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Abstract 11 

Problems sourcing spat from naturally occurring seed beds for relay has been the main underlying limiting 12 

factor in mussel aquaculture over recent years. Attempts to address this issue require a better understanding 13 

of mussel larval patterns during the initial planktonic phase prior to settlement.  A crucial step in progressing 14 

the detection and prediction of larval travel is the accurate identification of mussel larvae within environmental 15 

samples in conjunction with hydrodynamic patterns. This requires unambiguous, high throughput methods for 16 

the discrimination between larvae of morphologically-similar bivalve species. Presently methodologies require 17 

direct microscopic observation with accuracy based on taxonomic skills, techniques which are impractical for 18 

large-scale larval movement studies. Species-specific polymerase chain-reaction (PCR) presents a powerful 19 

alternative method for species detection. In addition, the technique allows for the collection of quantitative 20 

real-time PCR data which can be used for inter sample comparisons of relative larval abundance.  21 

In this study Blue mussel Mytilus edulis D-stage larvae were used to compare and optimise DNA extraction 22 

methods and to examine the quantitative potential of species-specific qPCR targeting the polyphenolic 23 

adhesive protein involved in byssal thread production. Molecular data were used to create a predictive model 24 

which could be employed to determine larval numbers from real-time data. Assays were then used to estimate 25 

M. edulis abundance in vertical –tow plankton samples collected from a trial aquaculture site off the North 26 

Wales coast.  27 

This method offers a more effective means of temporal and spatial larval pattern analysis which will improve 28 

the tracking and predictive capabilities of seed supply hydrodynamic models used for dispersal and population 29 

connectivity predictions.   30 

Keywords 31 

Mytilus edulis, QPCR, DNA extraction, Larval settlement, Seed supply modelling 32 
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1. Introduction  33 

The majority of the global production of marine bivalve molluscs for human consumption is provided by 34 

cultured stocks (Wijsman et al., 2019). Shellfish production has increased rapidly in Asia, yet there has been 35 

limited growth in Europe in recent decades, with a decrease in output from the mussel aquaculture sector 36 

being the primary contributor to a gradual decrease in productivity (Hambrey & Evans, 2016). While growth 37 

potential within the sector is considered strong, it is heavily constrained by the availability of wild juvenile 38 

mussels known as seed or spat which derive from settlement of planktonic larvae. Spat settlement is highly 39 

variable, both temporally and spatially, with first phase settled beds quickly lost through predation or storm 40 

events (Kamermans & Capelle, 2018; Dankers & Zuidema, 1995; Nehls & Thiel, 1993).  Variations in spat 41 

abundance and location are determined by planktonic larval dispersal and settlement processes which vary 42 

seasonally and locally but are poorly understood (Stirling et al., 2018; Knights et al., 2006; Dobretsov & Miron, 43 

2001).  44 

The use of hydrodynamic larval particle tracking models combined with in-situ time series larval identification 45 

data has proved unreliable in predicting first phase settlement sites of M. edulis (Stirling et al., 2018). A main 46 

impediment to studies of larval ecology and distribution is the lack of unambiguous methods for the 47 

discrimination of bivalve species larvae with similar morphological characteristics. Established methods of 48 

larval identification involve direct microscopic observation, however these are insufficient for large scale 49 

studies of larval movement, and are limited by cost, time, and researcher experience (Bott et al., 2010). Whilst 50 

identifying larvae to class level (Bivalvia) is simple, resolution to lower levels (family, genera, or species) 51 

requires extensive taxonomic experience in marine bivalve larvae and therefore has great potential for human 52 

error which is confounded by phenotypic plasticity.  53 

More recent bivalve larval identification techniques can produce specific level identification in mid to late stage 54 

larvae via analysis of hinge structure using scanning electron microscopy or optical compound microscopes 55 

equipped with high-intensity reflected light sources (Lutz et al., 2018). However, this involves time-consuming 56 

disarticulation and mounting of valves which limits use for in-situ field studies. Advanced techniques such as 57 

Raman spectroscopy (Thompson et al., 2015) and the use of polarized light to identify colour patterns from 58 

larval shells (Goodwin et al., 2018) offer an alternative but suffers from a lack of specificity and low taxonomic 59 

determinations which requires sorting or isolation of individual larvae. Newer alternative methods based on 60 

molecular or immunological techniques offer more accurate and precise identification.  Detection using 61 
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directed antibodies and fluorescently labelled DNA probes have been used successfully to identify plankton 62 

larvae to family, genus or in some cases species level (Perez et al., 2009; Abalde et al., 2003; Paugam et al., 63 

2003; Paugam et al., 2000; Demers et al., 1993). However, their use in field studies has been rare with both 64 

methods having limitations which can slow down sample processing and can result in erroneous false positive 65 

or negative identification (Heaney et al., 2011).   66 

PCR-based techniques have become increasingly popular as an identification tool for aquatic species, 67 

providing accurate and specific detection via the use of targeted oligonucleotide primers (Dysthe et al., 2018; 68 

Sterling et al., 2018; Ludwig et al., 2014; Sanchez et al., 2014; Bott & Giblot-Ducray, 2011(a); McBeath et al., 69 

2006). Researchers have attempted to use PCR to quantify larvae on an individual basis, performing 70 

extraction and analysis individually using single larvae (Sawada et al., 2008; Larsen et al., 2007). However, 71 

larvae contain small amounts of tissue and correspondingly low levels of DNA (Lasota et al., 2013) with the 72 

result that these assays often have a high failure rate (Christian et al., 2007) particularly with ethanol- or 73 

chemically fixed samples (Goodwin et al., 2018). The potential risk of skewed results due to larval selection 74 

bias is also a concern and as the whole larvae is often used in a single PCR this eliminates the possibility of 75 

testing for multiple species (Larsen et al., 2005; Hosoi et al., 2004; Hare et al., 2000).   76 

