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Abstract

We present a Markov chain Monte Carlo pipeline which can be used for unbiased large-

scale tests of gravity using galaxy cluster observations. The pipeline, which currently

uses cluster number counts to constrain the present-day background scalar field fR0 of

Hu-Sawicki f(R) gravity, fully accounts for the effects of the fifth force on cluster prop-

erties including the dynamical mass, the halo concentration and the observable-mass

scaling relations. This is achieved using general models which have been calibrated over

a wide and continuous mass range (1011M� .M . 1015M�) using a large suite of cos-

mological simulations, including the first to simultaneously incorporate both screened

modified gravity and full baryonic physics. We show, using mock cluster catalogues,

that an incomplete treatment of the observable-mass scaling relations in f(R) gravity,

which do not necessarily follow the usual power-law behaviour, can lead to unbiased and

imprecise constraints. It is therefore essential to fully account for these effects in future

cosmological tests of gravity that will make use of vast cluster catalogues from ongoing

and upcoming galaxy surveys. Our constraint framework can be easily extended to

other gravity models; to demonstrate this, we have carried out a similar modelling of

cluster properties in the normal-branch Dvali-Gabadadze-Porrati model (nDGP), which

features a very different screening mechanism. Using our full-physics simulations, we

also study the angular power spectra of the thermal and kinetic Sunyaev-Zel’dovich ef-

fects in f(R) gravity and nDGP, and demonstrate the potential for precise constraints

of gravity using data from upcoming CMB experiments. Finally, we present a retuned

baryonic physics model, based on the IllustrisTNG model, which can be used for full-

physics simulations within large cosmological volumes. This can be used to study the

properties of galaxy groups and clusters in screened modified gravity over the mass

range 1013M� ≤M . 1015M�.
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Chapter 1

Introduction

1.1 ΛCDM: the standard model of cosmology

Cosmology is the study of the origin and evolution of the Universe. The primary goal is

to understand what happened between the ‘Big Bang’ (∼ 14 billion years ago) and the

present-day and to understand the fundamental physics driving this evolution; how and

why quantum fluctuations evolved into density perturbations and eventually into galaxies

like the Milky Way in which we were formed. The best way to answer these questions

is to develop theoretical models whose predictions can be compared with astronomical

observations.

The current standard model of cosmology is the ‘Λ-cold-dark-matter’ (ΛCDM)

paradigm. This is the simplest model whose predictions can match a number of key observa-

tions, including the temperature fluctuations in the cosmic microwave background (CMB)

(e.g., Spergel et al., 2003), the late-time accelerated expansion of the cosmos (e.g., Riess

et al., 1998), and the distribution of galaxies on large scales (e.g., Eisenstein et al., 2005).

The model makes the following assumptions: gravity, which is the dominant force on cos-

mological scales, obeys Einstein’s General Relativity (GR); matter is primarily made up of

a ‘cold dark matter’ component, which is assumed to consist of massive particles which are

yet to be detected experimentally; a smaller proportion (∼ 15%) of matter is made up of

‘visible’ matter, including gas and stars (we will refer to this as ‘baryonic’ matter); and the

accelerated expansion is brought about by assigning a positive value to the cosmological

1



1.1.1. Cosmic expansion in ΛCDM

constant Λ which appears in the framework of GR.

Throughout this chapter, we will use the unit convention c = 1 for the speed of light

in a vacuum. Greek indices can take values 0, 1, 2 and 3, and, unless otherwise stated, a

subscript 0 denotes the present-day value of a quantity.

1.1.1 Cosmic expansion in ΛCDM

The size of the Universe at a given time t can be parameterised using the cosmic scale

factor a, which is normalised such that a(t = t0) ≡ a0 = 1 at the present-day. Because

the Universe is expanding, the light from distant galaxies is observed to be redshifted. The

redshift z is related to the scale factor by the relation 1 + z = 1/a, and both z and a can

be used as alternative coordinates of time.

The expansion of space can be determined using the Einstein field equations which

govern GR:

Gαβ + Λgαβ = 8πGTαβ, (1.1)

where Gαβ is the Einstein tensor, Λ is the cosmological constant, gαβ is the metric tensor,

G is Newton’s gravitational constant and Tαβ is the stress-energy tensor. This tensor

equation describes how the curvature of spacetime (encapsulated in Gαβ) is related to the

distribution of energy and momentum (encapsulated in Tαβ). By using the Friedmann-

Lemaître-Robertson-Walker metric for a homogeneous and isotropic expanding universe,

the Friedmann equation can be derived from the 00 component of Eq. (1.1):
(
ȧ

a

)2
≡ H2 = 8πG

3 (ρM + ρr) + K

a2 + Λ
3 , (1.2)

where H is the Hubble parameter. This equation can determine the cosmic expansion rate

(where ȧ is the time-derivative of a) as a function of the background densities of matter

ρM and radiation ρr, the curvature K and the cosmological constant. It can be shown that

a positive cosmological constant is required for an accelerating expansion: physically, this

can be thought of as a vacuum energy with constant density ρv = Λ/(8πG).

Observations (e.g., Aghanim et al., 2020) indicate that the Universe is extremely close

to being spatially flat (K ≈ 0). Therefore, the second term in the right-hand side of
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1.1.2. Strengths and weakness of ΛCDM

Eq. (1.2) can be neglected and the sum of the energy densities ρM, ρr and ρv is equal to

the critical density for a spatially flat universe:

ρcrit = 3H2

8πG. (1.3)

In the ΛCDM framework, the energy densities are often reparameterised in terms of the

dimensionless ratios of the present-day densities with respect to the critical density: ΩM =

ρM,0/ρcrit,0, Ωr = ρr,0/ρcrit,0 and ΩΛ = ρv/ρcrit,0. The Friedmann equation can be rewritten

in terms of these parameters:

H(z)
H0

≡ E(z) =
√

ΩM(1 + z)3 + Ωr(1 + z)4 + ΩΛ, (1.4)

where H0 is the present-day value of the Hubble parameter (the ‘Hubble constant’), E(z)

is the time evolution of the Hubble parameter, and we have used the time-dependencies

ρM(z) ∝ (1 + z)3 and ρr(z) ∝ (1 + z)4 to derive the right-hand side. For a given set of

values of the parameters H0, ΩM, Ωr and ΩΛ, the expansion history of the Universe can be

inferred using Eq. (1.4). Observations show that the radiation component Ωr (≈ 10−4) is

very small compared to ΩM (≈ 0.3) and ΩΛ (≈ 0.7) (e.g., Aghanim et al., 2020). Our work

is primarily focused on late times (low z), where the radiation contribution in Eq. (1.4) is

negligible; we will therefore assume Ωr = 0 for the remainder of this thesis.

1.1.2 Strengths and weakness of ΛCDM

One of the most notable successes of ΛCDM is in accurately predicting the statistical

properties of the CMB temperature fluctuations. This is achieved using linear perturbation

theory, which uses fluid dynamics to predict the evolution of primordial perturbations in

the matter density field (which are seeded by quantum fluctuations) from inflation to the

epoch of recombination. One of the key differential equations in perturbation theory, which

will appear later in this thesis, is the Poisson equation:

∇2Φ = 4πGδρM, (1.5)

where ∇2 is a (second-order) space derivative rather than a spacetime derivative. This is

used to relate the Newtonian gravitational potential Φ to the matter density perturbations
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δρM of the cosmic fluid. By comparing observations of the CMB with the predictions from

linear perturbation theory, precise constraints can be made of ΛCDM parameters including

ΩM, ΩΛ and H0 (e.g., Ade et al., 2014).

At later times, the evolution of the density fluctuations (which start to undergo grav-

itational collapse) becomes nonlinear and extremely difficult to solve analytically. Instead,

computer simulations can be used to evolve the density field from some early time (based

on initial conditions that are consistent with CMB observations) to the present-day (e.g.,

Boylan-Kolchin et al., 2009). This numerical approach is able to reproduce the large-scale

distribution of galaxies at the present-day (the ‘cosmic web’). This close match to galaxy

observations is another success of ΛCDM, and comparing predictions and observations of

galaxy statistics (for example, the abundance of galaxy clusters) offers another means of

constraining the model parameters (e.g., Anderson et al., 2012; Ade et al., 2016).

Arguably the greatest success of ΛCDM is that it requires only six independent para-

meters to accurately reproduce these observations and other phenomena such as the late-

time accelerated expansion. This simplicity is why it has become the standard working

model of cosmology.

Despite these successes, ΛCDM also has a number of weaknesses. For example: dark

matter particles have still not been detected by particle physics experiments; numerical

simulations predict too many dwarf-size galaxies and Milky Way satellites (e.g., Weinberg

et al., 2015); and estimates of the vacuum energy density from quantum electrodynamics

are many orders of magnitude larger than the value derived from cosmological constraints of

Λ (e.g., Martin, 2012). In this thesis, we will be addressing the latter, namely the possibility

that a different mechanism is driving the accelerated cosmic expansion. One possibility is

that the acceleration is caused by some exotic matter species that has not yet been detected;

however, we will be focusing on another idea that the acceleration arises due to departures

from GR on large scales.
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1.2 Modifications to General Relativity

A wide range of modified gravity (MG) models have been used to explain the accelerated

cosmic expansion (see, e.g., Koyama, 2016). We will be focusing on two popular models

— f(R) gravity (e.g., Sotiriou and Faraoni, 2010; De Felice and Tsujikawa, 2010) and the

Dvali-Gabadadze-Porrati (DGP) model (Dvali et al., 2000) — which both feature an extra

scalar field that mediates a force between matter particles. Since there are already four

observed fundamental interactions, this is called the ‘fifth force’. When this force is able to

act, the total strength of gravity is enhanced; this can speed up the formation of large-scale

structure and create observational signatures, such as an enhanced abundance of galaxy

clusters, which can be used to probe gravity on large scales. However, tests of gravity

within our Solar System have already verified GR to a remarkably high precision (e.g.,

Will, 2014), ruling out a strengthened gravitational force within our local environment; to

get around this, both models feature ‘screening’ mechanisms which suppress the fifth force

in particular regimes, including sufficiently high-density regions or regions where the second

derivatives of the scalar field are large, enabling the models to evade Solar System tests.

The following sections will provide some background on these models, including details

of the underlying theory, the screening mechanisms and the strength of the fifth force.

1.2.1 f(R) gravity

The f(R) gravity model is an extension of GR which is constructed by adding a nonlinear

function of the Ricci scalar curvature, f(R), to the R term in the Einstein-Hilbert action:

S =
∫

d4x
√
−g

[
R+ f(R)

16πG + LM

]
, (1.6)

where g is the determinant of the metric and LM is the Lagrangian density for matter

fields (as mentioned above, we will mainly focus on late-time behaviour, where matter is

non-relativistic). By setting the variation of the action with respect to the metric to zero,

we obtain the modified Einstein field equations, which now contain a new tensor Xαβ:

Gαβ +Xαβ = 8πGTαβ, (1.7)
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where:

Xαβ = fRRαβ −
(
f

2 −�fR
)
gαβ −∇α∇βfR. (1.8)

The tensor Rαβ represents the Ricci curvature tensor, ∇α is the covariant derivative asso-

ciated with the metric, and � is the d’Alembert operator. The derivative fR ≡ df(R)/dR

represents the extra dynamic degree of freedom in this model, and can be treated as a scalar

field whose dynamics is governed by the following equation of motion:

�fR = 1
3(R− fRR+ 2f + 8πGρM), (1.9)

which is derived from the trace of Eq. (1.7). The scalar field mediates a fifth force whose

physical range is set by the Compton wavelength:

λC = a−1
(

3dfR
dR

) 1
2
. (1.10)

The fifth force is an attractive force which is felt by massive particles. In sufficiently low-

density environments (for example, cosmic voids and the outer regions of galaxy clusters), it

enhances the strength of gravity by up to a factor of 1/3. However, in high-density regions,

it is suppressed and gravity behaves according to GR. This is caused by the chameleon

screening mechanism (e.g., Khoury and Weltman, 2004a,b; Mota and Shaw, 2007), which

was included in the model to ensure consistency with Solar System tests. The screening

is brought about by an environment-dependent effective mass of the scalar field which

becomes very heavy in dense regions so that the fifth force becomes very short-ranged and

undetectable. Consequently, the fifth force can only act in regions where the gravitational

potential well is not too deep.

Structure formation in f(R) gravity is governed by the modified Poisson equation,

which, in the weak-field and quasi-static limits, is given by (e.g., Li et al., 2012):

∇2Φ = 16πG
3 δρM −

1
6δR, (1.11)

where δR represents the perturbation of the Ricci scalar curvature and Φ now represents

the modified gravitational potential. The scalar field is related to the curvature and density

perturbations as follows:

∇2fR = 1
3(δR− 8πGδρM). (1.12)
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This work will focus on the Hu-Sawicki (HS) model (Hu and Sawicki, 2007) of f(R)

gravity, which uses the following prescription for f(R):

f(R) = −m2 c1
(
−R/m2)n

c2 (−R/m2)n + 1 , (1.13)

where m2 ≡ 8πGρM,0/3 = H2
0 ΩM. The theory has three model parameters: c1, c2 and

n. By choosing c1/c2 = 6ΩΛ/ΩM and assuming that the curvature obeys the inequality

−R � m2, it can be shown that the function f(R) behaves as a cosmological constant in

background cosmology (Hu and Sawicki, 2007), giving rise to the observed late-time accel-

erated expansion. Under these assumptions, and by choosing n = 1 (which is commonly

used in f(R) literature), it follows that:

fR ' −
c1
c2

2

(
m2

−R

)2

. (1.14)

Therefore, the background value of the scalar field, f̄R, can be expressed as:

f̄R(a) = f̄R0

(
R̄0
R̄(a)

)2

, (1.15)

where, assuming that the background expansion history is almost indistinguishable from

that of ΛCDM, the background curvature R̄ is given by:

R̄ ' −3m2
[
a−3 + 4 ΩΛ

ΩM

]
. (1.16)

We note that −R̄ � m2 is a good approximation for a realistic choice of cosmological

parameters. Therefore, using realistic approximations, we are able to work with just a

single parameter: f̄R0, the present-day background scalar field (the over-bar of f̄R0 will be

omitted for the remainder of this thesis). The amplitude |fR0| represents the highest value

of the scalar field in cosmic history: see Fig. 1.1 for the time evolution between redshifts

0 and 3. A higher value of |fR0| corresponds to a stronger modification of GR, allowing

regions of higher density to be unscreened at a given time. As a convention, we will refer

to models of HS f(R) gravity with |fR0| = 10−6, |fR0| = 10−5.5, |fR0| = 10−5, ... as F6,

F5.5, F5, etc.
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Figure 1.1: Absolute value of the background scalar field in HS f(R) gravity plotted as
a function of redshift for the F4, F5 and F6 models (from top to bottom), assuming the
Hu-Sawicki f(R) model with parameters n = 1 and |fR0| = 10−4, 10−5, 10−6 respectively.
Cosmological parameters ΩΛ = 0.719 and ΩM = 0.281 are used.

1.2.2 Dvali-Gabadadze-Porrati model

The DGP model consists of two branches: a ‘self-accelerating’ branch (sDGP) and a ‘nor-

mal’ branch (nDGP). The former is able to reproduce the late-time cosmic acceleration

without requiring any dark energy; however, it is also prone to ghost instabilities which are

absent in the latter (e.g., Koyama, 2007). Because of this, nDGP is the preferred model

of gravity. One caveat of this model is that it requires an extra dark energy component in

order to be viable; nevertheless, it is still a useful toy model that can be used to search for

deviations from GR.

In nDGP, the Universe is modelled as a 4-dimensional brane embedded in a 5-

dimensional bulk spacetime. The gravitational action of the model consists of two terms:

S =
∫

brane
d4x
√
−g

(
R

16πG

)
+
∫

d5x
√
−g(5)

(
R(5)

16πG(5)

)
, (1.17)

where the first term is the usual Einstein-Hilbert action of GR and the second term rep-

resents the contribution from the 5D bulk (where g(5), R(5) and G(5) are analogous to g, R

8



1.2.2. Dvali-Gabadadze-Porrati model

and G). A characteristic length scale, known as the cross-over scale rc, can be defined:

rc = 1
2
G(5)

G
. (1.18)

The second term of Eq. (1.17) will dominate on scales larger than the cross-over scale,

where gravity transitions to 5D. Taking the variation of Eq. (1.17) and setting this to zero

leads to the modified Friedmann equation:

H(a)
H0

=
√

ΩMa−3 + ΩDE(a) + Ωrc −
√

Ωrc, (1.19)

where ΩDE(a) is the dimensionless density parameter for the additional dark energy com-

ponent mentioned above, and Ωrc is given by:

Ωrc ≡
1

4H2
0r

2
c
. (1.20)

We will assume that ΩDE(a) takes a form that makes H(a) identical to a ΛCDM expansion

history, and that the dark energy component has negligible clustering on the sub-horizon

scales that are the focus of this work. The quantity H0rc is often used to quantify deviations

from GR, with a larger value representing a smaller departure from GR. As a convention,

we will refer to models with H0rc = 5, 2, 1 and 0.5 as N5, N2, N1, and N0.5, respectively.

The modified Poisson equation in nDGP, in the weak-field and quasi-static limits, is

given by (Koyama and Silva, 2007):

∇2Φ = 4πGa2δρM + 1
2∇

2ϕ, (1.21)

where ϕ is the extra scalar field of the model. This satisfies the following dynamical equation

of motion:

∇2ϕ+ r2
c

3βa2

[
(∇2ϕ)2 − (∇i∇jϕ)(∇i∇jϕ)

]
= 8πGa2

3β δρM, (1.22)

where the function β is given by:

β(a) = 1 + 2Hrc

(
1 + Ḣ

3H2

)
= 1 + ΩMa

−3 + 2ΩΛ
2
√

Ωrc (ΩMa−3 + ΩΛ)
. (1.23)

The fifth force can act on sufficiently large scales, where the nonlinear terms in the square

bracket of Eq. (1.22) can be ignored. This enhances the strength of gravity by a factor of [1+

1/(3β)], which is larger at later times with present-day enhancements of approximately 1.04
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for N5, 1.08 for N2, 1.12 for N1 and 1.18 for N0.5. On small scales, the nonlinearity of the

scalar field causes the fifth force to be suppressed via the Vainshtein screening mechanism

(Vainshtein, 1972). This efficiently suppresses the fifth force in regimes including the Solar

System, galaxies and galaxy clusters.

1.3 Testing gravity with large-scale structure

The fifth forces in f(R) gravity and nDGP leave numerous observational signatures in large-

scale cosmic structure. For example, the sped-up structure formation that results from a

strengthened gravity can lead to a greater number of galaxy clusters being formed by the

present-day. Galaxy clusters are the largest objects to have been observed in the Universe:

they are gravitationally-bound groups of thousands of galaxies that are found within vast

dark matter haloes whose mass ranges from ∼ 1014M� to ∼ 1016M�. Galaxy clusters are

therefore thought to trace the highest peaks of the primordial density field, and are there-

fore highly sensitive to the values of cosmological parameters that affect cosmic structure

formation, including fR0 and Ωrc which control the effect of the fifth forces in f(R) gravity

and nDGP, respectively. Clusters can also be detected using a number of means, including

the X-ray emission from the hot intra-cluster gas and the Sunyaev-Zel’dovich (SZ) effect,

which is caused by inverse Compton scattering of CMB photons off high-energy electrons in

the intra-cluster gas. By comparing observational data with theoretical predictions, stat-

istics including cluster number counts can be used to probe the strength of gravity on the

largest scales.

The following sections are laid out as follows: Sec. 1.3.1 will summarise previous tests

of f(R) gravity and nDGP using large scale structure; Sec. 1.3.2 will outline ongoing and

future galaxy cluster surveys and discuss some key considerations for future gravity tests;

Sec. 1.3.3 will provide an outline of N -body and hydrodynamical numerical simulations,

which provide the best means of modelling the effects of a strengthened gravity on the

properties of galaxy clusters; finally, Sec. 1.3.4 will provide an introduction to Markov

chain Monte Carlo (MCMC) sampling, which is a popular method for inferring parameter

constraints using observations and theoretical predictions.
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1.3.1 Previous work

Previous works have tested f(R) gravity using cluster number counts (e.g., Cataneo et al.,

2015; Liu et al., 2016; Peirone et al., 2017) and the clustering of clusters (Arnalte-Mur

et al., 2017), which are both enhanced by the sped-up structure formation. Meanwhile, the

effects of the fifth force on galaxy velocities have been tested using redshift-space distor-

tions (e.g., Bose and Koyama, 2017; He et al., 2018; Hernández-Aguayo et al., 2019). The

temperature of the intra-cluster gas, which is closely correlated with the total gravitational

potential, is also enhanced by the fifth force; the model can therefore be tested using the

temperature-mass relation (see, e.g., Hammami and Mota, 2017; Del Popolo et al., 2019).

A raised temperature will produce greater X-ray emission from high-energy electrons and a

higher level of inverse Compton scattering of CMB photons. The f(R) model can therefore

be tested using the cluster SZ profile (De Martino, 2016), the cluster gas mass fraction

probed through the gas temperature and X-ray luminosity (e.g., Li et al., 2016), and by

comparing weak lensing measurements of clusters (which are unaffected by the fifth force

for realistic models) with X-ray and SZ observations (e.g., Terukina et al., 2014; Wilcox

et al., 2015). The model has also been tested using weak lensing by cosmic voids (Cautun

et al., 2018), which, owing to their extremely low density, are largely unaffected by the

chameleon screening.

The Vainshtein mechanism of nDGP is more efficient than the chameleon mechanism

of f(R) gravity at screening out the fifth force within galaxy clusters. However, the nDGP

fifth force can still speed up the formation of clusters, and in recent years the model has been

tested using cluster number counts (e.g., Schmidt, 2009; von Braun-Bates and Devriendt,

2018) and redshift-space distortions (e.g., Barreira et al., 2016; Hernández-Aguayo et al.,

2019). Again, cosmic voids are largely unaffected by the screening and can be used to

test the model (e.g., Falck et al., 2018; Paillas et al., 2019). Other models which feature

Vainshtein screening have also been tested by, for example, comparing weak lensing data

with SZ and X-ray cluster observations (Terukina et al., 2015).
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1.3.2 Current and future observations

It is currently an exciting time for cluster cosmology: various ongoing and upcoming as-

tronomical surveys are generating vast cluster catalogues using all means of detection,

including the clustering of galaxies in optical/infrared surveys (e.g., Lawrence et al., 2007;

Ivezic et al., 2008; Laureijs et al., 2011; Levi et al., 2013), distortions of the CMB by the

SZ effect (e.g., Hasselfield et al., 2013; Ade et al., 2016; Abazajian et al., 2016; Ade et al.,

2019), and X-ray emission from the hot intra-cluster gas (Weisskopf et al., 2000; Jansen

et al., 2001; Merloni et al., 2012). These will be many times larger than previous catalogues,

and have the potential to significantly advance our understanding of gravity at the largest

scales and the mechanisms driving the accelerated cosmic expansion.

Current X-ray surveys include XMM-Newton (Jansen et al., 2001) and Chandra

(Weisskopf et al., 2000), which together provide coverage of ∼1000 clusters. The ongo-

ing X-ray survey eROSITA (Merloni et al., 2012) will detect ∼125,000 objects with mass

M > 1013h−1M� over redshifts z < 1, most of which will be galaxy groups. The cluster

number count data from eROSITA is expected to produce very tight (∼ 1%) constraints on

ΩM and the root-mean-squared linear matter density fluctuation σ8. Another planned X-

ray survey, Athena (Barcons et al., 2017), will launch in the early 2030s and detect clusters

with mass M > 5× 1013M�, including distant objects at z > 2.

Current CMB experiments include Planck (e.g., Ade et al., 2016), the South Pole

Telescope (SPT, e.g., Bocquet et al., 2019) and the Atacama Cosmology Telescope (ACT,

e.g., Hasselfield et al., 2013). The Planck survey has detected over 400 clusters spanning

2×1014M� to 1015M� over redshifts z < 1. The Advanced ACTPol (AdvACT) receiver has

detected over 4000 clusters since it launched in 2016 (Hilton et al., 2021). The upcoming

SPT-3G survey (Benson et al., 2014) will extend the work of the existing SPT-SZ survey and

detect ∼5000 clusters with mass M & 1014M� by 2023. Further upcoming ground-based

experiments include the Simons Observatory (2022, Ade et al., 2019), which will produce a

legacy catalogue of ∼16,000 clusters, and CMB-S4 (2029, Abazajian et al., 2016), which is

expected to detect ∼140,000 clusters with mass exceeding 6− 8× 1013M�.

Existing optical/infrared surveys include the ongoing Dark Energy Survey (DES, Ab-
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bott et al., 2016), which will detect ∼ 105 clusters spanning z . 1, and the Dark Energy

Spectroscopic Instrument (DESI, Levi et al., 2013). Upcoming surveys include the space-

based survey Euclid (e.g., Adam et al., 2019), and the ground-based Vera Rubin Observatory

(Ivezic et al., 2008) and 4MOST (e.g., Finoguenov et al., 2019). Together, these surveys

will be capable of detecting 100,000s of clusters out to high redshifts and an unprecedented

number of galaxy groups. For example, Euclid (starting 2022) will detect > 105 clusters out

to redshift z ∼ 2 and down to mass 1013.5M�, while the Vera Rubin Observatory (starting

2022-2023) expects to obtain a nearly complete sample out to z ∼ 1.2, with ∼ 105 massive

clusters and ∼ 106 galaxy groups. Meanwhile, 4MOST will provide spectroscopic data for

∼40,000 groups and clusters detected by eROSITA.

Synergies between these surveys will be vital for precise constraints. For example, a

major challenge in cluster cosmology is precise calibration of the cluster mass. In the most

recent cluster abundance constraints from Planck (Ade et al., 2016), it was noted that the

cluster mass calibration, estimated to have a precision of 10 − 15%, was the single largest

source of uncertainty. Recent works have combined weak lensing data, which can be used

to estimate the absolute mass, with SZ cluster data in order to reduce systematics related

to mass calibration (e.g., Bocquet et al., 2019). The weak lensing mass calibration used by

the upcoming optical/infrared surveys listed above is expected to achieve 1− 2% precision,

so crossovers with SZ and X-ray selected catalogues will be very helpful. For example, it

is planned that the DES cluster sample will overlap with 1000s of SZ and X-ray selected

clusters. The upcoming CMB surveys described above will also use CMB lensing as a novel

mass calibration technique, which will help to further reduce these systematics.

In order to make the best use of this wealth of observational data for MG tests, it

is now vital to prepare accurate and robust theoretical predictions which can be safely

combined with the observations to make precise and unbiased constraints. As mentioned

in Sec. 1.3.1, the fifth force can affect the total gravitational potential and the thermal

properties of clusters, and it can also affect the density profile. If these effects are not fully

accounted for in tests that use, for example, cluster number counts, the measurements of

the cluster mass could be biased.
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For example, previous works (e.g., He and Li, 2016) have shown that the f(R) fifth

force can alter the amplitude of the intra-cluster gas temperature and related observables,

including the integrated SZ flux, by up to 33% (i.e., the maximum enhancement of the

total gravitational potential). For the case of the integrated SZ flux, which according to

Ade et al. (2016) varies with the cluster mass as ∼ M1.79, failing to account for the effect

of the fifth force could lead to an estimate of the mass that is biased by up to ∼ 15%: this

is similar to the 10 − 15% precision of the mass calibration used by Planck. Therefore, as

weak lensing and novel CMB lensing mass calibrations continue to approach the 1 − 2%

level targeted by upcoming surveys, it will be vital to conduct a full modelling of the effects

of the fifth force on cluster properties in order to avoid biased constraints in future tests.

Another exciting prospect is the inclusion of data from the galaxy group regime

(1013M� . M . 1014M�) in cluster catalogues for the first time (e.g., Lovisari et al.,

2021). This has important implications for gravity tests. For example, the screening of the

fifth force in f(R) gravity is typically less efficient for lower-mass objects, making depar-

tures from GR more prevalent in low-mass clusters and groups than in massive clusters.

The detections of galaxy groups down to 1013M� will consequently make it possible to rule

out weaker models of f(R) gravity.

1.3.3 N -body and hydrodynamical simulations

The best way to model and understand cluster properties is to use numerical cosmolo-

gical simulations which can accurately reproduce the formation of large-scale structure.

The simplest examples are N -body simulations which assume that the matter content of

the Universe is entirely in the form of collisionless dark matter. These consist of massive

‘particles’ which only interact via gravity, where the gravitational potential is evaluated at

each timestep using the Poisson equation, which for GR is given by Eq. (1.5). The simulation

is started at some early time using initial conditions which are consistent with, for example,

cosmological constraints from CMB temperature fluctuations. Over the course of the sim-

ulation, the dark matter particles will attract and cluster together to form gravitationally-

bound structures called ‘haloes’ and ‘subhaloes’: these are the theoretical counterparts of
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galaxy groups and clusters and galaxies, respectively.

Dark-matter-only (DMO) simulations have been widely used in past works: for ex-

ample, they can successfully reproduce the web-like structure of the Universe on large

scales (e.g., Boylan-Kolchin et al., 2009), and they can be used for accurate theoretical

predictions of the cluster abundance (e.g., Tinker et al., 2008), which is quantified using

the halo mass function (HMF). However, a notable limitation of these simulations is the

absence of baryonic matter, which behaves very differently to collisionless dark matter.

This can be incorporated in the form of gas, which, in addition to interacting via gravity,

must also obey the hydrodynamical fluid equations.

There are a number of ways to include gas. For example, some simulation codes use

smoothed particle hydrodynamics (SPH), where the continuum of the gas fluid is approx-

imated using particles with a local resolution that automatically follows the mass flow (e.g.,

Springel, 2005). Another example is the arepo code (Springel, 2010), which has been used

to run all of the hydrodynamical simulations presented in this thesis. This tracks the gas

using a moving, unstructured Voronoi mesh, which is made up of gas cells that adaptively

refine (split) and derefine (merge) such that the mass of any cell does not differ by more

than a factor of two from the mean. The arepo code can also account for the presence of

a magnetic field which dynamically couples to the gas through magnetic pressure. This is

achieved by solving the ideal magneto-hydrodynamics equations (see Pakmor et al., 2011;

Pakmor and Springel, 2013).

In order to develop an accurate model for galaxy formation, it is necessary to account

for additional effects such as radiative gas cooling, star formation, and stellar and black

hole feedback. Significant progress has been made in recent years in the development of

sub-resolution models for these additional baryonic processes (e.g., Schaye et al., 2015;

Weinberger et al., 2017; Pillepich et al., 2018c). Throughout this thesis, we will refer

to these as ‘full-physics’ models, since they provide the most complete treatments of the

underlying baryonic physics that are currently available.

For example, the IllustrisTNG model (Weinberger et al., 2017; Pillepich et al., 2018c),

which is implemented in arepo, employs a sub-resolution scheme for star formation which
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is based on the Springel and Hernquist (2003) model: for gas cells which exceed a partic-

ular threshold density, a fraction of the gas mass is converted to mass in star particles at

each simulation timestep according to the Kennicutt-Schmidt law. A portion of the gas

mass is also converted into wind particles which are launched in random directions: these

represent supernova-driven galactic winds. Having travelled outside their local dense in-

terstellar medium, these wind particles will recouple to the gas, transferring their thermal

energy and metal content. Gas also undergoes radiative cooling, which is modulated by a

time-dependent ultraviolet background. The model also accounts for supermassive black

holes, which are seeded at the centre of haloes which exceed a particular mass threshold.

These grow through a combination of black hole mergers and Eddington-limited Bondi gas

accretion. In high accretion states, a thermal feedback model is employed which heats up

the surrounding gas, while in low accretion states a kinetic feedback model is employed

which produces black hole-driven winds (see Weinberger et al., 2017; Vogelsberger et al.,

2013).

Significant advances have been made in recent years in the development of numerical

simulations of screened modified gravity (see, e.g., Winther et al., 2015). For example,

the MG solver implemented by arepo can be used to run N -body and hydrodynamical

simulations of f(R) gravity and nDGP, where structure formation is now governed by

the modified Poisson equations, which are given by Eqs. (1.11) and (1.21), respectively.

Both models feature a highly nonlinear scalar field which is calculated on an adaptively

refining mesh, ensuring accurate calculations in high-density regions. The fifth force is

then computed on this mesh and interpolated to the simulation particles and gas cells.

This calculation is carried out less frequently in high-density regions where the fifth force

is screened out, making the code highly efficient. For the first time, it is now possible to

incorporate full-physics baryonic models into these MG simulations (e.g., Arnold et al.,

2019b; Hernández-Aguayo et al., 2020), and this will be invaluable in helping to fully

understand the effects of a strengthened gravitational force on the properties of clusters.

As a convention throughout this thesis, when studying N -body and hydrodynamical

simulations, we will define the halo mass as the total mass contained within the sphere
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that is centred on the gravitational potential minimum of the halo and encloses an average

density of ∆ times the critical density of the Universe at the halo redshift. We will typically

consider overdensities ∆ = 200, 500 or 300ΩM(z), where the corresponding halo mass

(radius) is labelled M200c (R200c), M500c (R500c) and M300m (R300m), respectively (we will

often neglect the ‘c’ in the subscripts). We note that for ∆ = 300ΩM(z), the average

enclosed density is equal to 300 times the mean matter density of the Universe.

1.3.4 Markov chain Monte Carlo sampling

Cosmological parameter constraints can be obtained by combining observations with

simulation-based theoretical predictions using MCMC sampling. This is an iterative random

sampling technique based on Bayes’ theorem, which states that the conditional probability

of the parameter values θ ≡ {θi}, given the observed data D, is given by:

P (θ|D) = P (D|θ)P (θ)
P (D) ∝ P (D|θ)P (θ), (1.24)

where P (D|θ) is the conditional probability of the data given the parameter values (the

‘likelihood’ L), P (θ) is the a priori probability of the parameter values (the ‘prior’) and

P (D) is the probability of the observed data (the latter is a constant, since the data is fixed

during the sampling). Because sums are easier to work with than products, it is common

to use logarithms:

lnP (θ|D) = lnL+ lnP (θ) + const (1.25)

The sampling works as follows: starting with an initial point in the parameter space, a

new point is generated by perturbing the initial point by a small, random amount. This

new point is either accepted or rejected based on the effect of the parameter change on the

a posteriori probability P (θ|D) (the ‘posterior’). An example is the Metropolis-Hastings

algorithm: this accepts the new point if the new posterior probability is higher, and it may

still accept it if the new posterior is lower by a small amount. This process is repeated

such that a chain of points is generated which eventually converges on a small region in

the parameter space containing the maximum of the posterior. Typically, multiple chains

(‘walkers’) are used, which are generated using different initial points, to ensure that the

global maximum of the posterior distribution is successfully located.

17



1.4. Thesis overview

This process requires two ingredients: the likelihood and the prior. For the case of

cluster number counts, the Poisson likelihood can be used, which gives the probability

of counting the observed number of clusters given the parameter-dependent theoretical

prediction. For the parameter priors, either a flat (constant) prior is assumed (i.e., no

prior knowledge of the parameters is included) or a Gaussian prior can be used which is

based on a previous constraint using different observables. For example, the Planck 2015

cluster counts analysis (Ade et al., 2016) adopted Gaussian priors, which are based on

previous constraints from CMB temperature fluctuations, Big Bang nucleosynthesis and

baryon acoustic oscillations, for parameters including H0 and the dimensionless baryonic

density parameter Ωb, while flat priors can be used for ΩM and σ8 since these are well-

constrained by cluster number counts. The prior is then given by:

lnP (θ) = −
∑
i

(θi − µi)2

2σ2
i

+ const, (1.26)

where µi and σi are the mean and standard deviation inferred by the previous constraints

of parameter i, and the sum only carries over parameters with a Gaussian prior.

1.4 Thesis overview

The primary focus of our work is in developing a general framework for unbiased cluster

tests of gravity. Fig. 1.2 provides a broad overview of this framework for the case cluster

number count constraints of modified gravity. Most of the chapters of this thesis will focus

on different parts of this flowchart.

In Chapter 2, we will provide a more detailed overview of our framework and describe

our modelling of the f(R) enhancement of the dynamical mass of dark matter haloes using

f(R) gravity simulations. The dynamical mass is defined as the mass that is felt by a

nearby massive test particle, and its enhancement is equivalent to the gravitational force

enhancement. This model forms a core part of the framework for f(R) gravity constraints

and will be referred to in many of the subsequent chapters.

Chapter 3 will focus on our modelling of the enhancement of the halo concentration

in f(R) gravity, which can be used to model the density profiles of haloes. This will be
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Figure 1.2: Flowchart outlining our general framework for testing gravity using cluster
number counts. Using MG simulation data, we can calibrate models for the MG enhance-
ments of the halo concentration (blue dotted box) and the dynamical mass (red dotted box).
The concentration model can be used for converting between different halo mass definitions,
which is required if the theoretical predictions and observations are initially defined using
different spherical overdensities. The dynamical mass model can be used to convert the
GR observable-mass scaling relation into a form that is consistent with the MG model of
interest (green dotted box). The latter is used to relate the observational mass function,
dn/dYobs to the theoretical form dn/dM . Finally, MCMC sampling is used to constrain
the MG model parameters using the theoretical predictions and observations (brown dotted
box). These components will be described for f(R) gravity and nDGP in the annotated
chapters. Chapter 7, which is not shown here, will focus on the thermal and kinetic SZ
power spectra, which can potentially be used as alternative probes of gravity, and used in
combination with the cluster number count constraint shown here.
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required for converting between different halo mass definitions. Then, in Chapter 4, we will

demonstrate the effects of the fifth force on the scaling relations between the cluster mass

and a number of cluster observables using f(R) gravity simulations which include a full

treatment of baryonic physics. Here, we will show how our model for the dynamical mass

enhancement can be used to calibrate observable-mass scaling relations in f(R) gravity

using their GR counterparts. This is required in order to relate the cluster observable

(provided in cluster catalogues) to the cluster mass.

In Chapter 5, we will present our full f(R) constraint pipeline which can be used

to constrain fR0 using cluster number counts. The pipeline uses MCMC sampling and it

incorporates all of the fifth force effects described above.

The above chapters focus on HS f(R) gravity, however our framework is designed

to be easily extended to other gravity models and observables. In Chapter 6, we will use

nDGP simulations (again including a full baryonic treatment) to study and model the effect

of the strengthened gravity in this model on observable-mass scaling relations, the halo

concentration and the HMF. Then, in Chapter 7, we will demonstrate the impact of f(R)

gravity and nDGP on the angular power spectrum of the SZ effect. This can potentially

be used for precision constraints of gravity on large scales using data from future CMB

experiments.

In Chapter 8, we will present a retuned baryonic model, which we have calibrated by

running over 200 test simulations, that can be used for full-physics simulations of screened

modified gravity with much larger cosmological volumes. We have used this model to run a

set of large-box simulations in f(R) gravity and to revisit the f(R) gravity observable-mass

scaling relations using a mass range extending to much higher cluster masses.

Finally, in Chapter 9, we will provide a summary of the main results of each chapter

along with some considerations for future work.
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Chapter 2

Modelling the dynamical mass of

haloes in f(R) gravity

2.1 Introduction

In observations, it is generally difficult to directly measure the masses of clusters. This is

particularly the case for distant clusters, for which the required exposure time is prohibit-

ively expensive. Instead, one often has to infer them using mass proxies such as the X-ray

temperature, luminosity and the SZ Compton Y -parameter. This, however, can lead to

various sources of bias and uncertainty. For example, this can stem from the calibration

procedures used to find the scaling relations linking these proxies to the masses, where ob-

servational uncertainty and various assumptions can lead to uncertain and possibly biased

estimates of the mass. Unless these scaling relations are re-calibrated for any new cosmo-

logical models to be studied to remove any sources of bias, these will carry through to the

predictions of properties that are dependent on the mass, such as the cluster abundance and

the cluster gas fraction, which will therefore lead to biased constraints of the cosmological

models and parameters.

In practice, the calibration of the scaling relations can be achieved through different

approaches. One way is to use full physics hydrodynamical simulations including radiative

processes (e.g., Fabjan et al., 2011; Nagai et al., 2007). Fabjan et al. (2011) employ this ap-
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proach to calibrate the relations for three X-ray proxies. Another way is to use subsamples

of a complete data-set as, e.g., in Vikhlinin et al. (2009), where Chandra observations are

used to calibrate relations for X-ray proxies that can be cross-checked with weak lensing

data. A third option is self-calibration, where the calibration is achieved with additional

observables, for instance the clustering of clusters (Schuecker et al., 2003; Majumdar and

Mohr, 2004). In addition to these external calibrations, one can also calibrate data intern-

ally, e.g., by simultaneously constraining the scaling relations and cosmological models via

a joint likelihood analysis (e.g., Mantz et al., 2010, 2014b).

The situation becomes even more complicated and largely unexplored when it comes

to testing MG theories using galaxy cluster observations. A common effect of MG models

which feature a fifth force is to enhance the dynamical mass of a galaxy cluster so that it

becomes larger than the true (lensing) mass. This results from the additional gravitational

forces. Tests which aim to measure both the dynamical and lensing masses to check for

a disparity include recent works by Terukina et al. (2014); Wilcox et al. (2015, 2016);

Pizzuti et al. (2017), which utilise actual measurements of the profiles of these two masses

for massive clusters. Other probes include the cluster gas fraction (Li et al., 2016), the

clustering of clusters (Arnalte-Mur et al., 2017) and weak lensing (e.g., Barreira et al.,

2015) by clusters. The resulting weak lensing masses are only modified in some but not all

MG models (Arnold et al., 2014).

While earlier studies have pointed to a strong power of cluster observations in the

tests of gravity, one potential issue that has so far not been given detailed attention is

that the inferred cluster abundance, and other mass-dependent quantities, can change as a

result of the enhancement of the dynamical mass with respect to the true mass, depending

on which mass proxy is being used. If this enhancement is not accurately taken into

account, the inferred abundance could be biased. In particular, scaling relations that are

used to determine the cluster mass should first be calibrated in the contexts of specific MG

models in order to incorporate this effect. Furthermore, these scaling relations are often

derived using multiple probes, for example X-ray emission and weak lensing, which are

affected by MG in different ways even in the same model. This adds more complexity and
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challenges for cosmological constraints. The main purpose of this chapter is to consider

these complications and propose a suitable calibration method that is straightforward to

implement in MG model tests.

As discussed in Chapter 1, a primary focus of this thesis is to develop a framework to

incorporate the various effects of MG on galaxy clusters in a self-consistent way. The aim is

to have fully calibrated models which incorporates these effects into model predictions and

allows for detailed MCMC searches of the parameter space to produce de-biased constraints

of gravity. Of particular importance in this framework is the requirement to be able to

make reliable model predictions for arbitrary model parameter values, as opposed to a very

small number of model parameters that have been studied in detail in previous N -body

simulations of MG (which are therefore not allowing for a continuous search of the large

parameter space). To achieve this we will provide various simulation-calibrated fitting

formulae that are essential for model predictions. In this chapter, we will focus on the

relationship of the lensing and dynamical masses of galaxy clusters in f(R) gravity. In

this model, massive particles feel an extra force (the fifth force) mediated by an additional

scalar field fR. This field is redshift dependent, and, as described in Chapter 1, its present

day background value, fR0, can be chosen as a model parameter. The enhancement of the

dynamical mass therefore depends on the redshift and the background field strength at

z = 0.

Previous works analysing the dynamical mass and lensing mass in f(R) gravity include

Schmidt (2010); Zhao et al. (2011b); Arnold et al. (2014). The studies were model specific,

and they did not give a general formula that can be applied to arbitrary values of model

parameters and redshifts. For example, the focus may only be on a particular present-

day field strength at z = 0: these results can be used for a qualitative understanding of

particular models, but we really need a generic formula that is applicable to general models

at all redshifts. In this chapter, we propose such a generic fitting formula which is based on

a simple analytical model, the spherical thin-shell model (Khoury and Weltman, 2004a).

We check this fitting formula against simulations with different resolutions and find it to

work very well across all tested field strengths. Although we use a specific choice of f(R)
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gravity as our example, as discussed below, the results are expected to be applicable to or

have useful implications for general chameleon gravity theories (e.g., Gronke et al., 2015).

The chapter is organised as follows: Sec. 2.2 discusses the key results of the thin-shell

model, and defines the effective mass, which can be used interchangeably with the dynamical

mass in simulations; Sec. 2.3 discusses the background behind the use of galaxy clusters in

constraining cosmological models, presents an outline of our proposed framework for f(R)

constraints, and proposes a method to account for the dynamical mass enhancement in

scaling relations; Sec. 2.4 summarises the properties of the simulations that are used and

how we make use of them in our analyses, presents our fitting formula for the enhancement,

and illustrates the method used to test this model; Sec. 2.5 presents the main results of

our tests, including key formulae that have been fitted to the simulation data; and finally,

Sec. 2.6 summarises the key insights from this investigation and the implications for future

work. Also, in Appendix A, we summarise the results obtained from using an alternative

fitting procedure and show consistency tests to check for dispersions between the various

data-sets used.

2.2 Background

In Sec. 2.2.1, we describe the thin shell model, which provides a way of modelling the

chameleon screening in f(R) gravity. Then, in Sec. 2.2.2, we define the dynamical and

effective mass of dark matter haloes, and describe how to measure these from simulations.

2.2.1 Thin-shell model

A useful way to model chameleon screening is via thin-shell modelling, which was first

proposed in Khoury and Weltman (2004b) and has been used extensively in theoretical

modelling, (e.g., Li and Efstathiou, 2012; Lombriser et al., 2013, 2014). Consider a constant

spherically symmetric top-hat matter density, ρin, within a radius, rth, where φin and φout

represent the scalar field inside and outside of rth respectively. Given this setup, one can
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2.2.1. Thin-shell model

make the following approximation:

∆r
rth
≈ (3 + 2ω)φin − φout

6ΨN
≈ − φout

2ΨN
, (2.1)

where ∆r is the distance (from the boundary of the top-hat density distribution) necessary

for the scalar field, φ, to settle from φout to φin, which to a good approximation is φin ≈ 0.

ω is the Brans-Dicke parameter, equal to zero for the f(R) model under consideration. One

can furthermore identify φ with fR, and φout with the background value f̄R(z) for a given

model and redshift. The depth of the Newtonian potential at the boundary, ΨN, is given

by,

ΨN = GM

rth
, (2.2)

with M the mass enclosed in the spherical top-hat. Using,

M ≡ 4π
3 ρinr

3
th, (2.3)

we find that ΨN ∝M
2
3 for a fixed density.

In this chapter, we will focus on dark matter haloes found from N -body simulations.

To make a connection between these haloes and the spherical top-hat densities described

above which are used for thin-shell modelling, we make two approximations. First, dark

matter structures in real simulations are not spherically symmetric, but we approximate

them as spherical. Second, the radial density distribution of dark matter haloes are known

to satisfy a Navarro-Frenk-White (Navarro et al., 1997, NFW) profile,

ρ(r) = ρ0

(r/Rs) (1 + r/Rs)2 , (2.4)

where ρ0 is a parameter with the same unit as density, and Rs is the scale radius. ρ(r)

scales like r−1 (r−3) in the inner (outer) part of a halo, and is not a constant within the

halo radius, R∆c, which is determined as the distance from the halo centre within which the

mean density is ∆ times the critical density of the Universe, ρcrit, at the halo redshift. In

our modelling, we treat the haloes as top-hats with density equal to M∆c/
(

4
3πR

3
∆c

)
, where

M∆c is the halo mass, i.e., the mass enclosed in R∆c
∗. It is furthermore shown in Arnold

∗For a more detailed and realistic modelling of chameleon screening, see, e.g., Lombriser et al. (2012,
2014); Cataneo et al. (2016). However, as we show below, our simpler treatment works well and its predictions
are in excellent agreement with simulations.
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2.2.1. Thin-shell model

et al. (2016), that the above scaling approach also works for ideal NFW haloes, validating

our second assumption. The top-hat radius is given by rth = R∆c.

With the above approximations, we have

ΨN =
4πG

3 ρcrit,0∆ (1 + z)3 r3
th

(1+z)3

rth
1+z

= GM

rth
(1 + z) ∝M

2
3 (1 + z), (2.5)

where ρcrit,0 is the critical density today, and so ρcrit,0∆ is the mean matter density in the

halo today; the factor (1 + z)3 multiplying the density guarantees that we are using the

physical density at redshift z, and the (1 + z) factors associated with rth ensures that we

use the physical radius (note that R∆c = rth is the comoving radius of a halo).

With this setup, a qualitative argument can be made (e.g., Li and Efstathiou, 2012)

that gravity is enhanced by the maximum factor 4/3 when ∆r ≥ rth
3 . On the other hand, a

small positive constant ε � 1 can be defined such that one can assume no deviation from

GR when ∆r ≤ εrth.

From the theoretical arguments discussed above, it is expected that the dynamical

mass of a halo in f(R) gravity varies in a range Mtrue ≤ Mdyn ≤ 4
3Mtrue (Schmidt, 2010;

Zhao et al., 2011b). One can define the smallest true halo mass, M1, for which there is no

deviation from GR (Mdyn = Mtrue), and the highest true halo mass, M2, for which there is

no chameleon suppression of the scalar field (Mdyn = 4
3Mtrue). From Eqs. (2.1) and (2.5)

and using the definitions for M1 and M2, these are respectively given by

M1 = κ1

(
1
ε

f̄R(z)
1 + z

) 3
2

∝
(
f̄R(z)
1 + z

) 3
2

, (2.6)

and

M2 = κ2

(
3 f̄R(z)

1 + z

) 3
2

∝
(
f̄R(z)
1 + z

) 3
2

, (2.7)

where the constants κ1 and κ2 enclose Newton’s gravitational constant along with some

other constant factors from Eqs. (2.1,2.2,2.3):

κ1 = κ2 = (2GH0)−1∆−1/2. (2.8)

Both masses display power law fits as functions of f̄R(z)
1+z , and this is an important observation

in this chapter: when comparing thin-shell model predictions against N -body simulations,
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both of them should be expressed as a function of f̄R(z)/(1 + z). An additional advantage

is that this makes the dependence on the model parameter fR0 implicit: two models, A and

B, with different fR0 values, should have the same f̄R(z)/(1 + z) value at some different

redshifts zA and zB. If the thin-shell model is generic enough, its predictions for model A

at zA and model B at zB should be the same, irrespective of the fact that these are two

different models. We shall show below that this is indeed the case, and so promises a way

to constrain general f(R) models.

In reality, chameleon screening comes not only from a haloes own mass, but also from

the matter that surrounds it. This can be considered as environmental screening. This

is more important in F6 than in F4 and F5, because in the former the weak scalar field

is more easily suppressed, occasionally resulting in total suppression of the field inside a

low-mass halo if it is within a larger scale high-density environment. This means that the

background field value at a halo, f̄R(z), evaluated by Eq. (1.15), may often be incorrect

if there is a surrounding high-density environment. Therefore a better approximation for

the thin-shell modelling would be to replace ΨN in Eq. (2.1) with ΨN + Ψenv with Ψenv

the average Newtonian potential caused by the environment at the location of the halo (He

et al., 2014; Shi et al., 2017), which can be read from the simulation data. For the time

being this will not be included in the modelling in this investigation, as it is not necessary

to achieve such accuracy in the statistical treatment we aim for. Our approach will cover

haloes which live in different environments so that the effects of Ψenv largely cancel when

looking at the median of all haloes (see below for further comments on this point).

2.2.2 Dynamical mass and effective mass

The dynamical mass of a cluster or halo is the mass that massive test particles (e.g., stars or

nearby galaxies) feel. It can be measured using the relationship between the gravitational

potential energy and the kinetic energy of all of the constituent parts. In simulations it

can be calculated for each halo, detected from the density field created by the dark matter

particles.

The formation of large-scale structures in f(R) gravity is largely determined by the
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2.3. A framework for gravity tests using clusters

modified Poisson equation, which recall is given by Eq. (1.11). An effective density field,

δρeff (He et al., 2015), can be defined such that Eq. (1.11) can be cast into a form that is

similar to Eq. (1.5):

∇2Φ = 4πGδρeff , (2.9)

where δρeff and δρ are related via:

δρeff ≡
(4

3 −
δR

24πGδρ

)
δρ. (2.10)

The effective haloes are then identified from the effective density field, which is not

necessarily the same as the true density field. In GR the two are seemingly the same but in

MG they are different. It has been suggested in previous work by He et al. (2015) that using

the effective density field to describe haloes allows us to view the dynamical properties of

haloes in an f(R) model as in a ΛCDM cosmology. In this sense, calculations of dynamical

properties, such as the circular velocity of the halo, can be done assuming GR regardless

of the model (f(R) gravity or GR) that the simulation is actually run for, as long as the

effective mass of a halo is known. Therefore the effective mass can be used as a proxy for

Mdyn. As is evident from Eq. (2.10), the maximum enhancement to the true density field

is 4/3. Thus both the effective and the dynamical mass vary between Mtrue and 4
3Mtrue. In

what follows we shall use the effective mass and dynamical mass interchangeably, regardless

of the (minor) differences between them (He et al., 2015).

