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Abstract 

Amorphous uranium dioxide (UO2) has been modelled on the atomic scale using a combination of 

quantum mechanical (density functional theory) and classical forcefield methods (molecular dynamics 

and reverse Monte-Carlo). The atomic scale structure of the amorphous state has been predicted and is 

presented in the form of simulated X-ray diffraction patterns, pair correlation functions and bond 

angle distributions. These are shown to be consistent with the experimental patterns previously 

reported. To enable accurate calculation of the energies and magnetic properties, using quantum 

mechanics, reverse Monte-Carlo was used to generate reduced cells from larger molecular dynamic 

melt-quenches. This allowed density functional theory energy minimisation for structures consistent 

with the amorphous state. Building on this, the material’s propensity to deviate from stoichiometry, 

the magnetic structure and amorphous UO2 surface energy were computed. Non-stoichiometry is 

accommodated more readily in the amorphous system than in crystalline UO2. This indicates that 

deviations from stoichiometry in fuel (for example as a result of operation) will be accommodated at 

amorphous phases, if present, leaving a more stoichiometric bulk phase – impacting processes 

including fission gas mobility, melting points and a number of other safety relevant properties. The 

magnetic structure of bulk amorphous UO2 is predicted to be a spin-glass, unlike crystalline UO2 

which has anti-ferromagnetic ordering at 0 K. The surface energy of amorphous UO2 is computed to 

be 0.79 Jm-2, which is similar to the experimentally observed surface energy of grain boundary 

bubbles in UO2 and comparable to the surface energies reported for crystalline UO2. Results are 

pertinent to ongoing efforts to understand the nature of grain boundaries in nuclear fuels, to model 

fission gas release from them, radiation induced amorphization and the impact of dopants and 

impurities on nuclear fuel’s manufacture and in-reactor behaviour. 

Keywords: Amorphous, uranium dioxide, atomic scale simulation, structure, nuclear fuel. 



1. Introduction 

Uranium dioxide remains the leading nuclear fuel material globally owing to its relative ease of 

manufacture, stability under normal and off-normal operating conditions, extremely high melting 

point and benign reactions with the various nuclear reactor coolants currently in use – especially 

within water-based reactors. Looking forward, UO2-based fuels are being considered in a number of 

advanced technology fuel concepts – from increased enrichment (>5 wt.% 235U) of standard UO2 

pellets, doped UO2 pellets (common dopants include Cr2O3 [1], alumino-silicates [2] and TiO2 [2] [3]) 

and the more advanced UO2-composite fuels, whereby UO2 is combined with phases that have higher 

thermal conductivity and/or higher uranium density to improve fuel cycle costs and in reactor 

performance, for example: uranium mononitride [4] and beryllium oxide [5]. 

Uranium dioxide is stable to high temperatures and importantly its dimensional stability under severe 

irradiation is acceptable and predictable. A key property that dictates this dimensional stability is the 

ability to accommodate radiation damage without bulk amorphization under reactor operating 

conditions. Still, amorphous UO2 has been observed and studied experimentally to investigate basic 

properties of the material as well as ex-reactor behaviour and potential dissolution reactions within 

spent nuclear fuel. Matzke et al. produced UO2 thin films through an electron beam deposition 

method and showed that above ~675°C, amorphous UO2 began to precipitate into a polycrystalline 

material (providing a ratio between this temperature and the material’s melting temperature of 

~0.3) [6]. Bruno et al. [7] produced an X-ray amorphous UO2 solid by precipitation from acidic U(IV) 

perchlorate solution – producing a green solid – highlighting its high solubility of the material in pH 

6-10 solutions compared to crystalline UO2. 

Grain boundaries in ceramics are known to exhibit far greater disorder and more open structures than 

the bulk material. The open structures make them attractive sites for extrinsic species to segregate to, 

potentially opening them even more [8] [9]. Neat, low complexion grain boundaries are not common 

when fuel is manufactured. Instead, highly complex grain boundaries or grain boundary phases are 

formed that are expected to behave distinctly from the bulk material. Recently, Nerikar et al. used a 

combination of experimental methods to identify that the most common grain boundary observed in 

UO2 is not described by coincident site lattice (CSL) theory [10] (84.3 % of boundaries) and are 

instead highly disordered regions. Similar works by Ksibi et al. [11] and Bourasseau et al. [12] give 

the fraction of non-CSL boundaries to be similar: 85.44% and 85.1% of the grain boundaries 

measured, respectively. 

