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Abstract 

In the past, space trajectory optimization was limited to optimal design of transfers to single 
destinations, where optimality refers to minimum propellant consumption or transfer time. New 
technologies, and a more daring approach to space, are today making the space community consider 
missions that target multiple destinations. 

In the present paper, we focus on missions that aim to visit multiple asteroids within a single launch. 
The trajectory design of these missions is complicated by the fact that the asteroid sequences are not 
known a priori but are the objective of the optimization itself. Usually, these problems are formulated as 
global optimization (GO) problems, under the formulation of mixed-integer non-linear programming 
(MINLP), on which the decision variables assume both continuous and discrete values. However, beyond 
the aim of finding the global optimum, mission designers are usually interested in providing a wide range 
of mission design options reflecting the multi-modality of the problems at hand. In this sense, a Constraint 
Satisfaction Problem (CSP) formulation is also relevant.   

In this manuscript, we focus on these two needs (i.e. tackling both the GO and the CSP) for the asteroid 
tour problem. First, a tree-search algorithm based upon the Bellman’s principle of optimality is described 
using dynamic programming approach to address the feasibility of solving the GO problem. This results in 
an efficient and scalable procedure to obtain global optimum solutions within large datasets of asteroids. 
Secondly, tree-search strategies like Beam Search and Ant Colony Optimization with back-tracking are 
tested over the CSP formulations. Results reveal that BS handles better the multi-modality of the search 
space when compared to ACO, as this latter solver has a bias towards elite solutions, which eventually 
hinders the diversity needed to efficiently cope with CSP over graphs. 

 
Keywords: asteroids; dynamic programming; global optimization; constraint satisfaction problem; space 
trajectory design 
 
 

1. Introduction. 
 
Instances of mission design problems that 

target multiple orbital waypoints, instead of only 
one final destination, represent a growing trend. 
Some examples of this include, but are not 
limited to, ESA’s JUICE mission [1], which will 
perform more than twenty gravity assist 
manoeuvres with Jovian moons, commercial 
concepts for Active Debris Removal, which also 

consider to rendezvous with multiple spacecraft 
by means of one single platform to help restoring 
the Earth’s orbital environment (e.g. see [2]), as 
well as CASTAway concept [3], [4] on which 
multiple asteroid rendezvous trajectories were 
presented in the context of ESA’s Medium Class 
mission 2016 call. 

In particular, this paper focuses on the 
mission design of a tour within the asteroid main 
belt. There is clear scientific interest in exploring 
this region of the Solar System, to better 
understand the composition and evolution from 
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early stages of the Solar System. The aim is to 
pass-by as many asteroids as possible to obtain 
key information about the composition of objects 
by close encounter analysis [3]. A mission that 
can fly-by at least 10 asteroids will double the 
number of objects visited to date. The present 
work focuses on missions of 12 asteroids. It 
should be noted that the orbital waypoints (or 
targets) to be visited are not known a priori but 
are the objective of the optimization problem 
itself. Therefore, most of the approaches to 
design these missions make use of three steps 
[5]: the first one consists in defining a subset of 
potential asteroids to be visited, based on their 
orbits and scientific characteristics. In the second 
step, a sequence of objects is found by means of 
global optimization algorithms. In the last step, 
the trajectories between asteroids are optimized 
with either local or global optimization. This 
scheme is also adopted in the present work. 

Designing missions that visit many asteroids 
is a notoriously challenging problem to solve. 
They are usually transcribed in some form of 
global optimization, referred to as Mixed-Integer 
Non-Linear Programming (MILP) problems [6], 
[7], also known in literature as Hybrid Optimal 
Control Problems (HOCP) [8]. A general 
MINLP/HOCP presents the following structure: 

 
Minimize  where  and 

,  

(1) 
 

Subject 
to 

 
 

 where 
 

 where 

 
 
Where:  is the objective function to be 

minimized (usually the propellant to be stored on 
the spacecraft);  are the decision variables, 
which belong to the continuous and integer 
domain, respectively;  represents the 
constraints of the problem at hand (usually the 
overall mission duration), where  and  are 
the cardinalities for equality and inequality 
constraints, respectively;  and  
represent the box constraints (i.e. lower and 
upper bounds) for . 

As such, these problems have been the target 
of many editions of the Global Trajectory 

Optimisation Competition (GTOC) [9]. There is 
an obvious need to manage the increasing 
complexity of the formulation of these problems, 
often with cleverly designed strategies to prune 
out the search space or manage the search 
strategy (see [10] for references about methods 
employed in past GTOCs). 

Techniques to tackle MINLP can be divided 
into deterministic and stochastic ones. 
Deterministic algorithms are well established 
methods in literature [11], [12], among which 
Branch and Bound (BB) [13] is one of the most 
common ones. Among stochastic metaheuristics 
approaches applied to MINLP, Genetic 
Algorithms (GA) [14], [15], Particle Swarm 
Optimization (PSO) [16] and Ant Colony 
Optimization (ACO) [17] are popular choices. 
Stochastic algorithms present the advantage that 
convexity and linearity of  and/or  
functions are not required, as well as the 
relaxation or separation of discrete variables. 
Another advantage is that they do not require 
gradients to know where to go along the search, 
but rather replace the gradient information with a 
self-learning procedure. However, they will 
generally require higher number of function 
evaluations due to their stochastic nature [6]. 
There is a substantial literature addressing the 
asteroid tour problem, involving both 
deterministic strategies (see, for example, 
Grigoriev and Zapletin [18], Izzo et al. [19], Di 
Carlo et al. [20] and Petropoulos et al. [21]) and 
stochastic metaheuristics or other bio-inspired 
approaches (see, for example, Sanchez et al. [4] 
Simões et al. [22], and Fan et al. [23]). 