2.3 A framework for gravity tests using clusters

In this section, we focus on tests of HS f(R) gravity using the galaxy cluster abundance

(see, e.g., Schmidt et al., 2009; Mak et al., 2012; Cataneo et al., 2015, for earlier works along

this direction). This is a specific case of the general framework shown in Fig. 1.2, which is

intended to be used for testing a range of MG models. Our proposed f(R) framework is

sketched in Fig. 2.1.

A fitting formula for the HMF is required to predict the halo abundance, and this

can be obtained by using semi-analytical models calibrated by simulations. In this thesis,

we adopt the model which has been proposed and calibrated by Cataneo et al. (2016),
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Figure 2.1: Flowchart outlining our framework for constraining the present-day value of
the background scalar field, fR0, of HS f(R) gravity. Using f(R) simulation data, we
have calibrated models for the f(R) enhancements of the halo concentration (Chapter 3,
blue dotted box) and the dynamical mass (this chapter, red dotted box). The concentration
model is used to convert the mass definition of the theoretical HMF into a form that is con-
sistent with the observational data. The dynamical mass model is used to convert the GR
observable-mass scaling relation into a form that is consistent with f(R) gravity (Chapter 4,
green dotted box). The latter is used for relating the observational mass function, dn/dYobs
to the theoretical form dn/dM500. Finally, MCMC sampling is used to constrain fR0 using
the theoretical and observational predictions (Chapter 5, brown dotted box).

which itself is built upon earlier works (Li and Efstathiou, 2012; Li and Lam, 2012; Lam

and Li, 2012; Lombriser et al., 2013, 2014) motivated by excursion set theory (Bond et al.,

1991); this will be discussed in Sec. 2.3.1.1. The Cataneo et al. (2016) HMF has been

calibrated using the halo mass definition M300m. To ensure generality, we will also require

a mass conversion, M300m(M∆), to allow conversions to arbitrary mass definitions, which

will require a concentration-mass relation (e.g., c200(M∆)), of dark matter haloes in f(R)

gravity. This is discussed in Sec. 2.3.1.3, in addition to other work to be carried out. These

ingredients will enable us to predict a theoretical cluster abundance for generic f(R) models

and mass definitions.
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On the observational side, a key observable to be used in our test framework is the

cluster abundance derived from SZ and X-ray surveys, such as Planck’s SZ cluster abund-

ance (Ade et al., 2016). As discussed in Sec. 2.3.1.2, converting from cluster observables to

the cluster mass typically involves the use of a scaling relation, however the most accurate

scaling relations that are currently available are observational and/or derived for ΛCDM.

We propose a method for converting these relations from ΛCDM to f(R) gravity, based on

the findings of He and Li (2016). We discuss this point in more detail in Sec. 2.3.1.2. The

conversion requires a formula for the ratio Mdyn/Mtrue, which is the focus of this chapter.

Our procedure to measure Mdyn/Mtrue as a function of Mtrue, z and f̄R is discussed in

Sec. 2.4 and our results are presented in Sec. 2.5. We show that a simple fitting formula

for Mdyn/Mtrue motivated by the theoretical modelling of Sec. 2.2.1 works very well in

describing the results of a large suite of simulations. The simulations are introduced in

Sec. 2.4.1.

Following the corrections described above, the predicted and observed abundances

can be combined to constrain |fR0| by confronting theoretical predictions for models with

an arbitrary value of fR0 with observations. A continuous parameter space search can

be carried out using techniques such as MCMC, which accounts for relevant covariances

between data. The fitting formulae for various quantities, with corresponding errors, can

be used to construct mock cluster catalogues to validate the model constraint pipeline. In

Sec. 2.3.2, we will also mention some other possible observables which can be included in

this framework and which will also require a knowledge of Mdyn/Mtrue which we focus on

in this chapter.

2.3.1 Cluster abundance tests

One of the frequently used probes of cosmological models and the underlying theory of

gravity is the cluster abundance, defined as the number density of galaxy clusters per unit

mass interval, dncluster
d log10 M

. This depends sensitively on the cluster mass, M , which means that

model tests using the cluster abundance require an accurate measurement of the cluster

mass. We have seen that the term ‘mass’ can be ambiguous in MG theories because different
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observables depend on different masses, e.g., dynamical versus lensing mass. Therefore, any

effects of f(R) gravity on the mass should be accounted for to prevent a biased prediction

of the abundance.

The theoretical counterparts of galaxy clusters in N -body simulations are massive

dark matter haloes (& 1014h−1M�). A prediction of the cluster abundance can be obtained

by measuring the abundance of haloes. Some efforts must also be made to account for

the limitations of an observational survey, for example the blocking of many clusters by

foreground stars and the galactic plane, and the rejection of low signal-to-noise sources.

These effects are specific to the survey under consideration. In summary, the following

quantities are required:

• An HMF which evaluates the number density of dark matter haloes per unit mass

interval;

• A scaling relation to predict the cluster observable, given the mass of the dark matter

halo;

• The selection function of the survey, which evaluates the probability of a cluster being

detected and included in the resulting data-set, as a function of the observable flux,

redshift, etc.;

• The likelihood of the measurements, which would be produced along with the observed

data itself.

These corrections will ensure that the prediction of the cluster abundance is consistent

with measurements taken in the real Universe using detectors with finite precision. However,

the HMF and scaling relations are generally more challenging to implement in f(R) gravity

tests without inducing sources of bias. This can stem from effects like the chameleon

screening mechanism and the enhancement of the dynamical mass, which are complicated

to model exactly. Secs. 2.3.1.1-2.3.1.2 illustrate our proposed methods to tackle these

difficulties, and Sec. 2.3.1.3 discusses other current issues in using the cluster abundance to

test f(R) gravity which we seek to address in this thesis.
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2.3.1.1. Halo abundance

2.3.1.1 Halo abundance

The abundance of dark matter haloes can be predicted using semi-analytical models, such

as excursion set theory (Bond et al., 1991), which generally show reasonable qualitative

agreement with simulations. These models connect high peaks in the initial density field to

the late-time massive dark matter haloes by assuming spherical collapse. However quant-

itative agreements with simulations are not great, which has motivated models with more

physical assumptions, such as the ellipsoidal collapse model (Sheth and Tormen, 1999, 2002;

Sheth et al., 2001) which gives up the sphericity assumption above. These efforts have led

to various fitting formulae of the HMF in standard ΛCDM, whose parameters can be cal-

ibrated using simulations (e.g., Jenkins et al., 2001; Warren et al., 2006; Reed et al., 2007;

Tinker et al., 2008).

In MG theories, excursion set theory still applies but the connection between initial

density peaks and late-time dark matter haloes becomes more complicated. In some scen-

arios, such as the Galileon model (e.g., Nicolis et al., 2009; Deffayet et al., 2009), as in

ΛCDM, the spherical collapse of an initial top-hat overdensity does not depend on the

environment, and analytical solutions can be obtained for their HMFs (Schmidt et al.,

2010; Barreira et al., 2013, 2014). In f(R) gravity and general chameleon models, how-

ever, the behaviour of the fifth fore is more complicated and the spherical collapse becomes

environment-dependent. Theoretical models of HMFs in these theories have been studied

in Li and Efstathiou (2012); Li and Lam (2012); Lam and Li (2012); Lombriser et al. (2013,

2014); Kopp et al. (2013), and qualitative agreement with simulations is reasonable.

In this thesis, we adopt the HMF as proposed in Cataneo et al. (2016), which is based

on an extension of the theoretical modelling described in Lombriser et al. (2013, 2014)

by adding free parameters to the theoretical HMF to account for the chameleon screening

mechanism and allow a better match with simulations. These parameters have been fitted

using a subset (Crystal, see Sec. 2.4.1) of our DMO f(R) gravity simulations which have

been run for F4, F5 and F6, but they work for general values of |fR0| within [10−6, 10−4].

Cataneo et al. (2016) show that their HMF fitting formula agrees with simulation results

to within 5%.
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2.3.1.2. Scaling relations in f(R) gravity

We note that the HMF fitting formula is an independent ingredient in our framework

as depicted in Fig. 2.1, by virtue of which we can always use the latest and most accurate

in our analysis.

2.3.1.2 Scaling relations in f(R) gravity

The cluster mass is difficult to measure via direct observations, and a scaling relation is

usually used to connect the cluster mass to some more readily observable quantities, such

as the average temperature, Tgas, of the intra-cluster gas. This relates to the total mass,

M , via the virial theorem which leads to:

GM

R
= 3

2
kBTgas
µmp

, (2.11)

where R is the cluster radius, mp is the proton mass, kB is the Boltzmann constant and µ

is the molecular weight.

We are interested in cluster abundances measured from X-ray emission, the SZ effect

and weak lensing. The X-ray radiation by a cluster is generated by the bremsstrahlung

process, and the SZ effect is due to the inverse-Compton scattering of cosmic microwave

background photons off electrons in the intra-cluster medium. Both of these effects depend

on Tgas. Therefore, several related and easily observable quantities can be used as mass

proxies, such as the integrated SZ Compton Y -parameter, YSZ, the X-ray equivalent of the

integrated SZ flux, YX, and the X-ray luminosity, LX. For each of these observables the

cluster mass can be inferred through a scaling relation.

In ΛCDM, such scaling relations can be obtained in different ways, such as by using

hydrodynamical simulations (e.g., Fabjan et al., 2011; Nagai et al., 2007) or from subsets

of observed clusters whose masses can be measured in other means, e.g., weak lensing

(Vikhlinin et al., 2009). An example is the YSZ−M scaling relation calibrated by the Planck

Collaboration (Ade et al., 2016), which incorporates the results from various observational

surveys and simulations, and where rigorous methods have been used to prevent various

sources of bias, including Malmquist bias and hydrostatic equilibrium bias.

In f(R) gravity, and in general for any new gravity theory, the scaling relations calib-

rated for ΛCDM are unlikely to still apply. It is impractical to calibrate these relations by
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using hydrodynamical simulations, since they are expensive even for a single specific f(R)

model, let alone the whole fR0 parameter range. Calibrations using a subset of data or

using other observables should be treated with caution as well. For example, the scaling

relations may be different between the subset of data and the whole sample, due to the

environmental dependence of the MG effect, and different observables are proxies of differ-

ent masses in f(R) gravity, and so the combined use of different observations is tricky. It

is therefore highly desirable to have a physically motivated model for obtaining (certain)

scaling relations for arbitrary values of the f(R) parameter fR0 with good precision and

minimal effort.

Along this line and based on the use of the so-called effective mass (Sec. 2.2.2), a

procedure for correcting for the effect of MG on the physical properties of clusters, such as

their various observable-mass scaling relations, has been proposed by He and Li (2016). This

method avoids direct calibration of the cluster mass using full hydrodynamical simulations

in the f(R) model, and instead calculates the scaling relations in f(R) gravity by using the

corresponding ones in standard ΛCDM (which are better known) with a rescaled baryon-

to-total mass ratio. Its results are found to agree very well with f(R) simulations.

He and Li (2016) discussed the cluster mass proxies LX, YSZ and YX, and here we

describe the result for YSZ as an example. Using a non-radiative approximation, in which

the baryonic content of the hydrodynamical simulations behaves as an ideal gas satisfying

Eq. (2.11), YSZ is given by:

YSZ = σT
mec2

∫ r

0
dr4πr2Pe, (2.12)

where σT is the Thomson cross section and me is the electron mass. The electron pressure,

Pe, is given by Pe = 2+µ
5 ngaskBTgas, where ngas is the number density of gas particles.

From the simulations it was found that the Tgas-M relations for the effective haloes in f(R)

gravity and the haloes in ΛCDM agree very well:

T f(R)
gas

(
M

f(R)
dyn

)
= TΛCDM

gas
(
MΛCDM

)
. (2.13)

This is as expected given that the temperature and the gravitational potential of a halo are

intrinsically linked through the virial theorem.

34



2.3.1.3. Other issues

Using a suite of non-radiative hydrodynamical simulations, it was found that outside

the core regions, the profiles of effective haloes in f(R) gravity closely resemble those in

ΛCDM, with a rescaled gas mass fraction:

ρf(R)
gas (r) ≈ Mf(R)

M
f(R)
dyn

ρΛCDM
gas (r) ∝ Mf(R)

M
f(R)
dyn

Ωb
Ωm

(
r2 + r2

core
)− 3β

2 , (2.14)

where rcore is the core radius and β is the ratio between the specific kinetic energy (kinetic

energy per unit mass) of cold dark matter and the specific internal energy (internal energy

per unit mass) of gas. For an effective halo in f(R) gravity with an effective mass that is

equal to the true mass of a ΛCDM halo, Mf(R)
dyn = MΛCDM, it follows from Eqs. (2.13) and

(2.14) that: ∫ r

0
dr4πr2

(
ρf(R)

gas
)a (

T f(R)
gas

)b
≈

Mf(R)

M
f(R)
dyn

a ∫ r

0
dr4πr2

(
ρΛCDM

gas
)a (

TΛCDM
gas

)b
,

(2.15)

where a and b are indices of power. By combining this result with Eq. (2.12) it follows that

the YSZ-M scaling relations in these two models can be related by:

M
f(R)
dyn

M
f(R)
true

Y
f(R)

SZ

(
M

f(R)
dyn

)
≈ Y ΛCDM

SZ
(
MΛCDM = M

f(R)
dyn

)
. (2.16)

As mentioned previously, this relation has been verified by a suite of non-radiative hydro-

dynamical simulations. Similar results have been obtained and verified for the other two

proxies (YX and LX) as well, and are particularly accurate for YSZ and YX with the error

just slightly over 3%.

As the scaling relations in ΛCDM are much better understood than in f(R) gravity,

Eq. (2.16) can potentially be used to re-calibrate a scaling relation obtained for ΛCDM,

into a form linking YSZ to the cluster dynamical mass in f(R) gravity.

2.3.1.3 Other issues

The mass of a galaxy cluster or dark matter halo is usually defined as the mass enclosed

in some radius centred around the cluster or halo centre. This is the radius in which the

average matter density is ∆ times the mean matter density or the critical density at the halo

redshift. In the literature, different values of ∆ are commonly used, and so it is essential
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to be able to convert between them. As an example, Cataneo et al. (2016), whose f(R)

gravity HMF fitting formula we use by default in our framework, work with M300m. As

another example, in the literature M200c is very commonly used.

It is straightforward to convert between the different masses by noting that the different

definitions only differ in where the halo boundary lies. Therefore, all we need is the density

profile ρ(r) of a halo. In ΛCDM, dark matter haloes are well described by the NFW density

profile given by Eq. (2.4), which has two free parameters, ρ0 and Rs. The NFW profile

has also been shown to work well for haloes in f(R) gravity (Lombriser et al., 2012; Shi

et al., 2015). Of the two NFW parameters, the scale radius, Rs, can be expressed by using

the halo concentration, c∆ ≡ R∆/Rs, and ρ0 can be further fixed using the halo mass,

M∆ ≡ M(≤ R∆). Therefore, to convert between the different mass definitions requires an

understanding of the concentration-mass relation, c∆(M∆). We note that, as long as the

concentration is known for one overdensity ∆, it can be inferred for any other overdensity

(for example, see Appendix B.2). We have studied the c200(M500) concentration-mass

relation in both screened and unscreened regimes, using data from various f(R) simulations,

and the results will be presented in Chapter 3.

Another issue that merits further investigation is a check of the method by He and

Li (2016) against full-physics hydrodynamical simulations including baryonic feedback pro-

cesses, which go beyond the non-radiative approximations originally used. Studies in ΛCDM

(e.g., Fabjan et al., 2011) have found that, for certain quantities such as YX, the resulting

scaling relation is insensitive to baryonic processes, such as cooling, star formation and

black hole feedback, in galaxy formation if the data from the very inner part of a cluster is

excluded. We expect the same to apply in f(R) gravity, but in order to be certain we have

conducted an analysis using full-physics hydrodynamical simulations for HS f(R) gravity,

and will present the results in Chapter 4.

Such simulations will also be useful to better understand the impact of galaxy forma-

tion on the HMF in f(R) gravity, though we expect it to be small. We also note that the

fitting formula by Cataneo et al. (2016), which has a 3-5% accuracy with the simulation

data for F4-F6 and halo masses above 1013h−1M�, was calibrated using DMO simulations
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(Crystal, see Sec. 2.4.1).

2.3.2 Other observables

As mentioned above, the focus of the remainder of this chapter is a fitting function for the

relationship between the dynamical and true masses of dark matter haloes, which would be

useful for deriving cluster scaling relations in f(R) gravity. But the use of this relation is

certainly not restricted to this.

A direct use of the Mdyn/Mtrue relation is to constrain the fifth force by comparing

measurements of Mdyn and Mtrue. In observations, the profiles of these masses can be

obtained using the X-ray surface brightness profile and lensing tangential shear profile of

a cluster respectively. The measurements can be done for massive clusters for which high-

quality X-ray and lensing data are available. Terukina et al. (2014); Wilcox et al. (2015,

2016) performed the first analyses using this method and found constraints on general

chameleon gravity theories. A more recent analysis can be found in Pizzuti et al. (2017).

The dynamical mass or potential can also be inferred from the escape velocity edges in the

radius/velocity phase space, which can be compared with the lensing-inferred mass profile,

or the gravitational potential profiles for samples of low- and high-mass haloes, which would

feel different effects of gravity due to the chameleon screening, can be compared (Stark et al.,

2016).

Another potentially powerful probe in cluster cosmology is the cluster gas fraction

(e.g., Mantz et al., 2014a), fgas = Mgas/Mhalo, where Mgas is the mass of baryons (or hot

gas) in the intra-cluster medium and Mhalo is the total halo mass. In massive clusters,

the mass of the hot intra-cluster gas dominates over that in cold gas and stars, and thus

fgas is expected to approximately match the cosmic baryon fraction, Ωb/ΩM. However,

measurements of fgas involve measuring Mhalo, which is the dynamical rather than the true

mass of the halo. Constraints from fgas on f(R) gravity are therefore likely to be biased

(Li et al., 2016). To make amends for this we will require a general formula for the ratio

Mdyn/Mtrue, which is presented in Sec. 2.5.

Our framework is sufficiently flexible to include these, among other, observables in
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the ultimate cluster constraints, though certain generalisations may be needed, such as the

concentration-mass relations for not only the true but also the effective haloes.

2.4 Simulations and methods

The specifications of the f(R) gravity simulations used in this chapter are presented in

Sec. 2.4.1. The procedure to measure the dynamical mass enhancement from this data is

discussed in Sec. 2.4.2, along with the details for the modelling of this enhancement and its

parameters.

2.4.1 Simulations

Our collisionless simulations are run using the ecosmog code (Li et al., 2012), a code based

on the publicly-available N -body and hydrodynamical code ramses (Teyssier, 2002), and

which can be used to run N -body simulations for a wide range of MG and dynamical dark

energy scenarios. The code is efficiently parallelised, and uses adaptive mesh refinement

to ensure accuracy of the fifth force solution in high-density regions. In order to reliably

fit the dynamical mass enhancement as a function of the halo mass, an appropriate range

of halo true mass which covers the transition between Mdyn = Mtrue and Mdyn = 4
3Mtrue

would be required. For this reason, three different simulations of varying resolutions were

utilised. For the purposes of clarification, these are listed as the Crystal, Jade and Diamond

simulations with increasing resolutions.

The parameters and technical specifications of the simulations are listed in Table 2.1.

The Hubble expansion rate, H0, is set to 69.7 kms−1Mpc−1. Diamond is the highest res-

olution simulation, and its small particle mass allows lower-mass haloes to be investigated.

While Crystal is the lowest resolution, its large volume and particle number mean that

higher-mass haloes can be included. Jade is needed in order to provide bridging halo mass

regimes with both Crystal and Diamond to ensure that a complete range of masses is tested

and to verify that the different simulations agree well in the overlapping regions (see Ap-

pendix A.2). Because the results of this investigation are intended to be used with the

Planck 2015 data, which only covers up to redshift z = 1, only simulation snapshots with
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Table 2.1: Specifications of the three ecosmog simulations used to study the f(R) en-
hancement of the dynamical mass, labelled Diamond, Jade and Crystal for convenience.
The gold data is defined as having been generated by f(R) gravity simulations, whereas
the silver data comes from effective density data generated from ΛCDM simulations. The
Hubble constant, H0, is set to 69.7 kms−1Mpc−1 in all simulations.

Parameters and Simulations
data types Diamond Jade Crystal

box size / h−1Mpc 64 450 1024
particle number 5123 10243 10243

particle mass / h−1M� 1.52× 108 6.60× 109 7.80× 1010

ΩM 0.281 0.282 0.281
ΩΛ = 1− ΩM 0.719 0.718 0.719

gold F6 F5 F4, F5, F6
silver F5.5, F6.5 F4.5, F5.5, F6.5 F4.5, F5.5

z < 1 are used. This includes 19 snapshots from both Crystal and Diamond, and 33 from

Jade. The use of data from only z < 1 also means that we can avoid using high-z data

from the Crystal simulations, which suffer from poor resolutions.

Halo catalogues for these simulations are constructed in two steps. First a modified

ecosmog code is run to generate effective density data from the particle data for all of the

snapshots. After that, ahf (Gill et al., 2004; Knollmann and Knebe, 2009), a halo finder

which is properly modified to read the effective density data, is run to identify effective

haloes. ahf is run with the M500c mass definition, and the outputted halo catalogues

include the ratioMdyn/Mtrue for each halo, as well as the lensing mass which can be treated

as Mtrue.

Given the expensive cost of full MG simulations, our f(R) simulation suite only in-

cludes a limited number of models. The Crystal simulations have only been run for F4,

F5 and F6, Jade has been run for F5 only and Diamond for F6 only. From Fig. 1.1, we

can see that up to z = 1 (the redshift limit in the simulation data for our analysis) the

three simulated models — F4, F5, F6 — do not cover all possible values of f̄R(z) continu-

ously but leave gaps in between. In order to test the proposed model for the dynamical

mass enhancement over the greatest possible range of field values, without making too

much effort in running full f(R) simulations for other fR0 values, we propose a simpler
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2.4.2. Measuring the dynamical mass enhancement

approach. At any desired redshift z, the MG solver in the ecosmog code was run on the

particle data of ΛCDM simulations to generate further effective density data by assuming

these were actually f(R) gravity calculations with strengths F4.5 (|fR0| = 10−4.5), F5.5

(|fR0| = 10−5.5) and F6.5 (|fR0| = 10−6.5). Because these calculations involve running the

ecosmog only for one step (for each fR0 and z), they are much less expensive than a full

simulation which means that we can afford to run many of them. Indeed, we could repeat

this for any other values of fR0, but found that the above three additional values already

give decent overlapping in the halo mass ranges (see below).

ahf effective halo catalogues were then generated for the additional fR0 values using

the effective density field from these ‘approximate simulations’, the latter neglecting effects

from the different structure formations under these models which could lead to different

internal structure and large-scale environments of haloes. For this reason, this additional

data is labelled ‘silver’ data, and it was used in addition to the ‘gold’ data which was

generated from the actual full f(R) gravity simulations. We justify the use of silver data

by noticing that our thin-shell modelling (see above) treats haloes as spherical top-hats by

averaging the mass distribution within R500c (the same can be done for other halo mass

definitions, although in this study we use M500c when studying Mdyn/Mtrue) and therefore

is not sensitive to the actual subtle differences in the halo density profiles from the full

and approximate simulations. In addition, we have checked the validity of using silver data

by doing the same analysis for |fR0| = 10−5, for which we have gold data to compare to:

as is shown in Appendix A.2, in this case the gold and silver data of F5 are in excellent

agreement.

2.4.2 Measuring the dynamical mass enhancement

The ratio of the dynamical mass to the true mass of a halo depends on the mass of the

halo, the background scalar field of the Universe and the redshift. Because the field is a

redshift-dependent quantity, the different snapshots for a given model all have different field

values with which to investigate the dynamical mass enhancement. The ratio Mdyn/Mtrue

is described by two parameters p1, p2 (as will be discussed below), which vary with the
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2.4.2.1. tanh function fit to Mdyn/Mtrue

background field value f̄R(z) and redshift z. In Sec. 2.2.1 it was shown that, according to

our thin-shell modelling, the screening effect can be described by a specific combination of

f̄R(z) and z, f̄R(z)/(1 + z), and so we expect that both p1 and p2 can be fitted as functions

of f̄R(z)/(1 + z) using their values at the snapshots. In this subsection we describe how

this fitting process was carried out in our analysis.

2.4.2.1 tanh function fit to Mdyn/Mtrue

In this step, the ahf halo catalogues were first sifted to keep only haloes made up of a

sufficient number of dark matter particles and to exclude sub-haloes. The mass criteria for

the sifting of Crystal, Jade and Diamond was, respectively, M500 > (4×1013, 3×1012, 6.5×

1010)h−1M�, which correspond to a minimum number of particles per halo of 513, 454 and

428. These numbers were chosen conservatively to ensure that the ΛCDM halo catalogues

are complete down to those masses, which in practice was done by requiring that the HMF

is in good agreement with the Tinker et al. (2010) analytical fitting formula.

Three plots of the mass ratioMdyn/Mtrue as a function of the halo massMtrue are shown

in Fig. 2.2, for the sifted Crystal F4, Jade F5 and Diamond F6.5 data for redshifts 0, 0.43

and 0.95 respectively. These include the extremes in both field strength and redshift. Each

black data point corresponds to an individual halo. In each plot a majority of the haloes lie

along a dark band of points that is asymptotic at ratios 4/3 and 1. The asymptote at ratio

1 corresponds to Mdyn = Mtrue, which holds for higher-mass haloes whose self-screening

is sufficient to completely remove the enhancement due to the fifth force. The asymptote

at 4/3 represents the maximum possible enhancement to Mdyn, and therefore results for

haloes in a relatively empty environment and with mass low enough that there is effectively

no self-screening of the fifth force.

For F5 many points are found below the dark band. These correspond to haloes that

have most likely experienced environmental screening due to nearby more massive haloes,

such that chameleon suppression of the fifth force is active even though the halo mass

itself might not be great enough for self-screening. The effect of environmental screening

in F5 is weak enough that the dark band of data only traces haloes for which self-screening
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Figure 2.2: The ratio of the dynamical mass to the lensing mass versus the lensing mass for
the dark matter haloes generated from N -body simulations run with modified ecosmog
simulations for HS f(R) gravity. From left to right: Crystal simulation with z = 0 for
F4; Jade simulation with z = 0.43 for F5; Diamond simulation with z = 0.95 for F6.5.
The simulation specifications are provided in Table 2.1. Unweighted (solid) and weighted
(dashed) least squares fits of Eq. (2.17) are plotted over the data. These are generated using
mass bins represented by the mean mass and the median ratio, shown by the red points.
These points and their one standard deviation error bars are produced using jackknife
resampling. For jackknife errors less than 10−4, we replace these with half of the 68%
width of the data, between the 16th and 84th percentiles (see main text, below).

dominates over environmental screening. In F4, few data points are observed below the

band because environmental screening is less effective in stronger background fields. For

F4 and F5, apart from numerical noise, no data points are found to lie above 4/3 which

is the maximally-allowed dynamical mass enhancement in f(R) gravity. In F6.5 the dark

band of data is observed to have lower enhancement, with many data points found above

it, particularly at Mtrue ≤ 1011.5h−1M�. With such low field values and halo masses in

this mass range in F6.5, environmental screening is now able to begin to dominate over

self-screening, which means the dark band of data no longer traces the haloes with self-

screening only, as it did for F4 and F5. This is why it is now possible to find haloes above

the main trend, as these simply correspond to haloes in emptier environments. Note that

the upper bound of 4/3 applies also in this case.

In order to extract a trend for this data, the haloes are grouped into a set of equally-

spaced logarithmic mass bins, which effectively cover the full range of halo masses under
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consideration for a given model and snapshot. For each bin, the mean halo mass is meas-

ured along with the median ratio Mdyn/Mtrue among all haloes. The data in each bin

approximately follows a lognormal distribution, and the median is expected to yield an

appropriate ratio from within the main band of data. While we do not provide a detailed

modelling of the distribution of Mdyn/Mtrue here, we have provided a simple model for the

root-mean-square scatter in Chapter 5.

In the absence of multiple realisations of the data, the errors on the mean halo mass

and median Mdyn/Mtrue in the bins are evaluated using jackknife resampling, in which the

data is randomly split into 150 sub-volumes at each snapshot. By systematically excluding

one sub-volume at a time, 150 resamples are created. For each resample, the haloes are split

into the same set of mass bins, and 150 median ratios Mdyn/Mtrue and 150 mean masses

are measured for each bin. Following the procedure outlined by Norberg et al. (2009), the

errors in the median ratio and mean mass are generated by taking the square root of the

variance of the 150 values, which has to be rescaled by a factor 149 to account for the lack

of independence of the resamples.

The mass ratio data is quoted to 4 decimal places in the ahf output. Such precision

can result in zero, or an unphysically small, variance being measured by the jackknife

method. This can happen in unscreened or completely screened regimes where most of the

data in the bin spans only a small range of ratios. Using the argument that the ratio errors

must at least equal 10−4, any errors generated by jackknife which are less than this value

are replaced with half of the width of the 68% range (in the bin under consideration), which

spans from the 16th percentile to the 84th percentile. The percentile spread is most often

used for lower-mass bins in strongly unscreened regimes, where the ratio data spans only

a very small range. This ensures that the errors for these bins become a reasonable size

relative to the errors of the other bins, which are estimated by jackknife, though rigorously

speaking the 68% range is more of a description of the spread of the mass ratio rather than

sample variation of the median ratio as jackknife gives. As discussed below, in the main

results of this chapter we do not use the error bars estimated using this combination of

jackknife and the 68% range.
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The results for these bins are shown in Fig. 2.2, plotted over the raw data. To account

for the asymptotic nature of the data, we fit the following tanh curve:

Mdyn
Mtrue

= 7
6 −

1
6 tanh

(
p1
[
log10

(
MtrueM

−1
� h

)
− p2

])
. (2.17)

The two constants 7/6 and 1/6 are used to ensure the function remains between fixed

asymptotes at ratios 4/3 and 1. The parameters p1 and p2 represent, respectively, the

inverse width of the mass transition and the mass logarithm at the centre of the transition.

For the dashed line, the parameters have been optimised through weighted least

squares: the minimisation of the sum of the squared normalised residuals, where the norm-

alisation is equal to the size of the error bars. For F5 and F6.5, this fit of Eq. (2.17) shows

excellent agreement with the bin data, however for F4 the fit shows poor agreement with

the result for the highest mass bin. This is because the error bar of this bin is substantially

greater than those of the lower-mass bins, and it contributes very little weight in the optim-

isation. Weighted least squares therefore over-estimates the value of p2 for this snapshot,

as the tanh curve starts to drop at a higher mass than the raw data. In contrast, the data

point in the second highest mass bin has a much smaller error and it slightly overshoots a

tanh curve which would perfectly go through the highest mass data point (the solid line, see

below). Note that the same happens to the second and third lowest-mass data points for

F5 (the middle panel of Fig. 2.2), but in this case there are four other data points at higher

masses which dominate the optimisation, resulting in a good visual agreement between the

dashed curve and the data points. This indeed highlights the importance of having data

points which cover the full transition of the tanh curve in order to fit p1 and p2 accurately.

Furthermore, the observation that the second lowest mass point for F5 lies above the tanh

curve is quite generic and happens in most other plots where the curve starts to deviate

from 4/3, implying a slight insufficiency in the tanh fitting (we will comment on how this

affects the fitted values of p1 and p2 below).

On the other hand, for the solid line in Fig. 2.2 the parameters have been optimised via

unweighted least squares: the minimisation of the sum of the squared residuals, which have

equal weights for all bins now. Since it does not suffer from the same issues as described

above for the weighted fitting, this fit shows better agreement with the data point of the
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Figure 2.3: Dynamical mass to lensing mass ratio as a function of the lensing mass for
F4 (red), F4.5 (orange), F5 (green), F5.5 (magenta), F6 (blue) and F6.5 (grey) at various
redshifts as annotated. The halo data comes from the Crystal (left column), Jade (middle
column) and Diamond (right column) simulations (see Table 2.1). The data points, cor-
responding to mass bins represented by their median ratio and mean mass, and their one
standard deviation error bars are produced using jackknife resampling. Jackknife errors
less than 10−4 are replaced with half of the range between the 16th and 84th percentiles.
Solid line: Eq. (2.17) with p1 and p2 determined by unweighted least squares fitting for the
given snapshot; Dashed line: Eq. (2.17) with best-fit constant p1 result (p1 = 2.21) and
linear p2 result (Eq. (2.20)) from Fig. 2.5 and Fig. 2.4, respectively.
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highest mass bin of F4, while elsewhere shows equally good agreement as weighted least

squares.

As discussed above, in the completely screened or unscreened regimes there is very

little variation of the mass ratio and therefore the resulting uncertainties — by using either

Jackknife resampling or the 68% range — for mass bins in those regimes are extremely small.

Together with the facts that in many snapshots (e.g., the left panel of Fig. 2.2) the data

points only cover part of the transition of the tanh curve and that the lower-mass bins can

contain around three orders of magnitude more haloes than the higher-mass bins, this makes

it challenging to find a consistent way to estimate uncertainties in all mass bins across all

models/snapshots. Since the inhomogeneous sizes of error bars in the data points can lead

to clearly unphysical fitting results, as shown in the dashed lines of the left panel of Fig. 2.2,

the main results of this chapter shall be given using the unweighted least squares approach.

We have tried a number of different ways to assign data error bars, including setting a lower

limit such as 10−4 to the individual errors, which all involve certain degrees of arbitrariness

(for example, the 68% range to get error bars in Fig. 2.2 is really a characterisation of the

spread of the data rather than an uncertainty of the median, and it is used solely to avoid

very small uncertainties for some mass bins). Perhaps more importantly, the different ways

of estimating uncertainties for the weighted least squares approach that we have tried all

lead to similar fitting results of p1, p2 as functions of f̄R(z)/(1 + z) (the topic of the next

sub-subsection), and the situation depicted in the left panel of Fig. 2.2 happens only for a

few snapshots. As an example for reassurance, in Appendix A.1 we present fitting results

of p1 and p2 using the weighted least squares approach with the error bars estimated as in

Fig. 2.2, which confirms that this different approach does not significantly affect the final

result.

For each snapshot in the investigation, five mass bins were used for Crystal, seven

for Jade and six for Diamond, as these are the maximum possible numbers of bins such

that there are a minimum of five haloes in almost all bins. We have checked different

bin numbers, and this combination of bin numbers was also found to yield the smoothest

results.
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2.4.2.2 Fitting of p1, p2 as functions of f̄R(z)/(1 + z)

By carrying out a fitting of Eq. (2.17) for all snapshots of all models, the field and redshift

dependence of p1 and p2 can be tested. To understand what should be plotted, Sec. 2.2 and

in particular the approximations for M1 and M2, given by Eqs. (2.6) and (2.7), are used.

From the way that p1 and p2 have been defined, the following can be shown:

p1(z, f̄R) ∝ 1
log10 (M1)− log10 (M2) = const; (2.18)

p2(z, f̄R) = log10 (M1) + log10 (M2)
2 = 3

2 log10

(
|f̄R|
1 + z

)
+ const. (2.19)

Eqs. (2.6) and (2.7) have been used to bring in the z and f̄R(z) dependences. Eq. (2.19)

implies p2 should have a linear trend as a function of log10
(
f̄R

1+z

)
with a slope of 1.5.

This comes from the power 3/2 in Eqs. (2.6) and (2.7), where it in turn stems from the

2/3 power in ΨN ∝ M
2
3 for the Newtonian potential given by Eq. (2.2). On the other

hand Eq. (2.18) implies p1 has no dependence on z and f̄R apart from through higher order

effects, such as the non-sphericity of haloes, non-uniformity of the mass distributions within

haloes, environmental screening, etc. Due to the simplicity of our thin-shell modelling, here

we shall not attempt to include these higher-order effects. Indeed, under the thin-shell

approximation, using Eqs. (2.6, 2.7, 2.8), it is found that the intercept of p2 in Eq. (2.19)

only depends on ε, G (there is no dependence on H0 = 100h kms−1Mpc−1 since the h is

absorbed into the unit of 10p2 , h−1M�) and ∆, and p1 depends only on ε; neither depends

on the cosmological parameters, whose effects are completely in determining f̄R(z). We will

find later that p1 is indeed very weakly dependent on f̄R(z)/(1 + z). We also show that

this dependency can be safely ignored without significantly affecting the value of the ratio

Mdyn/Mtrue.

A potential issue arises from the limitations of the mass range covered by a particular

set of data. As can be seen from Fig. 2.3, the mass bins are located almost entirely in the

unscreened regime for F4 at low redshifts, while for high redshift Crystal F5, Jade F6 and

Diamond F6.5 the mass bins are mostly found in the completely screened regime. As will

be discussed in Figs. 2.4 and 2.5 of Sec. 2.5, the latter can result in under-estimation of
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the p1 and p2 values, and we have already seen in Fig. 2.2 how, depending on the choice of

fitting procedure, p2 can be over-estimated for F4 at low redshift.

To understand why the parameters are affected in such a manner, consider the scenario

where all mass bins are located at ratio 4/3. As can be seen in the F4 and F5 panels of

Fig. 2.2, the median ratio data from the simulations in this regime is almost completely

flat, so a tanh fit will predict a turning point at a mass higher than is actually the case,

and so p2 will be over-estimated. This flatness of the raw data in the unscreened regime

is particularly evident in the F5 panel, where the second data point from the left ends up

above the trend line, despite having a negligible error, at the same height as the first data

point (this suggests that this region of the data cannot be fitted perfectly by a tanh curve).

On the other hand, for mass bins at high-redshift snapshots and for low field strengths

(F6.5 - F5), where almost all of the data points lie at a ratio of 1, because the data here is

flatter than predicted by Eq. (2.17) the turning point at ratio 1 will thus be predicted at

lower mass, leading to an under-estimation of p2. The effect on p1 turns out to be similar

to p2, but is even more sensitive to these limitations.

The issues presented here were the main motivation for using data from simulations

with differing resolutions. To prevent such dubious estimations of p1 and p2 from adversely

affecting the main results, a strict criterion is enforced: we only trust p1 and p2 values that

have been calculated using snapshots for which the mass bins enclose at least half of the

height of the mass ratio transition (a median ratio range of 1/6 or greater).

2.5 Results

As mentioned above, a fitting function for the ratioMdyn/Mtrue that works for general scalar

field strength fR0 and redshift z should be calibrated and validated against full numerical

simulations with a large dynamical range of halo masses in order to maximally cover the

transition between screened and unscreened regimes, which itself varies strongly with z

and fR0. However, N -body simulations are known to have a limited dynamical range and

it is also too expensive to run full simulations for too many fR0 values. Our recipe to

tackle the former challenge is to combine a suite of simulations with varying resolutions
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Figure 2.4: Parameter p2 in Eq. (2.17) plotted as a function of the background scalar field
at redshift z, f̄R(z), divided by (1 + z), for several present day field strengths fR0 (see
legends) of HS f(R) gravity. p2 is measured via an unweighted least squares optimization
of Eq. (2.17) to data from modified ecosmog simulations, described by Table 2.1, at
simulation snapshots with redshift z < 1. f̄R(z) is calculated for each snapshot using
Eq. (1.15). The trend line has been produced via a weighted least squares linear fit, using the
one standard deviation error bars, of the solid data points, which correspond to snapshots
for which the mass bins contain at least half of the median mass ratio range 1 to 4/3. The
hollow data does not meet this criterion, so is deemed unreliable and neglected from the
fit, which is given by Eq. (2.20).

(Crystal, Jade and Diamond) to increase the halo mass range, while for the latter issue

we have introduced the low-cost ‘silver’ simulations (see Sec. 2.4.1). Both approaches need

to be explicitly checked to guarantee validity and consistency. Furthermore, in Sec. 2.4.2

we have discussed subtleties in the tanh curve fitting such as the weighted and unweighted

least squares approaches. In this section we give the main results on p1 and p2 from using

this methodology, for unweighted least squares, and leave various consistency checks to

the Appendices. In Appendix A.1 we compare with results from using the weighted least

squares approach as a double check, and in Appendix A.2 we check the use of ‘silver’ data

and the combination of the Crystal, Jade and Diamond simulations.
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A plot of p2 as a function of log10
(
|f̄R|
1+z

)
is shown in Fig. 2.4. A linear trend is fitted

using the filled data points, which correspond to snapshots for which the mass bins enclose

a median ratio range of 1/6 or greater. The motivation for this criterion is discussed in

Sec. 2.4.2. The filled data points are expected to give a reasonable estimate for the logarithm

of the mass at the centre of the transition, and they all turn out to lie along a clear linear

trend in Fig. 2.4. The result of the linear fit, found using the one standard deviation error

bars, is:

p2 = (1.503± 0.006) log10

(
|f̄R|
1 + z

)
+ (21.64± 0.03). (2.20)

The gradient of 1.503± 0.006 shows excellent agreement with the theoretical prediction of

1.5 from Eq. (2.19).

Many of the hollow data points are observed to be peeling off the trend, particularly

in the F6 and F5.5 models. These snapshots correspond to cases in which all mass bins

are found in the totally screened regime, resulting in an under-estimation of the centre

of the transition as discussed in the previous section. This behaviour provides no useful

information about the dynamical mass enhancement, but rather it tells us that a higher

resolution simulation, with lower-mass particles to probe haloes of lower mass, is required.

For F5.5 the peeling-off corresponds to Crystal data, whereas the higher resolution Jade

and Diamond simulations produce linear data. For F6 both the Crystal and Jade data

peel off from the linear trend, as only Diamond has a high enough resolution to probe

unscreened haloes in F6. Diamond turns out to have a sufficient resolution to effectively

examine F6.5 as well, although a couple of high redshift snapshots do not get used in the

linear fit, suggesting these are on the boundary between reliable and untrustworthy data.

F6.5 nevertheless agrees with the linear behaviour of the rest of the filled data.

A relatively noisy trend is observed in the F4 data (though the data points all reason-

ably follow the linear trend), probably because each snapshot only has one or two mass bins

lying within the mass range where the ratio Mdyn/Mtrue undergoes a transition between

1 and 4/3. Most bins lie in the unscreened regime, such that none of the snapshots in

F4 satisfy the selection criterion to be included in the linear fit – all data points for F4

are hollow in Fig. 2.4. An improvement of this result would require a simulation with a
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p1 = (0.17± 0.01) log10[|fR|/(1 + z)] + (3.2± 0.1)

p1 = 2.21± 0.01

Figure 2.5: Parameter p1 in Eq. (2.17) plotted as a function of the background scalar field
at redshift z, f̄R(z), divided by (1 + z), for several present day field strengths fR0 (see
legends) of HS f(R) gravity. p1 is measured via an unweighted least squares optimisation
of Eq. (2.17) to data from modified ecosmog simulations, described by Table 2.1, at simu-
lation snapshots with redshift z < 1. f̄R(z) is calculated for each snapshot using Eq. (1.15).
Weighted least squares linear (solid line) and constant (dashed line) fits, using the one
standard deviation error bars, of the solid data points, which correspond to snapshots for
which the mass bins contain at least half of the median mass ratio range 1 to 4/3, are shown.
The hollow data points do not meet this selection criterion, and therefore are deemed un-
reliable and neglected from the fits, which are given by Eq. (2.21) and p1 = (2.21 ± 0.01),
respectively.

sufficiently large box size to include more haloes at the higher masses necessary to properly

examine screening in F4.

The corresponding plot for p1 is shown in Fig. 2.5. The trend is more complicated

than that of p2, partly because the thin-shell model result described in Eq. (2.18) predicts

no dependence of p1 on f̄R and z, while dependence can still be introduced through effects

such as environmental screening which are harder to model. However, we expect that these

effects have a relatively small impact, and indeed, an approximately flat trend of p1 is

observed. The results are noisier here than in Fig. 2.4 for p2, because the width of the

mass transition requires a greater range of halo masses for a tanh fit to be reliable. The
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criterion for selecting snapshots in the fit of p1 is the same as for p2, and again only the solid

data points which satisfy this criterion are fitted. This rules out all of the data from the

F4 model (which produces a wild trend here that is left out of the plot area), and several

snapshots from other models.

The result for the constant p1 fit, as predicted by Eq. (2.18), is p1 = (2.21± 0.01) and

is shown by the dashed line in Fig. 2.5. A linear model was also fitted, shown by the solid

line, yielding the following result:

p1 = (0.17± 0.01) log10

(
|f̄R|
1 + z

)
+ (3.2± 0.1). (2.21)

These trends have been fitted using the one standard deviation error bars. The gradient

of 0.17 ± 0.01 is small, though not in agreement with the prediction of a flat trend. With

a theoretical modelling which neglects effects such as environmental screening, a small

gradient nevertheless seems like a reasonable result. Being able to accurately predict the

width of the mass transition is not as important as being able to predict the central mass

of the transition, because the tanh curve is less sensitive to p1 than to p2 (which can be

easily checked). Almost all the data points observed to be significantly peeling off from

the horizontal band of data in Fig. 2.5 (including Jade and Crystal F6, Crystal F5.5 and

some of Jade F4.5) fail to satisfy the selection criterion. This is further evidence that these

particular trends are indeed caused by the limitations of the simulation resolution. Also, a

comparison of Figs. 2.5 and A.3 shows that the use of an unweighted approach to measure

p1 produces the smoother trend in the p1 data.

The quality of the above fits for p1 and p2 as well as the validity of the theoretical

predictions, given by Eqs. (2.18) and (2.19), can be assessed by examining Fig. 2.3. The

solid lines represent the exact fits produced in the unweighted least squares optimisation of

Eq. (2.17) to each snapshot of data. The dashed lines are plotted using Eq. (2.17) and the p1

and p2 values that are predicted using the constant fit of Fig. 2.5 (dashed line) and the linear

fit of Fig. 2.4 (solid line) respectively. Noticeable disparities between the dashed line and

solid line fits are observed in the F4 data, resulting from the relatively flat trend produced

by the raw data in unscreened regimes and the limited number of haloes in Crystal covering

the high masses necessary for properly examining the transition to complete screening in
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F4. The agreement between the dashed and solid lines in Fig. 2.3 generally improves if one

uses the linear fit predictions for p1, although we only use the constant fit here, which is

motivated by our theoretical modelling. Nevertheless, in general the dashed line fits show

excellent agreement with the simulation data over the full range of redshifts and models

that are plotted in Fig. 2.3, implying that Eq. (2.17) can be treated as a general formula

when using our constant and linear fits of p1 and p2 respectively.

2.5.1 Potential implications

Although they are not directly related to the preparation for cluster constraints, we make

the following interesting observations in the results of this section, mainly Fig. 2.4.

First, the solid straight line in Fig. 2.4 represents the logarithm of the halo mass,

log10Mtrue, at the centre of the transition of the median of Mdyn/Mtrue, and it roughly

separates the haloes into two parts – a screened sample (log10Mtrue well above the line)

and an unscreened sample (log10Mtrue well below the line). From Figs. 2.2 and 2.4 we

notice that even at |f̄R(z)|/(1 + z) = 10−7, corresponding to a strongly screened model,

about half of the haloes (with high ratio Mdyn/Mtrue) with mass Mtrue ∼ 1011h−1M� are

unscreened, and these are haloes which are likely to reside in under-dense regions. The other

half of these haloes (with low ratio Mdyn/Mtrue) are screened, aided by their environments,

implying the importance of environmental screening. It would certainly be interesting to

see if this linear trend goes to even smaller values of |fR(z)|/(1 + z), which will tell us

whether dwarf galaxy haloes can be environmentally screened for those field values. This

will be relevant for astrophysical tests of f(R) gravity (e.g., Jain et al., 2013; Vikram et al.,

2013; Sakstein et al., 2014).

Second, it is interesting that the screening of haloes in models with different fR0 can

be well described by a single parameter: f̄R(z)/(1 + z). This implies that the theoretical

modelling of various other properties in f(R) gravity can perhaps be simplified into a one-

parameter family of description and therefore may have profound theoretical and practical

implications.
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2.6 Summary, discussion and conclusions

The global properties of galaxy clusters, such as their abundance and clustering on large

scales, are sensitive to the strength of gravity and can be predicted accurately using cosmo-

logical simulations. They therefore offer a powerful means of testing alternative models of

gravity, including f(R) gravity, on large scales. In order to utilise the wealth of information

being made available through current and upcoming galaxy cluster surveys, it is important

to ensure that numerical predictions are prepared that can be directly confronted to the

observational data. This includes accounting for various sources of theoretical bias, such as

the enhancement of the dynamical mass of galaxy clusters resulting from the presence of

the fifth force in unscreened f(R) gravity. This effect is currently not included in the deriv-

ations of scaling relations used to determine the cluster mass. The best means of correcting

this would be through a re-calibration of the scaling relations which are better understood

in ΛCDM, and make them work in the context of MG, which requires an understanding of

the relationship between the dynamical mass and lensing mass. However, previous studies

of this relationship in the literature are specific and do not include a general formula that

can be applied to arbitrary model parameters and redshifts.

We have found a simple model to describe the relationship between the dynamical

mass and lensing mass of dark matter haloes in the HS f(R) model. As shown by the solid

line fits of Fig. 2.3, the tanh fitting formula of Eq. (2.17) has generally shown excellent

agreement with ahf halo data, for z < 1, from three ecosmog DMO simulations, which

are summarised in Table 2.1. By taking advantage of the variety of resolutions offered

by these simulations, and using ΛCDM simulations to produce approximate data for field

strengths not covered by the f(R) gravity simulations, the validity of Eq. (2.17) has been

probed vigorously across a wide and continuous range of field values that cover 10−6.5 <

|fR0| < 10−4 within z < 1.

In addition, we have used a simple thin-shell model (Sec. 2.2.1) to predict the be-

haviours of free parameters p1 and p2 in Eq. (2.17), which characterise the inverse width

and the central logarithmic mass of the tanh-like transition respectively. The predictions,
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which neglect the effects of environmental screening due to nearby dark matter haloes, are

given by Eqs. (2.18, 2.19). Using a stringent criterion to exclude unreliable snapshots in

the fitting, the result for p2, shown in Fig. 2.4, is given by Eq. (2.20). The slope value of

1.503 ± 0.006 shows excellent agreement with the prediction of 1.5 by Eq. (2.19), and the

data of Fig. 2.4 shows a clear linear trend as predicted. As shown by Fig. 2.5, the p1 data

is more scattered, but given the size of the one standard deviation error bars, the constant

trend predicted by Eq. (2.18) is not unreasonable, resulting in p1 = (2.21±0.01). As shown

by the dashed line fits of Fig. 2.3, these results for p1 and p2 show good agreement with the

simulation data across the full range of field values and redshifts. We have also repeated

the analysis using a different approach to utilise the errors in the simulation data, and the

results, shown in Appendix A.1, also agree with the thin-shell model prediction very well.

In Appendix A.2 we further argue that the results in this chapter apply to models with

different cosmological parameters such as σ8 and ΩM.

On the other hand, although we make a very specific choice of f(R) gravity in this

chapter, the theoretical model and the procedure we followed to calibrate it are expected

to be applicable to general chameleon gravity theories (Gronke et al., 2015, 2016). As

discussed briefly in Appendix A.2, in other f(R) models the transition between screened

and unscreened regimes can be different from the Hu and Sawicki (2007) model with n = 1,

which may cause the exact fitted values of pi to differ from what we presented in the

above. Therefore, other f(R) models may require a re-calibration based on simulations.

However, given that all f(R) models are phenomenological, it is perhaps more sensible to

focus on a representative example, such as that by Hu and Sawicki (2007), to make precise

observational constraints. The pipeline and methodology can then be applied to any other

models following general parameterisation schemes (e.g., Brax et al., 2012b,a; Lombriser,

2016), which are useful for capturing the essential features of large classes of models using

a few parameters. Should a preferred one emerge, the conclusion for the HS model can

serve as a rough guideline as to what level future cluster observations can constrain scalar-

tensor-type screened theories. For this reason we decide not to explore other forms of f(R)

in this thesis.
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A generic fitting function for the relationship between the dynamical and lensing

masses of dark matter haloes is an essential ingredient of the new framework proposed in

this thesis, to carry out cosmological tests of gravity in an unbiased way. Taking Eq. (2.16)

as an example, our general formula for the dynamical mass enhancement allows us to in-

corporate this particular effect of f(R) gravity into galaxy cluster scaling relations in a

self-consistent way. A key benefit of a fitting function is that it allows a continuous search

through the model parameter space without having to run full simulations for every para-

meter point sampled in MCMC. The results will also be useful for other cluster tests of

gravity that employ the difference between dynamical and lensing masses, such as by com-

paring cluster dynamical and lensing mass profiles, or by looking at measured cluster gas

fractions.