In commercial nuclear fuels, largely insoluble dopants such as chromia (Cr2O3), alumina (Al2O3) and 

silica (SiO2) are added to UO2, well beyond their solubility limits, to produce larger grain sizes during 

sintering, and in the case of alumina-silica additive fuel, improve the in-reactor behaviour of the pellet 

too (by increasing grain boundary creep and fission gas retention). It is expected that the grain 



boundary phases are highly complex in nature. Soloman et al. [13] showed that even small amounts of 

insoluble impurities (e.g. <50 ppm Si/Fe) could have large consequences on the grain boundary 

behaviour in UO2. At temperatures above 1200°C, it was concluded that diffusion within a glassy 

grain boundary phase accelerates grain interchanges in addition to acting as getters for other 

impurities that can act to pin grain boundaries. Importantly, below 1200°C, it was concluded that the 

glassy grain boundary phase controls the creep rate of the material. In the Dillon-Harmer categories 

for complexions [9], these grain boundaries can be described as either nano-layers or wetting grain 

boundaries that are structurally disordered. As such, their behaviour can begin to be understood 

through the modelling of bulk amorphous systems. 

Amorphous materials have been modelled atomistically predominantly through use of classical 

descriptions of atomic bonding [14] [15] [16]– enabling the simulation of many thousands of atoms at 

a time providing a statistically significant sample of the random glassy/amorphous state (Desai et al. 

[16] specifically investigating amorphous grain boundary behaviour). One such study by Qin et al. 

[17] determined the thermal conductivity of amorphous UO2 using the same interatomic potential as 

used here [18]. They determined the lattice contribution to the thermal conductivity to be consistently 

low ~1.5 Wm-1K-1 between 200 K and 1500 K. Only recently have more chemically descriptive 

methods such as density functional theory (DFT) been used to model amorphous structures [19] [20] 

[21] [22] [23] [24] [25]. Many DFT-based studies have been reported in the related bioactive glass 

community through cluster descriptions of the system, for example Laurence and Hillier [26], 

including using supercell approaches similar to the present work [27] [28] [29] and in other glass 

systems [30] [31]. A number of previous works have used ab-initio molecular dynamics (AIMD) to 

perform the melt-quench routine to produce the amorphous structure (for example [19] [20]), while 

others have used an initial randomised structure that is then subsequently relaxed using geometry 

optimization within various DFT packages [32] [33] and were able to report results consistent with 

experiments and make useful predictions. The size of the cells used to approximate the amorphous 

systems in these cases is small (often <100 atoms) and therefore care must be taken to understand the 

steric effects of the system sizes and initial densities chosen. The quenches performed in previous 

DFT studies were fast compared to those carried out by classical approaches due to the computational 

expense (although still faster than what is achieved experimentally). Additional complications such as 

inclusion of spin-orbit coupling and the consideration of actinide compounds adds to this prohibitive 

computational effort of AIMD melt-quench studies. The coupling of DFT with the classical 

description reduces some of these uncertainties but is reliant on a robust classical description of the 

system. Previous work has shown changes associated with the AIMD approach and the hybrid 

classical-DFT approach in amorphous ZrO2 [34]. 

In this work, we model amorphous UO2 using a combination of atomic scale approaches: empirical 

potential models and the more rigorous but computationally-expensive DFT approach in combination 



with each other. The phase’s propensity to deviate in oxygen stoichiometry is investigated and the 

structure of the amorphous UO2 is discussed. Additionally, the magnetic properties are explored as 

well as a first attempt at computing a value for the amorphous phase’s surface energy, a key value in 

predicting the evolution of the material in reactor. 

2. Methodology 

Amorphous UO2 simulation cells containing 96 atoms were created using the same methodology 

employed by the authors to study amorphous ZrO2 [34]. This involves using molecular dynamics 

(MD) to perform simulated melt-quenches to produce large cells which contained 96000 atoms in the 

stoichiometric case, predicting the structure of amorphous UO2. The high computational demands of 

DFT mean that much smaller systems than this are necessary for quantum mechanical calculations. 

Consequently, twenty distinct amorphous configurations were generated using the reverse Monte-

Carlo (RMC) algorithm [35] each containing 96 atoms for further evaluation using DFT. These were 

obtained by using RMC to fit structures to O-U, O-O and U-U partial pair correlation functions (see 

Figure 2), densities and the bond angle distributions (Figure 5) extracted from the MD melt quenched 

structures. 

The details of the combined MD melt-quench and RMC procedure used here are given in our previous 

paper on amorphous ZrO2 [34], however some slight variations were made to suit the current system. 