However, beyond the challenge to find the 
global optimum of a complex MINLP applied to 
space trajectory design (STD), thereafter referred 
as MINLP-STD, practical mission feasibility 
studies for asteroid tour missions (e.g. see 
Bowles et al. [3] and Sanchez et al. [4]) require 
an accurate description of the full topology of 
the feasible search space, rather than the 
identification of a global optimum. Hence, are 
more akin to a Constraint Satisfaction Problem 
(CSP) rather than to a global optimization 
problem, to account for the multi-modality of the 
problem at hand [5]. In the context of asteroids 
tours, a CSP is interesting because the range of 
different possible asteroid tours is relevant for 
scientists within an indicative spacecraft design 
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limit (e.g. Δv related). Moreover, in the case of 
CASTAway-like missions [3], [4], obtaining the 
CSP solutions is based on a set of integer 
variables describing the asteroid tour all of 
which result in broadly similar spacecraft 
operational environment, thus Pareto optimality 
studies are less interesting compared to other 
mission types.   

A general definition of the CSP can be stated 
as follows: 

 
Given a set 
of variables: 

 where 

 and , 
 

( 2) 
 

And their 
domains: 

 where 
 

 where 

 
And a set of 
constraints: 

, 
 

 
Find (one or more) assignments of a 

value for each variable such that the 
assignments satisfy all the constraints. 

 
Compared to the global optimization problem 

defined in equation (1), a CSP as in ( 2) 
considers the functions  and  as part 
of the set of constraints .  

Therefore, there are clearly two needs that 
should be addressed when designing such 
missions. The first one is to find the actual 
global optimum solution of the problem at hand 
as described in (1). The second one is to solve a 
CSP as in ( 2), to provide adequate extent of 
mission design options, usually required in 
preliminary design. 

The present paper thus approaches the 
asteroid tour problem from these two separated, 
though related, formulations. It first describes 
the strategy to transcribe the problem from a 
mixed formulation to a pure combinatorial one 
(see section 2). Section 3 also provides details 
about the structure of the search space associated 
to the problem at hand. In section 3, the paper 
presents a tree-search strategy based upon the 
Bellman’s principle of optimality to obtain 
global optimum solution in an efficient manner, 
thus solving the problem as described in (1). 
Section 5 then approaches the problem as a CSP 
as in ( 2), introducing tree-search strategies to 

tackle it and a formulation of ACO with back-
tracking for handling the constraints. Section 6 
concludes the paper. 

2. Main Asteroid Belt Tour Exploration. 
 
The term tour, in the context of a space 

mission, simply indicates a mission that aims to 
visit not one but several celestial objects. There 
have already been multiple propositions of 
asteroid tour mission problems; such as those in 
5 out of 11 editions of GTOC* (e.g., [24], [25]), 
or in more mission design oriented studies, such 
as in [4], [20], [26]. Any of these examples will 
imply many constraints and boundaries that are 
specific to the problem, however all will require 
dealing with comparable complexities on a 
similar dynamical framework. 

The asteroid tour problem tackled here is 
relevant to the CASTAway mission concept 
submitted for consideration to ESA’s 5th medium 
size mission call 6. The Comet and Asteroid 
Space Telescope Away in the asteroid belt (i.e. 
CASTAway) proposed a mission dedicated to 
gain understanding of the main asteroid belt 
(MAB), to inform solar system formation and 
evolution theories. CASTAway spacecraft was 
to carry a small telescope capable to observe 
asteroids both at a long-range (i.e. point source 
survey), as well as at a short-range, resolving 
them at ~10 m resolution during asteroid fly-bys. 
Full details on CASTAway mission design can 
be found in Sanchez et al. [4]. Here, however, so 
that the focus is on the methods to solve the 
problem itself rather than on the definition of the 
problem, suffices to say that the spacecraft is 
deployed into a direct escape trajectory (with 
limited range of possible v∞); it needs to 
encounter as many main-belt asteroids as 
possible, while limiting its Δv and time of flight 
(tof) to values below a maximum threshold.  

The problem is defined as fixed size tour with 
nmax asteroids (12 in this paper). The ambition 
would thus be to find as many feasible tours of 
nmax asteroids as possible, ideally including the 
global minimum (i.e. tackling both (1) and ( 2)). 
The function  takes the sequence of 
asteroids encoded in vector  (also accounting 
for Earth departure) and the visiting epochs 

 
* https://sophia.estec.esa.int/gtoc_portal/  
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encoded in vector  and solves Lambert arc 
transfers between each pair of consecutive 
objects (e.g. Earth-Asteroid1, Asteroid1- 
Asteroid2, etc). Two timestamps are necessary to 
solve the Lambert arc, which are defined by the 
vector of continuous real values design 
parameters . Lambert arcs and velocity vector 
addictions are assumed for the dynamics of the 
spacecraft and for the computation of the Δv, 
respectively. Asteroid mass is neglected, 
however planetary swing-bys are possible by 
inserting a planet, rather than an asteroid in the 
sequence. Note each planetary swing-by would 
require three more real value parameters to 
define the hyperbolic passage. However, in this 
paper, the strategy described by the authors in 
[27] is employed. This is based upon 
approximated  at the swing-by, computed 
based upon the visiting epoch of the objects in 
the sequence. The function  finally returns 
the cost of the transfer in terms of the total . 

