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Abstract: Sky and ground are two essential semantic components in computer vision, robotics, and
remote sensing. The sky and ground segmentation has become increasingly popular. This research
proposes a sky and ground segmentation framework for the rover navigation visions by adopting
weak supervision and transfer learning technologies. A new sky and ground segmentation neural
network (network in U-shaped network (NI-U-Net)) and a conservative annotation method have
been proposed. The pre-trained process achieves the best results on a popular open benchmark (the
Skyfinder dataset) by evaluating seven metrics compared to the state-of-the-art. These seven metrics
achieve 99.232%, 99.211%, 99.221%, 99.104%, 0.0077, 0.0427, and 98.223% on accuracy, precision,
recall, dice score (F1), misclassification rate (MCR), root mean squared error (RMSE), and intersection
over union (IoU), respectively. The conservative annotation method achieves superior performance
with limited manual intervention. The NI-U-Net can operate with 40 frames per second (FPS) to
maintain the real-time property. The proposed framework successfully fills the gap between the
laboratory results (with rich idea data) and the practical application (in the wild). The achievement
can provide essential semantic information (sky and ground) for the rover navigation vision.

Keywords: semantic segmentation; weak supervision; transfer learning; conservative annotation
method; visual navigation; visual sensor

1. Introduction

Sky and ground segmentation is a popular topic in computer vision that has a wide
range of applications [1–11]. Sky and ground are the two essential components in outdoor
and remote scenes [11–16]. Furthermore, sky and ground segmentation research is also an
active topic in bionics studies [17–20]. Figure A1 displays six views from the Perseverance,
Opportunity, and Spirit Mars rovers of the National Aeronautics and Space Administra-
tion (NASA). The visual environment of a planetary rover is complex [21,22]. Semantic
segmentation helps planetary rovers understand the environment logically.

This research is inspired by the following related studies on sky or ground segmenta-
tion (Figure 1 depicts the summary of the related studies). Many studies focused on the
support vector machine (SVM). McGee et al. [23] and Liu et al. [24] used SVM for sky seg-
mentation. De Mattos et al. [25] used a whiteness-based SVM. Song et al. [26] used two im-
balance SVM classifiers and similarity measurement. Ye et al. [6] and Dev et al. [27] focused
on The whole-sky imager and proposed a superpixel-based SVM method. Beuren et al. [28]
proposed a whiteness- and blueness-based SVM method. Deep learning technology
also produces an increasingly significant role in environmental remote sensing as “big
data” [29,30]. Tighe and Lazebnik [10] proposed a non-parametric method combined with
Markov Random Field (MRF) to segment sky pixels simply and efficiently. Mihail et al. [31]
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proposed an open segmentation dataset with ground-truth annotations and proposed
a benchmark by comparing three popular segmentation methods (this research uses
the dataset and the benchmark). Tsai et al. [2] proposed a sky segmentation classifier
based on fully convolutional networks (FCN) and conditional random field (CRF) models.
Liu et al. [7] used image matting and region growth algorithms to achieve sky segmen-
tation. Vargas-Munoz et al. [32] proposed a framework based on the iterative spanning
forest (ISF). Dev et al. [12] proposed a color-based segmentation method. Fu et al. [33]
used a method based on a gray threshold. Place et al. [34] proposed a RefineNet-based
solution. Nice et al. [35] proposed a new sky pixel detection system that can select mean-
shift segmentation, K-means clustering, and Sobel filters to detect sky pixels. Hożyń and
Zalewski [36] proposed a solution of adaptive filtering and progressive segmentation.

The SVM has good performance in small datasets, but it becomes increasingly slow
as the dataset increases [37]. SVM uses the kernel matrix of the dataset to describe the
similarity between samples. Therefore, the number of matrix-elements increases with the
square of the data size. Besides, many of the above methods (including SVM) require
supports from feature engineering. Thus, the corresponding solution is not End-to-End
(E2E). The E2E refers to the functionality of inputting raw ultrasonic signals then outputting
the identified flow regime [38]. The feature engineering used in most research is artificial
features, and these feature extraction methods require many manual adjustments. The
feature engineering selectively retains and discards information, which leads to a high-level
of information loss. Furthermore, the existing deep learning solutions require high-level
feature engineering (such as color, superpixels, and grayscale), limiting the generality.
Besides, the deep learning solutions highly rely on post-processing (such as CRF), which
limited their online deployment.
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to [2,10,12,23–28,31–36,39], respectively.

