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Abstract: Imaging diagnostic techniques are desirable for fusion plasma experiments
for their wide coverage and high spatial resolution, which allows for a more complete
comparison with the predictions made by plasma physics models than traditional
techniques. Benchmarking models against measurements made on current experiments
improves our understanding of the physics and reduces the uncertainties involved with
designing future experiments and reactors.

This thesis presents new techniques for coherence imaging (CI), an interferometric
narrowband spectral imaging technique used to measure the brightness, shift and
width of spectral lines emitted by the plasma in the visible range. From these
measurements, 2-D maps of emitting species flow velocity, and temperature can be
inferred via Doppler shifts and broadening respectively. For passive hydrogen Balmer
series emission in the tokamak divertor, Stark broadening is strong enough to provide
a 2-D map of electron density ne.

First, we introduce novel CI instrument designs based on pixelated phase-mask
(PPM) interferometry, which improve spatial resolution and robustness over typical
linear carrier designs. Secondly, we introduce a new method for absolute calibration
of CI flow velocity measurements using emission lines from standard gas-discharge
lamps instead of a tuneable laser. This method significantly reduces hardware costs
while maintaining high measurement accuracy — ±1 km/s compared to typical ion
flows in the tokamak plasma edge of . 30 km/s. Lastly, we present improved methods
for CI measurement of ne, using modern lineshape models to improve accuracy and
using a multi-delay PPM-CI instrument design to minimise errors caused by Doppler
broadening, extending the valid measurement range to lower ne. This is demonstrated
with experimental measurements of Hγ and Hδ emission on the Magnum-PSI linear
plasma experiment with a direct comparison to Thomson scattering measurements.
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Chapter 1

Introduction

Research into controlled nuclear fusion is motivated by its potential as a clean, safe
and economic power source[1, 2]. Fuel supplies are expected to be abundant, capable
of supporting us for (at least) thousands of years at current levels of global energy
consumption[3, 4]. Fusion power would also sidestep many of the disadvantages of
fission power, with no high-level radioactive waste, no risk of runaway chain reactions
and no risk of nuclear proliferation. However, despite seven decades of research, there
are still significant physics and engineering problems to be solved.

In a nuclear fusion reaction, two or more light nuclei combine to form a heavier
one. For a reaction to be a viable candidate for controlled fusion, it must meet three
conditions. First, the reaction must be exothermic, so the product must be lighter
than 56Fe. Secondly, it must occur between two reactants since the reaction cross-
section σ becomes vanishingly small for three-body reactions. Thirdly, the reactants
must be of low atomic number Z since σ is sensitive to the Coulomb barrier which
scales with Z2. The fusion of the hydrogen isotopes deuterium (D) and tritium (T)
releases a neutron and an alpha particle, with 17.6MeV of energy shared between
them1:

2
1D +3

1 T→4
2 He (3.5 MeV) +1

0 n (14.1 MeV). (1.0.1)

This is roughly a million times greater than the energy released in a chemical reaction.
Since D-T fusion has the highest σ at the lowest reactant particle energies, it will likely
be the fuel for at least the first generation of fusion power plants and is therefore
the focus of most current research[5]. However, the collision of D and T nuclei
almost always results in scattering rather than fusion[6]. Maximising the number
of fusion reactions means maximising the average number of collisions each particle

1The electronvolt (eV) is defined as 1 eV= 1.602×10−19 J, the kinetic energy gained by an electron
after being accelerated through a 1Volt potential. In plasma physics this is typically used as a unit
of temperature too, the Boltzmann constant relating average particle kinetic energy to temperature
such that 1 eV≈ 11600K.
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makes before escaping the system, precluding a simple beam-into-target approach.
The typical approach then is to confine a thermal fuel mixture at a high enough
temperature, and for long enough, that a significant number of particles overcome the
Coulomb barrier and fuse on collision. It turns out that the temperatures required
are ∼ 10 keV, ten times hotter than the centre of the Sun and easily hot enough to
fully ionise the D-T fuel, creating a plasma. A further complication is that, while D is
stable and occurs naturally, T is β-unstable (t1/2 ≈ 12 years) and is therefore scarce.
It is hoped that T will be ‘bred’ within the walls of future fusion reactors via neutron
bombardment of lithium, but this technology is the subject of current research[7].

A plasma is said to have reached ignition when the energy released by fusion
reactions can maintain the high temperatures necessary i.e. no external heating is
required. Though not strictly necessary for a fusion reactor, ignition is a useful concept
and helps formulate a key figure of merit for a reactor: the fusion triple product. It
can be shown that for a plasma to ignite, the number density n, temperature T and
energy confinement time τE must satisfy the ‘fusion triple product’[5]:

nTτE > 5× 1021 m−3 keV s. (1.0.2)

Here, τE is the characteristic timescale for energy leaving the plasma. Another metric
used in fusion research, for non-ignited plasmas, is the fusion gain: the ratio of power
produced in the plasma to heating power supplied by external sources Q ≡ Pfus

Pheat
.

Different schemes exist for plasma confinement (see e.g. inertial confinement[8]) but
the subject of this work, and the most successful by both metrics just defined, is
magnetic confinement fusion (MCF).

1.1 Magnetic Confinement Fusion and the
Tokamak

The Lorentz force causes charged particles to move in circular ‘Larmor’ orbits around
a magnetic (B-) field line, in a direction determined by the sign of the electric charge.
In a uniform B-field, the velocities parallel to the field are unaffected and so a particle
traces out a helical path along the field line. MCF uses this constraint on charged
particle motion to confine the plasma in the direction perpendicular to the field lines.
Electromagnets are arranged so as to produce a B-field geometry which minimises
contact between plasma and solid surfaces, which would rapidly cool the plasma.
Since the fusion neutrons are not subject to the Lorentz force, they fly out in all
directions, depositing their energy in the surrounding walls. In a reactor, this heat
will be used to drive a steam turbine and generate electricity. In MCF, toroidal
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Figure 1.1: Toroidal (blue) and poloidal (red) directions on a torus. The distance
from the centre of the hole to the centre of the tube is the major radius Rmaj, while the
radius of the tube is the minor radius Rmin. Figure created by Dave Burke, licensed
under CC BY 2.5.

B-field geometries provide particularly good confinement since the field lines circle
back on themselves — there are no ends for the plasma to spill out of. See Figure
1.1 and caption for definitions of the toroidal and poloidal directions on a torus, and
major and minor radii Rmaj and Rmin. Although a purely toroidal field geometry is
‘closed’, there are still mechanisms for confinement loss. The radial inhomogeneity of
the B-field, decreasing with distance from the torus’ central axis, results in a particle
drift directed radially outwards across the field lines[5]. A poloidal B-field component
can be used to stop this leading to a loss of confinement by creating field lines that
trace out a helix around the torus, averaging out the drift experienced by a particle
to zero.

In a tokamak, shown in Figure 1.2, this poloidal B-field component is created
via Ampere’s law by passing an electric current through the plasma in the toroidal
direction, of order 1MA. In today’s experiments, this current is at least partially
induced by transformer action, where the primary coil is formed by a solenoid through
the torus hole and the secondary coil is the plasma itself. Since plasma has a finite
resistance, Ohmic heating of the plasma is a useful side-product2. To maintain this
induced plasma current, the current in the central solenoid must be continuously
ramped, which cannot be done indefinitely. Since pulsed operation of a fusion reactor
would be economically undesirable and would also thermally fatigue components,
achieving non-inductive current drive in tokamaks is an important research goal.
Important methods for this are neutral beam injection (NBI), in which high energy
neutral D atoms are fired into the plasma, and electron and ion cyclotron resonant
heating (ECRH and ICRH respectively), in which radio waves / microwaves that
resonate with the harmonic frequencies of the particle Larmor orbits are fired into
the plasma. Both NBI and ECRH/ICRH are also used for plasma heating[5].

Power escapes a tokamak plasma by several routes. Turbulence and collisions

2Although the resistivity of the plasma falls as the electron temperature rises, varying as T−3/2
e [3].

http://www.creativecommons.org/licenses/by/2.5/
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Figure 1.2: A schematic showing the toroidal (blue) and poloidal (green) magnetic
field components of a tokamak. The resultant field lines (black) follow a closed helical
path on the surface of a torus. Figure courtesy of the EFDA-JET figure database.

between particles ensure that confinement perpendicular to the B-field is not perfect.
Particles will eventually be knocked from closed field lines to an outer region of open
field lines called the scrape-off layer (SOL). They stream along the SOL until they
collide with the surrounding walls. The resulting energy loss is undesirable but the
particle loss is necessary to prevent build up of the He fusion reaction product. Radi-
ation is another important mechanism for power loss. An important contribution is
bound-bound electron transitions between energy states in atoms, ions and molecules,
which emit coherent line radiation. Another is deceleration of charged particles on
collision, which emits continuum radiation3. Particle bombardment of the plasma
facing components (PFCs) also sputters foreign atoms into the plasma. Any ions
or neutrals in the plasma other than the fusion fuel and products are classed as
impurities. The heaviest impurities retain some of their bound electrons, even in a
10 keV plasma core, and so can lose a large amount of energy via line radiation. It
follows that the requirements for core plasma purity in a fusion reactor are very high,
e.g. a tungsten concentration in the core as low as 10−3 is enough to make reaching
ignition impossible[9].

The tokamak is a Russian design that was demonstrated in the late 1960s to
have achieved Te ≈ 1 keV, an order of magnitude higher than its contemporaries

3Known as Bremsstrahlung (German for ‘braking radiation’).



1.1. Magnetic Confinement Fusion and the Tokamak 5

(a) L-Mode (b) H-Mode (c) ELM

1 m

Figure 1.3: Camera images of visible light emitted from a MAST plasma operating
in (a) L-mode, (b) H-mode and (c) during an ELM. Figure courtesy of Scott Silburn.

in the west. In the decades that followed, most MCF research switched its focus
to tokamaks and substantial progress was made in both theoretical understanding
and experimental performance. Study of plasma Magnetohydrodynamics (MHD) was
used successfully to predict instabilities, which can lead to loss of confinement and
therefore set limits on the available operating space: e.g. the kink limit on plasma
current density and the Troyon limit on plasma pressure[3]. Another important
development was the discovery in the 1980s of a high confinement operation mode
(‘H-mode’): with enough heating power, turbulence in the plasma edge is suppressed
(visible in Figure 1.3), leading to a doubling of τE[10]. H-mode is not yet fully
understood and is prone to periodic bursts of energy directed outwards into the PFCs
(called edge-localised modes (ELMs)) which will need to be either suppressed or
mitigated to avoid damage in a reactor. The current record for tokamak performance
is held by the Joint European Torus (JET), in Oxfordshire, UK. JET is the largest
of the current generation of tokamaks (Rmaj = 3m, Rmin = 1m) and, unlike most
experiments, it is licensed to handle radioactive T and so can produce D-T plasmas
(most experiments use only H or D). In 1997, JET produced a record-breaking
Pfus = 16.1MW with Pheat = 25.4MW (Q = 0.62), sustained for 1 s[11]. A significant
next step in MCF research is the enormous multi-national project ITER, an even larger
tokamak (Rmaj = 6.2m, Rmin = 2m) currently under construction in Cadarache,
France. When D-T experiments begin in 2035, ITER aims to produce Pfus = 500MW
with Pheat = 50MW (Q = 10), sustained for 400 s — demonstrating the physical
feasibility of a tokamak fusion reactor[12]. However, ITER is not designed to produce
electrical power. It is hoped that the demonstration of electrical power production
will come mid-century with a device called DEMO — whose exact design remains an
open question.

For JET and ITER (‘conventional’ tokamaks), the torus aspect ratio A ≡ Rmaj
Rmin
∼ 3.

It was theorised in the 1980s and then demonstrated in the 1990s that reducing A by a
factor 2 offers distinct operational advantages, reducing the two MHD limits mentioned
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in the previous section, permitting a higher plasma pressure[13]. The plasma volume
of these ‘spherical’ tokamaks (STs) better resembles a cored apple than a doughnut, as
can be seen in Figure 1.3 which shows the mega-ampere spherical tokamak (MAST)
in Oxfordshire, UK. The ST geometry also permits smaller distance between toroidal
coils and the plasma, reducing the power needed to achieve an equivalent B-field in
the plasma.

Although the tokamak is currently the most popular and successful MCF concept,
there are alternatives being researched. The stellarator is a promising toroidal design
whose poloidal field is produced by a complicated coil arrangement instead of current
in the plasma, allowing it to operate in a steady state. Many excellent technical[3,
5] and non-technical/historical[14, 15] accounts of MCF research can be found in the
literature.

1.2 The Heat Exhaust Problem

In modern tokamaks, the divertor controls the interaction between the plasma and
material surfaces. Its job is to optimise confinement by screening the plasma core
from impurities released from the surfaces, and to prevent impurities building up by
continuously pumping them away. This is done by introducing a magnetic X-point at
the plasma edge, diverting the field lines away from the core and into two toroidally
extended target plates (see Figure 1.4). During operation, these targets can receive
extremely high heat fluxes, which must not exceed a limit of ∼ 10MW·m−2 set
by material erosion[16]. Staying below this power load limit in the divertor whilst
producing reactor-relevant levels of steady-state fusion power (∼GW) in the core is
an unsolved problem in fusion research known as the heat exhaust problem[17].

It is likely that at least part of the solution to the heat exhaust problem is to
‘detach’ the divertor plasma from the target plates using a blanket of low temperature
neutral particles[18]. Power is then lost in this region via ionisation of and volumetric
emission from hydrogen and impurities, reducing the heat flux to the targets. The low
target plasma temperature (< 5 eV) and particle flux that characterises detachment
also reduces material erosion from physical and chemical sputtering. For ITER,
the upper limit on target power load means that 60–70% of the power entering the
divertor must be exhausted as radiation in this way[19, 20]. Current tokamaks are
investigating the physics of detachment so as to optimise and control the process[21–
24]. Tokamaks can reach detachment by increasing the density at the plasma edge,
by intense impurity seeding or by increased divertor baffling. However, there is
a trade-off since if the low temperature region moves too close to the X-point, it



1.2. The Heat Exhaust Problem 7

Figure 1.4: A poloidal cross-section showing the magnetic field line geometry of
a tokamak with a divertor at its base. Figure courtesy of the EFDA-JET figure
database.

can begin to degrade core confinement, and can lead to complete radiative collapse
of the plasma. Looking further ahead, the EU roadmap plans for a DEMO reactor
producing ∼ 500MW of electrical power[17], making the power handling requirements
in the divertor even more demanding[25], and it is likely that a controlled seeding of
impurities into the main chamber will be required to radiate power from the upstream
scrape-off layer (SOL) and further reduce the divertor heat flux[26].

Another way to reduce the heat exhaust is to optimise the magnetic geometry of
the divertor. For example, the angle between ITER’s outer divertor target plate and
the incident magnetic field lines is minimised (∼ 3.5°) so as to spread the heat load
over a larger ‘wetted area’[27]. This can give up to a factor ∼ 50 reduction in the
target heat flux[28]. Further geometry optimisation is being investigated in current
experiments to guide DEMO design[17]. This includes the the ‘Snowflake’ divertor,
which introduces a second order magnetic null to increase the number of divertor
legs, spreading the power load over a larger area. Another advanced design is the
‘Super-X’, which increases magnetic flux expansion and divertor leg length. MAST
Upgrade (MAST-U) will experimentally test the predicted benefits of these designs
at comparatively low powers when it begins operation in 2020[29]. Figure 1.5 shows
the predicted magnetic equilibria for MAST-U in both conventional and Super-X
divertor configurations. Modelling suggests that MAST-U’s Super-X configuration
will make detachment accessible at lower upstream densities[30]. The introduction
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of the divertor baffle prevents neutrals that are produced via recombination at the
divertor PFCs from reaching back into the plasma core. This increased neutral
pressure allows for more efficient pumping and density control and easier access to
detachment. Figure 1.6 shows modelled plasma plasma density and temperature for

(a) Conventional Divertor
Con�guration

(b) Super-X Divertor
Con�guration

Separatrix

Poloidal �eld
coils

Divertor 
ba�e

Magnetic 
surfaces

Vacuum 
vessel

1 m

Figure 1.5: Expected magnetic equilibria (poloidal slice) for the MAST-U spherical
tokamak, for both (a) conventional and (b) Super-X divertor configurations. Design
drawings of MAST-U and information on expected equilibria courtesy of the MAST-U
team, as presented in e.g. [31].

the MAST-U divertor in both conventional and Super-X configurations. The scrape-
off layer plasma simulation (SOLPS) code used to generate these profiles is widely
used in the community to model MCF plasma exhaust physics, using a combination
of a fluid model for the plasma and a kinetic model of the neutral particles.
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Figure 1.6: SOLPS modelling of the MAST-U divertor in both (a) conventional
and (b) Super-X configurations. Shown is the modelled electron density ne, electron
temperature Te and emissivity of the Dγ emission line (433.9 nm). SOLPS modelling
carried out by David Moulton, as presented in e.g. [32].

1.3 Diagnosing the MAST-U Divertor

Every MCF experiment is equipped with a suite of diagnostic instruments for feedback-
control of the plasma shape, size and position[33]. High quality measurements are
also a prerequisite for any experimental plasma physics study. Tokamak diagnostics
are often categorised as being either active or passive, depending on whether they
perturb the plasma on measurement. In this thesis, our focus is on developing passive
spectroscopic diagnostic techniques for the SOL and divertor of MAST-U. We are
motivated, in large part, by the requirements of MAST-U — how can can we best
investigate the physics and assess the performance of the new divertor configurations?
The purpose of the MAST-U divertor diagnostic suite is best explained by the MAST-
U team[34]:
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“A historical gap in many tokamaks is good information on the plasma
parameters at various locations along the SOL and in the divertor; this
will be a focus for MAST Upgrade. While the confrontation of the experi-
mental data with SOLPS and other fluid modelling codes will be central to
the understanding of the divertor physics, it is hoped to extract the plasma
solution directly from an integrated analysis of most, if not all, of the di-
vertor measurements — each measurement corresponds to a location (or
chordal integral), local plasma parameters (e.g. ne and Te) and thus, with
proper implementation can constrain the plasma solution across the di-
vertor region without specifying the physics. The plasma solution derived
can then be used to calculate exactly which mechanisms are dominant
and where there are additional mechanisms not included (e.g. turbulent-
driven cross-field transport). . . . The MAST Upgrade diagnostics have
been designed for as high space and time resolution as currently feasible.”

We will now briefly cover the relevant MAST-U divertor diagnostic instruments, and
the specific diagnostics presented in this thesis.

One of the simplest ways to measure ne and Te is by Langmuir probe. By fitting a
model to the probe’s current-voltage characteristic curve, ne and Te can be inferred.
However, to avoid damage, probe measurements are generally limited to the plasma
edge and interpretation in low-temperature and/or magnetised plasma conditions is
difficult[33]. Despite these limitations, probes are a key part of any edge/divertor
diagnostic suite and MAST-U will have over 800[35].

For measuring ne and Te further inside the plasma, Thomson scattering (TS)
is perhaps the workhorse technique, providing localised measurements over a wide
parameter range and with high accuracy[33]. An intense laser beam is directed into
the plasma and a spectrometer measures the scattered line radiation. The absolute
intensity of the measured line then allows for inference of the local electron density
ne while the shape of the line provides information on the local electron temperature
Te via Doppler broadening. Core and edge TS systems are common on tokamaks (see
e.g. [36–39]). A divertor TS system is installed on the DIII-D tokamak[40, 41] and a
similar system is planned for MAST-U with a spatial resolution of ∼ 1 cm[42]. The
main disadvantage of TS is that it is limited to measurements along the laser beam’s
1-D path.

Passive spectroscopy is a valuable tool for diagnosing SOL/divertor plasma condi-
tions. The observed intensity of a spectral line emitted by the plasma is proportional
to the density of the corresponding excited atomic state. Relating this to the ground
state density of the emitting species requires some assumptions about the thermody-
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namic equilibrium or else a full collisional-radiative model describing the contribu-
tions of all relevant atomic processes[43, 44]. In addition, the spectral lineshape can
provide relatively direct measurements of emitter temperature (via Doppler broad-
ening) and/or ne (via Stark broadening), that are less dependent on assumptions
about the plasma equilibrium. Line broadening measurements play an important
supplemental role in spectroscopy analyses and are also used as independent dia-
gnostic techniques. Inferring ne from Stark-broadened hydrogen Balmer emission in
the visible light range is a standard diagnostic technique for grating spectrometers[23,
24, 45–47]. As these instruments are fundamentally slit-coupled, they are typically
limited to measurements integrated along a 1-D fan of sight lines through the plasma.

It is clear from Figure 1.6 that the divertor plasma has a complex 2-D structure
in the poloidal plane with steep gradients in ne and Te. To complicate things further,
MAST-U’s divertor tiles do not have perfect toroidal symmetry, possibly introducing
3-D effects which must also be accounted for when making inferences about local
plasma profiles[48]. In recent years, this complexity has motivated the use of imaging
diagnostics to provide 2-D coverage at a high spatial resolution. While the resulting
measurements are line-integrated, large number of sight lines make it possible to
tomographically invert the raw data and infer a local plasma emission profile. This
increase in the quantity of information generally comes at the cost of quality though,
as the spectral resolution is inevitably lower than a slit-coupled spectrograph. At one
extreme is unfiltered imaging, used to capture the images shown in Figure 1.3. This
measurement integrates over the spectral sensitivity of the camera and lens, typically
400–1000nm for the CCD/CMOS detectors used. The high throughput maximises
signal and allows measurements up to ∼MHz sampling rates, fast enough to study
the dynamics of turbulence[49]. Filtered imaging uses a narrowband interference
filter to isolate a targeted emission line whose intensity distribution, particularly for
impurities, can help constrain Te. MAST-U will also have a multi-wavelength imaging
(MWI) diagnostic. Based on a design developed at DIFFER[50], this is a 10-channel
filtered imaging system for which each channel has the same view of the plasma but
targets a different spectral emission line.

In practice, the ‘integrated analysis’ of MAST-U divertor measurements will use a
Bayesian approach to combine information from the different diagnostic instruments
in a self-consistent way4. A framework has been developed for this purpose and
tested using SOLPS simulations of MAST-U similar to those shown in Figure 1.6,
incorporating ‘synthetic diagnostic’ measurements made using the TS, LP and MWI
capabilities just described. These preliminary tests recover the 2-D SOLPS profiles of

4We use Bayesian methods for parameter estimation problems in Chapters 4 and 5. See Appendix
C for a brief introduction.
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ne and Te with ∼ 10% accuracy, but questions remain on how robust the technique
will be in practice against molecular emission, toroidal asymmetry and fine spatial
structure.

The subject of this thesis is further developments of coherence imaging (CI), a
passive, narrowband spectral imaging technique for diagnosing SOL and divertor
plasmas. CI uses an imaging interferometric method to produce a fringe pattern
which encodes the low-order moments of an isolated spectral emission feature across a
wide field of view. This fringe pattern is then recorded by a fast camera and analysed
using signal processing techniques to infer the plasma parameters. From Doppler
shifts of the emission feature, the (line-integrated) flow of the emitting ion/atomic
species can be inferred. This is an established technique for measuring impurity
ion velocity in the SOL[51, 52]. From the width and shape of the emission feature,
different physics parameters can also be inferred, depending on the plasma regime.
For example, emitter temperature can be inferred via Doppler broadening or, when
observing line emission from hydrogen in dense divertor plasmas, electron density can
be inferred via Stark broadening. A detailed account of CI and it’s uses is given in
Chapter 2. It is planned that CI will contribute to the integrated data analysis of the
MAST-U divertor with 2-D measurements of electron density or impurity ion velocity
and temperature, depending on the instrument setup.

1.4 Thesis Outline

The original goal of this thesis was to make CI measurements of impurity ion flow and
electron density in the MAST-U divertor. However, at the time of writing, MAST-U
is still preparing to begin operations, so the project has instead focussed on further
developing the CI technique, with experimental testing on a linear plasma device.
The rest of this thesis is organised as follows:

• Chapter 2 covers CI theory: two-beam interferometry, Fourier transform spec-
troscopy and polarisation interferometry. Following this is an overview of pre-
vious CI investigations and a description of the basic CI hardware used in this
thesis.

• Chapter 3 extends the CI technique to incorporate a pixelated polarising filter,
resulting in a fringe pattern that is pixelated instead of sinusoidal. We consider
the advantages of the technique and also propose a novel multi-delay CI design,
which simultaneously encodes the interferogram at four different fixed delays,
allowing the instrument to measure more complex spectral lineshapes.
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• Chapter 4 introduces a new technique for absolute calibration of CI flow
velocity measurements. While existing techniques use expensive tuneable laser
and wavemeter equipment, this new technique requires only off-the-shelf gas
discharge lamps and interference bandpass filters. This maintains comparable
measurement accuracy while significantly reducing hardware costs.

• Chapter 5 applies CI to the problem of ne measurement, building on the lim-
ited existing work in a number of ways. Modelling predicts that the simplified
analytical Stark-broadening model used in previous work leads to a signific-
ant underestimate of ne when compared to state-of-the-art numerical models.
Modelling also predicts that, by using a multi-delay CI instrument, it should be
possible to eliminate systematic error caused by Doppler-broadening, extending
the lower ne limit of the measurement’s dynamic range. This is then tested ex-
perimentally, in tandem with the first tests of the pixelated carrier CI technique
introduced in Chapter 3. The linear plasma experiment Magnum-PSI stands
in for MAST-U as the test-bed, and we present results over a range of plasma
conditions relevant to both MAST-U and future devices like ITER.

• Chapter 6 summarises the results and makes recommendations for future work.



Chapter 2

Coherence Imaging

When two beams of light interfere, they produce a fringe pattern that tells us about
the coherence of the light — how statistically correlated the electric field is at different
points in time and in space. This is a useful thing to know because it is closely related
to the light’s frequency spectrum, and therefore also to the physics of the light’s
source. coherence imaging (CI) is an application of these ideas to the measurement
of light emitted by plasma in nuclear fusion experiments. The clever part is to
concentrate on a narrow range of the frequency spectrum, in which any changes can
only be caused by a small number of well-understood mechanisms in the plasma. This
way, information about the physics can be collected quickly and in 2-D across a wide
camera view. Although CI is a relatively new fusion plasma diagnostic technique, the
measurement principles date back to the end of the nineteenth century. This chapter
begins by introducing the theory of Fourier transform spectroscopy and polarisation
interferometry, which underpin CI, and then covers some of the important CI work
from the literature.

2.1 Coherence and Two-beam Interferometry

Maxwell’s equations tell us that light is the transverse wave oscillation of electric
and magnetic fields travelling through space. An important solution to Maxwell’s
equations is a plane wave evolving in space r and time t, for which the electric field
can be written1:

E(r, t) = |E| exp(i[k · r − 2πνt]). (2.1.1)

Here, k is the wave vector and ν is the wave frequency. This scalar treatment ignores
polarisation, but is sufficient for introducing coherence effects. The mechanisms that

1The electric field exerts a much larger force in most light-matter interactions, so is typically the
only consideration in optics.
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Figure 2.1: (a) Division of wavefront interferometer (Young’s double-slit experi-
ment). (b) Division of amplitude interferometer (Michelson’s design).

produce light are inherently random and so it follows that all light is the sum of
constituent waves whose frequencies and amplitudes are, to some degree, random.
Coherence theory provides the required statistical description. In this work, we will
assume that the electric field as a function of both space and time can always be
considered a wide-sense stationary (WSS) random process. This means that the mean
and variance of the field do not change with time[53].

Coherence is typically introduced using the example of a two-beam interfero-
meter[54, 55]. Consider an extended light source sitting some distance from an
opaque screen. The screen has two pinholes at points P1 and P2 and a detector lies
behind the screen. This arrangement, shown in Figure 2.1(a), will produce a set of
interference fringes at the detector. The electric field at point r on the detector plane
at time t is the sum of the field contributions from the first and second pinhole:

E(r, t) = k1E(P1, t− t1) + k2E(P2, t− t2), (2.1.2)

where t1 and t2 are the times taken for light to traverse the paths between points P1 and
P2 and point r respectively. In general t1 6= t2 resulting in an optical path difference
between the beams. The complex factors k1 and k2 account for any absorption and
the geometry of the arrangement. We are interested in the irradiance at the detector
plane rather than the field amplitude, since this is what our detectors measure2. At
r, the irradiance is I(r) ≡ 〈E∗(r, t)E(r, t)〉, where 〈. . . 〉 is the time-average and ∗

is the complex conjugate. It follows from the field being WSS that the measured
irradiance, being a time-average, is independent of the precise acquisition start time.

2For CCD/CMOS sensors, the measured signal is proportional to the number of photons hitting
the active sensing area during the exposure time. In this work we measure quasi-monochromatic
light, so the number of photons measured is roughly proportional to the irradiance at the pixel.
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Using this, we write the irradiance (or interferogram) at r as3

I(r, τ) = |k1|2I(P1) + |k2|2I(P2) + 2|k1||k2|<{Γ12(τ)}. (2.1.3)

The first two terms here are the irradiances that would be observed at r if each
respective pinhole were open in isolation. In the third term, which contains the
interference pattern, we have defined the mutual coherence function:

Γ12(τ) ≡ 〈E∗(P1, t)E(P2, t+ τ)〉. (2.1.4)

This is the cross-correlation function of the electric field at two points in space P1 and
P2 at a time delay τ ≡ t2 − t1. That Γ12(τ) is a function of τ and not the absolute
time is a direct result of the assumed WSS nature of the field. Γ12(τ) has the same
units as irradiance.

With the two pinholes separated (P1 6= P2), the interfering beams are said to
have been created via ‘division of wave-front’ of the incident beam. When the two
pinholes coincide (P1 = P2), it is ‘division of amplitude’. This arrangement requires a
beam splitter and beam combiner to separate the beams and introduce time delay τ
between them. An example of a division of amplitude interferometer is Michelson’s
design, shown in Figure 2.1(b). We will consider these beam splitters to be lossless
to and transmit equal power though each port. For this division of amplitude case,
the irradiance at the detector plane is:

I(r, τ) = 1
2 |k1|2

(
I(P1) + <{Γ11(τ)}

)
, (2.1.5)

calculated as a special case of Equation 2.1.3. Now, the fringes encode the auto-
correlation function of the field at point P1 for time delay τ

Γ11(τ) = 〈E∗(P1, t)E(P1, t+ τ)〉, (2.1.6)

which we call the temporal coherence4. This is the mutual coherence function but
without any information about the spatial coherence of the scene. It can be seen
from Equation 2.1.6 that, for τ = 0, the temporal coherence at point P1 is simply the
irradiance at that point: Γ11(0) = I(P1) and similarly Γ22(0) = I(P2). It useful to
introduce a normalised version of Γ12(τ) called the complex degree of coherence:

γ12(τ) ≡ Γ12(τ)√
Γ11(0)Γ22(0)

(2.1.7)

This dimensionless quantity expresses the coherence of the source, independent of

3Using x+ x∗ = 2<{x}.
4Temporal coherence is sometimes called self-coherence.
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its total irradiance. When |γ12(τ)| = 0, the interference term drops to zero and the
source is said to be incoherent. Conversely, |γ12(τ)| = 1 represents perfectly coherent
light and 0 < |γ12(τ)| < 1 partially coherent light. It follows that the complex degree
of temporal coherence reduces to

γ11(τ) = Γ11(τ)
Γ11(0) . (2.1.8)

This allows us to rewrite Equation 2.1.5 for the irradiance at the output of the division
of amplitude interferometer as

I(r, τ) = I0(r)
2

(
1 + <{γ11(τ)}

)
, (2.1.9)

Where we have also introduced the shorthand I0(r) ≡ |k1|2I(P1) for the irradiance
at r observed when τ = 0. This is related to the spectral irradiance J(ν) at r by
I0(r) =

∫∞
−∞ J(ν)dν.

Temporal coherence is an important observable quantity because the autocorrel-
ation function of a signal can be Fourier transformed to obtain that signal’s power
spectrum — provided the signal is either deterministic or that the underlying random
process is wide-sense stationary (random process) (WSS). This mathematical rela-
tionship is called the Wiener-Khinchin theorem (see Appendix A for a derivation). It
follows that Γ11(τ) and J(ν) are a Fourier transform pair:

J(ν) =
∫ ∞
−∞

Γ11(τ) exp(−2πiντ)dτ. (2.1.10)

Here, the conjugate variable of the light’s frequency ν is the interferometer delay
τ . It is convenient now to define the area-normalised spectral irradiance g(ν) ≡
J(ν)/

∫∞
−∞ J(ν)dν, which is similarly related to γ11(τ) by Fourier transform:

g(ν) =
∫ ∞
−∞

γ11(τ) exp(−2πiντ)dτ. (2.1.11)

Since g(ν) and γ11(τ) are a Fourier transform pair, the characteristic widths of the
two distributions, ∆ν and ∆τ respectively, follow an uncertainty relationship:

∆ν∆τ & 1. (2.1.12)

Interference fringes are only observable when τ ∼ ∆τ , called the ‘coherence time’[55].
Since the spectrum is a real function, and the Fourier transform of a real function has
Hermitian symmetry, we can write γ11(τ) = γ∗11(−τ). This means that the observed
real part of γ11(τ) is an even function. It follows that g(ν) can be recovered from an
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observation of the real part of γ11(τ) by cosine transform:

g(ν) = 2
∫ ∞

0
<{γ11(τ)} cos(2πντ)dτ. (2.1.13)

So the spectrum can be recovered from a two-beam division of amplitude interferogram
(Equation 2.1.9) that is recorded as a function of interferometer path delay τ . This
technique is called Fourier transform spectroscopy (FTS). Since FTS is the focus of this
work, from this point on we will use ‘coherence’ as a shorthand for the complex degree
of temporal coherence, which we will denote γ(τ) (dropping the subscripts). We will
also use ‘interferometer’ and ‘interferogram’ as shorthand for ‘two-beam interferometer
of the division of amplitude type’ and ‘the interference pattern observed by such an
instrument’ (Equation 2.1.9), respectively.

2.2 Fourier Transform Spectroscopy

According to Equation 2.1.13, we measure the interferogram I(r) as a function of
delay τ , isolate the coherence term then take the cosine transform to recover the
spectrum g(ν). In the example of Michelson’s design in Figure 2.1(b), τ is typically
scanned by moving one of the mirrors in the direction parallel to the beam, as shown.
In reality, the maximum delay τmax at which I(τ) is observed must be finite. If γ(τ)
is sampled at equal intervals δτ from 0 to τmax, then it can be shown that the the
frequency resolution is δν ≈ τ−1

max[55, 56]. If the spectrum extends over a range of
frequencies ∆ν, then the number of spectral samples is ∆ν/δν. If the spectral range
extends from ν ≈ 0 then the delay sampling interval required to Nyquist sample
the spectrum is δτ = 1/(2∆ν)[55]. FTS instrument designs can be categorised as
either temporal multiplexing or spatial multiplexing designs according to whether the
interferogram is sampled in time or space. If the spectrum is encoded in the signal’s
time-history then the full spatial resolution of the detector is preserved, at the cost
of a reduced time resolution. Instruments which scan τ in space are described as
‘snapshot’, capturing all the spectral information in a single image, but necessarily
sacrificing some spatial resolution in the process.

Fourier transform spectroscopy5 (FTS) has its roots in the experiments of Fizeau
and then later Michelson and others in the late 19th century[54, 57, 58]. This work
revealed for the first time the presence of atomic fine structure and hyperfine structure
in the line emission from flame tests of different materials. Important observations
were also made of pressure broadening, Doppler broadening and Zeeman splitting[57].
Although the accuracy of these measurements was unprecedented (e.g. the observed

5FTS is sometimes called ‘interference spectroscopy’[55].