Environmental DNA (eDNA) studies, which analyse air, soil or water samples for the presence of intracellular 77 

or extracellular target DNA, have been used to non-invasively detect a range of species (Prié et al., 2020; 78 

Mychek‐Londer et al., 2019; Günther et al., 2018; Klymus et al., 2017 or see Ruppert et al., 2019 for review). 79 

This offers a number of benefits over traditional sampling methods, particularly when target species are less 80 

abundant or at challenging survey locations and when a number of species are to be sampled from the same 81 

location (Dysthe et al., 2018; Furlan et al., 2016; Rees et al., 2014(b)). These studies typically use 82 

metabarcoding to identify multiple species within a sample, which requires post-amplification processing and 83 

an adequate reference database (Cowart et al., 2015) or DNA-barcoding using species-specific markers can 84 

be used to target short fragments of mitochondrial DNA (mtDNA) (Stirling et al., 2018; Rees et al., 85 

2014(b)). Yet the failure rate of this technique when applied to molluscs can be unsatisfactorily high, up to 86 

43.6% in some cases (Cahill et al., 2018; Barco et al., 2016). Unresolved criticisms of this technique concern 87 

both experimental design and analytical methodology (e.g. primer bias (Couton et al., 2019), primer mismatch 88 

(Cahill et al., 2018), inadequately ‘populated’ barcode reference libraries (Rosenberg. 2014), bacterial 89 

infection biasing mtDNA variation (Kaya & Ciplak. 2018), anthropogenic artefacts during reference library 90 
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development (Weigand et al., 2019). High genetic variability and the mixing of genetic lineages within a 91 

species, along with hybridisation and introgression events may also confuse taxonomic boundaries and 92 

hamper accurate taxonomic identifications (Trivedi et al., 2016; Sun et al., 2016). Hybridization, introgression 93 

and heteroplasmy of mtDNA are known to occur in Mytilus mussels where species boundaries overlap (Barco 94 

et al., 2016; Kijewski et al., 2006; Rawson & Hilbish. 1998), a consequence of backcrossing with one or both 95 

parental taxa and of the peculiar mtDNA inheritance systems observed in these and other bivalves (Schizas. 96 

2012; Breton et al., 2007; Theologidis et al., 2008). Marine mussels of the order Mytiloida exhibit an 97 

inheritance mechanism known as doubly uniparental inheritance (DUI) (Zbawicka et al., 2007; Breton et al., 98 

2007; Theologidis et al., 2008). The implications for this are the possibility of concurrently amplifying M and F 99 

DNA when targeting mitochondrial gene regions during PCR, which depends on sequence divergence 100 

between M and F types; average sequence divergence in the 3 Mytilus species is ~8.3%  but levels can be 101 

>20%  (Śmietanka et al., 2016; Schizas, 2012). Both DUI and non-DUI heteroplasmy have been observed in 102 

crossings between blue mussels (Kijewski et al. 2006), and this along with other issues inherent in DNA 103 

barcoding/ metabarcoding, some of which are mentioned above, can have significant implications for accurate 104 

taxonomic classification and ultimate barcoding success (Larraín et al. 2019).  105 

Of particular concern is the uncertain ability of metabarcoding to produce quantitative results, with many 106 

studies maintaining that read numbers do not accurately represent the proportions of each species (Piñol et 107 

al., 2019; Klymus et al., 2017; Sun et al., 2015). Real-time PCR using targeted primers presents a powerful 108 

alternative method to detect species within environmental samples, simultaneously identifying and quantifying 109 

target DNA and allowing relative sample comparisons (Peñarrubia et al., 2016). A number of studies have 110 

examined the potential of qPCR to detect and potentially quantify eggs and larvae from marine and freshwater 111 

species (Odero et al., 2018; Sanchez et al., 2014; Jensen et al., 2012; Pan et al., 2008), including M. edulis. 112 

Dias et al, (2009) estimated mussel larval numbers from plankton samples gathered in Loch Etive using 113 

nuclear primers developed by Inoue et al, (1995), giving an upper limit for predicted larvae based on a 114 

standard curve established using a single stage (D larvae). In this study we aimed to further develop this 115 

technique in order to provide more accurate measures of larval abundance in plankton samples, using blue 116 

mussel M. edulis D-stage larvae obtained from single species culture to compare and optimise DNA extraction 117 

methods for larval samples. Spawned larvae were also used to create a model which predicts approximate 118 

mussel larval numbers from real-time data, allowing a range of reported values which more accurately mirrors 119 

the expected variation resulting from biological (variations in larval size and/ or molecular copies, 120 
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nonhomogeneous distribution of template DNA in sample), sample preparation (liquid retention and adhesion 121 

of target molecules to pipette tips, etc.) and assay (intra- and inter-plate variation, improper background 122 

subtraction) variation. This method was used to analyse the bivalve content of vertical –tow plankton samples 123 

collected from the site of a trial mussel longline system in North Wales 124 

In order to address the industry concerns of diminishing mussel seed beds effective tracking of larval supply is 125 

essential and hence the development of a high throughput tool for rapid identification and quantification of 126 

Mytilus edulis larvae within mixed plankton samples is a priority. The eventual methodology should be high 127 

throughput, cost effective and robust enough to be applied to field samples which can be highly variable in 128 

terms of organic and inorganic content as well as the condition of preservation. 129 

2. Methods 130 

2. 1. Comparison of DNA extraction methods for generating larval standard curves in qPCR  131 