Some related studies focus on the sky and ground segmentation in the planetary rover
scenario. Shen and Wang [40] proposed a gradient information and energy function opti-
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mization method in a single image for sky and ground segmentation. Ahmad et al. [41] pro-
posed a fusion of edge-less and edge-based approach to detect the horizon. Shang et al. [42]
proposed a superpixel-based approach, which works for robotic navigation. However,
these studies are not E2E solutions. Carrio et al. [43] proposed a method for sky seg-
mentation for unmanned aerial vehicles (UAVs). Chiodini et al. [44] proposed a method
to detect the horizon to support the localization for Mars rover. The practical scenarios
for these studies are different from the planetary rover navigation vision. Verbickas and
Whitehead [45] proposed a convolutional neural network (CNN)-based solution. However,
this solution cannot guarantee the scale-invariance between the input image and output
prediction. Moreover, the dataset applied in their research contained multiple scenes, the
space scenario data had a limited amount. Thus, it is not easy to achieve a significant
segmentation performance in planetary rover navigation vision.

Moreover, the related solutions are mostly in the laboratory environment, and the
data in the practical scenes are not annotated. The above-related studies mainly use super-
vised learning, which requires a large amount of well-annotated data. Cordts et al. [46]
claim that an image in the Cityscape dataset takes 1.5 h for annotation. Manual data
annotation is inefficient, and human factors will reduce its reliability. There are many
existing data for planetary rover navigation, but they have not been well annotated with
pixel-level. Therefore, there is a significant gap between a large amount of raw data and
well-annotations, which is also a major challenge occurring in many other engineering
and industrial missions. This research aims to fill the gap between the lavatory achieve-
ment (open benchmark) and the practical application (navigation vision of the planetary
rovers) through the proposed framework using the conservative annotation method, weak
supervision, and transfer learning.

This research proposes a sky and ground segmentation framework based on weak
supervision and conservative annotation for the navigation visions of the planetary rover,
which can improve the accuracy and efficiency of semantic landmarks detection in the
practical scenario. The contributions of this research mainly include the following points.

(1) This research appears to be the first successful E2E and real-time solution for the
navigation visions of the planetary rover.

(2) The sky and ground segmentation network has achieved the best results in seven met-
rics on the open benchmark (the Skyfinder dataset) compared to the state-of-the-art.

(3) This research designs a new sky and ground segmentation neural network (network
in U-shaped network (NI-U-Net)) for the sky and ground segmentation.

(4) This research proposes a conservative annotation method correlated with the conserva-
tive cross-entropy (losscon) and conservative accuracy (accconfor the weak supervision.
The results indicate that the conservative annotation method can achieve superior
performance with limited manual intervention, and the annotation speed is about
one to two minutes per image.

(5) This research further transfers the pre-trained NI-U-Net into the navigation vision of
the planetary rovers through transfer learning and weak supervision, forming an E2E
sky and ground segmentation framework that meets real-time requirements.

The discussion is arranged as follows. Section 2 introduces the methods used in this
research. Section 3 discusses the experimental results. The conclusion is drawn in Section 4.
The appendix contains the pseudo-code for the conservative annotation algorithm and
some figures. Video data is attached as electronic materials.

2. Methods

The proposed sky and ground segmentation framework for the navigation visions
of planetary rover adopts two datasets, the Skyfinder dataset [31] and the Katwijk beach
planetary rover dataset [47]. First, this research designs a sky and ground segmenta-
tion neural network (in Section 2.2) pre-trained using a large and annotated dataset (the
Skyfinder dataset). Second, this research proposes a conservative annotation method for
annotating sky and ground pixels in the practical navigation vision of the planetary rovers
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(in Section 2.3). It is noteworthy that this research utilizes the Katwijk beach planetary rover
dataset as the practical planetary scene. Then, this research conducts the data augmenta-
tion. Finally, this research uses the augmented data to perform weak supervision on the
pre-trained sky and ground segmentation network, which transfers the prior knowledge
from the pre-training process into the practical navigation scenario. Figure 2 depicts the
process of the proposed overall framework. Semantic segmentation tasks of unstructured
scenes usually do not have pixel-level annotations. The Katwijk dataset is the represen-
tation of unstructured scenes in this research. Traditional supervised learning is difficult
to be directly used in this type of task. Although the method based on multiple labelers
can reduce the human error in the annotation, it is difficult to eliminate the error in some
complex scenes, even with various labelers. On the other hand, the unstructured scenes
share a similar prior knowledge of sky and ground segmentation as the Skyfinder dataset,
and the Skyfinder dataset is well annotated. So, a solution with a weakly supervised
architecture based on transfer learning becomes very promising.
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Figure 2. The overall process of the proposed framework. The red frames refer to the main innovations in this research.
Green and blue frames refer to the inputs and outputs of the framework. LocCam refers to the localization camera of the
planetary rovers.

2.1. Datasets
2.1.1. The Skyfinder Dataset

The Skyfinder dataset is the largest existing pixel-annotated sky segmentation dataset
(containing weather influences). The Skyfinder dataset contains approximately 90,000 images
taken from 53 different scenes (in the wild). The ground-truth labels have been binarily
annotated the sky and non-sky pixels. It is noteworthy that this research names the non-sky
pixels as the ground pixels for better discussion. The Skyfinder dataset is a widely used
dataset in sky and ground segmentation [5,26,31,34,35].