2.2. Fourier Transform Spectroscopy 19

sodium D-line doublet has a wavelength separation of 0.6 nm), computing the cosine
transform in Equation 2.1.11 was difficult, and so dispersive spectroscopy became
the standard technique instead. Beginning in the mid 20th century however, FTS
has grown in popularity again, due in part to advances in digital computing and the
availability of intense coherent laser sources. It is also due to the discovery of two
fundamental advantages of FTS over grating spectroscopy[55]. Firstly, the Jacquinot,
or throughput advantage: since FTS instruments do not require a slit, a higher
throughput can be achieved compared to dispersive (prism or grating) spectrometers
of equivalent resolving power6. Secondly, the Fellgett or multiplexing advantage: since
FTS instruments measure all frequencies simultaneously, a higher signal-to-noise ratio
(SNR) is possible compared to dispersive spectrometers of equivalent resolving power
— provided the measurement is limited by detector noise and not shot noise. FTS
is now a standard technique for spectroscopy, particularly in the infrared where the
ability to measure large spectral range at high resolution makes it more practical than
dispersive spectrometers[59]. It also allows for compact, low-cost spectral imaging
designs, particularly when observing quasi-monochromatic light. This is the subject
of this work.

2.2.1 Quasi-monochromatic light

In this section, we will see that the interferogram assumes a simple form when the light
being measured is quasi-monochromatic, and that this reduces the delay sampling
requirements for FTS. For spectrum g(ν), the weighted-mean frequency is

νc =
∫ ∞

0
νg(ν)dν. (2.2.1)

Here we make explicit the presence of a Doppler shift by expressing the mean frequency
as νc = ν0 + ∆νD, the sum of a fixed stationary term ν0 and a much smaller shift
term ∆νD which varies with emitter velocity v:

∆νD

ν0
= v · l̂

c
. (2.2.2)

Here, l̂ is the unit vector for the line of sight and c is the speed of light. We next
rewrite g(ν) as the convolution of a Dirac delta function at νc and the ‘centred’
spectral distribution gc(ν) ≡ g(ν + νc):

g(ν) = δ(ν − νc) ∗ gc(ν). (2.2.3)

6Incidentally, the son of the eponymous Pierre Jacquinot would go on to be director of JET!
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Next, by substituting this expression into the Wiener-Khinchin theorem as stated in
Equation 2.1.11 and using the convolution theorem (see Appendix A), we can write
the coherence as the product of the inverse Fourier transforms of δ(ν − νc) and gc(ν):

γ(τ) = exp
(
i
[
2πν0τ + 2π∆νDτ

]) ∫ ∞
−∞

gc(ν) exp(2πiντ)dν. (2.2.4)

In general then for quasi-monochromatic light, γ(τ) is the product of a phasor oscil-
lating in τ with period 1/νc and the inverse Fourier transform of the centred spectral
distribution gc(ν). For this second factor we will use the shorthand

Gc(τ) ≡
∫ ∞
−∞

gc(ν) exp(2πiντ)dν. (2.2.5)

Our spectrum g(ν) is quasi-monochromatic if its characteristic spectral width ∆ν
satisfies ∆ν/ν0 � 1. By combining this condition with the uncertainty relation in
Equation 2.1.12, it can be seen that ∆τ � 1/νc, meaning Gc(τ) must vary on τ scales
far larger than the phasor period, its magnitude acting as an envelope function. This
result can be seen clearly in Figure 2.2, where the interferogram (right column) is
modelled for three different spectra (left column) using Equation 2.1.9. In the top
row, the interferogram for a broadband spectrum decays quickly to I0/2 with very
little structure. The second and third spectra are each quasi-monochromatic and their
interferograms show the anticipated behaviour: a rapid oscillation with amplitude
slowly decaying to zero as τ increases. We can rewrite Equation 2.2.4 with Gc(τ) in
phasor form too to find

γ(τ) = |Gc(τ)|︸ ︷︷ ︸
Contrast

exp
(
i
[

2πν0τ︸ ︷︷ ︸
Stationary

phase

+ 2π∆νDτ︸ ︷︷ ︸
Doppler
phase

+ arg[Gc(τ)]︸ ︷︷ ︸
Asymmetry

phase

])
. (2.2.6)

This is the general equation for the coherence of quasi-monochromatic light, as would
be measured by an ideal interferometer. It can be used to model the coherence of
emission with arbitrary (narrowband) spectral distribution. Small changes must be
made to account for instrument dispersion, which will be considered in Section 2.2.2.
We will now briefly consider the meaning of each term.

Equation 2.2.6 tells us that <{γ(τ)} is a rapidly oscillating cosinusoid with a
slowly varying envelope function and phase perturbation depending on Gc(τ). The
envelope function is called the fringe contrast7 and is defined

ζ(τ) ≡ |γ(τ)|
= |Gc(τ)| (2.2.7)

7This is sometimes called fringe visibility.
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Figure 2.2: Three different modelled frequency spectra are plotted in the left column.
The corresponding (ideal) interferograms, calculated using Equation 2.1.9 are plotted
in the right column. The first row is a broadband spectral source, the second is a
quasi-monochromatic singlet and the third is a quasi-monochromatic multiplet. The
effect of a Doppler shift is illustrated for the quasi-monochromatic cases. For clarity,
∆ν/ν0 is significantly larger here than would ever be observed in a plasma.
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The contrast is unaffected by shifts in centre frequency of the spectrum, and can be
approximated for a given τ by the adjacent maximum and minimum interferogram
brightness:

ζ ≈ Imax − Imin

Imax + Imin
. (2.2.8)

The phase of the coherence is defined

Φ(τ) ≡ arg[γ(τ)]
= φ0(τ) + φD(τ) + φasym(τ) (2.2.9)

where we have introduced a shorthand for each of the three phase terms:

φ0(τ) ≡ 2πν0τ

φD(τ) ≡ 2π∆νDτ

φasym(τ) ≡ arg[Gc(τ)]. (2.2.10)

The first phase term φ0(τ) represents a rapidly oscillating phasor, encoding the
unshifted centre frequency of the emission feature. We’ll call it the ‘stationary phase’.
The second phase term φD(τ) is the ‘Doppler phase’, representing another phasor
that oscillates much more slowly than the first (as the Doppler shifts considered in
this work are small: ∆νD � ν0). The increased sensitivity to Doppler shifts at large
τ is clearly visible in the Doppler-shifted interferograms of Figures 2.2(d) and 2.2(f).
The final phase term φasym(τ) is related to the transformed centred lineshape Gc(τ).
It is a general property that the Fourier transform of an even function is purely
real. It follows that φasym(τ) = 0 rad when gc(ν) is even (i.e. when the spectrum
is symmetric about νc), so we call this third term the ‘asymmetry phase’. In the
special case of symmetry, the lineshape gc(ν) is entirely defined by ζ(τ). In plasma
experiments, we typically already know ν0 to a high degree of accuracy, thanks to
previous measurements or atomic calculations. So φ0(τ) is a calibration parameter
that must be accounted for to infer of the phase terms of interest: φD(τ) and/or
φasym(τ). However, τ is sensitive to environmental effects like vibration and thermal
expansion, regardless of the exact interferometer design, making regular measurement
of φ0(τ) necessary to track changes and avoid systematic error. The simplest way to
do this is to measure a coherent light source at ν0. We will assume here that this
calibration procedure can be done perfectly and will discuss the details in Chapter 4.

Returning to the examples in Figure 2.2, we can now say some more about
the two quasi-monochromatic spectra and corresponding interferograms. The first
(Figure 2.2(c)) is a singlet with a Gaussian profile — as is observed due to Doppler
broadening of an emitting gas/plasma with a Maxwellian velocity distribution and
negligible absorption[33, 43]. In this case, the Doppler broadened lineshape can be
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written as
gc

D(ν) =
(

c√
πν0vth

)
exp

(
−
[
νc

ν0vth

]2)
, (2.2.11)

where vth is the characteristic thermal velocity of the emitting species:

vth =
√

2kBTi

mi
. (2.2.12)

Here, Ti and mi are the temperature and mass of the emitting species respectively.
Since gc

D(ν) is symmetric, it follows that φasym(τ) = 0 rad and the interferogram in
Figure 2.2(d) is an unperturbed cosinusoid. The contrast envelope ζ(τ) follows a
Gaussian decay with increasing τ since the Fourier transform of a (centred) Gaussian
profile is another Gaussian profile (see Appendix A). The expression for the contrast
envelope is then

ζD(τ) = exp
(
−
[
vthν0πτ

c

]2)
. (2.2.13)

So, intuitively, ζ(τ) falls with increased Ti (more significant Doppler broadening). It
follows that for a Doppler-shifted, Doppler-broadened emission line, a measurement of
Φ(τ) and ζ(τ) at a single, appropriately chosen delay is sufficient to recover v · l̂ and Ti

respectively (assuming Maxwellian velocities and perfect calibration of φ0(τ)). This
massively reduces the τ sampling requirements of FTS to a minimum of three closely
spaced (within±π rad) samples, required to infer the three interferogram unknowns I0,
ζ(τ) and Φ(τ). One early and successful application of this idea is the measurement of
wind speed and temperature in the earth’s upper atmosphere via oxygen line emission
[60–62]. This is typically achieved using Michelson’s interferometer design, by either
temporal[62] or spatial[61] multiplexing, and has been used to measure air flows in
the range ±100m/s and temperatures ∼ 200K.

The second example of a quasi-monochromatic spectrum (Figure 2.2(e)) has two
lines, each subject to the same Doppler broadening / shift as in the previous example.
If we consider a general case of N lines, the centred lineshape is now the convolution
of the Doppler broadened profile and a sum of weighted delta functions:

gc(ν) = gc
D(ν) ∗

N∑
i

Iiδ(ν −∆νi). (2.2.14)

Where, if the line frequencies are νi, we have defined ∆νi ≡ νi − νc and the relative
intensities Ii are normalised such that ∑N

i Ii = 1. Taking the Fourier transform of
Equation 2.2.14 we find

Gc(τ) = ζD(τ)
N∑
i

Ii exp(i2π∆νiτ). (2.2.15)
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It follows that ζ(τ) ≡ |Gc(τ)| is the product of ζD(τ) (given by Equation 2.2.13) and a
second term due to the presence of multiple lines — both terms are plotted as dotted
blue lines and their product in solid blue in Figure 2.2(f). In our example, g(ν) is no
longer symmetric about νc, so φasym(τ) ≡ arg[Gc(τ)] is non-zero and is now plotted
in orange below the interferogram (wrapped in the interval (−π, π]). If the observed
emission lines are due to fine structure splitting of atomic energy levels, then Ii and
νi will typically be known and so the contribution to ζ(τ) and Φ(τ) can be calculated
and accounted for in any observations8[63]. In this case, the τ sampling requirements
for inferring v · l̂ and Ti are the same as in the previous example of a single line.
The only complication is that τ must be chosen so as to avoid minima in ζ(τ), to
maximise SNR.

If the multiple emission lines are instead due to different ion / atomic species,
then the situation is more complicated. Ii will generally not be known a priori and
the individual lines may be subject to different degrees of broadening / splitting. In
this case, g(ν) is determined by a larger number of parameters and therefore requires
more samples of ζ(τ) and Φ(τ) to reconstruct. It follows that proper isolation and
characterisation of the targeted emission feature is very important for interpreting
narrowband FTS measurements of this kind — non-Maxwellian velocity distributions,
or contaminant emission can introduce systematic error if not properly accounted
for. For more complicated spectral lineshapes, ζ(τ) and Φ(τ) need to be sampled at
multiple delays to unambiguously recover the underlying parameters. We will only
consider single-delay CI instrument designs in this chapter, saving the introduction
of multi-delay designs for the next chapter.

In the following sections we will consider how this basic theory is extended to
account for instrument dispersion and an inhomogeneous light source.

2.2.2 Accounting for Instrument Dispersion

All real interferometers are dispersive. This means that the optical path difference
between the two beams depends on the frequency of the light. Since τ is now τ(ν), the
Fourier transform relationship between g(ν) and γ(τ) as written in Equation 2.1.11
no longer holds. ‘Group delay’ is a concept in interferometry used to approximate
dispersion to first order[55]. We will see in this section that incorporating this
approximation requires only small changes to our expression for coherence of quasi-
monochromatic light from Equation 2.2.6.

8At fusion plasma densities (1018–1021 m−3), fine structure levels typically remain collisionally
coupled and so are populated according to their known statistical weights[44].
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The phase delay between the two interferometer beams can be approximated by
a Taylor expansion about the mean stationary frequency ν0, truncated at the first
term:

2πντ(ν) ≈ 2πν0τ0 + 2π(ν − ν0)τ̂0. (2.2.16)

Here, τ0 ≡ τ(ν0) and τ̂0 is the group delay, defined as the derivative of the phase delay
with respect to frequency, at ν0:

τ̂0 ≡

 d
dν

(ντ)

ν=ν0

= τ0 + ν0
dτ

dν

∣∣∣∣∣
ν=ν0

. (2.2.17)

In the literature, τ̂0 is often expressed as a phase angle φ̂0 ≡ 2πν0τ̂0 instead of a time
delay. This allows us to rewrite Equation 2.2.16 as

φ(ν) ≈ φ0 + φ̂0

[
ν − ν0

ν0

]
. (2.2.18)

It is also useful to define the ratio between group and phase delays as κ0 ≡ τ̂0/τ0, a
dimensionless parameter of order unity that characterises the degree of dispersion. It
follows from Equation 2.2.17 that this can be written:

κ0 = 1 + ν0

τ0

dτ

dν

∣∣∣∣∣
ν=ν0

. (2.2.19)

Upon substituting Equation 2.2.16 into the Wiener-Khinchin theorem in Equa-
tion 2.1.11 and proceeding as in Section 2.2.1, with the assumption of a quasi-
monochromatic spectrum, we obtain:

γ(τ0) ≈ exp
(
i
[
2πν0τ0 + 2π∆νDτ̂0

]) ∫ ∞
−∞

gc(ν) exp(2πiντ̂0)dν. (2.2.20)

Compare this to the equivalent, non-dispersive result from Equation 2.2.4. The
rapidly oscillating phasor at ν0 in the first factor is unchanged, but τ̂0 has replaced τ
as the constant of proportionality in the Doppler phase term and also as the conjugate
variable of ν in the Fourier transform of gc(ν). We can then rewrite this making the
magnitude and phase contributions of gc(ν) explicit to find the dispersive version of
Equation 2.2.6:

γ(τ0) ≈ |Gc(τ̂0)| exp
(
i
[
2πν0τ0 + 2π∆νDτ̂0 + arg[Gc(τ̂0)]

])
. (2.2.21)

We can rewrite this using the definitions for the phase terms from Equation 2.2.10 as

γ(τ0) ≈ ζ(τ̂0) exp
(
i
[
φ0(τ0) + φD(τ̂0) + φasym(τ̂0)

])
. (2.2.22)

For the CI instruments considered in this work, κ is in the range 1.05–1.2 across the
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visible frequencies. So ignoring dispersion completely — i.e. using φD(τ0) instead of
φD(τ̂0) — leads to a 5–20% underestimate in inferred v · l̂. Using our best knowledge of
CI instrument τ(ν), it can be shown that for anticipated flow velocities v · l̂ . 30 km/s
(Doppler shifts of ∆λD . 0.05 nm at λ0 = 500 nm), the error in inferred v · l̂ in using
the group delay treatment is negligible (< 0.005%). In Chapter 4 we take a more
detailed look at dispersion in the context of CI φ0 calibration, where measurements
are made of emission lines that are widely separated in wavelength (∆λ . 40nm).

2.2.3 Accounting for an Inhomogeneous Light Source

For an extended, inhomogeneous light source, the emission spectrum g(ν, r) also
depends on local position within the source r. For line emission in the visible range
in fusion plasma conditions, it can generally be assumed that the plasma is optically
thin (zero absorption). The observed spectrum is therefore integrated along a line of
sight through the plasma. Inferring local structure from line-integrated projections
is an inverse problem encountered in many fields (e.g. medical imaging and radio
astronomy). This section outlines how line-integrated measurements can be handled
in narrowband FTS, and follows Section 2.5.1 from Clive Michael’s thesis[64].

The total irradiance measured along line of sight L is

Ǐ0 =
∫
L
ε0(r)dl, (2.2.23)

where ε0(r) is the local volumetric emissivity. The area-normalised spectral irradiance
ǧ(ν) is then

ǧ(ν) = 1
Ǐ0

∫
L
ε0(r)g(ν, r)dl. (2.2.24)

Upon substitution into the Wiener-Khinchin theorem from Equation 2.1.11, we arrive
at:

γ̌(τ) = 1
Ǐ0

∫
L
ε0(r)γ(τ, r)dl, (2.2.25)

where γ̌(τ) and γ(τ, r) are the line-integrated and local coherence respectively at
interferometer delay τ . We can rewrite each in complex exponential form in terms of
contrast and phase to find:

ζ̌(τ) exp[iΦ̌(τ)] = 1
Ǐ0

∫
L
ε0(r)ζ(τ, r) exp[iΦ(τ, r)]dl, (2.2.26)

So the contrast ζ̌(τ) and phase Φ̌(τ) of a measured interferogram observing an exten-
ded, inhomogeneous source are each a function of the local contrast ζ(τ, r) and local
phase Φ(τ, r) along line of sight L. To make the inversion of Equation 2.2.26 more
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tractable, we express Φ(τ, r) as the Φ̌(τ) plus a local perturbation:

Φ(τ, r) = Φ̌(τ) + Φ̃(τ, r). (2.2.27)

Substituting the above into Equation 2.2.26 and taking the Maclaurin expansion
exp[iΦ̃(τ, r)] ≈ 1 + iΦ̃(τ, r), we find:

Ǐ0ζ̌(τ) ≈
∫
L
ε0(r)ζ(τ, r)dl (2.2.28)

and
Ǐ0ζ̌(τ)Φ̌(τ) ≈

∫
L
ε0(r)ζ(τ, r)Φ(τ, r)dl. (2.2.29)

So provided the local phase perturbations are small (Φ̃(τ, r)� 1), then we have three
equations (2.2.23, 2.2.28 and 2.2.29) linking the three line-integrated quantities (Ǐ0,
ζ̌(τ) and Φ̌(τ)) to the three local quantities (ε0(r), ζ(τ, r) and Φ(τ, r)) of interest. It
is clear that ε0(r) must be known to find ζ(τ, r) and similarly that ε0(r)ζ(τ, r) must
be known to find Φ(τ, r), so measured irradiance must be inverted first, then contrast
and finally phase.

CI implements these general FTS measurement principles using polarisation in-
terferometry, which is the subject of the next section.

2.3 Polarisation interferometry

Michelson’s design is an example of a ‘double-path’ interferometer — its two beams
take separate routes before recombining. Coherence imaging uses a ‘polarisation
interferometer’ design instead. In this type of device, the two beams take (roughly)
the same route but do so in orthogonal polarisation states. The necessary delay is
produced using a birefringent material whose refractive index, determining the phase
velocity of the light, depends on polarisation state. A ‘common-path’ interferometer
like this is generally more compact and robust against misalignment than double-path
designs[55, 65]. In this section, we will introduce the tools for modelling polarisation
interferometers.

Modelling wave polarisation requires a vector field description of the electric field.
For now we will only consider light travelling along the optical axis, which we will
call z. The field can be written

E(z, t) =


|Ex| exp(iψx)
|Ey| exp(iψy)

0

 . (2.3.1)
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In general, the amplitude and phase terms of the orthogonal components of the field
are modified by an optical system. Two frameworks exist for modelling this action in
linear systems: Mueller calculus and Jones calculus[66–68]. In both frameworks light
is represented by a column vector but while Mueller calculus deals with irradiance
(Stokes vectors), Jones calculus deals with the electric field itself. As such, Mueller
calculus discards absolute phase information for the field while Jones calculus retains
it. However, Mueller calculus can be used to model mixed and partial polarisation
states, while Jones calculus is restricted to pure polarisation states. In the CI liter-
ature, Jones calculus is typically used for purely spectroscopic applications[63, 64,
69] while for spectro-polarimetric applications the Mueller treatment is used[70]. To
retain the ability to model partial polarisation (needed when dealing with Zeeman
splitting in Section 5.1.3), we will use Mueller calculus9.

2.3.1 Stokes vectors

Stokes vectors are a convenient way of describing polarised light[66–68], formulated
in terms of sums and differences of observable irradiance values. For an operational
definition, let IH, IV, I45 and I135 be the irradiance measured behind a linear polariser
oriented horizontally, vertically, at 45° and 135° respectively. Also, let IR and IL be
the irradiance measured behind a right and left-handed circular polariser respectively.
The Stokes vector is then the four-element column vector

S =


S0

S1

S2

S3

 =


IH + IV

IH − IV

I45 − I135

IR − IL

 =


〈|Ex|2 + |Ey|2〉
〈|Ex|2 − |Ey|2〉

〈2|Ex||Ey| cos(ψx − ψy)〉
〈2|Ex||Ey| sin(ψx − ψy)〉

 . (2.3.2)

The first Stokes parameter S0 is simply the total irradiance. The second parameter
S1 is positive or negative, depending on whether the polarisation state tends towards
linear horizontal or linear vertical respectively, and is zero when there is no preference
between the two. Similarly, the third parameter S2 measures a tendency towards a
linear 45° polarisation state for positive values and towards a linear 135° state for
negative values. Finally, a positive or negative value for the fourth parameter S3

indicates a tendency towards right-handed or left handed rotation in the xy-plane.
The Stokes vector definition in terms of the amplitude and phase of the x and y field
components is also included in Equation 2.3.2. The degree of polarisation (DOP) is
the fraction of the light that is polarised. It can be written in terms of the Stokes

9Beware: Mueller calculus is not appropriate for modelling general interference effects, since it
cannot model coherent addition of beams in the same polarisation state. It is only applicable here
because the phase delay is between orthogonal polarisation states.
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parameters as

DOP ≡

√
S2

1 + S2
2 + S2

3

S0
. (2.3.3)

For unpolarised light, DOP = 0; for completely polarised light DOP = 1. If 0 <

DOP < 1 then the light is partially polarised. In this work we are interested in the
spectral irradiance of a source, and can therefore work with the ‘Stokes spectrum’

S(ν) =


S0(ν)
S1(ν)
S2(ν)
S3(ν)

 , (2.3.4)

which has an equivalent operational definition to the Stokes vector, but for spectral
irradiance. In this work, we will make the frequency dependence explicit when talking
about spectral irradiance.

2.3.2 Mueller calculus

In the Mueller matrix formalism, each optical component is represented by a 4 × 4
matrix M with real-valued (and generally frequency-dependent) elements. The effect
of the component on incident light is calculated by multiplying the associated Stokes
vector and Mueller matrix[66, 71]:

Sout(ν) = M(ν)Sin(ν) =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

Sin(ν). (2.3.5)

If multiple components are encountered in sequence, the Mueller matrix for the total
system is found by multiplying the Mueller matrices of the constituent components.
For example, a system of three elements, M1, M2 and M3 has total Mueller matrix
Mtot = M3M2M1. To model optical components with arbitrary orientation in the
xy-plane, we use the matrix for anti-clockwise frame rotation of angle ρ from the x
axis:

R(ρ) =


1 0 0 0
0 cos(2ρ) sin(2ρ) 0
0 − sin(2ρ) cos(2ρ) 0
0 0 0 1

 . (2.3.6)

It follows that when a component or system of components with Mueller matrix M
is rotated anti-clockwise in xy-plane by angle ρ, its new Mueller matrix is given by
R(−ρ)MR(ρ).
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In this work, we only need to know the Mueller matrices for two component types:
linear polarisers and linear retarders. The Mueller matrix for an ideal linear polariser
whose transmission axis makes an angle ρ with the x-axis is

Mpol(ρ) ≡ R(−ρ)1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

R(ρ) (2.3.7)

= 1
2


1 cos (2ρ) sin (2ρ) 0

cos (2ρ) cos 2(2ρ) cos (2ρ) sin (2ρ) 0
sin (2ρ) cos (2ρ) sin (2ρ) sin 2(2ρ) 0

0 0 0 0


A linear retarder transmits light in orthogonal polarisation states at different speeds.
Incident light is resolved into two components polarised in these two directions, called
the fast and slow axes, and a phase delay is introduced between them. The Mueller
matrix for a waveplate imparting phase delay φ(ν) between components and with fast
axis at an angle ρ to the x-axis is

MLR(ρ, φ) ≡ R(−ρ)


1 0 0 0
0 1 0 0
0 0 cosφ sinφ
0 0 − sinφ cosφ

R(ρ) (2.3.8)

=


1 0 0 0
0 cos2(2ρ) + sin2(2ρ) cos(φ) cos(2ρ) sin(2ρ)(1− cosφ) sin(2ρ) sinφ
0 cos(2ρ) sin(2ρ)(1− cosφ) cos2(2ρ) cosφ+ sin2(2ρ) − cos(2ρ) sinφ
0 − sin(2ρ) sinφ cos(2ρ) sinφ cosφ


The frequency dependence of φ is omitted here for clarity but is important to our
application. The following identities for two linear retarders in series follow from
Equation 2.3.8:

MLR(ρ, φ2)MLR(ρ, φ1) = MLR(ρ, φ1 + φ2)

MLR

(
ρ+ 90°, φ2

)
MLR(ρ, φ1) = MLR(ρ, φ1 − φ2)

MLR(ρ, φ2)MLR

(
ρ+ 90°, φ1

)
= MLR(ρ, φ2 − φ1). (2.3.9)

So linear retarders can be arranged in series so as to combine their phase delays
constructively or destructively.
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2.3.3 A Simple Polarisation Interferometer

The simplest layout for a polarisation interferometer is a linear retarder sandwiched
between two linear polarisers. The transmission axes of the polarisers are aligned at
ρ = ρ′ and the orientation of the retarder’s fast axis is ρ′ + 45°. The total Mueller
matrix for this layout is:

Mtot = Mpol(ρ′)MLR

(
ρ′ + 45°, φ(ν)

)
Mpol(ρ′), (2.3.10)

where φ(ν) is the phase delay imparted by the retarder. We will limit our scope for
now to measurement of unpolarised light (DOP = 0), so the Stokes vector for incident
light is

Sin(ν) =


S0(ν)

0
0
0

 . (2.3.11)

The Stokes vector for the light at the interferometer output is then

Sout(ν) = Mtot(ν)Sin(ν)

= S0(ν)
4

(
1 + cosφ(ν)

)


1
1
0
0

 . (2.3.12)

and is purely polarised (DOP = 1) as we would expect. The same result is obtained
when the retarder’s fast axis is oriented at ρ′ − 45°. The measured signal at the
interferometer output is proportional to the irradiance at the output I0,out, which is
the first Stokes parameter of Sout(ν), integrated over all frequencies:

I0,out =
∫ ∞
−∞

S0(ν)
4

(
1 + cosφ(ν)

)
dν (2.3.13)

The irradiance at the input is defined I0,in ≡
∫∞
−∞ S0(ν)dν. The area-normalised

spectral irradiance of the input is then g(ν) = S0(ν)/I0,in. The phase delay imparted
by the retarder can be written as φ(ν) = 2πντ(ν). Substituting these three relations
into Equation 2.3.13 we find

I0,out = I0,in

4

(
1 + <

{ ∫ ∞
−∞

g(ν) exp
[
2πiντ(ν)

]
dν
})

. (2.3.14)

The contents of the curly brackets will hopefully be recognisable as the (dispersive)
coherence from Equation 2.2.22. So the irradiance at the output of our polarisation
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interferometer is:
I0,out = I0,in

4

(
1 + <

{
γ(τ0)

})
. (2.3.15)

That this is a factor two smaller than the irradiance at the output of a Michelson
interferometer (Equation 2.1.9) is an unavoidable consequence of the front polariser
rejecting half of the unpolarised incident light. However, if a polarising beam splitter
is used in place of the front polariser, then this light can be used for other purposes[64].
When the transmission axes of the two polarisers are crossed instead of aligned, the
addition in Equation 2.3.15 becomes subtraction. Linear retarders are constructed
out of birefringent materials, which we need to understand to model the realistic
interferometer response.

2.3.4 Phase Delay due to a Uniaxial Crystal Plate

In the previous section retarders were assumed to impart a fixed (frequency-dependent)
delay between orthogonal polarisation states when, in reality, the delay will depend
on the path of the incident light ray. Taking advantage of this dependence to scan the
delay across the sensor plane is an established technique for snapshot imaging Fourier
transform spectroscopy by spatial multiplexing. In this section we will consider the
delay path-dependence in uniaxial birefringent crystals, the type of retarder used in
this work.

In an anisotropic material, the electron cloud surrounding each atom or molecule
distorts under the influence of an applied electric field more freely in one direction than
in another. As a result, refractive index n depends on the orientation of the electric
field, determined by the light’s path and polarisation state. In this work our interest
is limited to uniaxial crystals, for which a single axis of symmetry determines optical
behaviour. If a wave’s field vector lies in the plane perpendicular to this axis, the
wave will experience the same n. This axis of symmetry is called the crystal optic axis
(COA). For a given ray direction in a uniaxial crystal, Maxwell’s equations permit two
plane wave solutions with different vph and orthogonal linear polarisation states[54,
66]. One of these solutions is polarised orthogonal to the COA and experiences the
same refractive index nO regardless of ray direction — we call this the ordinary (O)
ray. The O-ray follows Snell’s law at material boundaries. The second solution has a
field component parallel to the COA and is called the extraordinary (E) ray. For the
E-ray, the refractive index is path-dependent and the ray does not, in general, follow
Snell’s law. The refractive index nE quoted for a uniaxial crystal is that experienced
by an E-ray whose field aligns with the COA, i.e. it’s direction of travel is orthogonal
to the COA. A special case is when the ray direction aligns with the COA, for which
both rays experience refractive index nO and there is no birefringent effect. In general,
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Figure 2.3: Wave normal surfaces for (a) positive and (b) negative uniaxial crystals.

the path of the E-ray can be traced using Huygens’ principle of secondary wavelets
[72, 73], only the wavelet for the E-ray is not a sphere but an ellipsoid, as shown in
Figure 2.3. A derivation or even a full account of the E-ray path is beyond the scope
of this work so we will only quote the key result of the phase difference between the
O and E rays here10.

We start by defining the necessary geometry, with reference to Figure 2.411. All
crystal plates used in this work have two opposite faces that are plane, parallel to one
another and perpendicular to the system’s optical axis. Any plane within the crystal
that contains both the surface normal and the COA is called a ‘principal section’, as
shown in Figure 2.4(a). The angle between the COA and the front face is called the
cut angle θ. To generalise for arbitrary crystal orientations in the xy-plane, we define
ρ as the angle between the x-axis and the principal section. The plane containing
both the incident ray and the surface normal is the plane of incidence, shown in
Figure 2.4(b), and the angle of incidence α is the angle between the incident ray and
the surface normal. The angle between the x-axis and the plane of incidence is β.
Finally, the angle between the plane of incidence and the principal section, shown in
Figure 2.4(c), is δ ≡ β − ρ.

In general, the phase delay imparted by a uniaxial crystal plate is φ = 2π
λ

OPD
where the optical path difference (OPD) between the two rays is a function of α, θ,
δ and the plate thickness L. However, when the light is normally incident (α = 0°)
and the crystal’s front face is cut parallel to its optic axis (θ = 0°), the O and E rays
follow a common path and experience refractive indices nO and nE respectively. It
follows that phase delay is simply

φ = 2πL(nE − nO)
λ

. (2.3.16)

This situation is shown in Figure 2.5(a). Figure 2.5(b) then shows the path of incident

10A recent paper states that “the abundance of optical subtleties that can be discovered in
anisotropic media seems to be inexhaustible”[74] — probably handy if you work in the field.

11Here, we use the nomenclature of the crystal optics literature[75] and the same coordinate system
used in recent CI work[70].
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Figure 2.4: Definitions of the angles used to calculate the phase delay imparted by
a plane-parallel, uniaxial crystal plate for off-axis rays. The z-axis is the system’s
optical axis and the crystal optic axis is indicated by the black arrow in (a). See text
for details.

light, polarised at 45°. The O-ray is shown in green and the E-ray is shown in red. In
the diagram nE > nO and so the E-ray lags behind the O-ray. If we maintain normal
incidence but consider an arbitrary angle θ between the COA and the crystal front
face, we see that there is a lateral displacement between the two rays in the plane of
the principal section, as shown in Figure 2.6.

In general, OPD is a function of the angles θ, α and δ, the refractive indices nO

and nE and the plate thickness L. It can be shown, using either Maxwell’s equations
or Huygens’ principle of secondary wavelets[75], that the phase delay between O-ray
and E-ray for light with wavelength λ is:

φ = 2πL
λ

√n2
O − n2 sin2 α + n(n2

O − n2
E) sin θ cos θ cos δ sinα

n2
E sin2 θ + n2

O cos2 θ

−
nO

√
n2

E(n2
E sin2 θ + n2

O cos2 θ)− {n2
E − (n2

E − n2
O) cos2 θ sin2 δ}n2 sin2 α

n2
E sin2 θ + n2

O cos2 θ

,
(2.3.17)

Here, n is the refractive index of the surrounding medium. The Mueller matrix for
an ideal plane-parallel uniaxial crystal plate can be found by combining Equation
2.3.17 with the definition for the Mueller matrix linear retarder in Equation 2.3.8.
The meaning of each term in Equation 2.3.17 will be clearer in the next section when
we visualise the resulting interferogram.
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Figure 2.5: (a) Light is normally incident (α = 0°) on a plane-parallel uniaxial
crystal plate whose optic axis is parallel to the front face (θ = 0°). (b) Considering
monochromatic, linearly polarised light (oriented at 45°), the evolution of the electric
field through the plate is shown. The ordinary (green) and extraordinary (red) rays are
linearly polarised perpendicular to and parallel to the principal section, respectively.
The rays travel along a common path at different speeds, resulting in an optical path
difference.