The classical potential model developed by Cooper, Rushton and Grimes [18] for actinide oxides was 

used to describe interatomic forces during MD for which a more recent version of the LAMMPS code 

(16 Mar 2018 version) was used. Additionally, the melt quenches for oxygen excess non-

stoichiometry (see below), required the application of a hydrostatic pressure of 9 GPa to obtain a 

condensed phase during the initial stages of the melt-quench (T>2500K). This was applied through 

the Nosé-Hoover barostat used during MD calculations with its pressure being reduced linearly with 

temperature until it was zero at T=2500K. 

A series of test calculations were also performed to establish whether the RMC step could be avoided 

when producing small cells for DFT calculation. For these, MD melt-quenches were conducted for 

simulation boxes containing between 96 and 96000 atoms. These had the same number of atoms as 

equivalent n×n×n UO2 super-cells where n=2,3,4,6,8,10 and 20. The intention of this was to establish 

if a representative amorphous structure could be obtained by quenching directly into a small box. The 

results of these tests can be seen in Figure 1 which shows how the radial distribution functions (RDFs) 

were affected by system size. The systems containing 324 or more atoms show amorphous structures 

consistent with the largest system size considered (96000 atoms). However, the smallest systems have 

RDFs demonstrating recrystallisation. This is particularly apparent in the 96 atom case (topmost in 

Figure 1) which has sharp peaks consistent with the atomic spacing found in fluorite. Similarly, 



examination of the 324 atom structure showed a number of nano-crystallites with the fluorite 

structure, again this is evidenced by the clear long-range order in its RDF. 

The tendency for amorphous structures to recrystallise during simulations is greatly enhanced in these 

smaller systems, this difficulty can be avoided through the use of the RMC method as employed here. 

This is demonstrated by the bottom RDF in Figure 1 which was produced using this approach. Even 

though the constituent system still only contains 96 atoms (the same number as in the fully 

recrystallised structure used in the direct MD quench) the average of the twenty simulation cells, 

gives pair-correlations that are almost entirely consistent with those of the much larger MD quenched 

structures. 

The twenty cells produced using RMC were structurally relaxed using the Vienna Ab-initio 

Simulation Package (VASP) [36] under constant pressure. The generalised gradient approximation 

exchange correlation as described by Perdue, Burke and Ernzerhof (GGA-PBE) [37] was used for all 

simulations using the supplied projector augmented wave (PAW) library [38]. Spin polarisation 

effects were considered – both collinear and non-collinear. For both collinear and non-collinear 

calculations, three types of magnetic ordering were considered before electronic and structural 

relaxation: no magnetic moment on each uranium, a ferromagnetic type order (potentially favouring 

an asperomegnetic ordering in the non-collinear system) and an anti-ferromagnetic-like ordering in 

the amorphous structures (randomised). In the non-collinear simulations, a randomised order was also 

investigated with 1 μB magnitude on each U atom (i.e. initialising the magnetic order to be 

speromagnetic). The same ordering was produced at the end of the electronic and structural 

optimisations despite the initial magnetic ordering for each collinear (ferromagnetic) and non-

collinear (speromagnetic) calculation – see Section 3.3.1. For all calculations, a Hubbard correction 

was applied to the U f-electrons (U=4.50 eV and J=0.51 eV, consistent with previous work on 

crystalline UO2 [39]) using the rotationally invariant description as described by Liechtenstein et al. 

[40].  

Subsequently, non-stoichiometric supercells were created through the same methodology and lattice 

energies obtained through DFT, enabling the propensity of the amorphous UO2 system to 

accommodate deviations in O:U ratio to be gauged. O2 gas was taken as the reference energy for these 

calculations, having proven reliable in previous studies in related systems [34] [41] [42] [43].  

Surface energies were also calculated for the stoichiometric amorphous phase by applying a series of 

vacuum slabs derived from the relaxed DFT systems. For each cell two free surfaces were created by 

adding a 30 Å gap above a cutting plane placed normal to the cell’s z-axis. In crystalline systems low 

energy surfaces are typically obtained by cleaving the system along low index crystallographic planes. 

Without clearly defined atomic layers of this kind, the correct place to cleave amorphous systems is 

less obvious. Consequently, a simple but effective, search algorithm was used to identify low energy 



surfaces. This used the potential model initially used for the MD melt-quenches as it afforded very 

rapid energy evaluations allowing a brute-force approach to be adopted where it was possible to 

energy minimise the surfaces obtained by cleaving at every one of the distinct z-coordinates defined 

by the atomic positions in the system. In this way, a low energy xy cleavage plane was identified for 

each of the twenty, 96 atom cells. Following surface creation, ten of the vacuum slabs were further 

evaluated using DFT energy minimisation to obtain the surface energies reported. It should be noted 

that before making the vacuum slabs, each system was duplicated along its z-axis to create a double 

height system. This was to ensure the atoms at the centre of the slabs were sufficiently distant from 

the surfaces to still represent the bulk amorphous structure. As a result, DFT surface calculations 

contained 192 atoms.  

