = 1 and ξ = 1 would equate to a neutral agonist, and the signal would be con-

stant. For this dimer model, however, we see a peak appear in the curve. We discussed

the reason for the peak appearing when α = ν = ξ = λ = 1 in Section 3.3.1. In Figure

3.3.5 we plot the signal for values of ν close to one. In this we see that, as ν increases

past one, the peak increases, however, the saturation signal increases by a larger amount,

until the curve smooths out. Similarly for ν decreasing, the peak decreases as ν decreases,

until there is no longer a peak.

3.3.4 Varying efficacy parameter ξ

In this section, we note that varying ξ gives exactly the same signal as when we varied

ν. To show this we take ν = x1 and ξ = x2, giving the signal as

Seq =

Kact + x1KAKact[A] + x2KAKact[A] + αx1x2KA
2Kact[A]2

+ ω(λKact
2 + x1x2λKAKact

2[A] + αx21x
2
2λKA

2Kact
2[A]2)

αx21x
2
2λKA

2Kact
2[A]2 + αx1x2KA

2Kact[A]2 + αKA
2[A]2 + x1x2λKAKact

2[A]
+ x1KAKact[A] + x2KAKact[A] +KA[A] + λKact

2 +Kact + 1

.

(3.33)

Similarly, taking ν = x2 and ξ = x1, gives the signal as

Seq =

Kact + x1KAKact[A] + x2KAKact[A] + αx1x2KA
2Kact[A]2

+ ω(λKact
2 + x1x2λKAKact

2[A] + αx21x
2
2λKA

2Kact
2[A]2)

αx21x
2
2λKA

2Kact
2[A]2 + αx1x2KA

2Kact[A]2 + αKA
2[A]2 + x1x2λKAKact

2[A]
+ x1KAKact[A] + x2KAKact[A] +KA[A] + λKact

2 +Kact + 1

,

(3.34)

hence, the signals are equal. This comes from the symmetry in the sphere (Schematic

in Figure 3.1.1), and in particular the concentrations of the species R∗AR and RAR
∗. If

ν > ξ then [R∗AR] increases to a higher concentration than [RAR
∗], while if ν < ξ then

[RAR
∗] increases to the higher concentration. However, the sum [R∗AR] + [RAR

∗] is the

same for both cases. This effect is illustrated in Figure 3.3.6 where we fix all other pa-

rameters and take two different values for ν and ξ. Although the curves for [R∗AR] and

[RAR
∗] change as the parameters change, their sum is the same. This results for all other
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Figure 3.3.6: Plotting two sets of logDR curve (equation (3.33)), with ν = 100, ξ = 0.1
and also ν = 0.1, ξ = 100. The symmetry in the model sphere means that, although the
curves of [R∗AR] and [RAR

∗] change with varying ν and ξ, their sum, as well as all other
concentrations, is equal.

species are equal for both cases. We note that, having this symmetry in the parameters

ν and ξ will result in identifiability issues if the model is used for data fitting, as it is

unable to uniquely identify them individually from the model equations. Identifiability

is something we return to in Chapter 5 (though not for this model).
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3.3.5 Varying signal weighting parameter ω

The final parameter we consider the effect of is ω. This parameter dictates how much of

a signal is elicited from a symmetric dimer in relation to an asymmetric one. Changing

this parameter does not affect any of the individual species concentrations, it simply

describes how much of a contribution to the overall signal each species has. With ω = 1

the contribution from symmetric dimers is equal to that of asymmetric dimers. Increasing

ω means that the signal from symmetric dimers is scaled so that they give a larger

contribution to the signal. As such the signal is increased. Similarly, if ω < 1, the

contribution from symmetric dimers is less than that of asymmetric ones, and the overall

signal is decreased. This can be seen in Figure 3.3.7.
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Figure 3.3.7: Plotting a logDR curve (equation (3.6)) for a range of values for weighting
parameter ω, with all cooperativity factors fixed at one. Increasing ω increases the
contribution symmetric dimers have to the signal, which then increases the signal.

3.4 Dose response curves: varying multiple parame-

ters

Although it was important to vary each of the parameters individually, in order to fully

understand the effect they have on the system, it is more likely that these parameters
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will all be values other than one. In particular, we are usually interested in the effects of

an agonist, that is when efficacy parameters are greater than one. We now examine the

possible compound effects arising from a combination of varied parameters.
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Figure 3.4.1: We fix ξ = 1 and vary λ on each row, ν in each column and α within each
subplot (using equation (3.6)). We see effects such as inflections and overshoots in some
of the curves.

In Figure 3.4.1 we plot only signal curves. We fix ξ = 1, then on each row we vary the
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parameter λ, each column has a different value of ν, while α is varied within each plot.

We note that, although it is unlikely that ξ = 1, for now we keep it fixed this way in

order to understand the results using findings from the previous sections. In these plots,

we observe a number of behaviours that did not appear in the signal curves when varying

only a single parameter. The neutral curve (with all cooperativity factors equal to one)

appears to be an almost constant signal for most ligand concentrations, though with a

small peak for a small range of concentrations. We found that changing the binding

cooperativity factor α increases or decreases the size of this peak, while the activation

cooperativity factor λ shifts the whole curve. Varying the efficacy parameter ν increases

or decreases the signal from the basal level, without affecting the basal level, giving ago-

nist or inverse agonist behaviour. When all parameters are varied simultaneously, we see

how these effects combine and result in the emergence of new behaviours, such as extra

inflections (for example in subplots (d) and (k)) or overshoots (subplots (n) or (q)) in

some of the dose-response curves.

If we focus on one particular curve as an example, we will discuss how each parameter

contributes to these new effects. We take the green curve in plot (q), that is, with

α = 10−4, ν = 10, λ = 0.1, and plot this in Figure 3.4.2. Along with this signal curve, we

also plot the neutral curve for a point of reference, and the resulting signal for each of

these parameter values being applied individually, for example, α = 10−4, ν = 1, λ = 1.

In this plot, we can clearly see that ν increases the signal from the basal level, and has

the biggest contribution in the curve overall.

Whilst it appears that λ has no effect on the curve, we remind the reader of the results

in Figure 3.3.3 where we saw that, as λ decreases from λ = 1 to λ = 10−1, the signal does

decrease but on a much smaller scale, hence it appears to have no effect when plotting on

a larger scale, as in Figure 3.4.2. This contribution creates a slight decrease of the satu-

ration signal. Finally, the binding cooperativity factor α is what creates the overshoot in

the signal curve. Notice in the curve where α = 10−4 and all other cooperativity values

are one, the peak increases by approximately 0.001, from the basal level. This appears

to be the same as the increase of the overshoot above the saturation signal level, thus
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Figure 3.4.2: We plot dose response curves (equation (3.6)) for α = 10−4, ν = 10 and
λ = 0.1, as well as for these each being set individually.

indicating that the large peak arising from having such low binding cooperativity causes

the overshoot.

Upon closer inspection, we notice that all curves that have these unusual behaviours

when binding cooperativity α is low. This is a clear link to our findings in Chapter 2

where we found low cooperativity to result in extra inflections in dose-response curves

for all binding models. However, we also note that we do not see extra inflections or

overshoots in all low binding cooperativity signal curves in Figure 3.4.1, and so we find

that all cooperativity factors have an effect on whether these occur or not. While it is

theoretically possible to derive conditions under which these appear, the calculations are

impractical for use and require the solution of high degree polynomials.

Finally, in Figure 3.4.3, instead of fixing ξ = 1 we consider the more realistic case,

where ξ = ν. That is the efficacy of each protomer is the same. In this, we notice that,

while we still see inflections in some of the curves, these appear in fewer plots. Also,

there are no overshoots at all that can be seen. It seems that, increasing (or decreasing)

ξ together with ν counters some of these effects. We do not explore why this happens at

this time, however, this will be something to consider for future work.
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Figure 3.4.3: We fix ξ = ν and vary λ on each row, ν in each column and α within each
subplot. We see some extra inflections but now no overshoots in the curve.

3.5 Conclusions

In this chapter, we have extended the dimer binding model (Chapter 2) to include re-

ceptor activation. The increase in complexity of the model from our previous GPCR

models is clear, and we also see many new behaviours emerging in the dose response

curves. The focus remains on the cooperativity factors that affect secondary binding
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and activation. We first considered the effect of each of these parameters individually,

observing the effect each had on the dose response curves. With all cooperativity factors

being neutral, that is equal to one, the signal curve remains almost constant for most

ligand concentrations, but with a small peak for a range of ligand concentrations. This

peak is a point of interest as it appears with efficacy parameters equal to one, that is, the

ligand acting as a neutral agonist. For monomeric receptors, the signal for a neutral ag-

onist is constant, hence a peak such as this can be used to identify the presence of dimers.

We use this neutral curve as the baseline when comparing the effects of varying the

other parameters. The cooperativity factor α causes the peak to increase with an de-

creasing α. This bell shaped curve is often indicative of dimerised receptors [100]. We

also saw how the peak in the signal curve is directly related to the extra inflections seen

in the ligand-bound curve. The primary effect of varying λ is a shift in the whole curve.

Increasing λ increases the signal for all ligand concentrations and causes subtle changes

in the peak size. The symmetry in the model means that we obtain the same results

when varying ν or ξ, hence we choose to only explore the effects of ν. Doing so results in

a change of the shape of the curve. Increasing ν from neutral leads to the ligand acting as

an agonist, while decreasing ν from one sees inverse agonist curve shapes. Furthermore,

the amount of increase or decrease in the signal at saturation is directly proportional to

the increase or decrease in ν. That is, increasing ν, results in an increase in signal, at

saturation.

We also consider how these effects combine, by looking at the results when varying

multiple parameters together. In these, we see new behaviours emerge, such as extra

inflections and overshoots in the signal curves. We show how each of the parameters

contribute to these curves. The model formulation, solution and results serve as a con-

tribution to the field of pharmacological modelling. The expressions given are practical

in use and are easily used to simulate results. The findings presented in this chapter can

explain experimental data that has a bell-shaped curve or overshoots in the curve, which

can, in turn, be used to inform further experiments.

97



While we have explored some of the possible effects that can be seen at equilibrium, we

note that this work is ongoing. Next steps would be to understand why more inflections

and overshoots can be seen in the dose response curves when ξ = 1 as opposed to when

ξ = ν. Following this,we would investigate the time course dynamics of the system, where

we expect to see many more interesting behaviours appear.

98



Chapter 4

The vascular endothelial growth

factor system

In Chapter 4 (Section 1.4) we introduced the vascular endothelial growth factor (VEGF)

system. VEGF is a key mediator of angiogenesis; a process whereby new blood vessels

are formed from the pre-existing vasculature [80, 3]. As angiogenesis is a key factor

in many conditions, including cancer and inflammation [80, 111, 102], research into the

mechanism of VEGF binding and signalling is essential towards progress in development

of new therapies. Although advancements have been made towards understanding the

interactions of receptor tyrosine kinase (RTK) ligands and receptors, further research is

needed to fully understand their role as therapeutic targets [102, 101, 111].

Although much of existing research is done at equilibrium [80], a recent study by Kil-

patrick et al [70] has used new technologies to provide a real time quantitative evaluation

of VEGF-VEGFR binding. Developments in fluorescent ligand technologies have allowed

the complexities of ligand-receptor interactions in living cells to be observed[70, 102]. In

this study, synthesized dual poled VEGF ligand molecules, that is, a ligand that can bind

two receptors simultaneously, were monitored binding in real time to VEGFR-2 recep-

tors. Results were fitted to a simple association exponential model, however, in many

cases the results failed to fit with the standard model for simple mass-action equilibrium.

Hence there is need for a model that incorporates the complexities of the VEGF binding

dynamics, also taking into account the dimerisation that is induced from ligand binding.
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The ligand induced dimerisation process is investigated extensively in [3], where mul-

tiple stochastic models are analysed to further understand the role the VEGF receptor

system plays in tumour growth, although most models given there include biological pro-

cesses beyond binding. An interesting point that is also mentioned in [3] is that at high

ligand concentrations there is an inhibition of cellular response. This is a phenomenon

that is also seen experimentally in [15], although they describe it as a ’window of desen-

sitisation’ to VEGF, with a continued increase in signal after a short decrease. Spatial

models of the dimerisation process and subsequent signalling are developed in [85], while

dynamics of receptor and transducer protein dimerisation are studied using an ordinary

differential equation (ODE) model in [127], wherein it is suggested that dimerisation

may serve to regulate signalling over multiple time scales. An ODE model of receptor

binding and aggregation is presented in [132], although only equilibrium is analysed.

Equilibrium models in [136] and [71] also explore the possibility of heterodimers. Mac

Gabhann and Popel [80] combine a ligand induced dimerisation model with a ’dynamic

pre-dimerisation’ model, whereby the dimers are formed before ligand binding, in order to

explore the mechanisms of the dimerisation of VEGFR and the possibility of the VEGF

receptors having the ability to dimerise in the absence of ligand as well as being induced

by ligand. Gabhann and Popel also consider the possibility of VEGF receptors having

the ability to form heterodimers, although to what extent this is possible biologically is

currently unknown, however their findings suggest that the level of heterodimer formation

could be significant as the signalling initiated by these is different and unique.

When formulating our previous GPCR models, we introduced the idea of a coopera-

tivity factor; an extra parameter that alters the binding rate of a second ligand molecule

to a pre-formed dimer, due to a first already being bound. Using this cooperativity factor

we were able to analyse equilibrium binding results, and contribute to current receptor

theory by also considering binding dynamics. Furthermore, analytical expressions for

both equilibrium concentration curves and binding kinetics, in terms of this cooperativ-

ity value, gave insights into the effects dimerisation has on binding. In this chapter, we

continue this work by applying the same framework as we did to the GPCR models in
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Chapter 2 to the VEGF-VEGFR system. We again formulate a model in terms of a co-

operativity factors, although due to the difference in the dimerisation mechanism of this

system, cooperativity in this paper is defined as a factor that alters the binding rate of a

second receptor (as opposed to second ligand molecule), once a first receptor is bound to

the ligand. The inspirations for this paper lie in the work by Mac Gabhann and Popel

[80], where they present a model for the binding and dimerisation of VEGF-VEGFRs.

However, while the model Mac Gabhann and Popel present also includes activation

and diffusion, we choose to focus on binding only. Binding dynamics are a current topic

of experimental study and a simpler model allows for the study of time course dynamics

as well as equilibrium results. Furthermore, this allows us to follow the analysis methods

we used in our previous work. However, this ligand induced model that we develop

results in a nonlinear system of ODEs (in contrast to the GPCR model in Chapter 2),

for which we are unable to give exact analytical solutions. However, the structure of

our model is inline with more complex receptor dynamics models ([138], [137], [14]),

hence we follow their lead in analysing the system dynamics. We use numerical methods,

for a range of control parameters, to explore possible time course behaviours, whilst

perturbation analysis gives analytical solutions for reduced problems under interesting

parameter regimes. Finally, the model is validated by fitting to recently published data,

quantifying the ligand-receptor interactions.

4.1 Model formulation

In formulating the model we assume that all receptors exist constitutively as monomers,

represented by R, while ligand A is a two-poled ligand, which has the ability to bind

to two receptors simultaneously. Ligand binding and dimerisation is a two step process

which can be visualised as in Figure 4.1.1 or given as a reaction scheme in Figure 4.1.2. In

the first reversible reaction the ligand, which we fix at a constant concentration, binds to a

free monomeric receptor, with association and dissociation rates of k+ and k− respectively,

thus creating the complex AR. Once a ligand molecule is bound to a receptor the ligand

reversibly binds a second receptor monomer, simultaneously dimerising the two receptors.
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k+

k−

ψ+k+

ψ−k−R R AR R RAR

Figure 4.1.1: Ligand binding and dimerisation is a two step process whereby a two poled
ligand (in red) first binds a monomeric receptor (blue) before then binding a second and
instantaneously dimerising the monomers.

We define the parameter ψ = ψ+/ψ− as the cooperativity factor, describing the ligand’s

increased (or decreased) affinity for the second receptor binding due to the first ligand

pole being bound. If, for example, ψ+ > 1 we have positive forward cooperativity, where

the rate of a second receptor binding is increased, and negative forward cooperativity if

ψ+ < 1.

A + R
k+

k−
AR

R + AR
ψ+k+

ψ−k−
RAR

Figure 4.1.2: Schematic representing the reactions resulting from the binding of a two
poled ligand to two monomeric receptors.

In Chapter 2 we also explored the effect cooperativity has on binding, this time in GPCRs.

However, there are differences in how cooperativity is described in the earlier chapters

and this model. In the previous models we assumed all receptors were predimerised, and

so cooperativity was the change in affinity of a second ligand binding, where as in this

model it describes the change in affinity of a second receptor binding.

The law of mass action gives rise to a system of ordinary differential equations (ODEs)
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that govern the binding kinetics of the reactions, namely:

d[R]

dt
=− k+[A][R] + k−[AR]− ψ+k+[R][AR] + ψ−k−[RAR], (4.1a)

d[AR]

dt
= k+[A][R]− k−[AR]− ψ+k+[R][AR] + ψ−k−[RAR], (4.1b)

d[RAR]

dt
= ψ+k+[R][AR]− ψ−k−[RAR]. (4.1c)

with initial conditions

[R](0) = Rtot, [AR](0) = 0, [RAR](0) = 0 (4.2)

where square brackets denote concentration, and all parameters and measured quantities

are restricted to be positive. The signal of interest is proportional to the number of

receptors bound [70], so we can therefore state this as

S = a([AR] + 2[RAR]), (4.3)

where a is a scaling constant. The signal consists of the concentration of AR and double

the concentration of RAR. This is because each molecule of RAR is made up of two

receptors, hence the signal given off is twice that of the concentration, as is described in

[70]. The total concentration of receptors is conserved, with

Rtot = [R] + [AR] + 2[RAR], (4.4)

where Rtot is the total concentration of receptors. We use this to reduce the system (4.1)
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and eliminate one equation, leaving

d[R]

dt
=−

(
k+[A] +

ψ−k−
2

)
[R] +

(
k− −

ψ−k−
2

)
[AR]− ψ+k+[R][AR] +

ψ−k−Rtot

2
,

(4.5a)

d[AR]

dt
=

(
k+[A]− ψ−k−

2

)
[R]−

(
k− +

ψ−k−
2

)
[AR]− ψ+k+[R][AR] +

ψ−k−Rtot

2
.

(4.5b)

The initial value problem has the initial conditions

[R](0) = Rtot, [AR](0) = 0, (4.5c)

since we assume that no bound complex is present to begin. We note here that we assume

there exists no constitutive dimerisation, hence dimers are solely ligand-induced. It is

worth observing here that the model we have developed is structurally similar to that

of ’Model 1’ in [3], though moving forward we focus on analysing the binding dynamics,

whereas the authors of [3] continue to expand the model to include other biological

features of the signalling pathway.

4.2 Equilibrium analysis

In the spirit of classical receptor theory, and in keeping with our previous work, we

first investigate the equilibrium behaviour of the system, in particular the effect of the

equilibrium cooperativity factor ψ = ψ+/ψ−. The equilibrium relationships are

[AR] = KA[A][R], (4.6a)

[RAR] = ψKA[R][AR] = ψK2
A[A][R]2, (4.6b)
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where KA = k+/k− is the equilibrium association constant (that is KA = 1/KD). Com-

bining these with equation (4.4) gives equilibrium species in terms of parameters as

[R] =
−(1 +KA[A]) +

√
(1 +KA[A])2 + 8ψK2

A[A]Rtot

4ψK2
A[A]

, (4.7a)

[AR] =
−(1 +KA[A]) +

√
(1 +KA[A])2 + 8ψK2

A[A]Rtot

4ψKA

, (4.7b)

[RAR] =

(
1 +KA[A]−

√
(1 +KA[A])2 + 8ψK2

A[A]Rtot

)2
16ψK2

A[A]
. (4.7c)

From this we can state the overall signal at equilibrium to be

Seq =
a(1 +KA[A] + 4ψK2

A[A]Rtot −
√

(1 +KA[A])2 + 8ψK2
A[A]Rtot)

4ψK2
A[A]

. (4.8)

If we let [A] → ∞ we have [R], [RAR] → 0, while [AR], Seq → aRtot. This signal

is a scaled concentration of the total bound ligand, hence is comparable to the total

ligand bound expression in our Chapter 2, which we see, although there is similarity in

the models, these expressions are very different. Whilst analysing the GPCR model we

presented in this earlier chapter, we found a condition under which dimer cooperativity

caused there be to extra inflections in the log dose-response (logDR) curve. We check

whether it is also possible to get these extra inflections with this ligand induced model.

Taking the expression for the (unscaled) signal

Seq =
1 +KA[A] + 4ψK2

A[A]Rtot −
√

(1 +KA[A])2 + 8ψK2
A[A]Rtot

4ψK2
A[A]

, (4.9)
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we take the second derivative, with respect to [A] (calculated symbolically in Matlab [2]))

d2Seq

d log10[A]
2
=

log(10)2
(
3K2

A[A]
2 +K3

A[A]
3 + 3KA[A] + 12ψK2

A[A]Rtot + 16ψ2K4
A[A]

2R2
tot

+ 8ψK3
A[A]

2Rtot + 4ψK4
A[A]

3Rtot + 1− ((1 +KA[A])
2 + 8ψK2

A[A]Rtot)
3/2

)
4ψK2

A[A]((1 +KA[A])2 + 8ψK2
A[A]Rtot)

3/2
.

(4.10)

This is zero when

3K2
A[A]2 +K3

A[A]3 + 3KA[A] + 12ψK2
A[A]Rtot + 16ψ2K4

A[A]2R2
tot + 8ψK3

A[A]2Rtot

+ 4ψK4
A[A]3Rtot + 1− ((1 +KA[A])2 + 8ψK2

A[A]Rtot)
3/2 = 0. (4.11)

That is, when

(3K2
A[A]2 +K3

A[A]3 + 3KA[A] + 12ψK2
A[A]Rtot + 16ψ2K4

A[A]2R2
tot + 8ψK3

A[A]2Rtot

+ 4ψK4
A[A]3Rtot + 1)2 = ((1 +KA[A])2 + 8ψK2

A[A]Rtot)
3. (4.12)

Expanding and simplifying gives

−8ψK3
A[A]3Rtot(2ψKARtot + 1)(K4

A[A]4 + 2K3
A(4ψKARtot + 1)[A]3

+ 8ψK3
ARtot(2ψKARtot + 1)[A]2 − 2KA(4ψKARtot + 1)[A]− 1) = 0.