Lateral
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y

x

O
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Figure 2.6: Light is normally incident (α = 0°) on a plane-parallel uniaxial crystal
plate whose optic axis makes an angle θ with the front face. Considering monochro-
matic, linearly polarised light (oriented at 45°), the paths of the ordinary (green) and
extraordinary (red) rays are shown. A lateral displacement is introduced between the
rays in the plane of the principal section.
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2.3.5 Imaging Polarisation Interferometry

To produce interference fringes with high contrast, light reaching each point on the
sensor must experience the same delay. Since the delay imparted by a uniaxial crystal
depends on the incident ray’s direction, the light passing through the polarisation
interferometer must be collimated. CI instruments are imaging polarisation interfer-
ometers which typically have the layout shown in Figure 2.7. Light from the source
is collected by the objective lens (l1) and focussed to an intermediate image at the
front focal plane of a second lens (l2). This lens collimates the light and directs it
through the interferometer and bandpass filter before it is focussed by a final lens
(l3) onto the sensor plane. The polarisation interferometer shown here — polariser,
crystal, analyser — is the simple layout introduced in Section 2.3.3. To model the

z

l1 l2 l3

From 
source

Sensor
plane

Bandpass
�lter

y

x

Intermediate
image plane

f1 f2 f3

x

y

Element 
orientation:

Crystal(s) 
imparting 
delay

Polariser Polariser

Figure 2.7: The imaging polarisation interferometer optical design used in this work.

interferogram image, delay φ must be mapped onto the sensor plane. By treating l3
as a thin lens, the crystal incidence angle α can be related to position on the sensor
plane x, y by

α(x, y) = arctan
(√

x2 + y2

f3

)
, (2.3.18)

where f3 is the focal length of l3. The angle between the principal section and plane of
incidence is δ(x, y) ≡ β(x, y)−ρ, where the orientation of the crystal ρ is independent
of position on the sensor plane. Therefore, we only need to map the orientation of
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Figure 2.8: Projection onto the sensor plane of the angles defining ray path through
the interferometer. (a) Angle of incidence α(x, y) for a lens with focal length f3 =
150mm. (b) The angle made between the x-axis and the projection of the incident
ray onto the front face of the crystal β(x, y).

the plane of incidence β(x, y) onto the sensor plane:

β(x, y) = atan2(y, x) + π. (2.3.19)

Here, atan2(. . . ) is the ‘two-argument arctangent’ function often used to convert
between Cartesian and polar coordinate systems[76] and the extra π term appears
since the lens produces an inverted image. Figure 2.8 plots α(x, y) and β(x, y)
for f3 = 150mm. By combining Equations 2.3.18, 2.3.19 with Equation 2.3.17,
the distribution of phase delay across the sensor plane φ(x, y) can be calculated
and therefore so too can the Mueller matrix for a plane-parallel uniaxial crystal of
arbitrary orientation. We can now write a general equation for the irradiance at the
sensor plane of an imaging polarisation interferometer with arbitrary polarising and
retarding components, observing a scene with arbitrary Stokes spectrum. Let the
total Mueller matrix for the interferometer be Mtot(x, y, ν) and let Sin(x, y, ν) be the
Stokes vector for the light that would be arriving at point x, y on the sensor plane in
the absence of the interferometer. The Stokes vector at x, y is then calculated as

Sout(x, y) =
∫ ∞

0
Mtot(x, y, ν)Sin(x, y, ν)dν. (2.3.20)

The total irradiance at point x, y is then the first Stokes parameter of Sout(x, y). The
top row of Figure 2.9 shows example interferograms modelled using Equation 2.3.20
for an instrument with the configuration shown in Figure 2.7. The modelled source is
extended, uniform and monochromatic (λ = 450 nm) and the delay is produced by a
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single uniaxial crystal plate of thickness 10mm. From Figure 2.9(a)–(e), the cut angle
θ of the crystal increases from 0 to 90°. The crystal material modelled here (and the
only birefringent material used in this work) is barium borate BaB2O4 (BBO), for
which nE ≈ 1.56, nO ≈ 1.69 and B ≡ nE−nO ≈ −0.13 at this wavelength12. The final
lens has focal length 75mm. It is useful here to consider φ(x, y) as the sum of two parts:
the phase offset φoffset, which is the phase delay at normal incidence (i.e. at the nominal
image centre x = y = 0), and the phase shape φshape(x, y) ≡ φ(x, y) − φoffset. The
bottom row of Figure 2.9 plots the corresponding φshape(x, y) for the interferograms
in the top row and φoffset is also stated. An expression for φoffset can be found by
substituting α = 0° into Equation 2.3.17:

φoffset = 2πL
λ
nO

(
1− nE√

nE sin2 θ + n2
O cos2 θ

)
(2.3.21)

At θ = 0° we see the hyperbolic fringe pattern characteristic of a waveplate and we
see that φoffset is at it’s maximum. At the other extreme (θ = 90°), normal incidence
corresponds to a ray directed along the COA and so φoffset = 0. In this case, the
size of the component of the field parallel to the COA depends only on the angle of
incidence α(x, y) and so the lines of equal phase delay form concentric circles.

For intermediate cut angles 0°< θ < 90°, the phase offset φoffset takes some
intermediate value and, importantly, we see a large phase shear across the image in
the direction of of the principal section. This shear largely comes about due to lateral
displacement between the O and E rays, and reaches a maximum at θ ≈ 45°. The
minimum fringe period distance P at the sensor plane (indicating maximum phase
shear) can be estimated by substituting θ = 45° and δ = 0° into Equation 2.3.17,
assuming small incidence angles α and combining with Equation 2.3.18:

P ≈ f3λ

L

(
n2

O + n2
E

n2
O − n2

E

)
. (2.3.22)

This phase shear acts as a spatial carrier frequency across the sensor. This carrier
is then both amplitude-modulated and phase-modulated by the observed spectral
lineshape at each part of the image, according to the FTS theory laid out in Section 2.2.
When the phase shear is near-constant across the image, as in Figure 2.9(c), it is called
a linear carrier. The (near) constant spatial frequency of the carrier should ensure
separation in the spatial frequency domain between the background brightness (I0)
and coherence (<{γ}) terms of the interferogram. The brightness, phase and contrast
images can then be extracted (demodulated) from the raw image using standard
Fourier analysis techniques. See appendix B for an outline of Fourier demodulation of

12Dispersion in BBO is treated in detail in Section 4.1.2.
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Figure 2.9: Top row: modelled interferograms for a simple imaging polarisation interferometer consisting of a single uniaxial crystal
plate sandwiched between two polarisers (component orientations and optical setup as shown in Figure 2.7). Bottom row: corresponding
modelled phase shape at the sensor plane. See text for details.
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Figure 2.10: A raw CI image observing carbon emission (CIII, 464.9 nm) on the HL-
2A tokamak during a disruption, showing the sinusoidal fringe pattern characteristic
of a linear spatial carrier. The view is tangential and the curved surface visible on
the left is the centre column.

interference fringes with a linear spatial carrier with a treatment of noise propagation
from the raw image into the demodulated quantities. In the next chapter we will
deal with a pixelated spatial carrier, for which new demodulation techniques need
to be introduced. For a linear spatial carrier, the spatial resolution in the direction
of the phase shear (orthogonal to the fringes) is roughly one fringe period[63]. The
spatial resolution in the orthogonal direction is a single pixel. This is assuming that
the resolution is limited by the detector and not the optical components. Figure 2.10
shows an example of a raw CI image taken with a linear spatial carrier (observing C
III emission at 464.9 nm on the HL-2A tokamak) showing the characteristic sinusoidal
fringe pattern superimposed on top of the observed brightness scene13.

As shown in Figure 2.9(c), a single uniaxial crystal plate with intermediate cut
angle (0° < θ < 90°) can produce both the phase offset and phase shear required for a
single-delay snapshot CI instrument with a linear spatial carrier. This type of crystal
is typically called a ‘displacer plate’ in the literature[70, 77, 78]. An alternative is to
produce the phase offset and shear using separate birefringent components. Clearly
from Figure 2.9(a), a waveplate (θ = 0°) essentially produces a phase offset only. A
Savart plate can be used to produce the phase shear only.

13CI measurements were made on the HL-2A tokamak by the author and collaborators at the
Southwestern Institute of Physics, Chengdu, but this data is not presented in this thesis.
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Figure 2.11: The layout of a Savart plate and the O- and E-ray paths for normal
incidence.

2.3.6 Savart plate

A Savart plate is a composite component made of two plane-parallel uniaxial crystal
plates of equal thickness and cut angle θ = 45°, whose principal sections are oriented
at right angles[65]. Figure 2.11 shows a schematic. The result is that the O-ray in the
first plate becomes the E-ray in the second (and vice versa), meaning that the φoffset

imparted by the first crystal is perfectly cancelled out by that of the second—for
normal incidence at least. Off-axis, a phase shear is produced that is a factor

√
2 less

steep than that produced by a single crystal plate of the same (total) thickness and is
oriented at 45° to the principal sections. Approximations for the phase delay φ due to
a Savart plate can be found in the literature[65, 79], or it can be evaluated by directly
modelling the two constituent crystal plates. If the phase delays imparted by the
plates are φ1 and φ2 then the Mueller matrices are MLR(ρ, φ1) and MLR(ρ+ 90°, φ2)
respectively. Here, we consider the orientation angle of the Savart plate ρ relative to
the principal section of the first plate, so in Figure 2.11 we have ρ = 90°. It follows
from the relations in Equation 2.3.9 that the total Mueller matrix for a Savart plate
with orientation ρ is

MSP(ρ) = MLR

(
ρ+ 90°, φ2

)
MLR

(
ρ, φ1

)
= MLR

(
ρ, φ1 − φ2

)
(2.3.23)
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So, φ1 and φ2 are calculated for each crystal using Equation 2.3.17 and then combined
subtractively14. Using a Savart plate/waveplate combination instead of a single dis-
placer plate makes for a more flexible, but less compact instrument design. Generally,
it also has an unfavourable effect on the instrument function, which will be briefly
discussed in the next section.

2.3.7 Instrument function

For real interferometers, different effects conspire to reduce the observed fringe con-
trast below the magnitude of the observed coherence – analogous to instrumental
broadening in a grating spectrometer. It is important to properly calibrate for these
effects to avoid systematic errors in the inferred spectrum. This section explains
how some of these effects arise and how they can be calibrated. Maintaining a high
fringe contrast is important as the SNR of the measurement scales with both the light
intensity and the contrast.

Finite detection area

In section 2.3 we calculated the point-wise irradiance at the detector plane for a
simple polarisation interferometer. We have also seen that, for birefringent crystals,
the dependence of phase delay on ray path results in a phase distribution as a function
of sensor position φ(r), where we use the shorthand r = {x, y}. It follows that the
finite detection area of each pixel spans a range of interferometer delays, artificially
reducing the contrast of the measured interferogram. This contrast reduction will be
greater, the larger the range of delays each pixel’s area spans.

This effect will be considered in detail since it is an unavoidable consequence of
linear spatial carrier systems, which require a large phase shear across the sensor.
We now write the predicted irradiance for a simple, single-delay CI system with the
dependence on r made explicit:

I(r, τ) = I0(r)
4

(
1 + <{γ(r, τ)}

)
. (2.3.24)

Now, consider a single pixel on the detector plane P with dimension d and area A.
The measured signal from P is proportional to the incident number of photons which,
in turn, is proportional to the total incident power (for quasi-monochromatic light).
To arrive at the total observed power, we take P =

∫
P I(r, τ)dA where dA is an

infinitesimal area element on the detector plane (we will assume that the incident

14Alex Thorman has shown that Savart plates also introduce unavoidable secondary carrier fre-
quency terms due to off-axis effects, which can be suppressed via Fourier analysis[70].
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light’s brightness and coherence is constant over the pixel’s area) and, similarly for
P0 =

∫
P I0(r)dA:

P (τ) = P0A

4

(
1 + <{γm(τ)}

)
(2.3.25)

where we have used A ≡
∫
P dA. This has the same form as Equation 2.3.24 with the

coherence encoded in the observed interferogram γm(τ) defined as the integral over
the point-wise coherence:

γm(τ) ≡ 1
A

∫
P
γ(r, τ)dA. (2.3.26)

Both observed and point-wise coherence parameters have associated with them con-
trast and phase:

ζm(τ) exp[iΦm(τ)] = 1
A

∫
P
ζ(r, τ) exp[iΦ(r, τ)]dA, (2.3.27)

such that contrast of the observed interferogram will be given by

ζm(τ) =
∣∣∣∣∣ 1A

∫
P
ζ(r, τ) exp[iΦ(r, τ)]dA

∣∣∣∣∣
≈ ζ(τ)

∣∣∣∣∣ 1A
∫
P

exp[iΦ(r, τ)]dA
∣∣∣∣∣︸ ︷︷ ︸

≡ ζI

. (2.3.28)

Here, it has been assumed that the contrast of the point-wise interferogram does
not vary over the pixel area: ζ(r, τ) ≈ ζ(τ). The new defined quantity ζI is the
instrumental contrast, a calibration parameter representing the maximum theoretical
fringe contrast that can be measured with the instrument, when the observed light
is perfectly coherent (ζ(τ) = 1). To gauge the size of ζI , consider the example of
the phase shear required for a linear spatial carrier. The (idealised) fringes are then
straight, parallel, cosinusoidal and aligned with the x-axis. The corresponding phase
distribution is:

Φ(r, τ) = 2π
pd
y, (2.3.29)

where p is the number of pixels per fringe, d is the pixel dimension and y is the sensor
plane y coordinate. Substituting this into Equation 2.3.28 and evaluating, we find:

ζI = | sinc(π/p)| (2.3.30)

Figure 2.12 plots ζI vs. p. Clearly, choice of fringe period is then a trade-off: maxim-
ising spatial resolution by minimising p reduces the observed fringe contrast, lowering
the dynamic range and SNR of the measurement. p can be estimated for a displacer
plate using Equation 2.3.22 and for a Savart plate by multiplying that expression by
√

2.
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Figure 2.12: Instrument contrast ζI as a function of p, the fringe period in pixels
for a simplified case of straight, parallel and horizontal fringes.

Linear spatial carrier CI designs typically use around p = 10, which gives ζI =
0.98[63]. For these systems, measured ζI is typically lower than predicted by Equation
2.3.28. This is due in large part to non-uniformity of the interferometer delay produced
across the crystal aperture, which is then integrated over at each point on the sensor.
This can be modelled using a similar treatment to Equation 2.3.28, integrating over
aperture area instead of detector area.

Since a displacer plate CI system achieves the same phase offset and phase shear
as a waveplate + Savart plate system with a lower combined crystal thickness and
fewer crystal cut faces, one would expect ζI to be higher for this design.

In general, decreased ζI can also be caused by component misalignment, imperfect
lens focussing and non-ideal behaviour of components. These effects can generally be
modelled with the instrument model set out in this chapter.

2.4 Previous CI Investigations

The first application of fixed delay FTS with a polarisation interferometer to measure
plasma emission was by John Howard and colleagues at Australian National Univer-
sity, demonstrated on the H1 heliac stellarator. The prototypical CI design was the
MOSS (Modulated Optical Solid-State) spectrometer[64, 80, 81]. This was a tem-
poral multiplexing design, rapidly scanning delay over a π rad range by applying an
alternating voltage (∼ kV, ∼ 10 kHz) across a waveplate. By the electro-optic effect,
this changes the birefringence, and so the imparted delay. However, synchronising the
delay scanning and camera acquisition is complicated compared to snapshot designs,
and the reduced time resolution of the spectral measurement sets a lower limit on the
timescales of the dynamic plasma phenomena that can be observed. The first results
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from MOSS were captured using a 16 channel photomultiplier tube[64], while a later
implementation on the WEGA stellarator used a 164× 164 format CCD detector[81].
Another way of scanning the delay in time that has been demonstrated is to use a
ferroelectric liquid crystal (FLC), which can be rapidly switched to scan the delay,
but with much lower voltages[82].

A static imaging FTS design using a Savart plate to create a linear spatial carrier
was used for demonstration purposes as far back as 1970[83], with renewed interest
in the design for scientific use from 2002[84]. Since then, CI has broadly tracked
developments from the wider optics community, for example the earliest spatial
multiplexing designs used Wollaston prisms to produce four separate interferograms
in the four quadrants of the sensor. Since 2010, linear spatial carrier CI instrument
designs have been more popular.

The most mature CI application at the time of writing is the measurement of
impurity flows in the SOL, with the DIII-D, ASDEX-Upgrade (AUG) and Wendel-
stein 7-X (W7-X) experiments each operating at least one system permanently, and
MAST operating a system in 2013. All of these experiments use the spatial hetero-
dyne CI design, with earlier investigations (2010-2015) tending to use Savart plates
and more recent investigations (2015-2020) using displacer plates to create the ne-
cessary phase shear. Observed SOL flows are consistently of the order ∼ 20 km/s.
DIII-D was the first to install its system, observing C2+ flows in the divertor and
finding good agreement with UEDGE fluid modelling[85–87]. More recently, DIII-D
has installed a second, wide-field view system covering the main-chamber SOL and
the upper and lower divertors. Recent results show good agreement with UEDGE
modelling for main-ion flows in helium discharges[52]. Important work on minimising
systematic errors due to environmental effects such an thermal drifts, vibration and
magnetic fields, as well as direct comparison with high-resolution spectrometer has
also been presented[88]. On MAST, CI measurements were made of carbon and
helium flows from midplane and divertor views[51, 63]. Measurements of the C2+

flows in MAST’s high-field side SOL during neutral deuterium gas puffing (shown
in Figure 2.13) were more recently compared to modelling of main ion flows using
the EMC3-EIRENE plasma edge fluid and kinetic neutral transport code, finding
good qualitative agreement[89]. On AUG, measurements of impurity and neutral
deuterium flows around the divertor have been presented[78], while on W7-X, striking
images of counter-streaming C2+ flows in the island-divertors have been found to
agree well with EMC3-EIRENE predictions[90].

An area of recent development for all labs operating Doppler flow CI diagnostics
is absolute wavelength calibration. DIII-D, AUG and W7-X have each installed
tuneable lasers for the necessary inter-shot phase calibration[77, 91, 92]. We will
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Figure 2.13: Line-integrated carbon impurity flows (C III, λ = 464.9nm) around
the centre column of the MAST tokamak during midplane fuelling on the high field
side. The white line is an estimated magnetic field line. Reproduced from [63] with
permission from the author.

save a discussion of this work for Chapter 4, where we introduce an alternative
wavelength calibration scheme that uses simpler hardware (gas-discharge lamps) and
is significantly cheaper.

A number of proof-of-principle CI investigations have also been carried out without
permanent installation or further development. For example, a spatially multiplexed
Savart plate design was used to measure impurity temperature and flow via charge
exchange recombination emission from a heating neutral beam on the TEXTOR
tokamak[93]; see also the (mostly theoretical) work developing CI techniques for
measuring electron temperature and density via Thomson scattering[94–96]. Addi-
tionally, a demonstration of electron density measurement via Stark broadening of
hydrogen Balmer series emission was made on the Pilot-PSI linear plasma experi-
ment[97]. Chapter 5 of this thesis further develops this last application.

Although not the focus of this work, spectropolarimetric CI designs have been
developed in parallel to purely spectroscopic designs. Their main application in fusion
experiments is the measurement of Balmer-α emission (656nm) from high-energy
neutral hydrogen (or deuterium) beams injected for heating and current control. A
strong motional electric field causes Stark splitting and polarisation of the multiplet
line which encode the local magnetic field strength and orientation respectively. Since
the neutral beam reaches into the plasma core, this technique can measure the local
magnetic field along a large radial extent of the plasma, which is important for inferring



2.5. CI hardware used in this work 47

the current profile and understanding related instabilities. Spectropolarimetric CI
designs typically replace the front polariser of the configuration shown in Figure
2.7 with a delay plate at the same orientation. Each of the two delays needs to
be scanned in order to recover both the Doppler shift and the orientation of the
linearly polarised light, which both manifest as an interferogram phase shift. Similar
to spectroscopic CI designs, the first instruments of this kind used PMT’s with a
limited number of channels[98] while more recent designs use imaging sensors. Hybrid
spatio-temporal or double spatial modulation are now the standard and have been
deployed on ASDEX-Upgrade and DIII-D tokamaks.

Finally, a spectro-polarimetric CI design has been proposed for ITER, targeting
impurity emission in the SOL[99]. If the strength and orientation of the magnetic
field is known, then by comparing the measured and expected polarisation states of
a Zeeman-split multiplet, the contribution of depolarised reflections may be unpicked
and suppressed, improving the reliability of tomographic reconstructions of impurity
flow and temperature. Polarisation due to Zeeman splitting and its effect on con-
ventional CI measurements is discussed for hydrogen emission later on in Section
5.1.3.

2.5 CI hardware used in this work

Although this thesis introduces novel CI interferometer configurations, much of the
hardware used here was first used in a previous investigation of impurity ion flow
and temperature measurements on MAST, as documented in Scott Silburn’s PhD
thesis[63]. More complete component specifications can be found in that work, but
important information is listed here.

Figure 2.14 shows the MAST CI instrument, whose optical layout matches the
schematic from Figure 2.7. The camera and optical components are mounted to
a custom anodised aluminium baseplate. Three digital single lens reflex (DSLR)
lenses are used as they are optimised for wide angle imaging. The interferometer is
enclosed within a temperature controlled cell (Andover Corp. model 101FRDC00-
50), with endcaps modified to accommodate more optical components. The cell
regulates temperatures in the range 30–60°C with a stated accuracy of ±0.2°C. The
birefringent crystal components used in this work are three α-BBO waveplates with
nominal thicknesses of 4.6, 6.5 and 9.8mm and measured thicknesses of 4.48, 6.35 and
9.79mm respectively (±0.02mm). The two α-BBO Savart plates used in this work
have nominal (total) thicknesses of 4 and 2.2mm. All crystals have anti-reflective
coatings covering the 400–700 nm wavelength range and were purchased from CLaser
Photonics. The stand-alone polarisers used are Newport model 20LP-VIS.
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Interferometer enclosure

Camera

Baseplate

Figure 2.14: The MAST CI instrument[63]. Photo courtesy of Scott Silburn.

For the results in this thesis, we mount to the same style of baseplate and use
the same interferometer enclosure (with the exception of Section 4.2.1, where the
alternative setup is documented). Multiple different camera models, interferometer
configurations and objective lenses (l3) are used in this work, and are detailed at the
appropriate points.

2.6 Summary

In this chapter we have covered the theory that underpins coherence imaging: co-
herence theory, Fourier transform spectroscopy and polarisation interferometry. By
isolating a narrowband emission feature, which depends on a small number of physics
parameters and whose functional form is known, the interferometer delay scanning
requirements of FTS are drastically reduced. This allows for ‘snapshot’ spectral ima-
ging with a time resolution that is limited only by the brightness of the source. In
using the ‘common-path’ design of polarisation interferometers instead of the more
traditional double-path design (e.g. Michelson), CI instruments are more robust
to vibrations. The result is a compact, rugged and relatively inexpensive spectral
imaging diagnostic for fusion plasma experiments. We have given an overview of the
development of CI and some of the different applications from previous work. In the
next chapter, we will see that a new technology in polarimetric imaging—pixelated
polariser arrays—can be used to make CI designs even more compact and robust.



Chapter 3

Coherence Imaging with a
Pixelated Phase-mask

In the first chapter, we introduced the motivation behind fusion plasma diagnostics.
In the second, we covered the theory and development of CI. In this chapter, we
will introduce a novel CI technique that uses a pixelated polarising filter to encode
the interference pattern instead of the sinusoidal fringes used in previous investiga-
tions. This is an application of an existing technique in optics called pixelated phase
mask (PPM) Interferometry, where individual camera pixels sample the coherence
at different delays determined by the polariser orientation. The advantages of using
this technique over previous snapshot CI designs are that it is more compact, has
improved robustness against misalignment and maximises the spatial resolution of
the measurement.

After first considering a PPM-CI instrument with a single fixed interferometer
delay, we will introduce a multi-delay configuration that combines pixelated and sinus-
oidal fringe patterns to sample the interferogram at four fixed delays simultaneously.
This increases the spectral resolution of the CI measurement which can, depending
on the nature of the targeted plasma emission, be used to make inferences about
multiple physics parameters at once, and/or to check the validity of the assumed
emission model. However, the extra spectral information comes at the price of re-
duced spatial resolution. Algorithms for interferogram demodulation for single and
multi-delay PPM-CI data are also described. Later on, in Chapter 5, these ideas
are tested experimentally with measurements of electron density made on the linear
plasma device Magnum-PSI.
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3.1 Pixelated Phase-mask Interferometry

Information about the polarisation state of light is useful in industrial inspection,
remote sensing and many other fields[68, 100]. Traditionally, it is measured by record-
ing a series of images as a polariser rotates in front of the camera sensor. The time
taken to capture the required number of images then sets a lower limit on the time
resolution of the measurement. Pixelated polarisers allow for ‘snapshot’ encoding of
the polarisation state of a scene using an array of polarisers with different orientations
over the camera sensor. An example layout for this kind of sensor is shown in Figure
3.1(a). This method of encoding the polarisation state is analogous to how a Bayer
filter achieves colour imaging. In the last few years, the key performance indicators
for this type of sensor — resolution, pixel size, dynamic range and polariser extinction
ratio — have all significantly improved, leading to many commercial products[101].
The use of pixelated polarisers in interferometry was first proposed in 2004 by 4D
Technology[102, 103] with a technique called pixelated phase mask (PPM) Inter-
ferometry. In the image produced by a PPM instrument, the interferometer phase
delay measured by each pixel depends on the orientation of that pixel’s polariser.
Since the layout of polariser orientations can be specified at manufacture, arbitrary
phase-masks can be created to suit the application. The advantages of this technique
over one using a linear phase mask (LPM) (like that produced by a displacer or
Savart plate) have already been considered in some detail[102, 104]: for example, the
PPM technique is more robust than the linear phase mask (LPM) against systematic
effects caused by large variations in the background intensity. PPM has found uses
in optical metrology and for imaging both static[105] and dynamic[106] biological
specimens. To the author’s knowledge, PPM has not yet been applied to Fourier
transform spectroscopy, for measurements of plasma experiments.

3.2 Single-delay Coherence Imaging

The pixelated polariser camera used in this work is the FLIR Blackfly S (model
BFS-U3-51S5), shown in Figure 3.1(b), which incorporates the Sony IMX250MZR
sensor. This sensor is a complementary metal–oxide–semiconductor (CMOS) type,
with 3.45µm pixel dimension and 2448×2048 format. Table 3.1 lists the key paramet-
ers of the camera and sensor. For the pixelated polarisers, wire-grids are formed on
the chip at manufacture, with transmission axis orientations arranged in the repeating
2 × 2 grid pattern shown in Figure 3.1(a). To see how pixelated polarisers can be
used in CI, we return to the simple polarisation interferometer shown in Figure 2.7:
two polarisers, transmission axes aligned at angle ρ = 0 rad, sandwiching a single
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Figure 3.1: (a) Pixelated polarisers arranged in the repeating 2 × 2 grid pattern
of the sensor used in this work (Sony IMX250MZR). The diagram views the sensor
from the point of view of a light source (opposite to our convention, hence the flipped
x-axis) and a single ‘superpixel’ is bordered in bold. Polariser orientation angle ρ is
the orientation of the transmission axis relative to the x-axis. Pixel number m is a
convenient shorthand. (b) The FLIR Blackfly S camera, photo from the manufacturer.

waveplate with fast axis oriented at ρ = π
4 rad. On exiting the waveplate, the light is

the sum of two equal-amplitude beams, out of phase and in orthogonal polarisation
states that align with the fast and slow axes of the waveplate. The final polariser
then transmits equal-sized components of each beam and the interference pattern
is produced at the sensor. Instead of introducing a phase shear across the image
with a displacer/Savart plate, we now want the phase delay to vary according to the
orientation of the final polariser. This can be achieved by introducing a quarter-wave
plate (QWP) into the instrument before the final polariser, with fast axis oriented at
ρ = π

2 rad. To calculate the interferogram irradiance we use Mueller calculus. The
Mueller matrix for an ideal QWP is just a special case of the Mueller matrix for a

Camera model FLIR Blackfly S (BFS-U3-51S5)
Sensor model Sony IMX250MZR CMOS
Format 2448× 2048
Pixel size 3.45µm
Quantum efficiency 17% (at 435 nm)
Digitisation 12 bit
Max. framerate (full frame) 75Hz
Polariser extinction ratio 400 (at 435nm)

Table 3.1: Key parameters for the pixelated polariser camera used in this chapter
and in Chapters 4 and 5.
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linear retarder (Equation 2.3.8) with φ = π
2 rad. So, for a QWP with its fast axis

oriented at an angle ρ to the instrument x-axis:

MQWP(ρ) ≡ R(−ρ)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

R(ρ) (3.2.1)

=


1 0 0 0
0 cos2(2ρ) cos(2ρ) sin(2ρ) − sin(2ρ)
0 cos(2ρ) sin(2ρ) sin2(2ρ) cos(2ρ)
0 sin(2ρ) − cos(2ρ) 0

 ,

where R(ρ) is the matrix for anti-clockwise frame rotation by angle ρ, defined in
Equation 2.3.6. The orientation of the final polariser is left general and is denoted by
ρP. The total Mueller matrix for the system described is

Mtot = MP(ρP)MQWP
(
π
2

)
MLR

(
π
4 , φ(ν)

)
MP(0). (3.2.2)

Here, the waveplate imparts phase delay φ(ν). Next, we proceed as in Section 2.3.3.
If the incident light is unpolarised, its Stokes vector is

Sin(ν) =


S0(ν)

0
0
0

 . (3.2.3)

The Stokes vector for light at the output of the interferometer (the sensor plane) is
then calculated as

Sout(ν) = Mtot(ν)Sin(ν)

= S0(ν)
4

(
1 + cos[φ(ν) + 2ρP]

)


1
1
0
0

 , (3.2.4)

where the dependence of Mtot(ν) on frequency has now been written explicitly. Assum-
ing our sensor is insensitive to polarisation state, the measured signal is proportional
to the total irradiance at the output I0,out, which is the first Stokes parameter of
Sout(ν), integrated over all frequencies. It follows that

I0,out =
∫ ∞
−∞

S0(ν)
4

(
1 + cos[φ(ν) + 2ρP]

)
dν
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= I0,in

4

(
1 + <

{ ∫ ∞
−∞

g(ν) exp(i[φ(ν) + 2ρP])dν
})

= I0,in

4

(
1 + <

{
γ(τ0) exp(2iρP)

})
. (3.2.5)

Here, we have used g(ν) ≡ S0(ν)/I0,in as the area-normalised spectral irradiance.
Also, γ(τ0) is the degree of (temporal) coherence as a function of time delay τ0, where
τ0 = φ(ν0)

2πν0
. Comparing this to Equation 2.3.15 we see that the introduction of the

QWP results in an extra phase term exp(2iρP) in the encoded coherence. Equation
3.2.5 matches previous results from the literature[103]. We can then write

I0,out = I0,in

4

(
1 + ζ(τ̂0) cos[Φ(τ0)]

)
(3.2.6)

Where the observed interferogram phase Φ(τ0) is given by

Φ(τ0) = φ0(τ0) + φD(τ̂0) + φasym(τ̂0) + 2ρP (3.2.7)

Here, the first three terms were defined in Section 2.2.1 and the fourth term is new.
It follows that the final polariser can be rotated through π rad to scan Φ(τ0) over a
complete 2π rad cycle. So if the final polariser is actually a grid of pixelated polarisers,
whose orientations span a range of π rad in N equal steps, we sample one full cycle
of the interferogram in 2π/N rad increments. Figure 3.2 shows a schematic of this
instrument layout. We can now apply Equation 3.2.6 to the 2× 2 repeating grid of
pixelated polarisers from the Sony IMX250MZR sensor shown in Figure 3.1(a). With
the pixel numbers m as shown in red, we write the orientation of each polariser’s
transmission axis as ρP = mπ

4 rad. On substituting this into Equation 3.2.7 we find
the observed phase is

Φ(τ0) = φ0(τ0) + φD(τ̂0) + φasym(τ̂0) +m
π

2 (3.2.8)

Therefore, each repeating 2 × 2 polariser grid samples the interferogram at π
2 rad

intervals and the measured image has a pixelated fringe pattern. It can be shown
that, if the waveplate orientation is ρ = −π

4 rad instead of ρ = π
4 rad, the new phase

term at the end of Equation 3.2.8 switches sign.

To realise this CI design experimentally requires only minor changes to the MAST
CI hardware described in Section 2.5. The QWP used here is a zero-order polymer film
WP140HE based on polycarbonate (Edmund Optics model #88-252) that provides
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Figure 3.2: The optical set-up for a PPM-CI instrument with a single fixed delay.

a retardation of 142 ± 5nm across the visible range1. This film is secured to the
back of the interferometer enclosure by a 3D-printed plastic ring that screws into
the back of the enclosure endcap. The FLIR camera is mounted to the baseplate
using a second 3D-printed component (This setup is visible in Figure 5.16(a) in
Chapter 5). Figure 3.3(a) shows a raw CI image measured by an instrument in this
configuration. This is a calibration image measuring an integrating sphere illuminated
by a Cd discharge lamp and with a bandpass filter isolating the Cd I emission line
at 467.8nm. The delay φ(ν) for this instrument was produced by three α-BBO
waveplates (measured thicknesses 4.48, 6.35 and 9.79mm, ±0.02mm) with fast axes
aligned such that the constituent phase profiles sum together. Figure 3.3(c) shows
four images corresponding to the four polariser orientations (and so the four π/2 rad
shifts) that are interleaved to form the single raw image. Figure 3.3(b) then shows an
illustration of how the interferogram is sampled at the four marked delays (on-axis).
The hyperbolic fringe pattern seen in each of the four constituent images is caused
by off-axis rays in a waveplate (for example, compare this to the modelled fringes in
Figure 2.9(a)). The maximum (combined) waveplate thickness available was chosen
here to accentuate this hyperbolic fringe pattern.

1This non-ideal behaviour results in deviations from the modelled results at the wavelengths
measured in this work (410 nm< λ < 510 nm) and can introduce systematic error into the demodu-
lated phase and contrast images. Testing is currently under way to gauge and factor out the resulting
systematic error from the results in Chapters 4 and 5, but unfortunately the error was caught too
late for this to be included in this thesis.
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Figure 3.3: (a) A raw calibration image captured using the pixelated phase-mask CI
instrument configuration (single delay). The light source is Cd I (467.8nm) and the
delay is produced by three α-BBO waveplates (4.48, 6.35 and 9.79mm) with fast axes
aligned. (b) The four orientations of the pixelated polarisers sample the interferogram
at π/2 rad intervals. (c) The four interleaved images are shown here separately.

3.2.1 Interferogram Demodulation

We will now consider how the background brightness, phase and contrast can be
extracted from the PPM-CI interferogram in Equation 3.2.6. If the variation in Φ is
small over each 2×2 superpixel, then the four interferogram samples are π/2 rad spaced
over a single interferogram cycle and there exist simple expressions for recovering the
desired quantities[102]. It can be shown using Equations 3.2.6 and 3.2.8 that the
input irradiance can be recovered as

I0,in ≈
3∑

m=0
I0,out(m). (3.2.9)

Similarly, the phase can be recovered as

Φ∗ ≈ arctan
(
I0,out(m = 3)− I0,out(m = 1)
I0,out(m = 0)− I0,out(m = 2)

)
. (3.2.10)
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The asterisk here indicates that this recovered phase image does not include the
pixelated carrier term, i.e. Φ = Φ∗ +mπ

2 . The contrast ζ is estimated as

ζ ≈ 1
I0,in

√√√√8
3∑

m=0

(
I0,out(m)− I0,in

4

)2

. (3.2.11)

These equations return demodulated profiles at superpixel resolution, a factor of two
lower resolution in each dimension than the raw image. The top row of Figure 3.4 plots
the demodulated phase and contrast images for the Cd I calibration PPM-CI image
from Figure 3.3. The bottom row of Figure 3.4 then plots the corresponding modelled
phase and contrast images, generated using Equation 2.3.20 and the nominal values for
all model parameters. The mean on-axis value the modelled phase and contrast images
is set to match that of the corresponding measured image for ease of comparison. The
discrepancy is caused by the crystal thickness values not being accurate enough to
reproduce the phase offset and the full range of contrast degradation effects not being
modelled. The observed phase shape matches the model but is displaced vertically
by ∼ 20 superpixels. The observed contrast is roughly ζ ≈ 0.75 on-axis and exhibits
a non-ideal hyperbolic pattern. This pattern is partially recovered in the Mueller
matrix model by accounting for the non-ideal behaviour of the polymer film QWP
used in this work — the delay is 142 ± 5nm for all wavelengths. This suggests the
effect would disappear were a more standard achromatic waveplate used.

The error in using demodulation Equations 3.2.9–3.2.11 due to phase variation
across a superpixel has been considered in some detail elsewhere[107, 108]. Similar to
the problem of reduced contrast due to finite detection area discussed in Section 2.3.7,
this error can be mitigated by using field-widened birefringent components. Altern-
atively, Fourier demodulation[109] or synchronous demodulation[108] techniques can
be used to demodulate the images instead of the simple equations listed above. For
the waveplates used for single-delay PPM-CI in this work, modelling suggests that
the error introduced in using Equations 3.2.9–3.2.11 to demodulate is not significant.
This effect can be mitigated entirely for the single-delay PPM configuration by using
the ‘synchronous demodulation’ technique described later, in Section 3.3.2.

The pixelated carrier design avoids the steep phase shear across the sensor that
is fundamental to the LPM discussed in the previous chapter. Since the carrier is
produced at the sensor instead of by a displacer / Savart plate, it is fixed, making
the instrument more robust against crystal misalignment in the interferometer. The
spatial resolution at which ζ and Φ are recovered from an LPM interferogram is
anisotropic. Perpendicular to the direction of phase shear, it is set by the pixel width
(assuming detector-limited operation). Parallel to the direction of phase shear, the
spatial resolution is worse, depending on the fringe frequency and the width of the
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Figure 3.4: Top row: demodulated phase (wrapped) and contrast images from the
raw calibration image in Figure 3.3. Bottom row: the corresponding modelled images.