The preliminary design of the CASTAway 
trajectory is driven by the need to spend as much 
time as possible within the MAB, while limiting 
its tof and overall . Maximising the time 
within MAB allows to ensure good survey 
conditions, as well as increased chances to come 
across fly-by opportunities. The original 
CASTAway searched trajectories that would 
complete the asteroid tour in 6 years in order to 
limit operational costs.  As seen in Gallego [28] 
for tof<8 years, a simple Earth-Mars (EM) 
sequence is optimal to accumulate a high time 
fraction within the MBA. Hence the trajectories 
considered thereafter have a fixed EM sequence, 
where the Mars swing-by is used to increase the 
spacecraft reach within the MBA.  

Figure 1 represents an example trajectory for 
CASTAway, which follows an EM sequence and 
encounter a total of 10 asteroid. As of September 
2021, 1 million MAB objects are known. 
However, here a pre-pruned database of 
~102,000 main belt asteroids is used instead. 
This database provides a prefiltered population 
with a diversity of asteroids in size and orbital 
distribution. Details on the pre-filtered process 
can be found in Sanchez et al. [4]. 

 
Figure 1. Example of main-belt asteroid 

tour trajectory for CASTAway design 
envelop. 

 
Nevertheless, it should be noted that an 

asteroid set of ~102,000 objects is already a 
much larger set than in any asteroid tour related 
GTOC competition problem. Also, exploring, for 
example, all possible 12-asteroids tours from a 
set of 102,000 objects would represent 1060 tours 
to compute and a computing time likely 
exceeding the age of the universe. Hence, the 
key to solve this problem must lay on managing 
this complexity efficiently. 

A potential way to manage this complexity is 
to find a process on which the mixed problem as 
in (1) and ( 2) can be transcribed in a pure 
combinatorial one. This process, as implemented 
in the present paper, employs a pre-optimization 
phase making specific mission-relevant 
assumptions. The aim is to generate a reference 
trajectory that maximises the number of 
asteroids visited with an approach distance of 
less than a specified upper limit. Limits used in 
this paper are 0.03 AU, 0.04 AU and 0.05 AU. 

Minimum Orbital Interception Distances 
(MOIDs) between the spacecraft reference orbit 
(i.e. an Earth-Mars transfer) and each asteroid in 
the reduced set are computed. The mixed 
problem is then uncoupled by assuming asteroid 
fly-bys occurring at the asteroid MOID point. 
The tour of the MAB is assumed to start on the 
24th of December 2030 as a result of an 
optimization process to maximise the time in the 
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MAB within 7 years of overall mission duration 
(considering the Earth-Mars reference 
trajectory).  

A paramount feature of the proposed solution 
is the closeness of the  estimate from the 
combinatorial part of the problem to the actual 
optimal value after the trajectory refinement by 
means of global/local optimizers. Several test 
cases were performed for 1e6 randomly 
generated sequences with 12 asteroids on which 
the visiting epochs were also assigned randomly, 
and the best cost obtained were no lower than 
~300 km/s. When introducing the MOID 
information, after 1e6 randomly generated 12-
asteroids sequences the best cost was ~9.3 km/s. 
This is a strong indication of the merit of the 
sub-optimal solutions coming from the 
combinatorial part of the problem. 

In addition, once the sequences have been 
obtained from combinatorial optimization, a 
standard genetic algorithm solver available 
within MATLAB global optimization toolbox 
was used to refine the asteroids encounter dates. 
Figure 2 confirms the efficiency of the proposed 
methodology. It shows the ~7500 solutions for 
which both the combinatorial and the continuous 
part were solved. In particular, it represents the 
optimized Δv cost of different sequences with 
respect to their guesses based only the 
combinatorial solutions of the problem. This 
clearly shows how the approximations made 
with MOID estimations are able to quickly 
provide sub-optimal solutions. 

 

 
Figure 2. Summary of Δv solutions before 

and after the continuous optimization of 
sequences. 

 

3. Graph structure of the search space. 

 
The procedure described in section 2 has 

provided an ordered list of asteroids, with 
respect to the MOID epoch, which can 
potentially be reached. In this way, one has 
uncoupled the combinatorial part of the problem, 
associated to the selection of the optimal 
sequence of asteroids to be visited, from the 
continuous part, associated to the optimization of 
the visiting epochs. This section focuses on the 
combinatorial part of the asteroid tour problem. 
Combinatorial problems (CP) are often modelled 
with a search space that is a grid of connected 
nodes. A very common example of CP is the 
Travelling Salesman Problem (TSP) that is about 
a salesperson that has to visit a given number of 
cities, i.e. the nodes, which are connected by 
roads or paths of a given length. The salesperson 
has to start from his hometown, visit each city 
once and return back home. As an optimisation 
problem, the cheapest (in fuel consumption) or 
shortest (in time of travel) path or tour wants to 
be found. 