(4.13)

The left hand side (LHS) is zero when [A] = 0, and also when

K4
A[A]4 + 2K3

A(4ψKARtot + 1)[A]3 + 8ψK3
ARtot(2ψKARtot + 1)[A]2

− 2KA(4ψKARtot + 1)[A]− 1 = 0. (4.14)
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For this fourth degree polynomial, we do not find the roots exactly, however we can de-

termine the nature of the roots. We consider Descartes’ Rule of Signs [34] which states:

Let A(X) =
∑n

i=0 aiX
i be a polynomial of degree n with real coefficients that has

exactly p positive real roots, counted with multiplicities. Let v = var(a0, ..., an) be the

number of sign variations in its coefficient sequence. Then v ≥ p and v ≡ p( mod 2). If

all roots of A(X) are real, then v = p.

As all parameters are positive, we have v = 1, that is one sign change, and so only one

positive real root, and therefore only a single inflection point. This concludes that there

is no condition under which we get extra inflections. Hence, a logDR curve, for binding,

with extra inflections should not be seen for ligand induced dimerisation so may indicate

pre-dimerised receptors but not ligand induced ones.

In Figure 4.2.1 we look at the effect the equilibrium cooperativity factor ψ has on the

log dose-response (logDR) relationship. Parameter values for the plot can be found in

Appendix A. As the maximal ligand bound is Rt, we can calculate the EC50 value (the

concentration giving half-maximal effect) for the signal, using equation (4.8), as

EC50 =
a

KA(2a− 1)(a+ (2a− 1)ψKARtot)
. (4.15)

If a = 1, that is the signal is unscaled, we have

EC50 =
1

KA(1 + ψKARtot)
. (4.16)

Again this expression is very different from the EC50 expression in our previous models,

in Chapter 2, with the most noticeable difference being that this now also depends on

Rtot. We see in Figure 4.2.1 that as ψ increases there is an approximate leftward shift in

the overall signal, indicating the smaller EC50. Looking at the individual species curves

107



explains why this occurs.
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Figure 4.2.1: LogDR curves for varying cooperativity factor, ψ. The plots show the
overall signal as well as concentrations of R (equation (4.7a)), AR (equation (4.7b)) and
RAR (equation (4.7c)).

When high cooperativity is combined with low concentrations of A, most ligand

molecules bind two receptors and thus form dimers, due to the concentration of receptors

being much higher than that of the ligand, hence we see [RAR] increase with [A] whilst

[AR] remains close to zero. Recalling that the signal is made up of one [AR] and two

[RAR] we see the signal is approximately twice the concentration of RAR. This continues

until the ligand concentration reaches the point that there are no longer enough monomers

to bind both poles of the ligand. From this point we see a plateau in [RAR] and instead

[AR] increases. Once the system is saturated with ligand [RAR] falls back towards zero,

as the concentration of ligand is so much higher than the receptor concentration, hence

there are no available receptors to bind the second pole of the ligand. Interestingly we

see that the overall signal reaches saturation at a much lower concentration of A than

[AR]. This occurs once the system reaches the point where almost all receptors are bound

and so as [A] increases from this point there is an interchange of each dimerised bound

receptor to two single bound receptors, however, as all receptors are still bound there is
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no apparent change in the overall signal.

With low cooperativity, the decreased propensity for dimerisation results in lower

concentrations of [A] being required for the same increase in bound monomers than when

cooperativity is high. Although a small percentage of ligand bound monomers still bind

a second receptor, causing dimerisation, low cooperativity prevents this from increasing

substantially. Hence the signal increases largely with monomeric bound receptors. In-

terestingly we see that the peak in [RAR] appears at the same level of [A] regardless of

the cooperativity value. To find the point at which this occurs we begin with expression

(4.7c) and differentiate it with respect to [A]. This gives

d[RAR]

d[A]
=

(1−KA[A])
(

1 +KA[A]−
√

(1 +KA[A])2 + 8ψK2
A[A]Rtot

)2
16ψK2

A[A]2
√

(1 +KA[A])2 + 8ψK2
A[A]Rtot

. (4.17)

Setting this equal to zero and solving for [A] gives the solution

[A] =
1

KA

, (4.18)

ie, the dissocitation constant, KD. This is only dependent on the binding rates, hence

this peak will appear to some extent regardless of the cooperativity levels. To find the

corresponding value of [RAR] we substitute this back into equation (4.7c) to give

[RAR]
∣∣∣ 1
KA

=

(
1−
√

1 + 2ψKARtot

)2
4ψKA

. (4.19)
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Expanding this gives

(
1 + ψKARtot −

√
1 + 2ψKARtot

)
2ψKA

,

=
1

2ψKA

+
Rtot

2
−

√
1 + 2ψKARtot

4ψ2K2
A

. (4.20)

If we take the limit as ψ →∞ we can clearly see that

[RAR]
∣∣∣ 1
KA

=
Rtot

2
, (4.21)

as all other terms tend to zero, we find Rtot/2.

4.3 Binding dynamics: numerical simulations

Here we present some numerical results to show how cooperativity affects the binding

dynamics of the individual species and the resulting overall signal. We fix k+ and k−,

within the range of reported binding affinities ([80] and references within), to allow us to

focus on the effects that cooperativity factors ψ+ and ψ− have on the binding dynamics.

In Figure 4.3.1 we see how these parameters are a major factor in the behaviour of the

individual species dynamics and the overall signal.

First looking to the overall signal, we notice that increasing ψ+ leads to an increased

signal at equilibrium. Increasing ψ+ gives an increased rate of binding of a second

monomer, hence, once a ligand binds a receptor it very quickly binds a second, and

so the elevated signal levels come from an high concentration of [RAR]. Similarly, de-

creasing ψ− gives an increase in the equilibrium signal, as in this case, once a dimer is

formed it very quickly returns to bound monomer form, leading to an increased [AR]. As

ψ− decreases, the time taken to reach equilibrium is also increased, and in fact, looking

further at the signal curves when ψ− is low is the first indication that there may be further

intricacies in the dynamics to be explored, and for this we look at the individual species
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Figure 4.3.1: A numerical investigation into the effects of cooperativity factors ψ+ and
ψ−. The columns show the overall signal as well as individual species (equations 4.1)
while in each row we fix the ψ+ value. Each plot then shows a varied ψ−. Plots are
created with ligand concentration [A] = 10−10M .

111



curves.

On closer inspection we see three features of interest. Firstly, when ψ− is small, and

therefore a slowed dimer dissociation rate, we see peaks forming in the [AR] curve. Al-

though monomers are initially bound to the ligand, once these form dimers, having a slow

dimer dissociation rate reduces the chance of them returning to monomers, so for a time

each dimer is essentially stuck in this form, and so the concentration of bound monomers

falls. This also explains the extended time for the system to reach equilibrium with small

ψ− as this interchange between bound monomers and dimers increases the time in which

it takes the concentrations to come into balance. Conversely, if ψ− is large, peaks appear

instead in the dimer concentration, [RAR]. Ligands bind monomers and in turn form

dimers. However, with an increased dimer dissociation rate these quickly return back to

monomers, and so we see a peak in the curve.

The final feature we notice is again in the [AR] curve, but this time when ψ+ is large.

In this case the [AR] curves in particular appear to have an initial rapid increase in

concentration, indicating that we have multiple time scales. The forward cooperativity

factor being large drastically increases the rate at which bound monomers form dimers,

and so [RAR] increases much faster than when ψ+ was smaller. This in turn means

that there are fewer available monomers to become bound, and so [AR] remains low.

Overall, however, the dimerisation happens on a much shorter time scale, hence we see

this short transient period in the [AR] concentration curve. We also note that these

effects are combined, for example, when we have a large ψ+ with a small ψ−, we see the

concentration of [AR] increases rapidly to a peak before decreasing towards equilibrium.

The analytical tools we used in Chapter 2, for the linear GPCR system, do not apply

here, so we instead use asymptotic analysis to explore system (4.1).

4.4 Dimensionless differential equations

To be able to analyse system (4.1) asymptotically we first require it to be nondimen-

sionalised. To rewrite the variables to nondimensional form we first give the units of all
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current variables in Table 4.1.

Variable Units

[R] M

[AR] M

[RAR] M

[A] M

t s

Parameter Units

k+ M−1s−1

k− s−1

ψ+ -

ψ− -

Rtot M

Table 4.1: The units of the variables and parameters in the system (4.1).

We begin by nondimensionalising [R]. As [R] has units M , for balance, we require a

scalar that also has units M to rescale with. The natural choice for this is Rtot, and so

we let dimensionless free receptor r be given by

[R] = Rtotr ⇒ r =
[R]

Rtot

. (4.22)

To scale [AR] and [RAR] we first recall the equilibrium concentrations

[AR] = KA[A][R], [RAR] = ψKA[R][AR] = ψK2
A[A][R]2, (4.23)

We use these to give us scalings for [AR] and [RAR] as these are the natural scalings to

ensure that [AR] and [ARA] are O(1) at equilibrium. Hence, we have

[AR] = KA[A]Rtotp ⇒ p =
[AR]

KA[A]Rtot

, (4.24)

[RAR] = ψK2
A[A]R2

totq ⇒ q =
[RAR]

ψK2
A[A]R2

tot

, (4.25)

where r, p and q are the new nondimensional free receptor, single bound receptor and

dimerised receptor, respectively. As t has dimension s, we nondimensionalise by a param-
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eter with the same dimension. As equilibrium is reached approximately when t = k−1− ,

we choose to use k− to scale with, thus

t =
t̃

k−
⇒ t̃ = k−t. (4.26)

Substituting these back into system (4.5) gives

dr

dt̃
= −

(
α +

γ

2

)
r +

(
1− γ

2

)
αp− α2βrp+

γ

2
, (4.27a)

dp

dt̃
=
(

1− γ

2α

)
r −

(
1 +

γ

2

)
p− αβrp+

γ

2α
. (4.27b)

where

α = KA[A], β =
ψ+Rtot

[A]
, γ = ψ−, (4.28)

are the dimensionless parameters for the system. The initial conditions, in equation

(4.5c), now become

r(0) = 1, p(0) = 0. (4.29)

It is also worth noting that the conservation law, given in equation (4.4), now becomes

1 = r + αp+
2α2β

γ
q, (4.30)

which can be used to calculate the concentration of q where necessary. Biologically, α is

the ligand concentration scaled by equilibrium dissociation rate, so α � 1 if either the

ligand concentration is very high or has a very high affinity. The grouped parameter β

depends on the cooperativity factor ψ+ as well as the ligand-receptor ratio, so can be
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considered a scaled dimerisation rate. So β � 1 if either ψ+ is large, which leads to an

increase in the rate at which dimers are formed, or there is a much higher concentration

of receptors than there is ligand. As γ is simply the parameter ψ−, if γ � 1 then we have

fast dimer dissociation. We can also state the equilibrium solutions for this dimensionless

system as

req = peq =
γ
(
−(1 + α) +

√
(1 + α)2 + 8α

2β
γ

)
4α2β

, qeq = (req)2. (4.31)

4.5 Asymptotic analysis

In Section 4.3 we noticed that a choice of small ψ− leads to a peak in the [AR] curve,

whilst a large ψ− leads to a peak instead in [RAR]. Also, choosing ψ+ to be large

gives a rapid increase in [AR]. This leads to three cases to investigate using asymptotic

analysis to further understand these features. As the system is now governed by the

three nondimensional parameters α, β and γ, we use these to gain insights into how it

will evolve over time. To do this we use the nondimensional system in equations (4.27),

though for simplicity we drop the tildes. Binding rates of VEGF are well documented [80]

(and references within), and so throughout this section we assume α = O(1), allowing us

to focus on the possible effects of cooperativity.

4.5.1 Small γ asymptotics (slow dimer dissociation)

In Figure 4.3.1 we saw that having a slow dimer dissociation rate gave peaks in [AR]. As

a slow dimer dissociation is equivalent of having a small γ in the dimensionless system,

we set γ = ε, where ε� 1. Substituting this into system (4.27) gives

dr

dt
= −

(
α +

ε

2

)
r +

(
1− ε

2

)
αp− α2βrp+

ε

2
, (4.32a)

dp

dt
=
(

1− ε

2α

)
r −

(
1 +

ε

2

)
p− αβrp+

ε

2α
, (4.32b)
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where conservation gives

q =
ε

2α2β
(1− r − αp) (4.32c)

This is a regular perturbed problem. Assuming asymptotic approximations

r ≈ r0 + εr1 + ..., p ≈ p0 + εp1 + ..., (4.33)

where each ri, pi is O(1), and substituting these into equations (4.32) gives the leading

order problem at O(1) as

dr0
dt

= − αr0 + αp0 − α2βr0p0, (4.34a)

dp0
dt

= r0 − p0 − αβr0p0, (4.34b)

r(0) = 1, p(0) = 0, (4.34c)

Although this is still a nonlinear system that we are not able to solve analytically, we

can still make some observations. The terms that remain in the ODEs are the linear

terms, representing the reversible binding of the ligand, as well as the nonlinear term

that dictates the formation of the dimer, that is, the forward dimerisation. With γ = ε,

the terms representing the dissociation of the dimers are approximately zero, hence do

not appear in these equations. As such we would expect that as dimers are formed they

become stuck in this form, hence we would expect to see the concentration of dimers

increasing monotonically. In Figure 4.5.1 we plot the solutions of the full, nondimensional

system, as given in equations (4.27), along with the approximated system in equations

(4.34). In this we see there is little difference in the two solutions, confirming that

negating the terms in the approximated solution has little effect on the overall dynamics.
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Figure 4.5.1: Both the solution to the full system in equations (4.32) is plotted along side
the solution of the reduced, approximated system (equations (4.34)) in red. Conservation
of receptors is used to show the approximation for q. Parameters used to create plots are
α = β = 1 and γ = ε = 0.001.

4.5.2 Large β asymptotics (fast dimerisation)

Another feature appearing in Figure 4.3.1 is that, when ψ+ is large (particularly in the

top row in the figure), we see an initial increase in the concentration of [AR] in a short

time period, before the concentration increases towards equilibrium. This indicates that

the concentration is evolving on at least two different timescales. This happens when we

have a fast dimerisation and ψ+ large, and since ψ+ is incorporated in β, we set β = 1/ε,

and hence β is large. Substituting this into system (4.27) and multiplying by ε gives

ε
dr

dt
= − ε

(
α +

γ

2

)
r + ε

(
1− γ

2

)
αp− α2rp+

γε

2
, (4.35a)

ε
dp

dt
= ε

(
1− γ

2α

)
r − ε

(
1 +

γ

2

)
p− αrp+

γε

2α
, (4.35b)

r(0) = 1, p(0) = 0. (4.35c)

where conservation (from equation (4.30)) gives

q =
γε

2α2
(1− r − αp) (4.35d)
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As ε is multiplying the highest derivatives, this is a singular perturbed problem, which

supports our observation of multiple timescales in the concentration curves. In Figure

4.5.2 we view the numerical solution to this system on a log-log scale where it also is

apparent that the dynamics are evolving on more than one time scale. This plot is used

to suggest the time scales needed to asymptotically analyse the system. We find that we

require three solutions to accurately approximate all of the intricacies of the curves.
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Figure 4.5.2: Numerical solutions of the full system (equation (4.35)), on a log-log scale.
Plot created with α = 6.8, β = 1/ε, γ = 1.4 with ε = 10−4.

Inner solution

Looking at Figure 4.5.2, we see two plateaus in the p curve, with the first one appearing

when t = O(ε), hence we assume this to be first time scale of interest. We call this region

the inner region. We also note that within this region, p is of O(ε), while r remains O(1).

Hence we rescale

p = εp̃, t = ετ. (4.36)
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For matching convenience later, we also use the change of variable r = r̃. This now gives

the inner layer problem as

dr̃

dτ
= − ε

(
α +

γ

2

)
r̃ + ε2

(
1− γ

2

)
αp̃− α2εr̃p̃+

γε

2
, (4.37a)

dp̃

dτ
=
(

1− γ

2α

)
r̃ − ε

(
1 +

γ

2

)
p̃− αr̃p̃+

γ

2α
, (4.37b)

r̃(0) = 1, p̃(0) = 0. (4.37c)

Substituting asymptotic approximations

r̃ ≈ r̃0 + εr̃1 + ..., p̃ ≈ p̃0 + εp̃1 + ..., (4.38)

gives a leading order problem of

dr̃0
dτ

= 0, (4.39a)

dp̃0
dτ

=
(

1− γ

2α

)
r̃0 − αr̃0p̃0 +

γ

2α
, (4.39b)

r̃0(0) = 1, p̃0(0) = 0. (4.39c)

This has the solution

r̃0(τ) = 1, p̃0(τ) =
1− e−ατ

α
, (4.40)

which is valid while t� ε. Interestingly, the solution p(t) depends only on α. Biologically,

this implies that, in this initial layer, the concentration of p, and therefore [AR], is

dominated by the first reaction, which is the binding and unbinding of the ligand to a

monomeric receptor.
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Outer solution

Figure 4.5.2 suggests that the long time solution of both r and p are O(ε
1
2 ). We can also

confirm this using the equilibrium concentration as stated in equation (4.31). Setting

β = 1/ε in this, and using a Taylor series expansion to approximate the square root term

gives

req = peq =
εγ
(
−(1 + α) +

√
(1 + α)2 + 8α

2

εγ

)
4α2

(4.41)

=
εγ

4α2

[
−(1 + α) +

2α
√

2
√
γε

+
(1 + α)2

√
εγ

4α
√

2
+O(ε

3
2 )

]
(4.42)

=

√
γ

α
√

2
ε
1
2 + higher order terms (4.43)

hence confirming that the long time solution of both r and p are O(ε
1
2 ). As such we

rescale these by substituting

r = ε
1
2 r̂, p = ε

1
2 p̂. (4.44)

in equations (4.35). After substitution we have

ε
1
2
dr̂

dt
= − ε

1
2

(
α +

γ

2

)
r̂ + ε

1
2

(
1− γ

2

)
αp̂− α2r̂p̂+

γ

2
, (4.45a)

ε
1
2
dp̂

dt
= ε

1
2

(
1− γ

2α

)
r̂ − ε

1
2

(
1 +

γ

2

)
p̂− αr̂p̂+

γ

2α
, (4.45b)

We assume asymptotic expansions

r̂ = r̂0 + ε
1
2 r̂1 + ..., p̂ = p̂0 + ε

1
2 p̂1 + ..., (4.46)
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which give a leading order approximation as

0 =
γ

2
− α2r̂0p̂0 ⇒ r̂0p̂0 =

γ

2α2
. (4.47)

To find the expressions for r̂0 and p̂0 we also need to consider the O(ε
1
2 ) terms in system

(4.45):

dr̂0
dt

= −
(
α +

γ

2

)
r̂0 +

(
1− γ

2

)
αp̂0 − α2(r̂0p̂1 + r̂1p̂0), (4.48a)

dp̂0
dt

=
(

1− γ

2α

)
r̂0 −

(
1 +

γ

2

)
p̂0 − α(r̂0p̂1 + r̂1p̂0). (4.48b)

To eliminate the nonlinear terms coming from the higher order terms in the expansion

we compute ((4.48a)−α(4.48b)) to give

dr̂0
dt
− αdp̂0

dt
= 2α(p̂0 − r̂0). (4.49)

We can use equation (4.47) to eliminate p̂0 by substituting

p̂0 =
γ

2α2r̂0
, and

dp̂0
dt

= − γ

2α2p̂20

dr̂0
dt
, (4.50)

giving the following ODE for the leading order outer solution as

dr̂0
dt

=
2r̂0(γ − 2α2r̂20)

γ + 2αr̂20
. (4.51)
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This equation can be solved by using separation of variables, with the solution r̂0(t) given

implicitly by

2α log(r̂0)− (α + 1) log(|2α2r̂20 − γ|) = 2α(2t+ c1), (4.52)

where the constant c1 will be determined by a matching condition. Using equation (4.43)

we find that

r̂0 ∈
[ √

γ

α
√

2
, 1

]
⇒ r̂20 >

γ

2α2
, (4.53)

hence we can remove the absolute value, giving the solution as

2α log(r̂0)− (α + 1) log(2α2r̂20 − γ) = 2α(2t+ c1). (4.54)

Using equation (4.47) we can also give the implicit solution for p̂0 as

2α log

(
γ

2α2p̂0

)
− (α + 1) log

(
γ2

2α2p̂20
− γ
)

= 2α(2t+ c1). (4.55)

Matching

The usual method (as outlined in [96]) at this point would be to match the inner and

outer solutions to determine the constant c1. This would be done by taking the limits of

the inner solutions as τ → ∞ and equating these with the limits of the outer solutions

as t→ 0. However, we find that these solutions do not match. Taking the inner solution

limits, we have

lim
τ→∞

r̃0 = 1, lim
τ→∞

p̃0 =
1

α
. (4.56)
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The product of these is

r̃0p̃0 =
1

α
, (4.57)

which is a clear contradiction to the product of the outer solutions as found in equation

(4.47), hence there is no way that both solutions r and p can match.