Fourier-domain filter used in the demodulation process. Modelling carried out in
previous work[63] of MAST CI images suggests 2 fringe periods as a typical spatial
resolution in this direction. The LPM fringe period is typically chosen to be > 6 pixels,
to avoid contrast degradation due to phase shear across each pixel’s collection area.
The PPM spatial resolution is isotropic and is 2 pixels or better in both dimensions,
depending on the demodulation algorithm used[104].

3.3 Multi-delay Coherence Imaging

Sampling the coherence at a single delay is not sufficient to resolve more complic-
ated spectral shapes, for example when several line-broadening mechanisms are in
competition or multiple lines are being observed. In these situations, a multi-delay
measurement can be desirable. Measuring plasma emission lines using Fourier trans-
form spectroscopy at multiple fixed delays was first carried out over 50 years ago,
when a fast-scanning Michelson interferometer with six fixed delays was used to es-
timate plasma temperature in Cd gas discharge tube[110]. Similarly, but much later,
some of the early CI investigations utilised coherence information at multiple delays.
For example, the Modulated Optical Solid-State (MOSS) spectrometer was used to
diagnose asymmetric non-Maxwellian Doppler broadening in argon plasmas in the
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H-1NF stellarator[64]. However in this instance, multiple single-delay measurements
were taken over a series of identical plasma discharges using different delays and then
combined for analysis. More recently, Peter Urlings’ masters thesis tested snapshot CI
designs for simultaneously encoding multiple spatial carriers in a single image, each
corresponding to a different fixed delay[111]. These delays were optimised for meas-
urement of charge exchange recombination emission, which typically contains active
and passive components with different Doppler widths and Doppler shifts correspond-
ing to the plasma conditions of the different emission regions. While the results of
multi-delay CI measurements taken on the KSTAR tokamak were inconclusive, the
work presented several novel instrument configurations and analysis tools. In this
section we introduce a snapshot PPM-CI instrument design which simultaneously
encodes four fixed delays via a mixture of linear and pixelated spatial carriers.

Perhaps the simplest way to measure multiple fixed interferometer delays is to
substitute a polarising beam splitter for the front polariser in the single delay design
presented in the previous chapter. This way, the light that is currently being discarded
can be diverted to a second CI instrument with a different delay and a different camera.
It is cheaper, and often more practical, to encode multiple fixed delays onto a single
camera sensor. However, this necessarily reduces the signal to noise ratio for each
delay since the maximum total irradiance at the sensor cannot exceed I0,in/2. A
multi-delay polarisation interferometer can be made by combining two single-delay
interferometers in series, as in the schematic in Figure 3.5(a). Here, the analyser of
the first instrument (in the red box) serves as the front polariser of the second (in
the green box). If the fixed delays imparted by the two systems are φ1(ν) and φ2(ν),
then the Mueller matrix for the total instrument is given by

Mtot = MP(0)MLR
(
π
4 , φ2(ν)

)
MP(0)MLR

(
π
4 , φ1(ν)

)
MP(0), (3.3.1)

To derive an expression for the measured interferogram, we will again proceed as in
Sections 2.3.3 and 3.2. If the Stokes vector for the incident light Sin(ν) is unpolarised,
then it is given by Equation 3.2.3. We then find the Stokes vector for light at the
output of the interferometer (the sensor plane) to be

Sout(ν) = Mtot(ν)Sin(ν)

= S0(ν)
8

(
1 + cos[φ1(ν)]

)(
1 + cos[φ2(ν)]

)


1
1
0
0

 . (3.3.2)

Then we take only the S0 component and integrate over all frequencies to find the
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Figure 3.5: (a) Schematic diagram showing the general layout of a multi-delay CI
instrument. (b) Diagram showing the layout of the pixelated/linear carrier hybrid
multi-delay CI instrument introduced in this section and tested experimentally in
Chapter 5. For clarity, the bandpass filter is not shown in either diagram.
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total irradiance:

I0,out = I0,in

8

(
1 + <

{ ∫ ∞
−∞

g(ν) exp[2πiντ1(ν)]dν
}

+ <
{ ∫ ∞
−∞

g(ν) exp[2πiντ2(ν)]dν
}

+ 1
2<
{ ∫ ∞
−∞

g(ν) exp(2πiν[τ2(ν) + τ1(ν)])dν
}

+ 1
2<
{ ∫ ∞
−∞

g(ν) exp(2πiν[τ2(ν)− τ1(ν)])dν
})

. (3.3.3)

Here, we have written out the phase in full: φ1(ν) = 2πντ1(ν) and φ2(ν) = 2πντ2(ν).
Applying the group delay approximation from Equation 2.2.20 to each integral, we
can write I0,out in terms of the coherence at four different interferometer delays:

I0,out ≈
I0,in

8

(
1 + <{γ(τ0,1)}

+ <{γ(τ0,2)}

+ 1
2<{γ(τ0,2+1)}

+ 1
2<{γ(τ0,2−1)}

)
. (3.3.4)

Here we have defined a shorthand for the time delay at the rest frequency imparted
by each of the two systems: τ0,1 ≡ τ1(ν0) = φ1(ν0)

2πν0
and similarly τ0,2 ≡ τ2(ν0) = φ2(ν0)

2πν0
.

We have also defined shorthand for the sum and difference of the two delays: τ0,2+1 ≡
τ0,2 + τ0,1 and similarly τ0,2−1 ≡ τ0,2 − τ0,1. The four delays simultaneously encoded
into the image, arise as follows. The polarised light exiting the second polariser in
the system is the sum of two beams with delay τ1(ν) between them. The second
waveplate then splits each of these beams again into two, introducing a further delay
τ2(ν) between each pair. The end result after the final analyser is therefore four
beams delayed by 0, τ1(ν), τ2(ν) and τ1(ν) + τ2(ν). Combining these four beams,
as in Section 2.1, encodes the coherence at the relative delay between each pair of
beams, giving the four delays indicated in Equation 3.3.4: τ1(ν), τ2(ν), τ2(ν) + τ1(ν)
and τ2(ν)− τ1(ν).

We can write I0,out in terms of the phase and contrast at each of the four delays:

I0,out ≈
I0,in

8

(
1 + ζ1 cos Φ1

+ ζ2 cos Φ2

+ 1
2ζ2+1 cos Φ2+1
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+ 1
2ζ2−1 cos Φ2−1

)
. (3.3.5)

Here, we have introduced a further shorthand: ζ1 ≡ ζ(τ0,1), ζ2 ≡ ζ(τ0,2), ζ2+1 ≡
ζ(τ0,2+1) and ζ2+1 ≡ ζ(τ0,2+1). And similarly for the phase: Φ1 ≡ Φ(τ0,1), Φ2 ≡ Φ(τ0,2),
Φ2+1 ≡ Φ(τ0,2+1) and Φ2+1 ≡ Φ(τ0,2+1). Similar to the single-delay design, the spatial
carriers must be separable from the DC component in frequency space (and also
separable from one another) in order for them to be demodulated without systematic
error. As for single-delay designs, the choice of fixed delay(s) here strongly depends
on the application. Where do the changes in the spectral feature that relate to the
physics of interest manifest most strongly in the coherence profile? Generally, we
want to spread out the delays so as to maximise the amount of unique information
provided by each sample of the coherence profile, which for our configuration means
avoiding for example τ0,1 ≈ |τ0,2 − τ0,1|.

We will introduce and discuss a four-delay instrument design of this kind in the
next section and will test it experimentally in Chapter 5. Combining two polarisation
interferometers in series increases the sampling of the interferogram fourfold. Using
the same principle, it can be shown that combining three polarisation interferometers
in series samples the coherence at 13 fixed delays. However, the necessary reduction in
signal and spatial resolution for each carrier that this entails could limit the usefulness
of this or any further extension of this kind. The instruments in [111] achieve three
fixed delays by incorporating a half-wave plate.

3.3.1 Multi-delay CI with Pixelated Phase-mask

Multi-delay CI can be achieved using two linear carriers, as long as the spatial
frequencies are sufficiently well separated. This kind of design has been applied in
previous work to spectropolarimetric CI, specifically the ‘amplitude double spatial
heterodyne’ IMSE instrument from [70]. In this work we instead focus on a multi-
delay design combining in series the linear and pixelated spatial carrier single-delay
CI designs from Figures 2.7 and 3.2 respectively. A schematic for this instrument
configuration is shown in Figure 3.5(b). We will again use the repeating 2×2 pixelated
polariser layout of the Sony IMX250MZR sensor shown in Figure 3.1(a), with the
same convention for pixel number m. The total Mueller matrix for the system as
shown is

Mtot = MP(ρP)MQWP
(
π
2

)
MLR

(
π
4 , φ2(ν)

)
MP(0)MLR

(
π
4 , φ1(ν)

)
MP(0), (3.3.6)

Where ρP = mπ
4 rad is the pixel-dependent relative orientation of the final polariser, as

it was in the case of the single-delay PPM configuration. Here, we maintain the 1 and 2
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designations for the first and second instruments, but now φ1(ν) = φWP1(ν)+φSP(ν) is
the phase contribution of the first waveplate and the Savart plate and φ2(ν) = φWP2(ν)
is the phase contribution of the second waveplate. Of course, these phase terms also
depend on the position on the sensor plane but this is left out for clarity. Proceeding
as above to calculate the interferogram irradiance, if the incident light is unpolarised
then the irradiance at the sensor plane can be written as a function of m as

I0,out = I0,in

8

(
1 + <{γ(τ0,1)}

+ <
{
γ(τ0,2) exp

(
imπ

2

)}
+ 1

2<
{
γ(τ0,2+1) exp

(
imπ

2

)}
+ 1

2<
{
γ(τ0,2−1) exp

(
imπ

2

)})
. (3.3.7)

= I0,in

8

(
1 + ζ1 cos Φ1

+ ζ2 cos Φ2

+ 1
2ζ2+1 cos Φ2+1

+ 1
2ζ2−1 cos Φ2−1

)
. (3.3.8)

Where the shorthand time delay symbols τ and contrast symbols ζ have the same
definitions as in the previous section, but now a pixelwise term must be included in
our expressions for the observed phase for three of the four carriers:

Φ1 ≡ Φ(τ0,1) = φ0(τ0,1) + φD(τ̂0,1) + φasym(τ̂0,1)

Φ2 ≡ Φ(τ0,2) = φ0(τ0,2) + φD(τ̂0,2) + φasym(τ̂0,2) +m
π

2
Φ2+1 ≡ Φ(τ0,2+1) = φ0(τ0,2+1) + φD(τ̂0,2+1) + φasym(τ̂0,2+1) +m

π

2
Φ2−1 ≡ Φ(τ0,2−1) = φ0(τ0,2−1) + φD(τ̂0,2−1) + φasym(τ̂0,2−1) +m

π

2 (3.3.9)

So the first delay is encoded using the linear carrier provided by the Savart plate.
The second is encoded in the pixelated carrier provided by the QWP and pixelated
polarisers. The third and fourth carriers, which correspond to the sum and difference
delays, are encoded in the sum and difference respectively of the linear and pixelated
carriers.

This type of multi-delay instrument has been realised experimentally using same
hardware as the single-delay PPM-CI instrument from Section 3.2. Although, with
more crystals, all of the room in the temperature-controlled cell is taken up. Table
3.2 lists for reference two different multi-delay PPM-CI delay configurations that are
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Single-delay Multi-delay 1 Multi-delay 2

CI format pixelated
carrier

pixelated / linear
carrier hybrid

pixelated / linear
carrier hybrid

Waveplate 1 (mm) 4.48 6.35 4.48
Waveplate 2 (mm) - 4.48 9.79
Savart plate(s) (mm) - 4 + 2.2 4 + 2.2

Delay(s) at 410.2nm ( rad) 8830

3680,
8830,
12 500,
21 300

8830,
10 500,
19 300,
28 100

Delay(s) at 434.0nm ( rad) 8260

3450,
8260,
11 700,
20 000

8260,
9790,
18 100,
26 300

Table 3.2: Three configurations of pixelated phase-mask coherence imaging (PPM-
CI) instruments used in this work. All waveplate and Savart plate crystals used in
this work are α-BBO. The delays listed are calculated for normal incidence at the
wavelengths of the two hydrogen Balmer transitions that are measured experimentally
in Chapter 5.

used in the remainder of this work, with the four delays listed for each configuration
at two wavelengths corresponding to hydrogen Balmer series transitions that will be
the subject of investigation in Chapter 5. Figure 3.6(a) shows a raw experimental
calibration image captured using a CI instrument in the ‘Multi-delay 1’ configuration.
The calibration source is the same as that used in the previous section, a Cd gas
discharge lamp illuminating an integrating sphere and the bandpass filter isolates Cd
I emission at 467.8nm. In Figure 3.6(b), the four interleaved images representing
the different polariser orientations are shown separately. The LPM created by the
Savart plate(s) is clearly present in each constituent image, as is the hyperbolic fringe
pattern characteristic of a waveplate.

3.3.2 Interferogram Demodulation

The parameters of interest to be extracted from a multi-delay image are the back-
ground brightness, the four contrast terms: ζ1, ζ2, ζ2+1, ζ2−1, and the four phase
terms: Φ1, Φ2, Φ2+1, Φ2−1 corresponding to the four fixed interferometer delays. Un-
fortunately, the simple arithmetic approach for demodulating the single-delay images
from Equations 3.2.9–3.2.11 is no longer valid for a multi-delay image of the kind
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Figure 3.6: (a) A raw experimental CI calibration image captured using an instru-
ment in the multi-delay pixelated phase-mask configuration. (b) The four interleaved
images shown separately, each corresponding to a different polariser orientation on
the sensor. See text for more details of the instrument setup.
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shown in Figure 3.6. Instead, we will need to use Fourier techniques, which have been
discussed briefly in the previous chapter and in more detail for the case of a single
linear carrier in Appendix B.

We will start by looking at the Fourier transform of the pixelated spatial carrier
for the more simple single-delay image. Figure 3.7(a) shows the Fourier transform of
the measured single-delay CI calibration image from Figure 3.3(a). The background
brightness term at the centre is labelled ‘DC’. Given the image is roughly uniform
in brightness, this term is localised to the lower spatial frequencies. It can be seen
that the pixelated spatial carrier, labelled Φ here, lies at both the horizontal and
vertical Nyquist frequencies (for this layout of pixelated polariser orientations at
least). The phase and contrast modulation is convolved with (and so mostly localised
around) the carrier terms. This means the modulation, in places, extends beyond the
Nyquist frequency (0.5 cycles per pixel) and so appears ‘folded’ back onto itself about
the Nyquist frequency in frequency space. This aliasing obscures the Φ and ζ that
would be recovered using the standard Fourier demodulation approach described in
Appendix B: Fourier-domain windowing the carrier and then calculating the analytic
signal. A different approach is needed to demodulate pixelated carrier.

‘Synchronous demodulation’2 is a standard technique for demodulation of spatial
carrier interference fringe patterns [112], relying on the frequency shifting property
of the Fourier transform (see Appendix A). It can be stated: multiply the raw
interferogram image by the known spatial carrier in complex exponential form, shifting
carrier to the zero frequency and allowing the analytic signal to be extracted by an
appropriate low-pass filter. Synchronous demodulation of a pixelated spatial carrier is
considered in more detail and for a range of micro-polariser layouts in J. M. Padilla’s
thesis[113]. To demonstrate, consider an interferogram whose phase Φ = φc + φu is
the sum of a known spatial carrier φc and an unknown term φu that is of interest.
Assume also that the brightness I0,in and contrast ζ are unknown and of interest.
We will assume that the spatial frequency (or frequencies) of the spatial carrier are
significantly higher than the spectral composition of I0,in, φu and ζ, ensuring the
carrier is isolated from the background brightness image in the frequency domain.
The measured interferogram signal is then

I0,out ∝ I0,in
(
1 + ζ cos[φc + φu]), (3.3.10)

where the constant of proportionality depends on interferometer type. We now
multiply I0,out by exp(−iφc), which is the known spatial carrier in (negative) complex

2The name comes from the original and more popular application: electronic demodulation of
incoming time signals.
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Figure 3.7: (a) Fourier transform of the single-delay CI calibration image shown
in Figure 3.3. (b) Fourier transform of the same image’s ‘synchronous product’, see
text for details. Both images plot the power spectral density on a log scale and are
smoothed for clarity.
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exponential form. This gives us

I0,out exp(−iφc) ∝ I0,in

( 1
2ζ exp(iφu)︸ ︷︷ ︸

Low spatial frequency

+ exp(−iφc) + 1
2ζ exp(−i[φu + 2φc])︸ ︷︷ ︸

High spatial frequency

)
.

(3.3.11)
This complex image is called the ‘synchronous product’. By the Fourier transform
shifting property, the φu term is now shifted in frequency space down to near zero. The
Fourier transform of the synchronous product for the single-delay pixelated calibration
image from Figure 3.3 is shown in Figure 3.7(b). It can be seen that the term at the
zero frequency is ∝ I0,inζ exp(iφu), labelled with the shorthand Φ. This term, now
free of any aliasing effects and already in complex form, can be filtered and processed
in the standard way to obtain ζ and φu.

Next, we show how this technique can be used to demodulate multi-delay PPM-CI
images, using the measured calibration image from Figure 3.6(a) as an example. The
Fourier transform of this calibration image is shown in Figure 3.8(a). The DC term is
labelled and the pixelated carrier terms, which are common to both single and multi-
delay PPM images are here labelled Φ2. The other three carrier terms are present too:
Φ1 due to the linear carrier only and the sum and difference terms Φ2+1 and Φ2−1,
also labelled. As a first step, the DC and linear carrier term Φ1 can be extracted
using conventional Fourier demodulation. The other three carriers are obscured by
aliasing in the same way as the pixelated carrier in the single-delay example, and so
synchronous demodulation is required. Figure 3.8(b) shows the Fourier transform of
the synchronous product for the multi-delay calibration image, showing that the three
carriers have been shifted to the lower spatial frequencies and are no longer obscured
by aliasing. Standard Fourier demodulation techniques can then used to extract the
phase and contrast from the Φ2, Φ2+1 and Φ2−1 carriers.

This can be seen by evaluating the synchronous product for the irradiance at the
output of the multi-delay instrument from Equation 3.3.8. Written out in full, this is

I0,out exp(−imπ
2 ) = I0,in

8

(
exp(−imπ

2 )

+ ζ1

2
[

exp
(
i[Φ1 −mπ

2 ]
)

+ exp
(
− i[Φ1 +mπ

2 ]
)]

+ ζ2

2
[

exp(iΦ∗2) + exp
(
− i[Φ∗2 +mπ]

)]
+ ζ2+1

4
[

exp(iΦ∗2+1) + exp
(
− i[Φ∗2+1 +mπ]

)]
+ ζ2−1

4
[

exp(iΦ∗2−1) + exp
(
− i[Φ∗2−1 +mπ]

)])
.

Here, we use of the same convention as in Section 3.2.1 whereby an asterisk indicates
that the phase does not include the pixelated term, i.e. Φ2+1 = Φ∗2+1 +mπ

2 . Figure 3.8
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Figure 3.8: (a) Fourier transform of the multi-delay calibration image shown in
Figure 3.6. (b) Fourier transform of the same image’s ‘synchronous product’, see
text for details. Both images plot the power spectral density on a log scale and are
smoothed for clarity.
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shows the phase and contrast profiles for each of the four carriers, extracted from the
multi-delay calibration image shown in Figure 3.9(a) using the demodulation scheme
described.

Rewriting Equation 3.3.12, listing only the terms with low spatial frequency (i.e.
the terms that are not a function of m) gives us:

I0,out exp(−imπ
2 ) = I0,in

8

(
ζ2

2 exp(iΦ∗2)

+ ζ2+1

4 exp(iΦ∗2+1)

+ ζ2−1

4 exp(iΦ∗2−1)

+ High spatial frequency terms
)
. (3.3.12)

The contrast and phase images for these three terms can be extracted from the
synchronous image using Fourier-domain filtering.

Finally, a numerical test of the synchronous demodulation procedure for multi-
delay CI images was carried out. First, synthetic spectra corresponding to realistic
plasma conditions were modelled for three different values temperature (0.1, 1 and
5 eV) and flow speeds (0, 15 and 30 km/s). Doppler broadening is assumed to be the
only broadening mechanism and the emission line is hydrogen Balmer-γ at 434.0 nm.
These spectra are plotted in Figure 3.10(a). The forward model described in Section
2.3.5 is then used to generate synthetic multi-delay calibration CI images at full
resolution for each of the three modelled spectra, for the multi-delay instrument
configuration shown schematically in Figure 3.5(b). The instrument’s fixed delays
correspond to those of the ‘Multi-delay 1’ configuration from Table 3.2. A cropped
portion of each synthetic CI image is shown in Figure 3.10(b). The phase shift
between images is visible by eye for the linear carrier and the contrast drop is visible
for both the linear and pixelated carriers. The demodulation procedure is then used
to extract phase and contrast images for each of the four fixed delays and the mean
values of all the demodulated parameters are taken within a 200× 200 central region
of the images. Figure 3.10(c) then compares the demodulated contrast values with
the analytical contrast profiles. Similarly, Figure 3.10(d) compares the demodulated
and analytical phase shifts, relative to the stationary spectrum. The demodulated
points track the analytical profiles well.

3.4 Non-ideal Quarter-wave plate Effects

In this final section we will consider how non-ideal quarter-wave plate performance
affects the observed interferogram. Figure 3.11(a) plots the retardance of the zero-
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Figure 3.9: Demodulated phase (modulo 2π) and contrast images from the raw
calibration image shown in Figure 3.6, captured using an instrument in the multi-
delay pixelated phase-mask configuration..
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Figure 3.10: Testing the demodulation procedure for a multi-delay CI instrument
of the pixelated / linear Carrier hybrid type introduced in this section. (a) Modelled
lineshapes for Hγ emission (434.0nm) with different emitter temperatures (widths)
and flows (shifts). (b) Synthetic CI images (modelled at full resolution and realistic
image noise, cropped here) for an instrument in the PPM multi-delay 1 configuration
(see Table 3.2) observing the modelled emission with a uniform brightness. Predicted
and demodulated profiles are plotted for (c) contrast and (d) phase shift.
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order polymer QWP used in this work as a function of wavelength, according to
the manufacturer. The plot also indicates some key wavelengths used in this work.
The 5 → 2 and 6 → 2 hydrogen Balmer transitions are at 434.0nm and 410.2nm
respectively, and are measured in Chapter 5. The remaining three lines are the Cd
lines measured in Chapter 4. By combining this data with the Mueller matrix for
a linear retarder, we can model PPM-CI images and gauge the resulting non-ideal
effects.

The single-delay PPM-CI configuration described in Section 3.2 is used as the basis
for this modelling, with the delay provided by an α-BBO waveplate with thickness
4.48mm. Full resolution CI images were generated numerically for each of the five
wavelengths marked in Figure 3.11, using both an ideal and non-ideal QWP. No noise
was added to these images, so as to highlight the systematic effects. The demodulation
algorithm described in Section 3.2.1 was then used to extract the contrast and phase
from each image. The deviations between non-ideal and ideal behaviour are plotted
for phase (additive contribution) and contrast (multiplicative contribution) in Figures
3.11(b) and 3.11(c) respectively. Only the profiles corresponding to the central column
slice through the images are plotted here. The contribution of the non-ideal QWP
is small for the phase profiles. For reference, a phase shift of 0.005 rad corresponds
to a flow equivalent of < 200m/s for this delay and at a wavelength of 500 nm. This
is smaller than we are currently able to measure (see Chapter 4). For the contrast,
our typical measurement uncertainty in Chapter 5 is ∼ 0.02, so the non-ideal effect
is only significant for the 7 → 2 hydrogen Balmer line at 410.2nm. Repeating this
modelling with the multi-delay PPM-CI configuration described in Section 3.3, we
find the same results for the three delays with the pixelated encoding and, as might
be expected, no effect on the LPM term.

The non-ideal effects described above can be accounted for if the retardance vs.
wavelength curve is well known. Start by defining the Mueller matrix for the non-ideal
QWP:

M∗
QWP(ρ) ≡MLR

(
ρ,
π

2x
)
, (3.4.1)

where x is an arbitrary multiplicative deviation of the delay from its ideal. By
substituting M∗

QWP(ρ) in place of MQWP(ρ) in Equation 3.2.2, and proceeding as in
Section 3.2, we can write the irradiance at the sensor plane as

I0,out = I0,in

4

(
1 + ζmζ(τ̂) cos[Φ(τ)]

)
. (3.4.2)

Here, we have defined a new m-dependent contrast term that arises due to the non-
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Figure 3.11: (a): Retardance as a function of wavelength for the quarter-wave
plate used in this work, as supplied by the manufacturer. Vertical lines mark some
of the key wavelengths used in this work. (b) and (c): predicted error introduced
into the phase and contrast images respectively, where line colour corresponds to the
wavelengths marked in (a). The profiles correspond to a single column through the
image centre. See text for details of the modelled CI instrument configuration.
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ideal behaviour of the QWP:

ζm =
 1 if m = 0, 2

sin
(
π
2x
)

if m = 1, 3
(3.4.3)

Only a small change needs to be made to the synchronous demodulation algorithm
described in Section 3.3.2 to eliminate this non-ideal effect. When multiplying the
image by the known phase-mask in exponential form, the reciprocal of ζm must also
be included. So the multiplication factor becomes:

1
ζm

exp
(
im

π

2

)
. (3.4.4)

This correction has not been applied to any of the results in this thesis. The modelling
presented in Figure 3.11 suggests that the only results that will be meaningfully
affected by the non-ideal QWP behaviour is the measurement of the 7→ 2 hydrogen
Balmer line contrast in Chapter 5.

3.5 Summary

In this Chapter we have introduce coherence imaging using a pixelated phase-mask.
We have seen that this instrument design has a number of advantages over the ex-
isting linear carrier design: improved robustness, compactness and spatial resolution.
We have also considered a hybrid multi-delay CI instrument design that combines
pixelated and linear spatial carriers to encode the coherence profile into the inter-
ferogram at four fixed delays. The demodulation procedure for extracting the phase
and contrast images from the multi-delay CI interferograms is slightly more involved
than for a standard single linear carrier. A routine is introduced, demonstrated on
an experimental calibration image and also tested numerically using synthetic images
generated using an instrument model.



Chapter 4

Calibration of Flow Measurements
using Gas-discharge Lamps

Phase shifts in the measured CI fringe pattern encode the flow velocity of the emitting
ion species. Calibration of the zero-point of this flow measurement requires a set of
unshifted reference fringes measured at the rest-frame wavelength of the targeted
spectral feature. When discussing calibration in Chapter 2, we assumed that we had
to hand a coherent laboratory source at the correct wavelength, but this is often not
the case. Tuneable lasers are fit for this purpose but can be expensive, particularly
if the flexibility of a large wavelength range is required. In this chapter, we show
that the phase calibration necessary for flow CI measurements can be obtained using
standard gas-discharge lamps, analogous to the wavelength calibration of a slit-coupled
spectrograph. The method works by measuring separate phase images at a small
number of spectral lines and fitting a multi-parameter instrument model to the data.
This model then permits extrapolation of the measured calibration phase over small
wavelength ranges (∆λ ∼ 5 nm) to the required wavelength while maintaining a high
calibration accuracy (±1 km/s compared to anticipated flows of up to 30 km/s). This
method significantly reduces hardware costs by forgoing the need for a tuneable laser.
Constraining the instrument model at just a few, sparse wavelengths is made possible
using a wrapped distribution to account for the ‘2π ambiguity’ in the measured phase
data, which is inherently wrapped in the interval (−π, π] rad[114]. This method will
be used to calibrate CI measurements of C and He impurity ion flows on MAST-U
when it begins operations later this year.

This chapter begins with an overview of CI phase calibration methods used in
previous work. We then introduce the tools necessary to fit to wrapped data and
to model CI instrument dispersion, using a Bayesian framework. Next, we measure
CI phase images over a ∆λ ∼ 3nm wavelength range using a tuneable laser and
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show that accurate phase extrapolation over this range is possible by constraining an
instrument model at just two closely-spaced (∆λ = 0.5 nm) wavelengths. Finally, we
measure CI phase images over a ∆λ ∼ 40nm wavelength range using cadmium and
zinc gas-discharge lamps and bandpass interference filters. We show that by fitting
a model to phase measurements made at four wavelengths over this range, we can
interpolate phase inside or extrapolate phase outside of this range by ∆λ ∼ 5nm
with high accuracy. It was necessary to adjust the available Sellmeier coefficients
describing dispersion in the birefringent crystal material by up to 4% to fit the
observed measurements over ∆λ ∼ 40nm.

4.1 Background

The impurity emission lines previously targeted for CI flow measurement on MAST[51,
63] were C III (λ0 = 464.8810nm), He II (λ0 = 468.5701nm) and C II (λ0 =
514.1842 nm)1. Carbon is naturally present in the plasma due to the graphite plasma-
facing components while helium is naturally present due to the glow discharge wall
conditioning that takes place between plasma experiments[51, 63]. Other, more recent,
CI investigations have targeted just the C III and He II lines[52, 78, 90]. These two
lines will be the focus of this chapter. We saw in Section 2.2.3 that, when observing
an inhomogeneous source, the observed CI phase can be written

Φ̌ = φ0 + φ̌D

= φ0 + φ̂0
1
Ǐ0c

∫
L
I0(r)v(r) · dl, (4.1.1)

provided the interferometer delay is chosen appropriately. The first term in Equation
4.1.1 is the fringe phase at the unshifted wavelength λ0 and the second term arises
due to Doppler shifts along the line of sight L. A third phase term due to asymmetry
in the observed spectral line or feature was introduced in Section 2.2 but it is ignored
here for simplicity. The two calibration parameters in flow CI are then the phase delay
φ0 and the group delay φ̂0, which calibrate the flow measurement’s zero point and
magnitude respectively. From its definition in Equation 2.2.17, φ̂0 can be rewritten
in terms of wavelength:

φ̂0 ≡ ν0
∂φ

∂ν

∣∣∣∣∣
ν0

= −λ0
∂φ

∂λ

∣∣∣∣∣
λ0

(4.1.2)

1Quoted wavelength values are the weighted mean over the fine structure components, calculated
using component wavelength, transition probabilities and statistical weights from NIST[115]. See
Section 3.2 of [69] or Section 3.1 of [63] for more detail.
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so that, for small wavelength shifts ∆λ ≡ λ− λ0, we can write2:

φ(λ) ≈ φ0 − φ̂0
∆λ
λ
. (4.1.3)

Both φ0 and φ̂0 vary across the field of view and so both represent calibration images.

The most direct way of measuring φ0 is to illuminate the CI instrument with an
extended, quasi-monochromatic source at λ0. This modulo 2π measurement of φ0 is
sufficient since the flow information is encoded in phase shifts about φ0. To measure
φ̂0, the source is tuned about λ0 to mimic the anticipated Doppler shifts and the phase
gradient with respect to wavelength is inferred. Both of these measurement procedures
have been realised using a tunable laser source and high-resolution wavemeter[63,
77, 91, 92]. The sensitivity of the calibration presents difficulties in practice: small
changes in crystal temperature or optical alignment that occur between measuring the
calibration images and measuring the plasma can introduce large systematic errors.
Inference of v(r) is far more sensitive to absolute error in the calibration parameter
φ0 than it is to error in φ̂0. This is because v(r)� c, meaning that the Doppler phase
shifts are orders of magnitude smaller than φ̂0. It follows that regular calibration
of φ0 is required to track environmental changes while a single measurement of φ̂0

is sufficiently accurate[63]. For this reason, our focus here is on φ0 first and we will
return to φ̂0 later in the chapter. Previous work[63] has found that the sensitivity of
the φ0 calibration to crystal temperature is (12± 1) km/s/°C at 468 nm. This makes
regular calibration and/or interferometer temperature control very important.

The ideal calibration source for measuring φ0 is a bright, coherent emitter at
λ0. Unfortunately, the standard gas-discharge lamps used to calibrate slit-coupled
spectrographs are not hot enough to emit intensely at the wavelengths of interest in
the SOL. In the absence of an appropriate lab source, previous work has estimated
φ0 using emission from the tokamak plasma itself, assuming that Doppler shifts are
negligible either viewed along a radial sight line[63] or during the breakdown phase
of the discharge[82]. Samuell et al.[91, 92] at DIII-D were the first to demonstrate an
absolute phase calibration that is independent of the plasma being measured. They did
this with a diode laser tunable to the targeted C III and He II wavelengths, and over the
few nanometres in between. More recently, Gradic et al.[77] have demonstrated that
a widely tunable, continuous-wave laser can calibrate almost any targeted plasma line
in the 450–650nm range. Despite these developments, calibration of flow CI using
gas-discharge lamps remains desirable to some labs, since it significantly reduces
hardware complexity and cost. To this end, Samuell et al. demonstrated that a
calibration phase image can be measured at a nearby lamp line and then extrapolated

2In this chapter we will work in terms of wavelength instead of frequency.
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in wavelength over 3nm to the targeted plasma line — while maintaining accuracy
better than ±1 km/s. However, this work relied on tunable laser measurements, using
∼ 50 phase images made over the 3 nm wavelength range to constrain an instrument
model [91]. In this chapter, we will build upon this existing work, modifying the
fitting tools such that emission lines from gas-discharge sources can also be used to
constrain the instrument model itself.

4.1.1 Fitting to Wrapped Data

Measurements of interferogram phase are inherently wrapped into the interval (−π, π] rad,
introducing ambiguity and discontinuities. Unwrapping to recover an unambiguous,
continuous signal is a common inverse problem in interferometry[55]. For a set of
wrapped samples from a 1-D function {fx} to be unwrapped naively, the inequality
−π ≤ (fx − fx−1) < π must be satisfied for all x (‘Itoh’s smoothness condition’[116]).
This is violated when the sampling rate is too low or when measurements are too
noisy. Since flow CI instruments are designed to measure Doppler shifts (. 0.05 nm)
that are far smaller than the typical separation of calibration lines from gas-discharge
lamps (& 1 nm), separate phase measurements made at these lines inevitably violate
the smoothness condition and cannot be naively unwrapped. One way of moving
forward is to fit the instrument model directly to the wrapped data points, accounting
for the ‘2π ambiguity’ by using a wrapped distribution for each data point’s likelihood
function3.

For a data set D that is well described by a model f(θ) with parameters θ,
the likelihood function L(D | θ) describes the plausibility of a particular set of
parameter values. In the absence of any prior knowledge, the most plausible values
are those which maximize L(D | θ). Consider a single wrapped data point Di whose
measurement error is normally distributed with zero mean and variance σ2

i . The 2π
ambiguity in Di is formally accounted for in the likelihood function using a wrapped
normal distribution:

L(Di | θ) = 1
σi
√

2π

∞∑
k=−∞

exp
(
− 1

2

[
Di − fi(θ) + 2πk

σi

]2)
. (4.1.4)

The sum to infinity here makes the function difficult to work with numerically,
so a closed-form approximation called the von Mises distribution is typically used
instead[114]:

L(Di | θ) ≈ exp(si cos[Di − fi(θ)])
2πJm

0 (si)
. (4.1.5)

3Model fitting in this chapter uses Bayesian parameter estimation, see Appendix C for a brief
introduction.
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Figure 4.1: The von Mises distribution approximates the likelihood function L(Di |
θ) of a single, wrapped data point Di drawn from a normal distribution. The black
lines show the von Mises distributions for two different scale parameters si while the
red lines show the corresponding approximation error when compared to the wrapped
normal distribution.

