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Abstract—In large-scale multiobjective optimization, too many
decision variables hinder the convergence search of evolutionary
algorithms. Reducing the search range of the decision space
will significantly alleviate this puzzle. With this in mind, this
paper proposes a fuzzy decision variables framework for large-
scale multiobjective optimization. The framework divides the
entire evolutionary process into two main stages: fuzzy evolution
and precise evolution. In fuzzy evolution, we blur the decision
variables of the original solution to reduce the search range of
the evolutionary algorithm in the decision space so that the
evolutionary population can quickly converge. The degree of
fuzzification gradually decreases with the evolutionary process.
Once the population approximately converges, the framework
will turn to precise evolution. In precise evolution, the actual
decision variables of the solution are directly optimized to
increase the diversity of the population so as to be closer
to the true Pareto optimal front. Finally, this paper embeds
some representative algorithms into the proposed framework
and verifies the framework’s effectiveness through comparative
experiments on various large-scale multiobjective problems with
500 to 5000 decision variables. Experimental results show that in
large-scale multiobjective optimization, the framework proposed
in this paper can significantly improve the performance and com-
putational efficiency of multiobjective optimization algorithms.

Index Terms—Evolutionary algorithms, Large-scale optimiza-
tion, Multiobjective optimization, Fuzzy evolution, Decision vari-
able

I. INTRODUCTION

ULTIOBJECTIVE optimization problems (MOPs) in-

volve multiple conflicting objectives that need to be
optimized simultaneously and are widespread among practical
applications [1]-[5]. The conflict makes MOPs not have a
unique solution that is optimal for all objectives, so the
optimization algorithm can only obtain a set of trade-off
solutions between the objectives. Multiobjective evolutionary
algorithms (MOEAs) have been verified to effectively deal
with this kind of problem and have undergone unprecedented
development in the past two decades [6]-[9]. From the classic
NSGA-II [10] to the most cutting-edge MaPSO [11], most
studies on MOEAs focus on the scalability of the objective
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dimension, and some MOEAs have been able to solve many-
objective optimization problems with up to 15 dimensions
[12]-[16]. However, these existing MOEAs rarely consider
the scalability of decision variables in MOPs. In reality, in
practical applications, there are many MOPs with a large
number of decision variables [17]-[20]. Usually, MOPs with
hundreds of dimensional decision variables are considered
large-scale MOPs [21], [22].

When solving large-scale optimization problems, those so-
phisticated MOEAs will not achieve good performance be-
cause of a large number of decision variables. As the num-
ber of decision variables increases linearly, the size of the
search space will increase exponentially, which will lead to
the algorithm prematurely converging to a local optimum or
converging to an oversized region [23]. In recent years, there
are also some MOEAs for large-scale MOPs. According to
the technical characteristics used, we can roughly divide these
algorithms into four categories.

The first category is MOEAs based on cooperative coevo-
lution (CC). This method divides the decision variables into
multiple groups and then optimizes each group separately.
For example, Antonio et al. applied a differential evolution
algorithm (GDES3) in the cooperative coevolution framework
for solving large-scale multiobjective problems [24], and then
further proposed to combine MOEA/D [25] with coevolu-
tionary techniques for decomposition in both objective and
decision spaces [26]. Li et al. [27] also proposed a cooper-
ative coevolutionary algorithm, in which a fast interdepen-
dency identification grouping method is utilized for large-scale
MOPs. Meselhi et al. [28] proposed a new algorithm using
multiple optimizers, along with a need-based allocation of
computational budget for the sub-components.

The second category is MOEAs based on decision variable
analysis. This method focuses on proposing a mechanism
for analyzing decision variables and strives to get the best
grouping of decision variables. Different from the first cat-
egory, it is divided into different groups according to the
types of decision variables and optimizes for each type of
decision variable by different strategies. For example, Ma et al.
[29] proposed an MOEA based on decision variable analyses
(MOEA/DVA). The algorithm divides decision variables into
distance variables and diverse variables by analyzing the
relationship between decision variables and convergence and
diversity attributes. The algorithm first optimizes the distance
variable and then optimizes the diversity variable. Later, Zhang
et al. [30] proposed an evolutionary algorithm based on
clustering of decision variables (LMEA). First, the decision



variable clustering method divides decision variables into two
categories: convergence-related variables and diversity-related
variables. Then, the convergence optimization strategy and the
diversity optimization strategy are used to optimize the two
types of decision variables.

The third category is MOEAs based on problem trans-
formation. This method solves the problem by transforming
the original large-scale problem into a small-scale problem
through the problem transformation function. For example,
Zille et al. [31] proposed a weight optimization framework
(WOF), which optimizes the weight vector instead of decision
variables, thus transforming the original large-scale problem
into a small-scale problem. Subsequently, He et al. [32] pro-
posed a problem reconstruction framework (LSMOF), which
reconstructs the decision space through a series of reference
solutions and weight variables. Then, the original large-scale
MOFP is transformed into a low-dimensional single-objective
problem.

The last category is a new search method based on learning
strategies. This method uses the learning mechanism between
particles in the original decision space to improve the searcha-
bility of the algorithm. Common particle learning mechanisms
are particle swarm optimization (PSO) [33], the competitive
swarm optimizer (CSO) [34]. The most representative al-
gorithm in this category is LMOCSO proposed by Tian et
al. [21]. In the algorithm, the inferior particles learn from
the superior particles to produce promising offspring, thereby
accelerating the global optimization search.

Although the existing large-scale MOEAs have shown en-
couraging performance, each algorithm has its shortcomings.
For example, MOEAs based on the cooperative coevolution
and grouping mechanism need to spend a lot of time analyzing
decision variables to complete the grouping of decision vari-
ables. In addition, the performance of MOEAs based on the
CC framework can be severely degraded due to inappropriate
grouping. It is worth noting that the hypothesis of separability
between decision variables is not always true. Therefore, it is
not suitable for solving large-scale MOPs in which all decision
variables interact. MOEAs based on problem transformation
need to find a problem transformation function to ensure that
the information loss is as little as possible after the original
problem is transformed into a new problem. However, it is very
difficult to find a perfect problem transformation function, and
it is even more impossible in particularly complex problems.
MOEAs based on learning strategies directly find the optimal
solution in the original decision space. In a decision space of
hundreds of dimensions, this type of algorithm can find a better
solution by increasing the number of function evaluations of
the evolutionary algorithm. As the dimensionality of decision
variables increases, the size of the decision space increases
exponentially. In MOPs with thousands of dimensional deci-
sion variables, it is not enough to solve the problem simply
by increasing the number of function evaluations of the
evolutionary algorithm.

Based on this analysis, there are two points: First, the
dimensionality of the decision space can be reduced through
the decision variable grouping and problem transformation
mechanism so that large-scale MOPs become low-dimensional

MOPs. However, the correctness of the grouping mechanism
and the correctness of the problem transformation function are
difficult to guarantee. Second, the particle learning mechanism
can improve the searchability of the algorithm in the search
space. This type of algorithm may have poor scalability in
the dimension of the decision space. As the dimension of the
decision space increases, the algorithm is prone to fall into a
local optimum or converge prematurely. We found that directly
narrowing the search range of the algorithm in the original
decision space instead of reducing the dimensionality is an
effective way to obtain the advantages of both and discard
their disadvantages. Therefore, we propose a fuzzy decision
variables (FDV) framework for large-scale multiobjective op-
timization. In particular, the main contributions of this paper
are summarized as follows:

1) A method of fuzzy evolution sub-stages division is
proposed. This method divides the fuzzy evolution stage
into multiple sub-stages with a gradually decreasing
degree of fuzzification. The higher the degree of fuzzi-
fication in the sub-stage, the lower the accuracy of the
solution obtained by FDV optimization. Therefore, in
the later stage of evolution, the accuracy of the solution
obtained by FDV optimization is higher.

2) Formulas for fuzzifying decision variables are proposed.
The fuzzy formula adapts to multiple fuzzy evolution
sub-stages. In a sub-stage, first, the two fuzzy target
values of the decision variables are calculated. Then
the degree of membership is calculated for the decision
variable belonging to two fuzzy sets, and a fuzzy set
is mapped to a fuzzy target value. Finally, the value
of the decision variable is fuzzified into a fuzzy target
value represented by a fuzzy set with a larger degree of
membership.

3) In order to verify the effectiveness of the proposed FDV
in solving MOPs, several representative MOEAs are
embedded in the FDV and compared with the original
algorithm on the multiobjective test suite DTLZ [35].
Experimental results show that MOEAs embedded in the
FDV are significantly better than the original algorithm
in all test cases, and the possibility of using exist-
ing MOEAs to solve large-scale problems is realized.
Furthermore, the CSO [34] is embedded in the FDV
framework (FDVCSO) and then compared with several
state-of-the-art large-scale MOEAs on the large-scale
multiobjective test suite LSMOP [36]. Experimental
results show that FDVCSO is significantly better than
other large-scale MOEAs in most test cases.

The rest of this paper is organized as follows. In Section
II, we introduce the concepts and theoretical knowledge used
to propose the FDV framework and explain the motivation. In
Section III, the FDV framework and program implementation
principle are described in detail. In Section IV, parameter
analysis and experimental result analysis. Section V concludes
the paper.



II. PRELIMINARIES AND MOTIVATION
A. Multiobjective Optimization Problem
MOPs can be mathematically defined as [37]:

{ minF(X):(fl(X),fz(X),.--,fm(X))7 (1)

subject to X € §,

where X = (x1,x2,...,2,) is an n-dimensional decision
variable vector from the decision space €; F'(X) is an ob-
jective function vector that consists of m conflicting objective
functions. A set of trade-off solutions, termed Pareto optimal
solutions, is expected to be found for MOPs. Let X1, X5 € €;
X1 is said to dominate X5, denoted by X; < X, if and
only if f;(X;) < fi(X3) for each i € {1,...,m} and
fi(X1) < f;(X2) for at least one indicator j € {1,...,m};if
all X from ) cannot dominate X, we call X; a nondominated
or Pareto optimal solution. The set of all Pareto optimal
solutions is called the Pareto optimal set (PS), and the set of
all the Pareto optimal objective vectors is called the Pareto
optimal front (PF). Any improvement in one objective of
a Pareto optimal solution is bound to deteriorate one other
objective at least.