The results presented in this chapter indicate that a simple model sometimes works

surprisingly well despite the greatly simplified treatment of the complicated nonlinear phys-

ics of (modified) gravity. It naturally raises the following question: can other theoretical

or observational properties of dark matter haloes also be modelled accurately, based on

a simplified physical picture and calibrated by numerical simulations? An example is the

relationship between the masses and density profiles of haloes, as mentioned in Sec. 2.3.

This concentration-mass relation is critical for converting between the different halo mass

definitions commonly used in different communities, and a great deal of effort has been

made to explain it in the standard ΛCDM model, while in MG models, such as f(R) grav-

ity, the understanding is still purely numerical and confined to a limited few cases. We will

explore this issue in Chapter 3.

Throughout the analysis in this chapter, we used DMO simulations. The method to

rescale the ΛCDM cluster scaling relations to get scaling relations that apply to MG (He

and Li, 2016), has been tested and validated using non-radiative hydrodynamical simula-

tions. In Sec. 2.3 we argued that adding the full baryonic physics in the simulations will

not substantially change the conclusion, based on previous work on ΛCDM full physics

simulations. We will check this using full hydrodynamical simulations for HS f(R) gravity

in Chapter 4.
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Finally, we note again that a key ingredient of any test of gravity using the cluster

abundance is the ability to predict the HMF for arbitrary model parameters. In this

thesis, we have used the recently-developed HMF fitting formula by Cataneo et al. (2016),

which was calibrated using a subset of simulations (Crystal) used in this chapter. This

formula has 3-5% accuracy for a range of fR0 values between F4 and F6 and for halo

masses above 1013h−1M�, making it ideal for comparing with observed cluster abundances.

A full hydrodynamical simulation can also be useful in understanding how the predicted

abundance of dark matter haloes can change with the inclusion of baryonic physics.

We will test the above-mentioned framework, which incorporates these effects into

model predictions and allows for detailed MCMC searches of the parameter space, in

Chapter 5. Here, the fitting function for Mdyn/Mtrue is also useful for constructing mock

observational data that are used to validate the MCMC model constraint pipelines.
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Chapter 3

A universal model for the halo

concentration in f(R) gravity

3.1 Introduction

In Chapter 2, we presented a general analytical model for the enhancement of the dynamical

mass. This is an important component of our framework for f(R) gravity constraints using

cluster number counts (Fig. 2.1): it is used to predict the dynamical masses of dark matter

haloes in mock catalogues and to convert cluster observable-mass scaling relations that have

been calibrated in ΛCDM into a form that works in f(R) gravity. Another important aspect

of our framework is the ability to make conversions between halo masses corresponding to

different overdensities ∆. For example, in order to constrain f(R) gravity using the cluster

abundance, we require a model-dependent calibration of the HMF, which quantifies the

number density of dark matter haloes per unit mass interval, dnhalo/dM∆. Our choice

of HMF (Cataneo et al., 2016) has been calibrated for overdensity ∆ = 300ΩM(z), while

overdensity ∆ = 500 is more generally used in cluster surveys. Therefore in order to make

constraints using observational data that has been calibrated for overdensity ∆ = 500, it

will be necessary for us to apply the conversionM300m →M500 to the HMF. It is also likely

that conversions to other overdensities will be required. For example ∆ = 2500 is also

sometimes used in observational surveys, and ∆ = 200 is often used in theoretical studies.
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Therefore, a prediction for the conversion between halo masses corresponding to arbitrary

values of ∆ is essential.

The halo mass measured for different overdensities corresponds to the total mass en-

closed by different halo radii R∆, where R∆ is larger for lower values of ∆. Therefore

conversions between the halo mass at different overdensities can be estimated if the density

profile of dark matter haloes can be predicted. Typically the universal NFW density profile

(Navarro et al., 1997) is assumed. This is a 2-parameter profile, but can be written with

one parameter if the mass (or radius) for a particular overdensity is known. This parameter

can be the halo concentration, and predicting it in ΛCDM as a function of the cluster mass

and redshift has been the subject of much work over the two decades since it was first intro-

duced (e.g., Bullock et al., 2001; Neto et al., 2007; Duffy et al., 2008; Dutton and Macciò,

2014; Ludlow et al., 2014).

In addition to facilitating mass conversions the concentration is also important in

studies of the non-linear matter power spectrum (e.g., Brax and Valageas, 2013; Lombriser

et al., 2014; Achitouv et al., 2016; Hu et al., 2018; Cataneo et al., 2018), which, like the

cluster abundance, can also be used to probe dark energy and MG theories. The large-scale

part of the matter power spectrum can, for example, be predicted using linear perturbation

theory by incorporating the linear halo bias. On the other hand, the small-scale part of

the matter power spectrum can be assembled using the HMF and the halo concentration.

The concentration is necessary in order to predict the density profile, which is required, for

example, in order to model the size of haloes.

In f(R) gravity, the concentration can become enhanced due to the effects of the fifth

force on the density profile. For example, for an unscreened halo the in-falling particles

experience a greater acceleration due to the stronger gravitational force, and this can alter

the profile such that the density is raised at the inner regions and lowered at the outer

regions. Therefore, the ΛCDM predictions of the concentration are unlikely to apply for

lower-mass unscreened haloes in f(R) gravity. Yet there is no general quantitative model

for the concentration in f(R) gravity that is discussed in the literature, which instead

tends to focus on a more qualitative understanding of the effects of the fifth force on the
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concentration and on the density profile (e.g., Zhao et al., 2011a; Lombriser et al., 2012; Shi

et al., 2015; Arnold et al., 2016; Arnold et al., 2019a). Therefore, a ΛCDM relation for the

concentration is often used in the literature. For example, the modellings of the non-linear

matter power spectrum in HS f(R) gravity by Brax and Valageas (2013); Hu et al. (2018);

Cataneo et al. (2018) use prescriptions for the concentration-mass relation that have been

calibrated in ΛCDM. Also, due to the large scatter of the concentration-mass relation, some

works (e.g., Cataneo et al., 2015) argue that it is fine to assume a fixed concentration for a

sample of clusters that covers a sufficiently narrow mass range.

In order to prevent potential biases resulting from a simplified treatment of the con-

centration, the focus of this chapter is to produce a general model for the concentration in

HS f(R) gravity (blue dotted box of Fig. 2.1) that may be applied in future studies. Rather

than calibrating a relation for the absolute concentration, we decided to focus on finding

a universal model for the enhancement of the concentration as a function of the halo mass

and redshift. This has been achieved using data from a suite of DMO N -body simulations

run for three models of HS f(R) gravity. Note that we define the enhancement as the ratio

of the f(R) concentration to the concentration in GR. This means that one can select a

ΛCDM concentration-mass-redshift relation from the literature (e.g., Bullock et al., 2001;

Neto et al., 2007; Duffy et al., 2008; Dutton and Macciò, 2014; Ludlow et al., 2014) that

they wish to use, then this can be converted into a form in HS f(R) gravity. Our model

includes a dependence on the cosmological density parameters ΩM and ΩΛ, so any ΛCDM

relation can be used regardless of the values of these parameters. Our model depends on

the particular combination f̄R(z)/(1 + z) where f̄R(z) is the background scalar field at red-

shift z, and does not explicitly depend on the model parameter fR0, i.e., the present-day

background scalar field value, as one would naively expect. This has the implication that

predictions may be made for arbitrary values of fR0 and z (as long as the above combination

is within the range of validity of our fitting). This generality of our model was achieved by

combining data from the different f(R) gravity models by applying a simple transformation

to the halo mass using the p2 parameter defined in Chapter 2, where M500 = 10p2h−1M�

can be considered as the mass above which haloes are screened and below which haloes are
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Parameters and Simulations
models Diamond Jade Crystal arepo

box size / h−1Mpc 64 450 1024 62
particle number 5123 10243 10243 5123

particle mass / h−1M� 1.52× 108 6.64× 109 7.78× 1010 1.52× 108

ΩM 0.281 0.2819 0.281 0.3089
ΩΛ = 1− ΩM 0.719 0.7181 0.719 0.6911

h 0.697 0.697 0.697 0.6774
f(R) models F6 F5 F4, F5, F6 F4, F5, F6

Table 3.1: Specifications of the three ecosmog simulations and the arepo simulation used
in this investigation. The ecosmog simulations are labelled Diamond, Jade and Crystal for
convenience. All simulations have been run for ΛCDM in addition to the HS f(R) gravity
models listed. The Hubble constant, H0, is equal to 100h kms−1Mpc−1 for each simulation.

unscreened.

This chapter is arranged as follows: Sec. 3.2 provides an overview of the DMO N -

body simulations that are used in this chapter, along with an outline of the methods

used to measure the concentration and its enhancement; Sec. 3.3 discusses the results of

this chapter, including the general model for the concentration enhancement; and, finally,

Sec. 3.4 summarises the main conclusions from this chapter, and outlines the next steps of

our framework.

3.2 Simulations and methods

The simulations that we have used to study the concentration are presented in Sec. 3.2.1,

along with the methods that we use to extract their halo data. Our methods to measure

the concentration and its enhancement and a useful technique of rescaling the halo mass

are discussed in Sec. 3.2.2.

3.2.1 Simulations

Our DMO simulations are shown in Table 3.1. Three of these — the Crystal, Jade and

Diamond simulations — were also used in Chapter 2. We also include a simulation that

has been run using the arepo code (Springel, 2010) with its MG solver.
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The cosmological parameters and technical specifications of the simulations are listed in

Table 3.1. The arepo simulation, which is the DM-only subset of the shybone simulation

suite (Arnold et al., 2019b), has the same mass resolution as the Diamond simulation, with

particle mass 1.52 × 108h−1M�, as well as a similar box size of 62h−1Mpc. Together,

the four simulations cover a wide range of halo masses, which is essential in order to

comprehensively study the halo concentration across the full transition between the screened

and the unscreened regimes. The arepo data is particularly useful because it has been run

for all three f(R) gravity models examined in this chapter. Its low particle mass allows

low-mass, unscreened haloes to be studied in all three models, ensuring a more detailed

exploration of the transition between the screened and unscreened regimes. In addition to

this, the similar resolutions of the arepo simulation and Diamond allow a consistency test

of the ecosmog and arepo simulations, which is necessary due to the potential disparities

between the results from these two codes which employ different algorithms and assume

different cosmological parameters.

The simulation data covers redshifts up to at least z = 1 for all simulations. However

redshifts z < 2 and z < 3 have been included for arepo F5 and F4, respectively, as

otherwise the data from these models would only cover the unscreened regime. The dataset

consists of 19 snapshots from Crystal, 33 from Jade and 44 from Diamond. For arepo

there are 46, 37 and 24 snapshots from F4, F5 and F6, respectively.

The halo catalogues that we construct consist of dark matter haloes identified using

the subfind code (Springel et al., 2001) implemented in arepo. This employs a standard

friends-of-friends (FOF) algorithm to identify FOF groups (haloes) and a gravitational un-

binding method to locate the bound substructures (subhaloes) within each group. The

mass and radii of the haloes have been measured for overdensities ∆ = 500 and 200 with

respect to the critical density of the Universe. Two methods that can be used to calculate

the halo concentration (see Sec. 3.2.2.1) also require measurements of the maximum circular

velocity, Vmax, and the corresponding orbital radius, Rmax. The subfind code calculates

these quantities using just the bound particles of the central, dominant subhalo. To a

good approximation, these measurements can be used to represent the maximum circular
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velocity and the corresponding orbital radius for the entire FOF group. We have checked

that within Rmax almost all particles are bound regardless of whether the fifth force is felt

or not.

In order to accurately measure the halo concentration, it is important that the halo

consists of enough particles so that it is well-resolved at both the inner and outer regions.

Therefore in all of our analyses in this chapter we only use haloes with more than 1000

particles contained within R500. This corresponds to minimum halo masses of M500 =

(1.52 × 1011,6.64 × 1012,7.78 × 1013,1.52 × 1011)h−1M� for Diamond, Jade, Crystal and

arepo respectively.

We bin our haloes by M500 (see Sec. 3.2.2.3), and our model for the enhancement of

the concentration is designed to predict the concentration in f(R) gravity as a function of

M500 (see Sec. 3.3.2). The reason for choosing overdensity ∆ = 500 is to be consistent with

Chapter 2, in which M500 was used to study the enhancement of the dynamical mass and,

crucially, to define the parameter p2. As will be discussed later (Sec. 3.2.2.2), the halo mass

can be rescaled by this parameter in order to combine data from snapshots with different

values of |f̄R|/(1 + z).

Various works in the literature which study the halo evolution and aim to model the

concentration as a function of redshift and mass often use relaxed samples (e.g., Neto et al.,

2007). For example, haloes which have undergone recent mergers are unlikely to give reliable

estimates of the concentration. However, we have decided to include all haloes (that satisfy

the above mass criteria) since one of the applications of our results will include matter

power spectrum predictions, which requires the use of all haloes.

3.2.2 Methods

In this section we present the three approaches for measuring the halo concentration that

are used in this chapter (Sec. 3.2.2.1), a useful rescaling of the halo mass (Sec. 3.2.2.2) and

our method of binning the concentration and evaluating its enhancement (Sec. 3.2.2.3).
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3.2.2.1 Concentration measurement

Three methods were considered for the measurement of the halo concentration. The most

accurate is to directly fit the profiles of the haloes using the NFW profile (Navarro et al.,

1997):

ρ(r) = ρs
(r/Rs)(1 + r/Rs)2 , (3.1)

where ρs is the characteristic density and Rs is the scale radius. The concentration is

defined as c200 = R200/Rs. Note that the convention to define the concentration with

respect to overdensity 200 is frequently used by the literature. Therefore we elected to use

this definition, even though our haloes are required to be binned by M500 (see above). This

approach is still consistent because as long as the concentration can be predicted for one

overdensity, it can also be predicted for overdensity 500.

Radial bins that are equally spaced in logarithmic distance from the halo centre were

used to ensure that both the inner and outer regions were equally well-fitted. As shown by

Neto et al. (2007), the choice of radial range over which the profile is fitted can be important.

Resolution effects can occur at the outer less-dense regions of the halo or the innermost

regions where, due to the limited number of particles, the density can be underestimated.

In order to avoid these effects, we chose to calculate the densities of 20 logarithmic radial

bins, spanning distances 0.05R200 to R200 from the halo centre, which is consistent with

the range used by Neto et al. (2007). These densities were fitted using the formula,

log10(ρ) = log10(ρs)− log10(xc200)− 2 log10(1 + xc200), (3.2)

where x = r/R200. This was achieved via unweighted least squares, where ρs and c200 are

allowed to vary independently. The halo concentration was set equal to the optimal value

of c200.

The concentration was originally defined by Navarro et al. (1997) as a parameter of

the NFW profile. Therefore, fitting this profile to individual haloes is the only means of

accurately measuring the concentration in a way that is true to its definition∗. Even for an
∗We note that for the full NFW fitting one can choose to fit the mass profiles instead of the density

profiles of haloes (e.g., Kwan et al., 2013). We consider both cases as full NFW fitting, because they make
use of the whole range of halo radius (neglecting certain regions excluded from the fitting).
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unscreened halo in f(R) gravity, where the density profile can in principle deviate from an

NFW profile, the concentration should still be measured in the same way. However there

are a number of simplified methods that have been adopted in the literature, including

those presented by Prada et al. (2012) (P12) and Springel et al. (2008) (S08), which we

also consider in this chapter. Both methods assume that the halo is well-characterised by

the NFW profile without performing a direct fitting. This allows the concentration to be

predicted with more limited information, which can save time.

The P12 method uses the relation between Vmax and the circular velocity at the halo

radius R200:

V200 =
(
GM200
R200

)1/2
. (3.3)

For the NFW profile the ratio Vmax/V200 is directly related to the halo concentration, c200,

by,
Vmax
V200

=
(0.216c200
f(c200)

)1/2
, (3.4)

where the function f(c) is given by the following:

f(c) = ln(1 + c)− c

(1 + c) . (3.5)

Using only the measurements of Vmax and R200 (orM200), Eqs. (3.3)-(3.5) can be combined

and solved numerically to estimate the concentration.

One challenge of this method that we encountered was that for some haloes in our

sample, V200 > Vmax. Our estimate of Vmax includes only particles bound to the central,

dominant subhalo of the FOF group, while V200 has been calculated using all particles,

bound or unbound, contained within R200. Therefore it is possible that some large sub-

structure found in the outer regions of the halo or some additional unbound particles flying

past the halo could result in this inequality. We did not include P12 measurements of the

concentration for haloes with V200 > Vmax.

Meanwhile the S08 method involves measuring the mean overdensity within Rmax in

units of the present-day critical density, ρcrit:

δV = ρ̄(Rmax)
ρcrit

= 2
(

Vmax
H0Rmax

)2
. (3.6)
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The characteristic NFW overdensity, δc, is then calculated using,

δc = ρs
ρcrit

= 7.213δV, (3.7)

which is related to c200 as follows:

δc = 200
3

c3
200

f(c200) . (3.8)

By starting with a measurement of Vmax (or Rmax), the concentration can be estimated by

combining Eqs. (3.6)-(3.8). Note that this method can be used for all haloes in our sample,

including haloes with V200 > Vmax.

The main distinction between these two simplified methods is that the S08 method

can give a more stable result which is independent of deviations from an NFW profile. This

can be useful for simulations of a low resolution, since the S08 method is only sensitive

to density changes around Rmax and can therefore reproduce the density profile without

too much noise. On the other hand, the P12 method uses information at R200 as well as

Rmax, so if the density profile deviates from an NFW profile outside Rmax then this method

can pick up this effect and yield a different result. So the P12 concentration estimate is

expected to be more likely to agree with a measurement from a full fit of the NFW profile.

Because the density profile is slightly changed by f(R) gravity for unscreened ha-

loes, the differences between the methods will prove to be important for the results (see

Sec. 3.3.1).

3.2.2.2 Rescaled mass

A key aim of this chapter is to be able to predict how the halo concentration is affected in the

screened and unscreened regimes of f(R) gravity. The mass of the transition between these

two regimes can be predicted using the p2 parameter defined in Chapter 2. Therefore it is

useful to rescale the mass by the transformation log10(M500M
−1
� h)→ log10(M500M

−1
� h)−

p2 ≡ log10(M500/10p2), such that negative values correspond to the unscreened regime

and positive values correspond to the screened regime. It is essential to use a halo mass

overdensity of 500 here, as discussed in Sec. 3.2.1. Note that p2 can be measured using

Eq. (2.20), together with Eq. (1.15) which is used to evaluate the background scalar field.
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3.2.2.2. Rescaled mass

Wemotivate the rescaling approach in Fig. 3.1, which shows the stacked density profiles

of the f(R) haloes for four bins of log10(M500/10p2), shown across four panels. The GR

data for the same redshifts is also shown in each panel for a comparison. The density profile

has been scaled by r2 such that it peaks at distance r = Rs from the halo centre. This

allows the concentration to be easily read off from the peak of the data, given that this is

equal to R200/Rs.

The f(R) data in the panel at the top-left corresponds to haloes that are partially

screened. This is because the values of log10(M500/10p2) used are just slightly above zero,

and because the transition from screened to unscreened is smooth and gradual these haloes

are therefore unscreened in the outer, less-dense regions but still screened in the inner,

denser regions. This means that the particles falling towards the intermediate regions from

the outer regions of the halo feel a stronger gravitational pull. However, the particle motions

in the innermost regions of the halo are not affected by the fifth force, since this region is

still screened. Therefore in f(R) gravity the density at the outer regions is lower and the

density at the intermediate regions is greater than in GR, but the density at the innermost

regions is unaffected. This can actually lead to a larger scale radius Rs in f(R) gravity than

in GR, resulting in a lower value of the concentration. However the deviation between the

f(R) and GR density profiles in this regime of log10(M500/10p2) is still quite small.

The top-right and bottom-left panels show regimes in which the entire halo has become

unscreened. It is likely that these haloes have only recently entered the unscreened regime,

since the values of log10(M500/10p2) used are negative but still quite close to zero. Because

the entire halo is now unscreened, the particles within both the inner and outer regions of

the halo feel a stronger pull of gravity and thus fall towards the halo centre with a greater

acceleration. Therefore the density is greater at the inner regions and lower at the outer

regions than in GR. This results in a scale radius Rs that is smaller in f(R) gravity, and so

the concentration is greater than in GR. This regime of log10(M500/10p2) has the greatest

deviation between the f(R) and GR density profiles.

Finally, the bottom-right panel shows data that is deep within the unscreened regime.

This is because the values of log10(M500/10p2) used are negative and much lower than the
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Figure 3.1: Stacked density profile, scaled by r2, measured using the median density profile
of the haloes found within a particular mass bin. The data is from the arepo simulation (see
Table 3.1), run for Hu-Sawicki f(R) gravity with n = 1 (solid line) and GR (dashed line).
Each panel corresponds to a particular value of the present-day scalar field fR0, where F6
and F4 correspond to |fR0| = 10−6 and |fR0| = 10−4, respectively, and a particular redshift
z. The mass bins used cover the same range of halo masses, M500, for the f(R) and GR
data, and each panel corresponds to a unique range of log10(M500/10p2) values (annotated),
where p2 is evaluated with Eq. (2.20) using the values |fR0| and z of that panel.
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values spanned by the top-right and bottom-left panels. Therefore the haloes in this bin

are likely to have been unscreened for a significant period of time. Interestingly, the density

profiles in GR and f(R) gravity are in reasonable agreement in all regions apart from the

innermost region, in which the GR haloes are more dense. One possibility is that in f(R)

gravity the particles that initially fall into the halo centre gain a higher velocity during this

substantial period of enhanced gravitational acceleration (Shi et al., 2015), such that they

are unable to settle into orbits at the innermost regions. As a result the scale radius is

larger in f(R) gravity than in GR, such that the concentration is greater in GR.

From these results, it is clear that the variable log10(M500/10p2) can be a useful measure

of the amount of screening of a halo, and so the model used to predict the enhancement

of the concentration (Sec. 3.3.2) has been measured with respect to this variable. Plotting

all results as a function of this variable also allows the combination of data with different

values of fR0 and z, since these are encapsulated by p2 (see Sec. 3.3).

3.2.2.3 Concentration enhancement

The GR data of each simulation has been outputted at snapshots with the same redshifts

as the f(R) data. Therefore the concentration enhancement of the haloes in a particular

mass bin can be evaluated by first computing the median concentrations using the f(R)

and GR data from that bin, and then taking a ratio of these quantities. The choice of

binning, the measurement of the median concentration and its error, and the evaluation of

the concentration enhancement and its error is discussed in this section.

In order to evaluate the concentration enhancement for the haloes of a particular

snapshot, the absolute concentrations of all haloes in f(R) gravity and GR were measured

using the methods discussed in Sec. 3.2.2.1. The haloes in each model were then binned

by the halo mass M500, with the binning chosen such that all bins are of equal width when

viewed on a logarithmic axis apart from the highest-mass bin, which was allowed to be wide

enough to contain at least 75 haloes in both f(R) gravity and GR. For a given snapshot,

the same bins are used for both the GR and f(R) gravity datasets, and the number of bins

used is the greatest possible number such that each bin contains at least 75 haloes for both
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models.

The decision to use a wider highest-mass bin was taken due to the much smaller halo

count at higher masses. The choice of having at least 75 haloes in each bin ensured that

a balance was found between having enough bins with which to fit a reliable trend and

keeping the errors low for each bin. This decision followed some tests which found that

a minimum of 50 haloes per bin generates bins with a scatter that is too large, while a

minimum of 100 haloes per bin results in very few bins, particularly in the arepo and

Diamond data which do not contain as many haloes as the other simulations.

In each bin, the mean logarithm of the halo mass and the median concentration was

measured for both f(R) gravity and GR. The average of the two mean mass logarithms has

been used to represent the mass of each bin. The error of the median concentration was

evaluated using jackknife resampling (see Chapter 2), with 20 resamples.

Finally, the logarithm of the ratio of the median concentration values in f(R) gravity

and GR, log10 ([c/cGR]200), was evaluated to obtain the concentration enhancement. The

error of the enhancement was measured by combining the median concentration errors

in quadrature to find the error of the ratio, then the error of the logarithm of this ratio.

Treating the errors as independent is justified here because the particle positions in collapsed

structures are uncorrelated in these two simulations even though they start from the same

initial conditions. This data is shown by the symbols in Figs. 3.2 and 3.3 for an arbitrary

selection of snapshots and models for each simulation. Note that the lines plotted in each

panel correspond to predictions from our general model, which is discussed in Sec. 3.3.2.

For each column the snapshots that are shown span the full range of available redshifts

(see Table 3.1). For each bin the concentration enhancement and its error bar has been

measured using the methods discussed above. The use of a wider highest-mass bin in each

snapshot, as discussed above, can also be seen in each panel. Note that the same GR data

is used when measuring the concentration enhancement for different f(R) gravity models

of the same simulation, although the binning scheme that is used may vary slightly.

70



3.2.2.3. Concentration enhancement

0.0

0.1 z = 0.00

AREPO: F4

z = 0.00

AREPO: F5

z = 0.00

AREPO: F6

z = 0.13

z = 0.10

z = 0.06

0.0

0.1 z = 0.28

z = 0.23

z = 0.13

z = 0.45

z = 0.35

z = 0.20

0.0

0.1 z = 0.62

z = 0.49

z = 0.28

lo
g

1
0
([
c/
c G

R
] 2

0
0
) z = 0.83

z = 0.62

z = 0.35

0.0

0.1 z = 1.13

z = 0.83

z = 0.49

z = 1.41

z = 1.02 z = 0.58

0.0

0.1

z = 1.73

z = 1.22 z = 0.68

z = 2.09

z = 1.41 z = 0.78

0.0

0.1 z = 2.49 z = 1.73 z = 0.89

11.5 12.0 12.5 13.0

z = 2.95

11.5 12.0 12.5 13.0

log10(M500M
−1
� h)

z = 2.00

11.5 12.0 12.5 13.0

z = 1.02

Figure 3.2: Ratio of the median concentrations of f(R) gravity and GR as a function of
the halo mass, for F4 (left column), F5 (middle column) and F6 (right column) at various
redshifts, z, as annotated. The parameter p2 is evaluated using the values |fR0| and z of
each panel. The data has been generated from the arepo simulation (see Table 3.1). The
one standard deviation error bars are shown. Predictions have been plotted (solid line)
for most snapshots, and are measured using the fit of Eq. (3.9) to the data of Fig. 3.6. In
panels corresponding to data excluded from the fit, the predictions are shown with dashed
lines.
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Figure 3.3: Ratio of the median concentrations of f(R) gravity and GR as a function of
the halo mass, for F4 (left column), F5 (middle column) and F6 (right column) at various
redshifts, z, as annotated. The parameter p2 is evaluated using the values |fR0| and z of
each panel. The data has been generated using the Crystal, Jade and Diamond ecosmog
simulations (see Table 3.1), for F4, F5 and F6, respectively. The one standard deviation
error bars are shown. Predictions have been plotted (solid lines) for most snapshots, and
are measured using the fit of Eq. (3.9) to the data of Fig. 3.6. In panels corresponding to
data excluded from the fit, the predictions are shown with dashed lines.
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3.3 Results

The results shown in Figs. 3.2 and 3.3 are plotted against the halo mass M500. How-

ever, as discussed in Sec. 3.2.2.2, performing the transformation log10(M500M
−1
� h) →

log10(M500/10p2) converts the mass into a rescaled form in which negative values roughly

correspond to the unscreened regime of halo mass and positive values roughly correspond to

the screened regime. One advantage of this mass rescaling is that the f(R) gravity model,

redshift and cosmological parameters ΩM and ΩΛ are all encapsulated by the p2 parameter

(Eq. 2.20), so plotting against this rescaled mass can allow data from different f(R) gravity

models and even from simulations run for different cosmologies to be combined and plotted

together in order to extract general trends. Note that there is a unique p2 value for every

combination of z, fR0, ΩM and ΩΛ, so, for example, all of the data in a particular panel of

Fig. 3.2 or 3.3 would be shifted by the same amount along the log10(M500M
−1
� h) axis when

applying the transformation to the mass.

We first used this plotting scheme to look into the three methods for measuring the

concentration (see Sec. 3.2.2.1) to see how the choice of measurement can affect the results.

This is discussed in Sec. 3.3.1. Then, focusing on the data produced from performing direct

fitting of the NFW profile to individual haloes, a general model to describe the enhancement

of the halo concentration in f(R) gravity was sought and is discussed in Sec. 3.3.2.

3.3.1 Concentration measurement comparison

The concentration of each halo was measured using each of the three methods presented in

Sec. 3.2.2.1. For each of these measures, the data was binned for every snapshot of each

f(R) model and the concentration enhancement and its error was measured for each bin

using the method discussed in Sec. 3.2.2.3. All of this data was plotted together against

log10(M500/10p2) to yield Fig. 3.4, in which the three panels correspond to the three methods

of measuring c200.

The data from each panel follows a similar general trend. There is approximately zero

enhancement of the concentration in the screened regime, then at lower mass (entering
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Figure 3.4: Ratio of the median concentrations of f(R) gravity and GR as a function of
the rescaled mass, log10(M500/10p2), for F4 (red), F5 (green) and F6 (blue). The plotted
data is from the simulations summarised by Table 3.1, sifted so that only haloes with more
than 1000 particles enclosed within R500 are included. The concentration of each halo has
been calculated using the methods discussed in Sec. 3.2.2.1, namely the methods discussed
by P12 (left) and S08 (middle) and by performing a direct fitting of the NFW profile to
the halo density profiles (right). The one standard deviation error bars are shown.

the unscreened regime) the enhancement rises to a peak at log10(M500/10p2) ≈ −1, before

dropping to a negative enhancement at log10(M500/10p2) . −3, where the GR concentration

exceeds the f(R) concentration. There is also a small dip in the concentration enhancement

for 0 < log10(M500/10p2) < 1. The stacked profiles of Fig. 3.1 and the discussion in

Sec. 3.2.2.2 can provide a physical interpretation of this behaviour.

The most accurate measurement of c200 is by performing a direct fitting of the NFW

profile to the halo profiles, so the panel on the right in Fig. 3.4 is expected to give the most

reliable result. Here, the three f(R) gravity models all show a similar behaviour and even

peak at the same enhancement, which is approximately 0.15. Only the F4 data from the

Crystal simulation shows any deviation from this behaviour, as it appears to have a lower

concentration enhancement than the rest of the data at log10(M500/10p2) ≈ −1. However

the good agreement of most of the data means that a general model can be fitted using a

portion of the data, as discussed in Sec. 3.3.2.

The P12 data reaches the same maximum enhancement of approximately 0.15. How-
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ever, the disparity between the three f(R) models is now greater, with the models each

peaking at a different enhancement. F6 has the highest peak enhancement and F4 has the

lowest peak. Note that the P12 data has a reduced sample which excludes all haloes with

V200 < Vmax (see Sec. 3.2.2.1). The S08 data reaches a greater maximum enhancement of

approximately 0.25, and shows an opposite trend in terms of the order of the models: F4

now has the highest peak enhancement and F6 has the lowest peak.

The difference in the results from the P12 and S08 methods is not surprising, yet it is

significant. As shown in Fig. 3.1, data at log10(M500/10p2) ≈ −1 has a greater density at

the inner regions of the halo and a lower density at the outer regions compared with GR,

due to the enhanced acceleration of the in-falling particles. The S08 method only uses data

from Rmax to measure c200, whereas the P12 method uses data from Rmax and R200. Being

at a smaller distance from the halo centre, the mass enclosed by Rmax is more affected by

the in-fall of particles than the mass enclosed by R200. So Vmax is more affected than V200,

with the result that the S08 method measures a higher f(R) concentration than the other

methods. The P12 method is closer to actually fitting a density profile to the full extent of

the halo, and so it yields a closer result to the full NFW fitting.

These results indicate that the choice of method for measuring the concentration can

be very important in MG models. The three methods discussed in this chapter only agree

perfectly for ideal NFW profiles, and therefore only the direct NFW fitting should be used

for realistic cases. Note that this statement assumes that the halo density profiles in f(R)

gravity can still be well described by the NFW profile, which needs to be checked explicitly

(see below). However, even if NFW is no longer valid, approximate methods such as P12

and S08 should not be used instead of full NFW fitting either as they are derivatives of

the latter. Indeed, using the S08 method in f(R) gravity could lead to a measurement of

the halo concentration that is up to 26% greater than from performing a fit. We therefore

elected to use the direct NFW fitting method for all other results in this chapter. Note that

in Sec. 3.3.2 we include a check of the validity of the NFW profile in f(R) gravity.
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Figure 3.5: Ratio of the median concentrations of f(R) gravity and GR as a function
of the rescaled mass, log10(M500/10p2), for F4, F5 and F6. The plotted data is from
the simulations summarised by Table 3.1, sifted so that only haloes with more than 1000
particles enclosed within R500 are included. The one standard deviation error bars are
shown. The data is coloured by (clockwise from top left) the redshift, the mean number
of particles within R500, the logarithm of a combination of the scalar field and redshift,
|f̄R|/(1 + z), and the fractional difference of chi squared measures generated by NFW fits
of the halo profiles.
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3.3.2 General model for the concentration enhancement

Before applying a fitting formula to the data it was useful to check whether certain factors

could be affecting the shape of the trend, therefore the data was coloured via various

schemes which are shown in Fig. 3.5.

The top-left and top-right panels show the colourings by redshift and the particle

number within each halo, respectively. These can both be viewed as tests of the effect of the

halo resolution. For example, haloes with fewer particles can be prone to resolution effects

at the innermost and outer regions, where the density can be underestimated. Haloes are

less dense and more diffuse at higher redshift, which therefore leads to a greater exposure to

these effects. As discussed in Sec. 3.2.2.1, in an effort to prevent these effects we restricted

the fitting of the NFW profile to the radial range 0.05R200 to R200. Furthermore we only

include haloes that contain at least 1000 particles within R500 in our sample. The coloured

data of Fig. 3.5 suggests that these measures were sufficient, as it can be seen that even

data at z ≈ 3 agrees with the main trend and every part of the trend consists of haloes with

both low and high particle numbers. Therefore even for the F4 Crystal data, low resolution

is unlikely to be the reason for any disparity with the main trend.

It is significant that we are able to use redshifts up to z = 3 for the arepo data. For a

given fR0 value, haloes at high z are more screened than haloes at low z. This is because the

magnitude of the background scalar field f̄R grows as a function of time, such that haloes of

a given mass will eventually go from being screened to unscreened. For f(R) gravity models

with a stronger scalar field (greater |fR0|), haloes at a given redshift are more unscreened

and therefore have a lower log10(M500/10p2) value. However, models that are stronger than

F4 are infeasible given current constraints on f(R) gravity, and the minimum redshift that

is available is z = 0. Therefore the minimum value of log10(M500/10p2) that can be plotted

is only limited by the simulation resolution, as only haloes with lower mass can exist at lower

values of this rescaled mass; similarly, the maximum value of log10(M500/10p2) is limited

by the box size. For each of the f(R) gravity models tested in this analysis, the range

of redshifts used provides a range of log10(M500/10p2) that extends from the lowest value

that is possible at halo mass M500 = 1.52 × 1011h−1M� to values in the screened regime,
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3.3.2. General model for the concentration enhancement

at which there is approximately no enhancement of the concentration compared with GR

and so the concentration is much easier to predict. A weaker model of f(R) gravity would

likely exist close to or within the screened regime for M500 ≥ 1.52× 1011h−1M� at z = 0.

Therefore, given that all three models tested in this chapter show excellent agreement

for −0.5 ≤ log10(M500/10p2) ≤ 0.0, it seems that a fit of this trend should be general for

M500 ≥ 1.52×1011h−1M� for arbitrary values of fR0 that are allowed by current constraints.

For every NFW fit, we stored the χ2 value, which is measured by summing the squared

residuals of the 20 radial bins. Storing the median χ2 value for every mass bin, the GR and

f(R) values of the latter were then combined to generate the fractional χ2 difference. The

bottom-left panel of Fig. 3.5 shows the data coloured by this measure, and can therefore

be seen as a test of the validity of the NFW profile in f(R) gravity. The colouring shows

that the goodness-of-fit of the NFW profile for most haloes in f(R) gravity is within 20% of

the goodness-of-fit in GR. The colour-bar here shows the full range of fractional differences

that were observed in the data, and we note that only a very small minority of haloes have

a χ2 that is almost 90% higher than in GR. These results are promising, and imply that

systematics induced through the fitting of the NFW profile are unlikely to impact on the

scatter of the halo concentration in f(R) gravity.

Finally, the data was coloured by the logarithm of |f̄R|/(1+z), and this is shown in the

bottom-right panel of Fig. 3.5. In Chapter 2 we found that complicated f(R) gravity effects,

including screening, can effectively be described by this useful parameter. It is therefore

useful to see how the enhancement of the halo concentration at screened and unscreened

regimes can depend on this. An interesting observation is that bins with |f̄R|/(1 + z) .

10−4.5 are in excellent agreement with a smooth trend for −4 . log10(M500/10p2) . 3. The

F6 data, which reaches a peak enhancement at z ≈ 0, shows very good agreement with the

F5 data, and both models agree well with the higher-z F4 data. Therefore if a cut is made so

that only data with |f̄R|/(1+z) ≤ 10−4.5 is used in the fitting, then, at least for halo masses

M500 ≥ 1.52 × 1011h−1M�, a general model can be created that applies to arbitrary fR0

values provided |f̄R|/(1 + z) ≤ 10−4.5. For models with |fR0| > 10−4.5 the concentration

enhancement does not follow the same trend, and therefore cannot be described by the
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Figure 3.6: Ratio of the median concentrations of f(R) gravity and GR as a function of the
rescaled mass, log10(M500/10p2), for F4 (red), F5 (green) and F6 (blue). Only data with
|f̄R|/(1 + z) ≤ 10−4.5 has been included and fitted with Eq. (3.9). This fit is shown by the
trend-line, and the optimised parameter values are listed in Table 3.2. The plotted data is
from the simulations summarised by Table 3.1, sifted so that all haloes have at least 1000
particles enclosed within R500. The one standard deviation error bars are shown.

universal fitting formula below. However, we note that models with |fR0| > 10−4.5 have

already been strongly disfavoured by observations.

Cleaning the data to remove bins with |f̄R|/(1 + z) > 10−4.5 and re-plotting yields

Fig. 3.6. This shows a clear trend. As log10(M500/10p2) is reduced from value 3, the con-

centration enhancement, which is initially zero, drops slightly to a negative enhancement.

Continuing into the unscreened regime the enhancement then rises to a distinct peak with

value ≈ 0.15 at log10(M500/10p2) ≈ −1, before dropping down to negative values again for

log10(M500/10p2) . −3. From the discussion in Sec. 3.2.2.2 and the results in Fig. 3.1, the

above behaviour is physical and should therefore be fully included in the fitted model.

In selecting a suitable fitting formula, both the screened and unscreened regimes of the

data were considered. The data in the unscreened part of Fig. 3.6 shows good agreement
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3.3.2. General model for the concentration enhancement

with a skewed Gaussian curve, whose steepness is different on the two sides of the peak.

This requires five parameters: a scaling λ of the height of the curve, a shift γ along the

log10 ([c/cGR]200) axis, a width ωs, a skewness parameter α and a parameter ξs to describe

the location with respect to the log10(M500/10p2) axis. As discussed in Sec. 3.2.2.2 and from

examining the top-left panel of Fig. 3.1, there is a physical motivation that the concentration

should dip slightly at halo masses just greater than 10p2h−1M�. Therefore the model would

have to include a minimum in this regime. This was achieved by multiplying the skewed

Gaussian with a tanh curve, which takes value 1 at low values of log10(M500/10p2) and

drops to value 0 at high values. This induces a further two parameters: a location ξt and a

width ωt with respect to the log10(M500/10p2) axis. The tanh curve also ensures that the

model tends to zero at higher log10(M500/10p2). This model would gradually level out at

log10(M500/10p2) < −4, however this is not necessarily how the concentration enhancement

would behave in this regime. The only way to understand this would be to run higher-

resolution simulations so that lower-mass haloes can be investigated.

By taking the above considerations into account, we arrive at a 7-parameter fitting

formula, which is given by,

y(x) = 1
2

(
λ

ωs
φ(x′)

[
1 + erf

(
αx′√

2

)]
+ γ

)
(1− tanh (ωt [x+ ξt])) , (3.9)

where y = log10 ([c/cGR]200), x′ = (x − ξs)/ωs and x = log10(M500/10p2). The left-hand

bracket of Eq. (3.9) represents the skewed Gaussian curve, where φ(x) is the normal distri-

bution:

φ(x) = 1√
2π

exp
(
−x

2

2

)
. (3.10)

This also includes a multiplication with the error function erf(x′) in order to generate a

skewed curve. The error function is given by,

erf(x) = 2√
π

∫ x

0
e−t

2dt. (3.11)

The fit of Eq. (3.9) to the data of Fig. 3.6 was carried out by minimising the sum of the

squared normalised residuals of the data points, where the residuals have been normalised

by the one standard deviation error bars shown. The sum is evaluated in a way that treats

different parts of the log10(M500/10p2) range equally. This has been achieved by splitting
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3.3.2. General model for the concentration enhancement

λ ξs ωs α γ ωt ξt

0.55± 0.18 −0.27± 0.09 1.7± 0.4 −6.5± 2.4 −0.07± 0.04 1.3± 1.0 0.1± 0.3

Table 3.2: Optimal parameter values and errors from the fit of Eq. (3.9) to the data of
Fig. 3.6. The fit is carried out by first splitting the range of log10(M500/10p2) into 13 equal-
width bins. The squared normalised residuals of the data points are then weighted by the
reciprocal of the number of data points in the current bin. The sum of these is minimised
by varying the parameters.

this range into 13 equal-width bins. The squared normalised residuals are then weighted

by the reciprocal of the number of data points in the current bin, prior to minimising the

sum through varying the parameters. The optimal parameters are listed in Table 3.2 and

the corresponding fit is shown in Fig. 3.6.

We have also considered a weighted least squares fit which neglects the weighting of the

squared normalised residuals described above. This results in a model that produces nearly

identical predictions to the model shown in Fig. 3.6. However, neglecting the weighting of

the squared normalised residuals disfavours parts of the log10(M500/10p2) range that contain

fewer data points, including the arepo F4 data at log10(M500/10p2) . −3. Therefore, we

only include results from the fitting described above.

In order to test our model, its predictions were generated for the data shown in Figs. 3.2

and 3.3. The predictions are shown by the plotted lines. Solid lines are used in snapshots

which were used to generate the fit in Fig. 3.6 and dashed lines are used in snapshots

excluded from the fit (snapshots with |f̄R|/(1 + z) > 10−4.5). Agreement is generally

excellent between the data and the predictions in both figures. Agreement is reasonable

even for the low-z F4 snapshots of arepo that were not used to generate the model, as

can be seen in Fig. 3.2. Some small disparity exists in the higher-z F5 and F6 snapshots,

where the data does not appear to agree with the predicted minimum in the screened

regime. Again, there are probably some physical effects that result in subtly different

trends at different redshifts. However, given the complexity of the behaviour of the halo

concentration in chameleon f(R) gravity and the simplicity of our modelling, the amount

of agreement shown in these figures is indeed very good.
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3.4 Summary, Discussion and Conclusions

In this chapter, a model has been developed for the enhancement of the halo concentration

in HS f(R) gravity with n = 1 using a suite of simulations that are summarised by Table 3.1.

The model is shown in Fig. 3.6, and is given by Eq. (3.9) with the parameter values listed

in Table 3.2. It has been defined in terms of a useful rescaling of the halo mass, M500/10p2 ,

with p2 calculated using Eq. (2.20), such that data from three different f(R) gravity models

can satisfy a universal description. These models have log10(|fR0|) = (−4,−5,−6), and the

fitting was carried out using data from all simulation snapshots with log10
(
|f̄R|/(1 + z)

)
≤

−4.5. This universal description is shown to have very good agreement with simulations

for M500/10p2 covering nearly 7 orders of magnitude, and covering five decades of the halo

mass.

Our model has been tested by comparing its predictions of the enhancement of the

concentration with an arbitrarily chosen set of snapshots from our simulations, as shown by

the lines plotted in Figs. 3.2 and 3.3. These predictions show excellent agreement with the

data for all snapshots, apart from the Crystal snapshots with log10
(
|f̄R|/(1 + z)

)
> −4.5.

This is not surprising given that this data was not used in the fit of the model. Having a

general model that works for log10
(
|f̄R|/(1 + z)

)
≤ −4.5 will prove very useful, particularly

given that an analytical theoretical modelling was not available.

The data of Fig. 3.6 shows that in the unscreened regime the enhancement of the

concentration reaches a distinct peak as a function of the halo mass, but drops to negative

values at lower mass, where the f(R) concentration is less than the GR concentration. As

shown by Fig. 3.1, such negative enhancement occurs because the innermost regions of the

haloes are less dense in f(R) gravity than in GR. This could be caused by the velocity

gained by particles in haloes, which makes it difficult for them to settle into orbits at the

central regions of the halo. Meanwhile in the screened regime of Fig. 3.6 there is a small dip

in the concentration. Fig. 3.1 suggests that this is caused by the halo being only partially

screened, so that outer particles are moved further towards the centre of the halo while the

inner regions remain screened. The density profile is therefore unaffected at the innermost
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regions but is greater at intermediate radii. Therefore the scale radius becomes greater,

and fitting an NFW profile would then result in an estimate for the concentration that is

lower in f(R) gravity than in GR. All of these effects are incorporated by the fitted model

of Eq. (3.9).

Some further investigations were carried out which can be useful for further studies of

the concentration in f(R) gravity, and in other similar MG theories. Firstly, in addition to

applying a direct NFW profile fitting to each of the haloes to measure the concentration,

two simplified approaches were also used, namely the methods that are used by Prada et al.

(2012) and Springel et al. (2008). The resulting enhancement of the concentration from

using these two methods (shown in Fig. 3.4) shows a difference from direct NFW fitting.

This is due to the effects of f(R) gravity on the internal density profile, which means that

the choice of regions of the halo to use in measuring the concentration becomes important.

The method used by Springel et al. (2008) only requires the mass enclosed by the orbital

radius with the maximum circular velocity. Being found at the inner regions of a halo,

which become more dense as the halo becomes unscreened, this results in the concentration

being overestimated by up to 26%. From this, we conclude that only the direct NFW fitting

should be used in f(R) studies. Secondly, we looked at the validity of the NFW profile

fitting in f(R) gravity and found that, as shown by the bottom-left panel of Fig. 3.5, for

most haloes the χ2 measure for the fit is within 20% of the GR measure, and for some haloes

the fit is even better. Therefore the systematic effects caused by fitting the NFW profile

in f(R) gravity are unlikely to have a significant effect on the scatter of the concentration

measure.

The results of this chapter show that the p2 parameter defined in Chapter 2 can indeed

be very useful in the description and modelling of complicated effects in f(R) gravity. In

addition to its relatively simple one-parameter definition, it may also allow the combining of

data generated by simulations run for different cosmological parameters, as p2 encapsulates

the values of ΩM and ΩΛ. Indeed, the data for the concentration enhancement from arepo

and Diamond F6 shows excellent agreement (see Fig. 3.6), even though these two simulations

were run for different cosmological parameters and using very different codes. It will be
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interesting to see where else p2 can be used in f(R) studies. Of particular interest would be

to see how it can simplify the modelling of the HMF. The enhancement of the HMF in f(R)

gravity peaks at a particular halo mass which depends on the strength of the scalar field.

A stronger scalar field allows higher-mass haloes to be unscreened, and therefore results in

an enhancement of the HMF at a higher mass. At the very least, the mass of the peak

enhancement of the HMF can be expected to be strongly correlated to p2. The enhancement

of the matter power spectrum could also be investigated via a similar treatment.

For the results of this chapter, we used data from four different simulations, allowing

a wide range of resolutions to be used. However, one potential drawback is that these are

run for dark matter only. It will therefore be important to test these results using cluster

data from full-physics hydrodynamical simulations run for f(R) gravity.
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Chapter 4

Observable-mass scaling relations in

f(R) gravity

4.1 Introduction

In this chapter, we analyse the effects of f(R) gravity on cluster observable-mass scaling

relations (green dotted box of Fig. 2.1). These are modified by the effects of the fifth force

on the gravitational potentials of haloes, which are intrinsically linked to the dynamical

mass and gas temperature. According to He and Li (2016), who employed a suite of non-

radiative simulations to investigate the effect of f(R) gravity on a number of mass proxies,

it is possible to map between the scaling relations in f(R) gravity and GR using only the

relation between the dynamical and true (or lensing) masses of a halo, which is accurately

captured by our tanh fitting formula (Eq. (2.17)). Here, we test these predictions using non-

radiative hydrodynamic simulations with much higher resolutions, and build upon this by

checking how the addition of full-physics effects such as cooling, star formation and feedback

impact the accuracy. To this end, we make use of the first simulations that simultaneously

incorporate both full-physics and f(R) gravity (Arnold et al., 2019b). In addition, we

propose and test a set of alternative mappings from the scaling relations in GR to their

f(R) counterparts, which again require only our tanh fitting formula. We note that, for this

chapter, our simulations only cover galaxy groups and low-mass clusters (M . 1014.5M�).
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However, in Chapter 8 we will use larger simulations (run using a retuned model for the

baryonic physics) to extend these tests to ∼ 1015M�.

This chapter is organised as follows: in Sec. 4.2, we summarise the scaling relation

mappings proposed by He and Li (2016) and our novel alternative mappings; in Sec. 4.3,

we describe our simulations and calculations of the halo masses and observable proxies;

then, in Sec. 4.4, we present our results for the scaling relations of four mass proxies;

finally, in Sec. 4.5, we summarise the results of this chapter and their significance for our

framework.

4.2 Background

We will study the effects of HS f(R) gravity on the cluster scaling relations for four mass

proxies: the gas temperature Tgas, the X-ray luminosity LX, the integrated SZ flux, given

by the Compton Y -parameter YSZ, and its X-ray analogue YX. These observables have a

one-to-one mapping with the mass because of the link between the gravitational potential

of a cluster and its temperature. During cluster formation, baryonic matter is accreted onto

the dark matter halo from its surroundings. The gravitational potential energy of the gas

is converted into kinetic energy as it falls in. During accretion, the in-falling gas undergoes

shock heating, resulting in the conversion of its kinetic energy into thermal energy. The

resulting self-similar model for cluster mass scaling relations predicts that the gravitational

potential alone can determine the thermodynamical properties of a cluster (Kaiser, 1986).

The X-ray luminosity within radius r from the cluster centre is given by,

LX(< r) =
∫ r

0
dr′4πr′2ρ2

gas(r′)T 1/2
gas (r′), (4.1)

where ρgas(r) is the gas density profile. The YSZ parameter is related to the integrated

electron pressure of the cluster gas, and is given by,

YSZ(< r) = σT
mec2

∫ r

0
dr′4πr′2ne(r′)Tgas(r′), (4.2)

where ne is the electron number density. Meanwhile, the YX parameter (Kravtsov et al.,

2006) is equivalent to the product of the gas mass and the mass-weighted gas temperature,
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T̄gas(< r):

YX(< r) = T̄gas(< r)
∫ r

0
dr′4πr′2ρgas(r′). (4.3)

It has been shown in previous studies (e.g., Fabjan et al., 2011) that YX and YSZ

have comparatively low scatter as mass proxies and are relatively insensitive to dynamical

processes including cluster mergers. It has also been found that their scaling relations

with the mass show good agreement with the self-similar model predictions even after the

inclusion of full-physics effects such as feedbacks, which can heat up and blow gas out from

the central regions (e.g., Fabjan et al., 2011; Truong et al., 2018; Cui et al., 2018).

Because these cluster mass proxies are closely related to the gravitational potential

(and hence the dynamical mass) of clusters, and because in f(R) gravity the dynamical

mass can be cleanly modelled (see Chapter 2), it is natural to expect that cluster observable-

mass scaling relations in f(R) gravity can be modelled given their counterparts in GR. To

study the effects of f(R) gravity on the scaling relations for these proxies, we adopt two

methods which are described in the sections that follow.

4.2.1 Effective density approach

In Chapter 2, we introduced the f(R) gravity effective density field ρeff (He et al., 2014),

which can be expressed in terms of the true density field ρ using Eq. (2.10). The true

density field corresponds to the intrinsic mass of simulation particles. As we discussed, the

mass of haloes computed using the effective density field is equivalent to the dynamical

mass.

Using non-radiative simulations run for the F5 model and GR, He and Li (2016)

generated halo catalogues using the effective density field. The radius, Reff
500, of these haloes

enclosed an average effective density of 500 times the (true) critical density of the Universe.

Both the total true and dynamical mass were computed within this radius, and the cluster

observables were computed using all enclosed gas cells.