Moving the TSP example to the problem in 
hand, the cities are the asteroids, and each 
combination of asteroids will have a cost which 
can be the Δv or the tof, or a combination 
thereof, which normally wants to be minimised. 
The cost can be calculated by a given function 
which will be the objective function or fitness 
function to be minimised. However, the main 
difference between the standard TSP and the 
asteroid tour problem lays in the cost connecting 
two objects. With the structure of the problem 
defined in section 2, each leg of the asteroid tour 
mission is a Lambert arc whose cost will be the 
required change in velocity Δv resulting from the 
difference between the velocity vector at the 
arrival and departure at a given asteroid. 

Figure 3 illustrates the spacecraft trajectory 
between two asteroids of MOID indices j and k 
with the arrival velocity  and the 

departure from asteroid  and the  of 

the leg given as 
. In this way, 

the cost of a given asteroid-to-asteroid leg is not 
unique, but it depends upon the asteroid prior to 
that leg, by means of .  
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Figure 3. 2D sketch of spacecraft 

trajectory and Δv between asteroid j and k. 
 
Thus, to uniquely define the cost of a given 

leg 𝐴j and 𝐴k, one needs to consider also the 
previously visited one, say 𝐴i, so for the triplet 
(𝐴i, 𝐴j, 𝐴k), one has the unique cost of Δ𝑣i

jk. 
Because of this tri-dependency, the search space 
is a graph that can be modelled as a multi-
dimensional space of connected subspaces, being 
the search space a search grid 𝒢. These 
subspaces 𝑆i⊆𝒢 contain nodes which are pairs of 
asteroids. The initial subspace 𝑆0 contains all the 
pairs of asteroids (𝐴0, 𝐴𝑖) ∀𝑖∈ℕ | 1<𝑖≤𝑛𝑎𝑠𝑡, where 𝑛𝑎𝑠𝑡 is the number of asteroids. 𝑆0 is connected to 
a set of subspaces 𝑆𝑖 ∀𝑖∈ℕ | 0<𝑖≤𝑛𝑎𝑠𝑡 each of 
which are again connected to a set of subspaces 𝑆𝑗 ∀𝑗∈ℕ | 𝑖<𝑗≤ 𝑛𝑎𝑠𝑡 and so on. The total number 
of subspaces in 𝒢 is 𝑛𝑎𝑠𝑡 as the last subspace is 𝑆𝑛𝑎𝑠𝑡-1 containing node (𝐴𝑛𝑎𝑠𝑡-1, 𝐴𝑛𝑎𝑠𝑡). When 
choosing a node, the first asteroid in the node 
will be equal to the second asteroid in the 
previous node. This is how the subsets are 
connected among themselves. In this space, the 
cost of the paths between the nodes are unique, 
which is the main advantage of modelling the 
search space in this way. 

Being the Δ𝑣i
jk a tri-asteroids dependent cost, 

unique for each of the legs of the search space, a 
Score Matrix (SM) with the following 
characteristics was created for this research: 

- Tri-structured: the matrix relates the pair 
of nodes of departures in rows with the 
asteroids of arrival in columns 

-  Unique: all the costs contained within 
the matrix are constant due to its structure 

Strictly upper-triangular form pattern 
repetition: if the SM was asteroid-to-asteroid, the 
matrix would be a strictly upper-triangular one, 

as all the main diagonal and lower diagonal are 
non-feasible paths. As the rows of the matrix are 
pairs of nodes, this pattern is repeated 
downwards through the matrix. 

Figure 4 shows an example of SM for a set of 
158 asteroids. Each row represents a couple of 
asteroids, i.e. a trajectory between two asteroids, 
and each column is encoded with asteroids in the 
catalogue that complete the triplet. Anytime it is 
not possible to define a  between two 
asteroids, an ‘x’ is represented (i.e. the transfer is 
not possible). This happens when MOID epochs 
for the asteroids in the triplets are not 
consecutive. 

 
 

 
Figure 4. Example of SM for 158 asteroids. 

Rows are couples of asteroids, while columns 
are asteroids that conclude the triplet. An ‘x’ 
is included whenever it is not possible to 

define a  for the triplet. 

 



 

IAC-20-C1.5.7                           Page 7 of 15 

 
Let N be the set of feasible solutions within 

the search space grid 𝒢. With the aim of reducing 
the computational cost of the search, a reduction 
of the search space dimensions is done by 
removing all the elements that are not included 
in N. The cleaning of non-feasible solutions of 
the search space is done considering the 
following constraints: 

- REQ-001: sequences shall contain nmax 
=12 asteroids of increasing MOID 

- REQ-002: the asteroid-to-asteroid Δv 
shall be of 1 km/s as maximum 

- REQ-003: the overall cost of a sequence 
shall be of 9 km/s as maximum 

- REQ-004: the cost of the first node, i.e. 
Earth-Asteroid1, shall be of 5 km/s as 
maximum 

 
The first constraint REQ-001 implies some 

asteroids cannot be solutions of the sequence 
depending on their position m in the sequence. 
Thus, the set of feasible solutions considering 
both constraints is: 

 
( 3) 

 
Where  is the sum of the  of all the 

legs that compose 12-asteroids sequence, adding 
the Earth-first asteroid Lambert arc cost : 

 
( 4) 

 
However, as the search space nodes are 

modelled as pairs of asteroids, the only pre-
cleaning that can be done for the solver is given 
by: 

 

 
( 5) 

 
Where  is the cleaned search space. For the 

second constraint, REQ-002, it is ensured that 
feasible solutions are not removed from  by 
marking as non-feasible the asteroid legs with 

. If none of the possible triplets 
from a pair  comply this criterion, the pair 

is removed from .  
 