B. Fuzzy Set and Membership Function

A fuzzy set refers to the totality of objects with the attributes
described by a certain fuzzy concept. The membership func-
tion is a mathematical tool used to characterize fuzzy sets and
represents an object’s true degree of membership to a fuzzy
set. The value interval of the membership function is [0,1], and
the value is called the degree of membership. A larger degree
of membership indicates a higher degree of reality belonging
to the fuzzy set.

If X is a collection of objects denoted generically by z,
then a fuzzy set A in X is a set of ordered pairs [38]:

A={(z,p4(z) |z € X)}, 2)

where 1 ;(z) is called the membership function. For z € X,
the value p ;(z) is called the degree of membership of z in
the fuzzy set A. ju;(x) = 0 means that 2 is not a member of
the fuzzy set, 41 ;(x) = 1 means that x is a full member of the
fuzzy set. p ;(x) € (0,1) means that is fuzzy member, which
belong to the fuzzy set only partially [39].

The combination of fuzzy theory and the evolutionary
algorithm is a very valuable research direction. At present, two
papers apply fuzzy theory to large-scale optimization. For 2E-
VRP, Yan et al. [40] proposed a method that integrates a graph-
based fuzzy assignment scheme into an iteratively evolutionary
learning process to minimize the total cost. Elsayed et al. [41]
proposed a new way for two algorithms to cooperate as an
effective team, in which a heuristic is applied using fuzzy rules
of two complementary characteristics. the quality of solutions
and diversity in the population. However, these works are
mainly aimed at single-objective optimization problems.

We apply fuzzy theory to large-scale multiobjective op-
timization. In the proposed fuzzy evolution, the decision
variable belongs to the universe of discourse of two fuzzy
sets at the same time, and the degree of membership of the

decision variable belonging to the two fuzzy sets are calculated
separately. The value of the decision variable is updated to
the value represented by the fuzzy set with a larger degree
of membership. All decision variable values of a solution
vector have been updated to complete, which means that an
original solution has been fuzzified into a fuzzy solution. In the
subsequent evolution process, the fuzzy solution is operated
instead of the original solution. The advantage of using fuzzy
sets and membership functions in evolutionary algorithms is
that it not only ensures that the algorithm searches in the
original decision space but also reduces the search range of
the decision space.

C. Motivation

The performance of existing large-scale MOEAs in MOPs
with thousands of dimensional decision variables is unsatisfac-
tory, especially the convergence. For example, using NSGA-
II, MOEA/D, CMOPSO, LMOCSO, WOF-NSGA-II, and
MOEA/DVA, experiments have been conducted on the DTLZ1
and DTLZ3 problems with tri-objective and 1000 decision
variables. The plot of the convergence profiles of the mean
IGD values achieved by these algorithms is displayed in Fig.
1. Fig. 1 shows that large-scale MOEAs (LMOCSO, WOF-
NSGA-II, and MOEA/DVA) did not perform better than clas-
sic MOEAs (NSGA-II, MOEA/D, and CMOPSO), and even
performed worse than classic MOEAs. Using MOEA/DVA,
WOF-NSGA-II, LSMOF, and LMOCSO, experiments have
been conducted on the LSMOP1 and LSMOP6 problems with
tri-objective and 2000 decision variables. The plot of the
convergence profiles of the mean IGD values achieved by
these algorithms is displayed in Fig. 2. Fig. 2 shows that the
existing large-scale MOEAs also converged poorly on large-
scale testing problems.
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Fig. 1. Convergence profiles of several typical algorithms on tri-objective
DTLZI1 ang DTLZ3 with 1000 decision variables.
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Fig. 2. Convergence profiles of several typical algorithms on tri-objective
LSMOPI1 and LSMOP6 with 2000 decision variables.

When the dimension of the decision space is huge, it is
difficult for MOEA/DVA to guarantee the correct grouping



of decision variables. WOF-NSGA-II and LSMOF cannot
guarantee that there is no information loss after problem
transformation, and the huge search space makes it difficult
for LMOCSO to find valuable superior particles. Therefore,
when large-scale MOEAs optimize MOPs with thousands of
dimensional decision variables, there will be unsatisfactory
phenomena as shown in Fig. 1 and Fig. 2.

In order to solve these problems, we propose the FDV
framework. The framework does not use any decision variable
grouping mechanism and problem transformation mechanism.
The fuzzy evolution method is used to reduce the search range
of the algorithm in the search space. Compared with other
existing large-scale MOEAs, the existing MOEAs embedded
in FDV show better optimization performance and com-
putational efficiency, significantly improving the algorithm’s
convergence.

III. PROPOSED FRAMEWORK

The main scheme of the proposed FDV is presented in
Algorithm 1. First, the population P is initialized by the
population initialization method of the embedded MOEA. gen
is the current number of iterations. The offspring P’ are
generated by the offspring generation method of the embedded
MOEA. Iter is the ratio of the current number of iterations
to the total number of iterations. Then, the whole evolution
process is divided into two stages: fuzzy evolution stage and
precise evolution stage. The first stage is to add fuzzy evolution
sub-stages division (line 6) and fuzzy operation (line 7) after
the offspring generation operation. In the second stage, only
offspring generation operations are performed. Finally, the
next-generation population is screened through the embedded
MOEA environmental selection method. It is worth noting
that the precise evolution stage can directly evolve through
the embedded MOEA. The fuzzy evolution stage is composed
of two main components: fuzzy evolution sub-stages division
and fuzzy operation. A detailed description is given in the
following subsections. Finally, an example of fuzzy decision
variables is given in the last subsection.

Algorithm 1 Main Framework of the Proposed FDV
Input: N (population size), maxgen (maximum iteration
number), Rate (fuzzy evolutionary rate), Acc (step ac-
celeration).
Output: P (final population).
1: P <« Initialization(N);
2: while gen < maxgen do
3: P’ « Operator(P);
Tter < gen/maxgen;
if Iter <= Rate then
Step < Substages_Division(Rate, Acc);
P’ «+ Fuzzy_Operation(Step, Iter, P');
end if
9: P + Environmental_Selection(P U P');
10: end while
11: return P;

® R

A. Fuzzy Evolution Sub-stages Division

The purpose of dividing the entire fuzzy evolution stage
into multiple fuzzy sub-stages with decreasing degrees of
fuzzification is to make the solution obtained by the algorithm
more and more accurate. The mathematical description of the
fuzzy evolutionary sub-stages division method is as follows:

|

;2

Step(i) = (S-i—é) CAce,i=1,2,....8, (4

3)

2 - Rate
Acc ’

where S represents the number of sub-stages divided in the
fuzzy evolution stage; Step(i) is the cumulative step length of
the first ¢ sub-stages in the fuzzy evolution stage, the default
Step(0) = 0; Total = 1 represents the total step length of the
entire evolution process; Rate represents the proportion of
fuzzy evolution stage in the entire evolution process, namely,
fuzzy evolution rate; Acc > 0 is the step acceleration, which
can control the step length change speed between sub-stages;
notably, when Step(S) < Rate, Step (S + 1) = Rate is
added.

Step acceleration (Acc) and fuzzy evolution rate (Rate)
control the number of sub-stages in the entire fuzzy evolution
stage and each sub-stage step length. Each curve in Fig. 3
represents a function image of formula (4) under certain Acc
and Rate. The cumulative step length Step of the fuzzy
evolution sub-stages shows a decelerating growth trend.
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Fig. 3. The cumulative step length curve diagram corresponding to the pre-
vious % sub-stages of fuzzy evolution under different Acc when Rate = 0.8.

Step(i) — Step(i — 1) is the step length of the i-th fuzzy
evolution sub-stage. In Fig. 4, the earlier fuzzy evolutionary
sub-stages have a longer step length of evolution, so sub-stages
that have a higher degree of fuzzification last longer time in the
evolutionary process. When the value of Acc increases under
the premise that Rate does not change, the fuzzy evolution
is divided into fewer sub-stages. On the contrary, the fuzzy
evolution is divided into more sub-stages. When FDV has poor
convergence in the early stage of evolution, a larger Acc should
be set to keep the algorithm in the high-fuzzification stage for
a longer time. If it is found that the FDV appears to have
prematurely converged during the optimization process, It may



be that the algorithm has fallen into a local optimum. Then
the Acc should be reduced to increase the search time for
searching for low-fuzzy and high-precision solutions. If it is
found that the final result obtained by the algorithm is not
ideal, the Rate of FDV should be increased appropriately. In
general, in the face of different problems, different Acc and
Rate parameters should be set.
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Fig. 4. The step length bar graph corresponding to the fuzzy evolution sub-
stages under different Acc when Rate = 0.8.

The pseudo-code for the fuzzy evolution sub-stages division
is given in Algorithm 2. To begin with, calculate the number
of sub-stages of fuzzy evolution S. Next, initialize the fuzzy
evolution step matrix Step, the value of Step is obtained from
lines 3-5. Finally, in order to ensure that the total step length of
fuzzy evolution is equal to Rate, line 6 operation is required.

Algorithm 2 Fuzzy Evolution Sub-stages Division

Input: Rate (fuzzy evolutionary rate), Acc (step accelera-
tion).
Output: Step (cumulative step length of sub-stages).
1: S « floor(sqrt(2 « Rate/Acc)); I*Formula (3)*/
2: Step < zeros(1,S + 2); /*Initializes the zero matrix of
1% (S+2)%
for i =0;71 <= S;i++ do
Step(i) < (S *i — i%/2) x Acc; /*Formula (4)*/
end for
Step(S + 1) < Rate;
return Step;

A A

To verify the effectiveness of the proposed sub-stage divi-
sion strategy, we conducted ablation studies. Control fuzzy
operation and Rate = 0.8, change the sub-stage division
strategy of fuzzy evolution, which are random division, uni-
form division, and the proposed division strategy. NSGA-II is
respectively embedded in the FDV framework with these three
division strategies, and comparative experiments are carried
out on the DTLZ test suite. The algorithms corresponding to
the three division strategies are Random-NSGA-II, Uniform-
NSGA-II, and FDV-NSGA-II. In the setting of the test prob-
lem, the population size is 150, the objective number is 3, the
number of decision variables is 1000, and the total number
of evaluations is 400000. The results of the comparative
experiment can be found in Table I of the supplementary file.

In Table I, FDV-NSGA-II shows an absolute advantage, and
the uniform division strategy is better than the random division
strategy. In general, no matter what sub-stage division strategy
is used, the performance of the original algorithm can be
improved, which shows that the fuzzy operation component
is effective. Table I in the supplementary file shows that the
proposed sub-stages division strategy has the best performance
improvement ability for the algorithm, which proves that the
fuzzy sub-stages division component is effective.