According to the authors of the Skyfinder dataset [31], this research eliminates some
images because of file damage, black screen, overexposure, and significantly upset weather.
Figure A2 displays the examples of eliminated images. The same action for eliminating the
“bad” images was also conducted in the related studies [5,26,31,34,35], which is a routine
for using the Skyfinder dataset. Besides, the upset images (Figure A2) do not stay in the
scope of this research. This research selects nearly 70,000 images from 53 scenes, which
is 10% to 50% more selected ratio than in the related studies [5,26,31,34,35]. Thus, the
pre-training in this research is more challenged (see detailed results and discussion in
Section 3.1). Figure 3 displays some difficult scenes in the Skyfinder dataset. Although the
Skyfinder dataset captures images in the Earth, it shares a similar logic of sky and ground
segmentation in the navigation vision of the planetary rovers.
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to the difficult scene. DS-1, DS-2, DS-3, DS-4, DS-5, DS-6, and DS-7 refer to the strong backlight, heavy fog occlusion,
color-channel shift, extremely low illumination, heavy cloud occlusion, truss structure, and heavy noises, respectively.

This research divides the pre-trained dataset into the training set (about 50,000 images),
the validation set (about 10,000 images), and the testing set (about 10,000 images) accord-
ing to the ratio of 70%, 15%, and 15% (after a randomized shuffle). The testing set is
independent of the training process to provide an independent evaluation.

Various images of an individual scene in the Skyfinder dataset share the same sky
and ground annotation (see [31] for details). The distinction between different images of
the same annotation comes from weather, illumination, moving targets, etc. Technically,
the input of these distinguishes can be considered as some “data augmentations.” Thus,
an overall shuffle might introduce the risk of data contamination. However, dividing
the training, validation, and testing set according to various scenes does not make sense
because it is not comparable among different scenes. This research eliminates this concern
through an experiment using the U-Net, and the discussion can be found in Section 3.1.

2.1.2. The Katwijk Beach Planetary Rover Dataset

The Katwijk beach planetary rover dataset is a widely used dataset for navigation
vision of the planetary rovers [48–53]. The Katwijk dataset is a proper dataset as the
practical condition of planetary exploration. The Katwijk dataset was captured on a section
of beach near Katwijk, the Netherlands, where contains natural, unstructured, and sandy
terrains. The European Space and Technology Research Center also developed their heavy-
duty planetary rover (HDPR) platform near the Katwijk beach [47]. The visual content
of the Katwijk dataset covers most of the terrains in the study of Ono et al. [54]. Hewitt
et al. claimed that the Katwijk dataset can emulate a Mars-analog environment, and is
more representative to the planetary rovers [47]. Lamarre et al. also use the Katwijk
dataset as a reference when they propose their “the Canadian Planetary Emulation Terrain
Energy-Aware Rover Navigation Dataset” [50]. Chiodini et al. and Furlán et al. use the
Katwijk dataset as the planetary terrain in their studies [52,53].

Another two similar planetary rover datasets are [55] and [50], but they are not
suitable for this research because they contain many irrelevant targets, such as people,
plants, buildings, vehicles, stagnant water and snow. Figure A3a,b illustrate the example
images of [50,55], respectively. The red arrows and numbers highlight some examples of
irrelevant targets. Besides, the NASA image album [56] may provide many images from
Mars or Moon, but they are individual images instead of the format of video stream. Thus,
this dataset is not fit the aim of evaluating the integration and real-time property in a
planetary rover-based platform.

The Katwijk dataset [47] contains three traverses, and its visual content is only com-
posed of rocks and sands. Its cameras include a panoramic camera (PanCam) with a wide
field of view and a localization camera (LocCam) for visual localization, and both of them
are binocular cameras. This research selected camera No. 0 in the LocCam as the only
source data, which has a total of about 22,000 images. Hewitt et al. [47] use Bumblebee2
stereo camera as the LocCam, and the resolution is 1024× 768 pixels.
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2.2. Pre-Training Process: Sky and Ground Segmentation Network

The proposed sky and ground segmentation network consists of multiple convolu-
tional networks (ConvNets). The proposed sky and ground segmentation network has
been inspired by the U-shaped network (U-Net) [57–59] and network in network (NIN) [60].
U-Net has been widely used in semantic segmentation applications [61,62]. Figure 4 de-
picts the structure of the proposed sky and ground segmentation network. Moreover, the
proposed network does not directly use a ready-made ConvNets architecture.
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Figure 5. The detailed network design for the proposed sky and ground segmentation network.
The green, orange, and blue squares refer to the network structure in Figure 4, respectively. “Ze-
roPadding2D” refers to the 2D padding layer using the value zero. “3 × 3 Conv2D (channel = N)”
refers to the 2D ConvNet using a kernel size of 3, and the number of output channels equals value
N. “BN” refers to the batch normalization layer. “LeakyReLU” refers to the activation layer using
the LeakyReLU function. (a) refers to the NIN structure applied in this research. (b) refers to the
stride-ConvNet in the encoder part. (c) refers to the ConvNet for dimension increase.