Intermediate solution

To overcome the matching problem we consider the solutions in an intermediate layer,

between the inner and outer layer. Looking at Figure 4.5.2 we can see that, as t tends to

O(1), then r and p begin at order 1 and ε respectively before tending to the equilibrium,

so for an intermediate solution we rescale

r = r̄, p = εp̄. (4.58)

We note here that these scalings are the same scalings we used for the inner solutions

(although we use a separate notation for clarity when matching), in this intermediate

layer, time instead remains O(1). Substituting these into equations (4.35) gives

dr̄

dt
= −

(
α +

γ

2

)
r̄ + ε

(
1− γ

2

)
αp̄− α2r̄p̄+

γ

2
, (4.59a)

ε
dp̄

dt
=
(

1− γ

2α

)
r̄ − ε

(
1 +

γ

2

)
p̄− αr̄p̄+

γ

2α
, (4.59b)

which gives the leading order problem as

dr̄0
dt

= −
(
α +

γ

2

)
r̄0 − α2r̄0p̄0 +

γ

2
, (4.60a)

0 =
(

1− γ

2α

)
r̄0 − αr̄0p̄0 +

γ

2α
. (4.60b)
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Solving this system gives

r̄0(t) = c2e
−2αt, p̄0(t) =

(2α− γ)c2 + γe2αt

2α2c2
. (4.61)

Matching the intermediate to inner region

Matching this intermediate solution to the inner solution we require

lim
t→0

r̄0(t) = lim
τ→∞

r̃0(τ). (4.62)

Taking these limits gives

c2 = 1. (4.63)

We also require p to match, so calculating

lim
t→0

p̄0(t) =
1

α
, and lim

τ→∞
p̄0(τ) =

1

α
, (4.64)

confirms that the intermediate solution matches to the inner solution. These give full

intermediate solutions as

r̄0(t) = e−2αt, p̄0(t) =
(2α− γ) + γe2αt

2α2
. (4.65)

As the parameter γ appears in this solution we can see that as we move into this region

the second reaction, whereby the ligand binds a second monomer, now also plays a role

in the dynamics of the system.
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Matching the intermediate to outer region

We also match this intermediate solution to that of the outer layer, we determine

lim
t→0

r̂0(t) = lim
t→∞

ε−
1
2 r̄0(t), ⇒ lim

t→0
r̂0(t) = ε−

1
2 , (4.66)

gives the constant of the outer solution as

c1 =
1

2α
log

(
ε

(2α2 − γε)α+1

)
. (4.67)

We also need to confirm that the solutions for p match in this region. To do this we use

equation (4.47), but first noting that

r̄0(t)p̄0(t) =
(2α− γ)e−2αt + γ

2α2
, (4.68)

we have, with all variables rescaled back to O(1), that

lim
t→0

r̂0(t)p̂0(t) =
γ

2α2ε
and lim

t→∞
r̄0(t)p̄0(t) =

γ

2α2ε
. (4.69)

As we have already determined that the solutions for r match, we can therefore con-

clude that p must also match. Figure 4.5.3 shows a good match between the intermediate

solution and both the inner and outer solutions for all variables, and together the approx-

imations agree with the numerics in each region. These solutions give us insights into

the reaction sequences that contribute to the interesting dynamics we see under these

conditions. Initially, while time is O(ε), we have solutions depending only on α, indicat-

ing that only the first reaction, binding a ligand molecule to a monomer, contributes to

an increase in p, whilst there almost no change in r. Once we move to the intermediate

region, that is as t = O(εθ) where θ > 1, we see how the second reaction, whereby the
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ligand binds a second monomer, begins to have an effect. The solutions indicate that the

concentration of r begins to decay exponentially, although this solution is still dependent

only on α, so we can assume that this concentration is still governed by the first reaction.

However, looking to the solution for p, we see that the concentration increases exponen-

tially, but also the solution contains the parameter γ, hence both reactions play a part

in the dynamics in this region. Moving to the outer region, we see how all solutions now

depend on both parameters, so we can conclude that by this point, both reactions now

affect all concentrations.
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Figure 4.5.3: Plotting the numerical solution of equation (4.35) with inner (equation
(4.40))), intermediate (equation (4.65)) and outer (equations (4.52) and (4.55)) solutions.
The intermediate solution matches both the inner and outer solution, creating a full
approximation to the numerical solution. Conservation of receptors is used to show the
approximation for q. Plot created with α = 6.8, γ = 1.4 and β = ε = 10−4.

4.5.3 Large γ asymptotics

The last case we consider is when we have fast dimer dissociation, that is when γ is large.

In Figure 4.3.1 we saw that taking ψ−, and hence γ = ψ−, large caused a peak in the

bound dimer, [RAR], curve. As such we set γ = 1/ε, with ε � 1, in equations (4.27),
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and multiplying with ε, this gives

ε
dr

dt
= −

(
αε+

1

2

)
r +

(
ε− 1

2

)
αp− α2βεrp+

1

2
, (4.70a)

ε
dp

dt
=

(
ε− 1

2α

)
r −

(
ε+

1

2

)
p− αβεrp+

1

2α
, (4.70b)

r(0) =1, p(0) = 0. (4.70c)

where conservation (from equation (4.30)) gives

q =
1

2α2βε
(1− r − αp) (4.70d)

As ε is multiplying the highest order terms we find we again have a singular perturbation

problem indicating that the solutions evolves on multiple time scales. In Figure 4.5.4 we

plot the solutions on a log-log scale, to help determine the required scalings.
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Figure 4.5.4: Numerical solutions of the full system in equation (4.70) on a log-log scale.
Plot created with α=6.8, β=1, γ = ε = 10−4.
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Inner Solution

To determine the inner region we rescale time with t = εaτ . We also rescale r = εbr̃ and

p = εcp̃ giving the system as

ε1−a+b
dr̃

dτ
= −

(
αε+

1

2

)
εbr̃ +

(
ε− 1

2

)
αεcp̃− α2βε1+b+cr̃p̃+

1

2
, (4.71a)

ε1−a+c
dp̃

dτ
=

(
ε− 1

2α

)
εbr̃ −

(
ε+

1

2

)
εcp̃− αβε1+b+cr̃p̃+

1

2α
. (4.71b)

To determine a, b and c we use a principle called detailed (or dominant) balance. In Figure

4.5.4 we see that, up to t = O(1) both t and p evolve on the same order, indicating that

a = c. Furthermore, the relationship between p and t is linear, hence we balance the LHS

of (4.71b) with the p term of the equation

1− a+ c = c, ⇒ a = c = 1. (4.72)

As this results in ε still multiplying the LHS, to have a nontrivial solution, we must have

ε0 on the LHS of (4.71a), and so

1− a+ b = 0, ⇒ b = 0. (4.73)

Substituting these into (4.71) gives

dr

dτ
= −

(
αε+

1

2

)
r +

(
ε− 1

2

)
αεp− α2βε2rp+

1

2
, (4.74a)

ε
dp

dτ
=

(
ε− 1

2α

)
r −

(
ε+

1

2

)
εp− αβε2rp+

1

2α
. (4.74b)

r(0) =1, p(0) = 0 (4.74c)
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Assuming asymptotic approximations

r̃ ≈ r̃0 + εr̃1 + ..., p̃ ≈ p̃0 + εp̃1 + ..., (4.75)

gives a leading order problem of

dr

dτ
= − 1

2
r̃0 +

1

2
, (4.76a)

0 = − 1

2α
r̃0 +

1

2α
. (4.76b)

which gives the solution

r̃0(τ) = 1. (4.77)

Considering the O(ε) terms gives

dr̃1
dτ

= − αr̃0 −
1

2
r̃1 −

1

2
αp̃0, (4.78a)

dp̃0
dτ

= r̃0 −
1

2α
r̃1 −

1

2
p̃0, (4.78b)

r̃1(0) =0, p̃0(0) = 0. (4.78c)

Substituting in r̃0 = 1 and solving, yields

r̃1(τ) = −ατ, p̃0(τ) = τ. (4.79)

As the features we are particularly interested in occur in [RAR], and therefore q, curve,

we also give these solutions. To do this we require the conservation law (equation (4.70d))
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which, noting that in the inner region q̃ = O(ε), states that

1 = (r̃0 + εr̃1 + ...) + αε(p̃0 + εp̃1 + ...) + 2α2βε2(q̃0 + εq̃1 + ...). (4.80)

Equating powers of ε, we have

1 = r̃0, (4.81)

0 = r̃1 + αp̃0, (4.82)

0 = r̃2 + αp̃1 + 2α2βq̃0. (4.83)

We see that, to find the leading order solution for q we require further solutions for r and

p. To find these we consider O(ε2) terms in system (4.74a), which, after substituting in

r̃0, r̃1 and p̃0, gives

dr̃2
dτ

= (α + α2 − α2β)τ − 1

2
r̃1 −

1

2
αp̃0, (4.84a)

dp̃1
dτ

= − (1 + α + αβ)τ − 1

2α
r̃1 −

1

2
p̃0, (4.84b)

r̃2(0) =0, p̃1(0) = 0. (4.84c)

This is again a linear system of ODEs, whose solution is

r̃2(τ) =
α

2
(α + 1)τ 2 − α2β(τ + e−τ − 1), (4.85)

p̃1(τ) = −1

2
(α + 1)τ 2 − αβ(τ + e−τ − 1). (4.86)

Substituting this into equation (4.78c) gives the leading order solution for q as

q̃0(τ) = τ + e−τ − 1. (4.87)
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Together, these give the inner solution to the system as

r̃0(τ) = 1. p̃0(τ) = τ, q̃0(τ) = τ + e−τ − 1. (4.88)

The solution for p, in this region, has unbounded, linear growth, while the solution for q

is also increasing monotonically. However, these solutions are independent of any model

parameters indicating that, under the conditions of large γ, the curves will evolve in this

way regardless of the parameters α and β.

Outer Solution

For an outer solution, while time is O(1), r and p are also O(1). This is confirmed

mathematically by looking to the equilibrium concentration in equation 4.31, with γ =

1/ε. Using Taylor series approximation for the square root term, we have

req = peq =

(
−(1 + α) +

√
(1 + α)2 + 8α2βε

)
4α2βε

, (4.89)

=
1

4α2βε

[
−(1 + α) + (1 + α) +

4α2βε

1 + α
+O(ε2)

]
, (4.90)

=
1

1 + α
+O(ε) (4.91)

hence confirming the long time solutions of r and p as O(1). Assuming asymptotic

expansions

r ≈ r0 + εr1 + ..., p ≈ p0 + εp1 + ..., (4.92)

and substituting these into the ODEs in (4.70) gives a leading order solution

0 = −r0 − αp0 + 1 ⇒ p0 =
1− r0
α

. (4.93)
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Looking to the O(ε) terms in (4.70) gives

dr0
dt

= − αr0 −
1

2
r1 + αp0 −

1

2
αp1 − α2βr0p0, (4.94a)

dp0
dt

= r0 −
1

2α
r1 − p0 −

1

2
p1 − αβr0p0. (4.94b)

We compute ((4.94a)−α(4.94b)) to eliminate the nonlinear terms, giving

dr0
dt

= 1− (α + 1)r0, (4.95)

which solves to give

r0 =
c1e
−(α+1)t + 1

α + 1
, p0 =

1

α

(
α− c1e−(α+1)t

α + 1

)
. (4.96)

As the conservation law says

1 = (r0 + εr1 + ...) + α(p0 + εp1 + ...) + 2α2βε(q̂0 + εq̂1 + ...), (4.97)

we use this to equate powers of ε on the LHS and RHS, giving

1 = r0 + αp0 (4.98)

which, substituting in equations (4.96), confirms this equation is true. Considering the ε

terms then gives

0 = r1 + αp1 + 2α2βq̂0 ⇒ q̂ =
−(r1 + αp1)

2α2β
, (4.99)
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which, combining with equation (4.94a), gives the time dependent solution for q̂0 as

q̂0 =
−e−2(α+1)t(c1 − αe(α+1)t)(c1 + e(α+1)t)

α(α + 1)2
. (4.100)

Matching

Matching the inner solution to the outer solution we require

lim
t→0

r0(t) = lim
τ→∞

r̃0(τ). (4.101)

Taking the limits of r0(t) in (4.96) and r̃0(τ) in (4.77), gives

c1 = α. (4.102)

As the limit of p̃0(τ) in (4.79) as τ → ∞ is ∞ we instead introduce an intermediate

variable to show that p also matches. Recall the inner solution, (rewritten in terms of

the original variables) as

pin(t) = t, (4.103)

where t = ετ , and outer solution

pout(t) =
1− e−(α+1)t

α + 1
. (4.104)

Defining t = εδξ, where 0 < δ < 1 and ξ = O(1). Substituting these into (4.103) and
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(4.104) gives

pin = εδξ, (4.105)

and

pout =
1− e−(α+1)εδξ

α + 1
. (4.106)

Expanding the exponential terms in a Taylor series gives

pout =
1− [1− (α + 1))εδξ + 1

2
(α + 1)2ε2δξ2 − ...]

α + 1

=εδξ − higher order terms, (4.107)

which confirms matching in inner region. The full outer solutions to the system can then

be stated as

r(t) =
1 + αe−(α+1)t

α + 1
, p(t) =

1− e−(α+1)t

α + 1
, q(t) =

−e−2(α+1)t(1− e(α+1)t)(α + e(α+1)t)

(α + 1)2
.

(4.108)

Again, the parameter β does not appear in any of these solutions, suggesting that the

first reaction, binding ligand to monomer, dominates the dynamics in this region. Clearly,

having such a large γ, and therefore increased rate of dimer dissociation means that any

formed dimers quickly return to monomeric state, hence the second reaction, dictating

dimer formation has very little effect on any of the concentrations.

The solution for q(t) in (4.108) also governs the peak that appears in the curve.
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Differentiating this with respect to t, gives

dq(t)

dt
=
−e−2(α+1)t(2α + e(α+1)t − αe(α+1)t)

α + 1
. (4.109)

which, solving for t, gives a stationary point at

ts =

log

(
2α

α− 1

)
α + 1

, (4.110)

which has solutions for α > 1. To determine the nature of the stationary point, we use

the second derivative of q(t) in (4.108), giving

dq(t)

dt

∣∣∣∣
ts

= −(α− 1)2

2α
, (4.111)

which is negative, as α > 0, thus concluding the stationary point is a maximum. Hence,

we conclude that a peak will appear if α > 1.

In Figure 4.5.5 we see a good match between the inner and outer solution in all curves.

We also see good agreement between the approximate solution to the numerics in both

regions, confirming our findings. In the inner region we see very little change in r while

p and q begin to increase. Once we move to the outer region, we see exponential decay

in the concentration of free receptors, r, while the concentration of bound monomers, p,

increases to equilibrium. The concentration of q takes longer to reach equilibrium and

is not monotonic, where we see the multiple exponential terms in the solution having an

impact on the dynamics.
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Figure 4.5.5: Plotting the numerical solution of equation (4.70) with asymptotic solutions
(4.88) and (4.108) show good agreement in both regions. Parameters used to create plot
are α=6.8, β=1, ε=1e-4.
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Figure 4.6.1: Data published in [101] is used to estimate the model parameters. Experi-
ments were performed using five concentrations of three different VEGF isoforms (VEGF

165a-TMR, VEGF 165b-TMR and VEGF 121a-TMR) and are scaled with respect to Rtot.
An excellent fit to the data is seen from fitting to all data sets simultaneously. Parameter
values returned can be seen in Table 4.2.

4.6 Model validation

In this section we take the first steps towards validating our model by fitting to pub-

lished, experimental data, with raw data kindly provided by Dr Chloe Peach [30]. In the

paper by Peach et al [101], three VEGF isoforms (VEGF 165a-TMR, VEGF 165b-TMR

and VEGF 121a-TMR), in five concentrations, are observed binding to VEGFR2. While

experiments are performed on both HEK293T cells and membranes, we focus only on

membrane results, thus reducing the possibility of data being affected by other processes

such as receptor internalisation which may cause a reduction in signal on longer time

scales. Including receptor internalisation is something we consider for future work.

The experiments were performed ten times and the average of these was used for fit-
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ting. Fitting is performed in Copasi [55] using a particle swarm optimisation method with

a swarm size of 100 and 3000 iterations. We note that Copasi is a software application

for simulating and analysing biochemical networks and their dynamics. Copasi has many

optimisation methods available and fitting was performed using each of these, however,

the particle swarm method was chosen as it gave the smallest total error. All data sets

are fitted to simultaneously, with a and Rtot fixed across all sets, and k+, k−, ψ+ and ψ−

specific to each isoform.

a k+ k− ψ+ ψ− Rtot

VEGF 165a-TMR 8.90× 10−2 7.57× 106 2.76× 10−2 1.87× 103 1.49× 103 2.52× 10−9

VEGF 165b-TMR 8.90× 10−2 1.63× 106 7.72× 10−2 5.88× 103 1.10× 102 2.52× 10−9

VEGF 121a-TMR 8.90× 10−2 2.95× 106 2.64× 10−2 1.38× 105 3.88× 104 2.52× 10−9

Table 4.2: Estimated parameters returned from fitting to the data, as seen in Figure
4.6.1.

In Table 4.2 we have the parameter estimates returned from fitting, while in Figure

4.6.1 we plot the fitted curve together with the data. Clearly the estimates give an

excellent fit to all data sets. Goodness of fit figures can be seen in Table 4.3, where we

use the Chi-square test to determine the correlation between each data set and the fit

values.

[A] = 10−9 3× 10−9 5× 10−9 10−8 2× 10−8

VEGF 165a-TMR 0.0696 0.0213 0.0133 0.0168 0.0342

VEGF 165b-TMR 0.0591 0.0276 0.0183 0.0175 0.0125

VEGF 165a-TMR 0.0324 0.0320 0.0116 0.0183 0.0225

Table 4.3: Goodness of fit values, determined by the Chi-square test.

Looking at the estimated parameter values, we also note that all on and off rates fall

into the reported ranges [80] (and references within). In all cases, we have ψ+ > ψ−

and, therefore, positive cooperativity overall. In Table 4.4 we compare these estimates

with those returned in the paper by Chloe Peach et al [101], where the data was fitted

to a simple monomeric binding model. We see some significant differences in some of
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k+ estimate k+ in [101] k− estimate k− in [101]

VEGF 165a-TMR 7.57× 106 1.27× 107 2.76× 10−2 3× 10−2

VEGF 165b-TMR 1.63× 106 3.69× 106 7.72× 10−2 2.9× 10−2

VEGF 165a-TMR 2.95× 106 5.13× 106 2.64× 10−2 1.9× 10−2

Table 4.4: Comparing the on and off rates returned from fitting to our model with the
values reported in [101].

the values. We see that our association rates are lower than theirs, but in both sets of

estimates the on rate for VEGF 165a-TMR are substantially higher than the other iso-

forms. This is not, however, the case for the dissociation rates. In our estimates, the

value for VEGF 165b-TMR is significantly higher than the other estimates, but this is not

the case for those reported in [101] where all dissociation rates are similar values. This

increased value could be explained by looking at the cooperativity values, as we notice

that the dimer dissociation rate for the VEGF 165a-TMR isoform is lower than the others.

VEGF 165a-TMR VEGF 165b-TMR VEGF 121a-TMR

α = KA[A] 2.74E+08×[A] 2.11E+07×[A] 1.12E+08×[A]

β = ψ+Rtot/[A] 4.71E-06/[A] 1.48E-05/[A] 3.49E-04/[A]

γ = ψ− 1.49E+03 1.10E+02 3.88E+04

Table 4.5: Nondimensional parameter combinations with estimated parameters.

To further understand the implications of these estimations we plot the individual

species curves for all results in Figure 4.6.2. The first thing we notice is the appearance

of peaks in some of the [RAR] curves. In particular, these appear for the higher lig-

and concentrations of the VEGF 165a-TMR and VEGF 121a-TMR curves. In Table 4.5

we look at the nondimensional parameter combinations for the estimated parameters.

Clearly, for all curves we have both large β (to varying degrees) and large γ. However,

our asymptotic analysis was based around α being O(1). Only the curves with a higher

ligand concentration, for isoforms VEGF 165a-TMR and VEGF 121a-TMR meet this re-

quirement, hence this is why we only see the peaks arising from a large γ in these curves.
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Figure 4.6.2: Individual species curves using the estimated parameters show peaks some
of the [RAR] curves.

While the work in this section is the beginnings of model validation, we note that there

is still some way to go to fully achieve this. We recommend that next steps towards this

goal are further experiments, ideally with differing ligand concentrations, to determine

whether the estimates can accurately predict experimental outcomes.

4.7 Conclusions

In this chapter we have presented a model for the binding of VEGF to VEGFRs which

leads to the induced dimerisation of these receptors, and is a stripped down version of

those models presented in [80] and [3]. Considering a model of such simplicity allows
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for in depth analysis of potential responses given various choices of model parameters.

Analytical expressions for equilibrium responses provide a user friendly way for pharma-

cologists to compute solutions, as well as explain how increasing cooperativity leads to

a shift in the experiment readout signal. Although in contrast to GPCR dimer binding

[135], dose response curves are monophasic, hence there is no parameter values that give

extra inflections in the curve. If these are present in the data we can assume that the

system may contain pre-dimerised receptors but not ligand induced dimers. Equilibrium

results are supported by Gabhann and Popel [80] who also find that increasing the ligand

concentration increases the concentration of ligand bound monomers, something that is

indicative of ligand induced dimerisation. We extend the previous research in this area by

also considering time course dynamics for the model. The model is a non-linear system

of ODEs that is unable to be solved analytically, hence numerical methods are used to

explore the time dependent behaviour of the curves under different parameter regimes.

Upon investigation of the time course behaviour of the system, a number of emerging

effects in the individual species curves can be seen contributing to the overall signal.

Depending on the parameters chosen we have the possibility of peaks emerging in the

concentration curves of AR and RAR, either individually or in both simultaneously.

Also, the numerics show how there are multiple time scales contributing to the dynamics.

Asymptotic analysis is used to explain these behaviours and help understand the reaction

sequences that create these effects. In summary

− With a small γ, that is a small reverse cooperativity value, giving a reduced rate

of dimer dissociation, we obtain a regular perturbation problem where we see, as

expected intuitively, that the reversing of the second reaction, binding ligand to a

second monomer, can be negated altogether.

− With a large β, that is when either the forward cooperativity value is large or there

is a high receptor to ligand ratio, we see multiple time scales emerge. Initially the

dynamics are dominated by the first reaction, binding ligand to monomer, however,

as time moves past O(1) the second reaction begins to have an effect.

− When γ is instead large, so the dimer dissociation rate is increased, we again have a
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singular perturbation problem with multiple time scales contributing to the dynam-

ics. Initially, the concentrations of AR and RAR increase monotonically, regardless

of model parameters. As time moves to O(1) we see these increases slow, and a

possible drop in the concentration of RAR, however, as β does not appear in any of

the solutions we conclude that the second reaction has no effect on the dynamics.