Here, si = 1/σ2
i is the scale parameter and Jm

0 (si) is the modified Bessel function of
order 0. Figure 4.1 plots the von Mises distribution for two different values of si.
Also plotted is the corresponding deviation from the wrapped normal distribution,
showing that the approximation is more accurate for larger si. The infinitely multi-
modal distribution for a single data point demonstrates the 2π ambiguity. When more
(statistically independent) data points are measured, the total likelihood function is
the product of each point’s individual likelihood function. So, generally, by making
measurements at different values of some independent variable, the multiple modes
of L(D | θ) become more and more separated in parameter space. In a well-designed
experiment, enough data is collected such that the modes corresponding to incorrect
parameter values can be completely dismissed by reasonable assumptions or available
prior information.

We will now consider a simple example which highlights one of the difficulties
of fitting to CI phase data. Let’s assume we have two coherent light sources at
wavelengths λ0 = 465 nm and λ1 = 465.3 nm. We want to fit a model to the CI phase
measured at these wavelengths in order to predict the phase at some third wavelength,
for which we have no light source. To keep things simple, we will consider a single
delay CI instrument with a waveplate (uniaxial crystal with θ = 0°) only, and we will
only consider normal incidence (α = 0°), so we are dealing with a single data point
for each wavelength instead of an image. The model for the phase is then

φ(λ) = 2πLB(λ)/λ, (4.1.6)
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Figure 4.2: Likelihood functions for a simplified fitting problem: fitting to CI phase
measurements made at two wavelengths: 465 and 465.3nm. The instrument’s fixed
delay is due to a single waveplate of thickness 5mm.

where L is the waveplate thickness and B(λ) is the birefringence. For now we will
assume that B(λ) and the wavelengths are known perfectly well, so the only unknown
is L. We also assume zero-mean Gaussian noise with variance 10−4 rad. Figure 4.2
plots total likelihood L(D | θ) as a function of L. While the maximum likelihood
approximates the correct value of L (5mm), the distribution is highly multi-modal.
This can become a problem when the number of fit parameters & 3 since the necessary
optimisation algorithms struggle to find the global maximum in L(D | θ). Also
plotted in Figure 4.2 is the likelihood when fitting a model to the difference between
the two phase data points. This distribution is much smoother and easier for an
optimisation algorithm to navigate. It is still multi-modal, but here the other modes
are at L ≈ 10mm and L ≈ 0mm, so are easy to dismiss with any reasonable prior
distribution on L. It is obvious from Figure 4.2 that fitting to the absolute phase can
result in a significantly more accurate measurement of L and that fitting to phase
difference does not use all the information we have. It is almost certainly possible
to find the global maximum when fitting to the the absolute phase images in all of
the fitting problems discussed in the rest of this chapter by e.g. using a smarter
optimisation algorithm, or by using the results of a fit to the phase difference as a
starting point. However, we find that fitting only to the phase difference images is
numerically simple and is sufficiently accurate for our purposes.

4.1.2 Dispersion in Barium Borate

In Section 2.2.2 we considered the effect of instrument dispersion on CI measurements.
In the context of the observed Doppler shifts, a first-order treatment of the dispersion
is sufficient. In this chapter we will be fitting a model to phase shifts over ∼ 40nm,
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so we need to consider a higher-order treatment. Dispersion is typically described
using the Sellmeier equation[117], which can take the form:

nE,O(λµ) =
(
AE,O + BE,O

λ2
µ + CE,O

+DE,Oλ
2
µ

)1/2

, (4.1.7)

or sometimes

nE,O(λµ) =
(
AE,O + BE,O

λ2
µ + CE,O

+ DE,O

λ2
µ + EE,O

)1/2

. (4.1.8)

Here, the subscripts (O) and (E) refer to the ordinary and extraordinary refractive
indices, λµ is the wavelength of the light (in microns) and AE,O, BE,O, CE,O, DE,O and
EE,O are empirically determined coefficients. The forms of Equations 4.1.7 and 4.1.8
can be derived by considering the bound electrons in the crystal as classical, damped
oscillators, forced by the electric field of the incident light. Despite the simplicity
of the model, “the refractive index of most materials with good homogeneity can be
modelled to a few parts in 105 over their entire transparent region with a Sellmeier
fit of a few terms”[117]. The birefringent material used in this work is barium
borate BaB2O4 (BBO) in its α phase. There exist multiple sets of α-BBO Sellmeier
coefficients in the literature and on the websites of crystal manufacturers. We will
also consider sets of coefficients for BBO’s β phase, since these have been used in
previous CI investigations and are very similar[63]. Tables 4.1 and 4.2 list all sets of
α and β-BBO Sellmeier coefficients that could be found at the time of writing. These
coefficients are typically inferred from measurements of the refractive indices made
over the visible wavelength range and beyond, made using the standard ‘method of
minimum deviation’[118] or else by the method of ‘phase-matching’, which makes
use of the material’s non-linear optical properties[119, 120]. Figure 4.3 plots nO(λ),
nE(λ) and B(λ) ≡ nE(λ) − nO(λ) over the visible wavelength range for each set of
listed Sellmeier coefficients. It seems there is a broad consensus that the magnitude
of B(λ) for α-BBO is ∼ 3% larger than for β-BBO.

It should be noted that the sets of Sellmeier coefficients listed are not all entirely
independent of one another. Specifically, α/1 and α/2 share seven and six of their
respective eight coefficients with β/2. This suggests that these two sets left only one
or two coefficients free when fitting to measurements, borrowing the values for the
remaining coefficients from the existing source β/2. Although β/3 has a very similar
nO(λ) to β/2 (the two cannot be distinguished in Figure 4.3(a)), their coefficients are
entirely distinct.
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BBO
phase/
identifier

Index AE,O
BE,O
(µm2)

CE,O
(µm2)

DE,O
(µm−2) Source

α/1 E 2.3753 0.01224 -0.01667 -0.01516 agoptics.com
O 2.7471 0.01878 -0.01822 -0.01354

α/2 E 2.37153 0.01224 -0.01667 -0.01516 Kim et al.[121]
O 2.7471 0.01878 -0.01822 -0.01354

α/3 E 2.31197 0.01184 -0.01607 -0.00400 newlightphotonics.com
O 2.67579 0.02099 -0.00470 -0.00528

β/1 E 2.3730 0.0128 -0.0156 -0.0044 Eimerl et al.[118]
O 2.7405 0.0184 -0.0179 -0.0155

β/2 E 2.3753 0.01224 -0.01667 -0.01516 Kato (1986)[119]
O 2.7359 0.01878 -0.01822 -0.01354

Table 4.1: Sellmeier coefficients describing dispersion of the ordinary (O) and
extraordinary (E) refractive indices in barium borate (BBO). The coefficients
AE,O, BE,O, CE,O and DE,O reference Equation 4.1.7.

BBO
phase/
identifier

Index AE,O
BE,O
(µm2)

CE,O
(µm2)

DE,O
(µm2)

EE,O
(µm2) Source

β/3 E 3.33469 0.01237 -0.01647 79.0672 -82.2919 Kato et al.
O 3.63357 0.018778 -0.01822 60.9129 -67.8505 (2010)[120]

Table 4.2: Sellmeier coefficients describing dispersion of the ordinary (O) and
extraordinary (E) refractive indices in barium borate (BBO). The coefficients
AE,O, BE,O, CE,O, DE,O and EE,O reference Equation 4.1.8.
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Figure 4.3: (a) Ordinary refractive index, (b) extraordinary refractive index and
(c) birefringence of barium borate modelled using the available Sellmeier coefficients
from Tables 4.1 and 4.2, plotted over the wavelength range of visible light. See the
main text for comments.
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Are these Sellmeier Coefficients Accurate Enough?

We have no information about the accuracy of the different dispersion curves for the
ordinary and extraordinary indices of refraction in BBO. How do we know which
of these curves — if any — can accurately model the measured calibration phase
data? A good place to start with this question is to take the spread of the dispersion
curves in Figure 4.3 as representative of our uncertainty. Then we can propagate the
uncertainty into our model for phase shift and gauge its effect.

To keep things simple, we will revisit the case of a single waveplate at normal
incidence that we used in the previous section, with phase delay defined in 4.1.6. If
we define a phase shift about wavelength λ0 as ∆φ ≡ φ− φ0, then we have:

∆φ = 2πL
(
B(λ)
λ
− B0

λ0

)
. (4.1.9)

Writing B(λ) as a Taylor series about λ0 gives us:

B(λ) =
∞∑
p=0

∆λp
p!

∂pB

∂λp

∣∣∣∣∣
λ0

= B0 + ∆λ∂B
∂λ

∣∣∣∣∣
λ0

+
∞∑
p=2

∆λp
p!

∂pB

∂λp

∣∣∣∣∣
λ0

, (4.1.10)

where ∆λ ≡ λ−λ0 is the wavelength shift about λ0 and we have explicitly written out
the zeroth and first order terms in the sum to infinity. Substituting this expression
into Equation 4.1.9 and using the definition of φ̂0 from Equation 4.1.2 we find

∆φ = −φ̂0
∆λ
λ︸ ︷︷ ︸

Linear term

+ 2πL
λ

∞∑
p=2

∆λp
p!

∂pB

∂λp

∣∣∣∣∣
λ0︸ ︷︷ ︸

Higher−order terms

. (4.1.11)

Here, we have deliberately separated the linear term from the higher order (p ≥ 2)
terms. When ∆φ is written in this form, it is easy to see that for small enough
∆λ, the higher order terms will vanish to zero, leaving Equation 4.1.3. Figure 4.4(a)
plots ∆φ predicted by each available set of BBO Sellmeier coefficients for the case
of L = 4.5mm over a 20nm wavelength range about λ0 = 460nm. Figure 4.4(b)
then plots the higher-order phase terms from Equation 4.1.11 only, which we will call
∆φH.O.. The equivalent flow velocity on the second y-axis is calculated using

v ≈ c
∆φH.O.

φ̂0
. (4.1.12)

It can be seen that even though the linear term in Equation 4.1.11 is & 2 orders of
magnitude larger than the higher order terms for the wavelength range shown, the
higher order terms become important (i.e. contribute & 1 km/s flow-equivalent) for
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∆λ & 1nm. This has been noted in previous work[91].

By combining Equations 4.1.6 and 4.1.2 we can write group delay as

φ̂0 = 2πL
(
B0

λ0
− ∂B

∂λ

∣∣∣∣
λ0

)
. (4.1.13)

Suppose we have measured ∆φ over a small enough ∆λ that only the linear term in
Equation 4.1.11 need be considered. When fitting the linear model to the data, the
parameter L is perfectly (negatively) correlated with a function of B0 and ∂B

∂λ

∣∣∣
λ0

(in
the brackets in Equation 4.1.13). It follows that if we try to fit the parameter L to
any ∆φ data measured over a sufficiently small ∆λ, choice of Sellmeier coefficients
will affect the optimised value of fit parameter L but will not affect the quality of
the fit. If we consider measurements over a larger ∆λ, where the higher order terms
do need to be accounted for, then the optimised value of L remains almost entirely
determined by B0 and ∂B

∂λ

∣∣∣
λ0
. This means that, in the context of accurately modelling

phase shifts, we are not concerned about discrepancies in B(λ) and ∂B
∂λ

between the
different Sellmeier coefficient sets. It is the uncertainty in the higher order (p ≥ 2)
terms in Equation 4.1.11 that will affect our ability of the model the data, so our
concern is the discrepancy in ∆φH.O. between coefficient sets. Figure 4.4(c) plots
∆φH.O., calculated for each set of Sellmeier coefficients, with the mean over all sets
subtracted so as to highlight the spread. This rough treatment suggests that, for
∆λ & 5nm, uncertainty in the Sellmeier coefficients is likely too large to model phase
shifts to the goal accuracy of ±1 km/s.

4.2 Experimental Testing

4.2.1 Tuneable Laser Data

To test some of these ideas experimentally, we measured CI calibration data using a
tuneable diode laser4. The laser was tunable over a 464–468 nm wavelength range and
was fibre-coupled to a 6 inch diameter integrating sphere to provide a uniform, ex-
tended, quasi-monochromatic calibration source. The laser wavelength was measured
using a High Finesse WS7 wavemeter with a reported accuracy of ±0.03 pm. The CI
instrument was of the single-delay layout shown in Figure 2.7, using three commercial
DSLR lenses of focal length of 85mm. The camera used was a PCO.edge 5.5 with

4Experimental data in this section was collected at DIII-D in Summer 2017 with the help of Steve
Allen of Lawrence Livermore National Lab (LLNL). The tuneable laser, wavemeter, camera, opto-
mechanical components and temperature control components used here were provided by LLNL. In
addition, the Labview software for acquisition of the raw camera images was written by Cameron
Samuell (LLNL).
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Figure 4.4: (a) Modelled phase shift vs. wavelength for a simplified CI instrument
(with a single waveplate of thickness 4.5mm, and considering only light at normal
incidence) for all available sets of BBO Sellmeier coefficients. (b) The higher-order
phase shift terms only (see Equation 4.1.11). (c) As in (b) but with the mean value
across all sets of Sellmeier coefficients subtracted.

a 2560× 2160 format complimentary metal-oxide-semiconductor (CMOS) detector.
Figure 4.5(a) shows the CI instrument and mount. The interferometer was of a single
delay, linear carrier type, consisting of a waveplate and a Savart plate with nominal
thicknesses of Lwp = 4.6mm and Lsp = 4.0mm respectively. Temperature stability of
the interferometer over the measurement period was achieved using the same three
levels of control described in Section III of [92]. Firstly, the experiment took place in
a lab that was temperature-controlled to 18.65± 0.25 °C. Secondly, the CI instrument
was installed in a large insulated box with a 63W Peltier cooling assembly and a pro-
portional integral differential (PID) feedback-control system maintaining 27± 0.1 °C.
Finally, the interferometer was surrounded with resistive heaters (Figure 4.5(b)) and
a thermistor was secured next to the waveplate crystal using epoxy (Figure 4.5(c)).
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Figure 4.5: (a) The coherence imaging instrument used to make calibration meas-
urements in this section (prior to wrapping interferometer with resistive heaters).
(b) A 100 kΩ thermistor is secured to the waveplate mount for crystal temperature
feedback. (c) The interferometer is surrounded by 16× 20 Ω resistive heaters.

A second PID feedback-control system used this to stabilise the crystal at the desired
temperature 33± 0.01 °C. The temperature stability of the waveplate corresponds to
a flow stability of roughly ±0.1 km/s. In total, 68 calibration images were captured
over the available wavelength range. Figure 4.6(a) shows one raw image, measured
at λ = 464.336nm. Figure 4.6(c) then plots ∆φ ≡ φ− φ0 about λ0 = 436.336nm as
a function of laser wavelength for three different points in the image — labelled A, B
and C in Figure 4.6(a). Note that ∂φ

∂λ
∝ φ̂ clearly varies between chosen image points.

Fourier demodulation is used to extract the wrapped phase from the captured
CI calibration images5. To model these phase images, we use the instrument model
detailed in Section 2.3.5. Directly modelling phase images using Equations 2.3.17,
2.3.18 and 2.3.19, instead of using the more general Mueller matrix treatment to model

5See Appendix B for details.
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the raw interferograms (Equation 2.3.20) minimises model evaluation time for efficient
fitting. However, the Mueller matrix treatment would be required to realistically
model crystal misalignment or partial polarisation effects. Figure 4.6(b) shows a
modelled interferogram image for illustrative purposes, generated as ∝ (1 + cosφ)
where φ is the modelled phase image and using the nominal values for the model
parameters. When constructing the likelihood function for the fit, we use the von Mises
distribution (Equation 4.1.5) for each ∆φ data point, with each data point assumed
to be statistically independent. The four model parameters that are optimised are
the crystal thicknesses Lwp and Lsp, the focal length of lens 3 f3 and the orientation
of the interferometer relative to the sensor ρint. Based on the discussion in Section
4.1.1 we fit to the difference between measured phase images instead of the phase
images themselves. Based on the discussion in Section 4.1.2, uncertainty in Sellmeier
coefficient values ought not to (and does not) significantly affect the goodness of fit
over the wavelength range measured (∆λ < 5nm) so any of the coefficient sets from
Tables 4.1 and 4.2 can be used. The ∆φ images are downsampled by a factor 50 in
both linear dimensions to reduce model evaluation time. The ∆φ data plotted in
Figure 4.6(c) clearly satisfies the smoothness condition introduced in Section 4.1.1
and so could be trivially unwrapped before fitting. Previous work[91] has already
shown that an instrument model can be fit to 50+ images over this wavelength range.
With a view to extending the model-fitting technique to gas-discharge lamps, whose
bright lines are (relatively) few and sparse such that the smoothness condition is not
met, we concentrate here on the smallest number of the laser images that can be used
to constrain the fit.

It was found that fitting to just two wavelengths is sufficient to constrain the model
and extrapolate over the ∆λ ∼ 3nm wavelength range with better than ±1 km/s
accuracy. This corresponds to a fit to a single ∆φ image. Figure 4.6(c) shows the fit to
the calibration images at wavelengths 464.336 nm and 464.784 nm (highlighted) for the
three image points A, B and C. Figure 4.6(d) then plots the corresponding fit residuals
in units of radians and equivalent flow in km/s. The residuals are consistently less
than ±0.5 km/s flow equivalent when using the fit to extrapolate across the 3nm
wavelength range, significantly better than our goal accuracy of ±1 km/s. The fit
shown assumes that the α/3 set of Sellmeier coefficients is correct, though the fit
residuals are similarly small regardless of which set of coefficients is used. Table 4.3
lists the maximum a posteriori (MAP) estimates and uncertainty of the fit parameters
for fits using each of the available Sellmeier coefficient sets in turn. As expected,
choice of coefficient set changes the inferred Lwp but does not significantly change the
inferred.group delay φ̂0. Also as expected, the measured value of Lwp = 4.48±0.05mm
is closer to the MAP values inferred using the α-BBO Sellmeier coefficient sets.
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Figure 4.6: (a) Measured CI calibration image observing coherent laser light at
464.362nm. (b) The corresponding modelled image. (c) Measured and fit phase
shift plotted against laser wavelength over the 3.5nm range for the three image
points marked in (a). Fit is constrained by highlighted wavelengths only. (d) The
corresponding residuals between measured and fit phase shift.
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Sellmeier Fit parameter value (MAP) Group delay
coefficient set Lwp (mm) Lsp (mm) f3 (mm) φ̂0 (waves)

α/1 4.532± 0.001 4.04± 0.01 85.0± 0.2 1401.7± 0.3
α/2 4.495± 0.001 4.00± 0.02 85.0± 0.3 1401.6± 0.3
α/3 4.472± 0.001 3.93± 0.01 85.0± 0.2 1401.5± 0.3
β/1 4.680± 0.002 4.16± 0.02 84.9± 0.2 1401.5± 0.6
β/2 4.635± 0.002 4.13± 0.01 85.0± 0.2 1401.6± 0.6
β/3 4.632± 0.002 4.12± 0.01 85.0± 0.1 1401.5± 0.6

Table 4.3: Optimised model parameter values, fitting to the two wavelengths high-
lighted in Figure 4.6, for each available set of Sellmeier coefficients. Value of in-
terferometer orientation was found to be the same for each fit ρint = −0.1 ± 0.1°.
The measured value for Lwp is 4.48mm and the nominal values for the other three
parameters are Lsp = 4mm, f3 = 85mm and ρint = 0°. Also listed is the inferred
group delay φ̂0 = LwpB0κ0

λ0
in units of waves at λ0 = 464.336 nm.

4.2.2 Gas-discharge Lamp Data

Results from the previous section show that phase calibration images measured at
two narrowly separated wavelengths (∆λ ∼ 0.5 nm) can be used to constrain a model
that can accurately predict the phase at a third wavelength nearby (∆λ ∼ 3nm).
We found that the choice between available sets of Sellmeier coefficients describing
instrument dispersion does not affect the quality of the fit over this wavelength
range. However, bright spectral lines from a gas-discharge lamp will typically cover
a larger wavelength range and so fitting to phase data measured using such a source
means fitting the dispersion model to the calibration measurements a well as the CI
instrument model used in the previous section. Measuring lamp lines rather than
laser light also requires optical bandpass filters with appropriate transmission curves
for isolating each calibration line from its neighbouring lines. These complicating
factors will be considered in this section using Cd and Zn gas-discharge lamps.

Table 4.4 lists the wavelengths (in air) of the brightest emission lines observed
from Cd and Zn gas-discharge lamps within the 460–520 nm range. Also listed are the
relative intensities of the lines, measured using a slit-coupled grating spectrometer.
This wavelength range is relevant as it roughly spans the three plasma impurity
emission lines that will be targeted for CI flow measurements on MAST-U (precise
wavelengths listed in Section 4.1). Figure 4.7(a) plots the Cd and Zn calibration
lines relative to these three targeted plasma impurity lines. Also plotted are the
transmission curves of the four bandpass interference filters used to isolate the emis-
sion lines for CI measurement, measured using a stabilised continuum source and a
slit-coupled spectrometer. The filters used have a nominal transmission of 10−4 at
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wavelengths far away from the bandpass, and block up to λ = 1000 nm. Table 4.4 lists
the wavelengths of all the Cd and Zn calibration lines considered. Two ‘nuisance’ Cd
lines are indicated with dashed lines in Figure 4.7(a). These lines are not targeted for
the calibration measurements, but contribute a small offset to the measured phase of
their neighbouring lines. The size of the phase contamination due to improperly isol-
ated lines can be calculated using the FTS theory from Section 2.2 and the observed
relative line intensities and filter transmission profiles in Figure 4.7. It can be shown
that the nuisance Cd I line at 515.5 nm, contributes the largest phase contamination,
to the measurement of the Cd I line at 508.6nm. The size of this contamination
is equivalent to < 0.5 km/s and is an order of magnitude larger than the predicted
contamination on any other line measured here. Since this is smaller than our goal
accuracy (±1 km/s), phase contamination is ignored for the rest of this section.

Ion Wavelength (nm) Observed intensity (norm.) Filter

Cd I 466.23520 0.0035 -
Cd I 467.81493 0.4980 1
Zn I 468.013590 0.4243 1
Zn I 472.215690 0.8614 2
Cd I 479.99123 0.8872 3
Zn I 481.053210 1 3
Cd I 508.58217 1 4
Cd I 515.46605 0.0039 -

Table 4.4: Wavelengths (in air) of the Cd and Zn calibration lines used in this work
(from NIST[115]). Also listed are the intensities of the lines, as observed in the lab
using a grating spectrometer. These values are normalised to the most intense line of
each lamp. The number identifier for the filter used to isolate each line refers to the
black, circled numbers in Figure 4.7(a).

For the measurements in this section, the PPM CI instrument configuration intro-
duced in Chapter 3 was used. Specifically, we used the ‘Multi-delay 1’ configuration
from Table 3.2. Although the measured interferogram samples the coherence at four
fixed delays simultaneously (the demodulation procedure is outlined in Section 3.3.2),
we will only consider data from two of these delays here for simplicity. The two delays
chosen correspond to the two waveplates with measured thicknesses 4.48± 0.02mm
and 6.35 ± 0.02mm (i.e. it is the sum and difference terms that we are ignoring).
These two delays are referred to here as the ‘linear carrier’ and ‘pixelated carrier’
respectively, since the first is encoded using the linear phase shear produced by the
Savart plates and the second is encoded in the pixelated pattern of the micro-polariser
array. See Figure 3.6 in Chapter 3 for an example of a raw calibration image taken
with an instrument in this configuration. For the calibration measurements, the
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interferometer temperature controller was set to a nominal temperature and stability
of 34± 0.25°C and the instrument was left alone for four hours to equilibrate prior
to measurements being made. Systematic error in the measured phase images due
ambient temperature drift was estimated by comparing the phase offset between cal-
ibration images measured at the same wavelength (Cd I at 467.8nm) at the start
and end of the measurement period. For the linear carrier the mean of this error
was found to be 0.003 rad while for the pixelated carrier it was found to be 0.001 rad.
Converted to effective flow velocity, these errors are small: 0.1 km/s and 0.03 km/s
respectively (calculated using the on-axis delay due to a 4.48mm α-BBO waveplate).
Calibration images were captured at each of the six brightest Cd and Zn wavelengths
(467.8, 468.0, 472.2, 480.0, 481.1 and 508.6nm) in turn. The filters were installed
and uninstalled manually, though mounted independently of the CI instrument using
a clamp stand so as to avoid mechanical disturbance.

Test 1: Extrapolation of Phase Beyond Measured Wavelengths

Figure 4.7(b) shows the measured phase shift ∆φ calculated relative to the Zn line
at λ0 = 472.2nm for the image centre (data only shown for the linear carrier here).
For the first test, we include in the fit to the data the four highest wavelength lines
only (472.2, 480.0, 481.1 and 508.6nm), reserving the Cd I line at 467.8nm line for
testing the accuracy of our phase extrapolation outside of the wavelength range used
to constrain the fit. In Figure 4.8(a), the left column plots the measured ∆φ images
(linear carrier) relative to λ0 = 472.2nm for the three other lines included in the fit.
The left column of Figure 4.8(b) plots the corresponding ∆φ images for the pixelated
carrier. The phase shear characteristic of the linear carrier causes a shear in the ∆φ
images too, roughly proportional to the wavelength shift. The pixelated carrier ∆φ
images show the hyperbolic phase pattern characteristic of a waveplate. In fitting a
model to this data, it was found that the available sets of BBO Sellmeier coefficients
result in large residuals (> 1 km/s). Based on the discussion in Section 4.1.2, this is
consistent with the estimated uncertainty in the available coefficients. Instead then,
it is necessary to fit the dispersion curves to the measured data. The most obvious
way to do this is to leave one or more Sellmeier coefficients free to fit the data. Here,
we find that by fitting to just two of the coefficients for the extraordinary refractive
index (AE and BE), and leaving the remaining extraordinary and ordinary coefficients
fixed to one set of available values, we are able to accurately fit the measured ∆φ
data. Here, we use the α/3 coefficient set for the static coefficient values since it gave
the closest match to measured waveplate thickness in the previous section.

The other fit parameters optimised in this section are f3 and ρint, the lens 3 focal
length (see Figure 2.7) and the interferometer orientation, as in the previous section.
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For the linear carrier the Savart plate thickness Lsp is also optimised, but there is
no Savart plate contribution to the phase of the pixelated carrier. In contrast to
the previous section, we do not fit the waveplate thicknesses Lwp here, since this
parameter will be extremely highly correlated with AE. Instead, we simply use the
measured values Lwp = 4.48mm and Lwp = 6.35mm for the linear and pixelated
carriers respectively. Assuming these measured values to be perfectly correct will
likely cause a discrepancy between the optimised Sellmeier coefficient values for the
linear and pixelated carriers. This shouldn’t worry us though as our immediate
concern here is the predictive power of the optimised instrument model, not the
universal applicability of our optimised Sellmeier coefficients.

The optimised values of the fit parameters for both linear and pixelated carriers for
the extrapolation test are listed in Table 4.5 along with the nominal values. Figures
4.8(a) and (b) plot in the centre column the modelled ∆φ images for the linear
and pixelated carriers respectively, modelled using these optimised fit parameters.
The final column of Figures 4.8(a) and (b) then plots the residual between fit and
measured ∆φ images for each wavelength. The pattern of concentric circles in the
residual images (most prominently at λ = 508.6nm) is likely caused by an etalon
effect in the bandpass filters, due to imperfect anti-reflective coating between the
layers. Further evidence for this effect can be seen in the ‘ringing’ in the measured
filter bandpass profiles, highlighted in the inset of Figure 4.7(a). As a test of the
predictive power of the model outside of the wavelength range used to constrain the
fit, we can compare the measured ∆φ for the Cd line at 467.8 nm (relative to 472.2 nm)
with the ∆φ modelled using the optimised fit parameters. This corresponds to an
extrapolation of the CI phase over ∆λ ≈ 4.4 nm from the nearest wavelength used to
constrain the fit. Figure 4.9 plots this residual for both linear and pixelated carriers
as images (left column) and sliced profiles (right column). It can be seen that the
residual in the extrapolated phase calibration corresponds to an effective flow velocity
that is mostly smaller than the ±1 km/s accuracy aim for both carriers.

Test 2: Interpolation of Phase Between Measured Wavelengths

For a second test, we will look at how accurately we can interpolate in wavelength
between measured phase images. To do this, we will fit to a different subset of the six
available Cd/Zn lines: the four lines at 467.8nm, 468.0nm, 472.2nm and 508.7nm.
This leaves the Cd line at 480.0 nm available to test the phase interpolation accuracy
over the ∆λ ≈ 7.8nm range from the nearest measurement included in the fit (at
472.2nm). The instrument model and fit procedure is as in the previous section.
The residuals with respect to the ∆φ measurements used to constrain the fit are not
shown, but are comparable to those of the previous section, shown in Figure 4.8.
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Figure 4.8: The left columns of (a) and (b) show measured phase shift ∆φ images at three wavelengths for the linear and pixelated
carriers respectively of a multi-delay CI instrument. Phase shift here is relative to the phase measured at 472.2 nm. The centre columns
of (a) and (b) show the corresponding modelled phase shift images, fit to the data in the left columns. The right columns of (a) and (b)
show the corresponding fit residuals. See text for details.
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Parameter Nominal Fit value (MAP)
value Linear carrier Pixelated carrier

Lsp (mm) 6.2 (4 + 2.2) 6.35± 0.01 -
f3 (mm) 150 149.8± 0.1 149.8± 0.1
ρint (°) 0 0.76± 0.01 −0.4± 0.5
AE 2.31197 2.3203± 0.0006 2.3218± 0.0003

BE (µm2) 0.01184 0.011372± 0.000004 0.011352± 0.000002

Table 4.5: Optimised model parameter values for the extrapolation test fit to ∆φ
measured at 472.2nm, 480.0nm, 481.1nm and 508.7 nm.
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Figure 4.9: Residuals between the predicted and measured calibration phase images
at 467.8nm. Predicted phase at this wavelength is extrapolated over ∆λ ≈ 4.4nm
from the measurement at 472.2 nm. The model used for extrapolation is constrained
using measurements at four wavelengths (472.2 nm, 480.0 nm, 481.1 nm and 508.7 nm).
Data is shown for two carriers of a multi-delay CI instrument, see text for details.

Table 4.6 lists the optimised values of the fit parameters for both linear and pixelated
carriers for the interpolation test, along with the nominal values. Figure 4.10 then
plots the residuals between the measured and interpolated phase images at 480.0 nm.
The residuals are again mostly smaller than our goal accuracy of ±1 km/s. With the
filter ringing effect less prominent, the residuals for the linear carrier are smaller than
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in the extrapolation test (Figure 4.9). However, the residuals for the pixelated carrier
are larger, and show the same hyperbolic pattern characteristic of waveplates.

Parameter Nominal Fit value (MAP)
value Linear carrier Pixelated carrier

Lsp (mm) 6.2 (4 + 2.2) 6.35± 0.01 -
f3 (mm) 150 149.8± 0.1 149.9± 0.1
ρint (°) 0 0.80± 0.01 −0.4± 0.6
AE 2.31197 2.3203± 0.0004 2.3215± 0.0004

BE (µm2) 0.01184 0.011373± 0.000004 0.011375± 0.000004

Table 4.6: Optimised model parameter values for the interpolation test fit to ∆φ
measured at 467.8nm, 468.0nm, 472.2nm and 508.7 nm.

0

500

1000

1500

2000

y
p

ix
elLinear

carrier

Calibration residual (rad)

−0.10

−0.05

0.00

0.05

0.10

R
es

id
u

al
(r

ad
)

Column slices

Raw

Smoothed

Raw

Smoothed

0 1000 2000

x pixel

0

500

1000

1500

2000

y
p

ix
elPixellated

carrier

0 1000 2000

y pixel

−0.10

−0.05

0.00

0.05

0.10

R
es

id
u

al
(r

ad
)

−0.10 −0.05 0.00 0.05 0.10

−2.4

−1.2

0

1.2

2.4

F
lo

w
eq

u
iv

al
en

t
(k

m
/s

)

−3.6

−1.8

0

1.8

3.6

F
lo

w
eq

u
iv

al
en

t
(k

m
/s

)

Figure 4.10: Residuals between the predicted and measured calibration phase images
at 480.0nm. Predicted phase at this wavelength is interpolated over ∆λ ≈ 7.8nm
from the measurement at 472.2nm. The model used for interpolation is constrained
using measurements at four wavelengths (467.8 nm, 468.0 nm, 472.2 nm and 508.7 nm).
Data is shown for two carriers of a multi-delay CI instrument, see text for details.
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4.2.3 A Note on Group Delay

We will now briefly return to the second interferometric calibration parameter: group
delay φ̂0. We can combine the optimised model parameters in Table 4.5 with the
equation for on-axis phase delay due to a waveplate from Equation 4.1.6 and the
definition of φ̂0 from Equation 4.1.2 to calculate the (on-axis) φ̂0 that best matches the
measured calibration lamp data, for both linear and pixelated carriers. We evaluate φ̂0

at λ0 = 464.336 nm for a direct comparison to the φ̂0 values inferred from the tuneable
laser data in the previous section, listed in Table 4.3. The linear carrier lamp data
corresponds to the same waveplate used in the laser measurements (with measured
Lwp = 4.48 ± 0.02mm). The value inferred from the lamp measurements is φ̂0 =
1401± 2waves, in agreement with the laser measurement of φ̂0 = 1401.5± 0.3waves.
This waveplate’s φ̂0 was also measured in previous work[51, 63] using a tuneable laser,
for calibration of the MAST CI measurements. Since this measurement was made
at λ0 = 460.85nm, it needs to be extrapolated to λ0 = 464.336nm for comparison
to the other two values. This extrapolation is done using Equation 5.3.6 from [63]
and the α/3 set of Sellmeier coefficients, giving a value of φ̂0 = 1387 ± 10waves.
This discrepancy of 1% in the measured φ̂0 corresponds to a change of the same
proportion in the calibration of the flow magnitude. Even for the largest flows this
is smaller than the expected uncertainty in the flow zero point. Broad agreement
between measurements of the waveplate φ̂0 made over a period of > 5 years using
different cameras and, for the laser data from Section 4.2.1, different opto-mechanical
components, shows that regular φ̂0 calibration is unnecessary. That said, if multiple
lamp lines, or multiple tuned laser wavelengths, are being measured for φ0 calibration
anyway, then φ̂0 can be regularly monitored with little extra effort.

4.2.4 Discussion

The C III, He II and C II impurity ion emission lines that will be targeted for CI
measurements on MAST-U all lie within ∼ 5nm of at least one of the calibration
lines used in this section (see Figure 4.7(a)). It follows from the results of this section
that measurements of these Cd and Zn lines can be used to calibrate each targeted
line to a high accuracy (±1 km/s). Though we have used the multi-delay PPM CI
instrument design in this demonstration, there is no reason at all why the method
described cannot be applied to the more simple and popular single-delay linear carrier
design. The method should extend to arbitrary targeted plasma lines, provided a set
of bright calibration lines can be measured with at least one at a nearby (∆λ ∼ 5 nm)
wavelength. Generally, interpolation is preferable to extrapolation and so calibration
lines surrounding the targeted plasma line should be sought. Also, care should be
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taken to ensure the bandpass filters used are properly suppressing neighbouring lines
to avoid significant contamination. From the residuals shown in Figures 4.8, 4.9 and
4.10, it looks like the largest current source of systematic error for this calibration
method, at least for the linear carrier, is the ringing pattern caused by the filters.
Switching to higher quality filters with better anti-reflective coatings is the obvious
way to reduce this error. The residuals for the pixelated carrier data show a different
systematic error with what looks like a hyperbolic pattern. Preliminary Mueller
matrix modelling suggests this could be caused by small rotational misalignment
(∼ 1°) of one or more of the crystals in the xy-plane. If this is the cause, improved
mechanical mounting of the interferometer components would reduce the effect.