4. Dynamic programming for asteroid tour 
problem. 

 
To solve the first instance of mission designs 

towards asteroids as stated in equation (1), one is 
interested in finding the global optimum solution 
to the problem at hand. Provided the 
transcription of the problem from a mixed 
formulation as in section 2, one needs now to 
obtain the global optimum sequence with respect 
to the following cost function: 

 
( 6) 

 
Where the vector  encoding the visiting 

epochs is known from the procedure in section 2. 
Thus, the function  depends only upon the 
asteroids sequence. 

 

 
Figure 5. Comparison of tree search 

strategies: best-first (left), depth-first (middle) 
and beam search (right). Dotted nodes are not 

explored yet. Crossed nodes do not fall within 
the beam width and thus are pruned. 

 
MINLP-STD can be often modelled as some 

form of tree search [19], where each node 
represents a transfer that can be incrementally 
constructed expanding one or more of its 
branches (i.e. adding a trajectory leg). Among 
tree-search algorithms that employ a 
deterministic branching procedure, the Depth-
First (DF) and Breadth-First (BF) [29] are the 
most popular. These are known to be complete 
strategies, i.e. they allow to obtain the global 
optimum by evaluating all the possible branches 
of the tree. The difference between the DF and 
the BF lays on the way they perform the 
branching: DF explores as far as possible along 
each branch, while BF explores all nodes at the 
given tree depth prior to moving on to nodes at 
the next level (see also Figure 5). However, 
while DF/BF guarantee the global optimality of 
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the solution, these strategies usually result 
impractical for MINLP-STD, as the design space 
might be too large that exhaustive searches 
require infeasible computational time. The total 
number of possible different permutations Neval 
of a set  asteroids would be: 

 

 
( 7) 

 
Where  is again the number of asteroids 

in the catalogue and  is the length of the 
sequence. Hence, evaluating all the potential 
combinations of a set  of 158 asteroids 
(tours of  with 12 asteroids) would already 
take 2 million years to standard laptop (i.e., i7-
7500U CPU) (see also Table 1and Table 2). 

 
Table 1. Number of permutations and 

computational times for different 
configurations of the asteroid tour problem. 

Earth-Mars 

Baseline 
trajectory 

Departing epoch: 24th of 
December 2030 

Mars flyby: 3rd of March 
2033 

Number of 

asteroids  

Time full 
exploration 

[h] 

3 - - 
20 125,970 0.1 
49 9x1010 7000 
98 8x1014 6x108 
158 3x1017 2x1011 

 
 
Table 2. Time needed for BFS and DFS 

with respect to the number of asteroids in the 
catalogued. An exhaustive search is not 

feasible for catalogues greater than 49 
asteroids, thus a ‘/’ has been included. 

Number of 
asteroids 

Time BFS [h] Time DFS [h] 

3 - - 
20 0.005 4.5x10-4 
49 0.16 0.16 
98 / / 

158 / / 
 
To mitigate the aforementioned curse of 

dimensionality associated to exhaustive DF/BF 

searches, a dynamic programming approach to 
the asteroid tour problem has been developed. A 
dynamic programming algorithm benefits from a 
description of optimization problems such that 
Bellman’s principle of optimality [30] is true or 
holds. Such principle states that an optimal 
policy has the property to be independent from 
initial state and initial decisions. This means that 
the optimal policy is the same even if the optimal 
control is found starting at intermediate states. 
Here, by optimal policy is meant a sequence of 
decisions which is the most advantageous from a 
preassigned criterion. 

Translated to the asteroid tour problem, 
Bellman’s principle of optimality would state 
that, regardless of the asteroid at what the 
spacecraft is, the optimal set containing this 
specific asteroid would contain the optimal 
subset of asteroids before and after the visited 
one. Here, optimality is referred to minimum 
propellant consumption. This principle thus 
allows to apply tree traverse algorithms like 
DF/BF to at more local level. 

Since the whole trajectory is modelled with 
consecutive Lambert arcs between pair of 
objects in the sequence, the  cost for a given 
asteroid-to-asteroid leg depends upon the 
previously visited object (see also section 3). 
Thus, the Bellman’s principle is applicable only 
considering an intermediate couple of asteroids 
as initial nodes. It is thus possible to uniquely 
define the global optimum sub-sequences before 
and after the two objects by expanding the tree 
of possible reachable asteroids forward and 
backward in time. 

 

 
Figure 6. Backward and forward tree 

expansion for a given intermediate couple of 
asteroids. Bold nodes and branches belong to 
optimal sequence. 
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Figure 6 illustrates the application of 
Bellman’s principle of optimality applied to the 
asteroid tour problem tree search. Once the 
intermediate couple is defined, the optimal sub-
sequences can be obtained in backward and 
forward sides, and thus the global optimum 
sequence containing the given intermediate 
couple. In order to obtain the overall global 
optimum trajectory, one needs to scan every 
single couple of objects within a given catalogue 
of asteroids.  