Finally, we take steps towards validating the model by fitting to published, experimental

data, where we see the model gives an excellent fit to the data across all curves. This

gives some confidence that the model accurately describes the binding and dimerisation

processes for the VEGF-VEGFR system. While we have given estimates for the param-

eter values, we note that, there may be identifiability issues, and as such, other values

that give the same fit. This is something we discuss in the next chapter, where we take

a theoretical look at which of these parameter values can be relied upon to be accurate.
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Chapter 5

Structural identifiability of ligand

binding models

5.1 Introduction

In Chapter 1 we introduced the idea of structural identifiability analysis (SIA). Through-

out this thesis, we have presented many models representing drug binding scenarios.

These have generally resulted in a system of ODEs that govern the system dynamics.

While we have mostly looked at possible time course results in a purely theoretical way,

the intention is that one of the ways in which these models are used is, by pharmacolo-

gists, to fit to experimental data and quantify ligand-receptor interactions. Hence, it is

important to understand whether parameter estimates returned from fitting are accurate.

We saw an example of this in Chapter 4 (section 4.6) where we fit the ligand induced

dimerisation model to real, experimental data. In this, we gave a set of parameter values

for the model that gave a ‘best fit’, however, it is unclear whether there are other values

that can possibly give the same fit. The model is mechanistic and the parameters repre-

sent biological processes, and so inaccurate parameter estimations may lead to incorrect

conclusions being drawn about these.

In this chapter, we first review some of the theoretical foundations of existing SIA

techniques, and discuss current work in the field. We cover a variety of methods for
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applications to both linear and nonlinear problems, such as those that make use of the

Laplace transformation [9] (though this only applies to linear problems), Taylor series

expansions [105] and similarity transforms [23, 124]. While the goal is to determine the

identifiability of our previous dimer models, we first take tutorial type approach in order to

close the gaps in the current literature. To do this, we show the steps taken to determine

identifiability of some classical ligand binding models before then also including some of

our previous dimer models. For each model we apply a number of the available techniques

to determine which parameters can be identified using a single set of time course data.

This allows us to give a comparison of the methods and ascertain the ideal method for each

scenario. For models that are unidentifiable, we also give, where possible, the identifiable

parameter combinations. Following this, for unidentifiable models, we explore alternate

ways in which the models can be made to be identifiable. This includes using equilibrium

data or washout experiments together with the time course data, or using multiple time

course data sets.

5.2 Theoretical foundations

We first discuss some of the theoretical underpinnings of SIA and the methods we will

use in the later examples, following the notation as used in [28]. We define
∑

(p) as the

biological system given by

∑
(p) =


x′(t,p) = f(x(t,p),p) + g(x(t,p),p)u(t),

y(t,p) = h(x(t,p),p),

x(0,p) = x0(p),

 (5.1)

where x = (x1, ..., xnx)
T ∈ Rnx is the state vector (the space Rnx also contains the initial

state), u = (u1, ..., unu)T ∈ Rnu is the vector of inputs, and y = (y1, ..., yny)
T ∈ Rny is

the output vector of experimentally observed quantities. The functions f : Rnx → Rnx

and g : Rnx → Rnx × Rnu are analytical function that describe the evolution of the

state variable in time, while h : Rnx → Rny determines the model outputs. The vector

p ∈ Ω ⊂ Rnp are the unknown parameters of the system.
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Definition 5.2.1 1. A parameter pi, i = 1...np, is structurally globally (or uniquely)

identifiable (s.g.i) if for almost any p̃ ∈ Ω,

∑
(p) =

∑
(p̃)⇒ pi = p̃i.

2. A parameter pi, i = 1...np, is structurally locally identifiable (s.l.i) if for almost any

p̃ ∈ Ω, there exists a neighborhood V(p) of p such that

p̃ ∈ V(p) and
∑

(p) =
∑

(p̃)⇒ pi = p̃i.

3. A parameter pi, i = 1...np, is structurally unidentifiable if for almost any p̃ ∈ Ω,

there exists no neighborhood V(p) of p such that

p̃ ∈ V(p) and
∑

(p) =
∑

(p̃)⇒ pi = p̃i.

The model is then said to be s.l.i if all parameters are s.l.i and s.g.i if all parameters are

s.g.i [28]. Further theory and the proofs for these definitions can be found in [49].

Although there are now many available methods to determine identifiability, we choose

to focus on the transfer function method (based on the Laplace transform), the Taylor

series method and the similarity transformation method, for our analysis. While the

transfer function method is only applicable to linear systems, its simplicity of application

makes it a natural choice for these models. The Taylor series method is one of the

most flexible and can be applied to most ODE systems, although does have limitations

[24]. The similarity transformation method, although also applicable to linear systems,

is one of the most well established for nonlinear systems. Furthermore, these methods

are suitable to systems of low dimensionality and have been proven to work well for

compartment models that have a similar structure to binding models. We will now
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outline the underlying theory for each of these methods before applying them to the

models.

5.2.1 Transfer function method

The transfer function method was first proposed by Bellman and Åström [9] and is one

that is simple in nature, although is restricted to linear time-invariant systems. Assume

a system of the form

∑
(p) =


x′ = Fx +Gu,

y = Hx,

x(0) = x0,

 (5.2)

which is a specific case of the system given in equation (5.1). We then have F ∈ Rnx×Rnx ,

G ∈ Rnx ×Rnu and H ∈ Rny ×Rnx . We also note that we do not consider inputs directly

to observable function as these are not applicable to the models we use in this chapter.

The Laplace transformation provides us with a transfer function, Q(s,p), describing

the input-output relation. Taking the transforms of the system defined in equation (5.2)

and applying linearity and time-derivative rules gives

sX(s,p)− x0 = FX(s,p) +GU(s,p), (5.3a)

Y(s,p) = HX(s,p), (5.3b)

where X(s,p), Y(s,p) and U(s,p) are the Laplace transforms of x, y and u respectively.

Using the properties of the Laplace transform, we can then state

X(s,p) = (sI − F )−1x0 + (sI − F )−1GU(s,p), (5.4a)

Y(s,p) = H(sI − F )−1x0 +H(sI − F )−1GU(s,p). (5.4b)
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Assuming the system has initial conditions x0 = 0, that is the input-output relation is

given entirely by the impulse, then we can define

Q(s,p) = H(sI − F )−1G, (5.5)

as the transfer function (when Q(s,p) is a single entry) or matrix of transfer functions

of the system. The expanded form of Q(s,p) is the ny × nu matrix, given as

Q(s,p) =


Q1,1 · · · Q1,nu

...
. . .

...

Qny ,1 · · · Qny ,nu

 . (5.6)

with entries

Qi,j =
b(i,j),1s

nx−1 + b(i,j),2s
nx−2 + ...+ b(i,j),nx

snx + a1snx−1 + ...+ anx
. (5.7)

Each transfer function (and as such the function in each matrix entry) is a unique func-

tion relating each input to an output. Thus, the coefficients ak and b(i,j),k are unique to

the transfer function. This uniqueness means we can use these coefficients to determine

which parameters are uniquely identifiable. Creating a vector of these coefficients and

denoting this vector as ζ(p), identifiability is then established by setting ζ(p) = ζ(p̃)

and applying definition 5.2.1. We outline how this is applied to a system in Figure 5.2.1.

5.2.2 Taylor series method

The Taylor series method was first developed by Pohjanpalo [105], and can be applied to

either linear or nonlinear systems, although the algebra involved in applying the method

to nonlinear problems can be difficult [24]. We assume a system as defined in equation

(5.1) and assume that the functions f and g are continuously differentiable, and as such
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Applying the transfer function method

1. Ensure the model is in the formulation as given in (5.2), that is, with F , G and
H non-zero.

2. Calculate the transfer function for the system, using equation (5.7). This will
return a matrix.

3. Create the vector ζ(p) with the coefficients of s in both the numerator and
denominator of each entry of the matrix.

4. Assume a second vector, ζ(p̃) and set ζ(p) = ζ(p̃).

5. Simplify the relationships in ζ(p) = ζ(p̃) to reduce the expressions.

6. The resulting expressions of ζ(p) are the identifiable combinations. Expressions
that are reduced to a single parameter are then identifiable parameters.

Figure 5.2.1: An algorithm for using the transfer function method to determine identifi-
ability.

the state vectors and observables have infinitely many derivatives with respect to time.

We also assume that h has infinitely many derivatives with respect to the state variables.

The Taylor series approach then exploits the fact that, the observations (as given in

y(t,p)) are unique analytic functions of time and so all their derivatives with respect to

time should also be unique, and should therefore, hold all possible information about the

unknown parameters [28]. Thus, the observables can be represented by a Taylor series

about the initial state, that can be used to establish identifiability. The Taylor series of

y in a neighbourhood of the initial state is then given by

y(t,p) = y(t0,p) + (t− t0)y′(t0,p) +
(t− t0)2

2!
y′′(t0,p) +O(t3). (5.8)

We denote

ak =
dk

dtk
y(t0,p), k = 0, 1, ..., kmax. (5.9)
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as the Taylor series derivatives. These then create a system of non-linear algebraic equa-

tions in the parameters, which we use to check whether the system has a unique solution.

That is, the model is evaluated at ak(p) and ak(p̃), and the model is structurally identi-

fiable if ak(p) = ak(p̃)⇒ p = p̃ ([28]).

For linear problems the maximum number of coefficients, that is kmax, needed to

determine identifiability is

kmax = 2nx − 1, (5.10)

where nx is the number of state variables [28]. The number of coefficients required is

unbounded for nonlinear problems, and as such is one of the disadvantages of the Tay-

lor series method for these type of problems. Furthermore, for nonlinear problems, the

coefficients can be algebraically complex and hence, identifiability cannot always be de-

termined using this method. In Figure 5.2.2 we outline the steps needed to use this

method to determine identifiability of the system.

5.2.3 Similarity transformation method

The similarity transformation method (or exhaustive modelling approach) was first pro-

posed by Walter and Lecourtier [131], though originally was only applicable to linear

problems. This was later extended to include nonlinear problems [123]. Before we dis-

cuss the method itself and its implementation, we first detail some requirements on the

system for the method to be applicable.

Controllability and observability

In order to use the similarity transformation method, the system must be a minimal

representation, that is it must be both controllable and observable, concepts introduced

by Kalman in 1960 [62]. A system is said to be controllable if the system states, in x,

are changed by changing the input, and observable if the initial state x0 can be uniquely
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Applying the Taylor series method

1. Calculate the first Taylor series coefficient by substituting the initial condition
into the observable function, that is, calculate y(t0). This is the first element
of ζ(p).

2. Differentiate y to give the next Taylor coefficient.

3. Substitute the expressions in f, into this coefficient, to reduce the differential
terms to algebraic expressions.

4. Substitute the initial conditions of the system in place of the state variables.
This should result in an expression containing only model parameters.

5. Add the resulting expression to the vector ζ(p).

6. Repeat steps 2-5, repeatedly differentiating y to calculate higher order deriva-
tives and repeatedly substituting in f in place of state variables.

7. Assume a second vector, ζ(p̃) and set ζ(p) = ζ(p̃).

8. Simplify the relationships in ζ(p) = ζ(p̃) to reduce the expressions.

9. The resulting expressions of ζ(p) are the identifiable combinations. Expressions
that are reduced to a single parameter are then identifiable parameters.

Figure 5.2.2: An algorithm for using the Taylor series method to determine identifiability.

determined from a set of input-output measurements. For a linear system, in the form

of equation (5.2), we define the controllability matrix as

C = [G
...FG

...F 2G
... · · · ...F nx−1G], (5.11)

and the observability matrix

O =



H

HF

HF 2

...

HF nx−1


, (5.12)
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The system is then said to be controllable if rank(C) = nx, and observable if rank(O) = nx

[123]. The derivation of these matrices, and the theorems detailing these rank tests, along

with the theory they are built upon can be found in [113].

For a nonlinear system, as in equation (5.1), the controllability matrix makes use of

the Lie bracket, which can be stated as

(ad1f ,g) = [f,g] =
∂g(x)

∂x
f(x)− ∂f(x)

∂x
g(x) (5.13)

with higher order derivatives calculated as

(adkf ,g) = [f, (adk−1f ,g)]. (5.14)

The full definition of the Lie bracket can be found in Section C.1, while further explanation

of the physical meaning of the Lie bracket and how this relates to controllability can be

found in [134]. The controllability matrix is then given by

C = [g, (ad1f ,g), · · · , (adn−1f ,g)], (5.15)

Following this, calculating the observability matrix involves using the Lie derivative,

which is defined as

L1
fy(x) =

∂y(x)

∂x
f(x), (5.16)

and higher order derivatives being calculated recursively as

Lify(x) =
∂Li−1f y(x)

∂x
f(x). (5.17)
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The full definition of the Lie derivative can be found in Section C.2. The observability

matrix is then calculated as

O =



∂L0
fy(x)

∂x

∂L1
fy(x)

∂x
...

∂Ln−1f y(x)

∂x


. (5.18)

Again, the system is controllable and observable if rank(C) = nx and rank(O) = nx

respectively.

The method

The objective of this method is, given the model (5.1), with p ∈ Ω, find all parameter

values p̃ ∈ Ω and corresponding models of the form

∑
(p̃) =


x̃′(t, p̃) = f(x̃(t, p̃), p̃) + g(x̃(t, p̃), p̃)u(t),

y(t, p̃) = h(x̃(t, p̃), p̃),

x̃(0, p̃) = x̃0(p̃).

 (5.19)

that have the same input-output map. This involves assuming the existence of an alter-

nate system,
∑

(p̃), and applying a set of conditions on this alternate system to ensure

that it is equivalent to the original system,
∑

(p). Once equivalence holds, the system is

identifiable if

∑
(p) =

∑
(p̃)⇒ p = p̃. (5.20)

151



Linear systems

The linear equivalence of two linear systems is given by the algebraic equivalence theorem

[46, 112] for ODE systems. We consider a system in the form of equations 5.2, and assume

an alternate system with F̃ = F (p̃), G̃ = G(p̃) and H̃ = H(p̃). These are then equivalent

if there exists a matrix T ∈ Rnx × Rnx such that

detT 6= 0, (5.21a)

T x̃0 = x0, (5.21b)

T F̃ = FT, (5.21c)

TG̃ = G, (5.21d)

H̃ = HT, (5.21e)

The full equivalence theorem can be seen in Section C.3. The process is then to apply

the constraints on F , G and H to determine the parameters p. The system is globally

identifiable if it follows from applying these conditions that p = p̃ and locally identifiable

if there is a finite number of possibilities for each pi.

Nonlinear systems

The equivalence theorem has also been extended to include nonlinear systems [24, 28,

123]). With a system in the form of equations (5.1), the conditions to ensure equivalence
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(see Section C.4 for the full details) become

rank

(
∂λ(x̃)

∂x̃

)
= nx, ∀x̃ ∈ V, (5.22a)

λ(x̃0(p)) = x0(p̃), (5.22b)

f(λ(x̃),p) =
∂λ(x̃)

∂x̃
f(x̃, p̃), (5.22c)

g(λ(x̃),p) =
∂λ(x̃)

∂x̃
g(x̃, p̃), (5.22d)

h(λ(x̃),p) = h(x̃, p̃), (5.22e)

for some linear transformation λ(x̃). Then the system is globally identifiable if applying

these conditions implies p̃ = p.

The steps needed to apply this method can be seen in Figure 5.2.3.

Applying the similarity transformation method

1. Calculate the rank of the controllability and observability matrices. These must
both be equal to the number of state variables to proceed.

2. If the system is linear, assume a square transformation matrix (denoted T ) of
equal size to the number of state variables. For nonlinear systems, assume the
existence of a linear transformation, denoted λ(x), equal in size to the state
vector.

3. Assume all conditions hold. For linear systems these conditions are given in
(5.21) while the conditions for nonlinear systems can be found in (5.22). The
conditions can be applied in any order, depending on the individual system
they are being applied to.

4. While applying the conditions, it may be found that pi = p̃i for any param-
eter. This parameter is then considered identifiable. Identifiable parameter
combinations may also be found.

5. The system is fully identifiable if it is found that T is the identity matrix (for
linear systems), or λ(x) = x (for nonlinear systems).

Figure 5.2.3: An algorithm for using the similarity transformation method to determine
identifiability.
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5.2.4 Current literature

The origins of SIA lie in the works of Kalman [62] for linear systems, and Hermann and

Krener [53] for nonlinear models. Following these, many methods have emerged to assess

the identifiability of a model. The methods previously discussed in this chapter (transfer

function, Taylor series and similarity transformation methods) are still some the most

commonly used methods and have formed a basis for much of the SIA work over the past

decades. Often compartment models are used as an example of application [24, 123, 45].

In [25], Chappell and Gunn explore the possibility of reparameterising unidentifiable non-

linear systems in order to force locally identifiability. This work is continued by Evans

and Chappell in [35].

In [140], the authors develop a method that builds upon the similarity transformation

method to determine the identifiability of nonlinear models. This method also has the

potential to also be applicable to partial differential equations (PDEs). Cheung and Yates

[26] consider whether models are identifiable if data from multiple experiments is used.

The paper looks at linear compartment models and uses the similarity transformation

method to determine identifiability. In [129], Villaverde, Barreiro and Papachristodoulou

develop a novel method where they assume local identifiability is a generalised form of

observability, if the parameters are viewed as constant state variables. With this work,

the authors also present a software implementation of their algorithm, named STRIKE-

GOLDD, which is given as a Matlab [2] toolbox. In this the user is able to input their own

model and the software determines parameter identifiability and, in some cases, returns

identifiable parameter combinations. Anguelova et al [4] take a different approach and

consider the effect conservation laws have on identifiability.

Further methods have been also developed, and are reviewed in [28] and [27]. One

such method is the differential algebra approach which can be applied to linear or nonlin-

ear models, providing the functions are polynomial or rational in form [81]. The method

involves replacing the input-output relationship of the model by a polynomial and testing

for injectivity [28]. The software tool, DAISY [10], implements the differential algebra
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method using the computer algebra system, REDUCE version 3.8. Lecourtier and Rak-

sanyi [75] also use REDUCE to look at algorithms for reducing lengthy expressions. The

generating function approach [131] follows the Taylor series method but makes use of

the Lie derivative, although a major limitation of this method is that the number of

coefficients needed to be calculated is unknown [27]. Lecourtier, Lamnabhi-Lagarrigue

and Walter extend this method together with Volterra [74] to develop a new method

that overcomes the limitations of the generating series approach. This new method that

they propose creates a transformation that is a generalisation of the Laplace transform,

though the method is still applicable to nonlinear systems. Identifiability tableaus [7]

are frequently used with the generating series approach. Calculating the Jacobian of the

power series coefficients, with respect to the parameters, the tableau shows the non-zero

elements. The rank of this matrix is then used to determine identifiability.

Despite the importance of SIA when fitting ODE models to experimental data, it is

frequently overlooked for binding models such as those presented throughout this thesis,

although Janzén et al [59] take some steps towards showing the benefits of SIA for phar-

macodynamics models. Also, Middendorf and Aldrich, in [89] and [90] develop a method

to determine the identifiability of equilibrium binding parameters for models that de-

scribe ligand binding to proteins that have multiple binding sites. Their method aims to

overcome the limitations of existing methods such as those that use likelihood intervals

or brute-force methods.

5.3 Structural identifiability analysis of ligand bind-

ing models with a single time course

In this section we show how the techniques can be applied to some ligand binding models.

We perform SIA for a range of models, beginning with some classical binding models

before then analysing our new models for dimer binding. For each of these, we consider

a single set of time course data and apply three methods (transfer function, Taylor series
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and similarity transformation methods). Not only does this provide a tutorial of how

each of the methods work in practice but also allows to compare the different techniques

and explore which is best in each situation.

5.3.1 Monomeric receptor binding with a single drug

The simple model of a ligand binding with a monomeric receptor has been the basis of

much of the theoretical foundations of receptor theory of the past few decades and is still

widely used in drug development research [66, 69]. For this reason (and because of its

simplicity), we begin our analysis with this model. Assuming the ligand, A, is a constant

concentration that binds to the monomeric receptor [R] with association and dissociation

rates ka+ and ka− respectively, to create the complex [AR]. This can be described as a

chemical reaction as:

A + R
ka+

ka−
AR

The law of mass action gives us the system of ODEs

[R]′ = −ka+[A][R] + ka−[AR], (5.23a)

[AR]′ = ka+[A][R]− ka−[AR], (5.23b)

which, together with the initial conditions

[R](0) = Rtot, [AR](0) = 0, (5.23c)

where Rtot is the total receptor concentration, form the initial value problem describing

the kinetics of the system. The concentration of [AR] is measured experimentally, hence

the observed output is

y = [AR]. (5.23d)
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Assuming the only known parameter is the drug concentration [A], then we have p =

(ka+, ka−, Rtot). Although this is a very simple system and can be solved analytically, we

will still perform each of the SIA methods for the model. This will allow us to illustrate

the methods for the simple case before increasing the complexity.

The transfer function method

We first outline the transfer function method. In its current form, the input to the system

is in the initial conditions. This means that we have G = 0 in equation (5.2), and so the

transfer function will also be zero. To overcome this we need to reformulate the system

equations. Either we use conservation laws to reduce the system, or we use the Dirac

δ function so that the input appears as a forcing term. As throughout this thesis we

have used conservation laws to reduce the system dimensions we will continue to use this

method in this chapter also. In this model, the conservation law can be stated as

Rtot = [R] + [AR], (5.24)

to reduce the system by removing [R]. This gives the single differential equation

d[AR]

dt
= −(ka+[A] + ka−)[AR] + ka+[A]Rtot, (5.25a)

with initial condition

[AR](0) = 0, (5.25b)

and output

y = [AR]. (5.25c)
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Calculating the transfer function of a single ODE is trivial as each component is one-

dimensional. We have

F = −(ka+[A] + ka−), G = ka+[A]Rtot, H = 1, (5.26)

which gives a transfer function of

Q(s,p) =
ka+[A]Rtot

s+ ka+[A] + ka−
. (5.27)

The unique parameter combinations are the coefficients of s, hence in this case we have

ζ(p) =

 ka+[A]Rtot

ka+[A] + ka−

 . (5.28)

Clearly we have three unknowns and only two expressions so it is not possible to identify

all parameters, in fact none of the parameters are identifiable individually, and so we

conclude that only the grouped parameters

ka+Rtot and ka+[A] + ka−, (5.29)

are identifiable.