 

Figure 1 Radial distribution functions obtained from MD melt-quenches performed to show the effect of different system 

sizes on the resultant structure (displaced along the y-axis for ease of viewing). The smaller systems show clear evidence of 

recrystallisation; the 96 atom system (top) has fully recrystallised and the 324 atom configuration shows additional peaks 

consistent with the fluorite structure. The bottomost RDF was obtained using Reverse Monte-Carlo process and has 

produced a structure consistent with the 96000 atom quench even for the small system size. To allow comparison, RDFs 

have been displaced vertically but all use the same vertical scale. 

 



3. Results 

3.1 Structure 

In a similar manner to previous work modelling amorphous ZrO2 [34], amorphous UO2 can be 

described as an edge-sharing structure. This is not unexpected given the fluorite structure is common 

to both UO2 and cubic ZrO2. It can be seen (Figure 2) that an amorphous structure has been produced 

with the g(rij) > ~10 Å, tending towards 1. The U-U ordering persists to a larger distance than other 

pairwise bonding in the system, with the O-U bonding shows the least ordering as a function of 

distance. 

 

Figure 2 - Pair correlation functions for amorphous UO2; (a) shows the total radial distribution function with the relative 

contributions of the individual pair correlation functions, (b)-(d) give the individual pair functions. For reference, drop-lines 

are provided showing the first, second and third nearest neighbour separations for a fluorite crystal equilibrated at the same 

temperature (T=300K). These data are for the MD melt-quenched system. 

 



The structure produced through the combination of the 20 DFT relaxations (the grey data in Figure 3) 

were in extremely good agreement with the original MD structures (the blue line in Figure 3), 

indicating that the MD to DFT methodology is consistent in this respect – the radial distribution 

function for stoichiometric UO2 and non-stoichiometric UO2+x and UO2-x is reported in Figure 3 - 

Radial distribution functions derived from RMC+DFT optimised cells at three different levels of 

stoichiometry. The dark grey line shows the RDF obtained as the mean and the surrounding, light 

grey halo, indicates one standard deviation above and below for the 20 individual DFT configurations 

for each atomic separation and stoichiometry. For comparison, the blue line is the equivalent 

molecular dynamics melt-quenched system. When non-collinear effects were considered (where the 

magnetization is treated as a vector instead of a scalar), the systems were found to be lower in energy 

than the collinear calculations (by 0.96 eV per atom) and therefore non-collinear values are used in all 

subsequent results unless stated (the magnetic ordering is considered more fully in section 3.3.1). 

Small deviations from stoichiometry are considered in this work – the density functional theory cells 

produced from corresponding non-stoichiometric MD melt-quenched structures contained 32 U and 

65 O atoms for UO2+x (producing UO2.03) and 33 U and 64 O atoms for UO2-x (producing UO1.94) 



 

Figure 3 - Radial distribution functions derived from RMC+DFT optimised cells at three different levels of stoichiometry. 

The dark grey line shows the RDF obtained as the mean and the surrounding, light grey halo, indicates one standard 

deviation above and below for the 20 individual DFT configurations for each atomic separation and stoichiometry. For 

comparison, the blue line is the equivalent molecular dynamics melt-quenched system 

A simulated X-ray diffraction pattern was produced by combining the patterns of the 20 

stoichiometric UO2 structures and compared to both the X-ray diffraction pattern of the quenched MD 

structure and the experimental pattern by Bruno et al. [7] and an ideal UO2 diffraction pattern (Figure 

4). It can be seen that the simulated patterns match well with the experimental X-ray diffraction 

pattern indicating the methodology is suitable to study the system.  

The major (111) peak and the (200) peak associated with the crystalline structure local/intermediate 

fluorite ordering are largely retained in all patterns (a slight inflection is evident at ~32° in the MD 

simulated amorphous UO2 structure). The MD shows a broad peak at ~50° encompassing the smaller 

peaks evident in this region in the crystalline UO2 pattern. Some evidence of these peaks is shown in 

the simulated amorphous DFT structure and the experimental amorphous UO2 structure. 



 

Figure 4 – X-ray diffraction patterns for (a) simulated amorphous UO2 – MD, (b) simulated amorphous UO2 – DFT, (c) 

experimental amorphous UO2 [7] and (d) experimental crystalline UO2 [44]. Grey lines are added to all patterns that 

correspond to the experimental crystalline UO2 peaks. 