This work improves our understanding of how much information can be extracted
from just a few CI calibration images measured over a relatively large wavelength
range (∆λ ∼ 40 nm). Existing work[91] used 50+ phase images measured using a laser
tuned over ∆λ ∼ 3 nm. That said, in this work we are clearly discarding information
by fitting to the phase difference images instead of to the absolute phase. With a
smarter fitting algorithm, it is feasible that fewer lamp lines could be used to perform
the calibration than the four we have used here.

4.3 Summary

In this Chapter we have introduced a new method for absolute calibration of the zero
point of CI measurements of C and He impurity flow in the tokamak plasma edge.
The new method does not require a tunable laser source or wavemeter, and instead
uses standard Cd and Zn gas-discharge lamps and bandpass interference filters. This
represents a significant reduction in hardware costs and can be easily implemented
on-machine. The accuracy of the calibration demonstrated is better than ±1 km/s,
comparable to existing methods. This method will be used to calibrate MAST-U CI
measurements of impurity flow when operations begin later this year.



Chapter 5

Coherence Imaging Measurements
of Electron Density

In this chapter we apply CI to the measurement of electron density ne in the relatively
cool (Te ∼ 1 eV) and dense (ne ∼ 1020 m−3) conditions representative of the tokamak
divertor. A rise in ne manifests as a drop in the interference fringe contrast due
to Stark broadening of the observed spectral lineshape. State-of-the-art models
for Stark-broadened lineshapes are outlined and a fitting tool for inferring ne from
measured CI contrast profiles is introduced. We show that using multi-delay CI
instead of single delay makes the ne measurement more robust against systematic
error due to Doppler broadening and can also provide a simultaneous estimate of the
emitting species’ temperature. Finally, we present experimental CI measurements of
ne made on the Magnum-PSI linear plasma experiment over a range of conditions
(1019 < ne < 1021 m−3) matching the divertor plasma conditions of current and next
generation tokamaks. Also being tested is the PPM CI instrument design introduced
in Chapter 3.

CI measurement of ne has been demonstrated at a proof-of-principle level by Lis-
chtschenko et al.[97] on the Pilot-PSI linear plasma experiment. A match between the
CI and TS ne profiles was found for a discharge at Te ∼ 1 eV and ne ∼ 1020 m−3. A sim-
ilar (unpublished) investigation on the MAGPIE linear plasma experiment attempted
to benchmark CI measurements of ne using established techniques — interferometry,
slit-coupled spectroscopy and probes in lower density conditions ne ∼ 1019 m−3,
but the results were inconclusive. The work presented in this chapter develops the
technique in two ways. First, we use state-of-the-art numerical calculations for Stark-
broadened lineshape instead of the analytical approximation used previously. Second,
we use a multi-delay CI instrument design to improve the diagnostic power of the
measurement. We will discuss each of these in turn.
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5.1 Modelling Balmer Series Lineshapes

Balmer emission spectroscopy is a useful diagnostic tool for the exhaust of fusion
experiments because it emits intensely in the visible part of the spectrum under the
conditions of the SOL and the divertor. Table 5.1 lists the wavelengths of the first
six lines in the Balmer series for H and for D. The isotope shift is comparable to the
linewidths observed in divertor plasma conditions, so would have to be accounted
for in any CI measurements of isotope mixtures. However, we only consider pure
H plasma in this work. Fine structure splitting, due to spin and relativistic effects,
is much smaller for the Balmer series at ∆λ ∼ 0.005nm and is left unresolved in
Table 5.1. The CI contrast profile ζ is most sensitive to this splitting at larger delays
but the contribution to the contrast profile is small for all results in this chapter:
ζfs > 0.985. The main contributors to the Balmer lineshapes observed in this work

Name nupper λH (nm) λD (nm) λH − λD (nm)

α 3 656.279 656.1012 0.1778
β 4 486.135 486.00013 0.13487
γ 5 434.0472 433.92833 0.11887
δ 6 410.1734 410.06186 0.11154
ε 7 397.0075 396.89923 0.10827
ζ 8 388.9064 388.79902 0.10738

Table 5.1: Balmer series transition wavelengths (nupper → 2) for hydrogen and
deuterium (in air, with fine-structure unresolved)[115].

are Doppler broadening, Stark broadening and Zeeman splitting. If each of these
phenomena is statistically independent, then the total lineshape is the convolution of
the constituent lineshape contributions:

gc(ν) = gc
D(ν) ∗ gc

S(ν) ∗ gc
Z(ν). (5.1.1)

Since ne affects only the lineshape, and does not shift the central frequency νc, we
have considered only the centred lineshape gc(ν) here, related to the total lineshape
by g(ν) by Equation 2.2.3. In Chapter 2 we saw that it is the magnitude of the
Fourier transform of gc(ν) that gives us the contrast ζ as a function of interferometer
delay τ . If Equation 5.1.1 holds then we can write ζ as the product of the constituent
contrast contributions:

ζ(τ) = ζD(τ)ζS(τ)ζZ(τ), (5.1.2)

In this section we will introduce the model for each contribution in turn. Other
broadening mechanisms can influence plasma emission (e.g. Natural, resonance, Van
der Waals and opacity broadening), but these are negligible for Balmer lines in scrape-
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off layer/divertor conditions and so will not be considered any further here (see Section
6.2 of [23] and also [44]).

5.1.1 Doppler Broadening

In general, Doppler broadening encodes the velocity distribution function (VDF) of
the emitting species into the observed lineshape. For a Maxwellian VDF, it can be
shown that the local Doppler-broadened lineshape gD(ν), centred at frequency ν0, has
a Gaussian profile[43]:

gD(ν) = 1
ν0

(
πv2

th
c2

)−1/2

exp
(
− (ν − ν0)2c2

ν2
0v

2
th

)
. (5.1.3)

Here, vth is the thermal velocity:

vth =
√

2kBTi

mi
, (5.1.4)

where Ti and mi are the temperature and mass respectively of the emitting species1.
It is noted that the Doppler full width at half maximum (FWHM) of the line is given
by

ΓFWHM,ν =
√

8 ln(2)ν2
0kBTi

c2mi
, (5.1.5)

and so the width of the Doppler-broadened line for hydrogen will be a factor
√

2
larger than for deuterium.

The corresponding degree of coherence due to Doppler broadening γD can be
found using Equation 2.2.21 and the standard result that the Fourier transform of
a Gaussian function is another Gaussian (see Appendix A). Since the lineshape in
Equation 5.1.3 is symmetric about ν0, γD is real for the case of a Maxwellian VDF
and Doppler broadening contributes a contrast term ζD only. It is simple to show
that, as a function of interferometer group delay φ̂0, this is given by[63]:

ζD = exp
(
− kBTi

2mic2 φ̂
2
0

)
. (5.1.6)

Of course, a non-Maxwellian VDF invalidates Equation 5.1.6 and, in general, CI is not
well-suited to characterising an unknown VDF. That said, early CI work demonstrated
that a multi-delay instrument2 could be used to infer the presence of a VDF with an
asymmetric tail on the H1 stellarator[64].

1We use Ti to generally refer to the kinetic temperature of species i. In general this may be the
temperature of an ion species, but for H and D it is the temperature of the neutral atoms.

2Actually, a single delay CI instrument repeating its measurements at different delays.
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5.1.2 Stark Broadening

The presence of an external electric field perturbs the electron energy states in an atom,
splitting and shifting the observed line emission—this is known as the Stark effect[122].
For hydrogen, the line splitting is proportional to the external field strength and is
symmetric about the initially degenerate line, so there is no net shift in line frequency.
When the external field is due to nearby charged particles in a plasma, the observed
line profile is smoothly broadened with a width that increases with plasma density
and whose shape has a weak dependence on temperature. Modelling the Stark-
broadened line profile is complicated by the long-range Coulomb interactions of the
many particles that must be considered. However, the field is mature and simulation
results for hydrogen lines are in very good agreement with experiments across a wide
range of temperatures and densities[43, 123, 124]. A detailed review of the physics
models for Stark broadening is beyond the scope of this work so we will discuss broad
arguments and practical considerations only. A useful and accessible review that
focusses on plasma diagnostics can be found by Gigosos[125].

The earliest models for Stark broadening are based on two extreme approximations:
the impact approach and the quasi-static approach[33, 44]. The impact approach
assumes that the perturbing particles move quickly compared to the time over which
the atoms are actually radiating photons, occasionally interrupting the process. The
resulting discontinuities in the emitted wave train necessarily broaden the frequency
spectrum. If these interruptions arrive according to Poisson statistics then the line
profile has a Lorentzian form:

gS(ν) = 1
π

(
ΓHWHM,ν

(ν − ν0)2 + Γ2
HWHM,ν

)
. (5.1.7)

Here, the profile is area-normalised and ΓHWHM,ν is the half width half maximum
in units of frequency. Since ΓHWHM,ν is proportional to the collision frequency, the
profile width scales with perturber density. It is often appropriate to treat electron
perturbers using the impact approach due to their relatively high mobility[33].

Conversely, the quasi-static approach assumes that the perturbing particles move
slowly compared to the time over which the atoms are radiating—their electric field
is quasi-static. The resulting lineshape can then be found via superposition of all the
possible Stark-split spectra, weighted by the statistical distribution of electric fields
experienced by the emitting atom. This is analogous to how a Doppler broadened
profile is the superposition of many Doppler-shifted lines, weighted by the emitter
VDF. Since this treatment was first proposed, more and more accurate electric field
distributions have been derived, accounting for Debye shielding, ion-ion correlations
and other effects[44]. It can be shown that the quasi-static approach predicts lineshape
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nupper line name λ0 (nm) Model 1 Model 2
α1/2 Ci ai bi

4 β 486.1 0.08 8.425e−18 0.7803 0.050
5 γ 434.0 0.09 1.310e−15 0.6796 0.030
6 δ 410.2 0.17 3.954e−16 0.7149 0.028

Table 5.2: Coefficients for calculating the Stark-broadened profile for three Balmer
lines for two of the models described in this section. For Model 1, the values for Ba-β
and Ba-δ come from tabulated calculations[123] while the value for Ba-γ is empirical
and was used in a previous Stark CI investigation[97]. For Model 2, the values are
from [47].

wings which fall off with gS(ν) ∝ (ν−ν0)−5/2 and with a line width that is proportional
to n2/3 where n is the density of the perturber[33, 47].

It is often appropriate to treat the ion perturbers using this quasi-static approach.
The ‘standard theory’ of Stark broadening combines an impact treatment of the
electron perturbers with a quasi-static treatment of the ion perturbers. To a very
good approximation, the Stark-broadened lineshapes of one-electron systems are
symmetric[123] and so affect the CI contrast only. In this section we will introduce
three existing lineshape models of varying complexity and compare the corresponding
CI contrast profiles.

Model 1: Lorentzian with Width ∝ n2/3
e

The simplest lineshape model considered here assumes that the lineshape has a
Lorentzian profile with a width that scales according to a combination of ion quasi-
static broadening and electron impact broadening. This gives a simple relationship
between the full width half maximum ΓFWHM,λ (in units of m) of the lineshape and
the plasma density ne (in units of m−3)[33]:

ΓFWHM,λ ≈ kSα1/2n
2/3
e . (5.1.8)

Here, kS = 2.50×10−23 is a constant and α1/2 is the key result of calculations detailed
in [123]. Representative values of α1/2 for three Balmer lines considered for this work
are listed in Table 5.2. For Hβ and Hδ these values can be used to infer density from
measured ΓFWHM,λ to within ±15%[33]. Converting Equation 5.1.8 from wavelength
to frequency we can write

ΓFWHM,ν ≈
c

λ2
0
kSα1/2n

2/3
e . (5.1.9)
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This model’s assumption of a Lorentzian lineshape leads to a simple expression for
the Stark contribution to the CI contrast profile ζS. Using Equations 5.1.9 and 5.1.7,
with the definition for degree of coherence from 2.2.2 and the standard result that
the Fourier transform of Lorentzian is an exponential decay (see Appendix A), we
can write

ζS ≈ exp
(
−
kSα1/2n

2/3
e

2λ0
|φ̂0|

)
. (5.1.10)

Figure 5.1 then plots the lineshapes and corresponding contrast profiles for the Hγ

and Hδ Balmer lines for Ti = Te = 1 eV and three different densities for each of the
three lineshape models introduced in this section.

While the width scaling with n2/3
e is likely to be accurate for Stark lineshape

Model 1, the assumed Lorentzian form of the lineshape is a first order approximation
and so will introduce error at the line centre and wings. There are two reasons for
considering this model here despite its shortcomings. First, it has been used in the
previous density CI investigations[97, 126] and the associated CI error when compared
to more accurate models has not been considered in this context. Secondly, the simple
analytical form of ζS makes it easy to express the basic arguments of density CI in
Section 5.2.1.

Model 2: Model Microfield Method (MMM)

Modern calculations typically consider the intermediate broadening regime: when it
is not valid to consider either the electron or ion perturbations as entirely static or
instantaneous. One such method is the model microfield method (MMM), where the
dynamics of the statistical distribution describing the ion field are now accounted for
to some extent[127]. An extensive database of MMM simulation results for hydrogen
lines exists[124] and has been extensively used in tokamak spectroscopic studies,
for example on MAST[24], JET[47], NSTX[45], Asdex Upgrade[21] and Alcator C-
Mod[128]. These tables are intended for use in astrophysics and so cover an extremely
wide range of densities: 1016 < ne < 1025 m−3 and temperatures: 0.2 < Te < 112 eV.

Due to the coarseness of the frequency grid of these tabulated profiles, subsequent
work has been done to parametrise the results for accurate and fast interpolation
at any frequency[47]. This parametrisation assumes a modified Lorentzian lineshape
profile of the form

gS(ν) ∝ 1
(ν − ν0)5/2 + Γ5/2

HWHM,ν

. (5.1.11)

The HWHM (in wavelength space) is expressed as a function of ne and Te as

ΓFWHM,λ = Ci
nai

e
T bie

(5.1.12)
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Figure 5.1: Balmer lineshapes modelled using the three different models introduced
in this section for a range of densities at T = 1 eV. (a) and (b) show Hγ (434.0nm)
and Hδ (410.2nm) respectively plotted on a linear scale. (c) and (d) are the same
lineshapes plotted on a logarithmic scale. (e) and (f) are the corresponding contrast
profiles as a function of interferometer delay.
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where Ci, ai and bi are coefficients depending on upper principal quantum number
(shorthand i). Table 5.2 lists the coefficient values for the Hβ, Hγ and Hδ lines.
The range over which the coefficients are accurate is 1019 ≤ ne ≤ 1021 m−3. This
parametrisation recovers the original tabulated widths to better than ±10% and
maintains a good fit in the wings[47]. There is a loss of resolution at the line centre,
but this part of the profile is typically obscured by Doppler broadening. For this
model there is no simple analytical expression for the contrast contribution ζS.

Model 3: Numerical Simulation

State-of-the-art models for Stark broadening use numerical simulations to predict the
time-dependent electric microfield experienced by an emitter and then numerically
integrate over the Schrödinger equation to produce the lineshape. Modelling from
fundamental principles in this way allows the presence of an external magnetic field
(the Zeeman effect, see Section 5.1.3) to be modelled with the Stark broadening in
a self-consistent way. This type of simulation is computationally intensive. It is not
suitable for routine use in plasma diagnostics and so we again must use a database
of tabulated lineshapes as a lookup table. For the third Stark broadening model
considered here, we use tabulated lineshapes of this kind that are explicitly intended
for use in divertor plasma spectroscopy[129, 130]. These lineshapes have a finer
frequency grid than model 2, but interpolate over a coarser grid in temperature and
density parameter space, which can result in artefacts.

Figure 5.1 compares the lineshapes and calculated contrast profiles for the three
Stark broadening models introduced in this section. It can be seen that the Lorentzian
profile (gS(ν) ∝ (ν−ν0)−2) of model 1 results in broader wings than the more realistic
MMM profile (gS(ν) ∝ (ν−ν0)−5/2) of model 2 and the numerical simulation of model
3. The contrast profiles show that Model 1’s broad wings result in a significantly
lower contrast at smaller delays than models 2 and 3. Since models 2 and 3 will
produce more accurate lineshapes, it follows that using the Lorentzian approximation
results in an underestimate of ne. For this model, as with Model 2, there is no simple
analytical expression for the contrast contribution ζS.

5.1.3 Zeeman Splitting

An external magnetic field will also perturb the electron energy states in an atom,
splitting the observed line emission[122]. In general, the degree of splitting depends
on the field strength while the relative intensities and polarisation states of the line
components depend on the field direction relative to the observer. Measurements
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Model Doppler
profile

Stark
profile

Zeeman
splitting

Density
range (m−3)

B-field
range (T)

1 Gaussian Lorentzian Independent,
strong-field - |B| & 1

2 Gaussian MMM Independent,
strong-field 1019 . n . 1021 |B| & 1

3 Gaussian Computer simulation,
Stark-Zeeman 1019 < n < 1022 0 ≤ |B| ≤ 5

Table 5.3: A summary of the three Balmer lineshape models used in this chapter.

of Zeeman splitting have been be used to infer the poloidal magnetic field in toka-
maks[131, 132] and in the ITER CI design it is hoped that the difference in polarisation
state between the Zeeman-split emission and reflections from the vessel wall will help
reduce tomography artefacts[99]. In this work we consider Zeeman splitting only as a
‘nuisance parameter’ in the measured CI contrast. It must be factored out to infer an
accurate ne. Calculating the Zeeman contrast is complicated by the polarised nature
of the emission, as the CI instrument is polarisation sensitive via its front polariser.
These effects have been discussed briefly in relation to CI measurements of impurity
emission in previous work[64, 69, 133]. It is noted that, since Zeeman splitting is
symmetric about the central frequency ν0, it contributes only to the CI contrast.

The external magnetic field B interacts with the orbital and spin magnetic mo-
ments of the electron, breaking the degeneracy of ∆ml transitions. Selection rules
dictate that, in any transition between states, the change in the magnetic quantum
number must satisfy ∆ml ∈ [−1, 0, 1]. We call the line corresponding to ∆ml = 0 the
π component and its frequency is unchanged at νπ = ν0. The ∆ml = ±1 transitions
are called the σ± components and have shifted frequencies νσ± = ν0±∆νZ, where[122,
134]

∆νZ ≈
e

4πme
|B|. (5.1.13)

Here, e is the elementary charge and me is the electron mass. However, the orbital
and spin magnetic moments also self-interact (spin-orbit coupling) to produce the fine
structure splitting observed in the absence of B. The treatment of the Zeeman effect
that leads to Equation 5.1.13 assumes that the interaction with B dominates this
self-interaction[122], and is called the ‘strong-field’ Zeeman effect3. The validity of the
strong-field treatment can be checked by comparing the predicted Zeeman splitting
to the observed fine structure splitting. For example, for Hγ emission (434.0 nm), the
separation of the fine structure components from the line centre is ∼ 0.003nm[115],

3Also known as the Paschen-Back effect.
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Figure 5.2: The polarisation states of the π and σ± Zeeman components for longit-
udinal and transverse views.

while a 1T field will causes a split from the line centre of ∼ 0.009nm. The strong-
field treatment will be used as a starting point in this analysis. Codes exist for
calculating the Zeeman multiplet feature in the more complicated case when the
spin-orbit coupling cannot be ignored (e.g. ADAS603[135]). It will also be assumed,
unless stated otherwise, that the Zeeman splitting is independent of the Doppler and
Stark broadening mechanisms.

For a transverse view of the magnetic field—when the angle between the line of
sight l̂ and field B is χ = 90°—the π component is linearly polarised parallel to B
and the σ± components are linearly polarised perpendicular to B. For a longitudinal
view—when χ = 0°— the π component is not observed and the σ± components are
right and left-hand circularly polarised respectively. This is shown schematically
in Figure 5.2. For intermediate views of the field (0°< χ < 90°) the π and σ±

components’ intensity ratio and polarisation states are more complicated[134]. The
Stokes parameters for each component are listed in Table 5.4. Here, the Stokes
parameters are defined such that a linear horizontal polarisation state (positive S1)
oscillates parallel to the the projection of B onto the CI instrument’s x-y imaging
plane. So the π component is linearly polarised parallel to the projection of B and

Stokes parameter π (∆ml = 0) σ± (∆ml = ±1)

S0
1
2 sin2 χ 1

4(1 + cos2 χ)
S1

1
2 sin2 χ −1

4 sin2 χ
S2 0 0
S3 0 ±1

2 cosχ

Table 5.4: Stokes parameters for the three Zeeman split line components, assuming
the strong-field Zeeman effect is a valid treatment[134]. Here, χ is the angle between
the line of sight and the magnetic field vector B. The total irradiance of the three
line components is independent of χ and has been normalised to 1.

the σ± components are each a mix of circularly polarised light and linearly polarised
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light that is oriented perpendicular to the projection of B. While the relative strength
of the π and σ± components depends on χ, the total intensity of all components is
independent of χ and in Table 5.2 is normalised to 1.

To model the transmission of the Zeeman-split line through the CI instrument, we
have to express the line as a (centred) Stokes spectrum. We do this by multiplying the
π and σ± Stokes parameters from Table 5.4 by delta functions δ(ν) and δ(ν ∓∆νZ)
respectively and then summing the three line components. The centred, Zeeman-split
Stokes spectrum is then

Sc
Z(ν) =



1
2 sin2 χδ(ν) + 1

4(1 + cos2 χ)
[
δ(ν −∆νZ) + δ(ν + ∆νZ)

]
1
2 sin2 χδ(ν)− 1

4 sin2 χ
[
δ(ν −∆νZ) + δ(ν + ∆νZ)

]
0

1
2 cosχ

[
δ(ν −∆νZ)− δ(ν + ∆νZ)

]

 . (5.1.14)

The top row of Figure 5.3 plots example Zeeman-split Hγ Stokes spectra for different
|B| and χ. We now have to rewrite the expression for the centred lineshape from
Equation 5.1.1 as the centred Stokes spectrum:

Sc(ν) = gc
D(ν) ∗ gc

S(ν) ∗ Sc
Z(ν) (5.1.15)

Where the convolution operation is element-wise over the four Stokes parameters.
This result is normalised such that the total irradiance S0 ≡

∫
S0(ν)dν = 1. The

bottom row of Figure 5.3 plots Sc(ν) for the same |B| and χ values as the top row
and with realistic Doppler and Stark broadening. It is noted that the Zeeman-split
line is always net unpolarised (S1 = S2 = S3 = 0) when integrating over the full
multiplet feature.

Zeeman Contrast

We will now use Equation 5.1.15 to find the Zeeman contribution ζZ to the measured
CI contrast. First, we need to generalise Equation 5.1.14 for SZ(ν) to cases where
the projection of B onto the CI x-y imaging plane does not align with the x-axis
but instead makes some angle ρB with it. We can do this by multiplying SZ(ν) by
the Mueller matrix for anti-clockwise frame rotation (Equation 2.3.6) of angle −ρB:
R(−ρB)S(ν, χ). An important additional effect to consider is that the Zeeman-split
Stokes spectrum emitted by the plasma is modified by the front polariser of the CI
instrument. We account for this in the standard way by multiplying the incident
Stokes spectrum by the Mueller matrix for a linear polariser whose transmission axis is
at some angle ρpol to the x-axis. Putting this together, we can write the Zeeman-split
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Figure 5.3: Modelled (centred) Stokes spectra for Hγ emission in the presence of
a strong external magnetic field for various field strengths |B| and view angles χ.
The top row shows the Zeeman-split line components only while the bottom row
convolves these components with modelled Doppler-broadened and Stark-broadened
line profiles for divertor-relevant conditions: ne = 5× 1019 m−3 and Te = Ti = 1 eV.
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Stokes spectrum, modified by the front polariser, as:

Sc
Z,mod(ν) = Mpol(ρpol)R(−ρB)Sc

Z(ν). (5.1.16)

Since Sc
Z,mod(ν) is purely linearly polarised, it is only the total spectral irradiance of

(i.e. the S0 component) that is encoded in the coherence measured by CI. We will
call this component gc

Z,mod(ν). An expression for gc
Z,mod(ν) can be found by evaluating

5.1.16 and taking only the S0 component, leaving

gc
Z,mod(ν) ≈ sin2 χ cos2(ρ∆)δ(ν)

+ 1
4
(
1 + cos2 χ− sin2 χ cos[2ρ∆]

)[
δ(ν −∆νZ) + δ(ν + ∆νZ)

]
. (5.1.17)

Here, we have defined ρ∆ ≡ ρB − ρpol. So the spectrum encoded in the CI fringes,
modified by the front polariser, depends only on the difference between the orientation
of the magnetic field projection and the orientation of the front polariser. The modified
spectrum, including all broadening effects can be written

gc
mod(ν) = gc

D(ν) ∗ gc
S(ν) ∗ gc

Z,mod(ν). (5.1.18)

This means that the expression for total contrast as the product of the constituent
contributions from Equation 5.1.2 holds and the Zeeman contrast can be calculated
by taking the magnitude of the Fourier transform of gc

Z,mod(ν). The result, using the
definition of ∆νZ from Equation 5.1.13, can be written

ζZ ≈
∣∣∣∣∣ sin2 χ cos2(ρ∆)

+ 1
2
(
1 + cos2 χ− sin2 χ cos[2ρ∆]

)
cos

(
e|B|φ̂0

4πmeν0

)∣∣∣∣∣. (5.1.19)

This is plotted as a function of delay φ0 and field strength |B| for a range of viewing
geometries in Figure 5.4. For a longitudinal view (χ = 0°), Equation 5.1.19 reduces
to

ζZ ≈
∣∣∣∣∣ cos

(
e|B|φ̂0

4πmeν0

)∣∣∣∣∣. (5.1.20)

Similarly, for a transverse view (χ = 90°) we find that

ζZ ≈
∣∣∣∣∣ cos2(ρ∆) + sin2(ρ∆) cos

(
e|B|φ̂0

4πmeν0

)∣∣∣∣∣. (5.1.21)

So for a longitudinal view there is no dependence on front polariser orientation.
This makes sense as only the σ± components will be observed from this view and
they will be circularly polarised so the normalised spectrum will be unaffected by the
polariser. For a transverse view, front polariser orientation can be chosen such that
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Figure 5.4: Modelled drop in contrast due to Zeeman splitting of Hγ in the presence
of a strong external magnetic field, plotted as a function of field strength and inter-
ferometer delay. (a) For a longitudinal view of the field or, equivalently, a transverse
view with ρ∆ = 90°. (b) For a transverse view with ρ∆ = 45°.

ρ∆ = 0°, extinguishing the now linearly polarised σ± components and leaving ζZ = 1.
As shown in Figure 5.4, the Zeeman contrast drop can be unavoidable and significant
for longitudinal / intermediate views, large φ0 and/or large |B|. If the magnetic
geometry of an experiment is simple and a transverse view is practical, then a drop
in ζZ can be avoided, regardless of field strength. For other views, where the effect
cannot be avoided outright, it can be mitigated by choice of front polariser orientation
and accounted for via modelling if the field strength and geometry is known.

5.2 Measurement Principle

Before diving into how the accurate numerical lineshape models can be used to infer
ne from coherence imaging contrast measurements, we will briefly cover the basics of
density CI using a simplified analytical model.

5.2.1 Basic Arguments: Choice of Delay and Balmer Line

For a CI contrast measurement made at a single delay, the competing Stark and
Doppler broadening mechanisms cannot be unpicked (let’s assume here that the
Zeeman contribution can be modelled and factored out). We must therefore make a
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careful choice of delay and targeted Balmer line to minimise systematic error in the
inferred ne due to Doppler broadening while also maximising sensitivity to changes in
ne. We will assume, for now, that we have no prior knowledge of the plasma state. By
combining the Lorentzian approximation for the Stark contrast (Model 1, Equation
5.1.10) with a Gaussian profile for the Doppler contrast (Equation 5.1.6), we can
write the total contrast as

ζ = ζDζS ≈ exp
(
−
[
ne

nc

]2/3
− Ti

Tc

)
. (5.2.1)

Here, we follow existing work[64, 97] and introduce nc and Tc, the ‘characteristic’
density and temperature of the instrument respectively. Both characteristic terms
are functions of φ0. The definition of nc can be inferred from Equation 5.1.10:

nc =
(

2λ0

kSα1/2|φ̂0|

)3/2

. (5.2.2)

Similarly, the definition of Tc can be inferred from Equation 5.1.6:

Tc = 2mic
2

kBφ̂2
0
. (5.2.3)

Figure 5.5 shows the modelled line spectra and contrast profiles for Hγ emission for
relatively high-density (∼ 3×1020 m−3) and low temperature (Ti = 0.5 eV) conditions.
In this regime the Doppler contrast (shown) can be ignored (ζD ≈ 1) for the smaller
delays where the contrast is most sensitive to changes in ne. In this regime, ne can
be inferred from ζ as ne ≈ nc(− ln ζ)3/2.

The first consideration for choice of fixed delay is maximising the sensitivity of
the measured contrast ζ to changes in ne. From Equation 5.2.1, we calculate this
sensitivity as

∂ζ

∂ne
∝ 1
ne

(
ne

nc

)2/3
exp

(
−
[
ne

nc

]2/3)
(5.2.4)

In Figure 5.6, this is plotted as a function of ne/nc and normalised. It can be seen
that ∂ζ

∂ne
reaches a maximum when the delay is chosen such that nc = ne. This (group)

delay can then be written as a function of targeted ne as

|φ̂0,sens| ≈
2λ0

kSα1/2n
2/3
e
. (5.2.5)

So larger/smaller delays are better tuned to measure lower/higher ne respectively.
It also follows that, for equivalent delays, observing higher nupper Balmer lines tunes
the sensitivity to lower densities. In figure 5.5, φ̂0,sens is indicated for Hγ at ne =
3× 1020 m−3, corresponding to an α-BBO waveplate of thickness ≈ 4mm (viewed at
normal incidence). When ζD 6≈ 1, φ̂0,sens will be lower than predicted by Equation
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Figure 5.5: (a) Modelled lineshapes for Hγ emission over a range of electron densities
for Ti = 0.5 eV. (b) The corresponding contrast profiles as a function of delay. Also
shown in (b) is the Doppler contrast ζD and the optimum delay φ0,sens for maximising
sensitivity to changes in ne about 3× 1020 m−3.

5.2.5 but this is a second order effect compared to the systematic error introduced,
which we will consider next.

A second constraint on the choice of delay is that the systematic error due to Dop-
pler broadening δne must be small. In this simplified treatment, δne is the difference
between the inferred density nc(− ln ζ)3/2 and the true density ne. Expressing this
error as a fraction of ne we can write

δne

ne
≈
(

1 + kB

c2kS

[
Tiλ0|φ̂0|
n

2/3
e miα1/2

])3/2

− 1, (5.2.6)

where the constants have been grouped outside of the square brackets. Of course,
δne/ne is larger for higher Ti and lower ne. As for the instrumental parameters, δne/ne

increases with delay. This can be seen in Figure 5.7, where the constituent Doppler
and Stark components of the spectrum and contrast profile are plotted for Hγ at
ne = 1020 m−3 and Ti = 1 eV. Also plotted is δne/ne, calculated using Equation 5.2.6
and φ̂0,sens. At φ̂0,sens the systematic error is significant (20%), showing that when
Stark and Doppler effects are comparable, sensitivity may have to be sacrificed by
choosing a smaller delay to reduce systematic error to an acceptable level. Finite
SNR sets a limit on the highest contrast that can be resolved and so then also on the
smallest delay that can be used.

A consideration in the choice of Balmer line for Stark CI is the presence of
contaminating emission. Figure 5.8 shows measured spectra from the JET tokamak
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−0.05 0.00 0.05 0.10 0.15

∆λ (nm)

0

S
p

ec
tr

al
ir

ra
d

ia
n

ce
(a

rb
.)

Hγ

(a)

gc = gc
D ∗ gc

S

gc
D

gc
S

0 10 20 30 40 50 60 70 80

Delay φ0 (103 rad)

0.0

0.5

1.0 φ0,sens

ζ = ζDζS
ζD
ζS

δne/ne

0 20 40
α-BBO thickness (mm)

(b)
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orange respectively. (b) The corresponding contrast profiles as a function of delay.
The vertical dashed line indicates the optimum delay for sensitivity, while the green
line is the fractional systematic error in the inferred ne due to Doppler broadening.
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divertor (from the KT3 spectrometer diagnostic[136]) in the region of Dδ (410.1 nm)
during and after nitrogen-seeding experiments. The N III emission at the wings
preclude density CI of the line during nitrogen seeding experiments. Even in the case
of trace nitrogen presence (blue), the presence of the lines can lead to unacceptable
systematic error in the inferred density if not properly accounted for.
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Figure 5.8: Measured spectra from the JET tokamak divertor during L-mode
nitrogen seeding experiments (blue, #90423, ne ≈ 2.9 × 1020 m−3) and in L-mode
without N seeding (black, #90531, ne ≈ 3.4 × 1020 m−3). Measured using the KT3
spectrometer diagnostic[136]. Data courtesy of Bart Lomanowski.

5.2.2 Fitting to Contrast Profiles

We will now consider the more general case of inferring ne from CI measurements
of Balmer emission made at one or more interferometer delays and with a lineshape
whose modelled contrast cannot be expressed analytically. For this curve fitting
problem we will again use the framework of Bayesian parameter estimation (see
Appendix C) as it allows for easy incorporation of prior information on the model
parameter values. Measured contrast ζ(τ0;θ) is a function of interferometer delay
τ0 at the central frequency ν0 of the targeted Balmer line and the set of parameters
which determine the observed lineshape θ = {ne, Ti, Te, |B|, χ, ρ∆}. The contrast
observed at τ0 for lineshape gc(ν;θ) is calculated as

ζ(τ0;θ) ≈
∣∣∣∣∣
∫ ∞
−∞

gc(ν;θ) exp(2πiντ̂0)dν
∣∣∣∣∣, (5.2.7)

Where τ̂0 = κ0τ0 is the group delay, in units of time. As discussed, this equation
must be evaluated numerically for the most accurate lineshape models (models 2 and
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3 in Section 5.1.2). An example modelled contrast profile is plotted in 5.9(a) for Hγ

emission from a plasma with ne = 1020 m−3, Ti = Te = 1 eV and |B| = 0T. Lineshape
model 3 is used here. Also plotted in Figure 5.9(a) are simulated measurements of the
contrast profile made at four delays. These measurements are modelled with zero-
mean additive Gaussian noise with standard deviation σζ = 0.02 and the four delays
are chosen to match a CI instrument in the Multi-delay 1 configuration (see Table
3.2). We will use this example profile and simulated measurements to demonstrate a
contrast profile fitting tool developed for inferring ne.

When curve fitting, quick evaluation of the model is important for repeated
comparison with the measured data. To quickly map given values of τ0 and θ to
the modelled ζ(τ0;θ) without repeatedly evaluating Equation 5.2.7, a set of lookup
tables (LUTs) has been pre-calculated. Linear interpolation over these LUTs can then
be used to quickly find ζ(τ0;θ) for comparison to data. The LUTs in this work are
generated on log-spaced grids with 400 elements in both ne and Ti over the ranges
1019 ≤ ne ≤ 5× 1021 m−3 and 0.32 ≤ Ti ≤ 15 eV. It is assumed here and for the rest
of this thesis that Ti = Te. Figures 5.9(b)–(e) are contour plots showing 2-D slices
through the LUT at four different delays, plotted as a function of ne and Ti. The
LUT shown is for Hγ emission generated using lineshape model 3 and the four delays
correspond to the simulated measurements in Figure 5.9(a).