Thirty adult Mytilus edulis were gathered from the Menai Strait, Anglesey, to generate standards for 132 

qPCR and as positive control DNA. Specimens were dissected and approximately 30 mg of adductor or 133 

mantle tissue were extracted using a modified DNEasy Powersoil kit (Qiagen) protocol, where the 10 minute 134 

vortex step to homogenise tissues was replaced with a 2 x30 s bead beating steps at 5.5 m/s in a benchtop 135 

homogeniser (Precellys 24 (Bertin Instruments)). M. edulis larvae were obtained from single species 136 

experimental culture and fixed in 99.5% ETOH. D-stage larvae were counted under a light microscope and 137 

manually transferred using a pipette to 1.5ml tubes containing 70% ETOH. Tubes containing 1, 10, or 138 

100 larvae were collected in triplicate and standard enumeration and volumetric determination were used to 139 

generate batches of approximately 1000 larvae.   140 

Prior to extraction, 1, 10, 100, or 1000 larvae were filtered on to 0.45 µm cellulose nitrate (C-N) filter papers 141 

using a vacuum filter rig before being cut in to strips to improve chemical digestion. Genomic DNA was 142 

extracted using the protocols described below.  143 

2. 1. 1. Adapted DNEasy Powersoil Kit (Qiagen)  144 

Extraction was performed according to the DNEasy Powersoil kit protocol, with modifications (see A.1 in 145 

Supplementary material, Appendix A). DNA was eluted in to 70ul 0.1 µM TE buffer.  146 
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To test the effect of homogenisation time on extraction efficacy, three methods were tested: samples were 147 

homogenised using a benchtop homogeniser for two cycles of 20, 40, or 60 s.   148 

2. 1. 2. Adapted E.Z.N.A Mollusk kit (Omega Biotek)  149 

Extraction was performed according to the E.Z.N.A Mollusk DNA extraction kit with modifications (see A.2 in 150 

Supplementary material, Appendix A). DNA was eluted in to 70 µl 0.1 µM TE buffer.  151 

To test the effect of incubation time on extraction efficacy, samples were incubated for 90, 180, or 270 152 

minutes.   153 

2. 1. 3. Cetyltrimethylammonium bromine (CTAB) buffer extraction  154 

DNA was extracted based on a method used by Balasingham, et al. (2018) using cetyl-155 

trimethylammonium bromide (CTAB) extraction buffer (see A.3 in Supplementary material, Appendix A). DNA 156 

was resuspended in 70 µl 10 µM TE buffer and 0.5 µl RNase A.   157 

2. 1. 4. QPCR analysis of DNA extraction efficiency  158 

DNA yields were quantified using a Qubit 3.0 fluorometer and Quant-iT™ dsDNA high sensitivity reagents for 159 

a direct comparison of extraction efficacy. qPCR was carried out in a QuantStudioTM Flex 6 Real-Time PCR 160 

System (Applied Biosystems, USA) using nuclear Me15/16 Mytilus primers developed by Inoue, et al. (1995). 161 

PCR reactions consisted of 10 µl 1x Kapa SYBR FAST Low ROX mix, 0.2 µM of each primer, 2 µl of DNA 162 

template, and molecular grade H2O in a total reaction volume of 20 µl. Cycling conditions were set to 95 ⁰C for 163 

2 minutes, followed by 40 cycles of 95 ⁰C for 3 s, 60 ⁰C for 20 s, and 72 ⁰C for 20 s. Standard curves were 164 

constructed using serial dilutions of target amplicons (1/10 fold dilutions from 1 x 107-1 x 101 molecules/ µl), 165 

and negative (no template) and positive controls were included in the form of PCR-g H20 and M. edulis gDNA 166 

replacing DNA template, respectively. Samples were run in triplicate. Threshold values were set during the 167 

exponential phase of the reaction, allowing cycle threshold (Ct) values to be determined for each sample.   168 

2. 2. Quantitative PCR development  169 

2. 2. 1. Specificity, efficiency and precision of M. edulis qPCR assay  170 
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To determine the specificity of the primer set used, the sequences were tested in silico against 171 

the NCBI database using Primer-BLAST (https://blast.ncbi.nlm.nih.gov) and tested for specificity and cross-172 

reactivity through PCR with DNA from other bivalve species of commercial interest which potentially occur in 173 

the area (Cerastoderma edule, Pecten  maximus, Aquipecten opercularis, Ensis siliqua, Crassostrea gigas, 174 

Ostrea chilensis). To ensure non-occurrence of cross-reaction was not due to absence of amplifiable 175 

DNA, end-point PCR was carried out on all bivalve DNA using ‘universal’ invertebrate primer pair LCO1490 and 176 

HC02198 developed by Folmor, et al. (1994) targeting a 710-bp fragment of the mitochondrial cytochrome c 177 

oxidase subunit I gene (COI). Samples were composed of 1 x MyTaq Redmix (Bioline), 0.4 µM of each 178 

primer, 2 µl of DNA template, and molecular grade H20 for a total reaction volume of 25 µl. Cycling conditions 179 

were set to 95 ⁰C for 3 minutes, followed by 30 cycles of 95 ⁰C for 20 s, 45 ⁰C for 20 s, and 70 ⁰C for 30 s.  180 

The efficiency of the PCR reaction was assessed using triplicate ten-fold serial dilutions (1 x 107-1 x 101 181 

molecules/ µl) of target amplicons generated from DNA extracted from adult M. edulis tissue. Assay precision 182 

was analysed by calculating the intra-assay coefficient of variation (COV) for Ct values generated 183 

from triplicate serial dilutions (STDS 1-3).  184 

2. 2. 2. PCR-inhibition from extracted samples  185 

To test the inhibiting effects of planktonic matter which may affect overall accuracy and sensitivity of the qPCR 186 

assay we spiked DNA extracted from 20ml plankton and water samples containing 100 M. edulis larvae with 1 187 

ng of control DNA from a pure culture of the bacterial species, Gibbsiella quercinecans (Brady, et al. 2010). 188 