Non-identifiability can be seen in Figure 5.3.1, where we see how three different param-

eter sets can result in the same measured output curve but have different concentration

magnitudes of the free receptor concentrations (not observed), showing the obviously

different binding parameters. However, in Table 5.1 where we calculate these grouped

parameters for these three parameter sets, we see that these are equal for all sets, and

therefore identifiable.
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Figure 5.3.1: Three sets of parameters are used to plot the system given in equations
(5.23). All three parameter sets give the same measured output curve, Abound. However,
non-identifiability can be seen in the individual species curves. Each set of plots is created
using the values in Table 5.1 together with [A] = 10−8M .

Set 1 Set 2 Set 3

ka+ 3.4× 105M−1s−1 1.7× 104M−1s−1 1.23× 107M−1s−1

ka− 1.2× 10−1s−1 1.23× 10−1s−1 10−5s−1

Rtot 6.12× 10−10M 1.22× 10−8M 1.68× 10−11M

ka+Rtot 2.07× 10−4M 2.07× 10−4M 2.07× 10−4M

ka+[A] + ka− 1.23× 10−1s−1 1.23× 10−1s−1 1.23× 10−1s−1

Table 5.1: The parameters for three different parameter sets are used to plot Figure
5.3.1. The parameter combinations are equal in each case, so we can confirm these as
identifiable.

Taylor series method

For this method we use the system in the form as given in (5.23), although results would

be the identical if using the reduced system. We recall equation (5.10), which states that

the maximum number of Taylor series coefficients (we refer to these simply as coefficients

throughout) is 2nx − 1, where nx is the number of state variables. As in this case we

have nx = 2 we will need to calculate a maximum of 3 coefficients. The first coefficient
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is simply

y0 = y(x0) = [AR](0) = 0. (5.30)

We note that a subscript zero indicates that we are evaluating at t = 0. As this contains

no parameters it gives no information about parameter identifiability. As we have only

two remaining coefficients to calculate but three unknown parameters, we determine

that the system will not be globally identifiable. However, we will still continue to

determine which, if any, parameters are identifiable and also any identifiable parameter

combinations. The first derivative of the output function is simply

y(1) = [AR](1) = ka+[A][R]− ka−[AR]. (5.31)

Substitution of the initial conditions gives the first coefficient as

y
(1)
0 = ka+[A]Rtot. (5.32)

This can be simplified to

c1 = ka+Rtot, (5.33)

where we denote ci as the coefficient in its minimal form. A coefficient is considered to

be in a minimal form once it is not possible to simplify it using already known quanti-

ties or expressions. Further derivatives are calculated with recursive substitution of the
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equations in system (5.23). This gives the second derivative as

y(2) = [AR](2) = ka+[A][R](1) − ka−[AR](1)

= −ka+[A](ka+[A][R]− ka−[AR])− ka−(ka+[A][R]− ka−[AR])

= −ka+[A](ka+[A] + ka−)[R] + ka−(ka+[A] + ka−)[AR], (5.34)

leading to, after substitution of the initial conditions, the second coefficient as

y
(2)
0 = −ka+[A]Rtot(ka+[A] + ka−). (5.35)

As we have

y
(2)
0 = −c1[A](ka+[A] + ka−), (5.36)

we are able to simplify and reduce this, leaving

c2 = ka+[A] + ka−, (5.37)

as the second identifiable parameter combination. Hence, we have two identifiable pa-

rameter combinations which agree with the parameter combinations found when using

the transfer function method. As the complexity of the calculation for each is similar, the

only real difference is in the requirements of the methods. For completeness we will show

that calculating further derivatives gives no unique expressions. The third derivative is

calculated in the same way, which, after some simplification gives

y(3) = ka+[A](ka+[A] + ka−)2[R] + ka−(ka+[A] + ka−)2[AR], (5.38)
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which gives the next coefficient as

y
(3)
0 = ka+[A]Rtot(ka+[A] + ka−)2. (5.39)

As

y
(3)
0 = c1[A]c22 (5.40)

this gives no further information, hence, we have only the same two identifiable parameter

combinations as we found in the transfer function method.

Similarity transformation method

We first note that, with the system in its original form, we have G = (0, 0)T in equation

(5.2), hence we are unable to determine identifiability. Similar to the transfer function

method, this is due to the inputs being in the initial conditions as opposed to the model

equations, hence a reformulation is required. We again use the reduced system, using

conservation of receptors, to overcome this problem, giving

F = −(ka+[A] + ka−), G = ka+[A]Rtot, H = 1. (5.41)

As n = 1, the system must be both controllable and observable, hence we now move

forward with checking identifiability. To do this we assume a transformation matrix T

and apply conditions (5.21). As nx = 1, then T is a single entry matrix, and so we first

note that detT 6= 0, providing T 6= 0, and so condition (5.21a) holds if this remains true.

From condition (5.21e) we have

H̃ = HT, ⇒ 1 = 1 · T, ⇒ T = 1, (5.42)
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hence conditions (5.21a) and (5.21b) both hold. Applying condition (5.21d), we have

TG̃ = G, ⇒ k̃a+[A]R̃tot = ka+[A]Rtot, ⇒ k̃a+R̃tot = ka+Rtot. (5.43)

Finally, we have, from condition (5.21c)

T F̃ = FT, ⇒ −(k̃a+[A]+k̃a−) = −(ka+[A]+ka−), ⇒ k̃a+[A]+k̃a− = ka+[A]+ka−.

(5.44)

Hence, we have the same identifiable parameter combinations as in the previous methods.

This confirms that all methods give the same results. Comparing the methods is futile

in this case, however, as the model is of such low dimension.

5.3.2 Monomeric receptor two drug competition binding

The next model we consider is a competitive binding scenario as in Motulsky-Mahan [95],

where two ligands, A and B, are each able to bind to a monomeric receptor. The ligands

are assumed to be constant in concentration and are similar in formation, hence both

bind to the same receptor type. The reactions describing the interactions are:

A + R
ka+

ka−
AR B + R

kb+

kb−
BR

The system of ODEs governing the dynamics of the system is given as

[R]′ = −(ka+[A] + kb+[B])[R] + ka−[AR] + kb−[BR], (5.45a)

[AR]′ = ka+[A][R]− ka−[AR], (5.45b)

[BR]′ = kb+[B][R]− kb−[BR], (5.45c)
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together with the initial conditions

[R](0) = Rtot, [AR](0) = 0, [BR](0) = 0, (5.45d)

where Rtot is the total receptor concentration, form the initial value problem describing

the kinetics of the system. Only the concentration of [AR] is measured experimentally,

hence the output is

y = [AR]. (5.45e)

We assume the only known parameters are the drug concentrations [A] and [B], hence

we have p = (ka+, ka−, kb+, kb−, Rtot). We again apply the transfer function method, the

Taylor series method and the similarity transformation method to determine identifiabil-

ity.

Transfer function method

We first apply the transfer function method to determine identifiability of the parameters.

Reducing the system (5.45) using the conservation law, Rtot = [R] + [AR] + [BR] gives

[AR]′ = −(ka+[A] + ka−)[AR]− ka+[A][BR] + ka+[A]Rtot, (5.46a)

[BR]′ = −kb+[B][AR]− (kb+[B] + kb−)[BR] + kb+[B]Rtot. (5.46b)

Hence, we have the matrices, as in equation (5.2), as

F =

−(ka+[A] + ka−) −ka+[A]

−kb+[B] −(kb+[B] + kb−)

 , G =

ka+[A]Rtot

kb+[B]Rtot

 , H = [1, 0]. (5.47)
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To check the identifiability of the system, we calculate the transfer function as

Q(s,p) =
ka+[A]Rtots+ ka+kb−[A]Rtot

s2 + (ka+[A] + kb+[B] + ka− + kb−)s+ ka+kb−[A] + ka−kb+[B] + ka−kb−
, (5.48)

which gives the vector of coefficients as

ζ(p) =


ka+[A]Rtot

ka+kb−[A]Rtot

ka+[A] + kb+[B] + ka− + kb−

ka+kb−[A] + ka−kb+[B] + ka−kb−

 . (5.49)

Setting ζ(p) = ζ(p̃) allows us to determine identifiability. Using the first two entries we

find kb− to be identifiable, however, this is the only parameter to be so. This leaves the

remaining identifiable parameter combinations as

ζ(p) =


ka+Rtot

ka+[A] + kb+[B] + ka−

ka+kb−[A] + ka−kb+[B] + ka−kb−

 . (5.50)

In Figure 5.3.2 the non-identifiability of the model is clear, as three parameter sets (as

given in Table 5.2) result in vastly different species curves, yet the measured output curve

of [AR] is the same for all sets. In particular, we notice that the [BR] curves have peaks

in some of the curves, depending on the parameters used.

Taylor series method

To apply the Taylor series method we again use the full system, as stated in equation

(5.45). As we now have three state variables, we have nx = 3 and so require a maximum
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Figure 5.3.2: Three sets of parameters are used to plot the system given in equations
(5.45). All three parameter sets give the same measured output curve, Abound. However,
non-identifiability can be seen in the individual species curves. Each set of plots is created
using the values in Table 5.2 together with [A] = 10−8M .

Set 1 Set 2 Set 3

ka+ 107M−1s−1 106M−1s−1 105M−1s−1

ka− 0.01s−1 0.097s−1 0.105s−1

kb+ 105M−1s−1 1.29× 105M−1s−1 1.33× 105M−1s−1

kb− 0.4s−1 0.4s−1 0.4s−1

Rtot 10−10M 10−9M 10−8M

ka+Rtot 10−3M 10−3M 10−3M

ka+[A] + kb+[B] + ka− 0.12s−1 0.12s−1 0.12s−1

ka+kb−[A] + ka−kb+[B] + ka−kb− 0.044s−2 0.044s−2 0.044s−2

Table 5.2: The parameters for three different parameter sets are used to plot Figure 5.3.2.
The parameter kb−, as well as the parameter combinations are equal in each case, so we
can confirm these as identifiable.

of five coefficients to determine identifiability. Again, the first coefficient is

y0 = 0, (5.51)

166



hence gives no information regarding identifiability. As we have five unknown parameters,

we can conclude that the system is not globally identifiable. The first derivative is

y(1) = ka+[A][R]− ka−[AR], (5.52)

giving the first Taylor coefficient as

y
(1)
0 = ka+[A]Rtot, (5.53)

and as such, the first identifiable parameter combination as

c1 = ka+Rtot. (5.54)

Using recursive substitution of equations (5.45), we have the second derivative as

y(2) = −ka+[A]((ka+[A] + kb+[B])[R]− ka−[AR]− kb−[BR])− ka−(ka+[A][R]− ka−[AR])

= −ka+[A](ka+[A] + kb+[B] + ka−)[R] + ka−(ka− + ka+[A])[AR] + ka+kb−[A][BR],

(5.55)

which gives the coefficient

y
(2)
0 = ka+[A]Rtot(ka+[A] + kb+[B] + ka−). (5.56)
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This gives

y
(2)
0 = ka+[A]Rtot(ka+[A] + kb+[B] + ka−), (5.57)

= c1[A](ka+[A] + kb+[B] + ka−) (5.58)

and therefore, we have a second identifiable combination as

c2 = ka+[A] + kb+[B] + ka−. (5.59)

Further coefficients are calculated in the same way, using recursive substitution of the

system variables to calculate higher order derivatives followed by substitution of the initial

conditions. Using this method we obtain the third coefficient as

y
(3)
0 = ka+[A]Rtot(k

2
a+[A]2 + 2ka+kb+[A][B] + 2ka+ka−[A]

+ k2b+[B]2 + ka−kb+[B] + kb+kb−[B] + k2a−)

= c1[A](c22 + kb+(ka− − kb−)) (5.60)

which gives the third identifiable combination as

c3 = kb+(ka− − kb−). (5.61)
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We also obtain,

y
(4)
0 = ka+[A]Rtot(k

4
a+[A]4 + 4k3a+kb+[A]3[B] + 4k3a+ka−[A]3 + 6k2a+k

2
b+[A]2[B]2

+ 9k2a+ka−kb+[A]2[B] + 3k2a+kb+kb−[A]2[B] + 6k2a+k
2
a−[A]2 + 4ka+k

3
b+[A][B]3

+ 6ka+ka−k
2
b+[A][B]2 + 6ka+k

2
b+kb−[A][B]2 + 6ka+k

2
a−kb+[A][B] + 4ka+ka−kb+kb−[A][B]

+ 2ka+kb+k
2
b−[A][B] + 4ka+k

3
a−[A] + k4b+[B]4 + ka−k

3
b+[B]3 + 3k3b+kb−[B]3 + k2a−k

2
b+[B]2

+ 2ka−k
2
b+kb−[B]2 + 3k2b+k

2
b−[B]2 + k3a−kb+[B] + k2a−kb+kb−[B] + ka−kb+k

2
b−[B]

+ kb+k
2
b−[B] + kb+k

3
b−[B] + k4a−), (5.62)

which, we find via some trial and error, is equal to

y
(4)
0 = c1(c

3
2 + c3(2c2 + kb−)) (5.63)

which gives the identifiable parameter

c4 = kb−. (5.64)

We note that calculations are all performed using Matlab’s symbolic toolbox [2]. To

conclude, we have kb− is identifiable, and also the identifiable combinations

ζ(p) =


ka+Rtot,

kb+(ka− − kb−),

ka+[A] + kb+[B] + ka−.

 (5.65)
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Although it appears that these parameter combinations are not identical to the ones

found from the transfer function method (equation (5.50)), we note that

kb+(ka− − kb−) + kb−(ka+[A] + kb+[B] + ka−) = ka+kb−[A] + ka−kb+[B] + ka−kb−, (5.66)

hence, they are equivalent for identifiability purposes.

Similarity transformation method

To apply the similarity transformation method we require the system to be controllable

and observable, however, in its original form the system has a zero input vector, so we

are unable to determine controllability. Therefore, we instead reformulate and use the

reduced form. Recall, in this form we have

F =

−(ka+[A] + ka−) −ka+[A]

−kb+[B] −(kb+[B] + kb−)

 , G =

ka+[A]Rtot

kb+[B]Rtot

 , H =
[
1 0

]
.

(5.67)

In this case, we have nx = 2, and so the controllability matrix is given as

C =

ka+[A]Rtot −ka+[A]Rtot(ka+[A] + ka− + kb+[B])

kb+[B]Rtot −kb+[B]Rtot(ka+[A] + kb+[B] + kb−)

 , (5.68)

which has rank(C) = 2, and so the system is controllable. The observability matrix is

O =

 1 0

−(ka+[A] + ka−) −ka+[A]

 , (5.69)
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which also has rank(O) = 2, therefore, both controllability and observability conditions

are met. To check the identifiability, we assume a linear transformation

T =

t11 t12

t21 t22

 , (5.70)

and first noting, that (5.21b) holds for any T as we have x0 = x̃0 = (0, 0)T , and therefore

T x̃0 = (0, 0)T . We now check condition (5.21e), which gives

[
1 0

]
=
[
1 0

]t11 t12

t21 t22

 ⇒ t11 = 1, t12 = 0, (5.71)

so we now have

T =

 1 0

t21 t22

 (5.72)

Condition (5.21d) states that

 1 0

t21 t22

k̃a+[A]R̃tot

k̃b+[B]R̃tot

 =

ka+[A]Rtot

kb+[B]Rtot

 . (5.73)

From the top row, we have

k̃a+[A]R̃tot = ka+[A]Rtot ⇒ k̃a+R̃tot = ka+Rtot, (5.74)
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which is our first identifiable parameter combination. The second row gives

t21k̃a+[A]R̃tot + t22k̃b+[B]R̃tot = kb+[B]Rtot

⇒ t22 =
kb+[B]Rtot − t21k̃a+[A]R̃tot

k̃b+[B]R̃tot

, (5.75)

and so T now becomes

T =

 1 0

t21
kb+[B]Rtot − t21k̃a+[A]R̃tot

k̃b+[B]R̃tot

 . (5.76)

We next check condition (5.21c), giving

 1 0

t21
kb+[B]Rtot − t21k̃a+[A]R̃tot

k̃b+[B]R̃tot


−(k̃a+[A] + k̃a−) −k̃a+[A]

−k̃b+[B] −(k̃b+[B] + k̃b−)



=

−(ka+[A] + ka−) −ka+[A]

−kb+[B] −(kb+[B] + kb−)


 1 0

t21
kb+[B]Rtot − t21k̃a+[A]R̃tot

k̃b+[B]R̃tot

 . (5.77)

Expanding gives

M11 M12

M21 M22

 =

N11 N12

N21 N22

 , (5.78)
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where

M11 = k̃a+[A] + k̃a−, (5.79a)

M12 = k̃a+[A], (5.79b)

M21 = t21k̃a− +
kb+[B]Rtot

R̃tot

, (5.79c)

M22 =
k̃b+kb+[B]2R̃tot + kb+k̃b−[B]Rtot − t21k̃a+k̃b−[A]R̃tot

k̃b+[B]R̃tot

, (5.79d)

and

N11 = ka+[A] + ka− + t21ka+[A], (5.80a)

N12 =
ka+[A](kb+[B]Rtot − t21k̃a+[A]R̃tot)

k̃b+[B]R̃tot

, (5.80b)

N21 = kb+[B] + t21kb+[B] + t21kb−, (5.80c)

N22 =
(kb+[B] + kb−)(kb+[B]Rtot − t21k̃a+[A]R̃tot)

k̃b+[B]R̃tot

. (5.80d)

We now equate the entries, M and N . First we solve M12 = N12 for t21, giving

k̃a+[A] =
ka+[A](kb+[B]Rtot − t21k̃a+[A]R̃tot)

k̃b+[B]R̃tot

t21 =
ka+kb+[B]Rtot − k̃a+k̃b+[B]R̃tot

ka+k̃a+[A]R̃tot

. (5.81)

We note that, with this the transformation matrix becomes

T =

 1 0

ka+kb+[B]Rtot − k̃a+k̃b+[B]R̃tot

ka+k̃a+[A]R̃tot

k̃a+
ka+

 , (5.82)
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which has determinant

det(T ) =
k̃a+
ka+

. (5.83)

As det(T ) 6= 0, we find that condition (5.21a) holds. After substituting in the expression

for t21, we equate M11 = N11, giving

k̃a+[A] + k̃a− =
ka+kb+[B]Rtot + k̃a+ka−R̃tot + ka+k̃a+[A]R̃tot − k̃a+k̃b+[B]R̃tot

k̃a+R̃tot

. (5.84)

However, as we have already determined that k̃a+R̃tot = ka+Rtot, we have

k̃a+[A] + k̃a− =
k̃a+ka−R̃tot + ka+k̃a+[A]R̃tot + k̃a+kb+[B]R̃tot − k̃a+k̃b+[B]R̃tot

k̃a+R̃tot

⇒ k̃a+[A] + k̃a− = ka− + ka+[A] + kb+[B]− k̃b+[B]

⇒ k̃a+[A] + k̃a− + k̃b+[B] = ka+[A] + ka− + kb+[B]. (5.85)

Equating M22 = N22 gives

ka+kb+[B]Rtot + k̃a+k̃b−R̃tot

ka+R̃tot

=
k̃a+(kb+[B] + kb−)

ka+
. (5.86)

With k̃a+R̃tot = ka+Rtot, this can simplified to give

k̃b− = kb−. (5.87)
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Finally, equating M21 = N21, after some simplification, gives

k̃b+(k̃a− − k̃b−) = kb+(ka− − kb−). (5.88)

Hence, we again have kb− as identifiable, and identifiable parameter combinations

ζ(p) =


ka+Rtot,

kb+(ka− − kb−),

ka+[A] + kb+[B] + ka−,

 (5.89)

as in the previous case. Comparing the methods, it is clear that, although all methods

give the same identifiable parameter and parameter combinations, the transfer function

method is by far the simplest in terms of ease of use. The Taylor series method, in partic-

ular, results in expressions that are algebraically complex and require much simplification

in order to obtain reduced expressions.

5.3.3 Pre-formed homodimer binding with a single drug

The next model, and final linear model, we consider is the GPCR homodimer model we

presented and analysed in Chapter 2, for singe ligand binding. Recall the schematic for

the model as:

A + R
ka+

ka−
AR A + AR

α+ka+

α−ka−
ARA

The ODE system describing the model dynamics is given as

d[R]

dt
= −ka+[A][R] + ka−[AR], (5.90a)

d[AR]

dt
= ka+[A][R]− (ka− + α+ka+[A])[AR] + α−ka−[ARA], (5.90b)

d[ARA]

dt
= α+ka+[A][AR]− α−ka−[ARA], (5.90c)
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with initial conditions

[R](0) = Rtot, [AR](0) = 0, [ARA](0) = 0, (5.90d)

The measured quantity is bound ligand, hence the output can be stated as

y = [AR] + 2[ARA]. (5.90e)

We assume the only known parameter is the drug concentration, [A], and so we have the

vector of unknown parameters as p = (α+, α−, ka+, ka−, Rtot). Whilst at first glance this

system looks similar to the previous system, for monomer competition binding, in terms

of complexity, we note that the output function is now a combination of two states, as

opposed to just one, adding a slight but significant difference to the proceeding compu-

tations.