B. Fuzzy Operation

The entire fuzzy evolution stage is divided into multiple
fuzzy evolution sub-stages with decreasing degrees of fuzzifi-
cation. Therefore, how to determine the degree of fuzzification
in a fuzzy evolution sub-stage and how an original solution is
fuzzified will be introduced in this section. The knowledge
of fuzzy sets and membership functions used in fuzzification
is described in Section II. This paper proposes a series of
formulas for fuzzy decision variables as follows:

L= (100 R (X = X0) |- Ra - 107+ X, 5)

12 =[10" R;' - (X, — X.)]- R, - 107 + X, 6)
1

i, (Xn) = 531 (7)
1

IU’AZ(XW) = 1—\2 _X ’ (8)

Ay ={(Xn,pz, (Xn) [n=1,2,...,D)}, ©)

Ay ={(Xn.pg, (Xn) [ n=12,...,D)}, (10)

Ty, KA, (Xn) > La, (Xn)
X! =4 12, i, (Xn) < pg, (Xa) . (D)

rand (F;,F%) y A, (Xn) = KA, (Xy)

where, X represents a D-dimensional original solution vector;
X' represents a D-dimensional fuzzy solution vector; X,
represents the n-th decision variable of the original solution X;
X! represents the lower limit of the value of the n-th decision
variable; ¢ Represents the i-th fuzzy evolution sub-stage; R,
is the length of the value interval of the i-th decision variable.
I'l and T'? are the fuzzy target value of the n-th decision
variable; the n-th gecisiog variable is either fuzzed into 1“,11 oris
blurred into I'2. A; and Aj are fuzzy sets corresponding to two
fuzzy target values. py and p3  are membership functions
corresponding to two fuzzy sets. The following is the process
of fuzzifying an original solution X into a fuzzy solution X’:
Calculate the membership function values of X belonging to
two fuzzy sets, and X will be fuzzified into the fuzzy target
value corresponding to the fuzzy set with the larger degree of
membership.

Although fuzzy operation involves related knowledge of
fuzzy theory, its implementation process is simple and easy
to understand. The procedure of the fuzzy operation is given



in Algorithm 3. The operations in Algorithm 3 are all matrix
calculations. First, obtain the length of the decision variable
value interval. Judge the current fuzzy evolution sub-stages
(line2 and line3) according to the evolution rate [ter. Next,
calculate the two fuzzy target values I'! and I'! of the decision
variables. I'! and I'? correspond to fuzzy sets A; and Aj
respectively. Calculate the membership degree of decision
variables in two fuzzy sets. Then, update the value of the
decision variable according to the degree of membership. The
update rule is that the value of the decision variable will be
updated to the fuzzy target value corresponding to the fuzzy
set with a larger membership degree. Finally, The program
returns to the fuzzy solution. In particular, logical is a boolean
variable matrix, find(1) returns true and find(0) returns
false.

Algorithm 3 Fuzzy Operation
Input: [ter (evolutionary rate), X (original solution).
Output: X’ (fuzzy solution).

I: R+ X% — X' /*R is the range of X*/

2: for i =0;1 <= S;i+ + do

3: if Iter > Step(i) && Iter < Step(i + 1) then

4: /*Formula (5) and Formula (6)*/

5 I« 107 R* floor(10°+ R~ % (X — X))+ X!,
6: 2 < 107" % Rxceil (10°+ R™1 % (X — X)) + X
7
8
9

/*Formula (7) and Formula (8)*/
pi, < /(X =T,
: MA2<—1/(F2—X);
10: /*Formula (11)*/

11: if pg, > pyg, then

12: logical < 1;

13: else

14: logical < 0;

15: end if

16: X'+ T?

17: X'(find(logical)) < T''(find(logical));
18: return X’;

19: end if

20: end for

To describe the process of fuzzy operation more clearly, we
have cited an example of a two-dimensional decision space to
demonstrate the fuzzification process. In the two-dimensional
decision space, the fuzzy decision variables can be regarded as
the process of gridding. In Fig. 5, the process of fuzzification
of the original solutions B; and B, into the fuzzy solution B’
is as follows:

1) The fuzzy target values T, = [0.3,0.1] and T, =

[0.4,0.2] of By and the fuzzy target values I';, = [0.4, 0]
and T'y, = [0.5,0.1] of By can be obtained by formulas

(5) and (6). N

2) The fuzzy sets Ay B =
{(0.38369, 11.95), (0.14369,22.89)} and A, =
{(0.38369,61.31), (0.14369,17.76) } corresponding

to B; are obtained from formulas (7—10), and the
fuzzy sets A; = {(0.43963,25.23), (0.06963,14.36)}
and A, = {(0.43963,16.56), (0.06963, 32.93)}

corresponding to Bs are obtained in the same way.

3) Using the original solution to update formula (11), B;
and B are blurred into B’ = [0.4,0.1].
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Fig. 5. The gridding process with R,, € [0,1], ¢ = 1. The blue point
represents the fuzzy solution, and the gray point represents the original
solution.

Each decision variable of the original solution has two
fuzzy target values, so the number of target fuzzy solutions
of this original solution is D?. Fig. 5 is an example of two-
dimensional decision space, so an original solution has four
objective fuzzy solutions. For example, the four target fuzzy
solutions of the original solution B; are P, P, P3;, B’
Calculations from formulas (5—11) found that B; has the
highest similarity with B’, so Bj is blurred into B’. Similarly,
the sixteen original solutions (the gray points in Fig. 5) in
the decision space are blurred into four fuzzy solutions (B’,
C’, D', E"). These four fuzzy solutions respectively represent
an area (the blue circular area in Fig. 5). The solutions
searched by FDV in the search space are these four fuzzy
solutions instead of the sixteen original solutions. Therefore,
FDV greatly reduces the search range of the algorithm in the
decision space. It can be found from the figure that since the
fuzzy solution in this area will replace the original solution in
the blue circular area, the diversity of the evolutionary popu-
lation will be lost. Therefore, the entire fuzzy evolution stage
must be divided into multiple fuzzy evolution sub-stages with
decreasing degrees of fuzzification. In the first fuzzy evolution
sub-stage, D’ can represent the blue area. In the second fuzzy
evolution sub-stage, D’ can only represent the yellow region.
As the population evolves, the area represented by the fuzzy
solution is getting smaller and smaller. In precise evolution,
since there is no fuzzification operation, each solution can
only represent itself. This paper exemplifies a two-dimensional
decision space, but no image can be drawn in large-scale
optimization, and it can only be abstracted into a hypercube. In
a high-dimensional decision space, since the number of target
fuzzy solutions of an original solution is enormous (with D?),
very few solutions will be blurred into the same fuzzy solution.
Therefore, there is no need to worry about too much diversity
loss caused by the obfuscation strategy. Since the degree of
fuzzification gradually decreases to zero with the number of



A D-dimensional solution

First sub-phase (0,0.1,--,0.9,1)

(0,0.01,...,0.99,1)

Second sub-stage

Third sub-stage (0,0.001,...,0.999,1)

uonn[oAd Azznyj

Fourth sub-stage

(0,0.0001,...,0.9999,1) (0,0.0001....,0.9999,1)

Value range: 10 discrete numbers

Value range: 100 discrete numbers

Value range: 1000 discrete numbers

Value range: 10000 discrete numbers

[0,1]
Value range: infinity

Precise evolution

(0,0.1,-,09,1)  sweme (0,0.1,+-,0.9,1)
0,0.01,...,0.99,1)  swem (0,0.01,....,0.99,1)
(0,0.001,...,0.999,1)  seaeme (0,0.001,...,0.999,1)
------ (0,0.0001,...,0.9999,1)
[0’1] ------ [0’1]

Fig. 6. The overall process of FDV solving large-scale optimization problems. The value range of decision variables R,, € [0, 1], the number of fuzzy

evolution sub-stages S = 4.

evolutionary iterations, the diversity of the algorithm is further
guaranteed.

C. An Example

Although FDV uses a small amount of fuzzy theory knowl-
edge, its idea is very simple and effective. The overall process
of solving large-scale optimization problems with FDV is
shown in Fig. 6. As shown in Fig. 6, in the first sub-stage,
the first decision variable is discussed. Because no matter
what value the decision variable takes, it will be fuzzed
into one of 10 discrete values. Therefore, the value of the
decision variable is reduced from infinity to ten discrete
values, which is equivalent to the algorithm only needing
to search for these 10 numbers, which dramatically reduces
the search range and improves the search efficiency. In the
second sub-stage, no matter what value the decision variable
takes, it will be fuzzified into one of 100 discrete values in
the second sub-stage. Compared with the first sub-stage, the
degree of fuzzification in the second sub-stage is reduced, so
the value range of the decision variable is increased. Similarly,
the degree of fuzzification in the third and fourth sub-stages
gradually decreases, and the accuracy of the searched solution
is better. Finally, it enters the stage of precise evolution and
directly uses the original solution to evolve. In general, FDV
focuses on convergence to search for rough solutions in the
early stage and focuses on diversity to search for an accurate
solution in the later stage.

IV. EMPIRICAL STUDIES

To empirically investigate whether the proposed FDV
framework can improve the performance of existing MOEAs
in solving large-scale MOPs. Four representatives MOEAs
(i.e., NSGA-II [10], MOEA/D [25], CMOPSO [42], and
LMOCSO [21]) were embedded in FDV and compared with
their original versions on the seven test problems of the
DTLZ [35] test suite and the nine test problems of the
LSMOP [36] test suite. In order to demonstrate that the

FDV framework has advantages compared with the current
mainstream large-scale multiobjective optimization framework
(i.e., MOEA/DVA [29], WOF [31], and LSMOF [32]). NSGA-
II [10] was embedded in the WOF [31], LSMOF [32], and
FDV frameworks and compared in the seven problems of
the DTLZ test suite. Then, the CSO [34] embedded in the
FDV framework (called FDVCSO) was compared with four
state-of-the-art large-scale MOEAs (i.e., MOEA/DVA, WOF,
LSMOF, and LMOCSO) on the nine test problems of the
LSMOP test suite. This comparative experiment can prove
that FDVCSO has significant advantages over the four state-
of-the-art large-scale MOEAs. Finally, in order to further study
the performance of FDV on problems with irregular decision
space. The CCMO [43] embedded in the FDV framework
(called FDV-CCMO) was compared with four typical MOEAs
(i.e., CMOPSO, MOEA/DVA, LMOCSO, and WOF-SMPSO
[44]) on the six test problems of the TREE [45] test suite.