We will now consider how the LUTs can be used for rapid inference of plasma
parameters from contrast measurements. Let D be a set of contrast measurements
{D1,D2, . . . } made at N fixed interferometer delays τ = {τ1, τ2, . . . } of the lineshape
g(ν;θ). If we assume that the random error on each measurement is normally dis-
tributed with standard deviation σ = {σ1, σ2, . . . } and that the measurements are
uncorrelated, then the likelihood function of the ith measurement can be written

L(Di | θ) ∝ exp
(
− 1

2

[
Di − ζ(τi,θ)

σi

]2)
. (5.2.8)

Remember that the likelihood function describes the plausibility of a particular set of
model parameter values, given the measured data. Figures 5.9(b)–(e) show coloured
regions that indicate the 68% confidence interval for the likelihood functions of each
simulated contrast measurement. It has been assumed here that τ , |B|, χ and ρ∆

are all perfectly well known. This reduces L(Di | θ) to a function of two parameters:
ne and Ti. It can be seen that L(Di | θ) corresponds to an inverted L-shaped band in
density-temperature log-space whose width depends on σi and whose path depends
on τi. If each measurement is statistically independent then the total likelihood
function is the product over all N delays of the individual likelihood functions of each
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Figure 5.9: (a) Simulated contrast profile and measurements for Hγ emission (point
source) at ne = 1020 m−3 and Ti = Te = 1 eV, observed with a CI instrument in
the multi-delay 1 configuration (see Table 3.2). (b)–(e) Slices of the look-up table
between measured contrast and ne and Ti for the four interferometer delays listed. (f)
Joint and marginal PDFs for each of the four delays individually (colours) and the
combined delays (grey).
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measurement
L(D | θ) ∝

N∏
i=1
L(Di | θ). (5.2.9)

Figure 5.9(f) overlays the 68% confidence interval for L(Di | θ) at each of the four
delays in colour and then plots the same interval for L(D | θ) in grey. The total
likelihood function is localised in parameter space around the input values of ne and
Ti. At this point, any prior information on the model parameter values P (θ) can be
factored in using Bayes’ theorem to find the posterior probability density function
(PDF):

P (θ | D) ∝ L(D | θ)P (θ). (5.2.10)

In our multi-delay example here we will assume that we have no prior knowledge
about the parameters and so the posterior PDF is P (θ | D) ∝ L(D | θ). We now
take as the best estimate of θ the parameter values that maximise P (θ | D): the
maximum a posteriori (MAP) estimate (defined in Equation C.2.1). The MAP is
indicated in 5.9(f). The marginal posterior PDF for ne is calculated by taking

P (ne | D) ∝
∫ ∞
−∞

P (θ | D)dTi, (5.2.11)

and similarly for Ti by taking

P (Ti | D) ∝
∫ ∞
−∞

P (θ | D)dne. (5.2.12)

Figure 5.9(f) plots the marginal distributions for both ne and Ti for the total likelihood
and also for the likelihood of each of the four separate delays. For the total likelihood,
the MAP estimate of ne and (approximate) uncertainty is ne = (1.0± 0.1)× 1020 m−3

matching the input value of 1020 m−3. In the example shown in Figure 5.9, the
reduction of the posterior PDF to 2-D allowed us to evaluate it directly on a grid of
ne and Ti. If uncertainty in the other model parameters must be accounted for, then
this increases the dimensionality, which quickly makes grid evaluation impossible, or
at least impractical. In these cases, Monte-Carlo sampling must be used to evaluate
the joint posterior PDF[137].

For single-delay CI measurements, the most that can be inferred about ne without
making any assumptions about Ti is an upper limit. This can be seen clearly in
Figure 5.9(f) in the marginal PDFs corresponding to the individual measurements
(the coloured lines). Previous work on CI measurement of ne[97] has ignored the
Doppler contribution, effectively assuming Ti � 1 eV. In this work, we will make a
more conservative assumption when analysing single-delay data, instead assuming a
(soft) upper limit on Ti. This limit is introduced as a prior PDF on Ti with the form



5.2. Measurement Principle 121

of an inverted logistic curve:

P (Ti) ∝
1

1 + exp(k[Ti − Tu]) (5.2.13)

The choice of constants values (Tu = 6 eV and k = 4 eV−1) is informed by the SOLPS
modelling of the MAST-U divertor plasma conditions (see Figure 1.6), which predict
that the vast majority of the Balmer series emission comes from regions below 5 eV.
Figure 5.10 plots this prior PDF. We will find that this upper limit is also applicable
to the experimental measurements presented later in Section 5.3.
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Figure 5.10: An inverted logistic curve (Equation 5.2.13) is used as the prior PDF
for emitter temperature when interpreting single-delay CI results in this work.

5.2.3 Systematic Errors

Next, we will test the contrast fitting tool with synthetic data, using the lineshape
models introduced in Section 5.1, to quantify the systematic errors. The testing in this
section follows the general pattern: model the lineshape for a certain set of plasma
parameters and then model the corresponding contrast measurement(s) (assuming
zero-mean, independent Gaussian noise with a realistic standard deviation σζ = 0.02)
for a certain instrument configuration. Then, use the fitting tool on the modelled
contrast to get the MAP estimate of ne. Do this for 30 independent samples of the
measurement noise and take the average inferred ne over the samples. This ensures
that any discrepancy between the modelled and final inferred ne is a systematic effect.

Error due to Doppler Broadening

First, consider the systematic error due to Doppler broadening. Figure 5.11(a) plots
inferred ne versus modelled ne for a single-delay CI instrument observing Hγ (solid
line) and Hδ (dashed line) emission over a range of ne and Ti values and at |B| = 0T.
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Lineshape model 3 is used both to model and to fit to the data. The instrument is
in the single-delay configuration from Table 3.2 with delay φ0 = 8260 rad on-axis for
Hγ. In fitting to the modelled data we apply the soft upper limit prior of Ti . 5 eV
discussed in the previous section. As expected, the systematic error is larger for larger
modelled Ti and is consistently smaller for Hδ than it is for Hγ (Stark-broadened
lineshape width scales with nupper). The overestimate of ne can be significant even for
moderate conditions — e.g. > 25% for Hγ at ne = 7× 1019 m−3 and Ti = 3 eV — and
becomes very large for low ne and moderate Ti. Figure 5.11(b) then plots the same
test, but for an instrument in the Multi-delay 1 configuration from Table 3.2 with
four delays at φ0 = 3450, 8260, 11700 and 20000 rad (for Hγ emission). This shows
a significantly reduced systematic error, extending the dynamic range over which ne

can be measured down to low ne, moderate Ti conditions.
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Figure 5.11: Predicted systematic error in inferred electron density ne due to
Doppler broadening, plotted over a range of plasma conditions for (a) single-delay
and (b) multi-delay CI instrument configurations. See text for details.

Error due to Lineshape Model

Next, consider systematic error due to the choice of lineshape model used to infer ne.
Figures 5.12(a) and 5.12(b) plot inferred ne versus modelled ne for single-delay and
multi-delay CI instruments respectively, observing Hγ emission over a range of ne and
Ti values at |B| = 0T. The single-delay and multi-delay instrument configurations
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are the same as in the previous section. The modelled lineshapes are generated using
lineshape model 3 (numerical simulation of Stark-Zeeman profile, see Table 5.3) but
the contrast fitting tool used to infer ne assumes models 1, 2 or 3 to be accurate
(plotted in different line styles). The ‘pointy’ nature of the inferred ne lines for models
1 and 2 is a result of linear interpolation of the modelled lineshape between model 3’s
coarse ne grid points (see Section 5.1). Since the Lorentzian lineshape profile assumed
in model 1 falls off less steeply in the wings than the other two models (see Figure
5.1), we would expect a fit assuming this model to underestimate ne for synthetic
measurements produced using model 3. This is born out for both the single-delay and
multi-delay tests. For the single-delay case, systematic error in ne relative to model
3 is relatively small (< 25%) for ne > 1020 m−3 but is significant at lower ne. For
the multi-delay case, assuming model 1 to be valid leads to a very large systematic
error relative to model 3 for the whole range of ne and Ti considered. Assuming
Model 2 is valid gives a closer match to the spectra generated using model 3, which
is to be expected as both of these models account for more physics and are regularly
used in spectroscopic diagnostics. It can be seen in Figure 5.1 that model 2 predicts
a slightly narrower lineshape than model 3. This leads to the overestimate seen in
model 2’s inferred ne from model 3’s lineshape. This could possibly be caused by
the fine structure splitting not being accounted for in model 2. Since we cannot
be certain which of these two models is more accurate, the fractional density error
between in these tests (. 20% for low temperatures) can be taken as characteristic
of the uncertainty in the lineshape model. In the next section, when we apply these
methods to experimental CI measurements, we use lineshape model 3 and bear in
mind this lineshape model uncertainty.

Figures 5.12(c) and 5.12(d) show the inferred ne versus the modelled ne for the same
instrument configurations and plasma conditions as 5.12(a) and 5.12(b) respectively,
but for |B| = 1T. It can be seen that the discrepancy between models 2 and 3 is
similar under the influence of a magnetic field, indicating that the strong-field Zeeman
effect assumed in model 2 is valid.

5.3 Experimental Testing on Magnum-PSI

5.3.1 Magnum-PSI

Magnum-PSI is a linear plasma experiment in Eindhoven, NL, at the Dutch Institute
for Fundamental Energy Research (DIFFER)[138–140] whose main purpose is to
study plasma-surface interactions (PSI) and to test technologies and components for
fusion reactors. Magnum-PSI is unique in its ability to produce the particle flux
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Figure 5.12: Predicted systematic error in inferred electron density ne due to choice
of lineshape model, plotted over a range of plasma conditions for (a) single-delay and
(b) multi-delay CI instrument configurations for magnetic field strength |B| = 0T. (c)
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Figure 5.13: The linear plasma experiment Magnum-PSI. (a) The superconducting
magnet. (b) The vacuum vessel (in yellow). (c) The moveable plasma source. (d)
Three pump sets. (e) The target exchange and analysis chamber, into which the
target can be moved for surface analysis. Reproduced from [140] with modified labels.

(1023 – 1025 m−2s−1) and heat flux (≥ 10MWm−2) conditions (both transient and
steady-state) that are expected in the ITER divertor. The device has been used to
test the performance of tungsten divertor components[141] as well as novel concepts
like liquid metal[142] and heat pipe plasma-facing components[143]. Magnum-PSI is
flexible in its range of plasma temperature (0.1 – 5 eV), density (1019 – 1021 m−3) and
magnetic field strength (0 – 2.5T), covering the expected MAST-U divertor conditions
(See Figure 1.6). This, and the simple magnetic field geometry make it appropriate
for testing the CI techniques developed in this work. Figure 5.13 shows a diagram of
Magnum-PSI. The moveable plasma source is of the cascaded arc type[144], and the
confining field is produced by five superconducting niobium-tin solenoid magnets[145].
The plasma is channelled into a beam of diameter ∼ 10mm in a vacuum vessel of
diameter 500mm where it meets a moveable and replaceable target. Plasma conditions
are controlled by changing the source current, the source gas flow and the magnetic
field strength. Though Magnum-PSI is capable of producing hydrogen, deuterium
and helium plasmas of high isotopic purity, only measurements of H discharges are
reported in this work.
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Magnum-PSI Diagnostics

For study of PSI, Magnum-PSI has a suite of diagnostics measuring conditions in
the plasma beam and also at the target surface. Since we are interested here in
benchmarking density CI against existing plasma diagnostics, the surface diagnostics
(e.g. infrared cameras, laser-induced ablation spectroscopy) will not be discussed
here. While Magnum-PSI normally operates a high-speed camera for filtered imaging
of the target, this camera’s mount and port were occupied instead by CI for this work.
The relevant plasma diagnostics for our investigation are:

Thomson scattering (TS) measures ne and Te profiles across the beam immediately
in front of the target at a spatial resolution of 1.6mm[146]. The accuracy of the
inferred ne and Te is reportedly 3% and 6% respectively at ne = 9.4 × 1018 m−3

when summing 30 laser pulses at a 10Hz repetition rate. The same accuracy can
be achieved with fewer summed pulses at higher ne. The minimum ne and Te values
measurable with this system are 1 × 1017 m−3 and 0.07 eV respectively. Figure 5.14
shows the TS laser path and collection view relative to the other diagnostics used in
this investigation. The TS ne profile will be the benchmark for the CI measurements.

Magnum-PSI does not have Langmuir probes permanently installed, but the
experiments for this work were in tandem with tests of a set of MAST-U probes
carried out by another PhD student (Jack Leland, University of Liverpool). The
probes were flush-mounted on a curved graphite target which, in turn, was mounted
to a water-cooled plate and then to Magnum-PSI’s target holder. Figures 5.15(a)
and (b) show photos of the probe array during and after operation, respectively.
Measurements of the Balmer series lines targeted by CI were also made using a multi-
chord grating spectrometer whose 40 sight-lines span the width of the plasma beam
profile in increments of 0.8mm. However, due to time constraints, data from these
diagnostics is not presented in this thesis.

5.3.2 Coherence Imaging Setup

The CI instrument configurations tested in this chapter are all of the PPM type
introduced in Chapter 3, using the same FLIR camera and interferometer hardware
as discussed there. The three instrument configurations for which data is presented
here are listed in Table 3.2: one single-delay and two multi-delay configurations.

The main change to the CI instrument for the Magnum-PSI experiments is in the
imaging optics. The stray magnetic field from Magnum-PSI’s coils can cause camera
electronics to malfunction. This means that the pre-existing mount for the high-speed
camera sits 5.5m from the plasma beam axis, on the railing of a mezzanine area next
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Figure 5.14: The views / locations of the Magnum-PSI diagnostics considered in
this chapter, viewed from the plasma source to the target. The CI and spectrometer
sight lines and the Thomson scattering laser all lie in the same plane while the probes
are set back, on the target itself.
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(a) (b)

Figure 5.15: (a) The plasma target used in this experiment was a curved graphite
tile mounted to a water-cooled molybdenum target holder. Photo taken during a He
Magnum-PSI discharge using a monitor camera. (b) Set into the target, orthogonal
to the plasma beam axis, is a row of four Langmuir probes.

to the device. This arrangement can be seen in the photo in Figure 5.16(b). From this
mount, the camera views the plasma through a 70mm diameter port in the vacuum
vessel, as seen in Figure 5.16(c). Since the plasma occupies a small vertical angle
when viewed from this distance (0.23° for a 20mm beam diameter), a narrow field of
view (FOV) is required. With the sensor area acting as the field stop, the FOV in our
three lens CI setup (Figure 2.7 is determined by the focal length of the front lens, the
ratio of the focal lengths of the second and third lenses (magnification) and the sensor
size, which is fixed by the available camera. For the second and third lenses, we opted
to keep the Sigma DSLR lenses that were used in the MAST instrument, with focal
lengths f2 = 105mm and f3 = 150mm respectively, and both with f-number f/2.8.
For the front lens, we used a Sigma telephoto DSLR lens with focal length 150–600mm
and f-number f/5–6.3. At f1 = 600mm, the vertical FOV is 0.47°, small enough that
the plasma beam fills a significant portion of the image vertically. Figure 5.14 shows
the CI view relative to the other Magnum-PSI diagnostics used in this investigation.
The CI port lies in the same plane as the TS and OES ports. Figure 5.16(a) shows a
photo of the CI instrument installed on the mezzanine while Figure 5.16(b) is a wider
shot showing the instrument in relation to the Magnum-PSI experiment. The camera
was connected to a computer nearby on the mezzanine and its settings were remotely
controlled from the experiment control room.

The hydrogen Balmer lines targeted in this investigation were Hγ and Hδ. These
were chosen as they both result in nc ∼ 1020 m−3 for the available α-BBO waveplate
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Interferometer

Camera(a)

(b)

CI

(c) View from CI mount

Figure 5.16: (a) The Magnum-PSI machine hall. The coherence imaging instrument
is mounted to the railing of a mezzanine area, and can be seen in the upper right
corner. (b) The CI instrument.
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Figure 5.17: Measured transmission profiles for isolating the targeted Hγ and Hδ

emission lines.

with the smallest thickness (Lwp = 4.48mm). The bandpass filters used to isolate
these lines were each two-cavity interference filters supplied by Andover Corporation.
The measured transmission profiles of the filters are plotted in Figure 5.17. For Hγ

and Hδ filter profiles the peak transmission is 0.50 and 0.44 respectively and the
FWHM is 2.67nm and 2.63nm respectively.

Calibration

Dark frame subtraction is important when measuring interferogram contrast since
a positive offset applied to the image, if unaccounted for, will artificially lower the
inferred contrast. Since the dark current depends on the temperature of the camera
sensor, which in the case of the FLIR Blackfly is not actively cooled, dark frames are
captured after each plasma measurement using the same exposure and gain settings.
These dark frames are then subtracted before analysis of the images.

As discussed in Chapters 2 and 4, the CI instrument function is sensitive to
changes in the alignment and temperature of the birefringent optical components,
making regular calibration necessary. However, since instrument contrast ζI does
not depend directly on crystal temperature via thermal expansion or thermo-optic
effects, the temperature dependence is weaker than for instrument phase[63]. Instead,
ζI is sensitive to variations in phase delay across the crystal body. These could
be caused by variation in thickness or refractive index across the crystal. Previous
work has measured significant variation in phase delay (up to ∼ ±2 rad) across the
surface of each of the crystals used in this work[63]. Since ζI is found by integrating
over the phase variations across the aperture (similar to the treatment in Section
2.3.7), it follows that if the calibration source under-fills the crystal aperture relative
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to the plasma source, ζI will be different for the two cases, introducing systematic
error into the inferred contrast. In this investigation, CI calibration images were
taken using Cd I line emission (467.8nm) from a gas discharge lamp, isolated from
the surrounding emission lines using Filter 1 from Figure 4.7 and illuminating an
integrating sphere. To ensure the calibration source filled the entrance pupil of the
instrument, and therefore the crystal body, in an identical way to the plasma emission,
the Cd source is situated 5m from the instrument for each measurement, which took
place on the mezzanine area in the Magnum-PSI hall. By monitoring the instrument
contrast values ζI throughout the day of each measurement set, we can estimate
the contribution to the measurement uncertainty due to systematic shifts in the
instrument function. Measurements from each of the three instrument configurations
were each taken over a ∼ 2hr period. The temperature controller maintains the
temperature of the birefringent components at 35± 0.25 °C.

We are interested here in systematic shifts in ζI so, for each calibration image, we
average over a 200 × 200 pixel central region. Our confidence in this value is then
expressed by the standard error on the mean. The standard deviation of the seven
ζI measurements is 0.003. This is significantly larger than the standard error on the
mean, so can be taken as representative of the uncertainty in ζI due to systematic
calibration error for the single delay measurements presented in this section. For the
multi-delay instrument configurations, we use the same method. It was found that
the uncertainty due to systematic calibration error was almost an order of magnitude
larger than for the single delay instrument at 0.02. The reason for this is not clear. It
could be because this interferometer configuration has six birefringent crystals (each
Savart plate counting for two) instead of one.

5.3.3 Line-integrated Results

Figure 5.18 shows raw CI images and demodulated contrast images for the single-delay
instrument observing Hγ and Hδ emission. Parts (a) and (b) correspond to (on-axis)
plasma conditions of ne = 1.5 × 1020 m−3, Te = 2.8 eV and ne = 4.8 × 1020 m−3,
Te = 1.8 eV respectively, as reported by the TS diagnostic. Details of the plasma
control parameters are provided in the Figure and caption. The higher brightness of
the Hγ emission over Hδ is apparent in the raw images, as is the higher brightness of
the higher ne discharge in part (b) of the Figure.

Figure 5.19 shows (a) a raw CI image, (b) the corresponding brightness image
and (c)–(f) the corresponding demodulated contrast images for an instrument in the
Multi-delay 1 configuration observing Hγ emission. This discharge had source current
160A, gas flow 5SLM and |B| = 1.2T. The TS diagnostic reported the on-axis
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Figure 5.18: Raw CI Magnum-PSI results for a single-delay instrument observing
Hγ and Hδ emission from a discharge with field strength |B| = 1.5T, source gas
flow Qs = 4.5SLM and source current (a) Is = 130A and (b) Is = 160A. Raw
interferograms are shown in the left column while calibrated (line-integrated) contrast
is shown in the right. Regions with SNR < 5 in either the raw image or the calibration
image are masked in the contrast images.
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plasma conditions to be ne = 4.2 × 1020 m−3 and Te = 1.8 eV. That the contrast
drops monotonically with increasing delay for a given image region, suggests that the
observed spectral feature is unimodal, as expected. For a direct comparison to the
TS values, the line-integrated CI contrast must be tomographically inverted.

5.3.4 Non-Gaussian Doppler broadening and Doppler shifts

The presence of non-Gaussian Doppler broadening or significant Doppler shifts could
complicate the interpretation of the CI data. Previous work by Shumack et al.[147]
used a grating spectrometer to view Hβ (486.1 nm) at the plasma source of the Pilot-
PSI machine (a smaller, non-superconducting forerunner to Magnum-PSI that used
the same cascaded arc plasma source). From the observed lineshape, the presence of
two atomic hydrogen populations was inferred: one coupled to the ions via charge
exchange with Tn at a few eV and the other one cold at 0.1 – 0.5 eV. The intensity
ratio between the two populations was constant across the beam profile at roughly 2
to 1 (hot to cold). In addition, the hot population was observed to be rotating around
the beam axis, at velocities up to 10 km/s, due to an E×B drift. Since this rotation
was observed to decrease with axial distance from the source, with a characteristic
decay length of 0.5m, it is not observed in our measurements at the Magnum-PSI
target, which sits 1.5m from the source.

The presence of two emitting populations at different temperatures results in a non-
Gaussian Doppler broadening contribution to the lineshape, which could introduce
systematic error into the inferred ne if not accounted for. The size of this error
was modeled by the same fitting procedure used in Section 5.2.3. Representative Tn

chosen for the hot and cold populations in this test are 3 eV and 0.3 eV. Figure 5.20(a)
shows the predicted error for the single-delay CI configuration and Figure 5.20(b)
shows the error for the multi-delay CI configuration. As might be expected, the
presence of the cold population reduces the error due to Doppler broadening in the
single-delay case when compared to the Gaussian broadening model with Tn = 3 eV.
In the case of the multi-delay CI, the error in inferred ne is only larger than 5% for
ne < 5×1019 m−3. Since the predicted effect is small, we do not consider non-Gaussian
Doppler broadening in the analysis of the Magnum-PSI CI results.

5.3.5 Abel Inversion

To infer the local ne profiles, we need the local CI fringe contrast. Obtaining the local
contrast from the observed, line-integrated contrast ζ̌ requires tomographic inversion.
The CI inversion problem was introduced in Section 2.2.3. Since the line-integrated
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Figure 5.19: Raw CI Magnum-PSI results for a multi-delay instrument observing
Hγ emission from a discharge with |b| = 1.2T, Qs = 5SLM and Is = 160A. The
images shown are (a) the raw interferogram, (b) the background brightness (c)–(f)
the calibrated contrast profiles. Regions with SNR < 5 are masked in (c)–(f).
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Figure 5.20: Predicted systematic error in inferred electron density ne due to non-
Gaussian Doppler broadening for (a) single-delay and (b) multi-delay CI instrument
configurations. The grey shaded region indicates ±25% error. The Doppler broadened
lineshape contribution is plotted inset, and corresponds to two emitting hydrogen
populations with temperatures 3 eV and 0.3 eV and intensity ratio 2 : 1.

contrast is weighted by the local emission brightness, Equation 2.2.23 must first be
inverted to recover the local brightness I0(r) before Equation 2.2.28 can be inverted
to find the local contrast. Since the CI lines of sight all essentially view the plasma
beam from the same direction, we must rely on assumptions about the beam profile
in order to obtain a unique inversion solution. We will assume that the Magnum-PSI
plasma beam is cylindrically symmetric about the central axis for both brightness
and contrast. Since the line-integrated CI brightness and contrast measurements
show no significant variation along the central axis of the beam (see results in Figures
5.18 and 5.19), for the remainder of this section we will present results from column
slices instead of the full resolution images. The assumption of cylindrical symmetry
about the beam axis is not perfect. To make a first-order account for the cylindrical
asymmetry, while maintaining a unique inversion solution, we split the line-integrated
measurements in to two halves along the beam axis and invert each side separately.
This then assumes that we have two half-cylinders, each with its own cylindrical
symmetry, joined along the plane containing the beam axis and the lines of sight.

The mathematical operation that relates a cylindrically symmetric 3-D object to
its 2-D projection is the Abel transform[148]. Of interest here is the inverse Abel
transform, which reconstructs the original 3-D object from measurements of its 2-D
projection. In the absence of an obvious simple analytical form for the measured
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Figure 5.21: Example CI geometry matrix for Magnum-PSI view.

projections, we use numerical methods to solve this problem, of which there are
many[148]. We opt for a ‘pixel-based’ approach that casts the problem as a system
of linear equations. The transformation from local values f to projected values F is
treated as a multiplication by a ‘response matrix’ A:

Af = F . (5.3.1)

Here, F is an m-length column vector describing the observed projection along each of
the m lines of sight, and f is an n-length column vector describing the local function
at each of the n radial grid cells. A is therefore a m × n matrix. The first step is
to define the radial grid. Each element Aij of the response matrix is then assigned
a value in proportion to the length of sight line i falling within grid cell j. This is
calculated by incrementally ray tracing along each sight line in steps much smaller
than the size of the radial grid cells. Here, each pixel’s line of sight is treated as being
narrow and having equal collection power along its length — i.e. depth of field effects
are ignored. As our problem has a simple radial grid and near-parallel lines of sight
from a single direction, A takes a particularly simple form, with an example plotted
in Figure 5.21. The matrix indices are shown, as are the conversions to radius of
grid cell r and sight line impact parameter. Intuitively, the elements of A for which
r ≈ impact parameter have the highest values, as these elements correspond to sight
lines passing tangentially through the annular grid cells.

The system of linear equations in Equation 5.3.1 is then solved for f by finding
A−1. Many numerical techniques exist for solving this problem, but here we use
simultaneous algebraic reconstruction technique (SART), a technique popular in
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computerised tomography. This finds the solution for f by iteratively minimising the
residuals F −Af . The SART implementation used here was written in Python by
James Harrison and Scott Silburn, and based on an existing Matlab implementation
used in tomographic inversions of flow CI data on MAST[63]. Figure 5.22 shows the
inversion process for a single column of the raw multi-delay CI data shown in Figure
5.19. The left figure column shows the measured projections of (a) brightness Ǐ0, (c)
contrast ζ̌ and (e) the product of the two Ǐ0ζ̌. Prior to inversion these measurements
are smoothed and, where necessary, the brightness is brought to zero outside the
measurement range. The first step is the inversion of Ǐ0, which results in the local
profile in 5.22(b). The projection is split in half at the beam axis, which is assumed
to be at the point of maximum Ǐ0. This is indicated by the black, vertical dotted
line in the left-hand column plots of Figure 5.22. Each side of the projection is then
inverted independently using the SART algorithm and then stitched back together to
make up the inverted profile. As the assumed cylindrical symmetry of the two beam
halves is only approximate, the two halves of the inverted profiles will not, in general,
agree on the r = 0 value of the local profile. The discrepancy between the two halves,
visible in the inverted I0 profile in Figure 5.22(b) then provides some indication of the
uncertainty associated with the assumption of (half) cylindrical symmetry. According
to Equation 2.2.28, to find the local contrast profile, the product of the projected
brightness and projected contrast Ǐ0ζ̌, shown in Figure 5.22(e) must be inverted. This
results in the product of the local brightness and local contrast I0ζ, shown in Figure
5.22(f), which is divided through by the inverted brightness Ǐ0 from Figure 5.22(b) to
find the local contrast, shown in Figure 5.22(d). For a multi-delay CI system, each
delay’s Ǐ0ζ̌ profile must be inverted independently. This is shown in the bottom row
of Figure 5.22.

5.3.6 Inverted Results

Once the inverted contrast profile(s) have been calculated, the fitting tool described
in Section 5.2.2 can be used to infer the local ne profile. All the results shown in
this section fit to the data using the contrast LUT generated using lineshape model
3 — as this is the most sophisticated of the available models. Zeeman splitting is
accounted for the fitting process by assuming the Magnum-PSI control value to be
completely correct.

For the rest of this section, we will directly compare the local ne profiles inferred
from CI measurements to the corresponding TS measurements. We will also plot the
TS measurements of Te for context. For the multi-delay CI results, we can compare this
Te profile to the Ti inferred from the CI measurements. The CI-TS comparisons will
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Figure 5.22: Example tomographic inversion for the Multi-delay CI Hγ images
shown in Figure 5.19.

be presented in a consistent format for each CI instrument configuration, for example
see the multi-delay delay Hγ CI results in Figure 5.23. Each column corresponds to
different plasma conditions, as specified in the figure caption. The top row shows
3-D plots of the inverted contrast profile(s) in black as a function of beam radius r
and interferometer delay φ0. For the multi-delay results there are contrast profiles
at four delays. The grey mesh surface is the MAP value for the fit to the contrast
profile at each r, plotted over a range of delays. Three slices through this ‘fit surface’
are made at radial points r = 3, 9 and 15mm, plotted in blue, orange and green
respectively. In the second row, each of these three slices is plotted in as a function
of φ0 only, along with the measured contrast data at the same r. This allows for a
visual inspection of the goodness of fit — particularly useful for the multi-delay CI
data. The third row then plots the radial ne profiles as inferred from the CI and
TS diagnostics. For the CI results, the MAP values are plotted as a solid line and
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the 68% confidence interval is shaded. The r values of the three slices are indicated
here with vertical lines of the appropriate colour. Finally, the fourth row plots the
corresponding radial temperature profiles: Te for the TS diagnostic and Ti for the
multi-delay CI diagnostic. For the CI data, only the 68% confidence interval is shown,
as the posterior PDFs are relatively wide.

Figures 5.23(a)–(e) correspond to a scan in ne from low to high values. Part (d) of
this figure corresponds to the same CI data presented earlier in Figures 5.19 and 5.22.
The lineshape model appears to fit the contrast data well across these measurements,
particularly closer to the beam axis (see r = 3mm slice plotted in blue). Agreement
between CI and TS ne profiles is mostly good across this range. It is important to
note that the results in Figures 5.23(a) and (b) were taken with the CI instrument in
the Multi-delay 2 configuration while the results in Figures 5.23(c)–(e) were taken in
the Multi-delay 1 configuration (See Table 3.2 for reference). The larger maximum
delay of the Multi-delay 2 configuration ought to make it more sensitive at lower ne.
While the Multi-delay 2 configuration does provide four fixed interferometer delays,
two of these delays are similar in value. This represents a sub-optimal sampling in
delay space, but this is not a significant problem. In fact, the close proximity of
the two delay samples here provides a welcome consistency check. Figures 5.23(a)
and (b) were measured at a lower magnetic field strength: |B| = 0.8T compared to
|B| = 1.2T for parts (c)–(e). While there is agreement between the two diagnostics
for ne, the inferred CI emitter temperature Ti is consistently higher than the Te profiles
reported by the TS. Whether this is accurate or is a systematic error in the CI results
is not clear.

Figure 5.24 plots Hγ CI results measured using an instrument in the single-delay
configuration (see Table 3.2). Results are presented in the same format as Figure
5.23. These single-delay results correspond to a scan in plasma source current Is with
a gas flow rate of Qs = 4.5SLM and a magnetic field strength of |B| = 1.5T. For
these single-delay results, the soft upper limit of Ti < 5 eV discussed in Section 5.2.2
is used as a prior PDF. This is justified for the Magnum-PSI plasma based on the
TS measurements of Te, which are < 5 eV for all discharges reported. Additional
justification comes from previous work modelling discharges on Pilot-PSI, a smaller
linear plasma experiment that served as a prototype for Magnum-PSI[149]. This
work combined fluid plasma and kinetic neutral models, and predicted a relatively
low neutral temperature (T . 2 eV). While the single-delay ne results show good
agreement with the TS results at higher densities (ne & 1020 m−3), Figure 5.24(a)
shows that at lower densities (ne ≈ 5× 1019 m−3) we see a considerable overestimate
(∼ 300%) in the CI ne. Based on the discussion in Section 5.2.2, we expect a
degree of ne overestimation for the single-delay instrument. However, the observed
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Figure 5.23: (Image on previous page) Multi-delay CI results observing Hγ emission
(434 nm) from Magnum-PSI over a range of plasma conditions. Source gas flow rate is
Qs = 5 SLM for all discharges here, while source current Is and magnetic field strength
|B| are: (a) Is = 120A, |B| = 0.8T, (b) Is = 130A, |B| = 0.8T, (c) Is = 125A,
|B| = 1.2T, (d) Is = 160A, |B| = 1.2T, (e) Is = 200A, |B| = 1.2T. See text for
detailed explanation.

overestimation is larger than we would expect by taking the TS ne and Te and
calculating the expected overestimation (as in Figure 5.11(a)). This could be explained
by the Ti > Te result from the multi-delay CI.

Figure 5.25 plots CI measurements of Hδ emission using an instrument in the
Multi-delay 2 configuration (see Table 3.2). These results correspond to |B| = 0.8T,
with gas flow and source current values listed in the figure caption. While the ne

values recorded by the TS diagnostic fall within the range tested for Hγ emission in
Figure 5.23, the agreement between CI and TS profiles is consistently worse here.
The peak values of the CI ne profiles are 50–100% higher than those reported by the
TS. The reason for such a large discrepancy is unclear. It seems unlikely to be a
problem with the lineshape model used, as the agreement between separate lineshape
models 2 and 3 in Section 5.1 was found to be equally good for Hγ and Hδ lines. It
also seems unlikely to be a problem with the data analysis pipeline, since the same
pipeline resulted in a good agreement between the multi-delay Hγ CI and TS results.
One possible cause is a systematic error introduced in the contrast calibration step.
The Hδ emission (410.2 nm) is further away in wavelength from the Cd calibration line
(467.8 nm) than Hγ emission. Measurement of the wavelength dependence of ζI would
show whether this effect could feasibly be the cause. An alternative explanation is
contamination emission reducing the observed plasma contrast and resulting in an ne

overestimate. Analysis of the Magnum-PSI spectrometer data should show evidence
of this if it is the cause. The non-ideal performance of the polymer quarter-wave
plate used in this work (described in Section 3.4) could also be contributing to this
ne overestimate.

5.4 Summary

This chapter has considered CI measurement of electron density via Stark-broadening
of hydrogen Balmer line emission from divertor-relevant plasma conditions. This
work is motivated by wanting to make high quality 2-D measurements of ne in the
MAST-U tokamak divertor, with plasma conditions expected to be in the range
5× 1019 . ne . 5× 1020 m−3 and 0.5 . Te . 5 eV. First we considered three different
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Figure 5.24: Single-delay CI results observing Hγ emission (434.0 nm) fromMagnum-
PSI over a range of plasma conditions. Source gas flow rate is Qs = 4.5SLM and
magnetic field strength is |B| = 1.5T for all discharges shown here, while source
current Is is: (a) Is = 125A, (b) Is = 150A, (c) Is = 190A. See text for detailed
explanation.
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Figure 5.25: Multi-delay CI results observing Hδ emission (410.2 nm) from Magnum-
PSI over a range of plasma conditions. Magnetic field strength is |B| = 0.8T for all
discharges shown here, while source current Is and gas flow rate Qs are: (a) Is = 120A,
Qs = 5SLM, (b) Is = 140A, Qs = 6SLM, (c) Is = 180A, Qs = 6SLM. See text for
detailed explanation.
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lineshape models for Balmer series lines with varying levels of complexity, each of
which has been used in previous spectroscopic investigations. Next, we introduced
a fitting tool that uses Bayesian parameter estimation to infer ne from single-delay
or multi-delay CI contrast measurements. Tests of this fitting tool using synthetic
data showed that multi-delay instrument configurations ought to significantly improve
the dynamic range of the ne measurement by improving robustness against Doppler
broadening effects. This allows ne at the lower end of the anticipated MAST-U range
to be measured without significant systematic error. These tests also showed that
the simplified analytical lineshape model for Stark-broadening used in previous work
can result in large systematic errors when compared to the more modern numerical
lineshape models, which should be used instead.