Analysing these data, He and Li (2016) found that haloes in GR and f(R) gravity with

the same dynamical mass, MGR = M
f(R)
dyn = Mdyn, also have the same gas temperature:

T f(R)
gas

(
M

f(R)
dyn

)
= TGR

gas
(
MGR = M

f(R)
dyn

)
. (4.4)
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The physical origin of this result is the intrinsic relationship between the gravitational

potential and the gas temperature (see above). Two haloes with the same dynamical mass

Mdyn (which we recall has also been computed within the same radius Reff
500), would also

have the same gravitational potential, φ = (GMdyn)/Reff
500, and are therefore expected to

have the same temperature. The authors also found that, outside the core region, the

gas density profiles of haloes in GR are enhanced by a factor Mf(R)
dyn /M

f(R)
true with respect to

haloes in f(R) gravity which have the same dynamical mass. This is because the gas density

profile follows the true density profile more closely than the effective density profile, which

itself is a result of the fact that clusters form from very large regions in the Lagrangian

space, so that the ratio between the baryonic and total masses within clusters resembles the

cosmic mean, Ωb/ΩM (White et al., 1993). The extra forces in MG theories and feedbacks

from galaxy formation can add further complications to this through their effects on the gas

density profiles, especially in the inner regions; however, as we will show in the following

paragraph, the good agreement between the GR and rescaled f(R) gas density profiles still

holds in the outer halo regions.

We have replicated the procedure adopted by He and Li (2016) using our full-physics

and non-radiative simulations (for full details, see Sec. 4.3). In Fig. 4.1, the stacked tem-

perature and gas density profiles of haloes from mass bins 1013.7M� < Mdyn(< Reff
500) <

1014.0M� and 1013.0M� < Mdyn(< Reff
500) < 1013.3M� are shown in the first and second

columns from the left, respectively. The radial range is shown up to the mean logarithm

of Reff
500 (which is almost exactly the same for GR, F6 and F5). For the non-radiative tem-

perature profiles, shown in the third row, it is clear that the F6 and F5 predictions agree

very well with GR in the outer regions. There is also encouraging agreement for the full-

physics data, although there is a small disparity between F5 and GR in the outer regions

for the higher-mass bin. For the f(R) gravity gas density profiles, the results both with

and without the Mf(R)
dyn /M

f(R)
true rescaling are shown. As was found by He and Li (2016), the

rescaled f(R) gravity profiles (shown by the dashed curves) agree very well with GR in the

outer regions. Again, there is also promising agreement for the full-physics profiles.

These results suggest that for haloes in f(R) gravity and GR which have the same
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Figure 4.1: Median gas density profiles (top two rows) and median temperature profiles
(bottom two rows) of FOF groups from two mass bins: 13.7 < log10 (M/M�) < 14.0 (high-
mass) and 13.0 < log10 (M/M�) < 13.3 (low-mass). The group data from the non-radiative
and full-physics shybone simulations (see Sec. 4.3.1) has been used. In addition to GR (red
solid lines), the profiles for F6 (blue lines) and F5 (green lines) are shown. Rescaled f(R)
gravity profiles (dashed lines) are shown, along with the unaltered profiles (dotted curves).
The rescalings correspond to the effective density (left two columns) and true density (right
two columns) approaches discussed in Sec. 4.2. For the effective approach, the maximum
radius shown is Reff

500 (see Sec. 4.2.1) and the halo massM is the total dynamical mass within
this radius. For the true approach, the maximum radius shown is Rtrue

500 (see Sec. 4.2.2) and
the halo mass M is the total true mass within this radius.
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4.2.1. Effective density approach

dynamical mass, MGR = M
f(R)
dyn , the following relation is expected to apply:∫ r

0
dr′4πr′2

(
ρf(R)

gas
)a (

T f(R)
gas

)b
≈

Mf(R)
true

M
f(R)
dyn

a ∫ r

0
dr′4πr′2

(
ρGR

gas
)a (

TGR
gas
)b
,

(4.5)

where a and b represent indices of power, and we note that ρgas represents the intrinsic

(not effective) gas density. Using Eqs. (4.1)-(4.3) for the mass proxies, this relation can be

applied to derive the following mappings between the respective mass scaling relations in

GR and f(R) gravity:

M
f(R)
dyn

M
f(R)
true

Y
f(R)

SZ

(
M

f(R)
dyn

)
≈ Y GR

SZ
(
MGR = M

f(R)
dyn

)
, (4.6)

M
f(R)
dyn

M
f(R)
true

Y
f(R)

X

(
M

f(R)
dyn

)
≈ Y GR

X
(
MGR = M

f(R)
dyn

)
, (4.7)

Mf(R)
dyn

M
f(R)
true

2

L
f(R)
X

(
M

f(R)
dyn

)
≈ LGR

X
(
MGR = M

f(R)
dyn

)
. (4.8)

Note that to obtain these relations, the two integrations in Eq. (4.5) have used the same

upper limit, r = Reff
500, for GR and f(R) gravity, as mentioned above.

He and Li (2016) demonstrated an accuracy ≈ 3% for the YSZ and YX relations and

≈ 13% for LX. These quantities are all cumulative: they are computed by summing over

the entire volume of a halo up to some maximum radius (in this case Reff
500). Cumulative

quantities typically depend more on the outer regions, which contain most of the volume

and mass, than on the inner regions. Therefore, even though the f(R) gravity profiles

(with appropriate rescaling) do not agree with GR for the inner regions (see Fig. 4.1), this

is expected to have a negligible contribution overall to these mass proxies and explains why

He and Li (2016) found such a high accuracy for these mappings.

In this chapter, we will expand on these tests by using full-physics hydrodynamical

simulations to check how the addition of effects such as cooling and feedback can alter

the accuracy of the mappings defined by Eqs. (4.6)-(4.8) and the temperature equivalence

given by Eq. (4.4). Our tests with the non-radiative runs can also be used as a check for
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consistency with He and Li (2016), who used a different simulation code and f(R) gravity

solver.

4.2.2 True density approach

Mappings can also be done for haloes identified with the true density field. For these haloes,

the radius, Rtrue
500 , would enclose an average true density of 500 times the critical density of

the Universe. For haloes in f(R) gravity and GR with the same true mass, MGR = M
f(R)
true ,

the total gravitational potential at Rtrue
500 in f(R) gravity would be a factor of Mf(R)

dyn /M
f(R)
true

higher than in GR (where both the dynamical and true mass are measured within Rtrue
500 ).

According to the self-similar model predictions, the gas temperature in f(R) gravity is

expected to be higher by the same factor:

T f(R)
gas

(
M

f(R)
true

)
=
M

f(R)
dyn

M
f(R)
true

TGR
gas

(
MGR = M

f(R)
true

)
. (4.9)

On the other hand, for haloes in f(R) gravity and GR with the same true mass, the gas

density profiles are expected to agree in the outer regions.

To check these assumptions, let us once again examine Fig. 4.1, this time looking

at the third and fourth columns from the left, which show the stacked gas density and

temperature profiles for groups in mass bins 1013.7M� < Mtrue
(
< Rtrue

500
)
< 1014.0M� and

1013.0M� < Mtrue
(
< Rtrue

500
)
< 1013.3M�, respectively. The radial range is shown up to the

mean logarithm of Rtrue
500 for all profiles. Referring to the bottom two rows, which show the

non-radiative and full-physics temperature profiles, it appears that the f(R) gravity profiles

with the Mf(R)
dyn /M

f(R)
true rescaling (shown by the dashed curves) show reasonable agreement

with GR in the outer regions. Again, the only exception is for the high-mass bin of the

full-physics data, where there is a small disparity between F5 and GR. Looking at the top

two rows, the f(R) gravity gas density profiles agree very well with GR in the outer-most

regions for both mass bins.

These results for the temperature and gas density profiles yield the following predic-
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tions for haloes in GR and f(R) gravity with MGR = M
f(R)
true :∫ r

0
dr′4πr′2

(
ρf(R)

gas
)a (

T f(R)
gas

)b
≈

Mf(R)
dyn

M
f(R)
true

b ∫ r

0
dr′4πr′2

(
ρGR

gas
)a (

TGR
gas
)b
,

(4.10)

where this time the two integrations both have upper limit r = Rtrue
500 . This prediction yields

the following new mappings between the mass scaling relations in f(R) gravity and GR:

Y
f(R)

SZ

(
M

f(R)
true

)
≈
M

f(R)
dyn

M
f(R)
true

Y GR
SZ

(
MGR = M

f(R)
true

)
, (4.11)

Y
f(R)

X

(
M

f(R)
true

)
≈
M

f(R)
dyn

M
f(R)
true

Y GR
X

(
MGR = M

f(R)
true

)
, (4.12)

L
f(R)
X

(
M

f(R)
true

)
≈

Mf(R)
dyn

M
f(R)
true

1/2

LGR
X
(
MGR = M

f(R)
true

)
. (4.13)

For the YSZ and YX mappings, the Mf(R)
dyn /M

f(R)
true factor comes from the dependence on

the gas temperature to power one in Eqs. (4.2) and (4.3). On the other hand, the X-

ray luminosity, given by Eq. (4.1), depends on the gas temperature to power half, which

means that the corresponding f(R) gravity and GR scaling relations are expected to differ

by factor
(
M

f(R)
dyn /M

f(R)
true

)1/2
only. In Sec. 4.4, we show the results of our tests of these

alternative predictions using both our non-radiative and full-physics simulations.

In this section, we have referred to two different definitions of the halo radius: Reff
500 and

Rtrue
500 . The radius Reff

500 is defined in terms of the effective density field. For an unscreened

halo in f(R) gravity, the effective density is up to 4/3 times greater than the true density.

As such, Reff
500 is typically a higher radius than Rtrue

500 for haloes in f(R) gravity. On the

other hand, the two radii are exactly the same in GR, where the effective density field is

equivalent to the true one.

4.3 Simulations and methods

In Sec. 4.3.1, we describe the non-radiative and full-physics simulations that are used in

this chapter. Then, in Sec. 4.3.2, we describe how we have measured the cluster mass and
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four observable mass proxies from these simulations.

4.3.1 Simulations

The results discussed in this chapter were generated using a subset of the shybone sim-

ulations (Arnold et al., 2019b; Hernández-Aguayo et al., 2020). These full-physics hydro-

dynamical simulations, which have been run using arepo (Springel, 2010), employ the

IllustrisTNG galaxy formation model (Weinberger et al., 2017; Pillepich et al., 2018c) and

include runs for GR, HS f(R) gravity and nDGP (we will only use the GR and f(R) runs

in this chapter).

For every full-physics run used in this chapter, we also utilise a non-radiative coun-

terpart which does not include cooling, star formation or stellar and black hole feedback

processes. Both the full-physics and non-radiative simulations span a comoving box of

length 62h−1Mpc. These runs each start with 5123 dark matter particles and the same

number of initial gas cells, and begin at redshift z = 127. All results in this chapter are

computed at z = 0. The cosmological parameters have values (h, ΩM, Ωb, ΩΛ, ns, σ8)

= (0.6774, 0.3089, 0.0486, 0.6911, 0.9667, 0.8159), where ns is the power-law index of the

primordial density power spectrum. The mass resolution is set by the DM particle mass

mDM = 1.28 × 108h−1M� and an average gas cell mass of mgas ≈ 2.5 × 107h−1M�. In

addition to GR, the runs include the F6 and F5 HS models, all starting from identical

initial conditions at z = 127.

In the calculation of the gas temperature, we have assumed that the primordial hy-

drogen mass fraction has a value XH = 0.76 and set the adiabatic index to γ = 5/3 (for a

monatomic gas). For the non-radiative simulations we assume that the gas is made up of

fully ionised hydrogen and helium.

4.3.2 Group catalogues

The group catalogues were constructed using subfind (Springel et al., 2001), which locates

the gravitational potential minimum of the FOF groups using the true density field. For

each group, both radii Rtrue
500 and Reff

500 were computed around the gravitational potential
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4.3.2. Group catalogues

minimum, enclosing, respectively, average true and effective densities of 500 times the

critical density of the Universe. For each radius definition, the total enclosed dynamical

and true masses were measured, in addition to the group observables. Quantities measured

within Reff
500 have been used to test the scaling relation mappings from the effective density

approach described in Sec. 4.2.1, while the quantities measured within Rtrue
500 have been used

to test the predictions of the true density approach discussed in Sec. 4.2.2.

In the computation of the halo temperature, we have excluded the core regions in which

the complex thermal and dynamical processes during cluster formation and evolution can

lead to a significant degree of dispersion between the halo temperature profiles. We have

set the core region to the radial range r < 0.15R, where R can be either Reff
500 or Rtrue

500 .

This range is consistent with previous studies of cluster scaling relations (e.g., Fabjan et al.,

2011; Le Brun et al., 2017; Truong et al., 2018).

The halo gas temperature has been computed using a mass-weighted average:

T̄gas =
∑
imgas,iTi∑
imgas,i

, (4.14)

where mgas,i and Ti are, respectively, the mass and temperature of gas cell i. The sum-

mations have been performed over all gas cells whose positions fall within the radial range

0.15R < r < R. The integrated SZ flux is given by:

YSZ = σT
mec2

∑
i

Ne,iTi, (4.15)

where Ne,i is the number of electrons in gas cell i and the sum includes the same cells as

for T̄gas. The X-ray analogue of the integrated SZ flux is equal to the product of the total

gas mass Mgas, of all gas cells within R500, and T̄gas:

YX = Mgas × T̄gas. (4.16)

Finally, the X-ray luminosity is calculated using:

LX =
∑
i

mgas,iρgas,iT
1/2
i , (4.17)

where ρgas,i is the gas density of gas cell i and the summation is performed over the same

gas cells as for the T̄gas calculation.
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4.4. Results

4.4 Results

In Sec. 4.4.1, we discuss our results for the cluster scaling relations in HS f(R) gravity.

Then, in Sec. 4.4.2, we test the validity of our analytical tanh formula for the dynamical

mass enhancement, given by Eq. (2.17), in the presence of full physics. There we will also

present an example in which we map between the GR and f(R) mass scaling relations based

on this approximate fitting formula, rather than the actual values of Mf(R)
dyn /M

f(R)
true from

the simulations. Finally, in Sec. 4.4.3, we propose a new test of gravity using the YX-T̄gas

relation, which does not require inferences of the cluster mass.

4.4.1 Scaling relations

Using our simulation data, we have tested the scaling relation mappings described in

Sec. 4.2. Due to the small box size, 62h−1Mpc (comoving), of our simulations, we can only

examine haloes with mass M500 . 1014.5M�. We show all objects with M500 ≥ 1013M�

(groups and clusters) in Figs. 4.2–4.5, which typically includes ∼ 100 haloes for a given

model. Note that it is difficult to rigorously test our scaling relation mappings for the

cluster regime (M500 & 1014M�), where there are only 5-10 haloes in the present simula-

tions. However, for F5, groups are typically unscreened and low-mass clusters are partially

screened, while for F6 low-mass groups are partially screened and higher-mass objects are

completely screened; haloes with M500 & 1014.5M� will be mostly screened for F5 and

entirely screened for F6 (see, e.g., Fig. 4.6 below and Fig. 2.3). Therefore, while we do

not have a significant number of such large cluster-sized objects, we do expect the scaling

relations calibrated for GR to be valid for them.

In addition to showing data points for individual haloes, all plots include curves show-

ing a moving average. This is computed using a moving window of fixed size equal to 10

haloes, for which the mean logarithm of the mass and the median proxy are displayed. We

note that the highest-mass haloes have been included in the moving average, even though

the highest mean mass is only ∼ 1014M�. We also show sub-plots with the smoothed relat-

ive difference between the f(R) and GR curves, as well as the halo scatter in GR. The latter
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4.4.1.1. Temperature scaling relations

is computed by fitting a linear model to the GR data and computing the root-mean-square

residuals within mass bins.

For the panels labelled ‘effective’ in Figs. 4.2–4.5, all measurements of the mass and

observables have been taken within Reff
500 (see Sec. 4.2.1), and the relations are plotted

against the dynamical mass. This allows the effective density mappings given by Eqs. (4.4)

and (4.6)-(4.8), originally proposed by He and Li (2016), to be tested. On the other hand,

an outer radius Rtrue
500 (see Sec. 4.2.2) is imposed for all measurements for the data displayed

in the panels labelled ‘true’. These are plotted against the true mass, and can be used to

test the true density mappings given by Eqs. (4.9) and (4.11)-(4.13).

4.4.1.1 Temperature scaling relations

The results for the gas temperature scaling relations are shown in Fig. 4.2. The non-

radiative data is displayed in the left two columns and the full-physics data is shown in the

right two columns. For all models and hydrodynamical schemes, the data follows a power-

law behaviour, as expected from the self-similar model. The correlation is particularly

tight for the non-radiative data, with an overall scatter of 7%. The non-radiative runs

contain gas and dark matter particles, but do not feature baryonic processes (apart from

basic hydrodynamics) such as radiative cooling, stellar and black hole feedback and star

formation. It is therefore expected that the thermodynamical properties can be largely

determined from the gravitational potential, which is observed in the results. On the other

hand, there is ∼ 10% overall scatter in the full-physics data, and the gas temperature is

typically higher. This can be explained by the inclusion of feedback mechanisms which act

as an additional source of heating of the surrounding gas and cause some departures from

self-similarity. These mechanisms have a stronger effect on lower-mass haloes, resulting in

a particularly high (10-20%) scatter for these objects.

For the effective density approach, Eq. (4.4) is expected to hold: the temperature is

predicted to be equal for haloes in GR and f(R) gravity with the same dynamical mass. In

Fig. 4.2, the non-radiative and full-physics results from our effective catalogue are shown in

the first and third columns from the left, respectively. For both F6 and F5, there is excellent
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Figure 4.2: Gas temperature plotted as a function of mass for FOF haloes from the non-
radiative and full-physics shybone simulations (see Sec. 4.3.1). The curves correspond
to the median mass-weighted temperature and the mean logarithm of the mass computed
within a moving window of fixed size equal to 10 haloes. Data has been included for GR
(red solid lines) together with the F6 (blue lines) and F5 (green lines) f(R) gravity models.
Rescalings to the f(R) gravity temperature have been carried out as described in Secs. 4.2.1
and 4.2.2. For the ‘true’ density approach, the rescaled data (dashed lines) is shown along
with the unaltered data (dotted lines). For this data, the mass corresponds to the total
true mass within the radius Rtrue

500 , and the temperature has also been computed within this
radius. For the ‘effective’ density approach, no rescaling is necessary, the mass corresponds
to the total dynamical mass within Reff

500, and the temperature has also been computed
within this radius. Data points are displayed, with each point corresponding to a GR halo
(red points) or to a halo in F6 (blue points) or F5 (green points), including the rescaling
for the ‘true’ density data. Bottom row: the smoothed relative difference between the f(R)
gravity and GR curves in the above plots; the red shaded regions indicate the size of the
halo scatter in GR.
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agreement with the GR data, with typical agreement . 5%. This agreement for the non-

radiative data backs up the findings from He and Li (2016), while the full-physics results

do not show clear evidence for a departure from Eq. (4.4) caused by feedback processes and

cooling. These results agree with the self-similar model predictions: two haloes in f(R)

gravity and GR which have the same dynamical mass Mdyn (and therefore the same radius

Reff
500) also have the same gravitational potential, φ = GMdyn/R

eff
500.

In order to test the new mappings predicted by the true density approach, the tem-

perature of each halo in f(R) gravity has been divided by the mass ratio Mf(R)
dyn /M

f(R)
true . In

Fig. 4.2, both the data for individual haloes and corresponding moving averages are shown

with this rescaling applied (dashed lines), along with the moving averages for the unaltered

data (dotted lines). It is expected, from Eq. (4.9), that the data with the rescaling should

agree with GR. For the non-radiative results in the second column, this indeed appears to

be the case, with an excellent agreement that is generally within just a few percent. For

the full-physics data there is still reasonable . 10% agreement, but the F5 temperature

appears to be lower than the GR temperature for log10
[
Mtrue

(
< Rtrue

500
)
/M�

]
& 13.5.

This small deviation is consistent with the full-physics temperature profiles shown

in Fig. 4.1. The plots in the bottom right of that figure show the temperature profiles

with the Mf(R)
dyn /M

f(R)
true rescaling applied. The profiles are shown for the halo mass bins

1013.7M� < Mtrue
(
< Rtrue

500
)
< 1014.0M� and 1013.0M� < Mtrue

(
< Rtrue

500
)
< 1013.3M�. For

the high-mass full-physics profiles, the rescaled F5 profile is clearly lower than the profile

in GR across most of the radial range. This can explain the lower rescaled F5 temperature

observed at the high-mass end of the full-physics data. On the other hand, for the lower-

mass bin with full-physics and for the non-radiative data the agreement between the rescaled

f(R) gravity and GR temperature profiles is very good, particularly at the outer radii which

have greater overall contribution to the mass-weighted temperature. Similar agreement is

shown between the f(R) gravity and GR profiles for the plots in the bottom-left of Fig. 4.1.

Again, for the high-mass full-physics data there is some deviation between F5 and GR,

particularly in the outermost regions. But this is not as noticeable as for the profiles with

the true density rescalings.
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Figure 4.3: Compton Y -parameter of the SZ effect plotted as a function of mass for FOF
haloes from the non-radiative and full-physics shybone simulations (see Sec. 4.3.1). Apart
from the YSZ parameter being shown rather than the mass-weighted temperature, the layout
of this figure is otherwise identical to Fig. 4.2. The rescalings of the f(R) YSZ data are
carried out as described in Sec. 4.2.

The small difference between F5 and GR is likely to be caused by a difference in the

levels of feedback – which itself is determined by the interrelations between modified gravity

(including screening or the lack of it) and baryonic physics – in these higher-mass haloes

for the two models. Encouragingly, this appears to have only a small effect on the effective

density data, where there is good agreement between F5 and GR for high-mass groups.

However, the effect is greater for the true density data. To understand the implications

that this could have on tests of gravity using the cluster regime, we will need simulations

with a larger box size. This will be addressed in Chapter 8, where we will use a re-calibrated

full-physics model to probe masses up to M500 ∼ 1015M�.
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Figure 4.4: X-ray analogue of the Compton Y -parameter plotted as a function of mass for
FOF haloes from the non-radiative and full-physics shybone simulations (see Sec. 4.3.1).
Apart from the YX parameter being shown rather than the mass-weighted temperature, the
layout of this figure is otherwise identical to Fig. 4.2. The rescalings of the f(R) YX data
are carried out as described in Sec. 4.2.

4.4.1.2 YSZ and YX scaling relations

Our results for the YSZ and YX scaling relations are shown in Figs. 4.3 and 4.4. The YSZ and

YX parameters are, by definition, tightly correlated. Their results therefore follow similar

patterns, and both show very tight correlations with the halo mass, with a scatter of ∼ 8%

and ∼ 19% for the non-radiative and full-physics data, respectively. There are also no

clear outliers in the full-physics data, unlike for the temperature and the X-ray luminosity

data (see below). This is because of the competing effects of feedback processes on the gas

density and gas temperature (Fabjan et al., 2011). Comparing the non-radiative and full-

physics profiles in Fig. 4.1, it can be seen that the additional processes in the full-physics

runs cause haloes to have a lower gas density, particularly at the inner regions, and a higher

gas temperature. This is caused by stellar and black hole feedbacks, which generate high-
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4.4.1.2. YSZ and YX scaling relations

energy winds that heat up the surrounding gas and blow it out from the central regions.

Such competing effects are approximately cancelled out in the product of the gas density

with the gas temperature, as in Eqs. (4.2) and (4.3).

In order to test the mappings predicted by the effective density approach, given by

Eqs. (4.6) and (4.7), the YSZ and YX values measured for f(R) gravity have been multiplied

by the mass ratio Mf(R)
dyn /M

f(R)
true . For the non-radiative plots in Figs. 4.3 and 4.4, there is

excellent agreement between this rescaled data and GR. There is also a strong agreement for

the higher-mass full-physics data. For the mass range 13.2 < log10(Mdyn(< Reff
500)M−1

� ) <

13.5, however, there is some disparity of . 20% between the rescaled F5 data and GR.

A similar level of accuracy is observed for the mappings given by Eqs. (4.11) and

(4.12), which are predicted by the true density approach. To test these, YSZ and YX are

divided by Mf(R)
dyn /M

f(R)
true to generate rescaled data for F6 and F5. Again, this data shows

excellent agreement, within a few percent, with GR for the non-radiative simulations and

the high-mass end of the full-physics data. But for the lower-mass full-physics data there

is a significant disagreement between F5 and GR of up to ∼ 30%, which is higher than for

the effective density rescalings.

The disparities found in the low-mass full-physics data can be explained using Fig. 4.1.

Looking at the full-physics profiles for the true density mass bins, it is observed that for a

large portion of the inner halo regions the gas density is higher in F5 than in GR. These

profiles converge at r ≈ 102.5kpc for both mass bins. The high-mass haloes have higher

overall radius Rtrue
500 , which means that the profiles are converged for a large portion of the

outer radii. This means the disparities at lower radii have a negligible overall contribution

to the integrals for YSZ and YX. But for the lower-mass haloes, the profiles are converged

only for a small portion of the overall radius range, causing YSZ and YX to be greater in F5

than in GR. A similar reasoning can be used to explain the disparities for the results with

the effective density rescaling, although the difference in agreement at the outer regions for

each mass bin is not quite as substantial here, which explains why the full-physics data for

the effective density approach shows less overall deviation between F5 and GR in Figs. 4.3

and 4.4.
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Figure 4.5: X-ray luminosity plotted as a function of the mass for FOF haloes from the
non-radiative and full-physics shybone simulations (see Sec. 4.3.1). Apart from the X-
ray luminosity being shown rather than the mass-weighted temperature, the layout of this
figure is otherwise identical to Fig. 4.2. The rescalings of the f(R) LX data are carried out
as described in Sec. 4.2.

The difference between the full-physics f(R) and GR scaling relations at low mass

is likely to be explained by baryonic processes such as feedback which are absent in the

non-radiative simulations. However, in studies of clusters, these lower-mass groups are of

less interest. The strong agreement at the higher masses is therefore very encouraging for

our framework to constrain f(R) gravity using the high-mass end of the halo mass function.

4.4.1.3 X-ray luminosity scaling relations

The results for the X-ray luminosity scaling relations are shown in Fig. 4.5. Compared

with the temperature, YSZ and YX data, the X-ray luminosity is much more scattered, with

particularly large dispersion in lower-mass haloes and ∼ 25% scatter at higher masses.

One explanation for this is that the X-ray luminosity, defined in Eq. (4.1), depends on
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the gas density to power two. This means that the inner regions of the group, which

have a higher gas density than the outer regions, have a greater overall contribution to

the LX integral than for the other observables discussed in this chapter. The inner halo

regions are expected to be more impacted by unpredictable dynamical processes during

cluster formation, including halo mergers. In particular, they are more prone to gas heating

and blowing-out of gas caused by feedback mechanisms. While the competing effects of

these processes on the gas density and gas temperature roughly cancel for the YSZ and YX

observables, this is not the case for LX, which depends on the gas density to power two and

the gas temperature to power half. This results in a number of significant outliers, as can

be seen in the full-physics data of Fig. 4.5.

For the mapping defined using the effective density field, given by Eq. (4.8), it has

been expected that the GR X-ray luminosity should be equal to the f(R) gravity value

multiplied by the factor
(
M

f(R)
dyn /M

f(R)
true

)2
. From Fig. 4.5, the rescaled data in F5 appears

to be higher than in GR by ∼ 30% on average for both the non-radiative and the full-physics

simulations. A similar level of deviation is also observed for the true density results, where

Eq. (4.13) predicts that the GR and f(R) gravity X-ray luminosity should be equal after

the values in f(R) gravity are divided by the factor
(
M

f(R)
dyn /M

f(R)
true

)1/2
. Again, the rescaled

F5 X-ray luminosity is significantly greater than in GR on average.

As for the YSZ and YX mappings, the disparity found here can be explained by looking

at the gas density profiles in Fig. 4.1. For both the non-radiative and full-physics data, the

gas density in the inner halo regions is greater for F5 (with appropriate rescaling applied)

than for GR. Because the inner regions have a greater contribution to the X-ray luminosity

than for other proxies, as described above, this causes these differences in the inner regions

to become significant overall, even for the non-radiative data for which the F5 and GR

profiles are converged above a lower radius. This results in the general offset for the full

range of masses as shown in Fig. 4.5. As described above, the X-ray luminosity is also more

strongly influenced by feedback processes, which can further increase the offset between F5

and GR if the feedback behaves differently in these two models.

Our observation that the mappings have a poorer performance for the X-ray luminosity
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than for the other proxies is consistent with He and Li (2016), who observed a disparity of

∼ 13%. Unless further corrections are applied to account for the unpredictable effects of

feedback in the mappings, therefore, the X-ray luminosity is unlikely to be a reliable proxy

for mass determination in accurate cluster tests of f(R) gravity.

4.4.1.4 Further comments

As described in Sec. 4.3.2, we have excluded the core region of r < 0.15R500 when calculating

the thermal properties of our simulated FOF groups. We have also experimented excluding

core regions of size r < 0.1R500 and r < 0.2R500: for the scaling relations YSZ-M , YX-M and

T̄gas-M , the relative differences between f(R) gravity and GR are barely affected; on the

other hand, the effect is larger for the LX-M scaling relation, because LX is more sensitive

to the inner halo regions than the other proxies. However, the LX-M relation is not ideal

for reliable tests of gravity anyway, as noted above, and is mainly included in this thesis for

completeness and for comparison with the other relations. Even if the entire core is included

in the calculations, we have found that the effect on the YSZ-M and YX-M results is still

very small, providing further confirmation that these relations can be used for reliable tests

of gravity.

The scatter of the full-physics GR scaling relations shown in Figs. 4.2–4.5 is typically

higher than the scatter quoted in recent studies that have also used simulations which

include star formation, cooling and stellar and black hole feedback. For example, we observe

a root-mean-square dispersion of ∼ 19% for the YSZ-M and YX-M relations, while Le Brun

et al. (2017) and Truong et al. (2018) reported ∼ 10% and ∼ 15%, respectively. This is

likely to be caused by our restricted halo population (modified gravity simulations are much

more computationally expensive than their standard gravity counterparts which limits the

affordable box-size and resolution), which contains a large number of low-mass groups that

are more susceptible to feedback. Our results suggest that the T̄gas-M relation has the

lowest scatter and the LX-M relation has the highest scatter, and this is consistent with

the above works.
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Figure 4.6: Ratio of the dynamical mass to the true mass of haloes plotted as a function
of the true mass. The data points correspond to FOF haloes from the non-radiative and
full-physics shybone simulations (see Sec. 4.3.1 for details). Data is included for F6 (blue)
and F5 (green). For the data labelled ‘effective’, the dynamical and true mass have been
measured within the radius Reff

500 (defined in Sec. 4.2.1), while the radius Rtrue
500 (defined in

Sec. 4.2.2) has been used for the data labelled ‘true’. Analytical predictions for the mass
enhancement have been computed using Eq. (2.17) and are shown (dashed curves) for each
model.

4.4.2 Halo mass ratio calculation

For the results discussed in Sec. 4.4.1, the rescalings to the observables in f(R) gravity have

been computed using direct measurements of the true mass and the dynamical mass from

the simulations. However, for studies of clusters using real observations, measurements

of both the true mass and dynamical mass are unlikely to be available. In this case, our

analytical model for the ratio of the dynamical mass to the true mass, given by Eq. (2.17),

can be used.

This model was calibrated using a suite of DMO simulations. To check how it performs

for data that includes full physics, we have plotted the model predictions on top of actual

measurements of the dynamical mass enhancement for the FOF groups in the shybone

simulations. This is shown in Fig. 4.6. Data for both the effective density and true density

catalogues have been included, for which the dynamical and true halo masses have been

measured within Reff
500 and Rtrue

500 , respectively. We have made use of all available data with

Mtrue > 1013M�, including haloes with Mtrue ∼ 1014.5M�. These results indicate that

there is very good agreement between the analytical predictions and the actual data for

both F6 and F5, regardless of the hydrodynamical scheme that is employed. Interestingly,
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Figure 4.7: X-ray analogue of the Compton Y -parameter plotted as a function of the mass
for FOF haloes from the non-radiative and full-physics shybone simulations (see Sec. 4.3.1).
The layout and format of this figure are identical to those of Fig. 4.4. The results shown
here are also mostly the same as for Fig. 4.4, however the rescalings of YX in the f(R)
gravity data have been generated using the analytical tanh formula given by Eq. (2.17).

even though Eq. (2.17) was originally calibrated using measurements of the dynamical and

true mass within Rtrue
500 , it still performs very well for data measured within Reff

500, which is

typically a higher radius.

We have also tested the mappings of Eqs. (4.7) and (4.12) for the YX parameter, with

Eq. (2.17) used to compute the required rescalings to the f(R) gravity data. This is shown

in Fig. 4.7. From comparing this plot with Fig. 4.4, it can be seen that there is almost

no difference in the rescaled data in both figures. This confirms that Eq. (2.17) can be

applied to derive the mappings between GR and f(R) scaling relations for, at least, the

mass range 1013M� < M500 < 1014M�. Given the very good agreement up to 1014.5M�

shown in Fig. 4.6, it is expected that our formula can be applied in the cluster regime as

well. However, this should be tested more rigorously using full-physics simulations with a
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Figure 4.8: The X-ray analogue of the Compton Y -parameter plotted as a function of
the mass-weighted temperature for FOF haloes from the non-radiative and full-physics
shybone simulations (see Sec. 4.3.1). The curves correspond to the median YX versus
the mean logarithm of the temperature computed within a moving window of fixed size
equal to 10 haloes. Data has been included for GR (red solid lines) together with the F6
(blue lines) and F5 (green lines) f(R) gravity models. YX and the temperature have been
computed within the radius Rtrue

500 (see Sec. 4.2.2). Data points are displayed, with each
point corresponding to a GR halo (red points), or to a halo in F6 (blue points) or F5 (green
points). Bottom row: the smoothed relative difference between the f(R) gravity and GR
curves in the above plots; the red shaded regions indicate the size of the halo scatter in GR.

larger box size.

4.4.3 YX-temperature scaling relation

So far, we have only considered scaling relations that can be used to infer the cluster mass,

which is a vital ingredient for tests of gravity that use the cluster abundance (Fig. 1.2).

However, tests of gravity can also be conducted using the relations themselves. For example,

Hammami and Mota (2017); Del Popolo et al. (2019) used the temperature-mass scaling

relation to probe screened MG models. The cluster mass can be determined using other

observations, such as weak lensing, making such scaling relations observable, and our full-

physics results (Figs. 4.2–4.4) confirm that the T̄gas-M and YX-M (and YSZ-M) relations

can be used as reliable probes on group and cluster scales, with differences between GR

and F5 in the range 20-50% (when no rescaling is applied).

However, scaling relations which do not involve the mass can also be modelled and used.
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In Fig. 4.8, we show the scaling relation between the YX parameter and the gas temperature,

where both observables have been computed within the radius Rtrue
500 . A significant relative

difference of 30-40% is observed between the GR and F5 models for both the non-radiative

and full-physics data, indicating that this relation can offer a powerful test of gravity using

group- and cluster-sized objects. A key advantage of using the YX–T̄gas (or YSZ–T̄gas)

scaling relation is that it does not involve measuring the cluster mass, and hence no need

for mass calibrations or synergies with other observations such as weak lensing. It also has

a relatively low scatter compared to, for example, the LX-T̄gas relation that was considered

by Arnold et al. (2014).

4.5 Summary, Discussion and Conclusions

In this chapter, we have made use of the first full-physics simulations that have been run

for both GR and f(R) gravity (along with non-radiative counterparts), to study the effects

of the fifth force of f(R) gravity on the scaling relations between the cluster mass and four

observable proxies: the gas temperature (Fig. 4.2), the YSZ and YX parameters (Figs. 4.3

and 4.4) and the X-ray luminosity (Fig. 4.5). To understand these effects in greater detail,

we have also examined the effects of both f(R) gravity and full-physics on the gas density

and temperature profiles (see Fig. 4.1). In doing so, we have been able to test two methods

for mapping between scaling relations in f(R) gravity and GR.

The first method was proposed by He and Li (2016). This proposes a set of mappings,

given by Eqs. (4.4) and (4.6)-(4.8), that can be applied to haloes whose mass and radius

are measured using the effective density field (see Sec. 4.2.1). A second, new, approach

is proposed in Sec. 4.2.2, and predicts another set of mappings, given by Eqs. (4.9) and

(4.11)-(4.13), that can be applied to haloes whose mass and radius are measured using the

true density field. Both sets of mappings involve simple rescalings that depend only on the

ratio of the dynamical mass to the true mass in f(R) gravity. As shown by Figs. 4.6 and

4.7, even with the inclusion of full-physics processes this ratio can be computed with high

accuracy using our analytical tanh formula, which is given by Eq. (2.17).

For the mass-weighted gas temperature and the YSZ and YX observables, we found that
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the F6 and F5 scaling relations, with appropriate rescaling applied (using either method

discussed above), match the GR relations to within a few percent for the full mass-range

tested for the non-radiative simulations. With the inclusion of full-physics effects such as

feedbacks, star formation and cooling, the rescaled YSZ and YX scaling relations continue

to show excellent agreement with GR for mass M500 & 1013.5M�, which includes group-

and cluster-sized objects. These proxies also show relatively low scatter as a function of

the cluster mass, compared with other observables. YSZ and YX are therefore likely to

be suitable for accurate determination of the cluster mass in tests of f(R) gravity. The

mappings for the gas temperature show a very high accuracy for lower-mass objects, but

show a small . 5% offset between F5 and GR for higher-mass objects.

The mappings do not work as well for the X-ray luminosity LX, for which the F5

relations after rescaling are typically enhanced by ∼ 30% compared with GR. This is caused

by the unique dependency of LX on the gas density to power two, and the gas temperature

to power half, which means that the inner halo regions have a greater contribution than for

the other proxies and the competing effects of feedback on the temperature and gas density

profiles are less likely to cancel out. This issue, in addition to the fact that LX has a highly

scattered correlation with the cluster mass, means that this proxy is unlikely to be suitable

for cluster mass determination in tests of f(R) gravity.

We also considered the YX-T̄gas scaling relation (Fig. 4.8), and found that this is

suppressed by 30-40% in the F5 model relative to GR. This offers a potential new and

useful test of gravity with group- and cluster-sized objects which avoids the systematic

uncertainties incurred from mass calibration.

We note that the box size 62h−1Mpc of the simulations used in this chapter is more

suited to studying galaxy-sized objects than group- or cluster-sized objects. Indeed, there

are only ∼ 100 objects with M500 > 1013M� and ∼ 5-10 objects with M500 > 1014M� in

the simulations, making it impossible to test the mappings discussed in this chapter for the

most massive galaxy clusters to be observed. In Chapter 8, we will present a re-calibrated

full-physics model which can be used to run larger simulations that can be used to reliably

probe halo masses up to M500 ∼ 1015M�.
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Our results also provide insights into the viability of extending cluster tests of gravity

to the group-mass regime. An advantage of using lower-mass objects is that these objects

can be unscreened (or partially screened) even for weaker f(R) models, offering the poten-

tial for tighter constraints using data from ongoing and upcoming SZ and X-ray surveys

(e.g., Merloni et al., 2012; Ade et al., 2016) which are now entering this regime. On the

other hand, as we have seen above, the scatter induced by feedback mechanisms becomes

more significant in group-sized haloes, which means that additional work will need to be

conducted to characterise this effect and to understand its impact on model tests.

Finally, we note that our parameter p2, which is used to compute the ratio of the

dynamical mass to the true mass, depends only on the quantity |f̄R|/(1+z), and not on the

model parameters n and fR0 of HS f(R) gravity. This dependence was derived by using the

thin-shell model (Chapter 2), which does not depend on the details of the f(R) model. We

therefore expect our scaling relation mappings to perform similarly for any combination

of the HS f(R) parameters, and potentially other chameleon-type or thin-shell-screened

models. However, due to the high computational cost of running full-physics simulations

of f(R) gravity and other models, we do not seek to confirm this conjecture in this thesis.
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Chapter 5

A self-consistent pipeline for unbiased

constraints of f(R) gravity

5.1 Introduction

In Chapters 2-4, we used a combination of DMO and full-physics simulations to model the

effects of the f(R) gravity fifth force on the cluster dynamical mass, the halo concentration

and the observable-mass scaling relations. These models are core components of our pro-

posed framework for f(R) constraints using cluster number counts (see Fig. 2.1): our model

for the enhancement of the concentration can be used for conversions between cluster mass

definitions, which is required if, for example, the theoretical predictions and observations

use different spherical overdensities; and our model for the dynamical mass enhancement

can be used to predict the f(R) scaling relation given a GR counterpart relation, and this

can be used to relate the observable mass function (dn/dY ) to the theoretical mass function

(dn/dM). In this chapter, we will incorporate the remaining components of this framework,

including the theoretical model for the HMF in f(R) gravity and the MCMC sampling used

to constrain fR0, and we will test the full constraint pipeline using mock cluster catalogues

generated for both GR and f(R) fiducial cosmologies.

The chapter is arranged as follows: in Sec. 5.2, we provide an overview of the effects of

the f(R) fifth force on the cluster properties; in Sec. 5.3, we describe our MCMC constraint

111



5.2. Background

pipeline, including the calculation of the log-likelihood and the generation of the mocks;

in Sec. 5.4, we present constraints using the GR and f(R) mocks; then, in Sec. 5.5, we

highlight potential sources of bias in our pipeline; finally, we summarise our main findings

in Sec. 5.6.

5.2 Background

In this section, we summarise the main effects of f(R) gravity on the properties of galaxy

clusters. In Sec. 5.2.1, we recap our model for the dynamical mass enhancement and

present a new model for its scatter. Then, in Secs. 5.2.2 and 5.2.3, we recap our model for

the concentration enhancement and our mapping between observable-mass scaling relations

in f(R) gravity and GR. Finally, in Sec. 5.2.4, we outline the modelling by Cataneo et al.

(2016) for the f(R) enhancement of the HMF.

5.2.1 Dynamical mass enhancement and its scatters

In Chapter 2, we presented our general formula for the ratio R of the dynamical mass to

the true mass:

R =
M

f(R)
dyn

M
f(R)
true

= 7
6 −

1
6 tanh

(
p1
[
log10

(
M

f(R)
true M

−1
� h

)
− p2

])
. (5.1)

We showed that p1 is approximately constant, with best-fit value 2.21 ± 0.01, while the

parameter p2 closely follows the following physically motivated linear relation:

p2 = (1.503± 0.006) log10

(
|f̄R(z)|
1 + z

)
+ (21.64± 0.03). (5.2)

For this chapter, we have again used the simulation data from Chapter 2 (Table 2.1)

to model the root-mean-square scatter of the dynamical mass enhancement, σR. Our

model is shown by the solid line in Fig. 5.1 (we provide a detailed description of this

model and our fitting procedure in Appendix B.1). The rescaled mass, log10(M500M
−1
� h)−

p2 ≡ log10(M500/10p2), is expected to take positive values for haloes that are screened

and negative values for haloes that are unscreened. The scatter peaks for haloes that are

partially screened, with log10(M500M
−1
� h) ∼ p2, whereas it falls to roughly zero for lower

112



5.2.1. Dynamical mass enhancement and its scatters

−2 −1 0 1 2 3
log10(M500/10p2)

0.00

0.02

0.04

0.06
σ
R

F4

F4.5

F5

F5.5

F6

F6.5

Crystal

Jade

Diamond

Figure 5.1: Root-mean-square scatter in the dynamical mass enhancement as a function of
the rescaled halo mass log10(M500/10p2), where p2 is given by Eq. (5.2). The data points,
which correspond to mass bins spanning 1011h−1M� . M500 . 1015h−1M�, have been
generated using the DMO simulations Crystal (squares), Jade (circles) and Diamond (dia-
monds), which are described in Chapter 2. The data spans redshifts 0 ≤ z ≤ 1 and includes
present-day scalar field amplitudes |fR0| = 10−6.5 (grey), 10−6 (blue), 10−5.5 (magenta),
10−5 (green), 10−4.5 (orange) and 10−4 (red). The solid line represents our best-fit model,
which is given by Eq. (B.1).

and higher masses. Physically, this makes sense: at sufficiently high masses where all haloes

are screened and have R ≈ 1, it follows that the scatter σR is very small, and a similar

argument can be applied for haloes deep in the unscreened regime. Between these two

regimes, the physics is more complicated, giving rise to greater dispersion in the chameleon

screening; for example, haloes which do not have a high enough mass to be self-screened

can still be environmentally screened by nearby massive haloes.
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5.2.2. Halo concentration

5.2.2 Halo concentration

In Chapter 3, we used the rescaled logarithmic mass x = log10(M500/10p2) to calibrate the

following formula for the enhancement of the halo concentration c200:

log10

∣∣∣∣ c

cGR

∣∣∣∣
200

=1
2

(
λ

ωs
φ(x′)

[
1 + erf

(
αx′√

2

)]
+ γ

)
× (1− tanh (ωt [x+ ξt])),

(5.3)

where x′ = (x − ξs)/ωs, φ(x′) is the normal distribution and erf(αx′/
√

2) is the error

function. The parameters have best-fit values λ = 0.55, ωs = 1.7, ξs = −0.27, α = −6.5,

γ = −0.07, ωt = 1.3 and ξt = 0.1.

5.2.3 Observable-mass scaling relations

In Chapter 4, we used the shybone simulations to verify a set of proposed mappings

between the f(R) scaling relations and their GR power-law counterparts. Here, we will only

recap the ‘true density’ rescaling for the YSZ(M) relation, which is used in our constraint

pipeline. For haloes in f(R) gravity and GR that have the same true mass, Mf(R)
true = MGR,

we showed:

Y
f(R)

SZ

(
M

f(R)
true

)
≈
M

f(R)
dyn

M
f(R)
true

Y GR
SZ

(
MGR = M

f(R)
true

)
. (5.4)

In this case, the total gravitational potential of the f(R) haloes is enhanced by a factor of

M
f(R)
dyn /M

f(R)
true compared to the GR haloes. The temperature is then enhanced by the same

amount, giving rise to this factor in Eq. (5.4). We showed that this mapping holds for halo

masses M500 & 1013.5M�.

5.2.4 Halo mass function

In this section, we will outline the Cataneo et al. (2016) model for the f(R) enhancement

of the HMF, which we have adopted for our constraint pipeline. This is computed using

the Sheth and Tormen (1999) prescription of the HMF:

nST ≡
dn

d lnM = ρ̄M
M

d ln ν
d lnMνf(ν), (5.5)
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5.2.4. Halo mass function

where the multiplicity function νf(ν) is given by:

νf(ν) = A

√
2
π
aν2

[
1 + (aν2)−p exp

(
−aν

2

2

)]
. (5.6)

For the parameters A, a and p, Cataneo et al. (2016) used the fits by Despali et al. (2016),

which extend the Sheth and Tormen (1999) HMF to be a function of generic halo overdensity

∆. For the latter, Cataneo et al. (2016) used value 300ΩM(z) (i.e., here the halo mass M

is M300m). The peak height ν is given by:

ν = δc
σ(M, z) , (5.7)

where δc is the linearly extrapolated threshold density for spherical collapse and σ(M, z)

is the linear root-mean-square fluctuation of the matter density within spheres of mass M

containing an average density of ρ̄M(z). The latter can be computed using the ΛCDM

linear power spectrum (for both GR and f(R) gravity) with the publicly available code

camb (Lewis et al., 2000).

The f(R) effects are incorporated through δc: in GR, this is given by:

δGR
c (z) ≈ 3

20(12π)
2
3 [1 + 0.0123 log10 ΩM(z)] , (5.8)

while in f(R) gravity it can be expressed as:

δeff
c (M, z) ≡ ε(M, z)× δf(R)

c (M, z). (5.9)

The function δ
f(R)
c (M, z) is the prediction of the linearly extrapolated threshold density

for spherical collapse in f(R) gravity. This treats haloes and their surrounding environ-

ment as co-centred spherically symmetric top-hat overdensities (note the environment can

be underdensities) which are co-evolved from an initial time to the time of collapse. This

procedure, which is based on the method developed by Li and Efstathiou (2012); Lombriser

et al. (2013), takes into account both the mass-dependent self-screening and the environ-

mental screening of the fifth force. However, while giving qualitatively correct predictions,

the method is unable to very accurately capture the complex nonlinear dynamics of struc-

ture formation in f(R) gravity. This limitation is accounted for using the correction factor

ε(M, z), which Cataneo et al. (2016) modelled and fitted using DMO simulations. Their
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Figure 5.2: Halo mass function enhancement in f(R) gravity with respect to GR as a
function of the halo mass. The solid lines show the predictions from our 5D interpolation
of δf(R)

c (see Sec. 5.2.4) and the dashed lines show the results from Cataneo et al. (2016).
The predictions have been generated using the WMAP9 cosmological parameters and f(R)
models F4 (top row), F5 (middle row) and F6 (bottom row), at redshifts 0 (blue lines and
0.5 (green lines).

best-fit model can accurately reproduce the f(R) enhancement of the HMF for redshifts

0.0 ≤ z ≤ 0.5 and field strengths 10−6 ≤ |fR0| ≤ 10−4.

For this thesis, we have evaluated δ
f(R)
c on a grid of M , z, ΩM, σ8 and fR0, and

obtained the relation δ
f(R)
c (M, z,ΩM, σ8, fR0) using 5D interpolation. For a given set of

cosmological and f(R) parameters, we can use this to predict δf(R)
c (M, z), which can then

be used to predict δeff
c (M, z) using the model for ε(M, z) taken from Cataneo et al. (2016).

The f(R) enhancement of the HMF is given by the ratio between nST|f(R) and nST|GR,

which are evaluated using δc = δeff
c and δc = δGR

c , respectively.

For illustrative purposes, we show, in Fig. 5.2, our predictions of the HMF enhancement

as a function of the halo mass for F6, F5 and F4 at redshifts 0.0 and 0.5. We also show the

116



5.3. Methods

predictions from Cataneo et al. (2016) as a comparison. Both sets of predictions assume the

9-year WMAP cosmological parameter estimates (Hinshaw et al., 2013). There are some

small differences between the two sets of predictions, which are likely caused by subtle

differences in the calculations of δf(R)
c . The largest difference is observed at M300m &

1015h−1M� for F5 at z = 0.5. We note that the enhancement is expected to drop to zero at

high masses where haloes become completely screened, therefore the behaviour of the solid

lines here appears to be physically reasonable. We also note that we set the enhancement

to zero wherever our calculations predict a negative (unphysical) enhancement. This is the

case for M300m & 1015h−1M� for F6 at z = 0.5.

5.3 Methods

In this section, we describe the main components of our constraint pipeline, including the

mass function predictions (Sec. 5.3.1), the observable-mass scaling relation (Sec. 5.3.2), the

mock cluster catalogues (Sec. 5.3.3) and the MCMC sampling (Sec. 5.3.4).

5.3.1 Theoretical mass function

In order to make constraints using cluster number counts, it is necessary to have a

parameter-dependent theoretical model for the HMF. For our pipeline, we start with a

GR HMF and apply the f(R) enhancement using:

nf(R) = nGR ×
nST|f(R)
nST|GR

, (5.10)

where the ratio is computed using the Sheth and Tormen (1999) prescription, as described

in Sec. 5.2.4, and we have chosen the Tinker et al. (2008) calibration for nGR.

Before Eq. (5.10) can be applied, the halo mass definition must be considered. As

mentioned in Sec. 5.2.4, the model for the ratio in Eq. (5.10) was calibrated by Cataneo

et al. (2016) using overdensity ∆ = 300ΩM(z); however, with the framework in Fig. 2.1,

we hope to use data from SZ and X-ray surveys, which often measure cluster properties

with overdensity 500. Therefore, it is necessary to convert the HMF between these two

definitions.
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Figure 5.3: Halo mass function in GR (solid lines) and F5 (dashed lines), with the mass
defined using spherical overdensities 500 (green lines) and 300ΩM(z) (dashed lines). The
mass conversions and f(R) enhancement have been applied as described in Sec. 5.3.1; the
green dotted line shows the F5 HMF prediction that results from neglecting the f(R)
enhancement of the halo concentration in the mass conversion 300ΩM(z)→ 500.

In Fig. 5.3, we show each step of the mass conversion procedure for the F5 model at

z = 0. We start with the Tinker et al. (2008) HMF with overdensity 500 (nGR
500), which

we compute using the python package hmf (Murray et al., 2013), and convert this to

overdensity 300ΩM(z) (nGR
300m) using the Duffy et al. (2008) concentration-mass-redshift

relation. We then apply the f(R) enhancement using Eq. (5.10) to get nf(R)
300m. Finally, to

convert this back to overdensity 500 (nf(R)
500 ), we use the f(R) concentration-mass-redshift

relation, which is computed by applying the concentration enhancement, given by Eq. (5.3),

to the Duffy et al. (2008) relation. We also show, with the dotted green line, the prediction

with the concentration enhancement neglected; the effect here is quite small, since cluster-

size haloes are mostly screened in F5. For further details of the formulae used to convert

the halo mass and the HMF from one mass definition to another, we refer the reader to
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5.3.2. Observable-mass scaling relation

Appendix B.2.