The potential for inhibiting compounds resulting from the extraction process itself was examined by 189 

including extracts from negative controls of distilled water. All samples were processed with the 190 

E.Z.N.A Mollusk extraction kit with a 180 minute incubation step, and DNA extracts were spiked with G. 191 

quercinecans DNA. Subsequently, a Taqman MGB-based assay targeting G. quercinecans was employed to 192 

detect inhibition. Reactions consisted of 1 x SensiFast mix (Bioline), 0.4 µM of each primer, 0.1 µM of probe, 1 193 

µl of DNA template, and molecular grade H20 for a total reaction volume of 20 µl. All qPCR assays were 194 

carried out in a QuantStudioTM Flex 6 Real-Time PCR System (Applied Biosystems, USA); the initial 195 

denaturation was 95 ⁰C for 2 minutes, followed by 40 cycles of 95 ⁰C for 10 s and 60 ⁰C for 40 s. Standards 196 

were run in triplicate in 1/10 fold dilutions from 3 x 108 - 3 x 103 molecules/ µl. Negative controls were included 197 

by replacing DNA template with 1 µl molecular-grade H20.   198 
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Reactions were initially run with unspiked sample extracts to ensure no unwanted cross-amplification 199 

occurred which could affect results (data not included).   200 

2. 2. 3. Quantitative potential of qPCR for predicting M. edulis larval abundance 201 

D-stage larvae were isolated to 1.5 ml tubes containing 70% ETOH. Tubes containing 1 - 1000 larvae were 202 

collected in triplicate and filtered through 0.45 µm cellulose nitrate filter papers prior to genomic DNA 203 

extraction using E.Z.N.A Mollusk extraction kit with 180 minute incubation step. Quantitative PCR was carried 204 

out under the conditions listed in Section 2.1.4, with each sample being run in triplicate. Template DNA 205 

quantity was calculated by plotting Ct values to standard curves obtained from serial dilutions of target 206 

amplicons (1/10 fold dilutions from 1 x 107-1 x 101 molecules/ µl) and negative and positive controls were 207 

included in the form of PCR-g H20 and M. edulis gDNA.    208 

Actual extracted larval numbers and predicted values for number of larvae per PCR reaction are given in 209 

Table 1.  210 

Table 1. Number of DNA-extracted M. edulis larvae and corresponding number input per PCR reaction.    211 

 212 

The specificity of the reactions was examined by the generation of melt curves after amplification. At low 213 

template concentration, non-specific amplification can cause florescence to reach detectable levels. In order 214 

to avoid false positive results, samples which had no visible melt curve corresponding with the target 215 

amplicon, had reported molecular copies of <100 and were deemed to have no target molecules were given a 216 

value of 0.The reported numbers of gene copies were log (x+1) -transformed prior to statistical analyses, in 217 

order to improve the normality of the data and the homogeneity of variance. A singular effects LMM 218 

(generalised linear mixed effects model) with a Gamma error distribution was fitted for molecular copies and 219 

Ct values, where copies or Ct values are explained by the log10 of larval number per PCR reaction, with 220 

random factor of sample accounting for single samples contributing separate measurements (done 221 

using glmer function from the lme4 package for R (version 3.5.3) (Bates, et al. 2014).   222 

2. 3. Plankton trials  223 

Extracted no.  

M. edulis larvae 
1000 200 100 60 40 30 20 10 8 6 5 4 2 1 

Predicted no. larvae/ 

PCR reaction 
22.22 4.44 2.22 1.33 0.89 0.67 0.44 0.22 0.18 0.13 0.11 0.09 0.04 0.02 
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Plankton samples were collected from a trial aquaculture site operated by Bangor University and Deepdock 224 

Ltd off the North Wales coast (53°18'60.7"N 3°59'39.2"W), using 100 µm mesh plankton net with ballast 225 

weight deployed vertically from approximately 1-2 m above the sea bed and fixed following the protocol 226 

recommended by Black and Dodson (2003). Five subsamples were used to record the number of individual 227 

larvae belonging to the class Bivalvia and bivalve density (larvae m-3) was calculated by multiplying the 228 

average number of larvae by the total volume of the entire plankton sample, divided by the volume (m3) of 229 

seawater sampled. From each sample, 20ml was passed through a 0.45 µm C-N filter; one half of the filter 230 

was stored at -80 ⁰C and the second half was cut in to strips and used for DNA extraction using the modified 231 

E.Z.N.A mollusc extraction method with 180 minute incubation. Samples were analysed by the qPCR assay 232 

for M. edulis detailed in Section 2. 1. 4. and template DNA quantity was calculated by plotting Ct values to 233 

standard curves obtained from serial dilutions of target amplicons (1/10 fold dilutions from 1 x 107-1 x 101 234 

molecules/ µl). The model generated in Section 2. 2. 3. was used to generate mean and upper and lower 235 

prediction values for number of larvae per sample, which were converted to larvae/ m3 for direct comparison 236 

with observed larval numbers. Efficiency and precision values were also generated for the reaction.  237 

3. Results 238 

3. 1. Comparison of DNA extraction methods for generating larval standard curves in qPCR  239 