Transfer function method

Again, we first consider the transfer function method to determine identifiability. We

first use conservation of receptors, which is stated in this case as

Rtot = [R] + [AR] + [ARA], (5.91)

to reduce the system, giving

d[AR]

dt
= −(ka+[A] + ka− + α+ka+[A])[AR] + (α−ka− − ka+[A])[ARA] + ka+[A]Rtot,

(5.92a)

d[ARA]

dt
= α+ka+[A][AR]− α−ka−[ARA]. (5.92b)
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This gives the components, as stated in equation (5.2), as

F =

−(ka+[A] + ka− + α+ka+[A]) α−ka− − ka+[A]

α+ka+[A] −α−ka−

 ,
G =

ka+[A]Rtot

0

 , H =
[
1 2

]
. (5.93)

We give the transfer function of the system as

L(s,p) =
ka+[A]Rtot(s+ 2α+ka+[A] + α−ka−)

s2 + (ka+[A] + ka− + α+ka+[A] + α−ka−)s+ (α+k2a+[A]
2 + α−ka+ka−[A] + α−k2a−)

,

(5.94)

which gives the vector of coefficients as

ζ(p) =


ka+Rtot

2α+ka+[A] + α−ka−

ka+[A] + ka− − α+ka+[A]

α+k
2
a+[A]2 + α−ka+ka−[A] + α−k

2
a−

 . (5.95)

Hence we have no identifiable parameters but do have four identifiable parameter combi-

nations. Again this can be seen in Figure 5.3.3 where we show how three sets of different

parameter values result in vastly different individual species curves, yet all give the same

Abound, measured output curve. While the curves of [R] and [ARA] are similar in shape,

they have different magnitudes of concentration. However, the largest differences are seen

in the [AR] curves, where the different parameter sets result in curves that have distinctly

different evolution patterns, with some curves have a peak and fall while others don’t.

This highlights how naive parameter estimation performed without this knowledge of

identifiability could lead to incorrect conclusions being drawn about the underlying qual-

itative dynamics. The parameter values used for the plots can be seen in Table 5.3.
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Figure 5.3.3: Three sets of parameters are used to plot the system given in equations
(5.90). All three parameter sets give the same measured output curve, Abound. However,
non-identifiability can be seen in the individual species curves. Each set of plots is created
using the values in Table 5.3 together with [A] = 10−8M .

Taylor series method

We proceed with the Taylor series method to determine identifiability, with repeated

substitution of the ODEs and initial conditions. While the process is the same as when

we applied this method to the competition binding model, the output function being a

combination of two state variables adds an extra complexity to the calculations. As in

all previous sections, the first coefficient is trivial, that is

y0 = 0. (5.96)
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Set 1 Set 2 Set 3

ka+ 107M−1s−1 5× 106M−1s−1 103M−1s−1

ka− 0.1s−1 0.14s−1 0.18s−1

α+ 0.8 1.35 5.74× 103

α− 0.01 0.19 0.26

Rtot 10−10M 2× 10−10M 10−6M

ka+Rtot 10−3s−1 10−3s−1 10−3s−1

2α+ka+[A] + α−ka− 0.161s−1 0.161s−1 0.161s−1

ka+[A] + ka− − α+ka+[A] 0.12s−1 0.12s−1 0.12s−1

α+k
2
a+[A]2 + α−ka+ka−[A] + α−k

2
a− 0.0082s−2 0.0082s−2 0.0082s−2

Table 5.3: The parameters for three different parameter sets are used to plot Figure
5.3.3. The parameter combinations are equal in each case, so we can confirm these as
identifiable.

The first derivative of the output function is given as

y(1) = ka+[A][R]− (ka− + α+ka+[A])[AR] + α−ka−[ARA] + 2(α+ka+[A][AR]− α−ka−[ARA])

= ka+[A][R]− (ka− − α+ka+[A])[AR]− α−ka−[ARA], (5.97)

giving the first unique coefficient as

y
(1)
0 = c1 = ka+[A]Rtot. (5.98)

The remaining three coefficents are calculated in much the same way, repeatedly differ-

entiating the output expression and substituting in the dynamic equations (equations

(5.90)). This gives

y
(2)
0 = ka+[A]Rtot(α+ka+[A]− ka+[A]− ka−), (5.99)
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y
(3)
0 = ka+[A]Rtot(k

2
a+[A]2 − α2

+k
2
a+[A]2 − α+k

2
a+[A]2 + 2ka+ka−[A]− α−ka+ka−[A] + k2a−),

(5.100)

y
(4)
0 = ka+[A]Rtot(α

3
+k

3
a+[A]2 + α2

+k
3
a+[A]3 + α+k

3
a+[A]3 − k3a+[A]3

+ 2α2
+α−k

2
a+ka−[A]2 + α+α−k

2
a+ka−[A]2 + α2

+k
2
a+ka−[A]2 − 3k2a+ka−[A]2

+ α+α
2
−ka+k

2
a−[A]− α+ka+k

2
a−[A]− 3ka+k

2
a−[A]− k3a−). (5.101)

These can again be reduced by division and subtraction of previous coefficients, giving

the vector of coefficients, and, therefore, identifiable parameter combinations as

ζ(p) =


ka+Rtot

2α+ka+[A] + α−ka−

α+k
2
a+[A]2 + α−ka+ka−[A] + α−k

2
a−

ka+[A] + ka− − α+ka+[A]

 , (5.102)

hence, the results are the same as when using the transfer function method (that is, equal

to equation (5.95)).

Similarity transformation method

Recall the reduced form of the system as

F =

−(ka+[A] + ka− + α+ka+[A]) α−ka− − ka+[A]

α+ka+[A] −α−ka−

 ,
G =

ka+[A]Rtot

0

 , H =
[
1 2

]
. (5.103)
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Before we determine identifiability for the system, we first check whether the controllabil-

ity and observability conditions are satisfied. The controllability matrix for this system

is given as

C =

ka+[A]Rtot −ka+[A]Rtot(ka+[A] + ka− + α+ka+[A])

0 α+k
2
a+[A]2Rtot

 , (5.104)

and the observability matrix is

O =

 1 2

α+ka+[A]− ka+[A]− ka− −(α−ka− + ka+[A])

 , (5.105)

As rank(C) = rank(O) = 2 we can conclude that the system is both controllable and

observable, hence we continue with identifiability. Assuming a linear transformation,

with the matrix

T =

t11 t12

t21 t22

 , (5.106)

we first note that again having all initial conditions being zero means that condition

(5.21b) automatically applies. We now apply condition (5.21e), giving

[
1 2

]
=
[
1 2

]t11 t12

t21 t22

 . (5.107)

From this we determine

t11 = 1− 2t21 (5.108)

t12 = 2− 2t22, (5.109)
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which gives the transformation matrix as

T =

1− 2t21 2− 2t22

t21 t22

 . (5.110)

We next apply condition (5.21d), giving

1− 2t21 2− 2t22

t21 t22

k̃a+[A]R̃tot

0

 =

ka+[A]Rtot

0

 . (5.111)

From the bottom row, we find

t21 = 0. (5.112)

With this, the top row then gives the identifiable parameter combination

k̃a+R̃tot = ka+Rtot. (5.113)

The transformation matrix now becomes

T =

1 2− 2t22

0 t22

 . (5.114)

Applying condition (5.21c), gives

M11 M12

M21 M22

 =

N11 N12

N21 N22

 , (5.115)
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where

M11 = α̃+k̃a+[A]− k̃a+[A]− k̃a− − 2t22α̃+k̃a+[A], (5.116a)

M12 = 2t22α̃−k̃a− − k̃a+[A]− α̃−k̃a−, (5.116b)

M21 = t22α̃+k̃a+[A], (5.116c)

M22 = −t22α̃−k̃a−, (5.116d)

and

N11 = −(ka+[A] + ka− + α+ka+[A]), (5.117a)

N12 = t22(ka+[A] + 2ka− + 2α+ka+[A] + α−ka−)− 2(ka+[A] + ka− + α+ka+[A]),

(5.117b)

N21 = α+ka+[A], (5.117c)

N22 = 2α+ka+[A]− 2t22α+ka+[A]− t22α−ka−. (5.117d)

We solve M21 = N21 for T22, which gives

t22 =
α+ka+

α̃+k̃a+
. (5.118)

We note that, while it is possible to begin with a different matrix entry, and therefore

have a different expression for t22, this should still give the same identifiability results.

With this expression, the transformation matrix is given by

T =

1 2− 2
α+ka+

α̃+k̃a+

0
α+ka+

α̃+k̃a+

 , (5.119)
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which has determinant

det(T ) =
α+ka+

α̃+k̃a+
6= 0, (5.120)

hence, condition (5.21a) holds. We substitute the expression for t22 into the remaining

matrix entries. Solving M11 = N11, we have, after some simplification

k̃a+[A] + k̃a− − α̃+k̃a+[A] = ka+[A] + ka− − α+ka+[A]. (5.121)

Equating M22 = N22 and M12 = N12, we obtain

2α̃+k̃a+[A] + α̃−k̃a− = 2α+ka+[A] + α−ka−, (5.122)

and

α̃+k̃a+
2
[A]2 + α̃−k̃a+k̃a−[A] + α̃−k̃a−

2
= α+k

2
a+[A]2 + α−ka+ka−[A] + α−k

2
a−, (5.123)

respectively. Hence, once again we have the identifiable parameter combinations for this

model as

ζ(p) =


ka+Rtot

2α+ka+[A] + α−ka−

α+k
2
a+[A]2 + α−ka+ka−[A] + α−k

2
a−

ka+[A] + ka− − α+ka+[A]

 , (5.124)

confirming that all methods give the same results. Again, if we compare the three meth-

ods applied to this system, we find that the transfer function method to be decidedly
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simpler to use, whereas the Taylor series method results in expressions that require much

simplification.

5.3.4 Ligand induced dimerisation with a single drug

The final model we consider is the VEGF, ligand induced dimerisation model that we

presented in Chapter 4. Recall the schematic for the model is given by

A + R
k+

k−
AR R + AR

ψ+k+

ψ−k−
RAR.

The ODE system that governs the system dynamics can then be stated as

d[R]

dt
=− k+[A][R] + k−[AR]− ψ+k+[R][AR] + ψ−k−[RAR], (5.125a)

d[AR]

dt
= k+[A][R]− k−[AR]− ψ+k+[R][AR] + ψ−k−[RAR], (5.125b)

d[RAR]

dt
= ψ+k+[R][AR]− ψ−k−[RAR]. (5.125c)

with initial conditions

[R](0) = Rtot, [AR](0) = 0, [RAR](0) = 0 (5.125d)

The signal of interest, and measured output for the system, is proportional to the number

of receptors bound, that is

y = a([AR] + 2[RAR]), (5.125e)

for a scalar a. Again the only known parameter is the drug concentration, [A], and so we

have p = (a, k+, k−, ψ+, ψ−, Rtot). We note that this system is nonlinear, which affects the
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available methods to determine identifiability. The transfer function method is applicable

only to linear systems, and so we are unable to use this method.

Taylor series method

We first apply the Taylor series method to the VEGF system. While we have n = 3, the

system is nonlinear and so it is unknown how many coefficients will need to be calculated

for identifiability to be established. As in all previous sections, the first coefficient is

trivial, that is

y0 = 0. (5.126)

and so gives no information. The first derivative of the output function is given as

y(1) = a([AR] + 2[RAR]) (5.127)

= a(k+[A][R]− k−[AR] + ψ+k+[R][AR]− ψ−k−[RAR]),

(5.128)

giving the first unique Taylor coefficient as

y
(1)
0 = c1 = ak+[A]Rtot. (5.129)

The second coefficient we calculate as

y
(2)
0 = ak+[A]Rtot(k+[A] + k− − ψ+k+Rtot)

⇒ c2 = k+[A] + k− − ψ+k+Rtot. (5.130)
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We continue calculating coefficents using repeated differentiation and substitution, giving

y
(3)
0 = ak+[A]Rtot(k

2
+[A]2 + 2k+k−[A] + k2− − 4ψ+k

2
+[A]Rtot

− ψ2
+k

2
+R

2
tot − ψ+ψ−k+k−Rtot), (5.131)

y
(4)
0 = ak+[A]Rtot(ψ

3
+k

3
+R

3
tot + 2ψ2

+ψ−k
2
+k−R

2
tot + 3ψ2

+k
3
+[A]R2

tot + ψ2
+k

2
+k−R

2
tot

+ ψ+ψ
2
−k+k

2
−Rtot + 4ψ+ψ−k

2
+k−[A]Rtot + 11ψ+k

3
+[A]2Rtot + 6ψ+k

2
+k−[A]Rtot

− ψ+k+k
2
−Rtot − k3+[A]3 − 3k2+k−[A]2 − 3k+k

2
−[A]− k3−), (5.132)

y
(5)
0 = −ak+[A]Rtot(ψ

4
+k

4
+R

4
tot + 3ψ3

+ψ−k
3
+k−R

3
tot − 4ψ3

+k
4
+[A]R3

tot + 2ψ3
+k

3
+k−R

3
tot

+ 3ψ2
+ψ

2
−k

2
+k

2
−R

2
tot + 6ψ2

+ψ−k
3
+k−[A]R2

tot + 2ψ2
+ψ−k

2
+k

2
−R

2
tot − 2ψ2

+k
4
+[A]2R2

tot

+ 18ψ2
+k

3
+k−[A]R2

tot + ψ+ψ
3
−k+k

3
−Rtot + 4ψ+ψ

2
−k

2
+k

2
−[A]Rtot[A]2Rtot

+ 11ψ+ψ−k
3
+k− + 6ψ+ψ−k

2
+k

2
−[A]Rtot − ψ+ψ−k+k

3
−Rtot + 26ψ+k

4
+[A]3Rtot

+ 34ψ+k
3
+k−[A]2Rtot + 6ψ+k

2
+k

2
−[A]Rtot − 2ψ+k+k

3
−Rtot − k4+[A]4 − 4k3+k−[A]3

− 6k2+k
2
−[A]2 − 4k+k

3
−[A]− k4−). (5.133)

Although theoretically it may be possible to reduce these expressions, as we did with the

linear models, it is not obvious as to how to do this. Using these coefficients directly

to create the vector of identifiable parameter combinations is also impractical, as setting

ζ(p) = ζ(p̃) would involve solving a fourth order polynomial. If further coefficients were

also needed to determine identifiability these would be of higher degree still. These issues

were also noted by Chappell, Godfrey and Vajda [24] where they compared the Taylor

series method and similarity transformation method for nonlinear compartment models.

Hence, we conclude that the Taylor series method is impractical to use for nonlinear

problems.

Similarity transformation method

Although we have used this method to establish identifiability for the previous models,

these were all linear models. There are a number of key differences in the steps taken to

apply the method to a nonlinear system. We first reduce the system (equation (5.125)),
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using the conservation law

Rtot = [R] + [AR] + [RAR], (5.134)

which gives the system components as

f(x,p) =


ψ+k+[AR]2 + 2ψ+k+[AR][RAR]− (k+[A] + k−

+ ψ+k+Rtot)[AR] + (ψ−k− − 2k+[A])[RAR]

−ψ+k+[AR]2 − 2ψ+k+[AR][RAR] + ψ+k+Rtot[AR]− ψ−k−[RAR]

 , (5.135)

g(x,p) =

k+[A]Rtot

0

 , (5.136)

h(x,p) = a([AR] + 2[RAR]). (5.137)

In order to use this method, we require the system to be observable and controllable.

Recall, the definitions of controllability and observability as given in Section 5.2.3. The

observability condition makes use of the Lie derivative, so we calculate

L0
fy(x) = y(x), (5.138)
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and

L1
fy(x) =

∂y(x)

∂x
f(x)

= −a(ψ+k+([AR] + 2[RAR]−Rtot)[AR]

+ (k+[A] + k−)[AR] + (ψ−k− + 2k+[A])[RAR]), (5.139)

giving the observability matrix as

O =


a 2a

−a(ψ+k+(2[AR] + 2[RAR]

−Rtot) + (k+[A] + k−))

−a(2ψ+k+[AR][AR]

+ (ψ−k− + 2k+[A]))

 , (5.140)

which has rank(O) = 2. We calculate the controllability matrix, making use of the Lie

bracket. Noting that

[f, g] =
∂g(x)

∂x
f(x)− ∂f(x)

∂x
g(x)

=

k+[A]Rtot(k+[A] + k− − ψ+k+(2[AR] + 2[RAR]−Rtot))

ψ+k
2
+[A]Rtot(2[AR] + 2[RAR]−Rtot)

 , (5.141)

giving the controllability matrix as

C =

k+[A]Rtot k+[A]Rtot(k+[A] + k− − ψ+k+(2[AR] + 2[RAR]−Rtot))

0 ψ+k
2
+[A]Rtot(2[AR] + 2[RAR]−Rtot)

 , (5.142)

which also has rank(C) = 2. Hence, we can confirm that the system is both observable

and controllable. We now assume a transformation λ(x) = (λ1(x), λ2(x)) and assume

that this transformation preserves the system output, y(x), as well as the algebraic struc-
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ture of the system. This is done by showing that all conditions in equations (5.22) hold.

The first condition we check is (5.22e), that is, h(λ(x̃),p) = h(x̃, p̃). This gives

a(λ1 + 2λ2) = ã([AR] + 2[RAR]), ⇒ λ1 =
ã

a
([AR] + 2[RAR])− 2λ2. (5.143)

Differentiating this with respect to [AR] gives

∂λ1
∂[AR]

=
ã

a
− 2

∂λ2
∂[AR]

. (5.144)

Similarly, differentiating with respect to [RAR] gives

∂λ1
∂[RAR]

= 2

(
ã

a
− ∂λ2
∂[RAR]

)
. (5.145)

Using these, we have the Jacobian of λ(x) as

∂λ

∂x
=


ã

a
− 2

∂λ2
∂[AR]

2

(
ã

a
− ∂λ2
∂[RAR]

)
∂λ2
∂[AR]

∂λ2
∂[RAR]

 . (5.146)

We now consider condition (5.22d) which says we must have g(λ(x̃),p) =
∂λ(x̃)

∂x̃
g(x̃, p̃).
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This gives


k+[A]Rtot

0

 =


ã

a
− 2

∂λ2
∂[AR]

2

(
ã

a
− ∂λ2
∂[RAR]

)
∂λ2
∂[AR]

∂λ2
∂[RAR]



k̃+[A]R̃tot

0

 (5.147)

=


(
ã

a
− 2

∂λ2
∂[AR]

)
k̃+[A]R̃tot

k̃+[A]R̃tot
∂λ2
∂[AR]

 . (5.148)

The second row of these gives

∂λ2
∂[AR]

= 0. (5.149)

Substituting this into the first row gives our first identifiable parameter combination as

ak+Rtot = ãk̃+R̃tot. (5.150)

The Jacobian matrix now becomes

∂λ

∂x
=


ã

a
2

(
ã

a
− ∂λ2
∂[RAR]

)

0
∂λ2

∂[RAR]

 . (5.151)
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We now check condition (5.22c) which we recall says, f(λ(x̃),p) =
∂λ(x̃)

∂x̃
f(x̃, p̃), giving

1

a2


a(ak+(2 + ψ− + 2ψ+k+Rtot)− 2ãψ+k+([AR] + 2[RAR]))λ2
− ã([AR] + 2[RAR])(a(k+[A] + k− + ψ+k+Rtot)− ã([AR] + 2[RAR]))

−a(aψ−k− + ψ+k+(aRtot − ã([AR] + 2[RAR])))λ2
+ ãψ+k+([AR] + 2[RAR])(aRtot − ã([AR] + 2[RAR]))

 =


ã

a
2

(
ã

a
− ∂λ2
∂[RAR]

)

0
∂λ2

∂[RAR]




ψ̃+k̃+([AR] + 2[RAR])[AR]

− (k̃+[A] + k̃− + ψ̃+k̃+R̃tot)[AR] + (ψ̃−k̃− − 2k̃+[A])[RAR]

−ψ̃+k̃+[AR]
2 − 2ψ̃+k̃+[AR][RAR] + ψ̃+k̃+R̃tot[AR]− ψ̃−k̃−[RAR]

 .
(5.152)

Solving these for λ2 and ∂λ2/∂[RAR] gives

λ2 =
ã(c1[AR]2 + c2[AR][RAR] + c3[AR] + c4[RAR]2 + c5[RAR])

a(ak−(2− ψ−) + 2ψ+k+(ã([AR] + 2[RAR])− aRtot))
, (5.153)

where

c1 = ãψ+k+ − aψ̃+k̃+,

c2 = 4ãψ+k+ − 2aψ̃+k̃+,

c3 = a(k+[A] + k− − ψ+k+Rtot − (k̃+[A] + k̃− − ψ̃+k̃+R̃tot))

c4 = 4ãψ+k+,

c5 = a(2(k+[A] + k− − ψ+k+Rtot)− 2k̃+[A]− ψ̃−k̃−),

and

∂λ2
∂[RAR]

=

d1([AR]
3 + 4[AR]2[RAR] + 4[AR][RAR]2)
+ d2[AR]

2 + d3[AR][RAR] + d4[AR] + d5[RAR]
2 + d6[RAR]

a(ψ̃+k̃+([AR] + 2[RAR])[AR]− R̃tot) + ψ̃−k̃−[RAR])
× (ak−(2− ψ−) + 2ψ+k+(ã([AR] + 2[RAR])− aRtot))

, (5.154)
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where

d1 = 2ãψ+ψ̃+k+k̃+,

d2 = 2ãψ+k+(k̃− − k+[A] + k̃+[A]− ψ̃+k̃+R̃tot)− aψ̃+k̃+(ψ−k− + 2ψ+k+Rtot),

d3 = 2ãψ+k+(2k̃− − 4k+[A] + 4k̃+[A]− 2ψ̃+k̃+R̃tot)− 2aψ̃+k̃+(ψ−k− + 2ψ+k+Rtot),

d4 = a(ψ−k−(k− + k+[A]− k̃− − k̃+[A] + ψ̃+k̃+R̃tot)

+ 2ψ+k+Rtot(k+[A]− k̃+[A]− k̃− + ψ̃+k̃+R̃tot)),

d5 = 8ãψ+k+(2k̃+[A]− 2k+[A] + ψ̃−k̃−),

d6 = a(ψ−k−(2k− + 2k+[A]− ψ̃−k̃− − 2k̃+[A]) + 2ψ+k+Rtot(2k+[A]− 2k̃+[A]− ψ̃−k̃−)).