In the remainder of this section, we present a brief intro-
duction to the adopted performance indicator, and then give
the parameter settings of the compared algorithms and FDV.
Afterward, we report on the experiments in which each algo-
rithm was run 20 times on each test problem independently,
and the Wilcoxon rank-sum test [46] was used to compare
the results obtained by the FDV and the other algorithms
at a significance level of 0.05. Symbols “+,” “— and “=”
indicate the compared algorithm is significantly better than,
significantly worse than, or statistically tied by FDV.

A. Performance Indicator

In the experiments, a widely used performance indicator,
the inverted generational distance (IGD) [47] was adopted for
evaluating the performance of the algorithms.

Suppose that P* is a set of evenly distributed reference
points on the PF and (2 is the set of obtained nondominated
solutions, the IGD is defined as follows:

erp* dis(x, Q)

IGD (P, ) = XL,

12)



where dis(z, ) is the minimum Euclidean distance between
2 and points in €, and | P*| is the number of elements in P*.
A smaller value of IGD will indicate a better performance of
the algorithm. In this paper, the size of P* is set to 10,000
(or a close number) for the IGD calculations.

In this paper, we use the IGD indicator instead of the HV
[48] and GD [49] indicator since the PFs of DTLZ, LSMOP,
and TREE test problems are relatively simple and regular.
Meanwhile, the reference solution sets in PlatEMO [50] are
evenly sampled, which enables the IGD indicator to well
assess the qualities of the obtained solution sets.

B. Experimental Settings

We adopted the recommended parameter settings for the
compared algorithms that have achieved the best performance
as reported in the literature for fair comparisons.

1) Algorithm Reproduction Operators: In this experiment,
GA operators were used in NSGA-II, MOEA/D, WOF-NSGA-
IT and LS-NSGA-II. The GA operator used simulated binary
crossover (SBX) [51] and polynomial mutation (PM) [52].
The distribution index of the crossover was set to n. = 20;
the distribution index of the mutation was set to n,, = 20;
the crossover probability p. was set to 1.0, and the mutation
probability p,, was set to 1/D, where D is the number
of decision variables. In MOEA/DVA and CCMO, the DE
operator [53] and PM were used to generate offspring, with
the control parameters set to CR =1, F' = 0.5, p,,, = 1/D
and n = 20 . In CMOPSO and SMPSO, the PSO [33] and
PM were used. As for LMOCSO, the CSO [34] and PM were
used.

2) Algorithm Parameter Settings: In MOEA/D, the aggre-
gate function adopts the boundary intersection approach (PBI)
[25]. In MOEA/DVA, the number of sampling solutions to rec-
ognize the control properties of the decision variables NC'A
was set to 20, and the maximum number of trials required to
judge the interaction between two variables NIA was set to
6. In WOF, the number of evaluations for the original problem
t1 was set to 1000. The number of evaluations for transformed
problem ¢2 was set to 500; the number of chosen solutions to
do weight optimization ¢ was set to M + 1, and the number
of groups v was set to 4. In LSMOF, the number of reference
solutions r was set to 10; the population size of the transferred
problem SubN was set to 30.

3) Problem Settings: All algorithms are tested on DTLZ,
LSMOP, and TREE test suites. Table I shows the parameter
settings of the test problem. N is the population size, M is the
objective space dimension, D is the decision space dimension,
and F'E's is the total number of function evaluations.

C. Parameter Analysis

Rate and Acc are two parameters in the fuzzy evolution
sub-stages division, as well as parameters of the entire FDV
framework. Different parameter selections will have an impact
on the performance of the algorithm. For different MOPs,
there may be different optimal parameters. Table II is the
corresponding table of parameters Rate, Acc and the number
of fuzzy evolution sub-stages S. In each row see that under

TABLE I
SET THE POPULATION SIZE AND THE NUMBER OF THE OBJECTIVE
FUNCTION, DECISION VARIABLES, AND FES FOR EACH TEST INSTANCE.

Problems N M D FEs
500
100 2 D*500
DTLZ 1-7 1500
150 3 5900  D*800
500 250000
100 2 1000 300000
LSMOP 1-9 1500 350000
2000 400000
150 3
5000 500000
3000 60000
100 2
TREE 1-5 6000 80000
150 3 12000 100000
TABLE Il

THE IDEAL Acc CORRESPONDING TO Rate IN ACCELERATING STEP
LENGTH SEGMENTATION.

Rate | Acc \ S

0.1 /5 120 1/45 1/80 1/125 1/180 | 1 2 3 4 5 6
0.2 2/5 2720 2/45 2/80 2/125 2/180 |1 2 3 4 5 6
0.3 3/5 3/20  3/45 3/80  3/125 3/180 1 2 3 4 5 6
0.4 4/5  4/20 4/45 4/80 4/125 4180 |1 2 3 4 5 6
0.5 1 5120 5/45 5/80 5/125 5/180 |1 2 3 4 5 6
0.6 6/5 6/20 6/45 6/80 6/125  6/180 1 2 3 4 5 6
0.7 75 7/20 7/45  7/80  7/125  7/180 |1 2 3 4 5 6
0.8 8/5 820 845 880 8125 8180 |1 2 3 4 5 6
0.9 9/5 9/20 9/45 9/80 9/125 9/180 | 1 2 3 4 5 6

the same Rate, S increases with the decrease of Acc. It can
be found from each column that in order to get the same S,
Acc increases with increasing Rate. For problems that are
difficult to converge, Acc should be increased appropriately to
improve the convergence and computational efficiency of the
algorithm. Faced with the problem of discontinuous PFs, Acc
should be appropriately reduced to ensure the diversity of the
algorithm. Theoretically, the setting of Rate increases as the
dimension of decision variables rises.

In this section, the results of experiments studying algo-
rithms on the DTLZ and LSMOP test problems are presented.
In order to find suitable parameter settings, parameter analysis
was conducted. In Fig. 7, the basic rule is that the larger the
Rate, the smaller the average IGD. Careful observation found
that when Rate was set to 0.7, 0.8, and 0.9, the performance
of the algorithm was relatively good. When the Rate did
not change, as the Acc increased, the average IGD had a
downward trend, but there is a minimum point. In summary,
the parameters of FDV on the DTLZ problem were set as
Rate = 0.8 and Acc = 0.4, the parameters of FDV on the



TABLE III
STATISTICS OF IGD RESULTS OBTAINED BY EIGHT COMPARED ALGORITHMS ON 42 TEST INSTANCES FROM DTLZ TEST SUITE.
THE BEST RESULTS IN EACH TWO COLUMNS ARE HIGHLIGHTED.