The main inspirations from the U-net [57] are in two aspects. First, the entire network
(see Figure 4) adopts the overall configuration of the encoder-decoder [63,64]. The encoder
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structure has good information mining capability, which compresses the scale in the length
and width directions and expands the depth direction scale. This can greatly increase
the receptive field of the encoder structure, thereby numerically realizing a large range
of image information interaction (even if they are originally located in different image
regions). Second, U-net constructs a “highway” from the lower-level convolution structure
to the upper-level convolution structure through the concatenation (the purple arrows in
Figure 4) between the encoder and decoder tensors with the same scale (width and height).
This can ensure stronger gradient feedback, thereby avoiding the vanishing gradients
caused by the deep architectures.

The inspirations from NIN [60] are in two aspects. First, this research locates the micro-
networks (the network in network, NIN) followed by the scale-changing ConvNets (see
the orange square in Figures 4 and 5a). The level of abstraction is low in traditional CNN
(with the typical convolutional and pooling design). [60] NIN structure can enhance the
discriminability for local patches within the receptive field. Second, this research put two
1 × 1 ConvNets in all NINs. The 1 × 1 ConvNets is a cascaded cross channel parametric
pooling on a normal convolution layer. This cascaded cross-channel parametric pooling
structure allows complex and learnable interactions of cross-channel information. Thus,
the NIN has better abstraction ability than traditional CNN. Moreover, the 1 × 1 ConvNets
can adjust the tensor channels, making the structure design more flexible.

This research merges the inspirations from U-Net and NIN to construct the modified
sky and ground segmentation network. It integrates the micro-networks in a U-shaped
encoder-decoder structure. The proposed architecture is named “network in U-shaped
network” (NI-U-Net). Figure 4 shows the overall structure of the proposed NI-U-Net,
and Figure 5 shows the details. The black, orange, green, and blue squares refer to the
input image (tensor), the 1 × 1 convolution-based micro-network (see Figure 5a), the
stride-convolution-based scale reduction (see Figure 5b), and upsampling-convolution-
based scale expansion (see Figure 5c), respectively. The green and blue braces indicate
the encoder part and the decoder part, respectively. The scale reduction (green squares)
and the micro-networks (orange squares) appear alternately in the encoder. The scale
expansion (blue squares) and the micro-networks (green squares) in the decoder also
appear alternately. The purpose of this design is that the scale changes are performed
by stride-convolution and upsampling, and the micro-networks (with a deeper structure)
conduct the feature abstraction.

The proposed sky and ground segmentation network has the following highlights.
(1) The micro-network (Figure 5a) has N channels of input tensor, and the number of
channels decreases to N/4 after the first 3 × 3 convolution. Then, the micro-network
follows with two 1 × 1 convolutions. Finally, the micro-network applies another 3 × 3
convolution to restore the number of channels to N. Only the number of channels changes,
while the image scale remains invariant. However, the first (far left) and last (far right)
micro-networks are slightly different. The first micro-network inputs the image, and the
number of channels is three. The first 3 × 3 convolution does not reduce it to N/4 but
increases it to 32 channels. It is the first convolution over the entire network. The purpose
is to increase the number of channels (this is a typical operation [57–59]). The output of
the last micro-network is the prediction (output), so its activation is not “LeakyReLU” but
“sigmoid” (for binary classification). (2) The scale reduction (the green square in Figure 4)
uses convolution with a kernel size of 4 and a stride of 2 (Figure 5b). The convolution
kernel is an integer multiple of stride, which can reduce the risk of artifacts [65]. (3) The
scale increase uses the upsampling with a kernel of 2 (Figure 5c), which adopts nearest-
neighbor interpolation. This research utilizes upsampling and convolution (rather than
deconvolution) to avoid the risk of artifacts [65], which can increase the challenge in the
training network.

The hyper-parameters of the pre-training are as follows. The pre-training network
uses the Adam optimizer; the learning rate is set to 0.00001; the callback limitation of
epochs is 50 epochs; the batch size is 32 samples per batch. The loss function applies
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the binary cross-entropy. The loss function translates the segmentation task to a binary
classification task (sky or ground) for each pixel, which improves the segmentation to the
pixel level.