Experimental CI measurements of divertor-relevant plasma conditions were then
presented from the Magnum-PSI linear device at DIFFER in Eindhoven, NL. For
measurements of Hγ , good agreement was found between the measured CI ne profiles
and those measured using the Magnum-PSI Thomson scattering diagnostic. Also,
the predicted benefit of a multi-delay CI configuration appears to be born out exper-
imentally, as the multi-delay instrument could accurately measure down to at least
ne ∼ 5 × 1019 m−3 while accurate recovery of the beam profile below ne ∼ 1020 m−3

was not achieved. However, there were some unanswered questions too. The in-
ferred Ti results from the multi-delay instrument are a factor ∼ 2 higher temperature
than the Te recorded by the TS diagnostic. Additionally, a consistent and significant
over-estimate of ne was found in the results of CI measurements of the Hδ emission
line.

The measurements in this Chapter were carried out using CI instruments with the
pixelated phase-mask designs introduced in Chapter 3. While the simple geometry
of the Magnum-PSI plasma beam is perhaps not the best example for showcasing
the improved spatial resolution of the PPM-CI designs, this work represents the first
experimental demonstration of this technique.



Chapter 6

Summary and Future Work

In this thesis, we have presented several new developments to the coherence imaging
(CI) technique for diagnosing the scrape-off layer (SOL) and divertor plasma of fusion
experiments. CI is a narrow-band spectral imaging technique that isolates a single
emission line in the visible range and measures its Doppler shift and line width.
The Doppler shift encodes the flow velocity component of the emitting species along
the instrument line of sight. The line width encodes either the emitting species
temperature Ti or the electron density ne, depending on whether Doppler broadening
or Stark broadening respectively is the dominant effect. Broadly, the three new
developments presented in this thesis are

1. Incorporation of a pixelated polariser sensor into the CI instrument, improving
spatial resolution and robustness.

2. A new technique for absolute calibration of CI flow velocity measurements using
standard gas-discharge lamps, with significantly reduced costs compared to
existing techniques.

3. Improved methods for 2-D ne CI measurement in divertor-relevant plasma
conditions, demonstrated experimentally on the Magnum-PSI linear plasma
experiment with a direct comparison to 1-D Thomson scattering measurements.

In Chapter 1, the tokamak was introduced and we saw that one of the key chal-
lenges in designing a fusion reactor is handling the large amounts of power exhausted
via the SOL into the divertor target plates. High-quality measurements of the SOL
and divertor plasma are required to benchmark numerical simulations of divertor
performance, which will lead to a better understanding of current experiments and
to more reliable predictions for future experiments. Using the example of MAST-U,
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a spherical tokamak due to begin operations later this year, we introduced the differ-
ent diagnostic tools typically used to make these measurements and discussed their
relative merits. CI was introduced as an imaging technique that can measure 2-D
maps of important plasma properties over a wide field of view and at a high spatial
resolution. CI is desirable as it can observe plasma properties that are not directly
observable using other imaging techniques.

Chapter 2 covered CI theory. The CI instrument is a two-beam interferometer,
splitting observed light into two beams and introducing a time delay between them.
When the beams recombine an interference fringe pattern is formed which carries
information about the temporal coherence of the light, and therefore also about its
frequency spectrum. If a single emission line from the plasma is isolated, then the
observed fringe pattern is determined by a small number of well-understood processes
and assumes a particularly simple form (Figure 2.2): fringe phase is determined by
the line’s central wavelength and fringe contrast is determined by the line’s width.
The line’s central wavelength encodes emitter flow velocity via Doppler shift while line
width is determined by different parameters depending on emitting species and plasma
conditions. The simple form of the fringe pattern means that the interferometer delay
need only be scanned about a single fixed value to recover the parameters of interest,
so robust designs without moving parts become feasible. In practice the required fixed
delay is introduced using birefringent crystal plates (Figure 2.5), an example of a
wider technique in optics called polarisation interferometry. CI has been most widely
implemented to measure flow velocity of C and He impurity ions via passive emission
in the plasma edge[51, 52, 78, 90]. Applications to Thomson scattering emission[94–
96] and charge-exchange recombination emission[93] have been demonstrated but
have not yet been widely adopted. CI measurement of ne via Stark broadening of
Balmer emission lines has also been demonstrated, on a linear plasma experiment[97].
Though not the subject of this thesis, CI can also be used for spectro-polarimetry, most
prominently used to measure magnetic pitch angle via the motional Stark effect[70].

6.1 Pixelated Phase-mask CI

Pixelated phase mask (PPM) interferometry is a relatively new technique in optics for
maximising the spatial resolution of interferometric imaging measurements[102]. It
uses a camera with a pixelated polariser array bonded to its sensor at manufacture to
produce a pixelated interference fringe pattern. In Chapter 3, we saw that this PPM
technique can be incorporated into the CI framework easily, and only requires minor
hardware changes. Both single-delay and multi-delay PPM-CI designs were presented
in this chapter and experimental images for each design were shown. Demodulation
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algorithms for recovering the interferogram phase and contrast were described and
tested experimentally and numerically. All of the results presented in this thesis —
with the exception of the work in Section 4.2.1 — use the PPM-CI instrument designs
presented in this chapter.

6.2 Calibration of Flow Measurements using
Gas-discharge Lamps

MAST-U will operate a CI diagnostic for 2-D measurements of impurity flow velocity
in the plasma edge, which is expected to be as large as 30 km/s. Chapter 4 of
this work investigated phase calibration, which sets the zero point of the CI flow
measurements. This calibration requires the phase of a set of unshifted fringes,
measured at the rest-frame wavelength of the targeted emission line, to be subtracted
from the Doppler-shifted phase of the plasma observations. The problem is that this
calibration phase is very sensitive to changes in ambient temperature and alignment,
for example changing by 16 km/s equivalent over the period of a week when monitored
on MAST in 2013[63]. Phase calibration cannot then be a one-off. It must be carried
out regularly — ideally inter-shot — to monitor these changes, and so requires its
own hardware. In the last few years, several fusion experiments with permanently
installed flow CI diagnostics have installed tuneable laser calibration systems that
can provide in-situ monitoring of any calibration changes. DIII-D have installed a
custom diode laser, tuneable over the 464 – 468 nm wavelength range[91, 92] and W7-
X have installed a an Optical Parametric Oscillator (OPO) laser, tuneable over the
450 – 650 nm wavelength range[77]. In both cases a wavemeter is required to measure
and control the laser wavelength. These systems represent the most direct method for
calibrating flow measurements of emission lines within their tuning ranges. However,
they increase the total hardware cost of the diagnostic significantly, being at least
comparable to the cost of the CI instrument itself. Chapter 4 of this work sought to
answer the question: is there a cheaper way to calibrate the flow measurement zero
point to a high accuracy?. Where we take ‘high accuracy’ here to mean better than
±1 km/s error in the measured flow.

Necessity is the mother of invention and in Chapter 4 we showed that the an-
swer is yes. Our method for phase calibration uses only gas-discharge lamps and
bandpass interference filters, both cheap and common optical components. While
the available gas-discharge lamps do not, generally, emit intense coherent light at
the precise rest-frame wavelengths of the targeted plasma lines, they do emit intense
coherent light at wavelengths nearby. We show that by measuring the CI phase at
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these nearby wavelengths, and fitting an instrument model to the data, the required
calibration phase can be predicted to a high accuracy at the plasma wavelength of
interest, without the need for a light source at that wavelength. This is analogous to
how gas-discharge lamps are used to calibrate the wavelength axis of a slit-coupled
spectrograph. To demonstrate the method, we measured phase images at four emis-
sion lines produced by Cd and Zn gas-discharge lamps spread over a ∼ 40 nm range.
On fitting an instrument model to the measurements, we were able to correctly pre-
dict the calibration phase image measured at a fifth lamp line, separated ∼ 5nm
from the nearest measurement included in the fit, to our goal accuracy of ±1 km/s
flow-equivalent. This was made possible by dealing with two complications that have
not been previously considered in detail in the CI literature:

1. Measured phase data is inherently wrapped within the (−π, π] rad interval.
Lamp lines are typically sparse enough in wavelength that the measured phase
data cannot be trivially unwrapped. This ambiguity is handled in this work by
using wrapped likelihood functions when fitting the model to the wrapped phase
data. When this approach is combined with extremely broad prior information,
obviously incorrect fit solutions are automatically rejected and the ambiguity is
overcome.

2. Over the wavelength shifts between the calibration lamp lines, the available
Sellmeier coefficients describing instrument dispersion do not model the CI phase
shift with sufficient accuracy. This is predictable based on the discrepancies
between available sets of Sellmeier coefficients (Figure 4.4) and is also observed
experimentally. We handle this by leaving two of the Sellmeier coefficients as
free parameters when fitting the instrument model to the measured phase data.

At least one of the six Cd and Zn lamp lines measured in Chapter 4 is within 5 nm
of each of the three impurity lines targeted for measurement on MAST-U (C III at
464.8810 nm, He II at 468.5701 nm and C II at 514.1842 nm). It follows that each can
be calibrated using the methods and lamp lines discussed in that chapter.

6.3 Coherence Imaging Measurements of
Electron Density

In divertor plasma conditions, Stark broadening is a significant component of the
observed lineshapes for the hydrogen Balmer emission series. The Stark width is
determined mostly by electron density, and chordal spectroscopic measurement of this
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effect is an established technique for diagnosing ne in the tokamak divertor plasma.
The pre-existing work applying this principle to CI was at the proof-of-principle
level[97]. One goal of Chapter 5 was to build on this existing work, optimising the
ne CI measurement technique in preparation for implementation on the MAST-U
divertor. Two important findings that have come out of the modelling carried out in
this work are:

1. That although the simplified Stark-broadened lineshape model used in the
previous CI work provides an intuitive analytical treatment for interpreting
results, it can introduce significant systematic error into the inferred CI ne

when compared to more sophisticated numerical lineshape models[124, 129,
130] (see Figure 5.12). These numerical models are already the gold standard
for grating spectroscopy[21, 23, 24] and should be used where appropriate for
all future CI work.

2. Multi-delay CI measurements can significantly extend the dynamic range of ne

measurements to lower densities < 1020 m−3 at moderate temperatures Ti ∼ 3 eV
by fitting to the Doppler broadening component of the lineshape which, in
single-delay CI measurements introduces large systematic errors in these plasma
conditions.

Experimental CI measurements of ne were made on the Magnum-PSI linear plasma
experiment, which can produce a wide range of plasma conditions (1019 ≤ ne ≤
1021 m−3, 0.5 ≤ Te ≤ 5 eV, 0 ≤ |B| ≤ 2.5T), easily covering those expected in
the MAST-U divertor (see Figure 1.6). To avoid stray magnetic field problems,
the CI instrument was mounted 5.5m from the plasma beam and a telescopic lens
was used as the objective lens such that the 20mm diameter plasma beam filled
the field of view. A pixel-based technique was used to tomographically invert the
line-integrated, emissivity-weighted projections of CI contrast, assuming the plasma
beam to be made up of two cylindrical segments, each with cylindrically symmetrical
properties. To infer ne from the local CI contrast, a fitting tool was developed
based on a pre-calculated look-up table of contrast profiles and the framework of
Bayesian parameter estimation. The inferred ne profiles showed good agreement
with the Thomson scattering measurements for multi-delay CI measurements of Hγ

emission (434.0 nm) across a 5× 1019–8× 1020 m−3 density range. For a single-delay
CI instrument observing the same line, the influence of Doppler broadening makes
accurately inferring ne below ne ∼ 1020 m−3 difficult at the relevant temperatures ∼
3 eV. For CI measurements of Hδ emission (410.2 nm), an unexplained overestimate is
found relative to the Thomson scattering measurements, possibly due to contaminant
emission or a systematic calibration error.
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6.4 Future Work

The results of this thesis will help optimise CI measurements of the MAST-U SOL and
divertor. For calibration of CI measurements of carbon and helium impurity flows,
the method presented in Chapter 4 ought to be adopted, in-situ and fully automated.
A filter wheel can be used to remotely cycle through the different calibration filters
in turn while remote control of the Cd and Zn lamp power can ensure that the
appropriate lamp illuminates each filter. On the software side, the instrument model
fitting algorithm and necessary phase extrapolation is already automated. While the
clear advantage of this method is cost, its disadvantage is the complexity of the data
analysis required relative to direct measurement of tuneable laser light. This can be
mitigated by publishing the instrument model and fitting algorithm (all written in
Python) as an open source software package. While Chapter 4 demonstrated that
absolute phase calibration using gas-discharge lamps is possible, no investigation was
carried out into how robust the results of the instrument model fit are to changes in
mechanical alignment or ambient temperature — instrument phase certainly needs to
be regularly tracked for environmental changes at a wavelength near to the targeted
emission line but how regularly does the fitting procedure need to be carried out?
As mentioned in 4.2.4, the method described could also feasibly made simpler in a
number of ways.

Applying PPM-CI to MAST-U has the advantage that it would maximise spatial
resolution and eliminate ringing artefacts from Fourier demodulation techniques,
which were a limitation in previous work that used the more typical linear spatial
carrier method[51, 63]. In this work, it was found experimentally that the instrumental
contrast and phase calibration parameters for pixelated carriers are more robust
against environmental effects than the equivalent quantities for linear carriers. The
only disadvantage in using the PPM-CI instrument as presented in this work is the
limited frame rate of the FLIR Blackfly camera (75Hz), however high-speed cameras
with pixelated polariser sensors are available (e.g. the Photron Chrysta with a frame
rate of 7000Hz) if measurements of transient phenomena are required. Although
not the topic of this thesis, the PPM-CI technique could also be used for imaging
motional stark effect spectropolarimetry[70], conferring the same advantages as for
the purely spectroscopic applications discussed in this work.

For measurements of ne in the MAST-U divertor, the results presented in this
thesis suggest that, in the absence of strong prior information on neutral hydrogen
temperature, the multi-delay CI configuration extends the range over which accurate
ne measurements can be made to lower density, higher temperature conditions, relative
to the single-delay configuration.
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We have already mentioned that multi-delay CI would be required to detect the
presence of a non-Maxwellian velocity distribution function (VDF) in the Doppler-
broadened lineshape. However, even for a Maxwellian VDF, multi-delay CI could be
useful for improving the quality of tomographic inversion of CI data. Since the multiple
delays confer more information on the observed, projected lineshape, the inversion
would be better constrained. This would likely reduce artefacts most significantly for
lines of sight along which the flow and/or broadening shows the most variation.

Although sadly outside the scope of this project, in the last few years coherence
imaging measurements have begun to contribute to high-quality physics studies of
fusion plasmas[52, 89, 90]. With its relative affordability, coverage and flexibility,
this diagnostic technique looks set to make significant contributions to fusion plasma
exhaust studies in years to come.
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Maths

A.1 Fourier transforms

Convention: continuous transform

In this thesis we use, as a convention, the unitary form of the Fourier transform. The
forward transform of the time-domain function f(t) is

F (ν) =
∫ ∞
−∞

f(t) exp(−2πiνt)dt, (A.1.1)

And the inverse transform of the frequency domain function F (ν) is:

f(t) =
∫ ∞
−∞

F (ν) exp(2πiνt)dν. (A.1.2)

Shifting property

F (ν − ν0) = f(t) exp(−2πiν0t) (A.1.3)

and
f(t− t0) = F (ν) exp(2πiνt0) (A.1.4)

Convolution theorem

Convolution in one domain (e.g., time) is equal to point-wise multiplication in the
other domain (e.g., frequency).

F{f1(t) ∗ f2(t)} = F{f1(t)} · F{f2(t)} = F1(ν) · F2(ν) (A.1.5)
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Gaussian function

The area-normalised Gaussian function (Normal distribution) centred at k0 in fre-
quency space can be written

F (k) = 1
σ
√

2π
exp

(
− 1

2

[
k − k0

σ

]2)
, (A.1.6)

where σ is a scale parameter specifying the standard deviation. Its inverse Fourier
transform, in time/space, is given by

f(x) = exp(2πik0x) exp(−2π2σ2x2). (A.1.7)

Lorentzian function

The area-normalised Lorentzian function (Cauchy distribution) centred at x0 can be
written

f(x) = 1
πΓ

(
Γ2

(x− x0)2 + Γ2

)
, (A.1.8)

where Γ is a scale parameter specifying the half-width at half-maximum. Its Fourier
transform is given by

F (k) = exp(−2πix0k) exp(−2πΓ|k|). (A.1.9)

Sampling property ∫ ∞
−∞

f(t)δ(t− t0)dt = f(t0) (A.1.10)∫ ∞
−∞

δ(ν) exp(2πiνt)dν = 1 (A.1.11)

A.2 Derivation of the Wiener-Khinchin theorem

Autocorrelation is the correlation of a function with a delayed copy of itself, as a
function of that delay. Consider a function u(t) that is either deterministic or is a
wide-sense stationary random process. The autocorrelation of u(t) as a function of
delay τ is

C(τ) ≡
∫ ∞
−∞

u∗(t)u(t+ τ)dτ. (A.2.1)

If F{u(t)} = U(ν), then u∗(t) can be written

u∗(t) =
∫ ∞
−∞

U∗(ν) exp(−2πiνt)dν, (A.2.2)
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and u(t+ τ) can be written

u(t+ τ) =
∫ ∞
−∞

U(ν) exp(2πiν[t+ τ ])dν. (A.2.3)

We then substitute these two expressions into Equation A.2.1, taking care to in-
dependently label the frequency domains of the shifted and unshifted functions, to
get

C(τ) =
∫ ∞
−∞

[ ∫ ∞
−∞

U∗(ν) exp(−2πiνt)dν
][ ∫ ∞

−∞
U(ν ′) exp(2πiν ′[t+ τ ])dν ′

]
dτ.

(A.2.4)
Rearranging, and making use of the shifting property and the Fourier transform of
the Dirac delta function, we can write:

C(τ) =
∫ ∞
−∞

U∗(ν)U(ν ′)δ(ν − ν ′) exp(2πiν ′τ)dνdν ′. (A.2.5)

Next, we can use the sampling property of the Dirac delta function to show that

C(τ) =
∫ ∞
−∞
|E(ν)|2 exp(2πiντ)dν. (A.2.6)

Here, |E(ν)|2 is called the power spectral density. So, with the stated assumptions, the
autocorrelation and the power spectral density of a function are a Fourier transform
pair.
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Fourier Demodulation of
Interference Fringes

In this appendix, we outline how Fourier techniques are used to demodulate an
interference fringe pattern, extracting the brightness, contrast and phase signals. We
will also consider how noise in the raw image manifests in the demodulated signals.
The Fourier method was first proposed for 1-D signals in 1982 by Takeda et al.[150].
It was soon extended to 2-D images in 1986 by Bone et al.[151]. It is now a standard
and well-understood technique[112].

The convention for the discrete Fourier transform (DFT) used in this report is
chosen to match that of the Numpy Python library. When x and y are the pixel
coordinates on a camera sensor array with respective dimensions N and M , the
forward transform of an image fxy is:

Fkl =
N−1∑
x=0

M−1∑
y=0

fxy exp
(
− 2πi

[
xk

N
+ yl

M

])
. (B.0.1)

And the inverse transform is:

fxy = 1
NM

N−1∑
k=0

M−1∑
l=0

Fkl exp
(

2πi
[
xk

N
+ yl

M

])
. (B.0.2)

Henceforth, when Fourier transform is abbreviated to FT it refers to this 2D discrete
formulation of the transform. Parseval’s theorem is a statement of the conservation
of “energy” through the transform. For the 2D DFT as defined, Parseval’s theorem
can be written:

N−1∑
x=0

M−1∑
y=0
|fxy|2 = 1

NM

N−1∑
k=0

M−1∑
l=0
|Fkl|2. (B.0.3)
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Consider a measured (real-valued) interferogram of the form

sxy = Ixy
[
1 + ζxy cos(φxy + φc)

]
, (B.0.4)

where x and y are the pixel coordinates. There are three unknowns in the image:
the brightness Ixy, the contrast ζxy and the phase φxy. The carrier term in the
interferogram phase is φc and it is assumed to be known. The purpose of the carrier
is to separate the desired contrast and phase information in (spatial) frequency-space
from the background brightness of the scene. Assume that the carrier is linear in y,
giving us perfectly horizontal fringes:

φc = 2πkc

N
y. (B.0.5)

Figure B.1(a) shows an interferogram generated using Equations B.0.4 and B.0.5
(plus noise) with dimensions N = M = 1000 and whose linear carrier (Figure B.1(b))
is modulated by inputs Ixy, ζxy and φxy. The Fourier transform of the interferogram
Skl ≡ F{sxy} can be written

Skl = F{Ixy}+ F{Ixyζxy cos(φxy + φc)}
= F{Ixy}+ F{Ixyζxy cosφxy cosφc} − F{Ixyζxy sinφxy sinφc}

= F{Ixy}

+ F{Ixy} ∗ F{ζxy} ∗ F{cosφxy} ∗
1
2

(
δl0δk(−kc) + δl0δkkc

)
+ F{Ixy} ∗ F{ζxy} ∗ F{sinφxy} ∗

i

2

(
δl0δk(−kc) + δl0δkkc

)
. (B.0.6)

Here, we have made use of the convolution theorem, and the standard result for the
Fourier transform of cos(ay). The Kronecker delta δij is defined

δij =

0 (i 6= j),

1 (i = j).
(B.0.7)

So the Fourier transformed signal consists of three parts: the brightness image F{Ixy}
and then two terms centred at the positive and negative carrier frequency ±kc. If the
spectral content of Ixy, ζxy and cosφxy is sufficiently low-frequency, then these three
components are clearly separable in the frequency domain. Figure B.1(c) shows the
periodogram estimate of the image power spectral density (PSD), found by taking
|Skl|2
NM

. Using the filter windows W (DC)
xy and W (c)

xy , brightness can be extracted as

Ixy = F−1
{
W

(DC)
kl Skl

}
(B.0.8)

and subtracted from the image.
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Figure B.1: (a) Synthetic interferogram S̃xy (with noise). (b) Modelled ideal linear
carrier phase φc. (c) Periodogram estimate of image power spectral density and
example window functions Wkl for isolating the DC (brightness) and spatial carrier
components of the image.
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This leaves us with the filtered carrier frequency in the Fourier domain

W
(c)
kl Skl = F{Ixy} ∗ F{ζxy} ∗ F{cosφxy} ∗

1
2

(
δl0δk(−kc) + δl0δkkc

)
+ F{Ixy} ∗ F{ζxy} ∗ F{sinφxy} ∗

i

2

(
δl0δk(−kc) + δl0δkkc

)
(B.0.9)

Next, convert this into the analytic signal by doubling the positive frequencies, pre-
serving the zero frequency component and suppressing the negative frequencies. Al-
ternatively this can be done using the Hilbert transform.

W
(c)
kl S

(a)
kl = F{Ixy} ∗ F{ζxy} ∗ F{cosφxy} ∗ δl0δkkc

+ F{Ixy} ∗ F{ζxy} ∗ F{sinφxy} ∗ iδl0δkkc (B.0.10)

Next, take the inverse Fourier transform:

F−1{W (c)
kl S

(a)
kl } = Ixyζxy cosφxy exp iφc + Ixyζxyi sinφxy exp iφc

= Ixyζxy exp(i[φxy + φc]) (B.0.11)

From this, it follows that ζxy can be extracted by taking

ζxy =
∣∣∣∣∣F−1{W (c)

kl S
(a)
kl }

Ixy

∣∣∣∣∣ (B.0.12)

and φxy can be extracted as

φxy = arg
(
F−1{W (c)

kl S
(a)
kl }

)
− φc (B.0.13)

Figure B.2 shows the input and demodulated brightness, phase and contrast for the
synthetic interferogram in Figure B.1.

B.1 Noise Propagation

Next, consider how noise in the raw interferogram propagates into the demodulated
brightness, contrast and phase images. The noise variance at pixel x, y in the raw
interferogram and in the demodulated output are related by a constant of proportion-
ality that depends on the Fourier domain window function used. This simple result
is well-known in fringe pattern analysis[151] but has not yet found use in CI. Some
previous CI investigations have used numerical simulation instead to quantify noise
in the extracted phase and/or contrast data[63, 70]. In this section, standard signal
processing techniques are used to derive the result. Additionally, we will find that
the PDFs describing the demodulated phase and contrast will approximate normal
distributions only at high SNR. As such, care must be taken when drawing inferences
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Figure B.2: Input and demodulated output profiles of brightness, phase and contrast
from the synthetic interferogram image shown in Figure B.1(a).
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from low SNR data.

First, express the measured interferogram s̃xy as the sum of a deterministic signal
and a zero-mean noise term:

s̃xy = sxy + exy. (B.1.1)

Using the linearity of the Fourier transform, we can say that

S̃kl = F{s̃xy}
= F{sxy}+ F{exy}
= Skl + Ekl. (B.1.2)

To understand more about the Fourier-domain noise term Ekl, we can write out its
full definition as the Fourier transform of exy:

Ekl =
N−1∑
x=0

M−1∑
y=0

exy cos
(

2π
[
xk

N
+ yl

M

])

− i
N−1∑
x=0

M−1∑
y=0

exy sin
(

2π
[
xk

N
+ yl

M

])
. (B.1.3)

Here, the terms inside the summations are themselves random variables. We can
invoke the central limit theorem to say that, for sufficiently large image dimensions Nx

and Ny, the real and imaginary parts of Ekl are each normally distributed, regardless
of the noise distribution in the spatial domain[152]. It can be shown that Ekl is
zero-mean, provided that exy is too, and that Ekl is roughly statistically independent
between different pixels and between real and imaginary components[152]. Equation
B.1.3 also implies an equal variance of the real and imaginary parts of Ekl.

To say more about the nature of the Fourier domain noise, and its relation to the
spatial domain, we will consider the autocorrelation of the noise measured at pixel
x, y with that of x′, y′, defined as

Cxyx′y′ ≡ E[exye∗x′y′ ] (B.1.4)

Where E[. . . ] is the expected value operator and ∗ is the complex conjugate. We will
assume that exy is normally distributed with pixel-dependent variance σ2

xy. Formally
this is written exy ∼ N (0, σ2

xy). Importantly, we will also consider the noise at each
pixel to be statistically independent of all others (uncorrelated). This allows us to
write Cxyx′y′ as

Cxyx′y′ = σ2
xyδxx′δyy′ . (B.1.5)

We can recast this in terms of the pixel ‘lag’ in each dimension, defining a ≡ x− x′
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and b ≡ y − y′:
Cxyab = σ2

xyδaδb. (B.1.6)

Since σ2
xy depends on pixel coordinate x, y, the image noise is a ‘non-stationary’ process

(in space). For a non-stationary signal evolving in space/time, the power spectral
density (PSD) is the Fourier transform of the space/time-averaged autocorrelation
function[153]. This is a generalised form of the Wiener-Khinchine theorem that
underpins Fourier transform spectroscopy (see Section 2.1 and Appendix A.2) that
equates the PSD of a stationary signal with the Fourier transform of that signal’s
autocorrelation function. So, we can average the autocorrelation in Equation B.1.6
and take its Fourier transform to obtain the PSD:

PSDkl = F
{ 1
NM

N−1∑
x=0

M−1∑
y=0

σ2
xyδaδb

}

= 1
NM

N−1∑
x=0

M−1∑
y=0

σ2
xyF{δaδb}

= 1
NM

N−1∑
x=0

M−1∑
y=0

σ2
xy (B.1.7)

That the PSD of exy is independent of the spatial frequency indices k, l means that
it is constant across all frequencies—we have white noise.

The power spectral density of the noise exy is defined as:

PSDkl ≡
1

NM
E
[
|Ekl|2

]
= 1
NM

E
[
<{Ekl}2 + ={Ekl}2

]
= 2σ2

NM
, (B.1.8)

Setting equal Equations B.1.7 and B.1.8, we arrive at a relation between the noise
variance in the spatial and frequency domains

σ2 = 1
2

N−1∑
x=0

M−1∑
y=0

σ2
xy (B.1.9)

The same result can be derived more directly by considering the discrete version of
Parseval’s theorem (Equation B.0.3).

B.1.1 Fourier-domain Filtering

Next we will consider the effect of Fourier-domain filtering. To separate components
in frequency space, we used a (real-valued) filter window function Wkl. The power
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spectral density of the filtered noise becomes

PSD(f)
kl = 1

NM
E
[
|WklEkl|2

]
= W 2

kl

2σ2

NM

= W 2
kl

1
NM

N−1∑
x=0

M−1∑
y=0

σ2
xy (B.1.10)

Writing the generalised Wiener-Khinchtine theorem relating the space-averaged auto-
correlation and the power spectral density we find that

〈C(f)
xyab〉 = F−1{PSD(f)

kl }

=
(

1
N2M2

N−1∑
x=0

M−1∑
y=0

σ2
xy

)
N−1∑
k=0

M−1∑
l=0

W 2
kl exp

(
2πi

[
ak

N
+ bl

M

])

C
(f)
xyab =

σ2
xy

NM

N−1∑
k=0

M−1∑
l=0

W 2
kl exp

(
2πi

[
ak

N
+ bl

M

])

C
(f)
xy00 =

(
1

NM

N−1∑
k=0

M−1∑
l=0

W 2
kl

)
σ2
xy. (B.1.11)

So we have found that the effect of Fourier-domain filtering is to modify the variance of
the noise across the whole image by a constant factor (in the brackets). If 0 ≤ Wkl ≤ 1,
then this is a reduction in noise variance. It is also clear from this treatment that the
filter profile used determines the correlation of the image noise.

Next, consider noise manifesting in the analytic signal. The phase φ̃xy and contrast
ζ̃xy, are inferred via the modulus and argument of complex random variable ãxy.
Since <(Ea,xy) and =(Ea,xy) are uncorrelated, ãxy has a circular normal distribution
in the complex plane. Therefore, to propagate uncertainty from ãxy into φ̃xy and
ζ̃xy, we must derive the PDF in polar coordinates of a circular bivariate normal
distribution in Cartesian coordinates. Analytic expressions have been derived for
these distributions[154], which have found use in radio communications and magnetic
resonance imaging[155]. The Rice distribution describes the distribution of the radial
polar coordinate r (the modulus):

P (r̃ | r, σ) = r̃

σ2 exp
[
− r̃2 + r2

2σ2

]
J0

(
rr̃

σ2

)
, (B.1.12)

where J0 is the modified Bessel function of the first kind with order zero. When the
signal to noise ratio is high (r � σ), the Rice distribution is approximates a normal
distribution, with standard deviation equal to the Cartesian value: P (r̃ | r, σ) ≈
N (r, σ2) When SNR is low (r ∼ σ), the Rice distribution is positively skewed. The
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corresponding distribution for the angular polar coordinate θ is:

P (θ̃ | θ, r, σ) = 1
2π exp

(
−r2

2σ2

)[
1 +
√
π

2 Q exp(Q2)[1 + erf(Q)]
]
, (B.1.13)

where
Q = r cos(θ̃ − θ)√

2σ
, (B.1.14)

and erf(. . . ) is the error function. When Ā � σ, then this distribution can also be
approximated with a normal distribution:

P (θ̃ | θ, r, σ) ≈ N (θ, σ2/r2). (B.1.15)

Finally, Figure B.3 plots histograms for brightness, phase and contrast for 3000
independent realisations of the noisy test image in Figure B.1 for three separate image
points (marked). These histograms are compared to the ground truth values and
also to the predicted PDFs based on the theory outlined in this appendix and with
assumed knowledge of the camera’s photon transfer curve (which can be characterised
experimentally — see Section 5.1 of [63]). There is good agreement between the
numerical test and the analytic predictions.
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Figure B.3: PDFs for brightness, phase and contrast from analytic prediction (solid
lines) and numerical simulation (histogram) for the three points (different colours)
marked in Figure B.2. The numerical results are from 3000 independent realisations
of the image noise exy.
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Appendix C

Bayesian Parameter Estimation

Thanks to increased computational power, Bayesian methods are now widely used in
science, and are also finding use in fusion[48, 156–158]. In this work, we use Bayesian
methods for model fitting problems in Chapters 4 and 5, and so we very briefly
introduce the basics here. See e.g. [137] for more detail.

C.1 Bayes’ Theorem

In the Bayesian picture, the probability of an experimental outcome is interpreted
as the ‘degree of belief’ one can reasonably have in that outcome happening. This
differs from the frequentist picture, where probability describes the frequency of the
outcome, were the experiment to be repeated an infinite number of times from an
identical starting point. Consider a model f(θ) that predicts the data that will be
measured in an upcoming experiment. This ‘forward model’ is a function of N model
parameters θ = {θ1, θ2, . . . , θN}. We denote the joint PDF across all parameters,
conditional on any relevant background information I, as P (θ | I). This is the prior
distribution. It represents our degree of belief in each possible set of parameter values
before any measurements are made. If we then perform the experiment and measure
M data points D = {D1,D2, . . . ,DM}, we can denote the updated joint PDF as
P (θ | D, I). This is the posterior distribution, representing our degree of belief about
the parameter values, updated so as to account for any new information from the
experiment. Updating the prior to find the posterior is done using Bayes’ theorem,
which can be written1:

P (θ | D, I) ∝ L(D | θ, I)P (θ | I). (C.1.1)

1This weak form of the theorem omits a normalising factor that is important for model selection
problems. But that’s not important for us here.



C.2. Parameter Estimation 167

Here, L(D | θ, I) is called the likelihood function. If the experiment has been designed
well, the likelihood function will significantly modify the prior distribution.

In general, the likelihood function depends on the measured data, the model f(θ),
and on all sources of uncertainty involved in the measurement process. For example,
consider a single data point Di — how much information does this give us? If we
assume that the measurement uncertainty on this data point is additive Gaussian
noise with known variance σ2

i , then we may write

L(Di | θ, I) ∝ exp
(
− 1

2

[
Di − f(θ)

σi

]2)
. (C.1.2)

If all M data points are statistically independent of one another, then the product
rule of probability allows us to write the likelihood function for the total dataset as
the product of the individual likelihood functions of all data points:

L(D | θ, I) ∝
M∏
i=1
L(Di | θ, I). (C.1.3)

By combining Equations C.1.2 and C.1.3 with an appropriate model and prior, the
posterior P (θ | D, I) can be calculated for any possible θ.

C.2 Parameter Estimation

In parameter estimation, the model f(θ) is well understood and the purpose of
the experiment is make inferences about the parameter values. The θ for which
P (θ | D, I) reaches its global maximum (its mode) is the most plausible θ, given
all of the available information. This model fitting technique is called maximum a
posteriori (MAP) estimation. The definition of the MAP estimate can be written

θ̂MAP = arg max
θ

[
L(D | θ, I)P (θ | I)

]
. (C.2.1)

A special case occurs if we decide that there is no relevant prior information. In
this case all of our information comes from the data and we define the maximum
likelihood (ML) estimate as

θ̂ML = arg max
θ

[
L(D | θ, I)

]
. (C.2.2)

Often, we are more interested in the posterior PDF of a single model parameter θ1,
than in any of the other N − 1 parameters. We therefore want to find the marginal
distribution P (θ1 | D, I). We can find this by integrating the joint posterior PDF
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over all of the other model parameters:

P (θ1 | D, I) =
∫ ∞
−∞

. . .
∫ ∞
−∞

P (θ | D, I)dθ2 . . . dθN . (C.2.3)

C.3 Markov chain Monte Carlo

Only in very simple cases can Equation C.1.1 be evaluated analytically and so nu-
merical techniques are required. If the model has a small number of parameters (. 3)
then a grid-based ‘brute force and ignorance’ approach is often the most practical
solution. Here, the posterior is evaluated numerically on a uniform grid in parameter
space. Higher dimensional problems require a more efficient sampling of parameter
space. Markov chain Monte Carlo (MCMC) is a commonly used sampling technique,
in which a random walk is taken through model parameter space. Each proposed step
in the walk is randomly generated and is either accepted or rejected using a criterion
that favours travel from regions of low probability to high probability[137]. The result
is a collection of samples whose density converges to the true posterior PDF. In this
work, we use a type of MCMC called Gibbs sampling, which takes its steps a single
parameter at a time.
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