Problem M D | NSGA-II FDV-NSGA-Il | MOEA/D FDV-MOEAD | CMOPSO FDV-CMOPSO | LMOCSO FDV-LMOCSO
500 | 1.1126e+3 (1.86e+1) — 2912663 (1.026-4) | 12031e+3 (6.32c+1) —  2.0887e-2 (33862) | 3.2009¢+3 (231e+2) —  [1.8387e3 (8.036-6) | 4.2730¢+3 (9.37e+1) — 1786563 (3.57¢-7)
5 1000 | 24816643 (4.09%+1) — 291113 (131e-d) | 2.5270e+3 (9.81e+]) — 270783 (1.81e-3) | 6.7595¢+3 (1.09+2) —  1.8482-3 (1.23e:5) | 8.7660c+3 (3.71e+]) —  1.7856e-3 (4.77e-8)
1500 | 4.5758¢+3 (115e+2) —  6.1361e-2 (143e-1) | 3.9498c+3 (2.53¢+2) —  8.6292e-3 (1.04e-2) | 1.0113c+4 (3.92c+2) —  1.8352e-3 (8.24e-6) | 1.2200c+4 (2.55¢+3) —  1.7856e-3 (4.77e-8)
DTLZI 500 | 1.277de+3 (7.88e+l) — 2288262 (127e3) | 1.2528e+3 (7.27e+l) — 1072562 (1.68e-6) | 3.7911e+3 (1.86e+2) —  1.122862 (5.14e5) | 3.3673e+3 (625e+2) — 107812 (7:65¢:6)
3 1000 | 2.8331e+3 273e+]) —  2.3138e-2 (1.80e-3) | 24738¢+3 (1.16e+2) —  1.0725¢2 (2.02e-7) | 8.3767c+3 (2.85¢+2) —  1.1261e-2 (6.70e-5) | 6.8594e+3 (1.10e+3) —  1.0756e-2 (4.35¢-6)
71500 | 4.6069¢+3 (122e42) —  2.4035e-2 (1.59%-3) | 3.6774e+3 (1.04e+2) —  1.0725e2 (1.95e-7) | 1.3987e+4 (3.74e+2) —  1.1291e-2 (3.65¢-5) | 1.0636e+4 (129¢+3) —  1.0745e-2 (3.11e-6)
500 | 1.0500e-2 (3.15e-4) — 5092563 (1.226-4) | 1.1981e2 (8.72¢-4) —  B.9703e-3 (15065) | 1.3883¢-2 (5.80c-4) —  4:5261e-3 (7.81e-5) | 4.7919¢-2 (3.04e-3) —  3.9693e-3 (2.08¢-6)
5 1000 | 1904602 (8.34c4) —  5.0771e3 (2.59%-4) | 2.0984c-2 (8.84c4) — 396593 (5.94¢-9) | 2.6167c-2 (7.96c4) —  4.5616e-3 (1.02e4) | 1.1191e-1 (9.31e-3) —  3.9680¢-3 (1.10e-6)
1500 | 1.0350e-1 (5.50e-3) —  53616e-3 (1.53e-4) | 2.9533¢2 (273¢3) —  3.965%e-3 (3.89e9) | 4.078le-2 (221e-3) —  4.5616e-3 (5.45e-5) | 1.8137e-1 (1.78¢2) —  3.9665¢-3 (1.30e-7)
DTLZ2 500 | 7.4091e-2 (2.88¢-3) — 5781262 (1936:3) | 3.691de-2 (2.07e-3) —  2.8548e2 (3.79¢7) | 1.018le-1 (6.76e-3) — 3485462 (1.01e3) | 2.3026e-1 (3.22¢2) —  2.8731e-2 (6.98¢-5)
5 1000 | 1.0707e-1 (671e-3) — 575282 (1.40e3) | 3.5902¢-2 (1.06¢-3) — 285492 (176e-7) | 2.127dc-1 (7.87¢-3) —  3.5652¢2 (1.53¢3) | 4.1002¢-1 (3.24e-2) —  2.8644e-2 (3.23¢-5)
71500 | 1.6137e-1 (3.57¢3) —  5.7059e-2 (1.68¢-3) | 3.6250c-2 (1.50e-3) —  3.3576e2 (7.43e-3) | 1.1338¢+0 (2.47e-1) —  5.6536e-2 (8.80e-3) | 5.4509-1 (6.02¢-2) —  4.2430e-2 (4.35¢-3)
500 | 2.7553e+3 (Td6e+l) —  5.6627e3 (257ed) | 3.5700e+3 (1.94e+2) —  [LI577e40 (3:666+0) | 9.0701e+3 (4.38¢+2) — 4110763 (321e5) | 8.7863e+3 (2.77e+3) — 396863 (1.156:6)
5 1000 | 6.3381e+3 (1.0242) —  5.7604c-3 (4.05e-4) | 7.2571e+3 (3.03e+2) —  9.7529¢-2 (187e-1) | 1.8677e+d (5.62e+2) —  4.1007e-3 (1.08¢-5) | 2.1949+4 (3.58¢+3) —  3.9666¢-3 (6.05¢-8)
1500 | 1.2133e+4 (2.50e+2) — 573523 (196e-4) | 1.1216e+4 (6.83e+2) —  5.8338e-3 (4.82e-3) | 2.8243e+4 (142e43) —  4.1074e-3 (3.52e-5) | 2.3260e+4 (1.49e+4) —  3.966de-3 (1.17e-7)
DTLZ3 500 | 3.6143¢+3 (223e+2) — 5792862 (3.19e:3) | 4.3289e+3 (1.77e+2) — 285472 (897e-7) | 1.1517e+4 (7.05e+2) —  B3.5364e2 (2.09:3) | 7.8581e+3 (3.12e+3) —  2:8643e2 (3.93¢:5)
3 1000 | 8.4803¢+3 (1.52+2) —  7.1604e-2 (4.18¢-3) | 8.5928¢+3 (279¢+2) —  2.8548e-2 (3.17e-7) | 2.7000c+4 (1.18e+3) —  0.4845e2 (2.04e-2) | 1.18260+4 (6.67¢+3) —  4.2406e-2 (4.35¢-3)
71500 | 13075e+4 (3.51e42) —  5.7706e-2 (120e-3) | 12953e+4 (9.93e+2) — 423742 (4.35e-3) | 4.0399e+4 (1.24e+3) — 685952 (1.17e-2) | 1.6536e+4 (6.94¢+3) —  4.2394e-2 (4.35¢-3)
500 | 13246e-1 2.99%-1) — 5097063 (I.194) | 19447e-1 (3.30e-1) —  3.9659e-3 (9266-9) | 3.7890e-1 (3.79%-1) — 6609662 (2:13e-1) | 4.0057e-1 (3.57e-1) — 397913 (1.58¢:5)
5 1000 | 2.0736c-2 (9.l4c-4) — 533873 (3.53e-4) | 1.9809¢-1 3.63c-1) —  3.7303e-1 (426e-1) | 2.0911e-1 (3.55¢-1) —  1.8902¢-1 (3.34e-1) | 5.6626c-1 (205¢-1) —  4.1440e-3 (2.71e-4)
1500 | 32591e-1 (3.32e-1) —  5.2280e-3 (134e-4) | 2.8945e-2 (1.26e2) —  2.1486e-1 (3.60e-1) | 3.4569-1 37le-1) —  12755e-1 (2.87e-1) | 5.7564e-1 (197e-1) —  3.9672e-3 (7.14e-7)
DTLZ4 500 | 73021e-2 (490e-3) 5715762 (15863) | 2.1362e-1 2.42e-1) — 125461 (263e-1) | 4.1787¢-1 (6.35¢-2) — 8282662 (1.6362) | 3.1505¢-1 (248¢-1) —  2:5552-1 (1.33e-1)
3 1000 | 1.0931e-1 (8.68¢-3) —  7.1074e-2 (240e-3) | 32484c-1 (3.60c-1) —  8.3833e-2 (L4de-1) | 2.2760e+0 (5.74e-1) —  1.8548e-1 Q4de-1) | 5.4175¢-1 (228e-1) —  2.0880e-1 (1.55e-1)
1500 | 1.6607e-1 (3.02¢-3) —  5.836de-2 (1.66e-3) | 3.0420e-1 2.48e-1) —  1.1757e-1 (2.6le-1) | 7.5556e+0 (1.91e+0) —  1.3225e-1 (7.04e-2) | 6.6681e-1 (5.0le-1) —  1.3915e-1 (1.42e-1)
500 | 1.0749e-2 (4.17e-4) — 5040863 (120e4) | 1.1977e-2 (9.26e-4) —  B3.9659e-3 (977e-9) | 139662 (6.89%¢-4) — 4492963 (6.07e5) | 5.1200e-2 (4.64e-3) — 396873 (1.30e:6)
5 1000 | 19871e-2 (342¢-4) — 529943 (2.11e-4) | 212762 (221¢-3) —  3.9659¢-3 (1.01e-9) | 2.7095¢-2 (132e-3) — 460493 (L.14e-4) | 1.0362-1 (121e-2) —  3.9670e-3 (1.77e-7)
1500 | 1.0273e-1 (479-3) —  5.771e-3 (2.57e-4) | 3.0189¢-2 (1.98¢-3) —  3.9659%-3 (3.86e9) | 4.0760e-2 (1.41e-3) — 454523 (8.99e-5) | 1.8404e-1 (451e-3) —  3.9665¢-3 (1.31e-7)
DTLZ5 500 | 170132 (121e-3) —  B3.6950e3 (73665) | 2.6898e2 @77e-d)~ 270992 (3.02¢-5) | 2.2050e-1 (2.33e2) —  B.7750e3 (478e4) | 4.1423¢-2 (440e-3) —  2:6957e2 (1.39-3)
3 1000 | 47955¢2 (3.95¢-3) —  3.6747e-3 (123¢-4) | 278322 245¢-3) ~ 2635562 (27263) | 5.1090c+0 (148e+0) —  3.6346e-3 (5.21e-4) | 0.8018e-2 (2.14e-2) —  2.6235¢-2 (2.93e-3)
1500 | 9.6502¢-2 (4.07e-3) —  3.735le3 (199e-4) | 3.1577¢-2 (8.14e-4) —  2.7139e-2 (8.65¢-6) | 1.8553e+1 (2.55¢+0) —  3.6143e-3 (4.88e-4) | 2.0160c-1 (4.05¢-2) —  2.6703e-2 (7.25¢-4)
500 | 1.0763¢+2 (5.73¢+0) —  89118e-l (1.58e40) | 1.5355¢+2 (1.17e+1) —  3.9659e-3 (1506-8) | 3.4185¢+1 (7.04e40) —  4:1289¢3 (331e5) | 1.0180e-2 (2.15¢-2) —  4:4033e3 (2.08¢-4)
5 1000 | 34192642 (9.45¢+0) —  1.1539+1 (3.166+0) | 3.4969¢+2 (2.83e+1) —  3.9659%-3 (4.58¢-9) | 1.1801e+2 (2.68¢+1) —  4.1059e-3 (1.28e-5) | B.9661e3 (12767) 4.4669-3 (1.69¢-5)
1500 | 7.4802¢42 (2.80e+1) —  2.8312e+2 (1.83e+1) | 5.7591e+2 (3.06e+1) —  3.9659%-3 (7.81e9) | 3.1763¢+2 (4.01e+l) —  4.1067e-3 (3.19¢-5) | 3.9660e-3 (2.01e-8) +  4.4379-3 (3.77¢-5)
DTLZ6 500 | 2.0805e+2 (6.77e+0) —  B.9179e3 (1.68e4) | 1.5124c+2 (9.80e+0) — 2714062 (5.556-5) | 2.4537e+2 (7.82e40) — 2798663 (281e5) | 6.2272e+1 (13le+l) —  1.3671e-1 (3.80e-1)
3 1000 | 6.3841c+2 (7.43e+0) —  [1.2113e40 (2.63¢+0) | 3.4064c+2 (2.560+1) —  2.6351e-2 (272¢-3) | 5.12660+2 (34Te+1) —  2.6650e-3 (4.03e-4) | 1.0348c+2 (3.74e+1) —  2.5929¢-2 (3.04e-3)
1500 | 9.413de+2 (1.48e+1) —  3.1147e+l (8.70e+0) | 5.3689e+2 (2.1de+l) —  2.0567e+0 (3.34e+0) | 7.9494e+2 (423e+1) —  2.7867e-3 (2.64e-5) | 1.1712e42 (2.79%+1) —  2.4349e+0 (6.70e+0)
500 | 1.1448¢-2 (8.92e-4) —  54529¢3 (150e4) | 3.0657e-1 (8.30e2) — 6386262 (22962) | 9.4457¢-3 (5.34e-d) — 459013 (67665) | 2.1131e+0 (1.78e-1) —  6.5873e3 (9:306:6)
5 1000 | 2311602 (1.61e3) — 5459863 (2.04e-4) | 6.4505e-1 (1.09%-1) —  1.1038e-1 (5.35¢-2) | 121992 (6.08¢-4) —  4.5534e-3 (3.07e-5) | 2.6980¢+0 (1.97e-1) —  6.5912¢-3 (4.23¢-6)
1500 | 4.4643¢-1 (4.48¢-2) —  7.8549-3 (1.10e-3) | 7.342de-1 (1.16e-1) —  1.0338e-1 (7.30e2) | 1.5019¢-2 (195¢-3) —  4.5582-3 (2.19e-5) | 2.6604c+0 (1.4de-1) —  6.5844e-3 (6.18¢-6)
DTLZ7 500 | 949432 (6.58¢-3) — 6016662 (3.61e-3) | 1.0698e-1 (14264~  1.0711e-1 (137e-4) | 19148e-1 (2.59-2) — 8218462 (4.026-3) | 3.8368¢+0 (2.69-1) —  3.5988e-1 (1.05e-1)
5 1000 | 152831 (1.20e-2) —  60921e-2 (3.50e-3) | 1.0506e-1 (672e-3)~  1.0519-1 (6.74¢-3) | 3.1201e-1 3dde-2) —  1.2603e-1 (5.17e-3) | 4.2590¢+0 (449-1) —  3.5789-1 (6.4%-2)
1500 | 2.584le-1 (2.82e-2) —  5.8920e-2 (236e-3) | 1.0696e-1 (8.14e-5)~  1.0713e-1 (3.44e-5) | 4.1581e-1 (3.16e-2) —  1.6978e-1 (8.00e-3) | 4.6486e+0 (2.06e-1) —  3.0810e-1 (5.43e-2)
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Fig. 7. Under different Rate and Acc, the IGD mean value graph obtained
by the algorithm.