By closely comparing the pair-correlation functions from Figure 2 with the bond-angle distributions 

given in Figure 5 a good picture of the amorphous structure can be gained. This understanding can be 

further improved by considering the structural features found in the amorphous structure relate to the 

fluorite crystal structure, as there are clear similarities and crucial differences between these two 

forms of UO2. 

First it is instructive to revisit the individual correlation functions for the O-U, O-O and U-U pairs in 

Figure 2(b)-(d). These have been overlaid with drop-lines showing the position of the relevant 1st, 2nd 

and 3rd nearest neighbour pair distances in fluorite. For the O-U distribution the amorphous peak 

positions correspond well with their equivalent fluorite pair distances. The first amorphous peak is at 

2.31Å, which is a slight contraction from the first neighbour distance in the crystal which is 2.37Å. 

This indicates that the same basic building blocks describe both structures – namely OU4 tetrahedra. It 



would not, however, be correct to say that these coordination polyhedra are identical in the two 

structures. This is shown by the differences in the U-O-U bond angle distributions in Figure 5(a), 

where the light grey trace was obtained from MD runs for fluorite at T=300K and the dark grey line is 

for amorphous UO2 at the same temperature. The distribution for the crystal shows a single peak 

centred at 109.47° which is consistent with regular tetrahedra. Although the modal value of the U-O-

U distribution (dark grey) is close to this value it is smaller than 109.47° and the distribution is now 

bimodal with a significant shoulder at higher angles (least squares gaussian peak fitting to the 

distribution predicts positions of 101.74° and 130.78° for these two peaks). This change indicates 

some distortion to the tetrahedra in the amorphous structure. The reason for this will now be 

considered. 

 

Figure 5 - Bond angle distributions for amorphous UO2 compared with fluorite crystal. The distribution of angles for(a) U-

O-U and (b) O-U-O triplets are shown (inset: representation of uranium coordination environment in crystalline UO2). The 

dark grey line shows the distributions for MD melt-quenched systems. The light grey line was obtained from a crystalline, 

fluorite, structure equilibrated using MD. Both are for a temperature of 300K. The blue line shows the angular distributions 



averaged over the 20 RMC+DFT optimised structures. For the purposes of comparison, each distribution has been 

normalised to have a maximum peak height of 1.0. 

As mentioned earlier, the amorphous structure is a network of edge-sharing OU4 tetrahedra. In which 

the shared edges run between the uranium atoms shared by two tetrahedra with the edges straddled by 

the anions of each polyhedron. This arrangement gives rise to a distinctive diamond arrangement also 

seen in fluorite and highlighted in Figure 6. In the crystal this anion spacing is 2.73Å at T=300K, 

however from the first-peak position in Figure 2(c) it can be seen that anions sit slightly further apart 

(2.85Å) in the amorphous case. Given that the O-U bond distance remains fundamentally unchanged 

this lower anion density is partially accommodated through the changes in the U-O-U bond angle. 

Due to the geometry of the UO4 tetrahedron, the larger O-O separation across the shared edge causes 

the O-U bonds describing the diamond shape to rotate (as shown in Figure 6). As this happens, the U 

atoms at either end of the edge converge, leading to a shorter edge and smaller U-U distance. This 

effect is apparent in Figure 2(d) where the first peak of the U-U pair correlation function has been 

shifted to the left of the fluorite first neighbour line. This does not tell the full story, however as the 

geometry of the UO4 polyhedron means that shortening one edge leads to a concomitant increase in 

the other edges with which it shares vertices. Or when described in terms of bond angles as one U-O-

U triplet is pinched to a more acute angle this will tend to increase the angle between connected pairs 

U-O of bonds, in a way that is analogous to the opening of a pair of scissors. This gives rise to the bi-

modal U-O-U bond angle distribution as the angles split into groups of pinched and stretched angles.  

Similarly, the first peak of the U-U pair correlation function, Figure 2(d), shows a clear shoulder; a 

least squares peak fit using two Lorentzian functions indicates two populations of U-U lengths around 

values of 3.69Å and 4.22Å (for reference the length in fluorite for the same temperature is 3.87Å). 

Another feature to note from the relaxations is that the volume per unit is increased by 12.7 % 

compared to the experimental fluorite UO2 structure - 46.1 Å3 per UO2 unit giving a density of 

9.73 g/cm3 in the amorphous system versus 40.9 Å3 per UO2 unit in the experimental crystalline UO2 

with corresponding density of 10.97 g/cm3 [44] (the predicted density of UO2 through the DFT 

methods is 10.54 g/cm3 [45]). This value is similar to that of other related systems including zircon 

(which has a volume increase upon amorphization of 18.4%) [46] [47] and quartz (where the volume 

increase is 14 %) [48]. 