This research adopts seven metrics to compare to the related research [5,26,31,34,35],
including accuracy, precision, recall, Dice (F1) score, intersection over union (IoU) [34],
misclassification rate (MCR) [31], and root mean squared error (RMSE). Equations (1)–(3)
depict the mathematical definitions of IoU, MCR, and RMSE, respectively. Notably, some
metrics are only for comparison to related studies rather than related to the training process.
This research uses IoU and accuracy to indicate the performance, uses binary cross-entropy
and RMSE to witness the loss trend during the training process. Furthermore, the related
advanced studies adopt various metrics to discuss their performance. Thus, this research
uses the same metrics to directly compare the performance (including precision, recall,
Dice score, MCR, and RMSE).

IoU =
NTP

NTP + NFP + NFN
(1)

MCR =
NFP + NFN

Np
(2)

RMSE = (
1
m

m

∑
i=1

(yi − ŷi)
2)

1/2

(3)

where NTP, NFP, NFN , Np, m, yi, and ŷi refer to true-positive pixel number, false-positive
pixel number, false-negative pixel number, total pixel number, category number, ground-
truth label, and prediction, respectively.

Here is a brief description of the meaning and reasons for applied evaluation metrics.
(1) The pixel-level semantic segmentation is a classification task on pixels. “Accuracy” is a
very intuitive evaluation metric. (2) “Precision” refers to the proportion of the annotated
sky pixels of the predicted sky pixels. “Precision” can characterize whether a large number
of ground pixels are predicted as sky pixels. (3) “Recall” refers to whether the annotated sky
pixels are also predicted as sky pixels. (4) Although “Accuracy” provides a very intuitive
sense, which works properly with a balanced category distribution. The ratio of the sky
and ground pixels is not strictly 1:1. Therefore, the “Dice score” is a more effective metric
than the “Accuracy”. (5) “IoU” is a very important metric in image segmentation, and it is
widely used in general image segmentation studies. (6) MCR is a per-pixel performance
metric. Mihail et al. [31] used it to propose the benchmark for the Skyfinder dataset. (7) The
above metrics are all pixel classification indicators, while the “RMSE” provides a metric
based on the Euclidean distance. The smaller RMSE refers to a better result.

2.3. Conservative Annotation Strategy

A reasonable and efficient labeling strategy is essential for transferring the pre-trained
network (Section 2.2) to the navigation visions of the planetary rover. There is no existing
ground-truth sky and ground pixel-annotation for the navigation visions of the planetary
rover, which is also a common challenge in the transfer learning tasks. Image labeling is a
very complicated task. Besides, manual labeling reduces the reliability of the final result
due to human errors. Figure 6 displays some difficult annotation regions in the Katwijk
dataset, which have been highlighted with red frames. Therefore, this research proposes a
novel labeling method, named the conservative labeling strategy, for the navigation visions
of the planetary rover.
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Figure 6. The difficult sample regions for manual annotation in the Katwijk beach planetary rover dataset. The red frames
highlight the difficult sample regions. “1” refers to a broken edge, which has a very complicated structure. “2” refers to a
rock target, which is difficult to identify the skyline part. “3” refers to a high reflection target, and its skyline part is also
difficult to identify.

Figure 7 shows a result sample of the proposed conservative labeling strategy. Figure 7a
displays a typical sample image from the Katwijk dataset. There are roughly four bound-
aries required to annotation. The boundaries “1”, “2”, and “3” are easy to locate (same
location as the image borders) and provide high-constraints (higher pixel-ratio). The only
difficult annotation happens to the skyline “4”. Figure 6 indicates that pixel-level annota-
tion for skyline “4” is difficult, which can introduce significant human errors. In fact, the
pre-training network achieves very accurate predictions in the Skyfinder dataset (discussed
in Section 3.1). Therefore, the target of the proposed conservative labeling strategy for the
Katwijk dataset is to perform special fine-tuning of the pre-trained network to fit the new
scene, the navigation visions of the planetary rover.

The conservative labeling strategy preferentially guarantees the annotated skyline “4”
located inside the corresponding image region (red or green region in Figure 7c). Then,
the conservative labelling method pushes the annotated skyline to the natural skyline as
close as possible without infecting too much annotation speed. (The annotated and natural
skyline refer to the handcrafted label and the actual skyline, respectively.) Because of this
conservative skyline selection criterion, the proposed strategy is named the conservative
labeling strategy. In practical operation, the conservative labeling strategy takes about one
minute per image. The labeling tool used in this research is Labelme [66]. Approximately
3% of the Katwijk dataset (150 images) has been annotated in this research.
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Figure 7. The proposed conservative labeling method. “1”, “2”, “3”, and “4” refer to the index of the boundaries. Gold “1”,
“2”, and “3” refer to the easy-annotated boundaries, and purple “4” refers to the difficult-annotated boundaries. (a) adds the
transparent conservative label to the original image. (b) refers to the original image. (c) refers to the conservative label.