LSMOP problem were set as Rate = 0.8 and Acc = 1.2. It
is worth noting that when Rate > 0.6 and Acc > 1.2, the
parameters had little effect on the performance of FDV, which
shows that FDV is robust. It is worth mentioning that even
if the parameters were set arbitrarily, the original algorithm
greatly improved.

D. General Performance

To study the influence of FDV on different types of MOEAs,
we first confirmed that the proposed FDV framework could im-
prove the performance of the algorithm. NSGA-II, MOEA/D,
CMOPSO, and LMOCSO were embedded into the FDV
framework, called FDV-Alg. FDV-Alg is pairwise compared

with the original Alg. The experimental results obtained by
these comparative algorithms are shown in Table III.

Table III shows that FDV-Alg has absolute advantages
over the original algorithm and had a vast improvement over
the original performance of the algorithm. FDV-NSGA-II
and FDV-CMOPSO outperformed the corresponding original
algorithms on all 42 test instances. FDV-MOEA/D is signifi-
cantly better than MOEA/D in 38 of 42 test instances. In the
DTLZ5 problem with tri-objective and 500 decision variables
and the DTLZ7 problem with tri-objective, these algorithms’
performance difference is minimal. In the 42 test instances,
FDV-LMOCSO is significantly better than LMOCSO in 40
test instances. In the bi-objective DTLZ6 problems, when the
decision variables were 1000 and 1500, the performance was
inferior to LMOCSO, but the gap was minimal. In a further
experiment, the statistics of IGD results obtained by eight
compared algorithms on the LSMOP test suite are given in
Table II of the supplementary file.

In order to clearly show that the FDV framework can signifi-
cantly improve the performance of MOEAs, the nondominated
solution diagrams on DTLZI1, DTLZ3, and DTLZ6 with tri-
objective are given. As shown in Fig. 8, MOEAs without
the embedded FDV framework have very poor convergence,
resulting in a result very far from the true PF. The algorithm
embedded in FDV, namely FDV-Alg, significantly improved
the algorithm’s convergence, thereby obtaining the problem’s
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Fig. 8. Nondominated solutions obtained by NSGA-II, FDV-NSGA-II, MOEA/D, FDV-MOEA/D, CMOPSO, FDV-CMOPSO, LMOCSO, FDV-LMOCSO on

tri-objective DTLZ1, DTLZ3, and DTLZ6 with 1000 decision variables.

optimal global solution. We see in Fig. 8 that FDV-Alg also
has a huge advantage over the original algorithm. It can
be noticed that the effect of FDV-MOEA/D on the DTLZ6
problem is not as good as the other FDV-Alg. This is because
MOEA/D is a decomposition-based algorithm and relies on
the weight vector to update the individual, so there will be
a particular disadvantage for the problem of irregular PFs.
Similarly, FDV has significant advantages in the bi-objective
DTLZ (refer to Fig. 1 in the supplementary File).

E. Compared With Typical and State-of-the-art Frameworks

This section compares our proposed FDV with the three
other most representative and state-of-the-art large-scale
MOEA frameworks (i.e., MOEA/DVA, WOF, and LSMOF).

In WOF, LSMOF, and FDV, NSGA-II is embedded for a
fair comparison. Table IV shows the statistics of IGD results
obtained by MOEA/DVA, WOF-NSGA-II, LS-NSGA-II, and
FDV-NSGA-IL

Table IV shows that the performance of MOEAD/DVA in
42 test instances of the seven problems is relatively poor
compared to the three other algorithms. This is because
MOEA/DVA has a failed decision variable analysis, which
leads to poor decision-making. Therefore, the variable group-
ing is wrong, especially the results obtained on DTLZI,
DTLZ3, and DTLZ6, which are far from the true PF. WOF-
NSGA-II showed better performance in 3 of 42 test instances,
mainly on the DTLZ6 problem with a higher dimension of
decision variables. For LS-NSGA-II, it can be seen that the
algorithm based on the problem transformation mechanism is



TABLE IV

STATICS OF IGD RESULTS ACHIEVED BY FOUR COMPARED ALGORITHMS ON 42 TEST INSTANCES FROM DTLZ TEST SUITE. THE
BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem M D MOEA/DVA WOF-NSGA-II LS-NSGA-II FDV-NSGA-II
500  9.4384e+3 (2.36e4+2) —  1.4727e+3 (4.60e+2) —  2.8880e-3 (3.06e-4) ~~  2.8844e-3 (1.41e-4)
5 1000 2.0615e+4 (227e+2) —  2.4203¢+3 (1.02e+3) —  3.0099¢-3 (9.58¢-5) —  2.8219e-3 (1.11e-4)
1500  3.1093e+4 (5.34e42) —  5.2054e+3 (1.18e43) —  2.8957e-3 (1.34e-4) =~  2.8199e-3 (1.33¢-4)
DTLZ1 500 6.9543e+3 (1.99e+2) —  1.9339¢+3 (5.87e+2) —  2.3692e-2 (1.13e-3) ~  2.3532e-2 (1.026-3)
5 1000 1.4829c+4 (1.53e42) —  2.9428e+3 (1.24e43) —  2.3988¢-2 (8.52¢-4) ~  2.3657e-2 (1.92¢-3)
1500  2.3172e+4 (2.77e42) —  3.7675¢+3 (2.74e43) —  2.325562 (1.30e3) &  2.4418e-2 (1.37¢-3)
500  1.5805e+1 (3.17e-1) —  1.8259-2 (2.10e-3) —  5.3947e-3 (1.72e-4) —  5.1181e-3 (1.72e-4)
5 1000 3.4320e+1 (7.50e-1) —  3.4045¢-2 (5.13¢-3) —  5.2970¢-3 (2.10e-4) ~  5.1247e-3 (1.74e-4)
1500  5.3505e+1 (7.87e-1) —  4.2799e-2 (4.42e-3) —  5.1429e-3 (1.20e-4) =~  5.1369e-3 (1.04e-4)
DTLZ2 500  1.3020e+1 (3.47e-1) —  9.0101e-2 (1.15¢-2) —  1.5509e-1 (2.26e-1) —  5.7442¢-2 (1.60e-3)
5 1000 2.9412e+l (3.38¢-1) —  1.3657¢-1 (3.18¢2) —  6.1530e-2 (1.92¢-3) —  5.5672¢-2 (1.51e-3)
1500  4.6306e+1 (2.55e-1) —  1.5913e-1 (1.89¢-2) —  4.4523e-1 (9.45¢-1) ~  5.7905e-2 (1.54e-3)
500  2.5714e+4 (831e+2) —  3.9358¢43 (1.41e+3) —  5.67626-3 (3.026-4) &~  5.7198¢-3 (2.95¢-4)
5 1000 5.5727e+4 (5.58¢42) —  6.9832e+3 (2.55¢+3) —  5.9635¢-3 (3.22e-4) ~  5.7149¢-3 (2.84e-4)
1500  8.6068c¢+4 (1.09e+3) —  9.2958¢+3 (4.75¢+3) —  5.8083e-3 (3.13c-4) ~  5.6973e-3 (3.43e-4)
DTLZ3 500  2.228le+4 (4.38¢+2) —  5.9001e+3 (1.70e+3) —  5.7826e-2 (1.6263) &~  5.8959¢-2 (2.59¢-3)
3 1000 4.9797c+4 (6.74e42) —  7.3739%+3 (2.29e+3) —  5.6902¢-2 (2.84¢-3) ~  5.62846-2(2:806-3)
1500  7.7417e+4 (1.38e+3) —  8.3960c+3 (1.88e43) —  5.9823e-2 (2.76e-3) =  5.6269-2 (1.82¢-3)
500  1.6134e+1 (3.40e-1) —  7.8959%-2 (2.09¢-1) —  5.09686-3 (1.34e-4) &=  5.2489¢-3 (1.32¢-4)
5 1000 3.4610e+1 (6.06e-1) —  3.3842e-2 (5.61e-3) —  5.0825e-3 (I.l1le-d) &  5.2060¢-3 (1.68e-4)
1500  5.3556e+1 (7.50e-1) —  3.8318e-2 (6.00e-3) —  5.3357e-3 (2.82e-4) =  5.1227e-3 (1.526-4)
DTLZ4 500 1.3069e+1 (5.15e-1) —  9.0918e-2 (7.64e-3) —  2.317le-1 (1.56e-1) —  5.6393e-2 (1.46e-3)
3 1000 2.9770e+1 (5.95¢-1) —  9.3768e-2 (1.80e-2) —  8.2996¢-1 (1.34e+0) &~  5.6845¢-2 (2.64e-3)
1500  4.5955¢+1 (5.90e-1) —  1.3997e-1 (3.06e-2) —  2.3320e+0 (3.61e+0) =~  5.6841e-2 (1.19¢-3)
500  1.5882e+1 (3.19¢-1) —  1.7684e-2 (3.12¢-3) —  5.3843e-3 (2.45e-4) —  5.12696-3 (1.606-4)
5 1000 3.4424e+l (6.92e-1) —  3.2289e-2 (5.93¢-3) —  5.1651e-3 (1.99%e-4) ~  5.1397e-3 (2.04c-4)
1500  5.3750e+1 (6.68e-1) —  4.5238e-2 (6.37e-3) —  5.2806e-3 (3.6%¢-4) =~  5.1608e-3 (1.15¢-4)
DTLZ5 500  1.2930e+1 (2.03e-1) —  3.2745e-2 (8.05e-3) —  4.4177e-3 (1.94e-4) —  B3.6624e-3 (1.35¢-4)
5 1000 2.8753¢+l (3.8le-1) —  7.7057¢-2 (1.63¢2) —  4.2109¢-3 (1.31e-4) —  3.748le-3 (6.98¢-5)
1500  4.5553¢+1 (5.68e-1) —  1.0020e-1 (2.15e-2) —  3.9968e-3 (1.87¢-4) —  3.7266e-3 (1.54e-4)
500  4.1587e+2 (1.00e+0) —  1.1328e40 (7.00e-1) —  5.9933e-3 (2.366-4) &  5.7777e-1 (7.66e-1)
5 1000 8.4059e+2 (1.12¢40) —  1.3601e-2 (9.29¢-3) +  5.9442¢-3 (2.36e-4) +  1.8029¢+1 (5.18¢+0)
1500  1.2668¢+3 (1.43e40) —  5.1993e-3 (2.61ed) =  5.9150e-3 (2.49%¢-4) +  5.3090e+1 (1.63e+1)
DTLZ6 500  4.0900e+2 (5.00e-1) —  8.1871e-1 (6.16e-1) —  3.9915e-3 (2.25¢-4) ~~  3.9764e-3 (2.25¢-4)
5 1000 8.2785e+2 (2.57e+0) —  2.3253e-2 (1.3le-2) ~ 4041463 (1.056:4) 4+  3.1331e+0 (3.18¢+0)
1500  1.2500e+3 (1.67e+0) —  4.8579¢-3 (1.45¢-3) +  4.0295e-3 (2.23e-4) &  3.4277e+1 (9.24e+0)
500  4.0377e+0 (9.69%-2) —  3.6996e-1 (1.70c-1) —  4.4290e-1 (3.41e-5) —  5.3154e-3 (1.82¢-4)
5 1000 4.2865¢+0 (5.03¢2) —  3.6997e-1 (1.79-1) —  4.4290e-1 (3.28¢-5) —  5.4419¢-3 (1.06e-4)
1500  4.3835¢+0 (3.49¢-2) —  4.4289e-1 (3.47¢-5) —  4.4289%-1 (3.36e-5) —  5.3592e-3 (1.64e-4)
DTLZ7 500  5.0510e+0 (1.85e-1) —  6.1384e-1 (3.33e-1) —  7.9770c-1 (4.66e-4) —  6.0361e-2 (2:516-3)
5 1000 5.5032e+0 (7.81e2) —  7.9778¢-1 (8.08¢-4) —  7.9813e-1 (1.12¢-3) —  6.0412e-2 (3.47¢-3)
1500  5.5924e+0 (1.3le-1) —  7.9828e-1 (3.89e-4) —  7.9790e-1 (6.08¢-4) —  6.1651e-2 (2.82¢-3)
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more suitable for solving the DTLZ test problem than the algo-
rithm based on the decision variable analysis. This is because
LS-NSGA-II reduces the dimensionality of a high-dimensional
multi-objective problem to a low-dimensional single-objective
problem, thereby improving the performance of the algorithm.
However, FDV-NSGA-II demonstrated obvious advantages in
most test instances.