 

Figure 6 The diamond shape found where two UO4 tetrahedra share an edge is prevalent in both the crystalline and 

amorphous forms of UO2. Understanding the slight distortion of this feature due to the larger O-O distance in the 

amorphous phase helps interpret the bond angle distributions and pair-correlation functions. 

3.2 Stoichiometry deviation 

The energy to accommodate deviations in oxygen stoichiometry in amorphous UO2 were considered 

and compared to those in crystalline UO2. As examined in previous studies [45], the ease with which 

the material deviates its stoichiometry with respect to oxygen gas (O2) is considered [45] [42]. A 

single extra oxygen was added to produce the UO2+x structure (U32O65) and one uranium was added to 

produce a UO2-x structure (U33O64). These reactions are described below: 

Energy to absorb ½ O2 (red data in Figure 7):  𝐸Hyper
𝐹 = 𝐸Hyper

U32O65 −  𝐸Stoich
U32O64 − 

1

2
𝐸O2

  (1) 

Energy to produce ½ O2 (blue data in Figure 7):  𝐸Hypo
𝐹 =

1

2
(𝐸Hypo

U33O64 −  
33

32
𝐸Stoich

U32O64 +  𝐸O2
) (2) 

Figure 7 – The computed reaction energies to accommodate a deviation in oxygen stoichiometry in 

amorphous uranium oxide (as computed by DFT using equations 1 and 2). Histograms (bars) indicate 

the energies computed and associated kernel density plots (continuous lines) are included to highlight 

the trend. reports the spread in the energies to accommodate deviations in stoichiometry. As expected 

in an amorphous system, there is a significant variation in the energy to accommodate deviations in 

stoichiometry. It is clear that a large proportion of structures show an exothermic reaction energy to 

accommodate excess oxygen into the amorphous UO2 structure – indicating that if available, the 

material will accommodate excess oxygen to become hyper-stoichiometric. Conversely, release of 

oxygen from amorphous UO2 is endothermic and therefore under standard conditions, the material is 

not likely to release oxygen. 



Dorado et al. [49] computed the formation enthalpy of an oxygen interstitial and vacancy in 

crystalline UO2 with respect to O2 gas. The oxygen interstitial formation energy was computed to be -

0.05 eV per Oi, directly comparable with the hyper-stochiometric data in Figure 7 (red line), and the 

oxygen vacancy was computed to be 5.30 eV per VO, comparable to the hypo-stochiometric data in 

Figure 7 (blue line). In both cases, the propensity for stoichiometry deviation is more readily 

accommodated in the amorphous structure computed in this work indicating that if an amorphous 

phase were present, it would getter the deviations in stoichiometry preferentially over the crystalline 

UO2 material. The average energy to deviate to a higher O:U ratio (hyper-stoichiometric) was 

computed to be -1.65 eV per ½O and to move to a lower O:U ratio (hypo-stoichiometric) was 

computed to be 3.77 eV (similar values of -1.92 eV and 3.79 eV were computed for the collinear 

calculations, indicating only a minor impact for these reactions). In other words, amorphous grain 

boundary phases in a crystalline matrix would preferentially accommodate non-stoichiometry leaving 

crystalline UO2 grains in the matrix. The impact of this result for nuclear fuel operation and behaviour 

could be significant as changes in bulk stoichiometry impact many properties including fission gas 

diffusion [50], secondary phase formation [51] [52] [53], the material’s melting point [54] and more. 

 

 

 

Figure 7 – The computed reaction energies to accommodate a deviation in oxygen stoichiometry in amorphous uranium 

oxide (as computed by DFT using equations 1 and 2). Histograms (bars) indicate the energies computed and associated 

kernel density plots (continuous lines) are included to highlight the trend. 



3.3 Properties 

3.3.1 Magnetic structure and charge 

An important result of the present work is that all amorphous structures simulated using DFT 

(stoichiometric and non-stoichiometric) displayed strong ferromagnetic ordering when simulated 

using collinear simulations were performed, however when non- collinear effects were considered, a 

spin-glass type magnetic structure was achieved (speromagnetic). A representative stoichiometric 

amorphous cell is provided in Figure 8 reporting the direction of the magnetic moments of the U ions 

in the system (the length indicates the magnitude of the magnetic moment). 

 

Figure 8 - An example of the magnetic moments in an amorphous UO2 structure: (a) amorphous structure, (b) magnetic 
moment vectors for uranium atoms in this structure, (c) parallel projection of vectors when translated to have a common 

origin. 