A comparison of extraction from 1, 10, 100, or 1000 larvae showed that the extraction kit and method used 240 

has a significant effect on DNA yield (F (4, 51) = 2.715, p = .04) (Figure 1) and therefore subsequent qPCR 241 

detection sensitivity. Extraction using the Balasingham CTAB method resulted in the lowest DNA yields 242 

overall and was the least promising method for further experimentation. Both the E.Z.N.A and Powersoil kits 243 

yielded sufficient DNA overall but incubation or homogenisation time had a clear effect on yield: too much 244 

(270m or 2 x 60s cycles) or too little ((90m or 2 x 20s cycles) of each resulted in reduced DNA recovery. 245 

Ultimately the E.Z.N.A kit extracted DNA of ample quantity after 90 and 180m incubation periods and was 246 

less variable in efficiency than the Powersoil kit even under optimal conditions (2 x 40s homogenisation 247 

cycles).  248 

 249 

 250 
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 251 

 252 

 253 

 254 

 255 

 256 

Quantitative PCR was performed on extracted DNA and Ct values were plotted on a standard curve obtained  257 

from serial dilutions of template DNA. From these standard curves, we aimed to determine the linearity (on a 258 

log scale) of the qPCR on samples extracted using each method and possible detection limits for the assay 259 

(Figure 2). DNA extracted from 1 – 1000 larvae using the E.Z.N.A extraction method with 180m incubation 260 

step fitted to the standard curve with narrowest confidence interval and greatest differentiation between larval 261 

values. This interaction between extraction method and larvae number was significantly different between 262 

methods (F (12, 80) = 5.93, p < 0.001). Based on these results and DNA extraction yield, we determined this 263 

method had the greatest potential for optimal qPCR assay sensitivity and accuracy, and was therefore used 264 

in any further experimentation.  265 

Fig 1. Mean log DNA yield (ng) for 1, 10, 100, and 1000 M. edulis larvae using modified DNEAsy Powersoil kit, E.Z.N.A Mollusk 

kit and Balasingham CTAB extraction protocols. Error bars represent standard deviations over three replicates. X-axis values 

refer to duration (in seconds) of tissue homogenisation cycle (Powersoil – 20, 40, 60) or tissue incubation time (in minutes) 

(EZNA – 90, 180, 270). 
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 266 

 267 

 268 

3. 2. 1. Specificity, efficiency and precision of M. edulis qPCR assay 269 

Primer sequences tested in silico against the NCBI database aligned only to members of the Mytilus edulis 270 

complex. When tested for cross-reactivity with a number of bivalve species found at our sample site, cross-271 

reaction occurred with Crassostrea gigas and to a lesser extent Cerastoderma edule. All other species 272 

showed negligible amplification. Cycle threshold (Ct) values obtained from C. edule gDNA were sufficiently 273 

high (35.12 ± 0.64) and reported copies low (average 109.2 molecules) that the number of larvae in a sample 274 

would have to be substantial to have any significant effect on amplification. Higher detectable fluorescent 275 

signals were detected from C. gigas gDNA, where the reported molecular copies were 3804.1 ± 3600.5, the 276 

equivalent of approximately 51 larvae; in comparison, M. edulis gDNA yielded the equivalent amount of 277 

template as 430 larvae, indicating much higher affinity binding of primers to the intended Mytilus template.  278 

Whilst the potential level of amplification due to cross-reactivity with C. gigas larvae is comparatively low and 279 

unlikely to significantly skew results, it could result in false positives or exaggerations of mussel larval 280 

abundance in areas where naturally-spawning populations of both species occur.  281 

For series there was a high correlation between cycle number and dilution factor, R2 0.99 and slope values of 282 

-3.49, close to the theoretical value of – 3.32, indicating an efficiency of 93.32 %. Based on Ct values and 283 

Fig 2. Ct values obtained for 1, 10, 100, 1000 M. edulis larvae extracted using modified DNEAsy Powersoil kit, E.Z.N.A Mollusk kit and 

Balasingham CTAB extraction protocols and mapped to standard curves created from 1/10 fold serial dilutions of target amplicon X-axis 

values refer to duration (in seconds) of tissue homogenisation cycle (Powersoil – 20, 40, 60) or tissue incubation time (in minutes) (EZNA – 

90, 180, 270). 
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coefficient of variation (CV), the mean ±S.D. intra-assay reproducibility of triplicate intra-assay serial dilution 284 

tests (STD 1-3) was 0.82 ± 0.59 %, values considered acceptable (<5%) for validating assay precision.  285 

3. 2. 2. PCR-inhibition from extracted samples  286 

Prior analysis using Gibbsiella quercinecans primer sets on un-spiked extracts showed negligible amplification 287 

from samples, therefore results were not affected by sample contamination. No significant inhibition of PCR 288 

was observed in spiked samples compared to controls (F (3,50) = 1.207, p = .317) regardless of sample type 289 

(Figure 3), indicating the E.Z.N.A extraction kit efficacy in removing potential inhibitors, or the ability of the 290 

qPCR reagent mix to successfully overcome inhibitors, or a combination of both. Assay inhibition from 291 

samples extracted using this method is likely to be low even from mixed plankton samples and from relatively 292 

high numbers of larvae (≤ 100). As a consequence DNA from environmental samples will not need to be 293 

diluted which could reduce assay sensitivity.  294 

 295 

 296 

3. 2. 3. Quantitative potential of qPCR for predicting M. edulis larval abundance 297 

Fig 3. Ct values ± SE obtained for DNA samples extracted from distilled water without larvae (H20 only) and 

containing 100 M. edulis larvae (H20 + 100 larvae), and plankton samples containing 100 larvae (Plankton + 100 

larvae) spiked with G. quercinecans gDNA as compared with spiked control (H20 control). Outliers (>3 x interquartile 