The final result nf(R)
500 (M500) provides the theoretical prediction of the cluster abund-

ance in f(R) gravity. This is computed following the above steps for each set of parameter

values sampled by our MCMC pipeline. We note that our mass conversions are evaluated

assuming an NFW profile, which has also been used in previous cluster tests of f(R) grav-

ity (e.g., Cataneo et al., 2015). However, this may not provide an accurate description for

haloes that are not dynamically relaxed and it does not account for the effects of baryons

on the total mass profile. We plan to investigate the latter effect using clusters identified

from the realistic full hydrodynamical simulations in f(R) gravity described in Chapter

8. However, we remark here that the main use of the concentration-mass relation in our

pipeline is to perform mass conversions as described above, and so it would not be strictly

needed if a theoretical HMF for the required mass definition M∆ (M500 in this case) is

already in place.

5.3.2 Observable-mass scaling relation

As discussed in Sec. 5.2.3, the f(R) scaling relation can be computed by simply rescaling

a GR relation using our model for the dynamical mass enhancement. For the GR relation,

we adopt the power-law mapping between YSZ and the halo mass calibrated by the Planck

Collaboration (Ade et al., 2016):

E−β(z)
[
D2

A(z)Ȳ500
10−4Mpc2

]
= Y?

[
h

0.7

]−2+α [ (1− b)M500
6× 1014M�

]α
, (5.11)

where E(z) = H(z)/H0 and DA(z) is the angular diameter distance. This includes para-

meters β for the z-evolution, Y? for the normalisation and α for the power-law slope with

respect to the mass. It also includes a bias parameter (1− b) which accounts for differences

between the X-ray determined masses used in the calibration, which are subject to hydro-

static equilibrium bias, and the true mass. Planck have also provided the following formula

for the intrinsic lognormal scatter of the relation:

P (log Y500) = 1√
2πσlog Y

exp
[
− log2(Y500/Ȳ500)

2σ2
log Y

]
, (5.12)

where σlog Y is a fixed spread.
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5.3.3. Mock catalogues

We assume a fixed value of 0.8 for the hydrostatic equilibrium bias parameter, which is

consistent with the range 0.7 to 1.0 adopted by Planck, and we treat Y ≡ D2
A(z)YSZ as the

cluster SZ observable, rather than YSZ. This leaves four scaling relation parameters which

are allowed to vary in our MCMC sampling. We adopt the following Gaussian priors from

Planck: log Y? = −0.19± 0.02, α = 1.79± 0.08, β = 0.66± 0.50 and σlog Y = 0.075± 0.010.

To obtain the f(R) scaling relation Y f(R)
SZ (M500) from the above Y GR

SZ (M500) relation,

we rescale the right-hand side of Eq. (5.11) by the mass ratio R, which is predicted using

Eq. (5.1) with scatter given by Eq. (B.1). This rescaling is based on Eq. (5.4), which

means that the mass M500 in the expressions Y f(R)
SZ (M500) and Y GR

SZ (M500) above is the

true mass; we note that, although the Planck masses were originally determined using X-

ray measurements, the value (1 − b) = 0.8 assumed for the mass bias is consistent with

weak lensing measurements (e.g., Hoekstra et al., 2015).

Finally, we note that the scaling relation adopted in this work is intended to be rep-

resentative of general scaling relations between the mass and SZ and X-ray observables,

not just the Planck YSZ(M500) relation. This justifies our decision to encapsulate D2
A(z) in

the cluster observable and to fix the hydrostatic equilibrium bias; indeed, scaling relations

for other observables — for example, the SZ significance and the YX parameter — do not

include the function D2
A(z) or a bias parameter (e.g., de Haan et al., 2016; Bocquet et al.,

2019). Regardless of the observable, the main purpose of this chapter is to check that our

constraint pipeline can give reasonable constraints of fR0 using a realistic scaling relation

which includes both intrinsic scatter and the f(R) enhancement. It would be very straight-

forward to adapt this pipeline for other cluster observables, or for more than one cluster

observable.

5.3.3 Mock catalogues

We test our framework (Fig. 2.1) using mock cluster catalogues in place of observational

data. We have generated mocks for both the GR and F5 models, using fiducial cosmolo-

gical parameter values based on the Planck 2018 CMB constraints (Aghanim et al., 2020):

(ΩM, σ8, h,Ωb, ns) = (0.3153, 0.8111, 0.6736, 0.04931, 0.9649). For the scaling relation para-
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5.3.3. Mock catalogues

meters, we assume the central values of the Gaussian priors listed in Sec. 5.3.2.

To generate the mocks, we first compute the predicted count per unit mass per unit

redshift:
dN

dzd lnM = dn
d lnM ×

dVc(z)
dz , (5.13)

where Vc(z) is the comoving volume enclosed by the survey area between redshifts 0 and

z and the first term is the theoretical HMF n
f(R)
500 , which is computed as described in

Sec. 5.3.1 for the fiducial cosmology. For this work, we assume a survey area of 5000 deg2

and a maximum redshift of z = 0.5, which is the upper redshift used to calibrate the f(R)

enhancement of the HMF (Sec. 5.2.4). In the future, it will be important to develop models

of the f(R) HMF that work for a wider redshift range, which will be applicable to real

cluster survey data.

The predicted number of clusters is:

Ntot =
∫ 0.5

0.0
dz
∫ ∞
−∞

d lnM dN
dzd lnM . (5.14)

For each mock, we randomly draw the masses and redshifts of Ntot clusters using

dN/dzd lnM , which is effectively a probability density. For each cluster i, we then draw

a mass ratio Ri using a normal distribution with mean given by Eq. (5.1) and standard

deviation given by Eq. (B.1). The intrinsic observable Y ′i (= D2
AY500,i) of each cluster is

then drawn using the lognormal distribution given by Eq. (5.12), where Ȳ500 is computed

using Eq. (5.11) and rescaled by Ri.

We assume a fixed 1σ measurement uncertainty of 10%. The measured observable

Yi is therefore drawn from a normal distribution with mean Y ′i and standard deviation

0.1Y ′i . We note that this choice of a fixed fractional uncertainty is intended to keep our

calculations simple and general (for example, a more complicated model may be specific to

a particular observational survey). We have also considered 5% and 20% uncertainties and

have found that the inferred parameter constraints do not significantly differ, suggesting

that this uncertainty is not the dominant source of error in the constraint pipeline (e.g.,

compared to the intrinsic scatters in the cluster scaling relation or the f(R) dynamical mass

enhancement).
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Figure 5.4: SZ Y -parameter as a function of the halo mass for clusters from a GR mock
catalogue with observational flux limit Ycut = 10−5Mpc2. The dashed lines indicate the
cuts 10−5Mpc2, 1.5× 10−5Mpc2, 2× 10−5Mpc2 and 2.5× 10−5Mpc2.

Finally, we remove all clusters for which Yi is below some observational flux limit Ycut.

For the main results of this chapter, we use Ycut = 1.5 × 10−5Mpc2; however, we will also

discuss the effects of using cuts 10−5Mpc2, 2 × 10−5Mpc2 and 2.5 × 10−5Mpc2. For each

mock, we store only the cluster redshift zi (which is assumed to have no error) and the

measured observable Yi.

An F5 mock with Ycut = 1.5× 10−5Mpc2 contains ∼ 1350 clusters. Generating a GR

mock is more straightforward, since there is no need to include the f(R) enhancements

of the HMF or the scaling relation. In this case, there are ∼ 1150 clusters for Ycut =

1.5× 10−5Mpc2. For illustrative purposes, in Fig. 5.4 we show the measured Y -parameters

of the clusters as a function of the mass M500 for a GR mock with Ycut = 10−5Mpc2.

Horizontal dashed lines are included to indicate the four flux thresholds considered in this

work, to give an idea of the mass range of clusters found above each.
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5.3.4 MCMC sampling

For our parameter constraints, we use the unbinned Poisson likelihood (e.g., Artis et al.,

2021):

lnL = −
∫

dzdY dN
dzdY (z, Y ) +

∑
i

ln dN
dzdY (zi, Yi), (5.15)

where the first term represents the predicted cluster count and the second term is a summa-

tion performed over all mock clusters. The expression dN/dzdY represents the theoretical

prediction of the count per unit z per unit Y .

Since our theoretical HMF is defined in terms of the massM rather than the observable

Y , it is more convenient to re-express the first term with an integral over lnM (e.g., de Haan

et al., 2016):

−
∫ 0.5

0.0
dz
∫ ∞
Ycut

dY dN
dzdY (z, Y )

= −
∫ 0.5

0.0
dz
∫ ∞
−∞

d lnMP (Y > Ycut|M, z) dN
dzd lnM (M, z),

(5.16)

where dN/dzd lnM can be computed using Eq. (5.13), and the redshift integral is evaluated

between z = 0 and the maximum redshift z = 0.5 of the mock. P (Y > Ycut|M, z) represents

the probability that, for a given mass and redshift, the measured Y -parameter exceeds the

flux threshold. This depends on both the measurement uncertainty and the intrinsic log-

normal scatter of Y :

P (Y > Ycut|M, z) =
∫ ∞
−∞

d lnY ′P (Y > Ycut|Y ′)P (Y ′|M, z), (5.17)

where P (Y > Ycut|Y ′) is the probability that the measured value Y exceeds Ycut, given an

intrinsic value Y ′, and P (Y ′|M, z) is the probability density of a cluster having intrinsic

value Y ′ given that it has mass M and redshift z. As discussed in Sec. 5.3.3, the mocks use

a fixed measurement uncertainty of 10%, which means that the former can be estimated

using a normal distribution with mean Y ′ and standard deviation 0.1Y ′. The probability

density P (Y ′|M, z) is more complicated, since this depends both on the intrinsic scatter of

the Y (M) scaling relation and the scatter of the mass ratio R:

P (Y ′|M, z) =
∫ 4/3

1
dRP (Y ′|Ȳ (M, z,R))P (R|M, z), (5.18)
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where P (R|M, z) is the probability density of a cluster having mass ratio R given that it

has mass M and redshift z. This is computed using a normal distribution with mean given

by Eq. (5.1) and standard deviation given by Eq. (B.1). The other probability density,

P (Y ′|Ȳ (M, z,R)), is computed using Eq. (5.12), with Ȳ calculated using Eq. (5.11) and

rescaled by a factor ofR. Together, Eqs. (5.16)-(5.18) form a 4D integral, which we compute

using a fixed grid in (lnM, z, lnY,R).

For the second term in Eq. (5.15), we can again re-express into a form that depends

on dN/(dzd lnM) using:

dN
dzdY (zi, Yi) =

∫
d lnY ′

∫
d lnM ′

× P (Yi|Y ′)P (Y ′|M ′, zi)
dN

dzd lnM ′ (M
′, zi),

(5.19)

where the probability density functions P (Yj |Y ′) and P (Y ′|M ′, zi) represent the measure-

ment uncertainty and intrinsic scatter, respectively. The latter is computed using Eq. (5.18),

meaning that Eq. (5.19) is really a 3D integral. We compute this for each mock cluster

using a fixed grid in (lnY ′, lnM ′,R), then evaluate the sum in Eq. (5.15).

We have used the python package emcee (Foreman-Mackey et al., 2013) for the MCMC

sampling. For all of the results discussed in this chapter, we have used 28 walkers each

travelling 2700 steps (we discard the first 600 steps to ensure that the chains are well

converged). At each step, the log-likelihood is computed for the sampled parameters as

described above. In addition to the fR0 parameter, the cosmological parameters ΩM and

σ8 and the four scaling relation parameters Y?, α, β and σlog Y are sampled. For the

cosmological parameters, we adopt uniform (flat) priors log10 |fR0| ∈ [−7,−4] and σ8 ∈

[0.60, 0.95], and for ΩM we use either a flat prior ΩM ∈ [0.15, 0.50] or a Gaussian prior

ΩM = 0.3153±0.0073 which is based on the Planck 2018 CMB constraints (Aghanim et al.,

2020). For the scaling relation parameters, we adopt the Gaussian priors listed in Sec. 5.3.2.

The flat prior [−7,−4] for log10 |fR0| extends beyond the range [−6,−4] used to calib-

rate the HMF enhancement model (Cataneo et al., 2016). For sampled values in the range

−7 ≤ log10 |fR0| ≤ −6, we first calculate the HMF enhancement for log10 |fR0| = −6, then

linearly interpolate between |fR0| = 0 (GR) and |fR0| = 10−6 to estimate the enhancement.

For example, this means that the estimated enhancement for |fR0| = 10−7 would be 10%
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of the enhancement for |fR0| = 10−6. We note that, because clusters are expected to be

completely screened for this range of log10 |fR0| values, it is not necessary to use a physic-

ally accurate method here, so long as the predicted enhancement lies between GR and F6.

We use a similar approach to estimate the dynamical mass enhancement for this range of

log10 |fR0|, where, again, the enhancement is very close to zero anyway.

5.4 Results

In this section, we discuss the main results of this chapter. In Sec. 5.4.1, we use a GR mock

to check that our pipeline can give reasonable constraints of the ΛCDM and scaling relation

parameters. Then, in Sec. 5.4.2, we use our full pipeline to constrain the fR0 parameter of

f(R) gravity, using a combination of GR and F5 mocks.

5.4.1 GR pipeline

In order to verify that our pipeline can give reasonable ΛCDM constraints and successfully

account for the intrinsic scatter of the Y (M500) relation and measurement uncertainty in

the mock, we first test our ‘GR pipeline’, where the f(R) corrections to the HMF and

scaling relation are excluded. We show the constraints, which have been inferred using a

GR mock with Ycut = 1.5 × 10−5Mpc2, in Fig. 5.5. The blue contours are obtained using

the flat prior ΩM ∈ [0.15, 0.50], while the red contours are obtained using the Gaussian

prior ΩM = 0.3153± 0.0073 from Planck 2018.

For the flat ΩM prior, the contours are in good agreement with the fiducial parameter

values, which are indicated by the green lines. In the top panel of each column, we show the

marginalised distributions of each parameter, with the mean and standard deviation quoted

in Table 5.1. In Table 5.1, we also show the combination of parameters that gave the highest

log-likelihood during the sampling (Lmax); these can be thought of as the ‘most likely’ set

of values. The distributions of the scaling relation parameters closely match the Gaussian

priors. Meanwhile, the constraints 0.34 ± 0.04 for ΩM and 0.79 ± 0.04 for σ8 – while still

within 1σ agreement – are slightly offset from the fiducial values, and the same goes for the

highest-likelihood values 0.34 and 0.79. As shown by the constraints in red, using a tighter

125



5.4.1. GR pipeline

0 1

β

0.7

0.8

0.9

σ
8

ΩM = 0.3153± 0.0073

ΩM ∈ [0.15, 0.50]

0.05

0.10

σ
lo

g
Y

−0.25

−0.15

lo
g
Y
?

1.6

1.8

2.0

α

0.2 0.3 0.4
ΩM

0

1

β

0.7 0.8 0.9
σ8

0.05 0.10
σlog Y

−0.25 −0.15
log Y?

1.6 1.8 2.0

α

Figure 5.5: Parameter constraints using our GR pipeline, which does not include f(R)
enhancements of the HMF and the scaling relation (see Sec. 5.3), using a GR mock with
observational flux threshold Ycut = 1.5× 10−5Mpc2. The two sets of constraints are gener-
ated using a flat prior [0.15, 0.50] (blue) and a Gaussian prior 0.3153± 0.0073 (red) in ΩM.
The dark and light regions of the contours represent 68% and 95% confidences, respect-
ively. The distributions of the sampled parameter values are shown in the top panels of
each column, with the mean and standard deviation of each parameter quoted in Table 5.1.
The fiducial cosmological parameter values of the GR mock are indicated by the green lines.
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5.4.1. GR pipeline
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5.4.2. f(R) pipeline

Gaussian prior in ΩM results in narrower contours and constraints ΩM = 0.316± 0.007 and

σ8 = 0.808± 0.015 which match the fiducial values more closely.

The initial offset of the ΩM and σ8 constraints from the fiducial values is caused by

a well-known degeneracy between these two parameters: increasing either of these will

boost the predicted amplitude of the HMF. Therefore, the effects of increasing (decreasing)

ΩM and decreasing (increasing) σ8 on the HMF can roughly cancel out. This causes the

elongated shape of the blue ΩM-σ8 contour.

We also observe degeneracies between ΩM, σ8, α and β. One explanation for this is

that α and β can also affect the predicted HMF. For example, increasing α (i.e., increasing

the slope of the Y (M) scaling relation) will cause the predicted Y -parameter to be reduced

for clusters with 0.8M500 < 6 × 1014M� (since (1 − b)−16 × 1014M� is the pivot mass of

the power-law function in Eq. (5.11)), which includes the majority of clusters in our mocks

(see Fig. 5.4). This means that fewer clusters will be predicted to have Y > Ycut, and

therefore the inferred cluster count will be lower, which can be countered by a larger ΩM.

The effects of changing α, β, ΩM and σ8 may balance out overall, giving rise to the observed

degeneracies in the blue contours of Fig. 5.5.

By adopting the tighter ΩM prior, these degeneracies appear to be mostly eliminated.

This shows the importance of accurate independent measurements of ΩM in the use of

galaxy cluster number counts to constrain cosmological models and parameters.

5.4.2 f(R) pipeline

We now test the full f(R) gravity constraint pipeline, which includes the f(R) effects on

the HMF and scaling relation, as described in Secs. 5.3.1 and 5.3.2. In Fig. 5.6, we show the

constraints inferred using GR and F5 mocks with Ycut = 1.5×10−5Mpc2. For these results,

we use the Gaussian prior of ΩM in order to prevent the ΩM–σ8 degeneracy observed in

Fig. 5.5. As we will show in Sec. 5.5, using a flat prior for ΩM can otherwise lead to biased

constraints of log10 |fR0|.

For the constraints obtained from the GR mock, which are indicated by the red con-

tours in Fig. 5.6, the log10 |fR0| posterior distribution is roughly uniform for the range
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Figure 5.6: Parameter constraints using our full f(R) pipeline, as detailed in Sec. 5.3, using
GR (red) and F5 (blue) mocks with observational flux threshold Ycut = 1.5 × 10−5Mpc2.
The dark and light regions of the contours represent 68% and 95% confidences, respect-
ively. The distributions of the sampled parameter values are shown in the top panels of
each column, with the mean and standard deviation quoted in Table 5.2. The fiducial
cosmological parameter values of the mocks are indicated by the green lines, including the
value log10 |fR0| = −5 for the F5 mock.
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5.4.2. f(R) pipeline
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5.4.2. f(R) pipeline

−7 ≤ log10 |fR0| . −5 and drops to zero for log10 |fR0| & −5. This rules out f(R) mod-

els stronger than F5, whereas weaker models are difficult to distinguish from GR for this

sample of clusters. We show our constraints of the parameter values in Table 5.2. Since

the log10 |fR0| posterior does not follow a normal distribution, we quote an upper bound

rather than the mean and standard deviation. In this case, 68% of the sampled points have

log10 |fR0| ≤ −5.56. We note that this threshold may depend on the width of the log10 |fR0|

prior: for a wider prior (i.e., extending the lower bound of the prior to some value smaller

than −7 while fixing the upper bound of the prior) and a uniform log10 |fR0| posterior, it

is reasonable to expect the 68% upper bound to be lower. Therefore, it is perhaps more

useful to look at the combination of parameter values that give the highest log-likelihood.

In this case, the most likely combination has log10 |fR0| = −6.75, which is quite close to

the lower bound of the prior (although we note that, given the flat posterior distribution

of log10 |fR0|, the point with Lmax might not be much more significant than points with

only slightly smaller log-likelihood values). The constraints for the other parameters are in

excellent agreement with the fiducial values. Therefore, the results suggest that our pipeline

can successfully constrain fR0 using cluster samples in a GR universe.

The constraints for the F5 mock are indicated by the blue contours in Fig. 5.6. The

log10 |fR0| constraints appear to be in good agreement with the fiducial value −5, which

lies within the 68% confidence region of the contours. This region only extends down to

log10 |fR0| ≈ −6.5, clearly favouring f(R) gravity over GR. The constraints also appear

to rule out models with log10 |fR0| & −4.5. The median and 68-percentile range of the

sampled values is log |fR0| = −5.1+0.3
−1.0, while the highest-likelihood parameter combination

has log10 |fR0| = −4.92. Both of these results are very close to the fiducial value of −5.

The constraints for the other parameters are again in very reasonable agreement with the

fiducial values. This result suggests that our pipeline can clearly identify if the underlying

universe model is F5.

Despite this promising agreement, it is interesting to note that the log10 |fR0| posterior

distribution has a long tail over the range −7 < log10 |fR0| < −5. Over this range of points,

σ8 appears to have value 0.83-0.84 on average, while α and β have values ∼ 1.75 and ∼ 0.0
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5.5. Potential biases in model constraints

on average (see the blue contours in Fig. 5.6). As log10 |fR0| is lowered, the predicted

amplitude of the HMF will be reduced. The increased σ8 can act against this, as can

the lowered α, which, as discussed in Sec. 5.4.1, can increase the predicted cluster count

for clusters with 0.8M500 < 6 × 1014M�. The latter can also give a scaling relation that

more closely matches the F5 result: this is because the scaling relation in F5 is enhanced

at lower masses, which may be approximated by the constraint pipeline as a power-law

with shallower slope. This degeneracy also comes into play for log10 |fR0| > −5, where

σ8 becomes slightly lower on average and α and β become higher. Overall, this reduces

the precision of the log10 |fR0| constraint, and is perhaps the reason why the log10 |fR0|

posterior peaks at a value that is slightly higher than −5. This can also explain why the β

constraints predict a value 0.3 ± 0.4 that is slightly lower than the fiducial value 0.66. By

using tighter priors in σ8, α or β it may be possible to eliminate this bias (see Sec. 5.5.3

for a detailed discussion).

We have also tested our pipeline using an F4.5 mock (with log10 |fR0| = −4.5), and in

Appendix B.3 we show that this model is clearly distinguished from F5.

5.5 Potential biases in model constraints

In Sec. 5.4, we demonstrated that our framework can give very reasonable constraints of

log10 |fR0| for both GR and F5 mocks (Fig. 5.6). An important feature of this constraint

framework (Fig. 2.1) is the inclusion of corrections for the effects of f(R) gravity on the

internal cluster properties, which are expected to prevent biased constraints. In Sec. 5.5.1,

we will assess potential sources of bias in the constraint pipeline, including an incomplete

treatment of the scaling relation. Then, in Sec. 5.5.2, we will check the effects of the cluster

sample, including selection criteria, on the constraints. Finally, we will demonstrate how

the various parameter degeneracies can be prevented by using tighter parameter priors in

Sec. 5.5.3.

For all of the figures in this section, we will only show constraints for parameters that

are either biased or contribute to parameter degeneracies. Therefore, we exclude the log Y?

and σlog Y constraints, since these always match the Gaussian priors very closely (e.g., see
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5.5.1. Constraint pipeline
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Figure 5.7: Parameter constraints generated using the same GR (red) and F5 (blue) mocks
as Fig. 5.6, but with a simplified constraint pipeline in which the f(R) effects on the
observable-mass scaling relation are neglected.

Figs. 5.5 and 5.6). For similar reasons, we will also exclude ΩM constraints that have been

inferred using the Gaussian prior from Planck 2018.

5.5.1 Constraint pipeline

5.5.1.1 Power-law scaling relation

In Fig. 5.7, we show constraints inferred using the same GR and F5 mocks as used for

Fig. 5.6. However, here the f(R) effects on the SZ scaling relation (Eq. (5.11)) have been

neglected, i.e., a power-law scaling relation without f(R) corrections is used in the (incom-

plete) f(R) pipeline.

For the GR mock constraints, shown by the red contours in Fig. 5.7, the log10 |fR0|

posterior appears to be uniformly distributed over the range −7 ≤ log10 |fR0| . −4.5.

This extends beyond the range −7 ≤ log10 |fR0| . −5 observed using the full pipeline
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5.5.1.2. Mass ratio scatter

in Fig. 5.6, and the range log10 |fR0| ≤ −5.36 containing 68% of the sampled points has

a higher upper bound than the range ≤ −5.56 given in Table 5.2 for the full pipeline.

Therefore, even though the GR mock is generated using a power-law scaling relation, it

seems that neglecting the f(R) effects on the scaling relation in the pipeline leads to less

precise and weaker constraints of log10 |fR0| overall.

The F5 mock constraints, which are shown by the blue contours, still give a peaked

log10 |fR0| posterior distribution. However, there are now a greater proportion of sampled

points within the range −7 ≤ log10 |fR0| . −5. This means that the 68% confidence

contours extend to log10 |fR0| = −7, indicating that the pipeline is unable to convincingly

rule out GR. There are also a greater number of sampled points with log10 |fR0| & −4.5;

indeed, the highest-likelihood parameter combination has log10 |fR0| = −4.56, which is

much higher than the fiducial value −5 and the value −4.92 when using the full pipeline.

The median and 68-percentile range is log10 |fR0| = −5.1+0.5
−1.2, which is less precise than the

constraint log10 |fR0| = −5.1+0.3
−1.0 with the full f(R) pipeline.

In summary, our constraints for the GR and F5 mocks indicate that assuming a power-

law observable-mass scaling relation can lead to imprecise and biased constraints of f(R)

gravity. This appears to be linked to parameter degeneracies, where we again observe a

lowered σ8 and increased α for log10 |fR0| & −5, and an increased σ8 and lowered α and β

at log10 |fR0| . −5.

5.5.1.2 Mass ratio scatter

For our constraints using the F5 mock in Fig. 5.6, we included the scatter of the dynamical

mass enhancement, given by Eq. (B.1), in both the mock and the log-likelihood calculation.

We now consider the effect of neglecting this scatter from the mock and the likelihood.

The new result is shown by the red contours in Fig. 5.8, along with the previous results

in blue. Without this scatter, the observable-mass scaling relation is less scattered overall;

as a result, the f(R) constraints are more precise, with 68-percentile range log10 |fR0| =

−4.89+0.15
−0.35 as opposed to log10 |fR0| = −5.1+0.3

−1.0. In particular, the red 68% contours do not

feature the tail towards low log10 |fR0|. These results indicate that excluding the scatter
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5.5.2. Cluster sample
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Figure 5.8: Parameter constraints generated using our constraint pipeline, where the blue
constraints are the same as the F5 mock constraints in Fig. 5.6 and the red constraints
are generated with the scatter of the dynamical mass enhancement set to zero in both the
mock and log-likelihood.

could lead to f(R) constraints with an unrealistically high precision.

5.5.2 Cluster sample

5.5.2.1 Flux threshold

In addition to the observational cut Ycut = 1.5 × 10−5Mpc2 which is used in the main

results of this chapter, we have also generated mocks with cuts 10−5Mpc2, 2 × 10−5Mpc2

and 2.5×10−5Mpc2. From Fig. 5.4, a cut of 10−5Mpc2 means that the lowest mass clusters,

with M500 ∼ 1014h−1M�, are included in the sample. In the F5 model, the HMF is more

enhanced at these lower halo masses (see Fig. 5.2), therefore it is expected that using

lower-mass objects can give more precise constraints of log10 |fR0|.

In Fig. 5.9, we show constraints generated from F5 mocks with these three cuts. For

Ycut = 2.5 × 10−5Mpc2, the sampled log10 |fR0| distribution is quite uniform for −7 <
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5.5.2.1. Flux threshold
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Figure 5.9: Parameter constraints generated using our constraint pipeline, using F5
mocks with observational flux thresholds of 10−5Mpc2 (red), 2 × 10−5Mpc2 (blue) and
2.5× 10−5Mpc2 (brown).

log10 |fR0| . −5, indicating that this high-mass cluster sample cannot be used to distinguish

the F5 model from weaker models, including GR. This is not surprising, given that higher-

mass clusters are better-screened in F5, which means that their number count deviates

from the GR prediction less strongly (see Fig. 5.2). On the other hand, the constraints

for Ycut = 2 × 10−5Mpc2 clearly favour log10 |fR0| values close to −5. However, the 68%

contours still extend to log10 |fR0| = −7, which is very close to GR. This is improved upon

with Ycut = 1.5 × 10−5Mpc2, which is able to convincingly distinguish the F5 model from

GR, as we showed in Fig. 5.6.

In Fig. 5.9, we also show the constraints from the F5 mock with Ycut = 10−5Mpc2.

Interestingly, despite containing lower-mass clusters than the other mocks, the sampled

log10 |fR0| values are approximately evenly distributed over −7 . log10 |fR0| . −5. One

possible reason is that this mock catalogue includes many more low-mass, unscreened,

clusters, and the main constraining power comes from different objects than the previous
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Figure 5.10: Parameter constraints generated using our constraint pipeline, using GR mocks
with observational flux thresholds 10−5Mpc2 (red) and 1.5 × 10−5Mpc2 (blue). The latter
is a different realisation (generated in the same way) from the GR mock used in Fig. 5.6,
and is included to show the potential effects of sample variance on the constraints.

cases. We note that for these constraints, the σ8, α and β parameters are all biased. As

we have already discussed, these parameters can be varied in such a way that the predicted

theoretical HMF in GR (i.e., with low log10 |fR0|) can match the F5 HMF with the fiducial

cosmological parameters. Our results here show that this can cause biased constraints

which appear to prefer GR over f(R) gravity even though this is an F5 mock, and this

seems to be more relevant for cluster samples that extend to lower masses. As we will show

in Sec. 5.5.3, these degeneracies can be prevented by using tighter parameter priors.

We note that the biased results described above only apply to an F5 fiducial cosmology.

The red contours in Fig. 5.10 show the constraints inferred using a GR mock with Ycut =

10−5Mpc2. These are consistent with GR, with 68% of the sampled points in the range

log10 |fR0| ≤ −5.71, which is even more precise than the log10 ≤ −5.56 constraint from

Fig. 5.6. Meanwhile, the constraints for σ8, α and β show an excellent match with the
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5.5.2.2. Sample variance

fiducial values. Therefore, the bias described above may not be an issue for cluster samples

in a GR universe.

5.5.2.2 Sample variance

In order to check the effect of sample variance on the constraints, we have generated several

GR mocks with Ycut = 1.5× 10−5Mpc2, following the method discussed in Sec. 5.3.3. In all

cases, the inferred constraints of log10 |fR0| are consistent with GR, with the 68% constraint

contours spanning −7 ≤ log10 |fR0| . −5 just like the red contours in Fig. 5.6.

However, we have occasionally observed peaks in the log10 |fR0| posterior distribution

close to −5, which are related to the degeneracies between log10 |fR0|, σ8, α and β mentioned

above. An example is shown with the blue contours in Fig. 5.10. As we have discussed,

in the constraints using the F5 mock in Fig. 5.6, we can see a ‘rise’ in the log10 |fR0|–α

contour at log10 |fR0| > −5; there is a similar ‘rise’ in the case of the blue contours in

Fig. 5.10. This is because a larger α, which means a steeper scaling relation and hence

underpredicted cluster number counts, could be compensated by a stronger gravity, so that

to the pipeline, the GR mock would appear to be reasonably fitted with an f(R) model

with slightly larger α. We also see a slight ‘drop’ in the log10 |fR0|–σ8 contour, where the

lowered σ8 can again counteract the strengthened gravity. These effects can lead to more

points sampled around log10 |fR0| = −5, and because even stronger gravity is disfavoured

an artificial peak is formed at −5. While the peak in log10 |fR0| here is smaller than the

peak observed for the F5 mock in Fig. 5.6, it is important to be wary that degeneracies can

lead to a particular value of log10 |fR0| being favoured even for a GR fiducial cosmology.

Like the other sources of bias discussed in this chapter, this issue can be eliminated by

using tighter priors, as we will show in the next section.

5.5.3 Tighter priors

For many of the results discussed in this chapter, we have observed degeneracies between

log10 |fR0|, ΩM, σ8, α and β. Together, these parameters can vary such that the theoretical

GR HMF is consistent with the F5 mocks, or similarly the theoretical F5 HMF can be
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5.5.3. Tighter priors
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Figure 5.11: Parameter constraints generated by our constraint pipeline using: an F5 mock
with flux threshold Ycut = 10−5Mpc2 and a tight Gaussian prior 1.79 ± 0.01 for α (red);
and an F5 mock with flux threshold Ycut = 1.5× 10−5Mpc2 and a flat prior [0.15, 0.50] for
ΩM (blue).

made consistent with the GR mocks. For our main results with the f(R) constraint pipeline

(Fig. 5.6), we have been using a tight Gaussian ΩM prior from Planck 2018. In Fig. 5.11,

the blue constraints have been generated using the same F5 mock as the blue constraints

in Fig. 5.6; however, here a flat prior [0.15,0.50] has been adopted for ΩM. This gives

rise to the degeneracy between ΩM and σ8 (observed earlier in Fig. 5.5), which leads to

a uniform distribution in log10 |fR0|. Fig. 5.12 provides an illustration of this degeneracy:

here, the HMF prediction for F6 with increased ΩM and reduced σ8 closely resembles the F5

prediction, particularly at lower masses which dominate the mock cluster samples. By using

139



5.5.3. Tighter priors

14.0 14.5 15.0
log10(M500c [h−1M�])

−8

−6

−4
lo

g
1
0
(d
n
/
d

ln
M

5
0
0
c

[h
3
M

p
c−

3
])

z = 0.0

F5

F6

F6 ΩM = 0.36

F6 σ8 = 0.77

F6 ΩM = 0.36, σ8 = 0.77

14.0 14.5 15.0
log10(M500c [h−1M�])

z = 0.2

14.0 14.5 15.0
log10(M500c [h−1M�])

z = 0.5

Figure 5.12: Predictions of the HMF in F6 (light blue) and F5 (dark green) at redshifts
0.0, 0.2 and 0.5. We show predictions with the fiducial parameter values ΩM = 0.3153
and σ8 = 0.8111 (solid lines), an increased ΩM (dashed line), a reduced σ8 (dash-dotted
line) and both an increased ΩM and reduced σ8 (dotted line). This figure illustrates not
only the well-known degeneracy between ΩM and σ8 in determining the HMF, but also
their degeneracy with fR0: by tuning the values of these two parameters, an F6 model can
closely mimic the HMF of an F5 model; note that the latter degeneracy may be broken by
looking at multiple redshifts or by having more precise knowledge of ΩM and/or σ8.

the tight ΩM = 0.3153± 0.0073 prior for our main results in Sec. 5.4.2, we have prevented

this issue. The tight prior on ΩM can potentially be replaced by combining cluster number

counts with other cosmological probes that are sensitive to ΩM, such as the CMB.

We have also shown that there is a degeneracy between σ8 and the SZ scaling relation

parameters α and β. Although we have used Gaussian priors for the latter, they can still

vary enough to cause biased constraints. In Sec. 5.5.2.1, we found that this degeneracy

caused the log10 |fR0| constraints using the F5 mock with Ycut = 10−5Mpc2 to resemble

GR (see Fig. 5.9). In Fig. 5.11, the red contours show the log10 |fR0| constraints for the

same mock, but this time using a tighter α prior of 1.79 ± 0.01. The log10 |fR0| posterior

distribution now peaks close to the fiducial value −5, though the constraints on σ8 and

β are similarly biased as before. In this case, as in Sec. 5.5.2.1, the constrained β value

is lower, which means less time evolution; because the time evolution is normalised at

z = 0, this implies that, for a given cluster mass M500, the measured observable Y at

z > 0 is smaller than the true value, and so fewer detectable clusters would be predicted.
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This is compensated by a larger σ8 (actually a similar degeneracy can be observed in the

GR case, see the σ8–β contour in Fig. 5.5), but one side effect is that smaller log10 |fR0|

values are more likely to be allowed, leading to a uniform posterior distribution in Fig 5.9,

which is alleviated in Fig. 5.11 with the tighter prior on α but nevertheless not completely

eliminated. Looking at the red contours in the left column of Fig. 5.11, we can see that at

log10 |fR0| ≈ −5, β and σ8 both match their correct values, which suggests that if we can

tighten the prior on either σ8 or β, the constraint on log10 |fR0| can be further improved.

Therefore, a conclusion from this discussion is that, with better knowledge of the

scaling relation parameters, it is possible to reduce the effect of these degeneracies. However,

we note that it may be difficult to constrain the scaling relation parameters with even greater

precision. In this case, the degeneracies could be prevented by using a synergy with weak

lensing data, which can estimate the cluster mass with higher precision. Even if this data

is only available for a subset of the clusters, it can still be incorporated in the log-likelihood

(e.g., Bocquet et al., 2019).

5.6 Summary, Discussion and Conclusions

In this chapter, we have combined all of our models for the effects of f(R) gravity on

cluster properties into an MCMC pipeline for constraining the amplitude of the present-day

background scalar field, |fR0|. We have adopted the model from Cataneo et al. (2016) for the

f(R) enhancement of the HMF, and used this, along with our model for the enhancement

of the halo concentration, to produce a model-dependent prediction of the cluster number

counts (Sec. 5.3.1). We have also used our model for the enhancement of the dynamical

mass in f(R) gravity to convert a GR power-law observable-mass scaling relation, which is

based on the Planck YSZ(M500) relation (Ade et al., 2016), into a form consistent with f(R)

gravity, where the fifth force enhances the relation at sufficiently low masses (Sec. 5.3.2).

These models are all incorporated in our log-likelihood (Sec. 5.3.4), which we have used to

infer parameter constraints using a set of mock cluster catalogues (Sec. 5.3.3).

Using a combination of GR and F5 mocks, we have shown that our pipeline is able

to give reasonable parameter constraints that are consistent with the fiducial cosmology
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(Figs. 5.5 and 5.6). For the GR mock, the constraints conclusively rule out f(R) models

with log10 |fR0| & −5 and favour values in the range −7 ≤ log10 |fR0| . −5 where −7 is

the lowest value considered by our MCMC sampling. Meanwhile, the constraints inferred

using the F5 mock favour values close to the fiducial value of −5, with 68% range −5.1+0.3
−1.0

and a ‘most likely’ value of −4.92. We have also shown that the constraints inferred from

both mocks can be imprecise and biased if the f(R) enhancement of the scaling relation is

not accounted for (Fig. 5.7). Therefore, this should be properly modelled in future tests of

f(R) gravity in order to prevent biased constraints. This will become particularly relevant

as cluster catalogues start to enter the galaxy group regime (e.g., Pillepich et al., 2018a;

Lovisari et al., 2021), where more objects can be unscreened in f(R) gravity.

Throughout this chapter, the main obstacle to precise and unbiased constraints has

stemmed from degeneracies between fR0, ΩM, σ8 and the scaling relation parameters α

and β, all of which can influence the predicted cluster count. We have shown that the

degeneracies can be prevented by using a tighter Gaussian prior for ΩM and by having

better knowledge of the scaling relation parameters (Fig. 5.11). The latter can potentially

be achieved by including lensing data for a subset of the clusters. If wide or flat parameter

priors are used, this may give rise to biased constraints of log10 |fR0|. For example, we have

found that the parameter degeneracies can have a more significant effect for cluster samples

that extend to lower masses (Sec. 5.5.2.1).

Our constraint pipeline can be improved in a couple of ways. First, while the HMF

model of Cataneo et al. (2016) is accurate, it only covers the redshift range [0, 0.5]. An

extended model that works for a larger redshift range, as well as for wider ranges of other

cosmological parameters (not restricted to the ΩM and σ8 parameters as we have focused

on here), would be very useful. Calibrating this model for spherical overdensity ∆ = 500

would also mean that conversions between halo mass definitions would no longer be required.

Second, the MCMC pipeline should be extended so that independent cluster data, such as

weak lensing, can be included in the model constraint. Once these tasks are completed, this

pipeline can be used to constrain f(R) gravity using observations. It is also straightforward

to extend our framework to other gravity models; we have already started to do this for
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the nDGP model (Chapter 6).
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Chapter 6

Cluster and halo properties in DGP

gravity

6.1 Introduction

So far in this thesis, we have calibrated models for the effects of the f(R) gravity fifth force

on the dynamical mass (Chapter 2), the halo concentration (Chapter 3) and the observable-

mass scaling relations (Chapter 4) of clusters, and we have used these to create a robust

MCMC constraint pipeline that uses cluster number counts to probe gravity (Chapter 5).

However, our general framework for cluster tests of gravity (Fig. 1.2) is intended to be easily

extended to other MG models. In this chapter, we will study cluster and halo properties

in nDGP. As discussed in Chapter 1, this model gives rise to departures from GR above

a particular ‘cross-over’ scale, resulting in a fifth force which enhances the total strength

of gravity (at smaller scales, the fifth force is screened out by the Vainshtein screening

mechanism). As with the fifth force in HS f(R) gravity, the fifth force in nDGP could

alter cluster properties such as the temperature and density profile. If these are not taken

into account in cluster constraints, then cluster mass measurements could become biased.

We will address this by studying four models of nDGP, which exhibit different strengths

of the fifth force, using a combination of DMO and full-physics simulations that cover a

wide range of resolutions and box sizes. This allows us to study and model the effects of
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the nDGP fifth force on the halo concentration and observable-mass scaling relations. By

combining our DMO simulations, we also examine the halo abundance over a continuous

mass range extending from Milky Way galaxy-sized to large cluster-sized haloes.

This chapter is organised as follows: in Sec. 6.2, we describe the nDGP simulations

used in the analyses of this chapter and the method for calculating the halo properties; our

main results are presented and discussed in Sec. 6.3; and, in Sec. 6.4, we give the main

conclusions and discuss the significance of our results.

6.2 Simulations and methods

Since Eq. (1.22) for the scalar field is highly nonlinear, the fifth force in the nDGP model

can display a wide spectrum of behaviours, depending on time, scale and the mass of the

objects being considered. Therefore, numerical simulations are essential for predicting its

cosmological properties and implications accurately. For earlier works that make use of

nDGP simulations, see, e.g., Chan and Scoccimarro (2009); Schmidt (2009); Khoury and

Wyman (2009); Li et al. (2013); Falck et al. (2014, 2015). We describe the DMO and full-

physics simulations used in this chapter in Sec. 6.2.1. Then, in Sec. 6.2.2, we describe our

methods for computing the thermal properties and concentration of our haloes.

6.2.1 Simulations

Our simulations were run using arepo (Springel, 2010). One of these is the first cosmo-

logical simulation to simultaneously incorporate both full baryonic physics (implemented

using the IllustrisTNG model) and nDGP∗. This simulation, which is part of the shybone

simulation suite (see Arnold et al., 2019b; Hernández-Aguayo et al., 2020), has box size

62h−1Mpc and consists of 5123 dark matter particles, with mass 1.28 × 108h−1M�, and

(initially) the same number of Voronoi gas cells, which have mass ∼ 2.5 × 107h−1M� on

average. We also have four DMO N -body simulations, whose specifications are provided
∗We note that the IllustrisTNG model was tuned using standard gravity simulations. However, the

differences between the GR and nDGP predictions for the stellar and gas properties of galaxies are generally
small compared to typical observational scatters (see, e.g., Fig. 8 of Hernández-Aguayo et al., 2020), making
a full retuning of the TNG parameters for the nDGP model unnecessary.
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Specifications Simulations
and models L62 L200 L500 L1000

box size / h−1Mpc 62 200 500 1000
particle number 5123 10243 10243 10243

particle mass / h−1M� 1.52× 108 6.39× 108 9.98× 109 7.98× 1010

nDGP models N1,N5 N0.5,N1,N2,N5 N0.5,N1,N2,N5 N0.5,N1,N2,N5

Table 6.1: Specifications of the four DMO simulations that are used, along with the full-
physics shybone simulations, to study cluster and halo properties in nDGP. These are
labelled L62, L200, L500 and L1000, according to their box size. The simulations have
all been run for GR in addition to the nDGP models listed, where N0.5, N1, N2 and N5
correspond to H0rc = 0.5, 1, 2, 5, respectively.

in Table 6.1. These have box sizes 62h−1Mpc, 200h−1Mpc, 500h−1Mpc and 1000h−1Mpc.

Throughout this chapter, we will refer to these as L62, L200, L500 and L1000, respect-

ively. These span a wide range of mass resolutions – from 1.52 × 108h−1M� in L62 to

7.98× 1010h−1M� in L1000 – allowing us to study haloes spanning, continuously, the mass

range ∼ 1011h−1M� to ∼ 1015h−1M�.

The simulations have all been run with cosmological parameters

(h,ΩM,Ωb, σ8, ns)=(0.6774, 0.3089, 0.0486, 0.8159, 0.9667). All simulations include runs

with N5 and N1, in addition to GR. The L200, L500 and L1000 simulations also feature

runs with N2 and N0.5, allowing us to thoroughly explore the effects of different strengths

of the fifth force on halo properties. The simulations all begin at redshift z = 127. For this

study, we use 12 particle snapshots from each simulation which span the redshift range

0 ≤ z ≤ 3.

For completeness and as a first check, we show here the matter power spectra of the

simulated nDGP models; because this is not the primary focus, we shall only discuss the

result briefly. The upper panels of Fig. 6.1 show the matter power spectra generated using

the z = 0 and z = 1 snapshots of L500 (similar results can be found for the L200 and

L1000 boxes). The relative differences between the nDGP and GR spectra are shown in

the lower panels, where we have also included the predictions from linear theory (dashed

lines). On large scales (k . 0.1hMpc−1), the observed relative differences closely match the

linear predictions; here, the fifth force enhances the power by ∼ 25% in N0.5 and by a few

percent in N5 at z = 0. The enhancement is even greater at intermediate scales, where the
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Figure 6.1: Matter power spectrum (top row) and its relative difference in nDGP with
respect to GR (bottom row), as a function of the wavenumber at redshifts 0 and 1. The
data has been generated using our dark-matter-only L500 simulation (see Table 6.1), which
has been run for GR (black) and the nDGP models N5 (magenta), N2 (green), N1 (orange)
and N0.5 (blue). The dashed lines in the bottom row show the linear theory predictions of
the relative difference.

N0.5 power is enhanced by up to ∼ 35%. This is a consequence of mode-coupling at these

scales. At smaller scales (k & 1hMpc−1), which correspond to halo scales, the Vainshtein

screening of the fifth force suppresses the power spectrum enhancement. These results are

consistent with previous works (e.g., Schmidt, 2009; Schmidt et al., 2010; Winther et al.,

2015). While the trends are similar at z = 0 and z = 1, the nDGP enhancement is smaller

for the latter due to the fifth force being weaker at earlier times.

6.2.2 Halo catalogues

At each simulation snapshot, we have generated halo catalogues using the subfind code

(Springel et al., 2001). For each halo, we have measured the mass-weighted gas temperature

and the YSZ and YX parameters using Eqs. (4.14)-(4.16), again excluding gas cells within

the radial range r < 0.15R500. The halo concentration is measured using full fitting of the
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NFW profile to the halo density, as described in Sec. 3.2.2.1.

6.3 Results

In Sec. 6.3.1, we present our results for the observable-mass scalings using our full-physics

simulations. Then, in Sec. 6.3.2, we study and model the concentration-mass-redshift rela-

tion in nDGP. Finally, in Sec. 6.3.3, we examine the HMF in nDGP.

6.3.1 Observable-mass scaling relations

In Figs. 6.2-6.4, we plot the mass-weighted gas temperature and the YSZ and YX parameters

against the halo mass M500. In addition to showing individual data points for each halo

in the mass range M500 > 1013M�, we also plot lines showing the median observable as

a function of the mean logarithm of the mass. These averages have been computed using

a moving window with a fixed size of 10 haloes. This approach, which is consistent with

our study of the observable-mass scaling relations using the f(R) shybone simulations

(Chapter 4), is preferred over using a set of fixed-width bins, which would contain much

fewer haloes at high mass than at low mass. The moving averages make use of all haloes

with mass M500 > 1013M�, including cluster-sized haloes with M500 & 1014M�. We note,

however, that because there are only a few haloes with this mass (owing to the small box

size of the full-physics simulations), the highest mean mass of the moving average is only

∼ 1014M�. The lower panels of Figs. 6.2-6.4 show the relative differences between the

observable medians in nDGP and GR. These are smoothed by computing the mean relative

difference within 8 mass bins. We also show the root-mean-square halo scatter in GR for

each of these bins (grey shaded regions).

The T̄gas-M relation is shown in the top two panels of Fig. 6.2. Both the GR and nDGP

data follow a power-law relation as a function of the mass. From the lower panel of Fig. 6.2,

we see that the median temperature in N5 agrees very closely with GR, typically within

a couple of percent. This is consistent with the fact that the fifth force has a very small

amplitude in this model (see the discussion below Eq. (1.23)). However, the temperature

in N1 is enhanced by about 5% relative to GR on average. This result is quite surprising:
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Figure 6.2: Gas temperature as a function of mass for haloes from our full-physics shybone
simulations (see Sec. 6.2.1) at z = 0. Data is included for GR (black) and the nDGP models
N5 (magenta) and N1 (orange). The data points correspond to individual haloes. The lines
show the median temperature and mean logarithm of the mass which have been computed
using a moving window. Bottom panel: relative difference between the median temperatures
in nDGP and GR; the grey shaded region shows the size of the GR halo scatter.

using the same full-physics simulations, Hernández-Aguayo et al. (2020) found that the N1

fifth force reaches just 2%-3% of the strength of the Newtonian force at the radius R500 for

galaxy group-sized haloes and is even more efficiently screened at smaller radii. Therefore,

the total gravitational potential at radius R500, within which we have calculated the gas

temperature, is expected to be just a few percent deeper than the Newtonian potential.

We would therefore expect the temperature to be enhanced by just a few percent rather

than the 5% that we observe. However, we note that, in nDGP, gravity is enhanced at the

outer halo regions even at redshift z = 2 (see, for example, Fig. 7 of Hernández-Aguayo

et al., 2020). Therefore, between 0 < z < 2, gas at the outer halo radii will undergo a

gravitational acceleration in nDGP that is enhanced compared to GR. Consequently, it
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Figure 6.3: SZ Compton Y -parameter as a function of mass for haloes from our full-physics
shybone simulations (see Sec. 6.2.1) at z = 0. Data is included for GR (black) and the
nDGP models N5 (magenta) and N1 (orange). The data points correspond to individual
haloes. The lines show the median Y -parameter and mean logarithm of the mass which
have been computed using a moving window. Bottom panel: relative difference between
the median Y -parameters in nDGP and GR; the grey shaded region shows the size of the
GR halo scatter.

will have a higher speed than in GR as it reaches smaller radii where it gets shock-heated.

The fact that this happens over a long period of time can potentially explain how the gas

temperature is enhanced by as much as 5% within R500.

Our results for the YSZ-M and YX-M scaling relations are shown in Figs. 6.3 and 6.4,

respectively. The YSZ and YX parameters are closely related to each other, and so the results

appear similar for both: the enhancement of the Y -parameters in the N1 model ranges

from zero at high masses to 10%-15% at low masses, while in N5 it ranges between a 5%

suppression at high masses and 5% enhancement at low masses. The low-mass enhancement

in N1 can in part be explained by the enhanced temperature seen in Fig. 6.2. Even for N5,
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Figure 6.4: X-ray analogue of the Compton Y -parameter as a function of mass for haloes
from our full-physics shybone simulations (see Sec. 6.2.1) at z = 0. Data is included for GR
(black) and the nDGP models N5 (magenta) and N1 (orange). The data points correspond
to individual haloes. The lines show the median Y -parameter and mean logarithm of the
mass which have been computed using a moving window. Bottom panel: relative difference
between the median Y -parameters in nDGP and GR; the grey shaded region shows the size
of the GR halo scatter.

the temperature appears to be enhanced on average for masses M500 . 1013.4h−1M�, so

this can also partly explain the ∼ 5% enhancement of the Y -parameters at these masses.

The Y -parameters are also correlated with the gas density. In the top row of Fig. 6.5, we

show the median gas density profiles for haloes from two mass bins (annotated). For the

low-mass bin, both the N5 and N1 gas profiles appear to be enhanced, on average, with

respect to GR, while for the high-mass bin the profiles appear to be suppressed. This can

help explain why the Y -parameters are enhanced in nDGP at lower masses and closer to

GR or suppressed at higher masses.

The physical origin of these effects on the gas density is not entirely clear. They
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Figure 6.5: Median gas density (top row) and temperature (bottom row) profiles of haloes
from our full-physics shybone simulations (see Sec. 6.2.1) at z = 0. Data is shown for GR
(black) and the nDGP models N5 (magenta) and N1 (orange). The two mass bins used to
measure the median profiles are annotated. The maximum radius shown for each column
corresponds to R500.

could be related to the complex interrelations between the nDGP fifth force and baryonic

processes such as cooling and feedback. For example, if the fifth force leads to a larger

amount of feedback, this would heat up and blow out surrounding gas. This would be

consistent with the results shown for the gas density and temperature profiles in the high-

mass bin in Fig. 6.5, where the gas density is suppressed and the temperature is enhanced

in nDGP compared to GR. The opposite trend is present in the low-mass bin, which would

be consistent with a lowering of feedback efficiency in nDGP compared to GR. Another

possibility is that the enhancement of the gas speeds due to the fifth force leads to differences

in the density profiles between nDGP and GR. This effect can be inherited from times before
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the gas falls into haloes and is screened from the fifth force. Haloes of different mass will

experience this effect to a different extent as larger haloes are formed from matter and gas

further afield.