FE. Compared With State-of-the-art Large-scale MOEAs

CSO is a new search operator used for large-scale opti-
mization and is called FDVCSO when it is embedded in FDV.
Five algorithms (MOEA/DVA, WOF, LSMOF, LMOCSO, and
FDVCSO) were compared on the LSMOP test suite. Table V
shows the statistics of IGD results obtained from the above
five algorithms.

Table V shows that the performance of MOEA/DVA on
the 54 test instances on the LSMOP test suite is not as good
as other algorithms. This is because the variables’ separability
decreases when the dimension of the decision variable is high,
leading to the wrong grouping of the decision variable. WOF
had advantages in 9 of the 54 test instances, namely the
LSMOP6 with bi-objective and LSMOP7. LSMOF performed
well in 11 of 54 test instances, namely the LSMOP3 with
tri-objective, LSMOP6, and LSMOP7. For LMOCSO, it only
slightly outperformed FDVCSO on the bi-objective LSMOP3
with 1,000-dimensional decision variables and the tri-objective
LSMOP9 with decision variables of 2000 and 5000 dimen-
sions. However, FDVCSO has shown an excellent advantage
in LSMOP problems.

In order to show the FDV convergence performance more



TABLE V
STATISTICS OF IGD RESULTS ACHIEVED BY FIVE COMPARED ALGORITHMS ON 54 TEST INSTANCES FROM LSMOP TEST SUITE.
THE BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem M D

MOEA/DVA

WOF

LSMOF

LMOCSO

FDVCSO

1000 6.5722e40 (1.77e-1) —  5.4729-1 (1.13e-1) —  6.2286e-1 (1.67e-2) —  4.7730e-1 (4.91e-2) —  8.61266-2 (1.35¢-2)

5 2000  8.1932¢+0 2.0le-1) —  6.0072¢-1 (4.00e2) —  6373%-1 (2.17e-2) —  9.9108¢e-1 (9.42¢-2) —  1.8275e-1 (1.34e-2)

5000  9.9154e+0 (8.53e-2) —  5.7175e-1 (6.84e-2) —  6.5555e-1 (1.15¢-2) —  1.8603e+0 (1.95e-1) —  2.7179%-1 (1.25¢-2)

LSMOP1 1000 7.5217e+0 (4.03e-1) —  4.9562e-1 (6.06e-2) —  5.4413e-1 (7.99¢-3) —  1.2042e+0 (4.30e2) —  2:9260e-1 (1.67e-2)
3 2000  8.8258¢+0 (2.66c-1) —  5.7324e-1 (283e2) —  5.739%e-1 (6.12¢-3) —  1.4292¢+0 (9.52¢-2) —  3.1286e-1 (1.14e-2)

5000  1.044de+] 221e-1) —  6.1706e-1 (3.03e2) —  6.2255e-1 (1.09e2) —  1.5576e+0 (6.27e-2) —  3.3028e-1 (6.20e-3)

1000 3.9989¢-2 (3.52e-4) —  1.8758¢-2 (4.14e-4) —  1.8943e-2 (2.20e-4) —  2.340de-2 (421e-4) —  8.81856-3 (2.41e-3)

5 2000  22828c2 (4.99c-4) —  12529¢-2 (281e-d) — 127222 (2.65¢-4) —  1.3587c-2 (2.86e-4) —  5.7267e-3 (1.22¢-3)

5000  1.2596e-2 (3.91e-4) —  9.2922e-3 (5.05e-4) —  9.8651e-3 (5.43e-4) —  7.2953¢-3 (1.72e-4) —  4.0452e-3 (1.56e-4)

LSMOP2 1000 5.6399e2 (1.16e-3) —  6.1725¢-2 (3.82e-3) —  6.2447e-2 (3.11e-3) —  4.0877e2 (2.39%¢-4) —  [3.5866e-2 (1.90e-4)
3 2000 52074c2 241e-3) —  5.4427¢-2 (324e3) —  5.3688¢2 (2.74c-3) —  3.6419¢2 (1.17e-4) —  3.4054e-2 (3.73¢-5)

5000  4.9239e-2 (2.79e-3) —  5.1123e-2 (2.85¢-3) —  5.0609-2 (2.53¢-3) —  3.4380e-2 (4.15¢-5) —  3.328le-2 (2.33e-5)

1000 7.2830e42 (5.93e+2) —  1.3258¢+0 (1.24e-1) —  1.5730e+0 (4.75¢-4) —  7.3499-1 (8.56e-3) £  8.7619%-1 (1.74e-2)

) 2000 1.0337e+3 (9.27c+2) —  14157c+0 (6.68¢-2) —  1.5770e+0 (14le-4) —  1.5184c+0 (1.59e+0) —  [1.0009e+0 (1:96¢-2)

5000  8.3552e+2 (8.25e42) —  1.5870e+0 (1.61e-3) —  1.5791e+0 (8.52e-5) —  3.5179e+0 (1.57e40) —  1.3806e+0 (3.37¢-2)

LSMOP3 1000 2.1983e+2 (1.58e+2) —  8.54d2-1 (1.12e-2) ~  8.3993e-1 (121e2) &  8.2870e+0 (3.12e+0) —  8.9997e-1 (1.71e-1)
3 2000 2.1978c+2 (147c+2) —  8.6072¢-1 (5.96e-8) ~  8.5585¢-1 (5.98¢-3) +  1.1466c+1 (3.85c+0) —  9.828%-1 (2.35¢-1)

5000 3.3096e42 (2.93e42) —  8.6071e-1 (1.07e-5) ~  8.6062e-1 (5.56e-5) ~  1.273de+1 (2.88¢+0) —  8.6052e-1 (1.16¢-6)

1000 6.5680e-2 (4.25e-4) —  4.3282e-2 (2.95¢-3) —  3.8724e-2 (1.56e-3) —  4.8125¢-2 (5.87e-4) —  [1.6318e-2 (1.43e-3)

5 2000  3.9985¢-2 (2.67c-4) —  3270le-2 (295¢3) — 295782 (2.35¢-3) —  2.8528¢-2 (1.92e-4) —  1.0947e-2 (2.17e-4)

5000  2.1865-2 (9.29e-4) —  1.7391e-2 (391e-d) —  1.7076e-2 (9.19¢-4) —  1.4504e-2 (1.03e-4) —  6.2630e-3 (1.06¢-4)

LSMOP4 1000 1.1876e-1 (2.90e-3) —  1.3550e-1 (3.92¢-3) —  1.3712e-1 (3.29e-3) —  9.0172e-2 (5.58e-4) —  5.6488e-2 (1.56e-3)
3 2000  7.8687c-2 (235¢-3) —  8.6628¢-2 (3.51e-3) — 898692 (4.00¢-3) —  5.8572¢-2 (3.76e-4) —  4.2054c-2 (2.90e-4)

5000  5.5545e-2 (2.47e-3) —  5.8138e-2 (236e3) —  5.9960e-2 (3.43¢3) —  4.0752e-2 (1.05e-4) —  3.5391e-2 (9.60e-5)

1000 1.4443e+1 (4.24e-1) —  5.2705e-1 (137e-1) —  7.4200e-1 (1.16e-6) —  9.8714e-1 (1.08e-1) —  5.64666-2 (1.39¢-2)

5 2000  1.7637c+l (3.15¢-1) —  3.8052¢-1 (L.13e-1) —  7.4200¢-1 (1.16¢-6) —  2.2750e+0 (3.34c-1) —  1.5802¢-1 (I.1le-1)

5000  2.125de+1 (1.42e-1) —  6.3076e-1 (6.97e-2) &~  7.4209-1 (1.16e-6) —  3.8827e+0 (2.06e-1) —  5.9657e-1 (2.58¢-1)