(IQ) range) are marked with a circle (O) on the boxplot. 
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Spawned M. edulis larvae were used to examine the quantitative potential of qPCR, where data generated 298 

from differing concentrations of larvae were used to generate a model which predicts larval numbers from 299 

real-time data (Figure 4). Number of larvae with random factor of sample can be used as a predictor of 300 

molecular copies (LMM: t = 15.46, p < 0.001), with the model line of best fit which predicts 7.34 e + 01 copies/ 301 

larvae SE ± 4.75 e + 0.   302 

Reaction efficiency was less than optimal ((76-76.95 %) during this reaction however high R2 values of 0.99 303 

and CV values demonstrated high intra- and inter-assay precision, where the mean ± S.D. between three runs 304 

(Plate 1 - 3) with standard dilutions was 1.78 ± 0.6 %.  305 

A distinctive melt curve representing the amplicon of interest was used to diagnose the presence of target 306 

DNA when occurring in all 3 replicate values for a given samples, reducing the potential for contamination 307 

effecting false positives. Reliable limit of detection was 0.04 larvae, correspondent to 2 larvae per extract, 308 

where all samples satisfied criteria for detection. Samples with an input of 0.02 larvae satisfied these criteria in 309 

50 % of samples, therefore extracts with a single larvae can be expected to be identified in half of samples. To 310 

confirm positive results obtained from single larvae, DNA was sequenced and returned 100 % match with the 311 

reference sequence from GenBank and the sequences generated from adult M. edulis gDNA. In low-template 312 

samples (0.02 - 0.09 larvae) additional peaks were detected and attributed to primer-primer interactions. 313 

 314 
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 315 

3. 3. Plankton trials 316 

The results obtained from plankton sample analysis by visual identification and real-time PCR are in Figure 5. 317 

The standard curve efficiency for the assay was 101.9 %.  318 

Bivalve larvae were visually detected throughout the sampling period. Visual counts and qPCR estimates of 319 

abundance followed a similar pattern (Figure 5) with typically lower magnitude peaks for M. edulis. 320 

Significantly more larvae were detected in samples gathered in 2018, both via assessment of visual counts 321 

and qPCR abundance estimates. Peak abundance values for 2018 were 8,956 SD ± 1,997 and 3,653 – 4,713 322 

nm–3 (no. larvae/m-3) for bivalve (via visual counts) and M. edulis larvae (via qPCR abundance estimates), 323 

respectively, compared to 3,712 SD ± 2,353 nm–3 and 1,808 – 2,364 nm–3 in 2017.  324 

Similar abundance patterns were observed during 2017 and 2018, with peaks in June and during the 325 

Summer-Autumn period. An initial increase in larvae identified visually in April 2017 (2,762 SD ± 1,353 nm–3) 326 

did not correspond to an increase in M. edulis larvae detected by qPCR, suggesting the majority of larvae in 327 

the water column during this time could be assigned to other non-Mytilus bivalve taxa. Abundance of M. edulis 328 

during Summer-Autumn 2017 was lower than expected (considering observed trend correlation and the high 329 

abundance of bivalve larvae during this period); no molecular data was available from August to mid-330 

September so potentially peak abundance was missed. The mean density of visually detected bivalve larvae 331 

per m3 of seawater was lowest in samples taken from November to March (<766 nm-3). No M. edulis larvae 332 

were detected by qPCR during this period.  QPCR specificity was confirmed with melt curve analysis and the 333 

sequencing of a random selection of positive samples which returned 100% positive matches with the 334 

reference sequence from GenBank and sequences generated from adult M. edulis gDNA. 335 

Fig 4. Line of best fit and 95% prediction intervals for number of extracted larvae as a predictor of molecular copies of M. edulis 

DNA generated by qPCR assay. 
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 336 

 337 

4. Discussion 338 

Species level identification of bivalve larvae within planktonic samples can be particularly challenging as a 339 

high degree of taxonomic proficiency is required, even when skilled an average visual classification can 340 

exceed 90 minutes (Vadopalas et al., 2006). A lack of expertise within this discipline often leads to significant 341 

bottlenecks in large-scale plankton species assessments. This can impact on research capabilities within such 342 

studies as budgets are substantially impacted due to the length of time required to process samples (Paugam 343 

et al., 2000). Subsequently, researchers have explored a number of alternative methodologies to address the 344 

taxonomic issues which have arisen in large-scale environmental plankton surveys (Lorenzo et al., 2005). A 345 

number of these are readily available and operationally superior to the recognised standard of visually keyed 346 

microscope identifications (Le Goff-Vitry et al., 2007). Presently, plankton studies which incorporate standard 347 

PCR analysis and post-PCR processing as a species verification tool are approximately seven times faster 348 

than conventional microscopic protocols (Boeger et al., 2007).  349 

Fig 5. Observed (visually counted) larvae belonging to Class Bivalvia and predicted (estimated by qPCR abundance) M. edulis larvae 

in vertical-tow environmental plankton samples taken over a 2 year period. Error bars for observed larvae represent standard 

deviations over five replicate subsamples. Error bars for predicted larvae represent larval numbers calculated from 95% prediction 

intervals generated using a singular effects LMM (generalised linear mixed effects model) with a Gamma error distribution fitted 

for molecular copies.  
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Here we present a real-time PCR assay capable of identifying and quantifying M. edulis larvae within unsorted 350 

mixed field samples. The methodology does not require the time-consuming preparation of reagents, 351 

antibodies, or hybridomas and negates the need to manually quantify larvae (Johnson et al., 2015; Heaney et 352 

al., 2011; Perez et al., 2009). The procedure can be applied directly thereby substantially reducing the time 353 

allocated to sample handling. After DNA extraction standard processing time was <2 hr. Inhibition was 354 

negligible, even in high density (>100) larvae samples, demonstrating the efficacy of our chosen DNA 355 

extraction method in removing inhibitors and/ or the ability of utilised SYBR reagents to overcome inhibition of 356 

primer-template binding and Taq Polymerase activity (Keele et al., 2014). Furthermore, extracts could be used 357 

undiluted, increasing the probability of detection in samples with low target species (Xia et al., 2018). 358 