Nevertheless, this approach only allows to 
locate the global minimum, while the curse of 
dimensionality is still rendering the global 
optimization problem intractable for large 
number of asteroids. This is because the number 
of couples increases factorially with the number 
of asteroids in the catalogue. Moreover, the 
expansion of the sub-trees in the backward and 
forward directions can still grow with the 
number of asteroids in the catalogue. In this 
paper, the intermediate asteroids are assumed to 
be in 7th and 8th position of a sequence of 14 
objects (i.e. 12 asteroids + Earth and Mars). 
Thus, Table 3 shows how the number of couples 
varies with the number of asteroids in the 
catalogue. 

 
Table 3. Couples to be explored with 

respect to number of asteroids in a catalogue. 

Number of asteroids 
Couples to be 

explored 

49 951 
98 4283 
158 11633 

 
Some strategies can be adopted to mitigate 

the curse of dimensionality, like hybridizing with 
some tree-strategy like the Beam Search (BS) or 
ACO, thus sacrificing the global optimality 
assurance in the name of the computational 
effort. For larger catalogues, lower bound 
analysis by means of BS can be used to reduce 
the value of REQ-003 from section 3 from 

 to lower values. One can even split the 
sequence in multiple segments, and not only two 
as done in the present work, but this is out of the 
scope of the present paper and will be the focus 
of future research. 

To further reduce the computational effort, 
once one of the two sides of the tree has been 

expanded (see again Figure 6), the available  

is updated by excluding the one used for the 
constructed sub-sequence. In this way, the global 
optimum is obtained. 

 
Table 4. Computing time and optimal costs 

with respect to number of asteroids in a 

catalogue. 

Number of 

asteroids 

Computing 

time [h] 

Best cost 

[km/s] 

49 0.16 7.247 
98 1 6.977 
158 4 6.977 

 
Table 4 shows the computational time and the 

cost for the global optima solutions obtained 
with dynamic programming algorithm. Note that 
the global optimum of the catalogue with 0.04 
AU and the 0.05 AU thresholds coincide, as they 
correspond to the same sequence. This is 
because all the asteroids present in small 
catalogues are also contained in bigger ones. 
One should notice how the curse of 
dimensionality is acting in terms if 
computational effort when large catalogues are 
tackled. 

Details of the asteroids visited, times of 
flybys and  are provided in Table 5 and a 
graphical representation is given in Figure 7. 
These have been obtained for the largest 
catalogue explored, i.e. the one with 158 
asteroids. 

 
 

 
Figure 7. Global optimum tour of 12 

asteroids within the catalogue of 158 objects. 
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Table 5. Global optimum solutions of the 
main belt tour for the catalogue of 158 

asteroids. 

Objects 

names 
and IDs 

Δv [km/s] tof [days] 

Earth - - 
2 4.309 247.79 
14 0.0600 179.83 

Mars 0.211 372.37 
17 0.0366 77.63 
33 0.425 118.76 
62 0.158 236.69 
75 0.119 61.47 

100 0.165 484.80 
118 0.150 173.13 
129 0.101 125.73 
135 0.406 34.57 
141 0.268 22.78 
152 0.567 29.95 

TOTAL 6.9772 2165.5 
 

 

5. Tree-search strategies for the Constraint 
Satisfaction Problem. 

 
Apart from the global optimum solution, a 

mission designer is also interested in finding 
locally optimal solutions to provide an extent of 
trajectory design options, useful in preliminary 
stages of the design. This is similar to solve the 
CSP defined in equation ( 2), on which there is 
no cost function to be minimized, but just a 
series of constraints to be satisfied. In this case 
the function  as defined in equation ( 6) 
becomes part of the set of constraints. The set of 
constraints are thus defined by REQ-001, REQ-
002, REQ-003 and REQ-004 in section 3. 
Algorithms that are suitable for tackling a CSP 
are again tree-search strategies, also involving 
some back-tracking scheme [31]. In the present 
paper, we examine BS and ACO. In particular, 
we develop a version of ACO employing a back-
tracking to improve the chances of finding 
solutions with respect to the CSP at hand.  

The BS [32], [33] is a deterministic tree 
search algorithm firstly presented in the context 
of scheduling [34]. In BS algorithms, the 
computational effort is bounded by employing 
heuristics that prevent the exploration of non-

promising branches. It can be executed as a 
variant DF or BF strategies (refer again to Figure 
6). In the present paper, the BS is implemented 
as a variant of the BF. In this way, the 
exploration of possible trajectory options is 
performed one depth-level at a time. From all the 
branches generated in one level, only a limited 
set of it, i.e., the beam, is selected to be 
expanded in successive nodes. The size of the 
beam is called beam width ( ). A search 
where  corresponds to a nearest-
neighbour (NN) search [2], on which the 
expansion of the tree is done towards the most 
promising node, discarding all the others. A 
search where  corresponds to a 
comprehensive DF/BF search, on which all the 
possible solutions are evaluated. 