LSMOPS 1000 1.3595e+1 (5.21e-1) —  5.3685e-1 (6.50e-3) —  5.3649-1 (8.60e-3) —  2.4392e+0 (1.53e-1) —  3.0659e-1 (1.78e-2)
3 2000  1.5866c+1 (4.75¢-1) —  5.3493c-1 (5.58¢3) —  5.4072¢-1 (2.70c-4) —  2.9250¢+0 (1.47¢-1) —  3.3040e-1 (1.69¢-2)

5000  1.8767e+1 (4.26e-1) —  5.3605e-1 (4.62e-3) —  5.4082e-1 (1.24e-5) —  3.4049e+0 (1.4de-1) —  4.2293e-1 (1.15e-2)

1000 1.2735e43 (1.07e+3) —  4.8778¢-1 (1.35¢-1) +  3.1245e-1 (4.166-4) &=  7.6080e-1 (9.23e-4) —  7.5859-1 (8.94e-5)

5 2000 3.5354c+3 (3.06+3) —  5.0593c-1 (145e-1) +  3.0879%-1 (4.93¢-5) +  7.537%-1 (5.59e-4) —  7.1527¢-1 (8.19¢-2)

5000 2.3178e+3 (1.0le+3) —  5.7860e-1 (1.36e-1) +  3.0695e-1 (9.08e-5) +  7.473le-1 (2.25e-4) —  7.2100e-1 (5.68¢-2)

LSMOP6 1000 2.0448e+4 (3.81e+3) —  1.3080e+0 (1.26e-3) —  7.3736e-1 (3.10e-2) —  3.0475e+1 (4.62e+1) —  7.0978e-1 (2.18e-1)
3 2000 27725c+4 (B1le+3) —  1.3209c+0 (9.48c-4) — 1552461 (41562) F  1.5895¢+2 (1.56e+2) —  9.5225¢-1 (8.04e-1)

5000  3.3334e+d (4.04e43) —  13273e+0 (1.21e3) &~ 8.1430e-1 (7.21e-2) +  4.8817e+2 (4.20e42) —  2.5762e+0 (5.67e+0)

1000 4.2304e+4 (2.62e+3) —  1.5119e+0 (1.44e-3) + 15091640 (8.0664) &  2.3754e+1 (2.48e+1) —  1.5510e+0 (1.29-1)

) 2000  5.7324e+4 (2.11e+3) —  1.5166e+0 (139-3) +  1.5129¢+0 (3.67c-4) ~  7.0191e+2 (4.99e+2) —  [1:5092640/(2:53622)

5000  7.5093e+4 (2.20e43) —  1.5197e+0 (I.11e-3) &  1.5155e+0 (3.85e-4) &  2.6222e+3 (1.84e43) —  1.5142e+0 (1.93¢-3)

LSMOP7 1000 9.3063e+2 (7.33e+2) —  8:5311e-1 (1.78¢3) £  8.6090e-1 (3.09¢-3) +  9.1547e-1 (1.07e-1) &~  8.9747e-1 (5.09-2)
5 2000 1.3570e+3 (125¢+3) —  84318c-1 (6.58e-4) +  8.4835¢-1 (1.65¢-3) +  9.4873¢-1 (4.23e-2) ~  9.3223e-1 (5.41e-2)

5000 1.9611e+3 (1.63e+3) —  8.381le-1 (5.65e-4) -  8.4126e-1 (4.33e-4) +  9.0053e-1 (9.11e-2) &~  9.5515e-1 (3.49¢-4)

1000 1.2203e+1 (3.46e-1) —  5.8862e-1 (1.71e-1) —  7.4209e-1 (1.16e-6) —  9.095de-1 (6.59¢-2) —  B3.3189e-2 (5.91e-3)

5 2000 1.5120c+1 (2.26c-1) —  4.2282¢-1 (L.15e-1) —  7.4200¢-1 (1.16¢-6) —  1.9347c+0 (2.40c-1) —  6.0828e-2 (7.27e-3)

5000  1.8333e+l (1.09-1) —  6.6283e-1 (7.02e-2) —  7.4209-1 (1.16e-6) —  3.2366e+0 (4.60e-1) —  2.4829e-1 (4.64e-2)

LSMOP8 1000 6.5891e-1 (5.05e2) —  3.183le-1 (2.66e2) —  3.475%-1 (1.03e-2) —  6.7676e-1 (1.14e-1) —  6.8094e-2 (1.75¢-3)
3 2000  6.3386c-1 (4.52e2) —  3.2452¢-1 (273e2) —  3396le-1 (1.07e-2) —  7.1457c-1 (1.69e-1) —  6.6356e-2 (1.14e-3)

5000  6.53dde-1 (7.85e2) —  3.2536e-1 (1.84e2) —  3.3986e-1 (1.10e2) —  9.1369e-1 (7.51e2) —  6.7543e-2 (6.00e-4)

1000 3.3138e+1 (1.30e+0) —  8.087le-1 (4.73e-4) —  8.0740e-1 (8.12e-4) —  3.7433e-1 (2.50e-2) —  B.5764e-2 (1.196-2)

5 2000 4.2736e+l (1.24e+0) —  8.0746e-1 (131e-3) —  8.0477c-1 (3.94c-4) —  3.8973¢-1 (2.05¢-2) —  2.8510¢-2 (3.88¢-3)

5000  5.3080e+1 (3.79%-1) —  8.0394e-1 (1.93e-3) —  8.0325e-1 (5.52e-4) —  7.8576e-1 (1.06e-1) —  1.4606e-1 (1.30e-1)

LSMOP9 1000 9.2003e+1 (1.92e+0) —  1.1776e+0 (1.13e-1) —  1.2430e+0 (1.78e-1) —  6.6576e-1 (1.0le-1) —  4:9350e-1 (1.766-2)
3 2000 1.1187e+2 (3.0le+0) —  1.1759e+0 (1.09e-1) —  1.1442¢40 (2.65¢-4) —  6:3227e-1 (109 )& 6.5052¢-1 (1.02e-1)

5000  1.3547e+2 (1.58e+0) —  1.1443e+0 (2.65e-4) +  1.1440e+0 (1.92e-4) +  8.0977e-1 (9.58e-2) +  8.3928e+0 (1.84e+0)

1) -/~ 0/54/0 9/39/6 11/39/4 2/48/4

clearly. Fig. 2 in the supplementary file shows the convergence
of mean IGD values of five algorithms on the tri-objective
LSMORP test suite with 2000 decision variables. In the figure,
WOF-NSGA-II and LSMOF show better advantages in the
LSMOP7 problem. This is because the algorithm of the
problem transformation mechanism finds a good problem
transformation function on this problem. On the problems of
LSMOP3, LSMOP6, and LSMOP9Y, the performance advan-
tages of FDVCSO were not very obvious. This is because
these problems have low requirements for the algorithm’s con-

vergence but pay attention to the distribution of the algorithm.
On the whole, FDVCSO had a very obvious advantage in the
LSMOP test suite.

To study the performance of FDV on MOPs with irregular
decision space and the performance on constrained large-scale
MOPs. FDV-CCMO and CMOPSO, MOEA/DVA, LMOCSO,
and WOF-SMPSO are compared with five test problems on
the TREE test suite. Table III in the supplementary file shows
the statistics of IGD results obtained by these five algorithms.
It can be found from the table that CMOPSO, MOEA/DVA,



and LMOCSO did not find any feasible solutions for TREE3
to TREES. The possible reason is that these problems have
many constraints and are more complicated than the objective
function. Therefore, the decision variable grouping mechanism
(MOEA/DVA) that only considers the correlation with the
objective function cannot effectively solve these problems.
CMOPSO and LMOCSO show poor performance because they
do not have a good constraint handling mechanism. WOF-
SMPSO shows better performance, which may be attributed
to the ability of the PSO operator to track the global best
particles, thereby performing faster convergence in a relatively
simple fitness landscape. Another reason is that although the
problem transformation has lost some problem information, it
strengthens the ability to search for solutions. FDV-CCMO is
not the best performance on TREE1, TREE3, and TREE2 with
two objectives. The reason is that this type of problem has an
irregular decision space, so FDV cannot uniformly fuzzy the
original solution into the decision space.

V. CONCLUSION

In this paper, we have proposed a general framework for
solving large-scale MOPs. The FDV framework is divided
into two main stages: the first stage is the fuzzy evolution
stage, aiming to search for rough solutions. The second stage
is the precise evolution stage, which aims to search for precise
solutions.

In fuzzy evolution, the fuzzy evolutionary stage is divided
into multiple sub-stages through the proposed method of
fuzzy evolution sub-stages division. Each sub-stage has a
different degree of fuzzification, and the degree of fuzzification
decreases gradually. The value range of decision variables
is reduced from an infinite number of original values to a
finite number of fuzzy values, so the FDV framework reduces
the search range of the algorithm and improves the search
efficiency of the algorithm. In precise evolution, the fuzzy
operation is lost and the evolution method embedded in MOEA
is used directly. At this stage, more attention is paid to the
diversity of algorithms.

In order to verify that the proposed FDV framework en-
hances the ability of MOEAs to solve large-scale MOPs, our
typical MOEAs were embedded in the FDV framework and
paired with the original algorithm on the DTLZ test problem.
In order to prove the advantages of the FDV framework in
the existing large-scale optimization frameworks, the NSGA-
I algorithm was embedded in several popular frameworks
and compared on the DTLZ test suite. Finally, in order to
demonstrate that FDVCSO also has significant advantages
in several state-of-the-art large-scale MOEAs: MOEA/DVA,
WOF, LSMOF, and LMOCSO, we conducted an experimental
comparison on the LSMOP test suite. This experimental com-
parison shows that our proposed FDV framework dramatically
improves the performance of existing MOEAs and has obvious
performance advantages in advanced large-scale MOEAs.

The proposed FDV framework has shown good potential
in large-scale multiobjective optimization, but the optimal
parameters are different for different problems, and parameter
analysis is usually required. Future work will develop the

parameters into self-adaptation. This part of the work involves
problem analysis and automatic adjustment of parameters in
the face of different problems. Designing better fuzzy formulas
to solve MOPs with irregular decision spaces is also our future
research work. It is also interesting to apply our proposed
FDV framework to real-world, large-scale MOPs with more
decision variables through parallel (for example, GPU-based)
calculations.
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