 

In the collinear calculations, stoichiometric UO2, each U has a magnetic moment of ~2 μB, while the 

sub-stoichiometric, UO2-x, system 4 or the 32 U ions had an increased magnetic moment of ~3 μB and 

the opposite was observed for the hyper-stoichiometric, UO2+x, system where two U atoms in each 

supercell had a magnetic moment of ~1 μB (note the remainder of the U ions had a magnetic moment 

of ~2 μB in both non-stoichiometric systems). This indicates that the excess oxygen is accommodated 

through the oxidation of two U4+ ions to U5+ ions (charge balancing the additional O2- species) while 

the reduction in oxygen is accommodated by the formation of two charge balancing U3+ ions per 

oxygen removed from the system. The magnitude of the magnetic moments in the non-collinear 

simulations were similar to those in the collinear systems: all of the U cations were found to have a 

moment of ~1.5 μB in the stoichiometric and non-stoichiometric systems. In the non-collinear UO2-x 



systems, four U ions were found with a higher ~2.5 μB moment and in the UO2+x system two U ions 

were found with a lower ~0.8 μB moment. The magnetic moment for all 20 systems was 1.35 μB (i.e. 

close to negligible), highlighting the spin-glass/speromagnetic nature of the system. Bader charge 

analysis was carried out [55] [56] [57] to confirm the changes in charge on the U atoms consistent 

with the magnetic moment – ions that showed deviations in magnetic magnitude in the non-

stoichiometric cells were observed to either be in a higher or lower charge state (~±0.3e) depending 

on the system in agreement with taking a 3+ and 5+ formal charge. 

The change in charge in the non-stochiometric systems can be seen in slight changes in the cation 

coordination environment for each stoichiometry. In Figure 9, it can be seen that the presence of the 

smaller U5+ cation in the UO2+x system is evident by a closer U-O distance for these specific species. 

Conversely, in the UO2-x system, the U-O distance is extended slightly accounting for the slightly 

larger ionic radius of the U3+. Additionally, the coordination environment of the charge compensating 

uranium cations, although similar, is distinct from the majority of the cations in the system, that share 

the same charge state as found in the stoichiometric system and are represented by the U4+-O lines 

(orange) in Figure 9. 

 

Figure 9 Coordination number surrounding uranium cations with different charge states, as determined by Bader analysis. 
The cumulative coordination number was obtained by integrating the U-O pair correlation functions of each U species for 
the three stoichiometries considered as a function of separation. It should be noted that the U4+-O trace overlaps almost 

completely for the UO2,, UO2+x and UO2-x cases giving the appearance of single line.  

Crystalline uranium dioxide is known to be anti-ferromagnetic with a Néel temperature of 30.8 K, 

however, it has been observed that weak ferromagnetism can be induced by doping UO2 with largely 

insoluble oxides including TiO2 and SiO2 [58] [59]. Nakamura et al. [59] proposed that the 

ferromagnetism could be due to near surface effects when the dopant species distorts the lattice. In 

addition to this plausible impact, the result from this investigation highlights the potential for an 



amorphous phase (potentially stabilized by impurities/dopants such as TiO2 and SiO2) at the grain 

boundaries inducing the weak deviation in magnetic behaviour. This indicates that the addition of 

certain dopants (both Ti and Si have been used to increase grain size and impact fission gas release 

[60] [61]) may function partly by inducing an amorphous phase that accelerates grain growth during 

sintering. Future work will assess the stabilization of amorphous phases by these and other 

dopants/impurities, understanding the potential for behaviour such as speromagnetism and 

asperomagnetism [62] in these amorphous systems and the broader impact of the spin-glass behaviour 

related to experimental observations. 

3.3.2 Surface energy 

The surface energy was simply computed as the difference in energy between the bulk amorphous 

structure and the surface structure divided by total area of the surfaces generated (converting to give a 

value in Jm-2). An example surface simulation cell is illustrated in Figure 10. Only collinear 

calculations were used due to the computational expense. The similarity between the collinear and 

non-collinear defect values for the oxygen defect accommodation reactions in section 3.2 provide 

some assurance that the energies are reasonable, but future work should consider the surface energies 

with the non-collinear model. 

 

Figure 10 - Example cell used to compute the surface energy of amorphous UO2. Two surfaces are created (upper and 

lower) with a vacuum gap (30 Å) separating them. 