Differentiating λ2, that is equation (5.153), with respect to [AR] gives

∂λ2
∂[AR]

=
ã(m1([AR]2 + 4[AR][RAR] + 4[RAR]2) +m2[AR] +m3[RAR] +m4)

a(ak−(2− ψ−) + 2ψ+k+(ã([AR] + 2[RAR])− aRtot))2
,

(5.155)

where

m1 = 2ãψ+k+(ãψ+k+ − aψ̃+k̃+),

m2 = −2a(ãψ+k+ − aψ̃+k̃+)(ψ−k− − 2k− + 2ψ+k+Rtot),

m3 = 2a(ãψ+k+(4k− − 2k̃− − 2ψ−k− + ψ̃−k̃− − 4ψ+k+Rtot

+ 2ψ̃+k̃+R̃tot) + aψ̃+k̃+(ψ−k− − 2k− + 2ψ+k+Rtot)),

m4 = −a2(ψ−k− − 2k− + 2ψ+k+Rtot)(k+[A] + k− − ψ+k+Rtot − (k̃+[A] + k̃− − ψ̃+k̃+R̃tot)).

However, we found earlier, in equation (5.149), that ∂λ2/∂[AR] = 0, hence each of

these coefficients (m1-m4) must equal zero. We find

m1 = 0, ⇒ ãψ+k+ = aψ̃+k̃+, (5.156)
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as a second identifiable parameter combination. Also

m3 = 0, ⇒ 2k− − ψ−k− − 2ψ+k+Rtot = 2k̃− − ψ̃−k̃− − 2ψ̃+k̃+R̃tot. (5.157)

Differentiating λ2 with respect to [RAR], and simplifying using the combinations identi-

fied in equations (5.150), (5.156) and (5.157), gives

∂λ2
∂[RAR]

=
4ã4ψ2

+k
2
+([AR]2 + 4[AR] + 4[RAR]2)

a(ak−(2− ψ−) + 2ψ+k+(ã([AR] + 2[RAR])− aRtot))2
. (5.158)

This must be equal to equation (5.154). Equating coefficients, while using previously

identified parameter combinations to simplify where possible, we find

aRtot = ãR̃tot, k+ = k̃+, k− = k̃−, ψ+Rtot = ψ̃+R̃tot, ψ− = ψ̃−. (5.159)

Substituting these into equation (5.153) gives the λ2 solution as

λ2(x) =
ã

a
[RAR], (5.160)

and it follows that the λ1 solution is therefore

λ1(x) =
ã

a
[AR]. (5.161)

Clearly we have

λ1(0) = 0, and λ2(0) = 0, (5.162)
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confirming that, condition (5.22b) holds. Finally, we have

∂λ2
∂[RAR]

=
ã

a
, (5.163)

and so the Jacobian becomes

∂λ

∂x
=


ã

a
0

0
ã

a

 . (5.164)

This has rank = 2, hence we have confirmed that the final condition (5.22a) also holds,

concluding that the algebraic structure is preserved under this linear transformation.

With this we can successfully identify parameters

k+, k−, ψ−, (5.165)

and have the identifiable parameter combinations

ζ(p) =

 aRtot

ψ+Rtot

 (5.166)

Although the system in not fully identifiable, we note that this is due only to the

output being scaled. If this is not the case, or if the value of this scaler is known, the

system becomes fully identifiable. This is clear if we look at Figure 5.3.4 together with

parameter values in Table 5.4. In these we see that, although we have nonidentifiability,

the differences in the curves are simply a change in magnitude of concentrations. That

is, they are all scaled to a different magnitude.

The results are also confirmed using the STRIKE-GOLDD toolbox [129], in Matlab
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Figure 5.3.4: Three sets of parameters are used to plot the system given in equations
(5.125). All three parameter sets give the same measured output curve, Abound. However,
non-identifiability can be seen in the individual species curves. Each set of plots is created
using the values in Table 5.4 together with [A] = 10−8M .

[2] toolbox, the results of which can be seen in Figure 5.3.5.

5.3.5 A comparison of methods

For linear systems, we can conclude that all methods give the same results for the models

studied. In all considered models, we find that it is not possible to identify all parameters

from a single set of time course data. In fact, very few parameters can be successfully

recovered, hence further information is required to ensure identifiability. In all cases, we

find the transfer function method requires the least computation, with the identifiable

combinations returned directly, that is, without the need for simplification. The Taylor

series the returned parameter combinations are substantially more complex than those

found in the transfer function method, requiring much more simplification. The Taylor

196



Set 1 Set 2 Set 3

a 0.07 0.7 0.007

k+ 8.4× 106M−1s−1 8.4× 106M−1s−1 8.4× 106M−1s−1

k− 0.037s−1 0.037s−1 0.037s−1

ψ+ 187 1.87 18.7

ψ− 26 26 26

Rtot 10−10M 10−11M 10−9M

k+Rtot 7× 10−12s−1 7× 10−12s−1 7× 10−12s−1

ψ+Rtot 1.87× 10−8M 1.87× 10−8M 1.87× 10−8M

Table 5.4: The parameters for three different parameter sets are used to plot Figure
5.3.4. The parameter combinations are equal in each case, so we can confirm these as
identifiable.

series method does have the advantage, however, that the system can remain in its full

form without any reformulation needed, and unknowns in the initial conditions can also

be determined. The main disadvantage of the similarity transformation method is in the

inability to algorithmically compute the solutions. That is, the results of each step need

to be considered before deciding on how to proceed with the next. This is in contrast to

the transfer function method and Taylor series method which both follow a structured

algorithm to obtain solutions.

For nonlinear systems we apply only the Taylor series and similarity transformation

methods, as the transfer function method is applicable to only linear systems. From the

Taylor series method, we are unable to determine what parameters are identifiable or

unidentifiable as the parameter combinations are long and algebraically complex. From

the similarity transformation method, we find some parameters to be identifiable, and

in fact if the observable function scalar can be predetermined, all parameters can be

theoretically identified. Although, we once again note that this is assuming noise-free

data. This is unlikely to be the case so issues of practical identifiability also need to be

taken into account. Though the method is not simple, and will be more difficult for larger

systems, it gives clear results. The Matlab [2] toolbox, STRIKE-GOLDD confirms the
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Figure 5.3.5: The STRIKE-GOLDD toolbox [129] confirms the identifiability of the pa-
rameters k+, k− and ψ−.

results of identifiable parameters but fails to return any parameter combinations.
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5.4 Identifiability with equilibrium, washout and mul-

tiple time courses

The results thus far have shown none of the models to be fully identifiable from a sin-

gle set of time course data. In this section we consider alternative ways in which full

identifiability can be established. As we discussed in Chapter 1, commonly performed

experiments for drug binding are equilibrium (or saturation) experiments. In these, for

each ligand concentration, the experiments are run until equilibrium is reached, then the

amount of ligand bound is observed. These experiments are often used to estimate equi-

librium constants KD = 1/KA and Rtot, for monomeric receptors [102]. For each model,

we aim to identify the model equilibrium parameters and then using time course data to

identify the remaining binding parameters.

Washout experiments can also be used to gain further insights into the binding ki-

netics of ligands and provide identifiability information. In these experiments the free

ligand is removed by repeated washing, ensuring that no further drug associates with

the receptors and the rate of decrease of effect is then observed. We use this type of

experimental data do determine the identifiability of the dissociation parameters before

then using association time course data to also determine identifiability of association

parameters.

Finally, we also consider multiple binding experiments, whereby each data set is col-

lected from experiments performed using different ligand concentrations. These data sets

are then used simultaneously, with a view to determine the minimum number of data sets

required to make the model globally identifiable. In each case, we choose the appropriate

identifiability method to apply.
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5.4.1 Monomer receptor binding with a single drug

Recall the model for a monomer binding a single drug, as given by the schematic

A + R
ka+

ka−
AR

Although we previously found no identifiable parameters, we have identifiable parameter

combinations as

ζ(p) =

 ka+[A]Rtot

ka+[A] + ka−

 . (5.167)

Saturation curves

We first attempt to identify equilibrium parameters. Note that, at equilibrium, we have

[AR] = KA[A][R], (5.168)

where KA = ka+/ka−. This gives the expression for the concentration of ligand bound at

equilibrium as

Abound =
KA[A]Rtot

1 +KA[A]
. (5.169)

Taking two ligand concentrations, [A]1 and [A]2, and the corresponding output measure-

ments, x1 and x2 gives

KA[A]1Rtot

1 +KA[A]1
= x1 and

KA[A]2Rtot

1 +KA[A]2
= x2. (5.170)
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Solving these for Rtot and KA = ka+/ka− shows there is the single solutions

Rtot =
x1x2([A]1 − [A]2)

[A]1x2 − [A]2x1
and KA =

[A]1x2 − [A]2, x1
[A]1[A]2(x1 − x2)

(5.171)

and hence these are identifiable from a single dose response curve (in fact, only two points

from the curve). With these known, only a single parameter remains to be found from

time course data. This can be achieved using only one of the parameter combinations as

stated in equation (5.167), giving

ka−KA[A]Rtot = k̃a−KA[A]Rtot ⇒ ka− = k̃a−. (5.172)

Hence, we conclude that, using equilibrium data together with a single set of time course

data, it is possible to identify all model parameters.

Washout experiments

We also consider using washout experiment data to identify dissociation parameters. In

a washout experiment, the drug is removed from the system (usually once equilibrium

has been reached), hence, we set [A] = 0 in the model given in equations (5.23). This

gives

[R]′ = ka−[AR], (5.173a)

[AR]′ = −ka−[AR]. (5.173b)

We note that, it is clearly possible to solve the ODE for [AR], so it is possible to deter-

mine identifiability directly from this. However, we will continue to use a method that is

applicable to any system in order to highlight the process.

As the concentrations of each species is unknown at the start point of washout, the
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initial conditions are therefore

[R](0) = Rtot − x1, [AR](0) = x1, (5.173c)

while the output remains unchanged

y = [AR]. (5.173d)

The unknown parameters in the model in this form are ka−, Rtot and x1, although as we are

only interested in identifying the parameters in the overall system (as stated in equation

5.23), it is not necessary to determine identifibility of x1. Reducing the system using

conservation still leads to a zero force term, so we instead use the Taylor series method.

We have nx = 2 so calculate a maximum of three Taylor coefficients. Calculating the first

of these coefficient gives

y = AR, ⇒ y0 = x1, (5.174)

which clearly gives no information about ka−, but does (unnecessarily in this case) show

x1 to be identifiable. The second coefficient is

y(1) = AR′ = −ka−[AR], ⇒ y
(1)
0 = a1 = −ka−x1, (5.175)

and so we find ka− to be identifiable. The final coefficient is calculated as

y
(2)
0 = a2 = k2a−x1, (5.176)
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and so gives no further information, hence, only ka− is identifiable from washout, disso-

ciation data.

Returning to the association coefficients, as ka− is now known we have p = (ka+, Rtot)

as the remaining unknown parameters. Taking the coefficients in equation (5.167) and

solving ζ(p) = ζ(p̃) for p confirms these parameters as also now identifiable.

Multiple time courses

We consider multiple sets of time course data, each with a different drug concentration.

Each of these will give the identifiable parameters, as stated in equation (5.50) for their

corresponding concentration of [A]. That is

ζ(p)i =

 ka+[A]iRtot

ka+[A]i + ka−

 , (5.177)

for i = 1, 2, ...k, where k is the number of time courses being considered. As fitting is

performed to all sets simultaneously, we solve the system as one also. For example, for

two time courses we have

ζ(p)2 =


ka+[A]1Rtot

ka+[A]1 + ka−

ka+[A]2Rtot

ka+[A]2 + ka−

 . (5.178)

Setting ζ(p)2 = ζ(p̃)2 results in all parameters being successfully identified. Hence we

conclude that the model is fully identifiable from just two time courses.
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5.4.2 Monomeric receptor two drug competition binding

The model for a monomer binding with two ligands in a competition binding scenario is

described by the schematic

A + R
ka+

ka−
AR B + R

kb+

kb−
BR

Identifiability analysis from a single time course resulted in the parameter kb− being

successfully identifiable, along with parameter combinations

ζ(p) =


ka+Rtot,

ka+[A] + kb+[B] + ka−,

ka+kb−[A] + ka−kb+[B] + ka−kb−.

 (5.179)

Saturation curves

At equilibrium, we have the relations

[AR] = KA[A][R], [BR] = KB[B][R], (5.180)

where KA = ka+/ka− and KB = kb+/kb−. Taking this, together with the conservation

law

[R] + [AR] + [BR] = Rtot, (5.181)

we can state the equilibrium concentration of the measured ligand bound ([AR]) as

[A]bound =
KA[A]Rtot

1 +KA[A] +KB[B]
. (5.182)
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Taking two points from the dose response curve (with [A] being the varied parameter and

a single dose of [B]), we have

KA[A]iRtot

1 +KA[A]i +KB[B]
= xi, (5.183)

for i = 1, 2, and solving for KA and Rtot gives the solutions

KA =
(1 +KB[B])([A]1x2 − [A]2x1)

[A]1[A]2(x1 − x2)
, Rtot =

x1x2([A]1 − [A]2)

[A]1x2 − [A]2x1
. (5.184)

Considering further points on the curve gives no extra information, hence from a single

dose response curve the only identifiable parameter is Rtot, as the solution for KA still

depends the unknown parameter KB.

We then look again to time course data to identify remaining parameters. Assuming

Rtot is known, we now use equation (5.179) and set ζ(p) = ζ(p̃). From this we find the

two solution sets


ka+

ka−

kb+

kb−

 =


k̃a+

k̃b+[B] + k̃b−
k̃a−−k̃b−

[B]

k̃b−

 or


ka+

ka−

kb+

kb−

 =


k̃a+

k̃a−

k̃b+

k̃b−

 , (5.185)

and so we find that only ka+ and kb− are identifiable. As we have two possible solutions

for ka− and kb+ these can be described as locally identifiable and as such there is no way

of knowing whether the estimated parameters are accurate or not. However, if k̃b− > k̃a−,

then the first solution set contains a negative value which makes this solution set invalid,

and therefore, all the parameters are identifiable.

We also consider using a second dose response curve, with an alternative concentration
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of the competitor drug B (as in the work done by Motulsky and Mahan [95]), giving the

equations to be solved as

KA[A]1Rtot

1 +KA[A]1 +KB[B]1
= x1,

KA[A]2Rtot

1 +KA[A]2 +KB[B]1
= x2,

KA[A]1Rtot

1 +KA[A]1 +KB[B]2
= x3.

(5.186)

These give solutions

Rtot =
x1x2([A]1 − [A]2)

[A]1x2 − [A]2x1
,

KA =
x3([B]1 − [B]2)([A]1x2 − [A]2x1)

[A]1([A]1[B]1x2(x1 − x3)− [A]2[B]1x1(x2 − x3)− [A]2[B]2x3(x1 − x2))
,

KB =
x3([A]1 − [A]2)(x1 − x3)

[A]1[B]1x2(x1 − x3)− [A]2[B]1x1(x2 − x3)− [A]2[B]2x3(x1 − x2)
, (5.187)

and so all equilibrium parameters are determined to be identifiable. Remaining parame-

ters are then all identifiable from time course data, hence, the model is fully identifiable.

Washout experiments

To determine identifiability using washout experiment data we set [A] = 0 in equation

5.45 to give the model with only dissociation terms as

[R]′ = ka−[AR] + kb−[BR], (5.188a)

[AR]′ = −ka−[AR], (5.188b)

[BR]′ = −kb−[BR], (5.188c)

initial conditions are unknown so we have

[R](0) = Rtot − x1 − x2, [AR](0) = x1, [BR](0) = x2. (5.188d)
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The only measured quantity is [AR] and so the output is

y = [AR]. (5.188e)

We have unknown parameters p = (ka−, kb−, Rtot, x1, x2), although we note that we will

be unable to identify Rtot as [R] does not appear in any of the model equations, and it is

not necessary to find estimates for x1 and x2 for the overall system to be identifiable. We

again use the Taylor series method as reducing the system results in a zero force term

(that is G = 0). We calculate the first Taylor coefficient as

y = AR, ⇒ y0 = x1, (5.189)

and so x1 is identifiable. The second coefficient is calculated as

y′ = AR′ = −ka−[AR], ⇒ y′0 = −ka−x1, (5.190)

giving ka− as also being identifiable. Further coefficients give no new information,

and so only ka− is identifiable from dissociation data. This leaves parameters p =

(ka+, kb+, kb−, Rtot) to be identified from association data. Using the coefficients in equa-

tion (5.179), we find all remaining parameters to be identifiable.

Multiple time courses

There are two ways in which we can consider using multiple time course data to determine

identifiability of this model. Taking the coefficients as stated in equation (5.179) we can

look at time courses with either multiple concentrations of A or multiple concentrations

207



of B, and so giving either

ζ(p)i =


ka+Rtot

ka+[A]i + kb+[B] + ka−

ka+kb−[A]i + ka−kb+[B] + ka−kb−

 or ζ(p)i =


ka+Rtot

ka+[A] + kb+[B]i + ka−

ka+kb−[A] + ka−kb+[B]i + ka−kb−


(5.191)

for i = 1, 2.... If we first look to the first case, having multiple A concentrations, and

solve ζ(p)i = ζ(p̃)i, we have


ka+

ka−

kb+

kb−

 =


k̃a+

k̃b+[B] + k̃b−
k̃a−−k̃b−

[B]

k̃b−

 or


ka+

ka−

kb+

kb−

 =


k̃a+

k̃a−

k̃b+

k̃b−

 , (5.192)

from two sets of time course data, and so we once again have ka+, kb− and Rtot identifiable,

but two possible solutions for ka− and kb+, unless k̃b− > k̃a−. Further data sets with a

third concentration of A yields no further information. If we instead consider having time

courses for multiple [B], solving ζ(p)i = ζ(p̃)i gives all parameters as being identifiable

from just two time courses.

5.4.3 Pre-formed homodimer binding with a single drug

The schematic for the dimer binding with a single drug model is given by

A + R
ka+

ka−
AR A + AR

α+ka+

α−ka−
ARA
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and we saw in the previous section (section 5.3.3) that we have no identifiable parameters,

however, we do have the following identifiable parameter combinations

ζ(p) =


ka+[A]Rtot

ka+[A]Rtot(2α+ka+[A] + α−ka−)

ka+[A] + ka− + α+ka+[A] + α−ka−

α+k
2
a+[A]2 + α−ka+ka−[A] + α−k

2
a−

 . (5.193)

Saturation curves

We take the expression for the concentration of ligand bound at equilibrium, as stated in

Chapter 2 (equation (2.9)), as

Abound =
(KA[A] + 2αK2

A[A]2)

1 +KA[A] + αK2
A[A]2

Rtot. (5.194)

where KA = ka+/ka− and α = α+/α−. Taking three drug concentrations [A]i and the

corresponding concentration of ligand bound at equilibrium as xi, we solve

(KA[A]i + 2αK2
A[A]2i )

1 +KA[A]i + αK2
A[A]2i

Rtot = xi, i = 1, 2, 3, (5.195)

for p = (KA, α, Rtot). This is simple to solve in a symbolic equation solver, using soft-

ware such as Matlab [2] or Mathematica [58], where we find that all three equilibrium

parameters are identifiable from a single dose-response curve. However, the expressions

are extremely lengthy and so impractical to write down, and so we refrain from doing so

here. The dynamic parameters can be then identified from a single time course, and can

be seen by solving ζ(p) = ζ(p̃), where ζ(p) is defined as in equation (5.193).
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Washout experiments

Again we consider washout experimental data to aid in identifiability, which is represented

by setting [A] = 0 in equations (5.90), giving

d[R]

dt
= ka−[AR], (5.196a)

d[AR]

dt
= −ka−[AR] + α−ka−[ARA], (5.196b)

d[ARA]

dt
= −α−ka−[ARA], (5.196c)

The initial conditions for each species are now unknown and will instead have to be

determined through fitting. Also using conservation of receptors, we have the initial

conditions as

[R](0) = Rtot − x1 − x2, [AR](0) = x1, [ARA](0) = x2, (5.196d)

while the output remains as

y = [AR] + 2[ARA] (5.196e)

We have p = (α−, ka−, Rtot, x1, x2) as the vector of unknown parameters, though again

it is not necessary to identify x1 and x2 for the system to be identifiable. We again use

the Taylor series method to determine identifiability in this section. Through repeated

differentiation of y and substitution of the initial conditions we obtain the vector of
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coefficients as

ζ(p) =


x1 + 2x2,

−ka−(x1 + α−x2),

k2a−(x1 + (α− − 1)α−x2),

−k3a−(x1 + (α2
− − α− − 1)α−x2),

 (5.197)

Setting ζ(p) = ζ(p̃) and solving for p = (ka−, α−, x1, x2) gives the two sets of solutions



ka−

α−

x1

x2



=



k̃a−

α̃−

x̃1

x̃2



, and



ka−

α−

x1

x2



=



α̃−k̃a−

1

α̃−

x̃1 + 2(α̃− − 1)x̃2
2α̃− − 1

(α̃− − 1)x̃1 + α̃−x̃2
2α̃− − 1



, (5.198)

and so we find that all parameters are locally identifiable. In terms of fitting, this means

estimates will tend to one of these solution sets. However, when running fitting we impose

the restriction that all parameters can only take positive values. Hence with this we find

that the second solution set can only be obtained if

x̃1 + 2(α̃− − 1)x̃2
2α̃− − 1

> 0, and
(α̃− − 1)x̃1 + α̃−x̃2

2α̃− − 1
> 0. (5.199)

If the estimated parameters do not fall within these ranges then the only solution is that

the parameters are identifiable and as such the estimates are accurate for all parameters.

We use time course data to then identify the remaining parameters. Setting ζ(p) = ζ(p̃)

in equations (5.95) and solving for p = (ka+, α+, Rtot) confirms these as identifiable.
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Multiple experiments

To determine the minimum number of concentrations needed to ensure full identifiability,

we assume multiple experiments, each with a different ligand concentration. Each of

these have identifiable parameter combinations, as defined in (5.193), with [A]i as the

concentration for experiment yi. This gives the identifiable parameter combinations as

ζ(p)i =


ka+[A]iRtot

ka+[A]iRtot(2α+ka+[A]i + α−ka−)

ka+[A]i + ka− + α+ka+[A]i + α−ka−

α+k
2
a+[A]2i + α−ka+ka−[A]i + α−k

2
a−

 . (5.200)

To determine identifiability we again set ζ(p)i = ζ(p̃)i, however, when solving we solve

the systems for i = 1, 2... simultaneously. From this we can conclude that only two data

sets are required to ensure all parameters are identifiable.