Equations (4)–(13) brief the process of the weak supervision adopted in this research. It
is notably that the technical terms of Domain, Task, Feature Space, and Marginal Probability
Distribution can also be found in [67]. Domain is consisted of samples, while a single
sample is represented using a single Feature (X). All Features in a Domain (D) consist of
the Feature Space (X). It is noteworthy that Source Domain (Ds) and Target Domain (Dt) of
the transfer learning refer to the Domain of the pre-training and transfer-training Sample
Space, respectively. Each Domain has two coefficients, the Feature space (X) and Marginal
Probability Distribution (P(X)). The Marginal Probability Distribution (P(X)) refers to the
marginal probabilities of the Feature Space (X). f (x) and Ψ′(x) refer to Task. For example, it
can be the image segmentation. Transfer learning aims to achieve the f (x) in Dt using the
Prior Knowledge (Ψ′) from Ds [67].

Ψ′(x) = f (x) + Φ(|x−Λ|) (4)

Frosst and Hinton [68] claimed that a converged neural network should correspond
to a Marginal Probability Distribution. In Equation (4), Ψ′ and f refer to the same Task
with different convergences. Convergence is a concept corresponding to the network. It
is noteworthy that the Knowledge is decided by the Domain, and a converged network
contains the Knowledge of the specific Domain. “Ψ′(x)” applies the Prior Knowledge (Ψ′) of
Ds to the x, and “ f (x)” refers to the Knowledge of Dt. To distinguish these two Knowledges,
this project uses the Prior Knowledge to correlate the Knowledge of the Source Domain (Ds),
and the Converged Knowledge to correlate the Knowledge of the Target Domain (Dt).

Λ represents the sample space of Ds that is only related to Marginal Probability
Distribution of Ds, and “x−Λ” refers to the difference between any x and Λ in a board
sense. “x − Λ” should not include any negative representation, so Equation (4) uses
“|x−Λ|” to refer to absolute difference any x and Λ in a board sense. Therefore, Equation
(4) relates the prediction from the Prior Knowledge and the Converged Knowledge of
Dt using Φ(|x−Λ|), where Φ refers that the difference between Ψ′ and f is a function
correlated to “|x−Λ|”. In another word, if Ds and Dt refer to the pre-training and transfer-
training Domains, then Φ(|x−Λ|) should refer to the difference by straightforwardly
applying the pre-trained model in the transfer-trained scenario.

During the beginning of the transfer learning process, the Prior Knowledge (Ψ′) of Ds
should be different than the converged prediction ( f ) in Dt. Thus, Φ(|x−Λ|) does not
equal to zero at the beginning. However, the essential of the transfer learning process
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should fine-tune the Prior Knowledge from the Marginal Probability Distribution of Ds to
Dt. Therefore, Ψ′ and f should predict the same prediction, and Φ(|x−Λ|) should equal
to zero. .

Σ f (x) = f (X) (5)

The above discussions are expressed from the view of a single sample, while the Prior
Knowledge and Converged Knowledge should also be valid for the entire Domain. This
research defines an Extension operator (

.
Σ) in a board sense, which refers to the process

from a single sample x to X. Equation (5) depicts an example of the Extension from x to X.
Equation (6) is accomplished by conducting

.
Σ on Equation (4).

Ψ′(X) = f (X) + Φ(|X−Λ|) (6)

If the transfer learning is considered as an ongoing process, X refers to the intermedia
feature space between Ds and Dt. When X approaches to a closed point as Λ, Φ(|X−Λ|)
should be a small value closed to zero so that the difference between Ds and Dt becomes
small. It can be expressed as “Ψ′(X) ∼= f (X)”. Therefore, if the annotation and learning is
perfect, the Prior Knowledge represented by Ψ′ should converge as same as f in Dt.

The above discussions assume the difference between the Prior Knowledge and the
Converged Knowledge only comes from the difference between Ds and Dt. Therefore, f
can represent the ground-truth Marginal Probability Distribution which is the condition of
supervised learning. However, the conservative annotated dataset is not fully supervised.
Thus, the ground-truth f should be divided into two parts, f ′ and g. f ′ refers to the weak
supervision from the conservative annotations, and g refers to the difference between f
and f ′.

Ψ′(x) =
[

f ′(x) + g(x)
]
+ Φ(|x−Λ|) (7)

Equation (7) replaces the f in Equation (4) with f ′ and g. g is straightforwardly
correspond the unsupervised pixels in the conservative annotation. Notably, Ψ corresponds
to the conservative annotations, and Ψ′ corresponds to the completed annotations.

Ψ(x) = Ψ′(x)− g(x) = f ′(x) + Φ(|x−Λ|) (8)

Equation (8) moves the g(x) to the left side and pack with Ψ′ as a new value, Ψ.

.
ΣΨ(x) =

.
Σ
(
Ψ′(x)− g(x)

)
=

.
Σ
[

f ′(x) + Φ(|x−Λ|)
]

(9)

Equation (9) performs
.
Σ on Equations (4) and (8) in Dt, then achieves Equation (10).