Among tree-search strategies that employ a 
stochastic branching procedure, ACO is one of 
the most popular for solving complex 
combinatorial problems. This is a metaheuristic 
algorithm that mimics the behaviour of ant 
colonies in searching for food to solve complex 
combinatorial problems. Although in current 
literature there exist many variants, this 
algorithm was first proposed in the literature by 
Dorigo and Gambardella [35]. In ACO, some 
agents called artificial ants construct candidate 
solutions in a discrete graph, whose nodes are 
equivalent to the cities in the TSP. Compared to 
the BS, the branching procedure is stochastic and 
guided by the combination of the heuristic 
information (usually associated to the goodness 
of a specific city-to-city transfer) and what is 
called the pheromone, i.e. feedback laid by 
precedent ants when constructing candidate 
solutions upon the goodness of the explored tour. 
Thus, for the asteroid tour problem, the 
probability of an ant selecting a node  
depends upon the pheromone and the 

heuristic parameter  both associated to the 

path between two nodes  and , i.e. to the 
triplet : 

 

 

( 8) 

 
The ant stops searching more nodes when the 

termination criteria for the candidate solution 
have been met. This process is iterated for all the 
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ants, whose number is  , in the colony. After 
an entire colony has been released, i.e. has 
constructed candidate solutions, the pheromone 
is updated considering an evaporation rate 

 and how many ants pass through those 
paths: 

 

 

( 9) 

 
Where  is defined as: 

 

 
( 10) 
 
corresponding to the new pheromone trail, 

depending upon the cost  of the tour.  
The next population of ants repeats this 

process with more information than the previous 
one. The termination criteria for the graph 
exploration can be fixed by a maximum number 
of populations, by a maximum computational 
time, or a criterion related to the problem. 

For the purpose of the present paper, the 
following variations to the standard ACO have 
been introduced: 

• Backtracking: when an ant has selected a 

node that is not compatible with REQ-
001, the last asteroid is removed from 
the tour. This is done to mitigate the risk 
for the ants of not building solutions 
compatible with REQ-001, due to the 
non-completeness of the score matrix 
(see section 3) 

• by the ants that are non-feasible because 
of REQ-002 are kept in each iteration 
and considered in the pheromone update.  

• Select next node: for the selection of the 
next node, only feasible nodes in the 
cleaned Search Space 𝒢𝑐 are considered 
at each step.  

• Calculate Cost: the algorithm uses the 
Score Matrix 𝑆𝑀 to reduce 
computational cost. 

• Pheromone parameter: The pheromone 
is initialised null in all the non-feasible 
entries. In each iteration the pheromone 

of the nodes contained in Avoid Tours is 
decreased. 

 
The performances of the algorithms have 

been evaluated over several settings for three 
different catalogues (i.e. the ones with 49, 98 and 
158 asteroids). 

Performances of the BS algorithm are 
evaluated over a grid of settings for the BW for 
the catalogues considered. The BW varies from 0 
to the one allowing the global optimum, as in 
section 4, to be included in the final set of 
solutions. Results obtained are shown in Figure 8 
and Table 6. For all the three catalogues 
considered, it is possible to identify several 
levels of objective function values, ranging from 
about 7 km/s to approximately 8.4 km/s. A 
variation on the BW marks the transition from 
one level to another. This variation increases 
with the number of asteroids in the different 
catalogues, suggesting an underlying multi-
multimodal structure of increasing complexity of 
the problem at hand. In other words, while the 
BS guarantees local optima solutions in reduced 
computational effort, the diversity of local 
minima of the asteroid tour problem is such that 
the efficiency of BS in escaping from one funnel 
reduces when larger catalogues are considered. 
 

 
Figure 8. Best  solutions with respect to 

BW for different catalogues considered. 

 
 
Table 6. BW for obtaining the global 

optimum sequence for different catalogues 
and number of solutions obtained. 

Number of BW for Number of Mean 
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asteroids global 
optimum 

solutions cost 
[km/s] 

49 30e3 3805 8.4458 
98 41e3 2662 8.4111 
158 110e3 7570 8.4355 

 
While BS allows for very limited 

computational effort, it is known to be an 
uncomplete algorithm, i.e. it does not guarantee 
the globally optimal solution [33], [36], [37] 
since a too aggressive pruning (i.e., low BW) 
may discard good solutions at early stages of the 
search. The selection of the BW is thus crucial, 
as it represents the compromise between 
computational effort and quality of the obtained 
solution. However, for the problem at hand, it 
appears to be sufficient in obtaining wide range 
of solutions satisfying all the constraints of the 
CSP, without the need of more complex 
metaheuristic strategies (as ACO, see later). 
 

Table 7. ACO variables values and 

definitions. 

Variable Definition Value 

 

Exponent 
weight to 

pheromone 
1 

 

Exponent 
weight to 
heuristic 

parameter 

5 

 

Pheromone 
evaporation 

rate 
0.05 

 

Maximum 
number of 

backtrackings 
allowed 

50 

 
Regarding the ACO, the algorithm is run 30 

independent times for each catalogue considered. 
All the cases are initialised with a Score Matrix 
pruned at 1 km/s per leg ( ), and 5 
km/s for the first node (Earth – Asteroid1), as for 
REQ-004. The parameter set-up is the same for 
all the runs and for all the catalogue explored 
and it is described in Table 7. 

 

Table 8. Solutions from ACO for the 
catalogues explored. 

Catalogue→ 
49 

asteroids 
98 

asteroids 
158 

asteroids 
Number of 

feasible 

solutions 

79 22 1 

Best tour 

cost 

7.6438 
km/s 

6.9772 
km/s 

8.4149 
km/s 

Mean cost 

of solutions 

8.2467 
km/s 

8.6403 
km/s 

11.2069 
km/s 

 
Table 8 shows results for the ACO with 

respect to the different catalogues explored. For 
the CSP problem at hand, BS provides many 
more solutions compliant with the problem 
constraints on similar computational effort, with 
respect to the ACO. In addition, because of the 
lack of smoothness of the search space, the ACO 
performance is highly dependent on the area 
where the ants start to search. If the 
neighbourhood is very bad (i.e. containing 
solutions with low cost or ), the ants tend to 
stay in the good area that can contain local 
minima, existing other areas where the local 
minima are lower. Mean values of solutions 
found by ACO are in general higher than the 
ones of BS, because ACO seems to explore less 
feasible regions. 