In the lower panels of Fig. 6.5 we show the halo gas temperature profiles. For the higher

mass bin, the profiles in N5 and N1 are both enhanced compared to GR. For N1, this is

consistent with the result for the mass-weighted temperature discussed above; however,

for N5, the enhancement relative to GR appears to contradict Fig. 6.2. This is actually

related to the difference in binning: while the median mass-weighted temperature has been

computed using a moving window containing a fixed number of haloes, the temperature

profile is computed within a single wide bin. The mean mass of this bin is actually higher

in N5 than in GR, indicating that this bin contains a greater number of high-mass haloes

in N5 which also have a higher temperature. This supports our decision to use a moving

average in Figs. 6.2-6.4, which avoids the issues that arise from having a fixed set of bins

for each model. For the lower mass bin, the nDGP temperature profiles are suppressed

for radii r . 100kpc and the N1 profile is just slightly enhanced at higher radii. We note

that, because there are more particles at the outer radii, which cover a larger volume, these

regions have a greater overall contribution to the mass-weighted temperature, which can

explain why the latter is enhanced in N1 even though the temperature profile is suppressed

at lower radii compared to GR. And, as described above, the difference in binning can make

it difficult to directly compare Figs. 6.2 and 6.5.

We finally note that, due to the small box size of our full-physics simulations, we can

only rigorously study the scaling relations for halo masses corresponding to galaxy groups.

A larger box will be required to rigorously probe the interplay between the fifth force

and baryonic physics in galaxy clusters. Galaxy groups, particularly low-mass groups, are

typically more susceptible to feedback than cluster-sized objects. This is why, in Fig. 6.2,

the scatter in the GR halo temperature is above 10% for low-mass groups and less than 5%

for high-mass groups. It will therefore be interesting to see how the nDGP scaling relations

compare to GR at these larger masses, where the unpredictable effects from feedback are

not as significant. In Chapter 8, we will present a retuned baryonic physics model which we
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plan to use for running large-box full-physics simulations of the nDGP model in the future.

6.3.2 Concentration-mass relation

In Sec. 6.3.2.1, we discuss the concentration results from our DMO simulations (dashed

lines in Figs. 6.6-6.8). Then, in Sec. 6.3.2.2, we summarise the results from full-physics

simulations (solid lines in Figs. 6.6-6.8), including the effect of baryons on the model dif-

ferences. Finally, in Sec. 6.3.2.3, we present a general model for the concentration-mass

relation in nDGP.

6.3.2.1 Dark-matter-only concentration

In order to study the concentration over a wide and continuous halo mass range, we have

combined the data from our DMO simulations into a single catalogue. In order to avoid

resolution issues with the concentration measurement, we exclude haloes which have fewer

than 2000 particles (within the radius R200) and we leave out L1000 due to its low mass

resolution. The resulting catalogue consists of haloes spanning masses 3.04×1011h−1M� .

M200 . 1015h−1M�. We note that, because L62 has not been run for N2 and N0.5, the

data for these models only extends down to mass 1.278 × 1012h−1M� (≡ 2000 particles

from L200). Throughout this section, we will only refer to the results from this combined

catalogue; however, in Appendix C.1, we also compare the concentration predictions from

each of our DMO simulations, including L1000.

The top row of Fig. 6.6 shows the median concentration as a function of mass for

redshifts 0, 1 and 2 (from left to right). The median has been computed using mass bins

containing a minimum of 100 GR haloes each: the bins all have equal width in logarithmic

mass apart from the highest-mass bin, which is wide enough to enclose the 100 highest-mass

haloes. The same set of bins is used for each gravity model. As expected from literature

(e.g., Duffy et al., 2008), the median concentration appears to follow a descending power-

law relation with the mass. This behaviour arises due to the hierarchical nature of structure

formation: higher-mass haloes form at later times when the background density is lower.

Therefore, the concentration of these haloes is also typically lower.
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Figure 6.6: Median halo concentration (top row) and its relative difference with respect
to GR (bottom row), as a function of the mean logarithm of the halo mass at redshifts
0, 1 and 2. The data is generated using the dark-matter-only simulations L62, L200 and
L500 (dashed lines) and our full-physics simulation (solid lines), the specifications of which
are given in Table 6.1. These have been run for GR (black) and the nDGP models N5
(magenta), N2 (green), N1 (orange) and N0.5 (blue). The shaded regions in the lower
panels show the 1σ uncertainty in the relative difference.

The bottom row of Fig. 6.6 shows the relative difference between the nDGP and GR

median concentrations. The shaded region shows the 1σ error. To calculate this, the

standard error of the mean (equal to the standard deviation divided by the square root

of the halo count) is computed for each mass bin for GR and nDGP, and then combined

in quadrature. We note that, although the nDGP and GR simulations are started from

the same initial conditions, the differing gravitational forces affect the trajectories of the

simulation particles, which end up at different positions with different velocities, essentially

losing much of the memory of their initial states. Therefore, the concentration measure-

ments of each model can be treated as independent, so that the errors may be combined

as described. Our results show that the nDGP fifth force causes the concentration to be

reduced, since particles experience the fifth force and hence have enhanced velocities before
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Figure 6.7: Median halo concentration (top row) and its relative difference with respect to
GR (bottom row), as a function of redshift for three mass bins. The data is generated using
the dark-matter-only simulations L62, L200 and L500 (dashed lines) and the full-physics
simulation (solid lines), the specifications of which are given in Table 6.1. These have been
run for GR (black) and the nDGP models N5 (magenta), N2 (green), N1 (orange) and
N0.5 (blue). The shaded regions in the lower panels show the 1σ uncertainty in the relative
difference.

they fall into haloes, so that after entering the haloes their higher kinetic energy makes

it harder for them to settle towards the central regions. The effect is greater for models

which have a stronger fifth force, so the concentration suppression is highest in N0.5 (∼10%

on average) and lowest in N5 (at percent level). At z = 0 and z = 1, the suppression is

greater at higher mass. This appears to be the case for N0.5 at z = 2 as well, but not for

weaker models, where the suppression appears to have a much weaker dependence on the

halo mass.

To complement these results, we show the median concentration, computed within

three mass bins, as a function of redshift in Fig. 6.7. The lower-mass bin, 1011.6h−1M� <

M200 < 1012h−1M�, corresponds to galaxy-sized haloes: here, we use haloes from L62, for

which we again note that only the GR, N5 and N1 models are available. For the middle-
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6.3.2.1. Dark-matter-only concentration

mass bin, 1012.8h−1M� < M200 < 1013.2h−1M�, we use haloes from L200. For both of these

bins, the nDGP suppression of the concentrations appears to be approximately constant

over the redshift range 0 ≤ z ≤ 3, ranging from a couple of percent at most in N5 to about

7% in N0.5.

The higher-mass bin, 1014h−1M� < M200 < 1014.4h−1M�, shown in Fig. 6.7 corres-

ponds to cluster-sized objects; for this, we use haloes from L500. Because clusters typically

form at later times, this bin consists of fewer than 100 haloes for redshifts z & 1.25, and we

therefore exclude these redshifts from the figure. The suppression of the concentration in

nDGP is greater for this bin than for the lower-mass bins, reaching ∼ 15% in N0.5. This

is consistent with the results of Fig. 6.6. As for the other bins, the suppression does not

appear to evolve with redshift in N5, N2 and N1. However, for N0.5, the suppression is

slightly greater at z = 1 (∼ 15%), than at z = 0 (∼ 12%). We note that the error is also

greater at high redshift due to the reduced number of objects, so these results alone do not

provide compelling evidence of a redshift evolution of the concentration suppression.

To help make sense of these results, in Fig. 6.8 we show the median density profiles of

haloes from a few mass bins at redshifts 0 and 2. These have been computed by measuring

the median density, in radial bins spanning 0.05R200 to R200, using the binned haloes.

The density has been scaled by r2 so that the profiles peak at the scale radius, Rs. This

means that the concentration, c200 = R200/Rs, can effectively be read off from the peak

radius: a higher (lower) peak radius corresponds to a lower (higher) concentration. In the

left column of Fig. 6.8, we show the median profile for haloes from L62 in the mass bin

1011.6h−1M� < M200 < 1012h−1M�. In the right column, we use haloes from L500 within

mass bins 1014.4h−1M� < M200 < 1014.8h−1M� and 1013.4h−1M� < M200 < 1013.8h−1M�

at redshifts 0 and 2, respectively. We use a lower mass for the z = 2 profile due to the

limited number of haloes at higher masses.

For the higher mass bins – where we have seen that there is a greater suppression of

the concentration in nDGP models – a clear trend is present: at the outer (inner) regions

of haloes, the density is greater (lower) in nDGP than in GR. As mentioned above, this

is related to the nature of the Vainshtein screening in nDGP, which suppresses the fifth
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Figure 6.8: Median density profiles of haloes from the arepo simulations L62 (left column)
and L500 (right column) at redshifts 0 (top row) and 2 (bottom row). Data from both the
full-physics (solid lines) and dark-matter-only (dashed lines) counterparts of L62 are shown.
The L500 simulation includes runs for GR (black) and the nDGP models N5 (magenta),
N2 (green), N1 (orange) and N0.5 (blue), while the L62 simulation includes GR, N5 and
N1 only. The mass bins used to measure the median density are annotated.

force on small scales or distances. This means that the fifth force is stronger at large scales,

which correspond to the outer regions of these haloes and regions further away from the

halo-formation sites. This causes orbiting dark matter particles to undergo an enhanced

gravitational acceleration at these regions and have higher kinetic energy, which prevents

them from relaxing and settling into lower-radius orbits where the fifth force is suppressed.

This causes r2ρ(r) to peak at a higher radius in the nDGP models than in GR, resulting

in a suppressed concentration. The effect is greatest in N0.5.

For the lower mass bins, we have seen in Figs. 6.6 and 6.7 that the effect of the fifth
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force is not as strong. This is consistent with the low-mass density profiles in Fig. 6.8, where

the nDGP profiles are closer to GR. However, the density is still slightly reduced at the

inner regions and increased at the outer regions, and so the concentration is still suppressed.

The reason that the effect is not as strong at low mass is again due to the nature of the

Vainshtein screening: lower-mass haloes have a smaller spatial extent, therefore the small-

scale suppression of the fifth force is more substantial throughout the range r < R200. In

addition, smaller haloes generally form at higher redshifts, so that the particles inside them

have spent less time outside the haloes and are therefore less affected by the fifth force; this

is because, once these particles enter haloes, the fifth force is strongly suppressed.

6.3.2.2 Full-physics concentration

In Figs. 6.6-6.8, we have also included data from our full-physics simulations, which are

represented with solid lines. Because these data are only available for the 62h−1Mpc box,

the data only extends to low-mass galaxy clusters (although, we note that the mean log-

arithmic mass of the rightmost bin shown in Fig. 6.6 is only slightly above 1013h−1M�).

Nevertheless, by comparing this to the data from the combined DMO data, we can get an

idea of how the results differ when gas and processes such as star formation and feedbacks

are included.

From the solid lines in Figs. 6.6 and 6.7, we see that the full-physics concentration is

typically greater at lower masses and reduced at higher masses. The full-physics simulations

include a gaseous component which, unlike dark matter, is affected by turbulence. This

causes the gas cells to slow down and settle at the inner regions of haloes. Also, at the

centre of a halo, we are likely to see stellar particles concentrate. This means that the

total halo density is enhanced in the inner regions, which is consistent with the stacked

density profiles of the full-physics simulations in Fig. 6.8. According to these results, the

rescaled density profile becomes approximately flat at the inner regions, corresponding to

a ρ(r) ∝ r−2 power-law. This clearly deviates from the NFW profile, which follows an r−1

power law in these regions. Because the concentration is a parameter of the NFW profile,

we still have to fit Eq. (3.2) in order to measure this. Doing so produces a value that is
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Figure 6.9: Relative difference between the median halo concentration in nDGP with respect
to GR, as a function of the mean logarithm of the halo mass. Binned data are shown for
all snapshots with redshift z ≤ 1, where the redshift is represented by colour. The data is
generated using the dark-matter-only simulations L62, L200 and L500, the specifications of
which are given in Table 6.1. These have been run for GR and the nDGP models N5, N2, N1
and N0.5 (shown from left to right). The error bars indicate the 1σ uncertainties. The solid
lines represent the best-fit linear relations for each panel, while the dashed lines show the
predictions from our general model, which is given by Eq. (6.3). For all models, and across
a halo mass range of four orders of magnitude, the fitting function gives a percent-level
agreement with the simulation measurement of the concentration decrement at 0 ≤ z ≤ 1.

either higher or lower than for DMO haloes with the same mass.

Despite the difference in the absolute concentrations, the suppression of the concen-

tration in nDGP appears to have a similar magnitude in the full-physics and DMO simula-

tions, according to the bottom-left panel of Fig. 6.7, for galaxy-sized haloes in the redshift

range 0 ≤ z ≤ 3. In Fig. 6.6, the dashed and solid lines in the lower panels also appear

to have a similar magnitude; however, we are unable to rigorously test this for masses

M200 & 1013h−1M�, which would require full-physics simulations of nDGP that have a

much larger box size. Such simulations are highly expensive, and are therefore left for

future work.

6.3.2.3 Modelling the concentration in nDGP

From Figs. 6.6 and 6.7, it appears that the suppression of the DMO halo concentration in

nDGP grows with mass and is approximately constant as a function of redshift. In Fig. 6.9,

we show the binned relative difference data from our combined DMO simulation data for

all snapshots at z ≤ 1. The data appears to follow a linear trend as a function of the mass,
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Figure 6.10: Best-fit values of the parameters A and B of Eq. (6.1) as a function of the
logarithm of H0rc, where rc is the cross-over scale of nDGP gravity. The best-fit values
of the data points have been computing by fitting Eq. (6.1) to the data shown in the four
panels of Fig. 6.9, which correspond to the models N5, N2, N1 and N0.5. The error bars
represent the 1σ uncertainties in the data, obtained from the weighted least squares fits.
The solid lines show best-fit power-law fits of the four data points, Eq. (6.2), which are
annotated.

therefore we can model this using:

∆c/cGR = A−B log10(M200M
−1
� h), (6.1)

where A and B are parameters representing the amplitude and slope of the relation, re-

spectively. This does not include any dependence on redshift. For the N0.5 data, there is a

clear z-dependence, with low-z (blue) data having a smaller suppression than high-z (red)

data; however, the suppression in different snapshots is still quite close, and there does not

appear to be any z-evolution for the other, more realistic, models of nDGP.

The solid lines in Fig. 6.9 are the best-fit relations for each model. These are created

by using weighted least squares to fit Eq. (6.1) to the data points, where points with large

(small) error bars are given smaller (larger) weighting. In Fig. 6.10, we show the best-

fit values of A and B as a function of the H0rc parameter which characterises the nDGP

models. Both A and B appear to be well-described by a power-law relation. Using weighted
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least squares to fit the four data points, we obtain the following best-fit relations:

A = (0.35± 0.01)(H0rc)−0.71±0.05;

B = (0.0302± 0.0008)(H0rc)−0.71±0.05.
(6.2)

Interestingly, the relations both have power-law slope −0.71± 0.05. They can therefore be

combined with Eq. (6.1) to form the following simple relation:

∆c
cGR

=[(0.35± 0.01)− (0.0302± 0.0008) log10(M200M
−1
� h)]

× (H0rc)−0.71±0.05.

(6.3)

This can be used to predict the suppression of the concentration in nDGP, as a function

of the halo mass M200 and model parameter H0rc. The dashed lines in Fig. 6.9 show the

model predictions for our four nDGP models. The agreement with the data is generally very

good for the full mass range, 1012h−1M� . M200 . 1015h−1M�, of our simulation data.

The agreement is particularly good for weaker models, where it appears to match z = 0

and z = 1 data equally well. For N0.5, which is our strongest model, our relation appears

to slightly underestimate the concentration suppression for high-redshift data; however,

the overall level of agreement is still very good, considering that the model is able to give

reasonable predictions for such a wide range of nDGP models and masses.

6.3.3 Halo mass function

The HMF does not have a strict mass resolution requirement like the concentration, there-

fore we use all haloes which have at least 100 particles within the radiusR500. We again com-

bine the halo data from our DMO simulations, and the relaxed resolution requirement means

that we can now also include L1000 haloes. The HMF is computed using mass bins with

equal logarithmic width 0.2. The halo count in each bin is divided by the total volume from

all contributing simulations: for example, the volume is 623h−3Mpc3 for the lowest-mass

bins where only the L62 box has sufficient resolution, and (623+2003+5003+10003)h−3Mpc3

for the highest-mass bins where all simulations have sufficient resolution. In Appendix C.1,

we also assess the consistency of our DMO simulations by comparing the HMF predictions

at different resolutions.

162



6.3.3. Halo mass function

−6

−4

−2

0
lo

g
1
0
(n

[h
3
M

p
c−

3
d
ex
−

1
])

z = 0

GR

N5

N2

N1

N0.5

z = 1 z = 2

11 12 13 14 15

log10(M500 [h−1M�])

0.0

0.2

0.4

0.6

∆
n
/
n

G
R

11 12 13 14 15

log10(M500 [h−1M�])

11 12 13 14 15

log10(M500 [h−1M�])

Figure 6.11: Halo mass function (top row) and its relative difference in nDGP with respect
to GR (bottom row), as a function of the mean logarithm of the halo mass at redshifts
0, 1 and 2. The data is generated using our arepo dark-matter-only simulations, the
specifications of which are given in Table 6.1. These have been run for GR (black) and the
nDGP models N5 (magenta), N2 (green), N1 (orange) and N0.5 (blue). The dashed lines
show the predictions from our general fitting model, which is given by Eqs. (6.4, 6.5).

The binned HMF is shown in Fig. 6.11 for redshifts 0, 1 and 2, where only mass bins

containing at least 100 haloes are displayed. We note that, because our highest-resolution

simulation L62 has been run for N5 and N1 only, the data for these models extends to lower

masses than the other models. The relative difference between the nDGP and GR results

is shown in the lower panels. For all three redshifts, the HMF is significantly enhanced in

nDGP relative to GR at high mass: for N0.5, the HMF is enhanced by up to 60%, while for

N5 the enhancement is less than 10%. On the other hand, the HMF is suppressed at lower

masses in nDGP, by up to ∼ 10% in N0.5 and a couple of percent in N5. The threshold

mass above which the HMF is enhanced and below which it is suppressed is higher at lower

redshifts, with values ∼ 1013.5h−1M� at z = 0 and ∼ 1012h−1M� at z = 2. The low-mass

suppression of the HMF also decreases with redshift.

These results can again be explained by the behaviour of the fifth force, which enhances
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the overall strength of gravity on large scales, accelerating the formation of high-mass haloes

so that there is a greater abundance of these objects in nDGP compared to GR at a given

time. On the other hand, the abundance of low-mass haloes, which undergo an increased

number mergers, is reduced. The mass threshold between HMF enhancement and HMF

suppression is reduced at higher redshifts, which is likely simply because the masses of a

given population of haloes are lower at earlier times.

Structure formation is sped up by a greater extent in models which feature a stronger

fifth force, so the effects described above are greater for N0.5 than for weaker models. The

enhancement of the HMF is greatest at the high-mass end. Therefore, by using observations

of high-mass galaxy clusters from ongoing and upcoming galaxy surveys (e.g., Levi et al.,

2013; Laureijs et al., 2011; Ivezic et al., 2008), it will be possible to make powerful constraints

of nDGP. However, any tests of the nDGP model of this kind may be affected by the

cluster observable-mass scaling relations discussed earlier, and this should be investigated

in a future work.

From the lower panels of Fig. 6.11, it appears that, for any model, i.e., for a given

choice of H0rc, the HMF enhancement has a constant shape, but shifts downwards and

towards larger M500 as one goes to lower redshifts. Therefore, it can be well-described by

the following model:

∆n
nGR

= A(H0rc)
[
tanh

(
log10(M500M

−1
� h)−B(z)

)
+ C(z)

]
. (6.4)

We use a portion of a tanh function to represent the mass-dependent shape, which is level at

low mass and rises steeply at high mass. We also include the following parameters: A(H0rc)

controls the amplitude, which depends on the model parameter H0rc; B(z) represents the

z-dependent shift along the mass axis; and C(z) represents the z-dependent shift along

the ∆n/nGR axis. By adopting simple linear models for each of these parameters, and by

combining the data from all simulation snapshots in the range 0 ≤ z ≤ 2, we have used

unweighted least squares to obtain the following best-fit results:

A(H0rc) = (0.342± 0.014)(H0rc)−1,

B(z) = (14.87± 0.03)− (0.481± 0.010)z,

C(z) = (0.864± 0.008) + (0.047± 0.005)z.

(6.5)
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The predictions of this calibrated model are indicated by the dashed lines in Fig. 6.11.

The agreement with the simulation data is excellent for all models for the mass ranges

shown, which span 4–5 decades depending on redshift. At z = 0 and z = 1, apart from

the highest mass bin where data is noisy, the agreement between the fitting function and

simulation measurements is within ∼ 3%; at z = 2, the agreement is within ∼ 3% for all

but the strongest model (H0rc = 0.5) where we still have a . 5% accuracy. In the limit

H0rc → ∞, where nDGP becomes GR, our model predicts a relative difference of zero as

expected. However, we note that our model will predict a constant relative difference if

extrapolated to higher masses. This behaviour may not be physically accurate, but the

high halo masses are beyond the dynamical range of our simulations and so we cannot test

this reliably. Therefore, the model in Eqs. (6.4, 6.5) should only be used for the mass range

1011h−1M� . M500 . Mmax(z), where Mmax(z) is the maximum mass used to calibrate

the above model at a given redshift. The latter can be estimated using the relation:

log10
(
MmaxM

−1
� h

)
= 14.81− 0.54z, (6.6)

which we have calibrated using snapshots in the range 0 ≤ z ≤ 2.

In this section, we have focused on the mass definition M500, which is commonly used

in cluster number counts studies (e.g., Ade et al., 2016). For completeness, we also present,

in Appendix C.2, results and modelling for mass definition M200.

6.4 Summary, Discussion and Conclusions

In this chapter, we have extended our general framework for cluster tests of gravity (Fig. 1.2)

to the popular nDGP model, in which a fifth force is able to act over sufficiently large scales.

Using the first cosmological simulations that simultaneously incorporate full baryonic

physics and the nDGP model, we have studied the observable-mass scaling relations for

three mass proxies (see Sec. 6.3.1). For groups and clusters in the mass range M500 .

1014.5M�, our results show that for the N1 model, the T̄gas(M) relation is enhanced by

about 5% with respect to GR, while the YSZ(M) and YX(M) relations are both enhanced

by 10%-15% at low masses but more closely match the GR relations at high masses. For N5,
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which is much weaker than N1, the T̄gas(M) relation closely resembles the GR relation, while

the YSZ(M) and YX(M) relations are enhanced by up to 5% at low mass and suppressed by

up to 5% at high mass. These deviations from GR could be related to the effect of the fifth

force on gas velocities during cluster formation, and they also hint at an interplay between

the fifth force and stellar and black hole feedback.

Using a suite of DMO N -body simulations, which cover a wide range of resolutions and

box sizes, we have found that, in nDGP, the concentration is typically suppressed relative

to GR, varying from a few percent in N5 to up to ∼ 15% in N0.5 (see Sec. 6.3.2). Using

stacked density profiles at different mass bins, we have shown that this behaviour is caused

by a reduced (increased) density at the inner (outer) halo regions. Including full baryonic

physics significantly affects the concentration-mass relation; however, our results show that,

for masses M200 . 1013h−1M�, the model differences between nDGP and GR still have a

similar magnitude compared to the DMO simulations.

By combining the data from our z ≤ 1 simulation snapshots, we have calibrated a

general model, given by Eq. (6.3), which is able to accurately predict the suppression of

the halo concentration with respect to the GR results as a function of the halo mass and

the H0rc parameter of nDGP over ranges 1012h−1M� . M200 . 1015h−1M� and 0.5-5,

respectively. This model can be included in our MCMC pipeline for converting between

mass definitions in case, for example, the theoretical predictions and observables are defined

with respect to different spherical overdensities. Our model can also be used, along with the

HMF, to predict the nonlinear matter power spectrum, which can also be used to constrain

gravity.

We have also used our DMO simulations to study the HMF over the mass range

1.52 × 1010h−1M� ≤ M500 . 1015h−1M� at redshifts 0, 1 and 2 (see Sec. 6.3.3). Our

results (Fig. 6.11), indicate that the nDGP HMF is enhanced at high masses (by up to

∼ 60% in N0.5) and suppressed at low masses (by ∼ 10% in N0.5) compared to GR. These

results indicate the potential constraining power from using the observed mass function to

probe the H0rc parameter of nDGP. By combining the data from our z ≤ 2 snapshots, we

have calibrated a general model, given by Eq. (6.4), which can accurately reproduce the
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HMF enhancement as a function of the halo mass, redshift and H0rc parameter. This model

can be used for theoretical predictions of the nDGP HMF (using a parameter-dependent

GR calibration) in our MCMC pipeline.

In Chapter 4, we showed that a model for the f(R) dynamical mass enhancement

can be used to predict observable-mass scaling relations in f(R) gravity using their GR

counterparts. Such a model in nDGP could similarly be useful to help understand the

enhancements of the temperature and SZ and X-ray Y -parameters observed in this work.

This is left to a future study. For now, though, we note that the scaling relations in nDGP

still appear to follow power-law relations as a function of the mass: the T̄gas(M) relation in

N1 can be related to the GR relation by a simple rescaling of the amplitude, whereas the

YSZ(M) and YX(M) relations appear to have shallower slopes in N5 and N1 than in GR.

Therefore, in our future MCMC pipeline for obtaining constraints of nDGP, we can still as-

sume the GR power-law form of the scaling relations by allowing the parameters controlling

the amplitude and slope to vary along with the cosmological and nDGP parameters (e.g.,

de Haan et al., 2016; Bocquet et al., 2019).

Although our simulations have only been run for a single choice of cosmological para-

meters, we expect that our models for the enhancements of the halo concentration and

HMF will have a reasonable accuracy for other (not too exotic) parameter values. The

gravitational force enhancement in nDGP, given by [1 + 1/(3β)], has only a weak depend-

ence on ΩM: for the N1 model (Ωrc = 0.25), the force enhancement varies within a very

small range (roughly 12.1%−12.6%) for ΩM ∈ [0.25, 0.35] at the present day, and the range

of variation is even smaller at higher redshifts. Therefore, for now we assume that the

effects of the cosmological parameters on the concentration and HMF are approximately

cancelled out in the ratios ∆c/cGR and ∆n/nGR. However, we will revisit this in a future

work, using a large number of nDGP simulations that are currently being run for different

combinations of cosmological parameters, before these models are used in tests of gravity

using observational data.

Finally, we note that, because the shybone simulations have a small box size

(62h−1Mpc), it is difficult to robustly model the observable-mass scaling relations for
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cluster-sized objects (M500 & 1014M�). It would therefore be useful to revisit this study

using full-physics nDGP simulations with a larger box. We have been fine-tuning a new

baryonic model which can allow TNG-like simulations to be run at a much lower resol-

ution, making it possible to run large simulations with reduced computational cost. We

will present this model in Chapter 8, in which we will also revisit our f(R) scaling relation

results using much larger simulations.
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Chapter 7

The impact of modified gravity on

the Sunyaev-Zel’dovich effect

7.1 Introduction

The SZ effect is caused by the inverse Compton scattering of CMB photons off of high-

energy electrons within ionised gas. The effect is made up of two measurable components:

a thermal (tSZ) component which arises due to the random thermal motions of the electrons;

and a (much smaller) kinematic (kSZ) component resulting from the bulk motion of the

gas relative to the CMB rest frame (e.g., Sunyaev and Zeldovich, 1972, 1980). The tSZ and

kSZ signals are both highly correlated with the presence of large-scale structures such as

groups and clusters of galaxies. Their power spectra are therefore extremely sensitive to the

values of cosmological parameters which affect the growth of large-scale structure, offering

the possibility of probing a wide range of cosmological models, including MG theories in

which the strength of gravity is enhanced.

A number of works have made use of the tSZ power spectrum to constrain cosmological

parameters including ΩM, σ8, the dark energy equation of state parameter and the neutrino

mass (e.g., Horowitz and Seljak, 2017; Hurier and Lacasa, 2017; Bolliet et al., 2018; Salvati

et al., 2018). Meanwhile, as the precision of measurements of the kSZ power continues to

improve, a number of works have identified this as a promising probe for future constraints
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of dark energy and MG theories (e.g., Ma and Zhao, 2014; Bianchini and Silvestri, 2016;

Roncarelli et al., 2018). The wealth of high-quality observational data coming from current

and upcoming surveys (e.g., Sievers et al., 2013; Aghanim et al., 2016; George et al., 2015;

Reichardt et al., 2020; Ade et al., 2019; Abazajian et al., 2016) for both the tSZ and kSZ

effects make it an exciting time for this growing area.

In addition to their sensitivity to cosmology, the tSZ and kSZ power spectra are also

highly sensitive to non-gravitational processes, such as star formation, cooling and stellar

and black hole feedback, which can alter the thermal state of the intra-cluster medium

(e.g., McCarthy et al., 2014; Park et al., 2018). Without a careful consideration of these

processes, which are still not fully understood, this could pose a barrier to making reliable

constraints. Incorporating full-physics baryonic models in numerical simulations, along with

the cosmological model of interest, is now a vital step in order to understand the potential

sensitivity of the constraints to baryonic physics.

In this chapter, we study the effects of f(R) gravity and nDGP on the tSZ and kSZ

power spectra. These are expected to be altered by the effects of the fifth force on the

abundance and peculiar motion of large-scale structures, and on the temperature of the

intra-cluster gas via the enhancement of the halo gravitational potential. We make use of

the full-physics shybone simulations, which were also used in Chapters 4 and 6 to study

the observable-mass scaling relations in f(R) gravity and nDGP, respectively. We measure

the power spectra using mock maps of the tSZ and kSZ effects, which are generated using

the simulation data. We also study non-radiative simulations (using the same cosmological

parameters and initial conditions), allowing us to single out fifth force and baryonic feedback

effects.

The chapter is structured as follows: in Sec. 7.2, we describe the simulations used

in this chapter and our methods for predicting the SZ power spectra; our main results

are presented in Sec. 7.3; and, finally, we present a summary of our findings and their

significance in Sec. 7.4.
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7.2 Simulations and methods

In Sec. 7.2.1, we describe the simulations used in this chapter. Then, in Sec. 7.2.2, we

present our procedure for generating SZ maps from the simulation data.

7.2.1 Simulations

The results discussed in this chapter have been produced using the shybone simulations

(Arnold et al., 2019b; Hernández-Aguayo et al., 2020), which have already been described

in Chapters 4 and 6. In addition to these full-physics simulations, we have also used non-

radiative counterparts for the f(R) model, using identical initial conditions and cosmological

parameters. We have not run non-radiative counterparts for the nDGP model since these

are computationally expensive to perform and there is already a lot of information provided

by the existing simulations. Particle data has been saved at various snapshots: the f(R)

data consists of 46 snapshots between z = 3 and z = 0, whereas the nDGP data includes

100 snapshots between z = 20 and z = 0.

7.2.2 SZ maps

In the generation of each SZ map, a light cone is first constructed using our simulation

snapshots with z ≤ 3. We use a field of view of 1◦ × 1◦ for the light cone, which is aligned

along a specified direction from an imaginary observer placed at the centre of the simulation

box at z = 0. The box is repeated along this direction and, at a given distance from the

observer, the snapshot that is closest to the corresponding redshift is used. Each snapshot

is randomly rotated and shifted in order to reduce statistical correlations caused by the

repetition of the box.

The 1◦× 1◦ field of view is split into a 512× 512 grid of pixels, and an imaginary light

ray is fired along the central axis of each pixel from z = 3 to the observer. For each gas

cell, an effective size, s, is defined, which can be used to determine whether it intersects

with the light ray. By approximating the gas cells as spherical, the radius, rcell, of a gas
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cell can be estimated using:

rcell = 2.5
(3Vcell

4π

) 1
3
, (7.1)

where Vcell is the volume of the gas cell. This quantity is similar to the smoothing radius in

smoothed-particle hydrodynamics, with the factor 2.5 used to smooth the gas distribution.

However, in the mock SZ map, the minimum length scale that is resolved (at a given

distance) is the pixel side-length, rpixel. The effective size of a gas cell is therefore set as

follows:

s =


rpixel if rcell < rpixel.

rcell if rcell ≥ rpixel.

(7.2)

A gas cell contributes to the SZ signal of a pixel if the distance between its centre of mass

and the light ray is smaller than s.

The tSZ effect is quantified by the Compton y-parameter, which can be computed via

an integral of the electron pressure along the line of sight as follows:

y = σT
mec2

∫
neTgasdl. (7.3)

This is evaluated for each pixel ij via a summation over all gas cells that intersect with the

light ray:

yij = σT
mec2

∑
α

pαwα,ij , (7.4)

where wα,ij is a normalised smoothing kernel. The quantity pα is given by:

pα = Ne,α
s2
α

Tα, (7.5)

where Ne,α, sα and Tα are the electron number count, the effective size and the temperature

of gas cell α, respectively. Note that we have not accounted for the relativistic SZ (rSZ)

effect in our calculations. The rSZ effect can induce a significant bias in the measurement

of the y-parameter for the most massive clusters (see, e.g., Erler et al., 2018). However, the

effect is much smaller for lower-mass objects which have a lower gas temperature. Since

our simulations contain only galaxy groups and low-mass clusters (M500 . 1014.5M�), we

expect that including the rSZ effect would have a modest impact on our tSZ power spectrum

results. In particular, we expect the effect on the model differences to be very small, but
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this is something that should be tested in the future with large simulations that contain a

fair sample of cluster-sized objects.

The kSZ effect is quantified by the b-parameter:

b = σT

∫
nevr
c

dl, (7.6)

where vr is the radial component of the gas peculiar velocity and b is positive (negative)

for gas that is moving away from (towards) the observer. The b-parameter is equivalent to

the CMB temperature fluctuation due to the kSZ effect: b = −∆T/T . This is evaluated

for each pixel as follows:

bij = σT
c

∑
α

qαwα,ij . (7.7)

The quantity qα is given by:

qα = Ne,α
s2
α

vr,α, (7.8)

where vr,α is the radial component of the peculiar velocity of gas cell α.

We have generated 14 independent light cones, each aligned along a unique direction.

The same set of directions has been used to construct the maps for each gravity model and

for both the full-physics and non-radiative data. This means that for any two maps aligned

in the same direction, the only differences are caused by the contrasting gravity models and

hydrodynamics schemes. The tSZ and kSZ maps corresponding to one of the light cones,

generated using the f(R) simulations, are shown in Figs. 7.1 and 7.2, respectively. For each

figure, the GR maps are shown in the left column, with the map from the full-physics run

in the top row and the map for the non-radiative simulation in the bottom row.

The bright yellow peaks in the tSZ maps, which correspond to a high y-parameter,

trace hot gas within groups and clusters of galaxies. These peaks are found at the same

positions in both the full-physics and non-radiative maps. However, the addition of feedback

mechanisms, which create winds that heat up and blow gas out of haloes, cause the peaks

to appear more diffuse in the full-physics map. The kSZ map is made up of dark and bright

regions, which correspond to negative and positive values of the b-parameter, respectively.

Rather than the absolute maps of F6 and F5, which are visually very similar to the

GR maps, we display residual maps to indicate the main differences. These are shown
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Figure 7.1: Maps of the thermal SZ effect in GR (first column), its relative enhancement in
F6 (second column) and F5 (third column) with respect to GR, and the relative difference
between the full-physics and non-radiative GR maps (fourth column). The maps have a side
length of 1◦ and a 512×512-pixel resolution, and have been constructed from the shybone
simulations (see Sec. 7.2). Both the full-physics (top row) and non-radiative (bottom row)
runs are shown. The y-parameter is computed for each pixel using Eq. (7.4). The rings
indicate two haloes whose positions are shifted in F5 (yellow) relative to GR (white).

in the second and third columns of Figs. 7.1 and 7.2. The tSZ residuals represent the

enhancement of the f(R) y-parameter with respect to GR for each pixel. The F6 residuals

are quite close to zero across the field of view, owing to the efficient screening of the fifth

force in galaxy groups and clusters for this model. However, for the F5 model, for which the

fifth force is more prominent, the residuals appear more complex. Pairs of bright and dark

regions, two of which are indicated by rings placed in Fig. 7.1, are visible throughout the

images. These are caused by the shift of halo positions in F5 compared to GR, with each

dark (bright) region corresponding to the position in GR (F5). While this in itself does not

provide useful information about the effect of the fifth force on the tSZ effect, we note that

at the extremes the positive residuals (log10(y/yGR) ≈ 1.5) are greater in magnitude than

the negative residuals (log10(y/yGR) ≈ −0.8), indicating that the tSZ effect is strengthened

on average in F5 compared to GR.

174



7.2.2. SZ maps

fu
ll-

ph
ys

ic
s

GR F6 residual F5 residual hydrodynamics residual
no

n-
ra

di
at

iv
e

−7 −6 −5
log10(b)

−5 −6
log10(−b)

−1 0 1
log10(|bFP/bNR|)

−1 0 1
log10(|b/bGR|)

−1 0 1
log10(|b/bGR|)

Figure 7.2: Maps of the kinetic SZ effect in GR (first column), its absolute relative enhance-
ment in F6 (second column) and F5 (third column) with respect to GR, and the absolute
relative difference between the full-physics and non-radiative GR maps (fourth column).
The maps have a side length of 1◦ and a 512 × 512-pixel resolution, and have been con-
structed from the shybone simulations (see Sec. 7.2). Both the full-physics (top row) and
non-radiative (bottom row) runs are shown. The b-parameter is computed for each pixel
using Eq. (7.7).

For the kSZ signal, the f(R) gravity residuals correspond to the enhancement of the

absolute value of the b-parameter with respect to GR. A higher value of b indicates that gas

is moving faster with respect to the CMB rest-frame. Many individual pixels gain much

higher and much lower values of b, seemingly at random, across the field of view. This is

caused by the effect of the fifth force on the motion of the gas. Pairs of bright and dark

regions are also just visible in the F5 residual map, again corresponding to the relative

shifts in halo position with respect to GR.

In the rightmost columns of Figs. 7.1 and 7.2, we show the relative difference between

the full-physics and non-radiative GR maps. The tSZ results indicate that within haloes

the tSZ signal is suppressed (dark blue regions) by up to 86% and boosted outside haloes

(bright yellow regions) by up to 173%. This is caused by the ejection of gas from haloes

by feedback mechanisms, causing the electron pressure to be lowered within haloes and
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Figure 7.3: Map of the thermal SZ effect in GR (left column) and its relative enhancement
in N5 (middle column) and N1 (right column). The maps have a side-length of 1◦ and a
512 × 512-pixel resolution, and have been constructed from the shybone simulations (see
Sec. 7.2). The y-parameter is computed for each pixel using Eq. (7.4). The rings indicate
two haloes whose positions are shifted in N1 (red) relative to GR (white).

raised outside haloes. For the kSZ results, as for the f(R) gravity residuals, the value of

b is increased and reduced seemingly at random, owing to the unpredictable effects of the

full-physics processes on the motion of the gas.

The nDGP tSZ maps for the same light cone are shown in Fig. 7.3, where recall that

we do not have non-radiative runs. Again, the fifth force causes a shift in halo positions

with respect to GR, and this is clearly visible for both nDGP models. The effect is greater

in the N1 model, which is a stronger modification of GR than N5. We do not show the

kSZ maps for nDGP, since these appear similar to the f(R) maps and do not offer extra

information.

7.3 Results

This section gives the main results of this chapter. In Sec. 7.3.1, we analyse the effects

of baryonic processes and the fifth force on the stacked electron pressure profiles of FOF

groups from our simulations. Then, in Sec. 7.3.2, we discuss the effects on the tSZ and kSZ

angular power spectra. Finally, in Sec. 7.3.3, we examine the effects on the power spectrum

of the transverse component of the electron momentum field, which is closely related to the
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Figure 7.4: Stacked electron pressure profiles for haloes from three mass bins in the range
1013M� < M500 < 1014M� and redshifts 0, 1 and 2. The haloes have been identified from
the shybone simulations (see Sec. 7.2), and have been generated for the GR (red), F6 (blue)
and F5 (green) gravity models, and for both the full-physics (solid lines) and non-radiative
(dashed lines) hydrodynamics schemes.

kSZ angular power spectrum.

7.3.1 Electron pressure profiles

We show the stacked electron pressure profiles at z = 0, z = 1 and z = 2 in Fig. 7.4

and Fig. 7.5 for f(R) gravity and nDGP, respectively. Three equally spaced logarithmic
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Figure 7.5: Stacked electron pressure profiles for haloes from three mass bins in the range
1013M� < M500 < 1014M� and redshifts 0, 1 and 2. The haloes have been identified from
the full-physics shybone simulations (see Sec. 7.2), and have been generated for the GR
(black solid), N5 (magenta dashed) and N1 (orange dotted) gravity models.
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mass bins, which span the range 13 < log10(M500M
−1
� ) < 14, are considered. The volume-

weighted electron pressure is measured in radial bins for each halo. This is given by the

following:

P̄e =
∑
i Pe,iVi∑
i Vi

, (7.9)

where Pe,i and Vi are the electron pressure and volume of gas cell i, and the summations are

evaluated over all gas cells whose centres of mass are within the current bin. The median

profile is measured for each radial bin using the haloes enclosed in each mass bin, and is

displayed in the figures. Because of the limitations in the size of the halo population at

higher masses, only the lowest-mass bin is shown at z = 2 and the highest-mass bin is

not shown for z = 1. For the highest-mass bin shown at each redshift, because the halo

number is relatively small, some haloes are also excluded from each model to ensure that

the same halo population is used in all models. Any small difference in population could

otherwise have a significant effect in these bins, which contain only ∼ 10 haloes each. This

consideration is not required for the other bins, which have & 25 haloes each. We are also

unable to include data at M500 > 1014M�, for which there are only a few haloes for each

model.

For haloes in F5 at sufficiently low redshift, we find that the fifth force boosts the

electron pressure. This is caused by the increase in the temperature of the intra-cluster gas,

which results from the deepened gravitational potential well (see Chapter 4). This indicates

that the tSZ signal from individual haloes is expected to be significantly enhanced in F5.

The magnitude of the background scalar field, |fR|, increases with time, and as a result the

chameleon mechanism is more efficient at screening the fifth force at earlier times. This

explains why the enhancement of the pressure in F5 vanishes for z & 1. On the other hand,

the background scalar field in the F6 model is 10 times weaker than in F5, and as a result

the fifth force is efficiently screened within group- and cluster-sized haloes even at z = 0.

Meanwhile, Fig. 7.5 shows much smaller differences between the electron pressure

profiles in GR and nDGP than in Fig. 7.4, especially at lower z (z . 1). This is because the

Vainshtein mechanism is much more efficient than the chameleon mechanism at screening

out the fifth force within haloes at low redshifts — for the latter, depending on the value

179



7.3.2. tSZ and kSZ power spectra

of |fR0| in the two f(R) models studied here, group-sized objects could be partially or

completely unscreened at low z, while for the former the screening efficiency is similar for

haloes of different masses (see, e.g., Fig. 8 of Hernández-Aguayo et al., 2020), including the

ones as small as ∼ 1011.7h−1M�, with the fifth force always being strongly suppressed in

the inner regions of haloes, at all redshifts.

By comparing the non-radiative and full-physics data in Fig. 7.4, we can see that the

additional baryonic processes that are present in the latter act to suppress the pressure

at the inner halo regions. This can be caused by, for example, the blowing out of gas by

black hole feedback which lowers the density of electrons. Note that, while the electron

pressure profiles differ significantly between the full-physics and non-radiative runs, the

relative enhancement of F5 with respect to GR seems to be consistent in both cases.

7.3.2 tSZ and kSZ power spectra

We have used our SZ maps (see Sec. 7.2.2) to generate the tSZ and kSZ angular power

spectra for the f(R) and nDGP models. The power has been measured for each of the 14

maps in bins of the angular wavenumber l. For each bin, the mean power and the mean

relative difference in the power between gravity models and hydrodynamics schemes have

been measured.

From the f(R) gravity results, shown in Fig. 7.6, we find that the fifth force and the

extra baryonic processes that are found in the full-physics simulations have different effects:

the middle column shows that, for the non-radiative data, the tSZ and kSZ power spectra

are both enhanced in f(R) gravity relative to GR; and the right column shows that the

power is suppressed in the full-physics runs relative to the non-radiative runs, particularly

at smaller scales. The latter is consistent with literature: McCarthy et al. (2014) showed

that, at scales l & 1000, the tSZ power is suppressed by the ejection of gas by black hole

feedback; and Park et al. (2018) found that the kSZ power is suppressed by both the locking

away of free electrons in stars, black holes and neutral gas (at all scales), and the ejection

of gas through black hole feedback (at smaller scales). For our data, this suppression by

baryonic processes occurs at l & 3000 for the tSZ power and at l & 500 for the kSZ power.

180



7.3.2. tSZ and kSZ power spectra

103 104 105

l

10−13

10−12

10−11
l(
l
+

1
)C
l
/
2
π

Thermal

GR

F6

F5

full-ph

non-rad

103 104 105

l

0.0

0.4

0.8

1.2

∆
C
l
/
C
l
G

R

Aghanim et al. (2016)

Reichardt et al. (2020)

103 104 105

l

−1.0

−0.5

0.0

0.5

∆
C
l
/
C
l
N

R

GR

F6

F5

103 104 105

l

10−13

10−12

l(
l
+

1
)C
l
/
2
π

Kinetic

103 104 105

l

0.0

0.2

0.4
∆
C
l
/
C
l
G

R

103 104 105

l

−0.5

0.0

∆
C
l
/
C
l
N

R

Figure 7.6: Angular power spectra and their relative differences plotted as a function of the
angular wavenumber. The data has been generated from maps of the thermal (top row) and
kinetic (bottom row) SZ signals, which have been created using the shybone simulations
(see Sec. 7.2). Left column: mean angular power spectrum plotted for GR (solid lines), F6
(dashed lines) and F5 (dotted lines), including data from the full-physics (magenta) and
non-radiative (cyan) simulations. Middle column: mean relative enhancement of the F6
(dashed lines) and F5 (dotted lines) angular power spectra with respect to GR, plotted
for the full-physics (magenta) and non-radiative (cyan) simulations. The standard error
of the mean is indicated by the shaded regions. The error bars indicate the precision of
the latest observations from the Planck (Aghanim et al., 2016) and SPT (Reichardt et al.,
2020) collaborations. Right column: mean relative enhancement of the full-physics angular
power spectra with respect to the non-radiative data, plotted for GR (red), F6 (blue) and
F5 (green). For clarity, the standard error is shown for GR only.

The shape and amplitude of this suppression is very similar for each gravity model, as

shown in the right column: the tSZ power is suppressed by up to ∼ 85% and the kSZ power

is suppressed by up to ∼ 50%.

With the extra baryonic processes of cooling, star formation and feedback absent, the

tSZ power is enhanced by the fifth force on all scales. The enhancement is greater in F5

than in F6, with peaks of ∼ 50% and a few percent, respectively, at l < 1000. However,

due to the relatively small size of the fields of view in our light cones, we cannot measure

the angular power spectra at l . 500, and so it is unclear what the asymptotic behaviour
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at large angular scales is, for which future works with larger simulations are needed. For

the kSZ power, a roughly constant enhancement is observed (of ∼ 22% for F5 and ∼ 3%

for F6) at scales l & 3000, with a downturn at larger scales (l ' 2000). The presence of the

fifth force speeds up the formation of large-scale structures, boosting the abundance and

peculiar velocity of groups and clusters of galaxies and, in turn, the tSZ and kSZ power

spectra. In addition to this, the electron pressure profiles of haloes at a given mass are

also enhanced, as discussed in Sec. 7.3.1, which could further boost the tSZ signal and tSZ

power spectrum at small angular scales (the relation between the latter and halo electron

pressure profiles, however, is more complicated, as we will discuss toward the end of this

subsection).

The enhancement of the kSZ power by ∼ 22% in F5 is higher than predicted by

Bianchini and Silvestri (2016) and Roncarelli et al. (2018), who estimated an enhancement of

about 15% for the same model using analytical predictions and hydrodynamical simulations,

respectively. We remark that our results use only the redshift range z ≤ 3 while these

works used redshifts up to 9.9 and 15, including the epoch of reionisation which can have a

substantial contribution to the total kSZ power. The fifth force is expected to be screened

for z & 3, which can explain why the kSZ signal (an integral over the redshift range) shows

less deviation from GR in these works. Our smaller redshift range z ≤ 3 also explains why

the amplitude of the kSZ power in Fig. 7.6 is lower than is typically predicted in literature

(e.g., Park et al., 2018).

The shybone simulations are the first to simultaneously compute the fifth force of

f(R) gravity while incorporating full baryonic physics. The interplay between these two

competing mechanisms in the full-physics simulations is therefore of particular interest.

According to the middle column of Fig. 7.6, the extra processes in the full-physics sim-

ulations have a non-negligible effect on the relative difference between f(R) gravity and

GR. For the tSZ power, a suppression of the f(R) enhancement is observed at very small

scales (l & 10000), such that the F5 power is brought close to the GR power, and the F6

power becomes ∼ 20% lower than GR. For the kSZ power, the F5 enhancement is again

suppressed at these scales, while there appears to be little change for F6.
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We note that these results are likely to be sensitive to the choice of full-physics para-

meters implemented by shybone. Given that feedback is not fully understood theoretically

or from observations, there is a non-negligible uncertainty in the results at small scales. In

order to avoid potentially biased results, constraints should instead be made using large

scales where the details of baryonic processes are not as prominent. For the tSZ power,

these scales correspond to l . 3000, although we note that even this range could be sens-

itive to the full-physics parameters. Our simulations predict enhancements of ∼ 40-70% in

F5 and less than 10% in F6, relative to GR, at these scales. For the kSZ power spectrum,

again star formation, feedback and cooling appear to have a non-negligible effect at all of

the scales tested here. However, the model differences between f(R) gravity and GR do not

differ significantly in the non-radiative and full-physics simulations for scales l . 104. In

this scale range, we observe relative differences of up to ∼ 35% and ∼ 5% between GR and

the F5 and F6 models, respectively. Note that the non-radiative runs could be considered as

an extreme case of the hydrodynamics scheme, with the most interesting physical processes

neglected, and for this reason we expect that slight variations of the baryonic model should

produce milder differences from the IllustrisTNG model than what is observed between the

full-physics and non-radiative curves here. Also note that, due to the small box size, the

full-physics runs used in this thesis could suffer from significant sample variance, e.g., due

to a few large haloes experiencing unusually strong feedback in one model and not another;

again, having a large simulation box in the future will help to address this question.

The tSZ and kSZ power spectra for the nDGP model (for full-physics only), are shown

in Fig. 7.7. As for the f(R) model, the fifth force of nDGP enhances the power on all

probed scales: the tSZ power is enhanced by up to ∼ 40% in N1 and less than 10% in N5;

and the kSZ power is enhanced by up to ∼ 35% in N1 and ∼ 5% in N5. However, given

the absence of a non-radiative simulation for the nDGP model, we note that it is possible

that these differences could be sensitive to baryonic physics, as in f(R) gravity.

Interestingly, the tSZ power spectrum at high l is significantly enhanced in N1, even

though the pressure profiles (Fig. 7.5) do not appear to show a clear deviation from GR.

There are a few reasons why this can happen. First of all, the tSZ power receives contribu-
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Figure 7.7: Angular power spectra and their relative differences plotted as a function of the
angular wavenumber. The data has been generated from maps of the thermal (top row) and
kinetic (bottom row) SZ signals, which have been created using the shybone simulations
(see Sec. 7.2). Left column: mean angular power spectrum plotted for GR (solid lines),
N5 (dashed lines) and N1 (dotted lines). Right column: mean relative enhancement of the
N5 and N1 angular power spectra with respect to GR. The standard error of the mean
is indicated by the shaded regions. The error bars indicate the precision of the latest
observations from the Planck (Aghanim et al., 2016) and SPT (Reichardt et al., 2020)
collaborations.

tions from outside haloes as well as from within. The fourth column of Fig. 7.1 indicates

that outside haloes the tSZ signal can be boosted by the ejection of gas by feedback. The

presence of the fifth force is expected to result in the feedback being triggered earlier, which

can cause the power to be enhanced relative to GR at angular scales corresponding roughly

to halo sizes∗. Secondly, smaller angular scales receive a greater contribution from higher

redshifts (see, e.g., McCarthy et al., 2014). In F5, the fifth force is efficiently screened for

z & 1, but in N1 it can still reach a few percent of the strength of the Newtonian force at
∗The fifth force also enhances matter clustering on large scales overall, and this is expected to be reflected

in the clustering of free electrons.
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the radius R200 and ∼ 8% outside it at z ∼ 2 (e.g., Hernández-Aguayo et al., 2020). This

means that the SZ power at high l can be enhanced by a greater amount in N1 than in F5.