Ψ(X) = Ψ′(X)− g(X) = f ′(X) + Φ(|X−Λ|) (10)

Now, Equation (11) assumes g(X) is a very small value to zero because of the prior
knowledge and

.
Σ from x to X.

Ψ(X) = Ψ′(X)− g(X) ≈ Ψ′(X) (11)

Therefore, Equation (12) can be achieved from Equations (6), (10), and (11).

f (X) + Φ(|X−Λ|) = f ′(X) + Φ(|X−Λ|) (12)

Equation (13) eliminates Φ(|X−Λ|) from both sides in Equation (11). Equation (12)
justifies the weak supervision from the theory aspect.

f (X) ≈ f ′(X) (13)

To verify the above process and assumptions, this research uses the detailed experi-
ments in Section 3.3.
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2.4. Transfer Training Process: Sky and Ground Segmentation Network for the Navigation Visions
of Planetary Rover

The transfer-training process is carried out on the Prior Knowledge of the pre-training
process. This project proposes Hypothesis 1:

Hypothesis 1. Φ(|X−Λ|) consists of two parts, the task-based loss (Ltask) and the environment-
based loss (Lenvi). (See Equation (14))

Φ(|X−Λ|) = Ltask + Lenvi (14)

The Difference between the Source Domain (Ds) and the Target Domain (Dt) is the fun-
damental reason of Φ(|X−Λ|), which can be divided into two parts, the Difference caused
by the Task change and the Difference caused by the Environment change. This project
uses Ltask to characterize the loss related to Task, while Lenvi characterizes the loss related
to environmental changes. Equation (6) can be transformed into Equation (15) according
to Hypothesis 1, where Ltask is a function of Task and Lenvi is a function of Environment.

Ψ′(X) = f (X) + Φ(|X−Λ|) = f (X) + (Ltask + Lenvi) (15)

Equation (16) represents the pre-training process based on supervised learning.

lim
Φ(|X−Λ|)→0

[ f (X) + Φ(|X−Λ|)] = lim
(Ltask+Lenvi)→0

[ f (X) + (Ltask + Lenvi)] (16)

The transfer-learning process is a fine-tuning process based on the Prior Knowledge of
the pre-training process. The Hypothesis 2 is:

Hypothesis 2. If the pre-training has obtained superior sky and ground segmentation Prior
Knowledge, it is considered that Ltask has approached ZERO (see Equation (17)).

Ltask ≈ 0 (17)

This research uses Hypothesis 2 to assume that the pre-trained model is already
in a superior Prior Knowledge of recognizing the sky pixels, ground pixels, and skylines.
The Φ(|X−Λ|) of using the pre-trained model in the planetary rover scene comes from
the Lenvi.

Therefore, Equation (17) can be substituted into Equation (15) to get Equation (18).

Ψ′(X) = f (X) + Lenvi (18)

Equation (18) depicts the same meaning as Equation (10), where g(X) refers to Ltask,
and Lenvi refers to Φ(|X−Λ|) in the transfer-training process.

It is essential to transfer the pre-trained achievement to the planetary rover scenario.
Although the proposed NI-U-Net shows superior performance on the Skyfinder benchmark,
Figures 3 and 7a illustrate the distinctions between the Katwijk dataset and Skyfinder
dataset, which also indicates the variant data distribution. However, the conservative
labeling method can only generate limited samples. Thus, this research firstly performs
data augmentation, then conducts the transfer learning.

This research adopts 22 augmentation schemes, including flip, brightness adjustment,
contrast adjustment, crop, rotation, and color-channel shifting (see Figure A4 for more
details). The augmentation increases the sample space from 150 to 3300 images. Notably,
all augmented conservative data used for transfer training, and there are no validation
and testing sets in the transfer training process. Validation and testing sets aim to evaluate
the overfitting rate. However, transfer learning generally adopts to solve the problem
with insufficient data. If there is enough data, there is no need for a transfer training
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strategy. Therefore, overfitting in transfer learning is inevitable to some extent. On the other
hand, the essence of transfer learning is to fine-tune the pre-trained network with a small
amount of data. Compared to dividing the validation and testing sets from a small dataset,
using all available data for training can achieve better transfer training performance. The
quantitative evaluation of the transfer learning result should use another part of accurately
labeled data. Transfer learning directly loads the weight of the computation graph from
the pre-trained network as the initializations. The learning rate sets to 0.00001. The starting
point is closed to the eventual converging callback. Thus, the learning rate should be a
closed value as in pre-training. The optimizer adopts Adam. The epoch callback sets to
300 epochs, and the batch size uses 15 images per batch.