The average surface energy of the 20 surfaces produced with respect to the bulk material was 

0.79 Jm-2 with a standard deviation of 0.14 Jm-2. Further work to optimise the computation  is 

required, but it is encouraging that other experimental values for related amorphous oxide systems are 



similar to this value, for example amorphous Al2O3 with an energy of 0.97±0.04 Jm-2 [63], and 

amorphous HfO2 nanoparticles with surface energies of 0.76 ± 0.12, 0.47 ± 0.2, and 0.59 ± 0.1 Jm-2, 

depending on the measurement technique used [64].  The calculated surface energy of the (111) 

surface in crystalline UO2 was previously calculated to be 0.8 Jm-2 by Evarestov et al. [65] and 0.76-

0.78 Jm-2 calculated by Weck et al. [66] (generally lower than the energies computed using rigid 

charge empirical potentials with values between 0.89-1.48 Jm-2 [67]). 

The experimental value of surface energy in UO2 reported by Hall et al. [68] is 0.85 Jm-2, similar to 

both the calculated (111) surface energy and the amorphous surface energy calculated here, although 

the reported experimental errors are extremely large (~70 %). Given the importance of the prediction 

of surface energy on fuel performance characteristics such as intergranular fission gas bubble 

formation [69] [70], gas mobility and release [71], fuel fragmentation [72] [73] [74]and more, it is 

clear that the impact of amorphous grain boundary formation (including the need to consider extrinsic 

species such as fission products in high concentrations [75] [76] [77]) should be considered. 

 

4. Summary 

Atomistic simulations have been carried out investigating amorphous UO2, linking empirical 

potential-based calculations utilizing molecular dynamics methods, with density functional theory 

(DFT)-based simulations to get a multi-scale description of the system for the first time. The 

structures of the amorphous UO2 systems predicted by the molecular dynamics methods and 

subsequent DFT-relaxed structures are consistent with each other and their predicted X-ray diffraction 

pattern is consistent with the experimentally attained pattern [7].  

Although the methods used in this investigation have previously been used to assess amorphous 

oxides on the atomic scale [34], here the impact that the size of the initial molecular dynamics melt-

quench simulations has on the final structure was also investigated. These simulations highlight far 

more units than can be routinely simulated using density functional theory methods, here well over 

256 units of UO2 were required to ensure an amorphous structure is produced through the thermal 

treatment employed. 

Bond angles in the amorphous system were predicted and compared to the crystalline UO2 structure 

where it was found that both the U-O-U and O-U-O angles show similarities with the local structure 

of the crystalline structure but deviate for angles expected for species at higher separations. 

Non-stoichiometry in amorphous UO2 has been considered, and it is predicted that the amorphous 

structure can deviate to UO2+x and UO2-x more readily than the crystalline form. As such, it is 

expected that any amorphous UO2 regions in nuclear fuel (formed during operation or as a result of 



manufacture processes) could act as getters for deviations in stoichiometry resulting from its 

operation. The preferential accommodation of non-stoichiometry by grain boundaries in other 

materials has been considered in past work [78] and the gettering of deviations to stoichiometry by 

grain boundary phases would impact the in-reactor behaviour of fuel as bulk transport, structure, 

thermo-chemical and thermo-mechanical bulk properties are all affected by the O/U ratio in single 

effects studies. In this respect, further work is required to ascertain the impact of known 

impurity/dopant species in stabilizing amorphous grain boundary phases including those highlighted 

by Solomon et al. [13]. The impact that the grain boundary phases may have on fission product 

behaviour, including those of fission gases that impact fuel performance, as well as mechanical 

properties including the effects of deviations to grain boundary creep/deformation will be of 

significant interest to the nuclear fuel community and beyond. 

As non-collinear spin-polarized DFT calculations were considered, the magnetic ordering of the 

amorphous UO2 system was predicted. Unlike crystalline UO2 at 0 K, which is predicted to be anti-

ferromagnetic, the amorphous system shows a random spin structure consistent with a spin-glass. 

Future work will consider the potential for dopants and impurities have to induce ferromagnetic-like 

behaviour (asperomagnetic) that may correlate with experimental observations [59]. Further work 

should again be considered to ascertain the role of impurities in stabilizing amorphous UO2. 

Lastly, the surface energy of amorphous UO2 was determined and compared to surface energies in 

crystalline UO2. The average energy of 0.79 Jm-2 is similar to the surface energies reported in the 

crystalline structure. The methodology used to compute the surface energy (combining the use of DFT 

and empirical interatomic potentials) has been described in full and shall be used as the basis of future 

developments to optimise the prediction of this value. Recent work by Ksibi et al. [11] re-stated the 

long-held importance of understanding grain boundary bubble behaviour noted from the inception of 

nuclear fuel performance modelling [79] [80], here we begin to consider the potential atomic scale 

behaviour of non CSL boundaries. 
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