In fact, for the mass bin shown at z = 2, the N1 pressure profile is enhanced by ∼ 9% with

respect to GR, and we also find that the nDGP pressure is enhanced in lower-mass bins

which are not shown in Fig. 7.5. We have further verified (though not shown here) that at

z & 1.5, the 3D electron pressure power spectrum is significantly enhanced even at high k

values well inside the 1-halo regime.

The results discussed in this section indicate that the tSZ and kSZ power have the

potential to effectively probe f(R) gravity and nDGP at large scales. To demonstrate

this, we have included error bars in Figs. 7.6 and 7.7 to indicate the uncertainties of the

latest tSZ and kSZ observations from the Planck (Aghanim et al., 2016) and SPT (SPT,

Reichardt et al., 2020) collaborations. The ∼ 16% precision of the tSZ measurement by

SPT is sufficient to distinguish the F5 model from GR at l = 3000, while the Planck

measurements have sufficient precision to distinguish F5 at large angular scales (l . 500).

The 33% precision of the kSZ measurement by SPT has a similar magnitude to the relative

enhancements of the F5 and N1 models with respect to GR, indicating that more precise

measurements from future surveys will be capable of ruling out these models. However,

in order to avoid bias from uncertain baryonic physics, it will be necessary to use a range

of full-physics parameters to confirm that reliable constraints can be achieved at these

angular scales. It will also be important to revisit this study using simulations with a

greater box size that can accurately probe the tSZ power up to angular scales l ∼ 100,

where the precision of the Planck measurements is particularly high (Aghanim et al., 2016).

Finally, understanding the degeneracies between MG and variations in other cosmological

parameters is also critical in order to have unbiased constraints.

Before finishing this section, let us note that, despite the qualitative difference in

their respective screening mechanisms – Vainshtein screening is always efficient inside dark

matter haloes while the same cannot be said about the chameleon mechanism (cf. Figs. 7.4

and 7.5) – the enhancements of both the tSZ and kSZ power spectra are very similar in

these two models.
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Figure 7.8: Power spectrum of the transverse component of the electron momentum plotted
against the wavenumber. The data has been generated for six different redshifts (annotated)
using the shybone simulations (see Sec. 7.2.1) for both the non-radiative (dashed lines)
and full-physics (solid lines) hydrodynamics schemes. In addition to GR (red lines), data
is plotted for F6 (blue lines), F5 (green lines), N5 (magenta lines) and N1 (orange lines).
The lower sub-panels show the relative enhancement of the MG (F6, F5, N5 and N1) power
spectra with respect to GR.

7.3.3 Transverse momentum power spectrum

In order to understand the (similar) effects of f(R) gravity and nDGP on the kSZ power

in more detail, we have measured the power spectrum of the transverse component of the

electron momentum field which, in the small-angle limit, can be related to the kSZ angular

power spectrum using the Limber approximation (e.g., Shaw et al., 2012):

CkSZ
l = 8π2

(2l + 1)3

(
σTρ̄gas,0
µemp

)2

×
∫ zre

0

dz
c

(1 + z)4χ2∆2
B(k, z)e−2τ(z) x(z)

H(z) ,
(7.10)
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Figure 7.9: Derivative of the GR kSZ angular power spectrum as a function of the cos-
mological scale factor a for six different values of the angular wavenumber l. The values
are computed from the full-physics shybone simulation (see Sec. 7.2.1) using the Limber
approximation (Eq. 7.10). The scales that are spanned by each l value are indicated by
markers which represent unique values of the wavenumber k.

where ρ̄gas,0 is the present-day mean background gas density, µemp is the mean gas mass per

electron, zre is the redshift at the epoch of reionisation, χ is the fraction of electrons that

are ionised, k = l/x is the wavenumber, x(z) =
∫ z
0 (cdz′/H(z′)) is the comoving distance at

redshift z, and the optical depth, τ , is given by:

τ(z) = σTc
∫ z

0
dz′ n̄e(z′)

(1 + z′)H(z′) . (7.11)

We have computed the transverse momentum power, ∆2
B(k, z), using the electron mo-

mentum field q for a sample of snapshots from our simulations. This is defined q =

v(1 + δ) = v(ne/n̄e), where v is the velocity field of the gas. The power spectrum of the

transverse momentum component, q⊥, is related to the power spectrum of the curl of the

momentum field, ∇× q, by Pq⊥ = P∇×q/k
2, and can be converted to the more commonly

used definition ∆2
B = Pq⊥k

3/(2π2).

In Fig. 7.8, we show the dimensionless quantity (∆Bk/H)2 at six different redshifts
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for all gravity models and hydrodynamics schemes. In the lower sub-plots at each redshift,

we show the MG enhancements of ∆2
B with respect to GR. For the non-radiative data, we

see that the f(R) enhancement is always increasing from large to small scales. The lowered

enhancement at large scales is caused by the limited range of the fifth force, which is set

by the Compton wavelength (Eq. (1.10)). For the full-physics data, the f(R) enhancement

follows a similar pattern at large scales but drops off for smaller scales (k & 5h/Mpc) where

baryonic processes are particularly prominent. For the nDGP data, the enhancement is

roughly constant at large scales, since the fifth force in this model is long-range in the

linear regime. There is again a suppression at small scales, which is likely to be caused

by Vainshtein screening but could also be related to baryonic physics (we do not have

non-radiative simulations to confirm the latter). For both f(R) gravity and nDGP, the

enhancement vanishes at higher redshifts where the amplitude of the scalar field is lower

and the fifth force is screened out.

We also show, in Fig. 7.9, the derivative dDkSZ
l /dz, where

DkSZ
l = l(l + 1)CkSZ

l /(2π). (7.12)

This has been computed using the integrand and pre-factors in Eq. (7.10), and indicates

the cosmic times and range of k-modes that have the greatest contribution to the kSZ

angular power spectrum for different angular scales l. The enhancement of the kSZ power

in F5 and N1 is observed to peak at l = 2000 in Figs. 7.6 and 7.7. From Fig. 7.9, we

see that DkSZ
l=2000 receives a significant contribution from times 0.4 . a . 0.9 and scales

1h/Mpc . k . 5h/Mpc. At these scales, the enhancement of ∆2
B peaks for N1 and has a

similar magnitude for F5. The enhancements in these models span ∼ 30%-60% over these

scales and times, which is consistent with the peak enhancement of CkSZ
l . Going to larger

angular scales (600 < l < 1000), DkSZ
l is affected by lower k-modes (down to ∼ 0.2h/Mpc)

and lower redshifts. This then probes the larger scales (in Fig. 7.8) where the F5 fifth

force is suppressed and the N1 enhancement levels off. This is consistent with Figs. 7.6

and 7.7, where the kSZ power appears to be suppressed by a greater amount in F5 than

in N1. Interestingly, this also implies that the enhancement of CkSZ
l could be constant at

angular scales larger than those available from our mock SZ maps. At smaller angular scales
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(10000 . l . 20000), DkSZ
l receives a significant contribution from high-k modes (2h/Mpc .

k . 10h/Mpc), where Vainshtein screening suppresses the nDGP fifth force and the f(R)

fifth force is suppressed by baryonic processes (for the full-physics runs). In addition to this,

DkSZ
l is probing earlier times 0.25 ≤ a . 0.6, where the scalar field amplitude is reduced in

both models. This is therefore consistent with the lowered enhancement of CkSZ
l at these

angular scales. Note that the non-radiative f(R) runs produce a higher kSZ power at high

l than the full-physics runs, which also agrees with the observation in Fig. 7.8 that at large

k and a . 0.6 the former has a larger transverse-momentum power spectrum.

The amplitude of ∆Bk/H in Fig. 7.8 appears to agree reasonably well with literature

results (e.g., Zhang et al., 2004; Shaw et al., 2012; Bianchini and Silvestri, 2016), although

it is slightly lower at large scales. We note that this is likely because the relatively small

size 62h−1Mpc of our simulation box misses off longer-wavelength modes. It will therefore

be useful to revisit this study with a larger box. The inclusion of longer-wavelength modes

is expected to further suppress the F5 enhancement of ∆2
B at low-k and to have little effect

on the N1 enhancement.

We also note that for the entire l range studied in Figs. 7.6 and 7.7 the kSZ power

spectrum is dominated by modes with k & 0.2h/Mpc in the transverse-momentum power

spectrum. From Fig. 7.8, we can see that in this regime galaxy formation has a non-

negligible impact on ∆B, which means that uncertainties in the subgrid physics can be

an important theoretical systematic effect in using the kSZ power to test gravity models.

Using kSZ data at l < 600 may help reduce this effect, but the current simulation size does

not allow a study of that range of l.

7.4 Summary, Discussion and Conclusions

Over the past couple of decades, great advances have been made in the measurement of the

secondary anisotropies of the CMB caused by the SZ effect, including its thermal component

and even its much smaller kinematic component. The angular power spectrum of the tSZ

effect has been increasingly adopted as a probe of cosmological parameters that influence

the growth of large-scale structures. Also, as observations of the kSZ power spectrum
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continue to improve, the latter has been identified as another potentially powerful probe of

cosmology. The next generation of ground-based observatories (Ade et al., 2019; Abazajian

et al., 2016) look set to revolutionise the constraining power of these probes.

In this chapter, we have looked at the viability of using the angular power spectra

of the tSZ and kSZ effects as large-scale probes of HS f(R) gravity and nDGP, which are

representative of a wide-range of MG theories which exhibit the chameleon and Vainshtein

screening mechanisms, respectively. In order to do so, we have made use of the shybone

simulations (cf. Sec. 7.2.1), which are the first cosmological simulations that simultaneously

incorporate full-physics plus HS f(R) gravity (Arnold et al., 2019b) and nDGP (Hernández-

Aguayo et al., 2020). The simulations employ the IllustrisTNG full-physics model, which

incorporates calibrated sub-resolution recipes for star formation and cooling as well as

stellar and black hole feedback and allows realistic galaxy populations to be produced in

hydrodynamical simulations.

Using these simulations, we have generated mock maps of the tSZ and kSZ signals

(Sec. 7.2.2), and used these maps to measure the angular power spectra. Our results

(Figs. 7.6 and 7.7) indicate that the fifth force, present in f(R) gravity and nDGP, and

the subgrid baryonic physics have different effects on the tSZ and kSZ power spectra. The

former enhances the power on all scales probed by our maps (500 . l . 8×104) by boosting

the abundance and peculiar velocity of large-scale structures (e.g., dark matter haloes and

free electrons inside them), while the latter brings about a suppression on scales l & 3000

for the tSZ effect and on all tested scales for the kSZ effect. Even with both of these effects

present, we find that the power can be significantly enhanced in f(R) gravity and nDGP:

by up to 60% for the tSZ effect and 35% for the kSZ effect for the F5 and N1 models;

and by 5%-10% for F6 and N5, which correspond to relatively weak modifications of GR.

In addition, we have computed the power spectrum of the transverse component of the

electron momentum field (Sec. 7.3.3), which is closely related to the kSZ angular power

spectrum. In particular, we show in Fig. 7.9 that at angular sizes l ≥ 600 the kSZ signal

is dominantly contributed by k-modes in the transverse-momentum power spectrum which

are in the non-linear regime, and which are affected strongly by MG. The k-modes in the
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linear regime may contribute more to smaller l, but at least for f(R) gravity the impact of

MG at those l values will be much less significant due to the finite range of the fifth force,

as we can already see in Fig. 7.6.

We find that the relative difference between the MG models and GR is significantly

affected by the additional baryonic processes that act in the full-physics simulations. Given

that these processes are still relatively less well-constrained, this adds to the uncertainty

in our theoretical predictions of the kSZ angular power spectra on small angular scales,

e.g., l > 600. Therefore, further work should be carried out using a range of full-physics

parameters to precisely identify the scales on which constraints can be reliably made before

the tSZ and kSZ power are used to probe f(R) gravity and nDGP.

Finally, we note that the reason we are unable to study larger scales is the relatively

small box size of the shybone simulations. In Chapter 8, we will present a re-calibrated

full-physics model that can be used to run larger simulations, which can potentially be used

to analyse larger scales in a future work.
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Chapter 8

Realistic galaxy formation simulations

to study clusters in modified gravity

8.1 Introduction

In Chapters 4 and 6, we used full-physics simulations to study the observable-mass scal-

ing relations of galaxy groups and clusters in f(R) gravity and nDGP. These simulations,

which are from the shybone suite (Arnold et al., 2019b; Hernández-Aguayo et al., 2020),

have a box size of 62h−1Mpc (‘L62’) and a high mass resolution. This is more suited

for studying galaxies than galaxy clusters; indeed, these simulations contain just ∼100

galaxy group-sized objects and only 5-10 cluster-sized objects, with no objects above mass

M500 ∼ 1014.5M�. The L62 predictions of the cluster scaling relations may therefore suffer

from poor statistics and be potentially subjected to a significant influence by sample vari-

ance. Unfortunately, high-resolution simulations which incorporate both screened modified

gravity and full baryonic physics are very expensive to run for larger cosmological volumes,

which has made it difficult to study the interplay between baryonic physics and the fifth

force at higher masses.

The shybone simulations make use of the IllustrisTNG baryonic physics model (Wein-

berger et al., 2017; Pillepich et al., 2018c), which can be used to generate galaxy populations

whose stellar and gaseous properties closely match observations. However, it has been shown
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that a sufficiently high mass resolution is required to achieve this level of agreement (e.g.,

Pillepich et al., 2018c). For example, a lowered mass resolution means that the gas cells

will have larger volumes, resulting in a smoothed out density field which can miss out the

high-density peaks where star formation would be highest. The L62 shybone simulations,

with 5123 gas cells, have ∼ 15 times lower mass resolution than that used to calibrate the

TNG model (25h−1Mpc box with the same number of gas cells). The gas and stellar proper-

ties of haloes from the L62 simulations still give a reasonable agreement with observational

data, however the lowered resolution means that there is less star formation, resulting in

the amplitudes of the stellar mass fraction, the stellar mass function and the star formation

rate density being reduced compared to the fiducial TNG results (for example, see Fig. 4

in Arnold et al., 2019b).

For this work, running simulations with a substantial number of galaxy clusters (with

masses 1014M� . M500 . 1015.5M�) would require a box size of at least ∼ 300h−1Mpc,

which necessitates going to even lower resolutions. In order to make this possible without

losing the good agreement with observational data, we have retuned the parameters of

the IllustrisTNG model, including parameters which control the density threshold for star

formation and the energy released by the stellar and black hole feedback mechanisms.

This retuning was a significant undertaking which involved running over 200 simulations

with a reduced box size, and our new model can be used to run low-resolution full-physics

simulations for both standard gravity and modified gravity scenarios. We will present the

model and describe the simulations used to tune it in this chapter. We have used this

model to run GR and f(R) gravity simulations with a significantly increased box size of

301.75h−1Mpc, and we will present the predictions for the observable-mass scaling relations

over an extended mass range 1013M� ≤M500 . 1015M�.

In Sec. 8.2, we provide a detailed description of the baryonic physics retuning and the

large-box simulations, including the agreement with galaxy observations. We then present

our results for the observable-mass scaling relations in Sec. 8.3. Finally, we provide a

summary of this chapter in Sec. 8.4.
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8.2 Simulations and methods

In Sec. 8.2.1, we discuss our retuning of the IllustrisTNG model for low-resolution simula-

tions. Our large-box simulations, which are used for the main results of this chapter, are

presented in Sec. 8.2.2.

8.2.1 Baryonic physics fine-tuning

To recalibrate the baryonic physics at our desired mass resolution, we have run a large num-

ber of realisations, using arepo (Springel, 2010), which have a small box size of 68h−1Mpc

(‘L68-N256’). These have 2563 dark matter particles with mass 1.35 × 109h−1M� and,

initially, the same number of gas cells with mass ∼ 2.6 × 108h−1M� on average. The cal-

ibration was carried out using GR (although, as we will show, the retuned model works

equally well for F5) with the same cosmological parameter values as the shybone simula-

tions. The runs were all started from the same set of initial conditions at redshift z = 127.

These have been generated using the N-GenIC code (e.g., Springel et al., 2005), which uses

the Zel’dovich approximation to displace an initially homogeneous particle distribution and

obtain an initial density field with a prescribed linear power spectrum. Each of the input

particles is then split into a dark matter particle and a gas cell, with the ratio of masses

set by the values of the cosmic density parameters ΩM and Ωb.

We used the subfind code to locate FOF groups and the bound substructures of

each group. By adjusting the baryonic physics of these calibration runs, we have aimed

for reasonable agreement with observational data and empirical constraints for the six

galaxy properties shown in Fig. 8.1, which were also used to calibrate the IllustrisTNG

model (Pillepich et al., 2018c). These are: the stellar mass fraction (FOF groups), with

empirical constraints from Behroozi et al. (2013) and Kravtsov et al. (2018); the stellar mass

function (subhaloes), with observations from D’Souza et al. (2015), Bernardi et al. (2013),

Baldry et al. (2012) and Li and White (2009); the star formation rate density (SFRD) as

a function of redshift, with observations from Behroozi et al. (2013); the gas mass fraction

(FOF groups), with observations from Lovisari et al. (2015), Gonzalez et al. (2013), Pratt
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Figure 8.1: Stellar, gas and black hole properties in a sample of the L68-N256 calibration
runs (coloured solid lines). The properties are (clockwise from top-left): stellar mass frac-
tion; stellar mass function; gas mass fraction; stellar half-mass radius; black hole mass;
star formation rate density. A selection of results from previous literature are shown as a
comparison. See Sec. 8.2.1 for further details.
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et al. (2010) and Sun et al. (2009); the black hole mass versus the stellar mass (subhaloes),

with the compilation of observations from McConnell and Ma (2013); and the galaxy size

versus the stellar mass (subhaloes), with observational data from Baldry et al. (2012). The

results for a selection of our calibration runs are represented by the coloured solid lines.

Apart from the SFRD, which is a direct output of the simulations, these lines are generated

using mass-binning of either FOF groups or subhaloes (see the parentheses above). The

black lines show predictions from the TNG simulations (e.g., Nelson et al., 2018; Springel

et al., 2018; Marinacci et al., 2018; Pillepich et al., 2018b; Naiman et al., 2018) as well as

the BAHAMAS and cosmo-OWLS simulations (McCarthy et al., 2017; Brun et al., 2014).

The dark blue line in Fig. 8.1 shows the predictions using the fiducial TNG model at

our lowered resolution. Star formation is significantly reduced at this resolution compared

to the fiducial TNG resolution, which is used by the ‘TNG L25-N256’ simulation (‘TNG100’

has a similar resolution, while ‘TNG300’ has ∼5 times lower resolution). Consequently, the

stellar mass fraction, the stellar mass function and the SFRD are significantly lower. The

primary objective of our retuning is therefore to achieve a greater amount of star formation

in order to obtain a closer match with the observational data. Our changes are described

in the sections below, and the effects of these changes are shown in Fig. 8.1. We note

that the calibration runs discussed in this section are only a very small subset of the ∼200

simulations which were run for this calibration study: we provide further details on these

simulations and the calibration procedure in Appendix D.

8.2.1.1 Gravitational softening

In low-resolution simulations, where the gas cells have higher masses, there is a larger risk of

two-body heating: this occurs when two particles come close together and incur a significant

gravitational boost, which can raise the internal energy and subsequently the temperature

of the gas. We have therefore increased the gravitational softening length to 1/20 times

the mean inter-particle separation, which is about twice the length used for the shybone

simulations. The gravitational force is dampened when gas cells come within this distance,

preventing extreme interactions. This change alone causes an overall reduction of the gas
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8.2.1.2. Stellar feedback

temperature in our simulations, which results in more cool gas that is capable of forming

stars: see the orange lines in Fig. 8.1, which have a greater amplitude than the dark blue

lines for the stellar mass fraction and stellar mass function.

We also considered fractions of 1/30 and 1/10 for the softening length. For higher

masses (e.g., M200 & 1012M�), we observed that using a larger softening length results

in greater star formation (for the reasons discussed above). However, we were unable to

significantly boost star formation at lower masses; in fact, we observed that a large softening

length (for example, a fraction 1/10 of the mean inter-particle separation) can even lead to

less star formation at low masses. A potential effect of using a larger softening is that the

gravitational potential well of haloes effectively becomes shallower. For low-mass haloes,

where the gravitational potential well is already shallower than for high-mass haloes, this

could potentially lead to a lower gas density (e.g., the gas is now less gravitationally bound)

which in turn could reduce star formation. This is a motivation for using the fraction 1/20,

for which we never observed the above effect, rather than using larger fractions.

It is evident from Fig. 8.1 that, while it can increase star formation, changing the

gravitational softening length alone is not enough to produce stellar contents that match

observational data.

8.2.1.2 Stellar feedback

In the TNG model, a portion of the gas mass in star-forming gas cells is converted into

wind particles which are launched in random directions (Pillepich et al., 2018c). For a

star-forming gas cell with metallicity Z, the available wind energy is:

ew = ēw

[
fw,Z + 1− fw,Z

1 + (Z/Zw,ref)γw,Z

]
×NSNIIESN11,511051ergM−1

� , (8.1)

where ēw is a dimensionless free parameter, ESNII,51 is the available energy from core-

collapse supernovae in units of 1051erg, NSNII is the number of supernovae per stellar mass

that is formed, and fw,Z , Zw,ref and γw,Z are additional parameters of the model. A wind

particle will eventually donate its thermal energy (along with its mass, momentum, and

metal content) to a gas cell that is outside its local dense inter-stellar medium. This heats
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8.2.1.3. Star formation model

the gas and subsequently reduces the efficiency of star formation (gas must be sufficiently

cool in order to form stars).

Star formation efficiency is already reduced by our lowered gas cell resolution, therefore

reducing the thermal heating of the gas by wind feedback can help to rectify this. We have

achieved this in our retuning of the model by reducing the value of ēw from the fiducial

TNG value 3.6 to 0.5, which lowers the energy of the winds. As can be seen from the green

lines in Fig. 8.1, this change significantly boosts star formation over a wide range of masses.

The stellar mass fraction now has a reasonable amplitude for M200 & 1012M�, while the

amplitudes of the SFRD and stellar mass function are much closer to the observational

data.

We have also tried varying the wind speed. This is given by (Pillepich et al., 2018c):

vw = max
[
κwσDM

(
H0
H(z)

)1/3
, vw,min

]
, (8.2)

where κw is a dimensionless factor, σDM is the local one-dimensional velocity dispersion of

the dark matter particles and vw,min is the minimum wind velocity allowed in the model.

For our calibration runs, we tried reducing the κw and vw,min parameters. This reduces

the speed of the wind particles, which now take longer to transfer the thermal energy to

the surrounding gas. Gas is therefore heated up at a slower rate, resulting in an increased

amount of star formation. We found that reducing these parameters has a similar effect to

reducing the ēw parameter, with star formation boosted over a wide mass range. However,

we could find no clear advantage in varying the wind speed parameters instead of ēw, or in

varying all three of these parameters in combination. For simplicity, we therefore decided

to adjust the stellar feedback using only the ēw parameter.

8.2.1.3 Star formation model

The star formation rate in IllustrisTNG is computed for gas cells using the Springel and

Hernquist (2003) model. Stars can only be formed by gas cells which exceed a particular

density threshold, which is approximately nH ≈ 0.1cm−3. We will refer to the threshold

gas density as ρ? in this work. At our reduced resolution, gas cells have a larger volume

and therefore a smoothed density which can miss out high-density peaks in galaxies. In
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8.2.1.4. Black hole feedback

order to account for this, we have reduced ρ? from ≈ 0.1cm−3 to a fixed value of 0.08cm−3,

allowing gas cells with lower density to form stars.

The effect of making this change, in addition to the changes listed above, is shown

by the magenta lines in Fig. 8.1. This further boosts the stellar mass fraction and SFRD,

which are now both in good agreement with the TNG100 results for M200 & 1012M� and

z . 5, respectively, and there is also now a good agreement with the D’Souza et al. (2015),

Bernardi et al. (2013) and Baldry et al. (2012) observations of the stellar mass function for

M? & 1011M�.

8.2.1.4 Black hole feedback

The TNG model employs two types of black hole feedback, depending on the accretion state

of the central supermassive black hole (Weinberger et al., 2017): in the low accretion state,

a kinetic feedback model is employed which produces black hole-driven winds; and in the

high accretion state, a thermal feedback model is employed which heats up the surrounding

gas. The rate of accretion Ṁ is set by the Eddington-limited Bondi accretion:

ṀBondi = 4πG2M2
BHρ

c3
s

,

ṀEdd = 4πGMBHmp
εrσTc

,

Ṁ = min
(
ṀBondi, ṀEdd

)
,

(8.3)

where MBH is the black hole mass, ρ represents the ambient density around the black

hole, cs represents the ambient sound speed and εr is the black hole radiative efficiency.

The feedback mode depends on whether or not the ratio Ṁ/ṀEdd exceeds the following

threshold:

χ = min
[
χ0

(
MBH

108M�

)β
, 0.1

]
, (8.4)

where χ0 and β are parameters. If Ṁ/ṀEdd > χ, the resulting thermal feedback will inject

thermal energy into the surrounding gas at a rate Ėtherm = εf,highεrṀc2, where εf,high is

another parameter; and if Ṁ/ṀEdd < χ, the resulting kinetic feedback will inject energy

into the surroundings at a rate Ėkin = εf,kinṀc2, where the factor εf,kin depends on the

ambient density ρ. Both of these feedback modes will reduce the efficiency of star formation
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8.2.1.4. Black hole feedback

in the surrounding gas, either by blowing gas out, so that less gas will exceed the density

threshold for star formation, or by heating up gas which, as for stellar feedback, reduces

the amount of cool gas capable of forming stars. As discussed above, the star formation

efficiency is already reduced by our lowered gas resolution; reducing the overall effect of

black hole feedback on star formation therefore provides another means of rectifying this.

For our retuning of the black hole feedback, we have increased εr from the fiducial

TNG value 0.2 to 0.22. The effect of this change on the overall energy release is quite

complex: the energy injected by thermal feedback will be boosted, unless Ṁ = ṀEdd (i.e.,

ṀBondi > ṀEdd) in which case the εr factors will cancel and there will be no effect; on the

other hand, from Eq. (8.3) we see that ṀEdd is lowered if εr is increased, and subsequently

the ratio Ṁ/ṀEdd will be greater and there will then be less kinetic feedback. From this

discussion, increasing εr is therefore expected to increase the heating of the gas by thermal

feedback and reduce the blowing out of gas by kinetic feedback: two effects which would

have competing impacts on the star formation efficiency. For our calibration runs, we have

observed that increasing εr to 0.22 boosts the amount of star formation. Therefore, it seems

that the reduced blowing out of gas by kinetic feedback has the dominant effect here.

The result of making this final adjustment to the baryonic physics model is shown

by the cyan lines in Fig. 8.1. The stellar mass fraction and stellar mass function are both

slightly boosted for high-mass haloes. From the upper-right panel of Fig. 8.1, our model

now appears to slightly overshoot the observed stellar mass function at higher masses; this

is actually a consequence of sample variance which results from using a small box-size. As

we will show in Sec. 8.2.2, the agreement is very good for the much larger 301.75h−1Mpc

box size. The change to εr also brings the galaxy size relation into closer agreement with

the TNG L25-N512 runs, while the good agreement with observations for the black hole

mass relation, the gas mass fraction and the SFRD is unaffected.

We also considered the minimum halo mass for black hole seeding. Central black holes

are only found in haloes with mass above this threshold. Increasing the threshold means

that, at a given time, black holes will have been growing for a shorter period of time and will

consequently have a lower mass. This results in lower accretion and therefore reduces the
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energy released through feedback. We found that this can significantly boost star formation

in higher-mass haloes (which contain larger black holes and are therefore more susceptible

to black hole feedback) but has very little effect on the stellar content of low-mass haloes.

We found no clear advantage to vary this in addition to the other parameters varied in this

work, therefore we adjusted the black hole feedback using only the εr parameter.

8.2.1.5 Summary and further comments

In summary, our retuned baryonic model uses updated parameter values ρ? = 0.08cm−3,

ēw = 0.5 and εr = 0.22, in addition to a larger gravitational softening length, to get sufficient

star formation.

While our retuning of the baryonic physics has significantly boosted star formation

across the full mass range shown in Fig. 8.1, it is still unable to give sufficient star forma-

tion at lower masses compared to observational data. Therefore, the stellar mass fraction

and stellar mass function are both underestimated at the low-mass end, and the SFRD is

underestimated at redshifts z & 5 (where there are only low-mass haloes). We attempted

to rectify this by using even lower values of ρgas and reduced stellar and black hole feed-

back, but found that this offered little improvement overall. We even tried switching off

feedback entirely, by setting the stellar wind energy to zero (ēw = 0) and by preventing the

seeding of black holes: while this resulted in a huge amount of star formation at masses

M200 & 1012M�, there was still insufficient star formation at masses M200 . 1011.5M� to

match observations. Therefore, the only way to have sufficient star formation across the

full mass range appears to be by increasing the mass resolution. Interestingly, the BA-

HAMAS simulations (McCarthy et al., 2017) are able to achieve sufficient star formation

for the full mass range (see the dotted lines in the top panels of Fig. 8.1) despite having

∼ 3× lower mass resolution than our simulations. The BAHAMAS simulations were run

using the gadget-3 code (Springel, 2005), which uses SPH rather than the Voronoi mesh.

Perhaps the contrasting treatments of the gas by the two codes can explain the different

levels of star formation at these lowered resolutions. One possible way to further boost star

formation in low-mass haloes is by having a halo mass dependency for some of the baryonic
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parameters, but this approach is beyond the scope of this work. On the other hand, we

note that our low-resolution simulations are designed primarily for studying galaxy groups

and clusters (M500 & 1013M�), for which the predictions of our model appear to be very

reasonable.

While retuning these parameters, we came across a number of degeneracies. For ex-

ample, as discussed above in Sec. 8.2.1.2, we found that the stellar-induced wind feedback

can be lowered by reducing the speed of the winds rather than the wind energy. And, in

our final model, we could have instead used a slightly increased ρ? (e.g., ρ? = 0.09cm−3)

and reduced εr (e.g., εr = 0.18) to achieve similar results. Therefore, we note that differ-

ent combinations of parameter values could have been used to achieve a similar level of

agreement with the observational data.

8.2.2 Large-box simulation

Our full simulation (‘L302-N1136’), which has been run using the retuned baryonic model at

the same mass resolution as the L68-N256 calibration runs, has a box size of 301.75h−1Mpc

and contains 11363 dark matter particles and (initially) the same number of gas cells. The

simulation has been run for both GR and F5.

The red lines in Fig. 8.2 show the GR predictions of the six observables used to

calibrate the baryonic model. The results are slightly different compared to the cyan lines

in Fig. 8.1, which use the same baryonic model: the predicted amplitudes of the stellar mass

fraction and stellar mass function are slightly lower, which actually improves the high-mass

agreement with observations of the latter; and the amplitude of the galaxy size relation

is greater for 1011M� . M? . 3 × 1011M�, leading to slightly worse agreement with the

TNG L25-N512 predictions at these masses. These effects are likely to be a consequence of

using a much larger box size, which is less susceptible to sample variance. The L302-N1136

simulation also extends to higher masses (M500 ∼ 1015M� and M? ∼ 1012M�) than the

L68-N256 runs. At these masses, the agreement with the observational data in Fig. 8.2

looks excellent.

The predictions for the F5 model, shown by the green lines in Fig. 8.2, agree with the
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GR predictions for the galaxy size and black hole mass relations; however, the amplitudes of

the other four observables are slightly boosted in F5 compared to GR. The SFRD is boosted

for redshifts 0.5 . z . 3: this is consistent with the results for the shybone simulations

(Arnold et al., 2019b). The stellar mass fraction and stellar mass function are boosted

at M200 ∼ 1012M� and M? ∼ 1011M�, respectively, and the gas mass fraction is slightly

enhanced for masses M500 & 1013M�. The F5 predictions are still in excellent agreement

with the observations, therefore it is not necessary to carry out a separate retuning of the

baryonic physics for this model.

8.3 Results

Using the L302-N1136 simulations (see Sec. 8.2), we have measured the observable-mass

scaling relations in GR and F5 for FOF groups in the mass range 1013M� ≤ M500 .

1015M�. In Sec. 8.3.1, we will discuss the relations for the mass-weighted gas temperature

T̄gas, the SZ Y -parameter YSZ, the X-ray analogue of the Y -parameter YX and the X-ray

luminosity LX, which have all been computed in the same way as in Chapter 4. We again

exclude gas cells found in the core region, defined by the radial range r < 0.15R500, and we

will test the ‘true density’ mappings (see Chapter 4) between the F5 and GR relations for

redshifts 0 ≤ z ≤ 1. We will also discuss scaling relations which don’t involve the cluster

mass in Sec. 8.3.2; these can potentially be used to test gravity using galaxy groups and

clusters with no requirement to measure or infer the mass.

8.3.1 Observable-mass scaling relations

The top rows of Figs. 8.3-8.6 show the F5 and GR scaling relations for redshifts 0, 0.5

and 1, with data points representing individual haloes. At z = 0, there are ∼ 8000 GR

haloes with M500 > 1013M�, including ∼ 500 clusters with M500 > 1014M�. This is a

significant improvement on the L62 shybone simulations, which only had ∼ 100 haloes

with M500 > 1013M� at z = 0. The curves in the top rows of the figures show the median

observable as a function of the mean logarithmic mass computed within mass bins; the

‘true density’ rescalings of the F5 relation, which are computed using our analytical tanh
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Figure 8.2: Stellar, gas and black hole properties of haloes in the L302-N1136 simulations
for GR (red lines) and F5 (green lines). Apart from the coloured lines, the contents of this
figure are identical to Fig. 8.1.
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Figure 8.3: Gas temperature as a function of the halo mass for the full-physics L302 sim-
ulation (see Sec. 8.2) at redshifts 0, 0.5 and 1. The curves correspond to the median
temperature and the mean logarithm of the mass computed within mass bins. Data has
been included for GR (red solid lines) and F5 (green lines). A rescaling to the F5 temper-
ature has been carried out as described in Sec. 8.3.1. Data points are displayed, with each
point corresponding to a GR halo (red points) or to a halo in F5 (green points), including
the rescaling. Bottom row: the relative difference between the F5 and GR curves in the
above plots.

formula (Eq. (2.17)), are indicated by the dashed lines. We use eight mass bins with

constant logarithmic width over the range 1013M� ≤M500 ≤ 1015.4M�. All bins are shown

regardless of the halo count. Although there may only be a few haloes in the highest-mass

bins, we note that these correspond to high-mass clusters for which scatter in the scaling

relations, especially in the model difference between F5 and GR, is expected to be very low.

The relative difference between the F5 and GR binned data is shown in the lower panels of

the figures.

8.3.1.1 Temperature scaling relation

The results for the T̄gas(M) scaling relation are shown in Fig. 8.3. The GR data appears to

follow the well-known power-law behaviour for cluster-sized objects; however, the relation
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appears to curve at lower masses, where processes such as feedback can cause additional

gas heating and break the power-law scaling. In F5, haloes are mostly screened from the

fifth force for masses M500 & 1014.5M� at z = 0, M500 & 1014M� at z = 0.5 and M500 &

1013.5M� at z = 1, and here the F5 temperature closely follows the GR temperature. At

lower masses, the F5 temperature becomes significantly enhanced, as the total gravitational

potential of the halo is raised by the fifth force.

Our rescaling of the F5 data, which we recall involves dividing the temperature by

the ratio of the dynamical mass to the true mass, can successfully account for this offset at

lower masses, restoring < 7% agreement with the GR relation. However, the rescaled F5

relation now slightly underestimates the GR relation on average. We note that at z = 0,

this offset appears to be roughly constant for cluster-sized masses; therefore, as long as the

GR scaling relation parameters are allowed to vary in MCMC sampling (which can account

for small differences in the amplitude), this rescaling is still expected to work well in our

constraint pipeline presented in Chapter 5.

8.3.1.2 YSZ and YX scaling relations

The YSZ(M) and YX(M) relations are shown in Figs. 8.4 and 8.5, respectively. The GR

relation appears to follow a weakly broken power-law, with a slightly steeper slope for group-

sized haloes (M500 . 1014M�) than for cluster-sized haloes (M500 & 1014M�). Again the

low-mass behaviour can be explained by feedback, which, in addition to heating up gas, also

blows gas out from the inner regions which in turn can lower the Y values. For example,

in Chapter 4, we observed that the Y -parameter was lower in the full-physics simulations

than in the non-radiative simulations, which did not include feedback.

For lower (unscreened) masses, we observe an enhancement of the F5 relations by

up to ∼ 50% compared to GR. This is mostly corrected by our rescaling, after which the

agreement is within ∼ 12% for group-sized haloes and is within a few percent on average

for cluster-sized objects. This is positive news for our constraint pipeline in Chapter 5,

which used this rescaling to model the YSZ(M) relation for clusters in the redshift range

0 < z < 0.5.
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Figure 8.4: SZ Compton Y -parameter as a function of the halo mass for the full-physics
L302 simulation (see Sec. 8.2) at redshifts 0, 0.5 and 1. Apart from the observable, this
figure has the same layout as Fig. 8.3.

Figure 8.5: X-ray analogue of the Y -parameter as a function of the halo mass for the full-
physics L302 simulation (see Sec. 8.2) at redshifts 0, 0.5 and 1. Apart from the observable,
this figure has the same layout as Fig. 8.3.
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8.3.1.3. X-ray luminosity scaling relation

Figure 8.6: X-ray luminosity as a function of the halo mass for the full-physics L302 sim-
ulation (see Sec. 8.2) at redshifts 0, 0.5 and 1. Apart from the observable, this figure has
the same layout as Fig. 8.3.

8.3.1.3 X-ray luminosity scaling relation

The LX(M) relation is shown in Fig. 8.6. As we showed in Chapter 4, our rescalings were

unable to accurately account for the difference between GR and f(R) gravity. That study

was carried out primarily for group-sized haloes, and for these new results the rescaling is

again unsuccessful for the mass range 1013M� . M500 . 1014M�. The X-ray luminosity

varies as T 1/2
gas ρ2

gas. For the ‘true density’ rescaling, which is applied here, it is assumed that

the gas temperature is enhanced by the fifth force while the gas density is unchanged. This

may be the case in non-radiative simulations, however in full-physics simulations it is not

necessarily true. For example, it is likely that there are different levels of feedback in F5

and GR. A greater amount of feedback in one model would result in the blowing out of gas

and subsequent lowering of the gas density. This is expected to have a much greater effect

on LX, which varies as ρ2
gas, than on the other observables considered in this work. For the

Y -parameters, which vary as Tgasρgas, the effects of feedback on the gas density and the

temperature can roughly balance out (e.g., Fabjan et al., 2011), allowing our rescaling to
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8.3.2. YX-temperature and LX-temperature relations

Figure 8.7: X-ray analogue of the Y -parameter as a function of gas temperature for haloes
from the full-physics L302 simulation (see Sec. 8.2) at redshifts 0, 0.5 and 1. The curves
correspond to the median luminosity and the mean logarithm of the temperature computed
within temperature bins. Data has been included for GR (red solid lines) and F5 (green
dotted lines). Data points are displayed, with each point corresponding to a GR halo (red
points) or to a halo in F5 (green points). Bottom row: the relative difference between the
F5 and GR curves in the above plots.

perform better for these observables as we saw in Figs. 8.4 and 8.5.

While the above is particularly problematic for galaxy groups, which are more sus-

ceptible to feedback, our rescaling appears to work reasonably well for cluster-sized haloes

in Fig. 8.6, where the rescaling brings the agreement to within 10% at z = 0. However, the

LX(M) relation is also highly scattered compared to the other relations considered in this

work. For example, the agreement between F5 and GR has a large ∼ 20% fluctuation at

z = 1 for M500 > 1014M�, even though clusters are completely screened at this redshift.

Based on this discussion, the T̄gas(M), YSZ(M) and YX(M) relations are more suitable

than the LX(M) relation for tests of gravity that involve the cluster mass.
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Figure 8.8: X-ray luminosity as a function of gas temperature for haloes from the full-
physics L302 simulation (see Sec. 8.2) at redshifts 0, 0.5 and 1. Apart from the observable
used in the vertical axis, this figure has the same format as Fig. 8.7.

8.3.2 YX-temperature and LX-temperature relations

In Figs. 8.7 and 8.8, we show the YX(T̄gas) and LX(T̄gas) relations, respectively, at redshifts

0, 0.5 and 1. The curves show the median YX-parameter and mean logarithmic temperature

computed within seven temperature bins, with logarithmic width 0.2, spanning the range

10−0.4keV ≤ T̄gas ≤ 101keV.

Haloes in F5 and GR with the same temperature are expected to have a similar

dynamical mass; in this case, the F5 haloes would have a lower true mass than the GR

haloes, and therefore a lower gas density (e.g., recall the ‘effective density’ rescalings in

Chapter 4). This explains why, for YX(T̄gas), the amplitude of the F5 relation is suppressed

by up to ∼ 40% compared to GR, while for LX(T̄gas) the F5 relation is suppressed by up

to ∼ 45% (the differences may also be partly due to differences in the levels of feedback in

the two models). For both relations, the difference is greater for lower redshifts and lower

temperatures, where more haloes are unscreened.

Neither of these relations involve the cluster mass. Therefore, these could potentially
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be used to test gravity using galaxy groups and clusters without the risk of bias from mass

measurements. This demonstrates that, besides their abundances inferred from observ-

ables such as YSZ and YX, the combination of different internal observational properties

for a population of galaxy clusters or groups can also offer useful, possibly complementary,

constraints on the theory of gravity.

8.4 Summary

Running large-box cosmological simulations which simultaneously incorporate screened

modified gravity and full baryonic physics can be computationally expensive, necessitat-

ing the use of lower mass resolutions so that the calculations can involve fewer particles.

However, this means that the gas density field is smoothed, resulting in high-density peaks

being lost and consequently an overall reduction in star formation. This can result in poor

agreement with observations of the stellar and gaseous properties of galaxies.

In this chapter, we have retuned the IllustrisTNG baryonic model so that it can be used

to run full-physics simulations at a much lower resolution while still retaining a high level

of agreement with galaxy observations. Calibrated using runs with a box size of 68h−1Mpc

and, initially, 2563 gas cells, our model uses updated values for the following parameters

(Sec. 8.2.1): the threshold gas density for star formation, ρ?, is reduced from ≈ 0.1cm−3 to

0.08cm−3; the parameter ēw which controls the energy released by the stellar-driven wind

feedback is reduced from 3.6 to 0.5; and the black hole radiative efficiency εr is increased

from 0.2 to 0.22. In addition to these changes, we have also increased the gravitational

softening to a factor 1/20 of the mean interparticle separation. By reducing the heating

and blowing out of gas by feedback and two-body interactions, and lowering the threshold

density of star formation, these changes boost the amount of star formation at our lowered

resolution, resulting in good agreement with observations of galaxy properties including

the stellar mass fraction, the stellar mass function, the SFRD and the gas mass fraction

(Fig. 8.1).

Using our retuned model, we have run GR and F5 simulations with a box size

301.75h−1Mpc (Sec. 8.2.2). The predictions of stellar and gaseous properties in both grav-
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ity models show a very good match with galaxy observations, particularly for group- and

cluster-sized masses (Fig. 8.2), which shows that for F5 it is not necessary to further retune

the baryonic parameters. Using these simulations, we have studied, for redshifts 0 ≤ z ≤ 1

and masses 1013M� ≤M500 . 1015M�, the scaling relations between the cluster mass and

four observable mass proxies (Sec. 8.3.1): the SZ Compton Y -parameter YSZ and its X-ray

analogue YX, the mass-weighted gas temperature T̄gas, and the X-ray luminosity LX.

For the YSZ(M) and YX(M) relations, our mapping between the F5 and GR relations,

which involves dividing the F5 Y -parameter by the ratio of the dynamical mass to the true

mass, is accurate to within ∼ 12% for galaxy groups and just a few percent for galaxy

clusters. This validates our method for accounting for the effect of the fifth force on the

YSZ(M) relation, which is currently used in our f(R) constraint pipeline (Chapter 4). For

the T̄gas(M) relation, the same rescaling is again reasonable, with . 7% accuracy for the

full range of masses. Our rescaling does not work as well for the LX(M) relation, which is

likely due to the greater susceptibility of the X-ray luminosity to feedback processes.

We have also shown (Sec. 8.3.2) that the YX-temperature and LX-temperature scaling

relations can differ in F5 and GR by up to 45%. These relations could potentially be

used for large-scale tests of gravity that do not involve measuring the cluster mass, and

hence not only eliminating one potential source of uncertainty but also including additional

information in the model constraints.

By running large-box full-physics simulations for a range of f(R) gravity field

strengths, it will be possible to test our models for the enhancements of the dynamical

mass (Chapter 2) and the halo concentration (Chapter 3) in the presence of full baryonic

physics over a wide mass range. Our baryonic model can also potentially be used to run

large full-physics simulations for other classes of modified gravity and dark energy models,

e.g., the nDGP model using the MG solvers implemented in the arepo code, since it is

likely that a recalibration of the baryonic parameters will not be necessary unless the model

studied is extreme and differs strongly from the current best-fit ΛCDM (but in that case

the model is likely to have already been ruled out by other observations). The application

to the nDGP model will make it possible to validate our models for the nDGP enhance-
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ments of the halo concentration and the HMF in addition to extending our results for the

observable-mass scaling relations to higher masses (Chapter 6). Finally, in our study of

the thermal and kinetic SZ angular power spectra in f(R) gravity and nDGP (Chapter 7),

we were unable to study larger angular scales (l . 500), again due to the relatively small

box size of the shybone simulations: this can potentially be rectified by using these larger

simulations. These possibilities will be explored in future works.

The ability to run large realistic galaxy and cluster formation simulations for beyond-

ΛCDM models will prove highly beneficial for research in this field: not only will this endow

us with numerical tools to predict observables, such as cluster properties, that cannot be

studied using DMO simulations, but the hydrodynamical simulations enabled by such a

tool can be used to quantify the impacts of baryons on various other observables, such

as weak lensing and galaxy clustering. The lack of such a quantitative assessment would

either restrict the amount of data that can be reliably used in model tests, or lead to biased

constraints on models and parameters.
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Chapter 9

Conclusions and outlook

9.1 Thesis summary

9.1.1 Modelling the dynamical mass enhancement in f(R) gravity

In Chapter 2, we found a simple model to describe the relationship between the dynamical

mass and lensing mass of dark matter haloes in the Hu-Sawicki f(R) model. As shown

by the solid line fits of Fig. 2.3, the tanh fitting formula of Eq. (2.17) has generally shown

excellent agreement with ahf halo data, for z < 1, from three ecosmog DMO simulations,

which are summarised in Table 2.1. By taking advantage of the variety of resolutions

offered by these simulations, and using ΛCDM simulations to produce approximate data

for field strengths not covered by the f(R) gravity simulations, the validity of Eq. (2.17)

has been probed vigorously across a wide and continuous range of field values that cover

10−6.5 < |fR0| < 10−4 within z < 1.

In addition to this, we used a simple thin-shell model (Sec. 2.2.1) to predict the beha-

viours of free parameters p1 and p2 in Eq. (2.17), which characterise the inverse width and

the central logarithmic mass of the tanh-like transition respectively. The predictions, which

neglect the effects of environmental screening due to nearby dark matter haloes, are given

by Eqs. (2.18, 2.19). Using a stringent criterion to exclude unreliable snapshots in the fit-

ting, the result for p2, shown in Fig. 2.4, is p2 = (1.503±0.006) log10
(
|f̄R|
1+z

)
+(21.64±0.03).

The slope value of 1.503 ± 0.006 shows excellent agreement with the prediction of 1.5 by
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Eq. (2.19), and the data of Fig. 2.4 shows a clear linear trend as predicted. As shown by

Fig. 2.5, the p1 data is more scattered, but given the size of the one standard deviation

error bars, the constant trend predicted by Eq. (2.18) is not unreasonable, resulting in

p1 = (2.21 ± 0.01). As shown by the dashed line fits of Fig. 2.3, these results for p1 and

p2 show good agreement with the simulation data across the full range of field values and

redshifts. We also repeated the analysis using a different approach to utilise the errors in

the simulation data, and the results, shown in Appendix A.1, also agree with the thin-shell

model prediction very well. In Appendix A.2 we further argue that the results in this

chapter apply to models with different cosmological parameters such as σ8 and ΩM.

A generic fitting function for the relationship between the dynamical and lensing

masses of dark matter haloes is an essential ingredient of the new framework, proposed in

this thesis, to carry out cosmological tests of gravity in an unbiased way. Taking Eq. (2.16)

as an example, our general formula for the dynamical mass enhancement allows us to in-

corporate this particular effect of f(R) gravity into galaxy cluster scaling relations in a

self-consistent way. A key benefit of a fitting function is that it allows a continuous search

through the model parameter space without having to run full simulations for every para-

meter point sampled in MCMC. The results will also be useful for other cluster tests of

gravity that employ the difference between dynamical and lensing masses, such as by com-

paring cluster dynamical and lensing mass profiles, or by looking at measured cluster gas

fractions.

The results presented in this chapter indicate that a simple model sometimes works

surprisingly well despite the greatly simplified treatment of the complicated nonlinear phys-

ics of (modified) gravity. This has become a common theme in this thesis, and fitting simple

models to the predictions from numerical simulations is an approach that we have repeated

when studying the halo concentration in f(R) gravity and the cluster and halo properties

in nDGP.

Although we made a very specific choice of f(R) gravity in this chapter, the theoret-

ical model and the procedure we followed to calibrate it are expected to be applicable to

general chameleon gravity theories (e.g., Gronke et al., 2015, 2016). As discussed briefly
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in Appendix A.2, in other f(R) models the transition between screened and unscreened

regimes can be different from the Hu and Sawicki (2007) model with n = 1, which may

cause the exact fitted values of pi to differ from what we presented in the above. Therefore,

other f(R) models may require a re-calibration based on simulations. However, given that

all f(R) models are phenomenological, it is perhaps more sensible to focus on a repres-

entative example, such as that by Hu and Sawicki (2007), to make precise observational

constraints. The pipeline and methodology can then be applied to any other models follow-

ing general parameterisation schemes (e.g., Brax et al., 2012b,a; Lombriser, 2016), which

are useful for capturing the essential features of large classes of models using a few paramet-

ers. Should a preferred one emerge, the conclusion for the Hu-Sawicki model can serve as a

rough guideline as to what level future cluster observations can constrain scalar-tensor-type

screened theories. For this reason we decided not to explore other forms of f(R) in this

thesis.

9.1.2 Universal model for the halo concentration in f(R) gravity

In Chapter 3, we calibrated a model for the enhancement of the halo concentration in HS

f(R) gravity with n = 1 using a suite of simulations that are summarised by Table 2.1. The

model is shown in Fig. 3.6, and is given by Eq. (3.9) with the parameter values listed in Table

3.2. It has been defined in terms of a useful rescaling of the halo mass, M500/10p2 , such

that the data from three different f(R) gravity models can satisfy a universal description.

These models have log10(|fR0|) = (−4,−5,−6), and the fitting was carried out using data

from all simulation snapshots with log10
(
|f̄R|/(1 + z)

)
≤ −4.5. This universal description

was shown to have very good agreement with simulations for M500/10p2 covering nearly 7

orders of magnitude, and covering five decades of the halo mass.

Our model has been tested by comparing its predictions of the enhancement of the

concentration with an arbitrarily chosen set of snapshots from our simulations, as shown by

the lines plotted in Figs. 3.2 and 3.3. These predictions show excellent agreement with the

data for all snapshots, apart from the Crystal snapshots with log10
(
|f̄R|/(1 + z)

)
> −4.5.

This is not surprising given that this data was not used in the fit of the model. Having a
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general model that works for log10
(
|f̄R|/(1 + z)

)
≤ −4.5 will prove very useful, particularly

given that an analytical theoretical modelling was not available.