The use of molecular tools in identifying invertebrate larvae has previously proved successful in the detection 359 

of Corbicula clams (Ludwig et al., 2014), the Golden mussel (Limnoperna fortunei) and Quagga mussel 360 

(Dreissena bugensis) (Peñarrubia, et al. 2016; Boeger et al., 2007; Pie et al., 2006). The absolute or semi-361 

quantification of larval values within mixed environmental samples using real-time PCR is still in its infancy. 362 

However, results have been promising using the technique, with strong correlations between real and 363 

predicted numbers for the larvae of crab, barnacle, sea lice, abalone and oyster samples (Sanchez et al., 364 

2014; Endo et al., 2010; Pan et al., 2008; Mcbeath et al., 2006; Vadopalas et al., 2006). Dias et al., (2009) 365 

developed an assay which specifically targeted nuclear DNA to quantify M. edulis larvae, but emphasised that 366 

values were an approximation and unlikely to be entirely accurate. By providing a ‘most probable value’ for 367 

larval numbers and including the range of variation and uncertainty expected from field sampling, from the 368 

DNA extraction and from the amplification method we aimed to improve the statistical degree of confidence 369 

regarding larval abundance. 370 

However, if the use of targeted DNA is to be employed with confidence in the determination of species-371 

specific larval density loads then an increase in precision is required. A high specificity and sensitivity can be 372 

achieved through qPCR and the use of species-specific primers in conjunction with real-time technology.  373 

Muniesa et al., (2014) demonstrated that under optimal conditions the technique can detect single-fold 374 

changes within a gene copy number. Pan et al., (2008) demonstrated its efficiency as a working tool while 375 

examining artificially modified plankton samples by detecting single Liocarcinus sp. and copepodid larvae 376 

within mixed community samples. In the present study the assay demonstrated a 100% limit of detection 377 

(LoD) of 0.04 larvae/ reaction on laboratory samples, the equivalent of 2 whole larvae per sample. The assay 378 
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proved sensitive enough to detect solitary M. edulis larvae within pooled unsorted field samples. However, the 379 

research findings suggest that when larval numbers are anticipated to be low for example outside known 380 

spawning seasons in-situ sample replication should be increased if false negatives are to be minimised 381 

(Ficetola et al., 2015). Rees et al., (2014(b)) suggests three replicates as sufficient for improving the likelihood 382 

of detection while also decreasing the number of biological variables such as distribution and patchiness 383 

(Taylor et al., 2019) and the findings of this study would concur. 384 

Field samples are considerably more complex in terms of organic content and at lower larval numbers the risk 385 

of false negative results due to the ‘masking’ effect of primer-dimer or amplification of DNA from non-target 386 

species increases (Xia et al., 2018). Therefore, samples which had no visible melt curve corresponding with 387 

the target amplicon and reported molecular copies of <100 were deemed to have no target molecules and 388 

were given a value of 0 copies/ larvae. This allowed the detection of a single larvae within the DNA extracts 389 

and thereby confirmed the improved sensitivity of the method. However, non-specific amplification observed 390 

within low-density larval samples may have artificially inflated abundance values. Further investigative studies 391 

to quantify this inflation are required and could be carried out using spiking experiments on artificial 392 

predetermined plankton samples.  393 

An important consideration when undertaking assessments using DNA analysis is that the total amount of 394 

mitochondrial (Mt) and nuclear DNA can vary during ontogeny (Peñarrubia et al., 2016). As larvae progress 395 

through the life cycle these variations continue and as larval size increases there will be an effect on 396 

amplification and quantification success (Wood et al., 2003). This study used primers targeting a nuclear 397 

genome region to increase the likelihood of accurate larval quantification. This is because a known number of 398 

copies (two) are found per cell; in contrast numbers of Mt DNA molecules can vary among tissue types during 399 

the cell cycle and in response to stress (Cole, 2016), compounding quantification errors. 400 

Nevertheless larval age, or more specifically size may have an effect on amplification and quantification 401 

success (Wood et al., 2003). Whilst there is some evidence to suggest that late stage larvae are too closely 402 

associated with the sea bed to be successfully sampled (Knights, Crowe, & Burnell, 2006) and therefore have 403 

little to no effect on ‘skewing’ qPCR results in environmental samples, a study of the effect of larval size on 404 

quantification would be pertinent. The results of such a study could be used to further refine and improve the 405 

predictive capabilities of the model. 406 
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The primers selected for this study offer an added advantage of being able to detect alleles belonging to all 407 

members within the Mytilus edulis complex; M. edulis, M. galloprovincialis and M. trossulus (Inoue et al., 408 