 

 
Figure 9. Number of unique asteroids 

visited and avoided by tree levels for ACO 

with SM ≤ 1 km/s for catalogue with 98 
asteroids best case. GO-BS reports the BS 

exploration able to find the global optimum 
solution 
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Figure 10. Δv for close-to-optimal solutions 

for catalogue with 98 asteroids. 
 

Moreover, as a general consideration, it has 
found that ACO is an inconsistent algorithm for 
the problem at hand, meaning that it seems to 
explore very well the first layers of the search 
space, until the 5th and 6th level, while misses the 
global optimum solution when lower layers are 
explored. In fact, the GO is only found for the 
catalogue with 98 asteroids. This is shown in 
Figure 9 on which unique asteroids visited by the 
ants per tree level are plotted. On all the three 
cases considered, layers 9, 11 and 12 are very 
restricted on the diversity in the exploration of 
the ants. Most of the layers are vaguely explored, 
showing a lack of diversity in the construction of 
the solutions of the ants. This plot shows that 
even if layers 4, 5 and 6 seem to be more 
diverse, the rest of the layers are very restricted, 
because of the lack of smoothness of the search 
space. This is shown in Figure 10, showing the 
Δv distributions for sequences that differ from 
the optimal by two asteroids, reflecting the non-
linearity and multi-modality of the problem at 
hand. In this case, the asteroid in 7th and 12th 
positions are removed. It can be appreciated that 
most of the search space is in fact dominated by 
non-feasible solutions, thus ACO struggles to 
build solution, as it cannot extract information 
from there areas. In the case of the 158-asteroids 
catalogue, early-stage layers are very diverse, 
while the diversity reduces as the layer increases 
from the 4th layer on. It is noticeable, however, 
that this reduction of diversity is more 
pronounced that for the lower MOID case of 

0.04 AU. The search is even bigger in this case, 
with more sharp areas of good solutions that 
make it more difficult for the ants to find these 
areas, being able to only find one feasible 
solution in total. 

As such, compared to the BS, ACO algorithm 
is a metaheuristic solver that is meant to find a 
feasible solution (local minimum) under some 
constraints. Being a heuristic solver, ACO does 
not guarantee the finding of the global minimum; 
it is in fact used when the analytical solver is too 
complex or takes too much time to solve.  
Niching strategies or hybridization with BS 
would increase the chance for ACO to deal with 
the multi-modality of the search space. In this 
sense, ACO is suited to deal with CSP, while 
providing less information about the multi-
modality nature of the problem, as bias the elite 
solutions which results in the diversity loss. 

Increasing the size of the Search Space seems 
to increase the difficulty for the ants to find 
feasible solutions. The number of asteroids to 
find are still 12 for each of the cases but the 
number of triplets increase rapidly with the 
expansion of the catalogue of asteroids. The 
Search Space sharpness is more noticeable when 
augmenting the catalogue as the ants find a total 
(summing all the execution times runs) of 84 
feasible solutions for MOID 0.03 (49 asteroids), 
24 for MOID 0.04 (98 asteroids) and 1 for 
MOID 0.05 (158 asteroids). 

Analysing the bar plots by layers of the 
unique asteroids explored by the ants, it is clear 
that ACO does not explore the whole Search 
Space. It has to be considered that some nodes in 
each layer are explored by the ants but avoided 
with backtracking, as those nodes do not allow 
the construction of a 12-asteroid tour. 
Nevertheless, even considering this, the ants do 
not explore the whole space. In all of the three 
MOID cases, the most diverse layer is the 4th 
one, decreasing the diversity of the following 
layers from that on. The ants keep narrowing the 
solutions as they construct deeper in the tour, 
entering in a sharp area of the Search Space. 

 

6. Conclusions 
 
This work has transcribed the asteroid tour 

problem in two different, though related, 



 

IAC-20-C1.5.7                           Page 14 of 15 

formulations: a minimization formulation, 
aiming at finding the global optimum solution, 
and a formulation based on the Constraint 
Satisfaction Problem (CSP) paradigm. An 
algorithm has been presented for obtaining 
global optimum solutions even for large number 
of asteroids in the datasets. This is efficient and 
can be easily improved for handling even larger 
catalogues. However, the curse of dimensionality 
is only mitigated, and hybrid strategies are 
required for problems of increased complexity. 
This will be the focus of future research. 

Moreover, Beam Search (BS) strategy and 
Ant Colony Optimization (ACO) with back-
tracking have been tested over the defined CSP 
formulation for the asteroid tour problem. 
Deterministic tree-like strategies as the BS 
perform well in handling the multi-modality of 
the search space, as well as solving the CSP. On 
the other hand, ACO, while appears suited for 
the CSP, it needs to be improved by niching 
strategies or some form of hybridization with BS 
to handle the multi-modality of the search space. 
Moreover, diversity-preserving techniques for 
global optimization could be also in use to retain 
good yet diverse solutions, so that the search 
becomes biased not by optimality, but rather by 
diversity. 
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