The data of Fig. 3.6 shows that in the unscreened regime the enhancement of the

concentration reaches a distinct peak as a function of the halo mass, but drops to negative

values at lower mass, where the f(R) concentration is less than the GR concentration. As

shown by Fig. 3.1, such negative enhancement occurs because the innermost regions of the

haloes are less dense in f(R) gravity than in GR. This could be caused by the velocity

gained by particles in haloes, which makes it difficult for them to settle into orbits at the

central regions of the halo. Meanwhile in the screened regime of Fig. 3.6 there is a small dip

in the concentration. Fig. 3.1 suggests that this is caused by the halo being only partially

screened, so that outer particles are moved further towards the centre of the halo while the

inner regions remain screened. The density profile is therefore unaffected at the innermost

regions but is greater at intermediate radii. Therefore the scale radius becomes greater,

and fitting an NFW profile would then result in an estimate for the concentration that is

lower in f(R) gravity than in GR. All of these effects are incorporated by the fitted model

of Eq. (3.9).

We also carried out some further investigations which can be useful for future studies

of the concentration in f(R) gravity, and in other similar modified gravity theories. Firstly,

in addition to applying a direct NFW profile fitting to each of the haloes to measure the

concentration, two simplified approaches were also used, namely the methods that are

used by Prada et al. (2012) and Springel et al. (2008). The resulting enhancement of the

concentration from using these two methods (shown in Fig. 3.4) shows a difference from

direct NFW fitting. This is due to the effects of f(R) gravity on the internal density profile,

which means that the choice of regions of the halo to use in measuring the concentration

becomes important. The method used by Springel et al. (2008) only requires the mass

enclosed by the orbital radius with the maximum circular velocity. Being found at the

inner regions of a halo, which become more dense as the halo becomes unscreened, this

results in the concentration being overestimated by up to 26%. From this, we conclude

that only the direct NFW fitting should be used in f(R) studies. Secondly, we looked at
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the validity of the NFW profile fitting in f(R) gravity and found that, as shown by the

bottom-left panel of Fig. 3.5, for most haloes the χ2 measure for the fit is within 20% of the

GR measure, and for some haloes the fit is even better. Therefore the systematic effects

caused by fitting the NFW profile in f(R) gravity are unlikely to have a significant effect

on the scatter of the concentration measure.

9.1.3 Observable-mass scaling relations in f(R) gravity

In Chapter 4, we made use of the first full-physics simulations that have been run for

both GR and f(R) gravity (along with non-radiative counterparts), to study the effects of

the fifth force of f(R) gravity on the scaling relations between the cluster mass and four

observable proxies: the gas temperature (Fig. 4.2), the YSZ and YX parameters (Figs. 4.3

and 4.4) and the X-ray luminosity (Fig. 4.5). To understand these effects in greater detail,

we have also examined the effects of both f(R) gravity and full-physics on the gas density

and temperature profiles (see Fig. 4.1). In doing so, we have been able to test two methods

for mapping between scaling relations in f(R) gravity and GR.

The first method was proposed by He and Li (2016). This proposes a set of mappings,

given by Eqs. (4.4) and (4.6)-(4.8), that can be applied to haloes whose mass and radius

are measured using the effective density field (see Sec. 4.2.1). A second, new, approach

is proposed in Sec. 4.2.2, and predicts another set of mappings, given by Eqs. (4.9) and

(4.11)-(4.13), that can be applied to haloes whose mass and radius are measured using the

true density field. Both sets of mappings involve simple rescalings that depend only on the

ratio of the dynamical mass to the true mass in f(R) gravity. As shown by Figs. 4.6 and

4.7, even with the inclusion of full-physics processes this ratio can be computed with high

accuracy using our analytical tanh formula, which is given by Eq. (2.17).

For the mass-weighted gas temperature and the YSZ and YX observables, we found that

the F6 and F5 scaling relations, with appropriate rescaling applied (using either method

discussed above), match the GR relations to within a few percent for the full mass-range

tested for the non-radiative simulations. With the inclusion of full-physics effects such as

feedbacks, star formation and cooling, the rescaled YSZ and YX scaling relations continue
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to show excellent agreement with GR for mass M500 & 1013.5M�, which includes group-

and cluster-sized objects. These proxies also show relatively low scatter as a function of

the cluster mass, compared with other observables. YSZ and YX are therefore likely to

be suitable for accurate determination of the cluster mass in tests of f(R) gravity. The

mappings for the gas temperature show a very high accuracy for lower-mass objects, but

show a small . 5% offset between F5 and GR for higher-mass objects.

The mappings do not work as well for the X-ray luminosity LX, for which the F5

relations after rescaling are typically enhanced by ∼ 30% compared with GR. This is caused

by the unique dependency of LX on the gas density to power two, and the gas temperature

to power half, which means that the inner halo regions have a greater contribution than for

the other proxies and the competing effects of feedback on the temperature and gas density

profiles are less likely to cancel out. This issue, in addition to the fact that LX has a highly

scattered correlation with the cluster mass, means that this proxy is unlikely to be suitable

for cluster mass determination in tests of f(R) gravity.

We also considered the YX-T̄gas scaling relation (Fig. 4.8), and found that this is

suppressed by 30-40% in the F5 model relative to GR. This offers a potential new and

useful test of gravity with group- and cluster-sized objects which avoids the systematic

uncertainties incurred from mass calibration.

Our results also provide insights into the viability of extending cluster tests of gravity

to the group-mass regime. An advantage of using lower-mass objects is that these objects

can be unscreened (or partially screened) even for weaker f(R) models, offering the poten-

tial for tighter constraints using data from ongoing and upcoming SZ and X-ray surveys

(e.g., Merloni et al., 2012; Ade et al., 2016) which are now entering this regime. On the

other hand, as we have seen above, the scatter induced by feedback mechanisms becomes

more significant in group-sized haloes, which means that additional work will need to be

conducted to characterise this effect and to understand its impact on model tests.

Finally, we note that our parameter p2, which is used to compute the ratio of the

dynamical mass to the true mass, depends only on the quantity |fR|/(1+z), and not on the

model parameters n and fR0 of HS f(R) gravity. This dependence was originally derived
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by using the thin-shell model (Chapter 2), which does not depend on the details of the

f(R) model. We therefore expect our scaling relation mappings to perform similarly for

any combination of the HS f(R) parameters, and potentially other chameleon-type or thin-

shell-screened models. However, due to the high computational cost of running full-physics

simulations of f(R) gravity and other models, we do not seek to confirm this conjecture in

this thesis.

9.1.4 Constraint pipeline for unbiased f(R) cluster constraints

In Chapter 5, we combined all of our models for the effects of f(R) gravity on cluster prop-

erties into an MCMC pipeline for constraining the amplitude of the present-day background

scalar field, |fR0|, using cluster number counts. We have adopted the model from Cataneo

et al. (2016) for the f(R) enhancement of the HMF, and used this, along with our model

for the enhancement of the halo concentration, to produce a model-dependent prediction of

the cluster number counts (Sec. 5.3.1). We have also used our model for the enhancement

of the dynamical mass in f(R) gravity to convert a GR power-law observable-mass scaling

relation, which is based on the Planck YSZ(M500) relation (Ade et al., 2016), into a form

consistent with f(R) gravity, where the fifth force enhances the relation at sufficiently low

masses (Sec. 5.3.2). These models are all incorporated in our log-likelihood (Sec. 5.3.4),

which we have used to infer parameter constraints using a set of mock cluster catalogues

(Sec. 5.3.3).

Using a combination of GR and F5 mocks, we have shown that our pipeline is able

to give reasonable parameter constraints that are consistent with the fiducial cosmology

(Figs. 5.5 and 5.6). For the GR mock, the constraints conclusively rule out f(R) models

with log10 |fR0| & −5 and favour values in the range −7 ≤ log10 |fR0| . −5 where −7 is

the lowest value considered by our MCMC sampling. Meanwhile, the constraints inferred

using the F5 mock favour values close to the fiducial value of −5, with 68% range −5.1+0.3
−1.0

and a ‘most likely’ value of −4.92. We have also shown that the constraints inferred from

both mocks can be imprecise and biased if the f(R) enhancement of the scaling relation is

not accounted for (Fig. 5.7). Therefore, this should be properly modelled in future tests of
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f(R) gravity in order to prevent biased constraints. This will become particularly relevant

as cluster catalogues start to enter the galaxy group regime (e.g., Pillepich et al., 2018a;

Lovisari et al., 2021), where more objects can be unscreened in f(R) gravity.

Throughout Chapter 5, the main obstacle to precise and unbiased constraints stemmed

from degeneracies between fR0, ΩM, σ8 and the scaling relation parameters α and β, all

of which can influence the predicted cluster count. We have shown that the degeneracies

can be prevented by using a tighter Gaussian prior for ΩM and by having better knowledge

of the scaling relation parameters (Fig. 5.11). The latter can potentially be achieved by

including lensing data for a subset of the clusters. If wide or flat parameter priors are used,

this may give rise to biased constraints of log10 |fR0|. For example, we have found that the

parameter degeneracies can have a more significant effect for cluster samples that extend

to lower masses (Sec. 5.5.2.1).

9.1.5 Cluster and halo properties in nDGP

In Chapter 6, we extended our framework to the popular nDGP model, in which a fifth

force is able to act over sufficiently large scales.

Using the first cosmological simulations that simultaneously incorporate full baryonic

physics and the nDGP model, we studied the observable-mass scaling relations for the same

three mass proxies as studied in Chapter 4 (see Sec. 6.3.1). For groups and clusters in the

mass range M500 . 1014.5M�, our results show that for the N1 model, the T̄gas(M) relation

is enhanced by about 5% with respect to GR, while the YSZ(M) and YX(M) relations are

both enhanced by 10%-15% at low masses but more closely match the GR relations at high

masses. For N5, which is much weaker than N1, the T̄gas(M) relation closely resembles the

GR relation, while the YSZ(M) and YX(M) relations are enhanced by up to 5% at low mass

and suppressed by up to 5% at high mass. These deviations from GR could be related to

the effect of the fifth force on gas velocities during cluster formation, and they also hint at

an interplay between the fifth force and stellar and black hole feedback.

Using a suite of DMO N -body simulations, which cover a wide range of resolutions

and box sizes, we found that, in nDGP, the concentration is typically suppressed relative
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to GR, varying from a few percent in N5 to up to ∼ 15% in N0.5 (see Sec. 6.3.2). Using

stacked density profiles at different mass bins, we have shown that this behaviour is caused

by a reduced (increased) density at the inner (outer) halo regions. Including full baryonic

physics significantly affects the concentration-mass relation; however, our results show that,

for masses M200 . 1013h−1M�, the model differences between nDGP and GR still have a

similar magnitude compared to the DMO simulations.

By combining the data from our z ≤ 1 simulation snapshots, we calibrated a general

model, given by Eq. (6.3), which is able to accurately predict the suppression of the halo

concentration with respect to the GR results as a function of the halo mass and the H0rc

parameter of nDGP over ranges 1012h−1M� .M200 . 1015h−1M� and 0.5-5, respectively.

This model can be included in our MCMC pipeline for converting between mass definitions

in case, for example, the theoretical predictions and observables are defined with respect

to different spherical overdensities. Our model can also be used, along with the HMF, to

predict the nonlinear matter power spectrum, which can also be used to constrain gravity.

We also used our DMO simulations to study the HMF over the mass range 1.52 ×

1010h−1M� ≤ M500 . 1015h−1M� at redshifts 0, 1 and 2 (see Sec. 6.3.3). Our results

(Fig. 6.11), indicate that the nDGP HMF is enhanced at high masses (by up to ∼ 60% in

N0.5) and suppressed at low masses (by ∼ 10% in N0.5) compared to GR. These results

indicate the potential constraining power from using the observed mass function to probe

the H0rc parameter of nDGP. By combining the data from our z ≤ 2 snapshots, we have

calibrated a general model, given by Eq. (6.4), which can accurately reproduce the HMF

enhancement as a function of the halo mass, redshift and H0rc parameter. This model can

be used for theoretical predictions of the nDGP HMF (using a parameter-dependent GR

calibration) in our MCMC pipeline.

In Chapter 4, we showed that a model for the f(R) dynamical mass enhancement

can be used to predict observable-mass scaling relations in f(R) gravity using their GR

counterparts. Such a model in nDGP could similarly be useful to help understand the

enhancements of the temperature and SZ and X-ray Y -parameters observed in Chapter 6.

For now, though, we note that the scaling relations in nDGP still appear to follow power-
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law relations as a function of the mass: the T̄gas(M) relation in N1 can be related to the GR

relation by a simple rescaling of the amplitude, whereas the YSZ(M) and YX(M) relations

appear to have shallower slopes in N5 and N1 than in GR. Therefore, in our future MCMC

pipeline for obtaining constraints of nDGP, we can still assume the GR power-law form

of the scaling relations by allowing the parameters controlling the amplitude and slope to

vary along with the cosmological and nDGP parameters (e.g., de Haan et al., 2016; Bocquet

et al., 2019).

Although our simulations have only been run for a single choice of cosmological para-

meters, we expect that our models for the enhancements of the halo concentration and

HMF will have a reasonable accuracy for other (not too exotic) parameter values. The

gravitational force enhancement in nDGP, given by [1 + 1/(3β)], has only a weak depend-

ence on ΩM: for the N1 model (Ωrc = 0.25), the force enhancement varies within a very

small range (roughly 12.1%−12.6%) for ΩM ∈ [0.25, 0.35] at the present day, and the range

of variation is even smaller at higher redshifts. Therefore, for now we assume that the

effects of the cosmological parameters on the concentration and HMF are approximately

cancelled out in the ratios ∆c/cGR and ∆n/nGR. However, we will revisit this in a future

work, using a large number of nDGP simulations that are currently being run for different

combinations of cosmological parameters, before these models are used in tests of gravity

using observational data.

9.1.6 Sunyaev-Zel’dovich effect in f(R) gravity and nDGP

Over the past couple of decades, great advances have been made in the measurement of the

secondary anisotropies of the CMB caused by the SZ effect, including its thermal component

and even its much smaller kinematic component. The angular power spectrum of the tSZ

effect has been increasingly adopted as a probe of cosmological parameters that influence

the growth of large-scale structures. Also, as observations of the kSZ power spectrum

continue to improve, the latter has been identified as another potentially powerful probe of

cosmology. The next generation of ground-based observatories (Ade et al., 2019; Abazajian

et al., 2016) look set to revolutionise the constraining power of these probes.
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In Chapter 7, we used the shybone simulations to look at the viability of using the

angular power spectra of the tSZ and kSZ effects as large-scale probes of HS f(R) gravity

and nDGP. We generated mock maps of the tSZ and kSZ signals (Sec. 7.2.2), and used

these maps to measure the angular power spectra. Our results (Figs. 7.6 and 7.7) indicate

that the fifth force, present in f(R) gravity and nDGP, and the subgrid baryonic physics

have different effects on the tSZ and kSZ power spectra. The former enhances the power on

all scales probed by our maps (500 . l . 8× 104) by boosting the abundance and peculiar

velocity of large-scale structures (e.g., dark matter haloes and free electrons inside them),

while the latter brings about a suppression on scales l & 3000 for the tSZ effect and on all

tested scales for the kSZ effect. Even with both of these effects present, we find that the

power can be significantly enhanced in f(R) gravity and nDGP: by up to 60% for the tSZ

effect and 35% for the kSZ effect for the F5 and N1 models; and by 5%-10% for F6 and N5,

which correspond to relatively weak modifications of GR.

In addition, we computed the power spectrum of the transverse component of the

electron momentum field (Sec. 7.3.3), which is closely related to the kSZ angular power

spectrum. In particular, we showed (Fig. 7.9) that at angular sizes l ≥ 600 the kSZ signal

is dominantly contributed by k-modes in the transverse-momentum power spectrum which

are in the non-linear regime, and which are affected strongly by MG. The k-modes in the

linear regime may contribute more to smaller l, but at least for f(R) gravity the impact of

MG at those l values will be much less significant due to the finite range of the fifth force,

as we can already see in Fig. 7.6.

We found that the relative difference between the MG models and GR is significantly

affected by the additional baryonic processes that act in the full-physics simulations. Given

that these processes are still relatively less well-constrained, this adds to the uncertainty

in our theoretical predictions of the kSZ angular power spectra on small angular scales,

e.g., l > 600. Therefore, further work should be carried out using a range of full-physics

parameters to precisely identify the scales on which constraints can be reliably made before

the tSZ and kSZ power are used to probe f(R) gravity and nDGP.
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9.1.7 Realistic simulations to study clusters in modified gravity

Running large-box cosmological simulations which simultaneously incorporate screened

modified gravity and full baryonic physics can be computationally expensive, necessitat-

ing the use of lower mass resolutions so that the calculations can involve fewer particles.

However, this means that the gas density field is smoothed, resulting in high-density peaks

being lost and consequently an overall reduction in star formation. This can result in poor

agreement with observations of the stellar and gaseous properties of galaxies.

In Chapter 8, we retuned the IllustrisTNG baryonic model so that it can be used to

run full-physics simulations at a much lower resolution while still retaining a high level of

agreement with galaxy observations. Calibrated using runs with a box size of 68h−1Mpc

and, initially, 2563 gas cells, our model uses updated values for the following parameters

(Sec. 8.2.1): the threshold gas density for star formation, ρ?, is reduced from ≈ 0.1 to 0.08;

the parameter ēw which controls the energy released by the stellar-driven wind feedback is

reduced from 3.6 to 0.5; and the black hole radiative efficiency εr is increased from 0.2 to

0.22. In addition to these changes, we have also increased the gravitational softening to

a factor 1/20 of the mean interparticle separation. By reducing the heating and blowing

out of gas by feedback and two-body interactions, and lowering the threshold density of

star formation, these changes boost the amount of star formation at our lowered resolution,

resulting in good agreement with observations of galaxy properties including the stellar

mass fraction, the stellar mass function, the SFRD and the gas mass fraction (Fig. 8.1).

Using our retuned model, we have run GR and F5 simulations with a box size 301.75

h−1Mpc (Sec. 8.2.2). The predictions of stellar and gaseous properties in both gravity

models show a very good match with galaxy observations, particularly for group- and

cluster-sized masses (Fig. 8.2), which shows that for F5 it is not necessary to further retune

the baryonic parameters. Using these simulations, we have studied, for redshifts 0 ≤ z ≤ 1

and masses 1013M� ≤M500 . 1015M�, the scaling relations between the cluster mass and

four observable mass proxies (Sec. 8.3.1): the SZ Compton Y -parameter YSZ and its X-ray

analogue YX, the mass-weighted gas temperature T̄gas, and the X-ray luminosity LX.

For the YSZ(M) and YX(M) relations, our mapping between the F5 and GR relations,
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which involves dividing the F5 Y -parameter by the ratio of the dynamical mass to the true

mass, is accurate to within ∼ 12% for galaxy groups and just a few percent for galaxy

clusters. This validates our method for accounting for the effect of the fifth force on the

YSZ(M) relation, which is currently used in our f(R) constraint pipeline (Chapter 4). For

the T̄gas(M) relation, the same rescaling is again reasonable, with . 7% accuracy for the

full range of masses. Our rescaling does not work as well for the LX(M) relation, which is

likely due to the greater susceptibility of the X-ray luminosity to feedback processes.

We have also shown (Sec. 8.3.2) that the YX-temperature and LX-temperature scaling

relations can differ in F5 and GR by up to 45%. These relations could potentially be

used for large-scale tests of gravity that do not involve measuring the cluster mass, and

hence not only eliminating one potential source of uncertainty but also including additional

information in the model constraints.

9.2 Outlook and future work

The results in this thesis show that the p2 parameter, defined in Chapter 2, can be very

useful in the description and modelling of complicated effects in f(R) gravity. In addition to

its relatively simple one-parameter definition, it can allow the combining of data generated

by simulations run for different cosmological parameters, as p2 encapsulates the values of

ΩM and ΩΛ. Indeed, the data for the concentration enhancement from arepo and Diamond

F6 shows excellent agreement (see Fig. 3.6), even though these two simulations were run for

different cosmological parameters and using very different codes. It will be interesting to see

where else p2 can be used in f(R) studies. Of particular interest would be to see how it can

simplify the modelling of the HMF. The enhancement of the HMF in f(R) gravity peaks at

a particular halo mass which depends on the strength of the scalar field. A stronger scalar

field allows higher-mass haloes to be unscreened, and therefore results in an enhancement

of the HMF at a higher mass. At the very least, the mass of the peak enhancement of

the HMF can be expected to be strongly correlated to p2. The enhancement of the matter

power spectrum could also be investigated via a similar treatment.

Our f(R) constraint pipeline (Chapter 5) can be improved in a couple of ways. First,
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while the HMF model of Cataneo et al. (2016) is accurate, it only covers the redshift

range [0, 0.5]. An extended model that works for a larger redshift range, as well as for

wider ranges of other cosmological parameters (not restricted to the ΩM and σ8 parameters

as we have focused on here), would be very useful. Calibrating this model for spherical

overdensity ∆ = 500 would also mean that conversions between the halo mass definitions

M500 and M300m would no longer be required. Second, the MCMC pipeline should be

extended so that independent cluster data, such as weak lensing, can be included in the

model constraint. This can improve the precision of the mass calibration and potentially

prevent degeneracies between the MG and scaling relation parameters. Once these tasks

are completed, this pipeline can be used to constrain f(R) gravity using observations. It

is also straightforward to extend our framework to other gravity models; as discussed, we

have already started to do this for the nDGP model.

Applying the pipeline to real survey data will involve additional considerations. For

example, our mock cluster samples were generated assuming a fixed cut in the observable

and a constant fractional measurement uncertainty. Using real survey data will require

more accurate modellings, including a selection function which describes the probability of

a cluster with a given redshift and flux being selected. Therefore, tests should be carried

out using mocks with more realistic selection criteria to confirm that the pipeline can in-

fer stable and reliable constraints. It will be interesting to apply our pipeline to previous

data (for example, the Planck SZ cluster sample), to check whether our detailed model-

lings of the dynamical mass, concentration and thermal gas properties significantly impact

the final constraints. If so, this would indicate that previous constraints inferred using

similar samples may have been subject to biases. Another interesting check will be to in-

fer constraints using both X-ray and SZ selected samples, to check if one can give more

powerful constraints than the other (for example, SZ samples are known to have nearly

redshift-independent selection functions). Our pipeline can then be applied to much larger

catalogues from ongoing surveys, such as the SZ AdvACT cluster survey and the X-ray

eROSITA survey, and as mentioned above it will be helpful to make use of weak lensing

data from additional surveys like DES and Euclid.
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Our models for the enhancements of the dynamical mass and halo concentration in

f(R) gravity are important components of the constraint pipeline. However, these have

only been calibrated using DMO simulations. It would therefore be useful to carefully

verify these results using cluster data from full-physics hydrodynamical simulations run

for f(R) gravity. We have already carried out preliminary checks of the dynamical mass

model for masses M500 . 1014.5M� using the full-physics shybone simulations (Fig. 4.6).

With the baryonic model presented in Chapter 8, which can be used to run much larger

full-physics simulations of screened modified gravity, it will now be possible to carry out

these checks with many more haloes spanning masses 1013M� .M500 . 1015M�.

On a similar note, our baryonic model can also be used to run full-physics simulations

of nDGP for boxes that are much larger than the current 62h−1Mpc runs. These could be

used for a robust study of the observable-mass scaling relations in nDGP up to M500 ∼

1015M�, and they could also be used to check the accuracy of our general models for

the enhancements of the concentration and the HMF (which were calibrated using DMO

simulations) in the presence of full baryonic physics.

Finally, in our study of the tSZ and kSZ angular power spectra in f(R) gravity and

nDGP, we were unable to study larger angular scales (l . 500), again due to the relatively

small box size of the shybone simulations. This can potentially be rectified by using the

larger simulations discussed above. Our results in Chapter 7 indicate that the gravity model

differences are less sensitive to baryonic physics at larger scales. The precise scales at which

the SZ power spectra can be used to reliably probe gravity should be confirmed by using

a combination of full-physics and non-radiative simulations, as well as a range of baryonic

physics parameters. This will also help to better-assess the potential constraining power

from current and upcoming CMB experiments.
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Appendix A

Modelling the dynamical mass of

haloes in f(R) gravity

A.1 Weighted fitting of tanh curve

In Sec. 2.4.2, we discussed and compared, for a few selected cases, two schemes to fit the

Mdyn/Mtrue mass ratio data using a tanh curve. We found that, although the weighted and

unweighted fitting schemes give broadly consistent results, the latter scheme, by assuming

that all data points have the same error, leads to fitted tanh curves that have better

visual agreement with the data points. This is because in some snapshots the data for

the median Mdyn/Mtrue ratio has big disparities in the uncertainties because there are few

high-mass haloes due to box size constraints, or because the ratio data in screened and

unscreened regimes shows too little variation. The estimated median ratio values therein

are not biased because of this, and so we presented our main results (see Sec. 2.5) using the

unweighted scheme. This gives all bins equal weight regardless of the large disparities in the

uncertainty, allowing the fitted curve to more easily go through the data points. However,

one could still argue that the strong variation of median Mdyn/Mtrue ratio uncertainties in

the different mass bins is at least partly physical (e.g., in the completely unscreened regime

there is intrinsically little uncertainty in the ratio). Therefore here we present our results

from using the weighted approach, which show that the choice of method does not have a
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Figure A.1: Dynamical mass to lensing mass ratio as a function of the lensing mass for
F4 (red), F4.5 (orange), F5 (green), F5.5 (magenta), F6 (blue) and F6.5 (grey) at various
redshifts as annotated. The data has been generated using the Crystal (left column),
Jade (middle column) and Diamond (right column) modified ecosmog simulations (see
Table 2.1). The data points, corresponding to mass bins represented by their median ratio
and mean mass, and their one standard deviation error bars are produced using jackknife
resampling. Jackknife errors less than 10−4 are replaced with half of the range between the
16th and 84th percentiles. Solid line: Eq. (2.17) with p1 and p2 determined by weighted
least squares fitting for the given snapshot; Dashed line: Eq. (2.17) with best-fit constant
p1 result (p1 = 2.23) and linear p2 result (Eq. (A.1)) from Figs. A.3 and A.2, respectively.
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Figure A.2: Parameter p2 in Eq. (2.17) plotted as a function of the background scalar
field at redshift z, f̄R(z), divided by (1 + z), for several present day field strengths fR0 (see
legends) of Hu-Sawicki f(R) gravity with n = 1. p2 is measured via a weighted least squares
optimization of Eq. (2.17) to data from modified ecosmog simulations, described by Table
2.1, at simulation snapshots with redshift z < 1. f̄R(z) is calculated for each snapshot
using Eq. (1.15). The trend line has been produced via a weighted least squares linear fit,
using the one standard deviation error bars, of the solid data points, which correspond to
snapshots for which the mass bins contain at least half of the median mass ratio range 1 to
4/3. The hollow data does not meet this criterion, so is deemed unreliable and neglected
from the fit, which is given by Eq. (A.1).

significant effect on the final results, namely on the constant and linear fits of p1 and p2

respectively.

To check the reliability of the weighted fit across all redshifts, field strengths and

simulations, Fig. A.1 has been produced, which is analogous to Fig. 2.3 and covers the

same snapshots. The solid line trends are the weighted fits of the simulation data at the

given snapshots, and in general these show very good agreement with the simulation data.

However the disparities in the sizes of the error bars now have a stronger impact on the

fit and significant deviation from the simulation data is observed for several snapshots,

including the Crystal F4 z = 0.00, the Jade F4.5 snapshots and Diamond F6.5 z = 0.00.

The results for p2, produced through the weighted approach, are shown in Fig. A.2.

231



A.1. Weighted fitting of tanh curve

The lowest redshift snapshots of F4 are now observed to peel off from the linear trend due

to the large disparities in the uncertainties of the mass bin data, as discussed in Sec. 2.4.2

(see Fig. 2.2). The disparity in uncertainty in part results from the limited number of

high-mass haloes which could be screened in F4; such massive haloes are very rare and the

only way to resolve this issue is to have a simulation with a much larger box size. However,

as is shown in Fig. 2.4 in Sec. 2.5, using unweighted least squares to measure p2 has the

effect of smoothing out the F4 data for p2, although this does not reduce the general scatter

in F4. In general the data is more scattered across all models in Fig. A.2 than in Fig. 2.4,

although for F4 there is now a more even scatter, with the data showing better alignment

with the trend line than for the unweighted case.

The criterion for the rejection of the measured p2 values is the same as for the un-

weighted approach, and so the outliers for low-redshift F4 in Fig. A.2 do not affect the

linear fit of this data. As can be seen from Fig. A.2, all of the solid data points, which

meet this criterion, lie along a clear linear trend, while the hollow data points of F5.5 and

F6 are all observed to peel off from this trend in a similar manner to the data in Fig. 2.4.

The result of the linear fit, using the one standard deviation error bars, is:

p2 = (1.496± 0.010) log10

(
|f̄R|
1 + z

)
+ (21.58± 0.05). (A.1)

Agreement of the slope with the theoretical prediction of 1.5 from Eq. (2.19) is excellent.

The best-fit linear parameters of 1.496±0.010 and 21.58±0.05 also show strong agreement

with the linear fit of the unweighted results (see Fig. 2.4), implying that the choice of

whether to use weighted or unweighted least squares fitting of Eq. (2.17) is not of particular

importance as far as p2 is concerned.

The results for p1, measured via weighted least squares, are given in Fig. A.3, which

is plotted on the same axes range as Fig. 2.5. Once again, the same selection criteria is

used as for the unweighted least squares approach, and the hollow data points are left out

of any fitting. The points are now significantly more scattered, and all models now contain

notable outliers which include several of the solid data points.

Taking F6.5 z = 0.00 as an example, we can clearly see from Fig. A.1 that the width

of the mass transition has been under-estimated by the weighted least squares approach,
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Figure A.3: Parameter p1 in Eq. (2.17) plotted as a function of the background scalar
field at redshift z, f̄R(z), divided by (1 + z), for several present day field strengths fR0 (see
legends) of Hu-Sawicki f(R) gravity with n = 1. p1 is measured via a weighted least squares
optimization of Eq. (2.17) to data from modified ecosmog simulations, described by Table
2.1, at simulation snapshots with redshift z < 1. f̄R(z) is calculated for each snapshot
using Eq. (1.15). Weighted least squares linear (solid line) and constant (dashed line) fits,
using the one standard deviation error bars, of the solid data points, which correspond to
snapshots for which the mass bins contain at least half of the median mass ratio range 1 to
4/3, are shown. The hollow data does not meet this criteria, so is deemed unreliable and
neglected from the fits, which are given by Eq. (A.2) and p1 = (2.23± 0.02) respectively.

probably because of the large error bar on one of the data points lying within the transition.

A similar effect applies to the other strongly over-estimated data points in Fig. A.3, and as

discussed above this comes down to limitations in using a weighted least squares fit.

The result of the constant fit, which is motivated by the theoretical prediction of

Eq. (2.18), using the solid data points only, is p1 = (2.23 ± 0.02), which is shown by the

dashed line. This shows excellent agreement with the constant fit to the unweighted data

of Fig. 2.5. Again, a linear model was also fitted, shown by the solid line, and is given by:

p1 = (0.25± 0.03) log10

(
|f̄R|
1 + z

)
+ (3.6± 0.2). (A.2)

The gradient is still not in agreement with the prediction of zero. Accounting for higher

order effects, e.g., environmental screening and the non-sphericity of haloes, may bring
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these results into better agreement with the theoretical predictions; however, since we are

interested in an empirical fitting function that can be of practical use, we prefer a simple

over a sophisticated theoretical model.

As with the unweighted least squares fitting, the validity of these fits of p1 and p2 can

be checked through an examination of Fig. A.1. This time the dashed lines are produced

using Eq. (2.17) along with the linear fit of p2 from Fig. A.2 (solid line) and the constant

fit of p1 from Fig. A.3 (dashed line), which are motivated by theory. Agreement is now

not quite as strong between the dashed and solid lines as in Fig. 2.3, though still very

good for most snapshots shown. Disagreement with the simulation data still exists for F4,

which partly results from the lack of high-mass haloes and the flatness of the data in the

unscreened regime, as for the unweighted approach. However, in Fig. A.1, disparities in

F4 also result from the limitations in the weighted least squares fit in finding agreement

with mass bins of large error, and this affects other models as well. Examples include the

Jade F4.5 snapshots, Jade F5.5 z = 1.00 and Diamond F6.5 z = 0.00. In these panels the

theoretical dashed line fits actually show better agreement with the simulation data than

the solid lines, as they depend on fits from all snapshots and are therefore effectively not

error bar dependent. On the whole, the dashed lines show excellent agreement with the

simulation data, providing further validation of the analytical model given by Eqs. (2.17),

(2.18) and (2.19), even if agreement is not quite as strong as for the unweighted approach.

A.2 Consistency tests

As was explained in the main text, the issue of an insufficient mass range is resolved

through the use of three simulations with varying resolutions, whereas the use of silver data

ensures an extended set of present-day scalar field values from |fR0| = 10−4 right down to

|fR0| = 10−6.5. This allows the theoretical model to be rigorously tested for all present-day

field strengths in this range, not just for F4, F5 and F6, for which full simulation data are

available.

The validity of using silver data was tested by generating F5 silver data from the

Crystal simulation ΛCDM data, to be directly compared with the F5 gold data from the
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Figure A.4: Parameter p2 in Eq. (2.17) plotted as a function of the background scalar field
at redshift z, f̄R(z), divided by (1 + z), for Hu-Sawicki f(R) gravity with n = 1. p2 is
measured via an unweighted least squares optimization of Eq. (2.17) to data from modified
ecosmog simulations, described by Table 2.1, at simulation snapshots with redshift z < 1.
The one standard deviation error bars are included. Left to right: comparison of gold and
silver data from the Crystal simulation with present day scalar field value |fR0| = 10−5;
comparison of the Crystal and Jade data with |fR0| = 10−4.5; comparison of the Jade and
Diamond data with 10−5.5. The legend in the right plot applies to both the middle and
right plots.

same simulation. A comparison of the values of the Eq. (2.17) parameter p2 is shown in

the left panel of Fig. A.4, where the percentage error is measured at around 0.1% for the

unweighted approach. This is clearly low enough so that the use of silver data is justified.

Physically, this makes sense, because major differences between a full f(R) simulation (used

to generate gold data) and its ΛCDM counterpart (used to generate silver data) include the

halo density profile and halo mass, but the difference is generally small enough to not have

a strong impact on the scalar field profile. The averaging of the halo mass distribution in

the top-hat approximation is shown to be a very good approximation, and further makes

the differences in the halo density profiles irrelevant from the point of view of thin-shell

modelling.

When combining simulations of different resolutions, the dispersion between these

simulations can also lead to a significant systematic source of uncertainty. This can be

tested by looking at a few model parameters fR0 for which the mass range necessary to fit

p1 and p2 as a function of f̄R(z)/(1 + z) for 0 ≤ z ≤ 1 is offered by simulations of different

resolutions. In the middle panel of Fig. A.4 the Crystal and Jade simulations are compared
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for F4.5, and found to agree to within an accuracy of 0.3%. A similar test on the Jade and

Diamond simulations for F5.5 yielded an error of 0.4-0.8% (right panel of Fig. A.4). These

agreements are good enough that the disparity between the results of the simulations is

negligible and combination of different simulations is justified. Note that these two checks

are also done using the unweighted least squares approach.

A limitation of the current study is that we do not have simulations that allow us to

test the fitting functions of p1 and p2 for other cosmological parameters, such as ΩM and σ8,

as these are fixed in the original simulations and cannot be changed for producing the silver

data. While this is something that would be good to explicitly check in future work, we

believe that the excellent agreement between the physically motivated thin-shell modelling

and the simulation data, in spite of the approximations employed, has indicated that the

theoretical model has successfully captured the essential physics. Therefore we expect the

fitting functions we found in this paper to apply to other values of ΩM and σ8 as well. For

example, in the paragraph below Eqs. (2.18, 2.19) we have discussed that, according to

the thin-shell model, p1 and p2 should depend only on Newton’s constant G and the halo

mass definition ∆ (with H0 = 100h kms−1Mpc−1), and in particular they do not depend

on cosmological parameters such as Ωm and σ8. Note that varying ΩM and σ8 will modify

the halo abundances and density profiles, and in the check of silver vs. gold data above

we have already confirmed that slight changes to these quantities do not affect our fitting

functions noticeably.

Another check that is not included in this study is whether the fitting functions work

for forms of f(R) other than Hu-Sawicki as well. While a detailed investigation of this is

of interest, we do not find a compelling justification to make substantial effort to include it

here, for two reasons. First, as for the case of varying ΩM and σ8, the effects on the modelling

of Mdyn/Mtrue through a modified halo abundance and density profile are expected to be

small/negligible. Second, the different f(R) models generally have a different transition

from screened to unscreened regimes, though the details of this transition depends on the

model itself and its parameters. This indicates that, even though the slope of p2, which

is 1.5, is expected to remain for general f(R) models, the intercept of p2 could be model
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A.2. Consistency tests

dependent. For p1, which denotes how the transition from screened to unscreened regimes

takes place, the discussion after Eqs. (2.18, 2.19) implies it does not depend on the details

of f(R), though more explicit checks using simulations are necessary to confirm this or to

calibrate its (probably constant) value for general f(R) models. As mentioned above, it is

not feasible to do simulations for all possible models. And nor is this necessary, given that

any f(R) model studied in a cosmological context is phenomenological and not fundamental,

and the focus should really be how to get precise stringent constraints on a representative

example, which can then be interpreted in the context of general cases.
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Appendix B

A self-consistent pipeline for unbiased

constraints of f(R) gravity

B.1 Modelling the dynamical mass scatter

In Fig. 5.1, the data points show the binned mass ratio scatter as a function of the rescaled

logarithmic mass, log10(M500M
−1
� h) − p2 = log10(M500/10p2). To generate this, we have

evaluated the difference between the actual dynamical mass enhancement and the value

predicted by Eq. (5.1) for each halo, and measured the root-mean-square difference within

the same mass bins as used to fit Eq. (5.1) in Chapter 2. We have modelled this data using

a 6-parameter fitting formula which is made up of two parts. A skewed normal distribution

is used to capture the shape of the peak: this includes parameters for the normalisation

λs, the position µs and width σs with respect to the x = log10(M500/10p2) axis, and a

parameter α quantifying the skewness. On its own, this distribution would fall to zero at

both low and high x; however, we see from Fig. 5.1 that the scatter is slightly greater on

average at high x than at low x. To account for this, we add on a tanh function with two

parameters: an amplitude λt and a shift yt along the vertical axis. Our full model is then

given by:

σR = λs
σs
φ(x′)

[
1 + erf

(
αx′√

2

)]
+ (λt tanh(x) + yt) , (B.1)
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B.2. Mass conversions

where x′ = (x− µs)/σs. φ(x′) represents the normal distribution:

φ(x′) = 1√
2π

exp
(
−x
′2

2

)
, (B.2)

and erf(x′) is the error function:

erf(x′) = 2√
π

∫ x′

0
e−t

2dt. (B.3)

Since we have many more data points at higher masses than at lower masses in Fig. 5.1,

we have used a weighted least squares approach which ensures that different parts of the

log10(M500/10p2) range have an equal contribution to the fitting of Eq. (B.1). To do this,

we have split the rescaled mass range into 10 equal-width bins and counted the number,

Ni, of data points within each bin i. In the least squares fitting, each data point is then

weighted by 1/Ni. This means that points found at lower masses, where there are fewer data

points, are each given a greater weight than points found at higher masses. The resulting

best-fit parameter values are: λs = 0.0532 ± 0.0008, σs = 0.58 ± 0.03, µs = −0.35 ± 0.03,

α = 1.09± 0.18, λt = 0.0012± 0.0003 and yt = 0.0019± 0.0002.

B.2 Mass conversions

The following formula can be used to convert the HMF from mass definition M∆ to a new

definition M∆′ :

n′(M∆′) = n(M∆(M∆′))
(d lnM∆′

d lnM∆

)−1
, (B.4)

where n′ is the HMF in the new mass definition and n is the HMF in the old definition.

This requires a relation between the mass definitions. For this, we use the following (Hu

and Kravtsov, 2003):
M∆
M200

= ∆
200

(
c∆
c200

)3
, (B.5)

where c∆ is the concentration with respect to generic overdensity ∆. The latter can be

computed from c200 using:

1
c∆

= x

[
f∆ = ∆

200f
( 1
c200

)]
, (B.6)
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where the function f(x) is given by:

f(x) = x3
[
ln(1 + x−1)− (1 + x)−1

]
. (B.7)

Eq. (B.6) is computed using the inverse of this function. Hu and Kravtsov (2003) provide

an analytical formula which can accurately solve this:

x(f) =
[
a1f

2p +
(3

4

)2
]− 1

2

+ 2f, (B.8)

where p = a2+a3 ln f+a4(ln f)2 and the parameters have values a1 = 0.5116, a2 = −0.4283,

a3 = −3.13× 10−3 and a4 = −3.52× 10−5. The authors state that this formula has ∼ 0.3%

accuracy for galaxy and cluster scales.

B.3 Test of the constraint pipeline on a stronger f(R) model

For the main results of Chapter 5, we have tested our constraint pipeline using GR and F5

mocks. For the F5 mock (cf. Fig. 5.6), our pipeline produces a marginalised distribution of

log10 |fR0| which peaks close to −5, but features a long tail extending to −7, which is the

lowest value of log10 |fR0| considered in this work. As discussed in Sec. 5.4.2, this can be

explained by parameter degeneracies, which can make it more difficult to fully distinguish

this model from GR.

To check whether our pipeline can successfully distinguish stronger f(R) models than

F5, and whether such models suffer from the same degeneracies, we show, in Fig. B.1,

constraints obtained using an F4.5 (log10 |fR0| = −4.5) mock along with the F5 results from

Fig. 5.6. The F4.5 constraint features smaller contours and a tight peak at log10 |fR0| ≈ −4.5

which does not feature long tails towards lower or higher values of log10 |fR0|. The median

and 68% range is given by −4.47+0.06
−0.07, which is in excellent agreement with the fiducial

value of −4.50. This indicates that our pipeline can clearly distinguish different values of

|fR0| and it provides further evidence that it can distinguish f(R) models from GR in an

unbiased manner.
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Figure B.1: Parameter constraints obtained by applying our full f(R) pipeline, as detailed
in Sec. 5.3, to F4.5 (red) and F5 (blue) mocks, with observational flux threshold Ycut = 1.5×
10−5Mpc2. The dark and light regions of the contours represent 68% and 95% confidences,
respectively. The marginalised distributions of the sampled parameter values are shown
in the top panels of each column. The fiducial cosmological parameter values of the F4.5
mock are indicated by the green lines.
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Appendix C

Cluster and halo properties in DGP

gravity

C.1 Simulation consistency

In Secs. 6.3.2 and 6.3.3, we combined the halo data from our DMO simulations in order

to study the effects of nDGP on the halo concentration and the HMF over a wide mass

range. In doing this, it is important to verify that the data from the simulations, which

have different resolutions, are consistent. We therefore show, in Figs. C.1 and C.2, the

concentration and HMF data, respectively, from each of our DMO simulations for GR and

N1.

In Fig. C.1, we show the binned concentration from all four of our DMO simulations,

including L1000 which was excluded from our results in Sec. 6.3.2. At redshift 0, where

the simulations all have sufficient resolution, the concentration follows a smooth power-law

relation as a function of the mass, with the simulations showing excellent agreement at

overlapping masses for both GR and N1. The agreement is not as strong at redshifts 1 and

2, where we see, for example, gaps between the L200 (blue) and L500 (green) concentrations.

The concentration is slightly underestimated for haloes that are not well-resolved, affecting

the data at the low-mass end (close to the lower mass cut of 2000 particles) of the L500

and L1000 data at z = 1 and the L200 and L500 data at z = 2.
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Figure C.1: Median halo concentration (top row) and relative difference with respect to GR
(bottom row) as a function of the mean logarithm of the halo mass at redshifts 0, 1 and 2.
The data is generated using the dark-matter-only simulations L62 (orange), L200 (blue),
L500 (green) and L1000 (red), the specifications of which are given in Table 2.1. Data is
shown for GR (dashed lines) and the nDGP model N1 (solid lines). The shaded regions in
the lower panels show the 1σ uncertainty in the relative difference.

These resolution issues are potentially problematic for studies of the absolute concen-

tration; however, in this work, we are more interested in the relative difference between the

nDGP and GR concentration. From the lower panels of Fig. C.1, it appears that the L62,

L200 and L500 simulations give consistent predictions of the relative difference at overlap-

ping masses for each redshift shown. This justifies using a halo mass cut of 2000 particles

to study and model the relative difference in Sec. 6.3.2. This cut ensures that there are

plenty of haloes at overlapping masses, which is important for the combined binning of the

halo data, while it does not give rise to inconsistencies in the relative difference for these

three simulations. We decided to exclude the L1000 simulation for a couple of reasons: the

concentration suppression does not appear to be fully consistent with the data from the

higher-resolution simulations – for example, at z = 0, the suppression in L1000 appears to

be lower than the predictions from L500 at low masses and greater at high masses – and at
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Figure C.2: Halo mass function (top row) and its relative difference in nDGP with respect
to GR (bottom row), as a function of the mean logarithm of the halo mass at redshifts 0,
1 and 2. The data is generated using the dark-matter-only simulations L62 (orange), L200
(blue), L500 (green) and L1000 (red), the specifications of which are given in Table 2.1.
Data is shown for GR (dashed lines) and the nDGP model N1 (solid lines).

higher redshifts it does not have many resolved haloes.

In Fig. C.2, we show the binned HMF from DMO simulations. The predictions of the

absolute HMF, shown in the top row, agree very well. The HMF is slightly underestimated

at the high-mass end of each simulation: this is a natural consequence of the limited box

sizes, which causes the high-mass HMF to be incomplete. We note that combining the

halo data of the four simulations and summing the total volume in the way that we have

described in Sec. 6.3.3 means that incompleteness is only really present for the highest-mass

bins shown in Fig. 6.11. The lower panels of Fig. C.2 show the relative differences between

GR and N1. The predictions from the four simulations show excellent agreement, again

indicating that these simulations can be safely combined.
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Figure C.3: Halo mass function (top row) and its relative difference in nDGP with respect
to GR (bottom row), as a function of the mean logarithm of the halo mass at redshifts 0,
1 and 2. The results shown are similar to Fig. 6.11; however, here we use mass definition
M200 instead of M500, and the dashed lines show the predictions from the model given by
Eqs. (6.4, C.1).

C.2 M200 mass function

In Sec. 6.3.3, we presented our results and model for the nDGP HMF in terms of the M500

mass definition. For completeness, we also show, in Fig. C.3, the HMF in terms of the

M200 mass definition. This has again been calculated by combining the haloes from all four

DMO simulations, although here we impose a lower mass threshold of 100 particles within

the radius R200 rather than R500. We use the same set of logarithmic mass bins (with fixed

width 0.2) and again show all bins that contain at least 100 haloes.

The results in Fig. C.3 are very similar to Fig. 6.11, with the nDGP fifth force sup-

pressing the HMF at lower masses and enhancing the HMF at higher masses. Therefore,

we are able to use the same fitting formula to model the relative difference. ReplacingM500
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C.2. M200 mass function

with M200 in Eq. (6.4), the best-fit parameter are now:

A(H0rc) = (0.59± 0.03)(H0rc)−1,

B(z) = (15.22± 0.03)− (0.441± 0.006)z,

C(z) = (0.919± 0.005) + (0.037± 0.003)z.

(C.1)

The predictions of this model are also in very good agreement with the simulation meas-

urement. As in the case of M500, we note that this model should only be used to predict

the HMF within the mass range 1011h−1M� . M200 . Mmax(z), where Mmax(z) is the

maximum mass used for the calibration. For definition M200, this can be estimated using:

log10
(
MmaxM

−1
� h

)
= 14.93− 0.52z. (C.2)
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Appendix D

Realistic galaxy formation simulations

to study clusters in modified gravity

In Chapter 8, we presented our new baryonic model for low-resolution, full-physics cosmolo-

gical simulations. In particular, we focused on the changes that we made to the IllustrisTNG

model and described only a small subset of the ∼ 200 calibration runs. In this appendix, we

will provide a more detailed description of the calibration procedure, including an outline

of our simulations and details of the parameter search.

Table D.1 shows the specifications of the simulations used to tune the baryonic model.

The primary goal of the tuning was to find a model that can produce sufficient star formation

in low-resolution simulations to match galaxy observations. We studied in detail simulations

with three different mass resolutions before settling on the resolution of the L68-N256

simulations, which have already been mentioned in Chapter 8.

D.1 L100-N256 simulations

To start with, we used simulations with a box size of 100h−1Mpc, containing 2563 dark

matter particles and (initially) the same number of gas cells (L100-N256). With an average

gas cell mass of ∼ 8.3 × 108h−1M�, these have 512 times lower mass resolution than

the simulations used to calibrate the fiducial TNG model and the same resolution as the

BAHAMAS simulations (McCarthy et al., 2017), which were run using gadget-3 (Springel,
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D.2. L86-N256 simulations

Specifications Simulations
L100-N256 L86-N256 L68-N256 L136-N512

box size / h−1Mpc 100 86 68 136
DM particle number 2563 2563 2563 5123

mDM / h−1M� 4.29× 109 2.73× 109 1.35× 109 1.35× 109

mgas / h−1M� 8.3× 108 5.3× 108 2.6× 108 2.6× 108

number of runs ∼ 100 ∼ 60 ∼ 50 3

Table D.1: Specifications of the arepo simulations that have been used to tune our baryonic
model. These are labelled L100-N256, L86-N256, L68-N256 and L136-N512, according to
their box size and dark matter particle number (we note that there are initially the same
number of gas cells as dark matter particles). The simulations have all been run with
standard gravity (GR).

2005) rather than arepo. We ran ∼ 100 simulations at this resolution, varying the following

baryonic parameters: the threshold gas density for star formation ρ? (see Sec. 8.2.1.3) was

varied in the range [0.00, 0.13] cm−3; the parameter ēw controlling the stellar wind energy

(see Eq. (8.1)) was varied in the range [0.0, 3.6]; the parameters κw and vw,min controlling

the stellar wind speed (see Eq. (8.2)) were varied over ranges [0.0, 29.6] and [0, 500] kms−1,

respectively; and the black hole radiative efficiency εr (see Sec. 8.2.1.4) was varied in the

range [0.02,0.20]. We also tested gravitational softening lengths in the range 1/40 to 1/10

times the mean inter-particle separation.

These runs provided a very useful insight into the effects of changing each parameter,

however all of the tested parameter combinations at the L100-N256 resolution resulted in

insufficient star formation within haloes of massM200 . 1013M�, and at higher halo masses

it was difficult to simultaneously match observations for different galaxy properties. For

example, parameter combinations which yielded a sufficiently high stellar mass function

typically resulted in the stellar mass fraction being overestimated, and in order to match

the SFRD observations it was necessary to set either ρ? or the stellar wind energy close to

zero. We therefore decided to look at higher resolutions.

D.2 L86-N256 simulations

Keeping the dark matter particle number (and initial gas cell number) unchanged, we

initially reduced the box size to 86h−1Mpc (L86-N256), and executed ∼ 60 runs at this
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D.3. L68-N256 and L136-N512 simulations

higher resolution. Our best model used a gravitational softening length of 1/20 times the

mean inter-particle separation and the following parameter combination: ρ? = 0.05cm−3,

ēw = 0.5, κw = 2, vw,min = 200 kms−1 and εr = 0.15. This gave a reasonable match with

high-mass observations of the stellar mass fraction (M200 & 2 × 1012h−1M�) and stellar

mass function (M? & 1011h−1M�), however the agreement was still poor at lower masses

and the SFRD was significantly underestimated for redshifts z & 2. We made some efforts

to rectify this. For example, we switched off feedback entirely by setting the wind energy

to zero and preventing the formation of black hole particles, and we tried using much lower

values of ρ?. While these efforts resulted in more star formation at lower masses, it was still

not enough to match observational data, while at higher masses and lower redshifts there

was far too much star formation.

D.3 L68-N256 and L136-N512 simulations

We finally settled on the 68h−1Mpc (L68-N256) box size, where we ran a further ∼ 50 runs

to calibrate the final model presented in Chapter 8. Our final model, with ρ? = 0.08cm−3,

ēw = 0.5, εr = 0.22 and a softening length of 1/20 times the mean inter-particle separation,

is able to produce sufficient star formation at lower masses and higher redshifts than the

above L86-N256 model, and only requires changes to three of the TNG model parameters

(we take the TNG values for κw and vw,min). The predictions from five of the L68-N256

runs are shown in Fig. 8.1 to illustrate the effects of each of the changes to the fiducial

TNG parameter values.

In order to assess the effects of sample variance, we also ran three simulations with

an increased box size of 136h−1Mpc (L136-N512) and the same mass resolution as the

L68-N256 runs. The results from these simulations, which were run using our three most

promising baryonic models, indicated that the stellar mass fraction and stellar mass function

are slightly reduced in the larger box. This is why we selected the above model, even though

it slightly overestimates the stellar mass function in Fig. 8.1.
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