5.4.4 Ligand induced dimerisation with a single drug

In section 5.3.4 we saw that, from a single time course, the parameters

k+, k−, ψ−, (5.201)

are identifiable. Furthermore, we have identifiable parameter combinations

ζ(p) =

 aRtot

ψ+Rtot

 . (5.202)

In Chapter 4, we used this model to fit to experimental data and estimate the model

parameters. In this, we had three sets of experiments, each with a different VEGF
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isoform. Within each of these sets, the experiments are repeated with five concentrations

of VEGF. The quantity Rtot and scaler a are the same in all experiment sets (as the cell

membranes and measuring techniques are the same for each), while all other parameters

are unique. If we consider ζ(p) as above, we note that [A] does not appear in any of the

identifiable combinations, hence, multiple concentrations of drug for the same experiment

does not make further any parameters identifiable. However, as ψ− is different for each

VEGF isoform, with two sets of experiments we have

ζ(p) =


aRtot

ψ+Rtot

ψ̂+Rtot

 , (5.203)

where ψ̂+ indicates that it is a different value to ψ+. In this, we see that there are no

further identifiable parameters. This will also be the case for more than two sets of

experiments. Thus we can conclude that, although the model gives a good fit to the

data, the parameters a, Rtot and ψ+ are not identifiable and cannot be taken as accurate

estimates. For the model to be fully identifiable, prior knowledge of either a or Rtot is

needed. The consequence of these parameters not being identifiable is that we cannot

evaluate the cooperativity.

5.5 Conclusions

In this chapter, we have used well-established SIA techniques to determine model iden-

tifiability for a number of standard ligand-receptor binding models, followed then by our

own dimer models. The models we consider are: monomer binding with a single ligand,

monomer competition binding, GPCR dimer binding and VEGF dimer binding. Analysis

such as this is not typically undertaken for pharmacodynamics models, and parameter es-

timates obtained from fitting to real, experimental data are accepted without knowledge

of their accuracy or uniqueness. As a consequence, incorrect characteristics of ligands are

assumed. Furthermore, when we consider that data is rarely noise-free, practical identi-
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fiability issues compound these inaccuracies which can lead to unsuitable models being

used and further experiment designs may be flawed. As such, SIA should be undertaken

at an early stage. To aid with this, we have taken a tutorial style approach to approaching

the SIA for each of the models.

We used three methods to determine identifiability for each model (where applicable),

namely, the transfer function method based on the Laplace transform, the Taylor series

method and the similarity tranform method. In each case, we demonstrate the necessary

steps taken to perform identifiability, for each method. We compare the methods, high-

lighting the method that is best suited to each model. In this, we find that the transfer

function is best for linear models due to its simplicity. The Taylor series and similarity

transformation methods, while give the same end results, require more calculation and

are more algebraically complex. For nonlinear problems we again find that the Taylor

series method results in expressions that are too lengthy and complex to be practically

useful. We instead use the similarity transformation method to determine identifiability

for the nonlinear, VEGF model. For all models, we find them to be unidentifiable overall,

though we point out that the VEGF model would be identifiable if the output scaler is

known. In each case, we highlight which parameters are identifiable and also give identi-

fiable parameter combinations.

Following this we consider the possibilities for making the models fully identifiable.

For this we also look at dose-response data, washout experiments and multiple sets of

time course data. For the monomer, single ligand binding model, we find that the model

is fully identifiable from either dose-response or washout data, together with a single set

of time course data, or just two sets of time course data. For the monomer competition

binding model, we find that using dose response data, with a single concentration of the

unlabelled ligand, together with the time course data gives the system as locally iden-

tifiable. That is, we have two possible solutions, either the estimates will be accurate

(theoretically), or they will tend to a second solution. To ensure full identifiability, a

second dose-response curve, with a different concentration of unlabelled ligand can be

used. Using washout data will provide full identifiability also. When using multiple time
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courses, only local identifiability can be established when using differing concentrations

of labelled ligand, regardless of how many time courses are used, however, the system

is fully identifiable when the time courses have different concentration of the unlabelled

ligand for only two data sets. For the GPCR dimer binding model, full identifiability

can be obtained from using dose-response data, or from two sets of time course data,

however, only local identifiability can be established from washout data.
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Chapter 6

Conclusions and future work

6.1 Results summary

In this thesis, we have developed a number of models that describe ligand binding and

receptor activation to dimerised and dimerising. The central theme of the thesis is co-

operativity across the dimer, which we focus on analysing the effects of, for each model.

We have used a range of mathematical methods and techniques to analyse the different

problems. Here we detail the main results of the thesis.

In Chapter 2, we develop models for ligand binding to pre-dimerised GPCRs. We

consider both a single ligand and two ligand competition binding to a homodimer and

also a single ligand binding to a heterodimer. In these, we study the effects of binding

cooperativity, which is defined as the effect one protomer being bound by a ligand has

on the binding of a second ligand molecule to the other protomer in the dimer. For

single ligand models cooperativity is a single parameter, while the competition binding

model requires three cooperativity factors to fully describe all ligand-receptor interac-

tions. In each case, we first look at equilibrium results where we see extra inflections in

the logDR curves. LogDR curves for monomeric receptors are typically Hill curves and

have a sigmoidal shape. We find that, biphasic curves such as the ones seen in Chapter

2 are indicative of dimerised receptors and were seen for all models presented. For each

model, we use analytical expressions to analyse the curves and give conditions upon the

parameters for exactly when the extra inflections occur. For the single ligand homodimer
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binding model, this condition depends only on the cooperativity factor, where we find

that the extra inflections appear when cooperativity is particularly low. Also in Chapter

2, explore time course binding. For the single ligand homodimer binding model we give

analytical solutions to the ODE system. These are of practical use to pharmacologists

due to the ease at which they can be implemented and interpreted.

In Chapter 3, we see how extending the GPCR dimer model to include receptor acti-

vation leads to a wide range of equilibrium signal logDR curves (we note that, unlike the

other chapters, we only look at equilibrium results). There are four cooperativity factors

to explore. The parameter α represents ligand binding cooperativity, and is defined the

same as in Chapter 2. We also have activation cooperativity factor λ, which describes the

effect one protomer being active has on the activation of the other protomer. Finally, ν

and ξ are efficacy parameters and represent the change in propensity for activation when

ligand bound and the change in affinity for active protomers over inactive protomers.

Specifically, ν accounts for when binding and activation occur on the same protomer,

while ξ accounts for when these occur on opposite protomers. A neutral curve (where

all cooperativity factors are equal to one) shows a small peak in an otherwise constant

signal. Varying each cooperativity factor individually, shows how each alters the curve

from the neutral. Overall, we have three potential effects. Varying α alters the peak

height of the curve. We also see how an increased peak relates to the extra inflections

in the logDR binding curves. Increasing λ causes and upward shift in the whole curve,

although there is little change for lower values of λ. Varying either ν or ξ individually

cause the curves to show agonist or antagonist behaviour. When varying multiple cooper-

ativity factors these effects combine and can result in signal curves that show a biphasic

shape (symmetrical as in Chapter 2 or non-symmetrical) or curves that overshoot the

saturation signal. This work is still ongoing and requires both further exploration into

possible equilibrium effects as well as time course dynamics.

In Chapter 4 we follow the framework that we outlined in Chapter 2, by first analysing

equilibrium logDR curves and then considering time course dynamics, but we instead ap-

ply it to the growth factor, VEGF system (although the model can be applied to most
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growth factor systems). As the growth factor family is known to dimerise in response to

ligand binding, we develop a ligand induced model. This results in a nonlinear system

which is a key difference from all previous models. We again give analytical expressions

for equilibrium concentrations, and use these to explain the shifts in the signal curve,

although an important point to note is that there are no extra inflections in this case.

When investigating the time course dynamics of the system, we notice some interest-

ing behaviours such as peaks in the curves and curves which evolve on multiple time

scales. Using asymptotic analysis we find that, when dissociation cooperativity is low,

that is a slow dimer dissociation, we have peaks in the concentrations of bound monomers.

Conversely, when this is instead high, we have multiple time scales contributing the con-

centrations of bound dimers. If instead, we have either high forward cooperativity or

a high receptor to ligand ratio, we observe multiple time scales in the bound monomer

curves. The model is validated by fitting to published data, where we see an excellent

fit across multiple time courses, when fitting to datasets with five concentrations of three

VEGF isoforms simultaneously.

In Chapter 5 we use structural identifiability analysis to determine whether param-

eters returned from data fitting can be relied upon to be accurate. This is something

that is often overlooked in systems biology. Thus, we present this chapter as a tutorial

for determining identifiability to some classical monomeric binding models, before then

analysing the dimer binding models presented throughout this thesis. When applying

the techniques, we find that, using only a single set of time course data results in a non-

identifiable model, for all models. We are, however, able to find parameter combinations

that can be identified successfully. For linear models, we apply three methods, using

transfer functions, Taylor series and similarity transformations. We find that all meth-

ods give the same results, though there are advantages and disadvantages to each. For

nonlinear problems both the Taylor series method, and similarity transformation meth-

ods are applicable, however, we show how, even for a small problem, the Taylor series

method is problematic. An important point to note on this problem, is that, the model

is only unidentifiable as the measured output is scaled. If this scalar is known then the

model is fully identifiable. We also consider ways in which the models can be made fully
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identifiable. We use equilibrium data or washout experiment data together with the set

of time course data to ensure identifiability, as well as multiple sets of time course data.

6.2 Future work

6.2.1 G proteins

In Chapter 3, we highlighted the importance of looking beyond ligand binding to dimerised

receptors, and considering the signalling implications of including the full G protein cycle.

We took first steps towards this goal by developing a model that included receptor acti-

vation. So far, we looked at the equilibrium effects of binding and activation. However,

we are yet to explore the possible time course dynamics of the system. As time course

data is becoming more readily available, considering these effects is the logical next thing

to examine.

Following this, extending the model to include G protein binding, and eventually

downstream pathways, is necessary and essential to fully understand the signalling im-

plications for drug discovery and development. To achieve this, a second layer would be

added to the current, spherical schematic. The current schematic would sit inside, and

link to, a larger sphere, that contains reactions involving the attachment of G proteins.

This will result in a large model involving many species and reactions, however, would

provide a full insight into the consequences of dimerisation for GPCRs.

6.2.2 Receptor internalisation

Another potential area way in which the models we have developed thus far, would

be to include receptor internalisation (or endocytosis), which plays a key role in cell

signaling. Once a receptor becomes activated, and a signal has been transmitted, the

receptor moves from the plasma membrane towards the endosomal compartment where

they are recycled to the cell membrane or degraded [16, 114]. This process is known as

receptor internalisation. Initially it was thought that the primary implication of receptor

internalisation was signal desensitisation, that is, the decreased responsiveness to a ligand
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[16]. However, while the full implications for internalisation remain unknown, recent

research is showing that an internalised receptor can continue to signal [18, 114] from the

endosome. Furthermore, a signal initiated from the cell surface may produce a different

signal from an intracellular one [17, 18, 16, 114]. The ligand induced model in-particular

would benefit from including receptor internalisation. In the work by Peach et al [101],

it was found that internalisation has an effect on the binding of VEGF on longer time

scales.

6.2.3 Allosteric modulators

While GPCRs are targets for approximately 50% of all current drugs [13], only a small

fraction of these receptors have been exploited [121]. One reason for this seems to be

an issue with traditional agonists and antagonists, that bind to the orthosteric site, pro-

ducing unwanted side effects [98]. The configuration of the orthosteric site is similar for

several receptors, which lowers the specificity of the drug for the required receptor [50].

This means ligands must have a high affinity for the receptor, in order to produce an effect

with minimal side effects. Allosteric ligands bind at a site other than the orthosteric site

and can modulate a receptor’s signalling pathways, and the ligands’ effects [84]. These

ligands work by causing a conformation change in the receptor, and often a change in

the orthosteric site. This in turn may cause an increase in efficacy of the ligand bound

to the orthosteric site, thus reducing the required dose, and in turn, the level of side effects.

A receptor can (and often does) have multiple allosteric sites, hence, in developing new

drugs, it is possible to find a site that it more unique, causing the ligand to act with an

increased specificity, thus making it more safe [50]. Furthermore, many orthosteric drugs

work as antagonists, blocking the natural ligand from binding. Allosteric modulators can

reduce the activity of a ligand without blocking it entirely, and so is less disruptive [98].

Although there is already a rise in drugs targeting the allosteric sites of GPCRs [50],

models are needed to fully understand and exploit the potential benefits of these ligands.
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Appendix A

Parameter values

In this section, we give details of the parameters used for plots in Chapters 2 - 4. There

are three sections that make up Chapter 2 (with a model in each section), and we give the

parameters for each of these sections individually, although we note that some parameters

appear in all of the models. In Table A.1, we have parameters for the single ligand, GPCR

binding model given in Section 2.1, while parameters for the competition binding model

presented in Section 2.2 are given in Table A.2, and the heterodimer binding model, as

given in Section 2.3, are detailed in Table A.3. All parameter values in this chapter are

taken from [83] and [138], and references within.

Parameter Rtot ka+ ka− KA

Value 10−10M 107M−1s−1 0.1s−1 108M−1

Table A.1: Values used for the single ligand, GPCR homodimer binding model, as pre-
sented in Section 2.1.

Parameter Rtot ka+ ka− KA kb+ kb− KB

Value 10−10M 107M−1s−1 0.1s−1 108M−1 106M−1s−1 0.5s−1 107M−1

Table A.2: Values used for the two ligand, GPCR homodimer, competition binding model,
as presented in Section 2.2.

In Table A.4 we have the parameter values used for all plots in Chapter 3, describing

the binding and activation of a single ligand with GPCRs. These values are taken from
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Parameter Rtot ka1+ ka1− KA1 ka2+ ka2− KA2

Value 10−10M 107M−1s−1 0.1s−1 108M−1 106M−1s−1 0.001s−1 106M−1

Table A.3: Values used for the single ligand, GPCR heterodimer binding model, as
presented in Section 2.3.

[137] and [138]. We note that, analysis was undertaken for the model at equilibrium only,

hence we have only equilibrium parameters.

Parameter Rtot KA Kact

Value 10−10M 2.3× 108M−1 10−3

Table A.4: Values used for the single ligand, GPCR homodimer, binding and activation
model, as presented in Chapter 3.

Finally, in Table A.5, we give figures used in the VEGF-VEGFR dimer binding model

presented in Chapter 4. The parameter values in this chapter are taken from [80] (and

references within), though we note that we have taken a slightly higher receptor total

concentration for simplicity and continuity in the analysis. The value taken still falls into

reported ranges.

Parameter Rtot k+ k− KA

Value 2× 10−10M 4.4× 107M−1s−1 1.32× 10−3s−1 3.3× 1010M−1

Table A.5: Values used for the single ligand, VEGFR homodimer binding model, as
presented in Chapter 4.
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Appendix B

Inflections in the GPCR logDR

curves

In Chapter 2 we saw how extra inflections appear in many of the logDR curves. In

this appendix, we investigate these inflections and derive conditions upon when they

appear. We begin by stating a general form, that applies to all models presented, of the

concentration of ligand bound as

Abound =
aX + 2bX2

c+ aX + bX2
Rtot. (B.1)

Calculating the second differential, with respect to log10X, gives

d2Abound
d log10X

2
=
X(log 10)2(c− bX2)(abX2 + (8bc− a2)X + ac)

(c+ aX + bX2)3
Rtot (B.2)

To find the inflection points, we set this equal to zero and solve for X. Clearly we have

the trivial root at X = 0 as well as a root when

c− bX2 = 0. (B.3)
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Discarding the negative root, we conclude that we have a possible inflection at

Xc =

√
c

b
. (B.4)

We also get extra roots when

abX2 + (8bc− a2)X + ac = 0, (B.5)

which using the quadratic formula gives us

X± =
−(8bc− a2)±

√
(8bc− a2)2 − 4a2bc

2ab

=
−(8bc− a2)±

√
(a2 − 16bc)(a2 − 4bc)

2ab
. (B.6)

We see that we get a single, real root when

(a2 − 16bc)(a2 − 4bc) = 0, (B.7)

that is when a2 = 16bc or a2 = 4bc. However we see that, if a2 = 4bc then X = −2c/a,

hence a negative root. Whereas if a2 = 16bc then X = 4c/a, so we have a positive root.

Thus we can conclude that we have a possible inflection at X = 4c/a under the condition

of a2 = 16bc.

Finally we have two real distinct roots when

(a2 − 16bc)(a2 − 4bc) > 0. (B.8)
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As a2 − 16bc < a2 − 4bc then this holds if either a2 > 16bc or a2 < 4bc. To confirm

whether these conditions give positive or negative roots we first note that

(a2 − 8bc)2 − 4a2bc > 0

⇒ (a2 − 8bc)2 > 4a2bc

⇒
√

(a2 − 8bc)2 − 4a2bc < a2 − 8bc. (B.9)

Using this we can state that, if a2 > 16bc then a2− 8bc > 16bc− 8bc = 8bc > 0, hence we

have two positive roots. Conversely, if a2 < 4bc, then a2 − 8bc < 4bc − 8bc = −4bc < 0,

hence both roots are negative. Thus we can conclude that we get two positive roots, and

possible inflection points, under the condition

a2 > 16bc. (B.10)

To confirm that these are in fact inflection points, we first confirm that X− < Xc <

X+. First noting that a2 − 16bc < a2 − 4bc ⇒ (a2 − 16bc)2 < (a2 − 16bc)(a2 − 4bc) ⇒

a2 − 16bc <
√

(a2 − 16bc)(a2 − 4bc), then we can state that

X− =
a2 − 8bc−

√
(a2 − 16bc)(a2 − 4bc)

2ab

<
a2 − 8bc− (a2 − 16bc)

2ab

=
4c

a

=

√
16c2

a2

<

√
c

b
= Xc. (B.11)
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Thus we can confirm that X− < Xc. Also

X+ =
a2 − 8bc+

√
(a2 − 16bc)(a2 − 4bc)

2ab

>
a2 − 8bc

2bc

=

√
(a2 − 8bc)2

4a2b22

>

√
4a2bc

4a2b2

=

√
c

b
= Xc, (B.12)

hence confirming that Xc < X+. We now use the second derivative to confirm there is a

sign change at each of the points. We can see asX → 0+, we have d2Abound/d log10X
2 > 0.

Taking X̂− = 4c/a as a point between X− and Xc, we evaluate

d2Abound
d log10X

2

∣∣∣∣
X=X̂−

= −12c3(a2 − 16bc)2

a4
< 0, (B.13)

thus we can confirm there is an inflection point at X− with the curve changing from

convex to concave. Taking X̂+ = (a2 − 8bc)/2ab as a point between Xc and X+, we

evaluate

d2Abound
d log10X

2

∣∣∣∣
X=X̂−

=
(a2 − 8bc)((a2 − 8bc)2 − 4a2bc)2

32a4b3
> 0, (B.14)

hence there is a sign change at the point Xc with the curve changing from convex to

concave. Finally taking the limit as X → ∞, we see that d2Abound/d log10X
2 < 0, thus

we have a third inflection point with the curve changing from convex to concave. So to

conclude, under the conditions 16bc < a2, we have three inflection points.
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Appendix C

Definitions and theorems for SIA

C.1 The Lie bracket

The controllability matrix, as discussed in Section 5.2.3, is constructed by use of the Lie

bracket. We define this, as in [134]

Definition C.1.1 The Lie bracket is an algebraic operation on two vector fields f(x), g(x) ∈

Rnx that creates a third vector field F(x), which when taken with g as the input control

vector together with u ∈ Rnu defines an embedding in Rnx that maps the input to states.

It is given as

(ad1f , g) = [f, g] =
∂g(x)

∂x
f(x)− ∂f(x)

∂x
g(x), (C.1)

with higher order brackets being calculated recursively as

(ad2f , g) = [f, [f, g]] =
∂(ad1f , g)

∂x
f(x)− ∂f(x)

∂x
(ad1f , g),

... (C.2)

(adkf , g) = [f, (adk−1f , g)].
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C.2 The Lie derivative

To construct the observability matrix, as discussed in Section 5.2.3, we use the Lie bracket,

which we define as in [129]:

Definition C.2.1 The Lie derivative of f(x) with respect to y(x) is given as

L1
fy(x) =

∂y(x)

∂x
f(x), (C.3)

with higher order derivatives being calculated recursively as

L2
fy(x) =

∂L1
fy(x)

∂x
f(x),

... (C.4)

Lify(x) =
∂Li−1f y(x)

∂x
f(x),

C.3 Linear equivalence

To determine identifiability of a linear ODE system, we use the algebraic equivalence

theorem [46, 112], which states that

Theorem C.3.1 (F,G,H) is algebraically equivalent to (F̃ , G̃, H̃) if and only if there

exists a continuously differentiable matrix T : Rnx → Rnx, such that

(i) detT 6= 0, (C.5a)

(ii) T x̃0 = x0, (C.5b)

(iii) T F̃ = FT, (C.5c)

TG̃ = G, (C.5d)

H̃ = HT, (C.5e)
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where F̃ = F (p̃), G̃ = G(p̃) and H̃ = H(p̃).

C.4 Nonlinear equivalence

Identifiability of a nonlinear ODE system is determined via the local state isomorphism

theorem, given as (as in [24, 28, 123]):

Theorem C.4.1 Assume that the model of (5.1) is locally reduced at x(p) for all p ∈ Ω.

Consider the parameter values p, p̃ ∈ Ω, an open neighbourhood V of x0(p̃) in M, and

any analytical mapping λ : V → R, V ⊂ Rnx such that

(i) rank

(
∂λ(x̃)

∂x̃

)
= nx, ∀x̃ ∈ V, (C.6a)

(ii) λ(x̃0(p)) = x0(p̃), (C.6b)

(iii) f(λ(x̃),p) =
∂λ(x̃)

∂x̃
f(x̃, p̃), (C.6c)

g(λ(x̃),p) =
∂λ(x̃)

∂x̃
g(x̃, p̃), (C.6d)

h(λ(x̃),p) = h(x̃, p̃), (C.6e)

for all x̃ ∈ V . Then the system in (5.1) is globally identifiable at p if and only if (5.22a)-

(5.22e) implies p̃ = p.
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