1995). The nuclear Me15/16 DNA marker follows a Mendelian inheritance pattern and is the most commonly 409 

used for routine identification of Mytilus mussels due its robustness and reliability (Larraín et al., 2019). Whilst 410 

single locus genotyping using this marker has limited potential for analysing patterns of hybridisation or 411 

genome introgression (Wilson et al., 2018; Beaumont et al., 2008) and can underestimate levels of 412 

hybridisation in populations (Larraín et al., 2019; Kijewski et al., 2011), it can be used to identify size-specific 413 

gene fragments unique to each of the Mytilus species (Wilson et al., 2018; Kijewski et al., 2006). The 414 

detection of more than one of these alleles in a population is evidence of hybridisation and may prompt a 415 

more comprehensive study of population structure utilising multilocus approaches (Larraín et al., 2019), single 416 

nucleotide polymorphism (SNP) genotyping (Wenne et al., 2020; Wilson et al., 2018; Zbawicka et al., 2012) or 417 

polymorphic microsatellite analysis (Lallias et al., 2009). 418 

Allele-detection using the Me151/16 marker may be successful in characterising single larvae, however 419 

analysis of mixed environmental samples containing more than one Mytilus species would be considerably 420 

more complex (Wood et al., 2003). Some level of clarification is possible and was outlined by Dias et al., 421 

(2008) when probes based on the Me15/16 marker were applied to screen for M. edulis, M. galloprovincialis 422 

and M. trossulus alleles. Another simple cost-effective method for verification of sequence variation was also 423 

achieved by Pryor and Wittwer, (2006) through the screening of melt curves.  424 

While real-time PCR can be useful in specificity analysis of taxon when compared to other identification 425 

methods, the level of accuracy will be reliant on the existence of an adequate taxonomically referenced 426 

database, which is unrealistic (Weigand et al., 2019). During this present research an alignment of primers 427 

against a reference database indicated high specificity for Mytilus spp, yet cross-amplification was observed 428 

with C. gigas and to a lesser extent C. edule. In the event that numbers of C. edule larvae in a sample were 429 

sufficiently abundant to cause detectable amplification, the inflation of larval predictions would be so low as to 430 

be insignificant. In contrast, the potential level of amplification due to cross-reactivity with C. gigas larvae was 431 

comparatively low and therefore unlikely to significantly skew results but may result in false positives or 432 

exaggerations of mussel larval abundance. In areas where naturally spawning C. gigas and M. edulis overlap 433 

this is a factor worth considering as a more specific assay or the design of a probe-based assay may be 434 

needed. Crassostrea gigas has considerably expanded its range following introductions into Europe in the 435 
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1960s, forming naturalised populations. Only sparse patchy aggregations of C. gigas occur in the Menai Strait 436 

(Robins et al., 2020) with population structure indicating only intermittent settlement, suggesting limited 437 

release of larvae. Furthermore, hydrodynamic modelling indicates limited dispersal potential of larvae from the 438 

source populations in the Menai Strait to the location plankton samples were taken in the present study 439 

(Robins et al., 2020). Nonetheless, further investigation will be needed to confirm whether cross-reaction is 440 

occurring and the effect of this on M. edulis abundance estimates.  441 

A probe-based assay approach was attempted during this research however significant amplification of C. 442 

gigas gDNA was still evident indicating a previously unrecognised homologous region in the species. This was 443 

surprising, as the gene region selected was responsible for the generation of polyphenolic proteins involved in 444 

biological adhesion, specifically byssal thread production specific to Mytilus sp. (Inoue et al., 1995). Mussel 445 

adhesive proteins differ from cement proteins from other species (e.g. oysters, barnacles) due to the presence 446 

of ‘repetitive amino acid motifs characterized by a high polyphenolic content, high levels of the modified amino 447 

acid 3, 4-DOPA, and hydroxylations to specific amino acids’ (Rees et al., 2019; Silverman & Roberto, 2007). 448 

However, adhesion in pediveliger oyster larvae prior to metamorphosis is distinctly different from adult 449 

attachment. Secretion of byssal-like filaments by pediveliger larvae was observed before permanent adhesion 450 

during final settlement in C. gigas (Foulon et al., 2018). Foulon et al., (2019) have suggested that similar 451 

byssal secretion strategies could be used by pediveliger oyster larvae and adult mussels. An example being; 452 

Tyrosinase and peroxidase-like proteins in C. gigas presented similarities of 47.95% (E-value: 6.5 × 10−75) and 453 

44.8% similarity (E-value: 2.6 × 10−57) to byssal protein sequences from Mytilus coruscus (Foulon et al., 454 

2019). This unanticipated finding warrants a considerable amount of further research as the restoration of 455 

marine bivalve ecosystems is a priority within many marine environmental management programmes (Smyth 456 

et al., 2017). The settlement and attachment process is a critical phase in bivalve live cycles and a more in-457 

depth understanding of the chemical mechanisms involved would greatly benefit the success of many costly 458 

restoration projects.  459 

5. Conclusions 460 

Molecular technologies such as real-time PCR offer the potential for sensitive species-specific identifications 461 

in conjunction with reduced analysis time. The work presented here demonstrates the possibilities molecular 462 

methods offer when compared to conventional techniques employed for larval quantification.  463 
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Our method allowed us to accurately identify relative peaks in larval abundance from time series or spatial 464 

plankton surveys; predicted M. edulis larval numbers mirrored those observed using conventional methods 465 

and seasonal cycles of larval abundance were consistent with known spawning patterns of M. edulis in the 466 

Irish Sea and other temperate waters (Philippart et al., 2012). This method is high throughput and rapid; the 467 

research time saved could lessen the bottleneck in time and costs incurred in lengthy taxonomic 468 

identifications. The implementation and development of the techniques discussed will undoubtedly improve 469 

the efficiency of field studies which focus on the temporal and spatial patterns of spawning and larval 470 

transport. For example, the procedure has the potential to inform or validate particle tracking models which 471 

have now become an integral tool in molluscan fishery assessments (Robins et al., 2013; Robins, et al., 472 

2017). In practical applications, results can be returned within 24 hours of receiving a sample. Used alongside 473 

larval dispersal model outputs, the methodology presented here facilitate real time monitoring to inform 474 

aquaculture operations of the optimal times and locations for spat collector deployment. 475 
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