This research further proposes the weakly supervised loss and accuracy for the conser-
vative labeling method, which is named as the conservative binary cross-entropy (lossbice)
and the conservative binary accuracy (accbi). Equations (19) and (20) are the mathematical
expressions of traditional binary cross-entropy and binary accuracy, respectively. The p,
ypred, label, N, and NFN refer to possibility, predictions, ground-truth labels, class num-
ber, and pixel number of false-negative, respectively. Notably, Equations (19) and (20)
express the lossbice and accbi with a function format (in programming). For example, the
“lossbice

(
p
(

ypred

)
, label

)
” (see Equation (19)) has the function declaration of

“lossbice(argument1, argument2)”, the first formal parameter is the “p
(

ypred

)
”, and the sec-

ond formal parameter is the “label”. Equation (20) follows the same pattern as Equation (19).

lossbice

(
p
(

ypred

)
, label

)
= − 1

N

N

∑
i=1

[
label · log

(
p
(

ypred

))
+ (1− label) · log

(
1− p

(
ypred

))]
(19)

accbi

(
p
(

ypred

)
, label

)
=

NTP + NTN
NTP + NTN + NFP + NFN

(20)

Pre-training is a binary classification task, but transfer learning becomes an “incom-
plete” multi-classification task. There are three types of pixels in conservative annotations
(sky (red), ground (green), and unannotated (black) pixels in Figure 7). The sky and ground
pixels are annotated “easy” pixels, while the unlabeled pixels are unannotated “hard”
pixels. The transfer learning in this research can only rely on the “easy” pixels rather than
all pixels. Equations (21) and (22) are the proposed conservative (binary) cross-entropy
(losscon) and conservative (binary) accuracy (acccon).

losscon = lossbice

[(
ypred ∗masks

)
, labels

]
+ α ∗ lossbice

[((
1− ypred

)
∗maskg

)
, labelg

]
(21)

acccon =
1
2
∗

 accbi

(
ypred, labels

)
− Ns

Np

1− Ns
Np

+ β ∗

 accbi

((
1− ypred

)
, labelg

)
− Ng

Np

1− Ng
Np

 (22)

where masks, labels, maskg, labelg, α, β, Ns, and Ng refer to conservative sky-mask, con-
servative sky-labels, conservative ground-mask, conservative ground-labels, weight for
losscon, weight for acccon, sky-pixel number, and ground-pixel number, respectively.

Algorithm A1 in Appendix A as well as Equations (21) and (22) explain the procedure
of calculating the losscon and acccon in one backpropagation (the following eight steps).

(1) The sky and ground segmentation network inputs a batch of images and outputs a
prediction (ypred), while the corresponding conservative label is labelcon. The labelcon
can be divided into the sky, ground, and unannotated pixels using two thresholds (λs
and λg). (Notably, all s and g subscripts indicate sky and ground.)

(2) This research calculates the number of sky (Ns) and ground (Ng) pixels in labelcon, while
the Ns/Np and Ng/Np refer to sky and ground pixel ratio in labelcon, respectively.

(3) This research produces a masks and maskg, where masks has all conservative annotated
sky pixels with value one and others with value zero, where maskg has all conservative
annotated ground pixels with value one and others with value zero.
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(4) This research conducts the pointwise multiplications between ypred and masks to

achieve the filtered conservative sky pixel prediction (see “
(

ypred ∗masks

)
” in

Equation (21)), which only remains the predictions at the exact locations of the con-
servatively annotated sky pixels.

(5) This research uses value one to pointwise-subtract the ypred (the “
(

1− ypred

)
” in

Equation (21)) because the situation of sky and ground should be opposite. This
research conducts a similar process (as step (4)) to achieve a filtered conservative
ground pixel prediction (see “

((
1− ypred

)
∗maskg

)
” in Equation (21)).

(6) This research generates the labels and labelg to indicate the annotated sky and ground
pixels only. The labels has sky pixels with value one and others with zero. The labelg
has ground pixels with value one and others with zero.

(7) This research calls the lossbice function (Equation (19)) with the input of step (4)
and step (6) to achieve the conservative sky cross-entropy. This research calls the
lossbice function (Equation (19)) with the input of step (5) and step (6) to achieve the
conservative ground cross-entropy. This research further adds a weight parameter
“α” to balance the two cross-entropies.

(8) Equation (22) calls the accbi function (Equation (20)) with the input of step (4) and
step (6) to achieve the conservative sky accuracy. Equation (22) calls the accbi function
(Equation (20)) with the input of step (5) and step (6) to achieve the conservative
ground accuracy.

3. Results and Discussion

The operating system of this research is Ubuntu 18.04, the deep learning environment
is TensorFlow 2.1, GPU support is CUDA 10.1, and the programming language is Python
3.6. The hardware configuration is i7-7700 CPU, RTX1080 graphics card, 32 GB memory.

3.1. Pre-Trained Results in the Skyfinder Dataset

Figure 8 shows the binary cross-entropy loss curves (Figure 8a), accuracy curves
(Figure 8b), IoU curves (Figure 8c), and Dice score curves (Figure 8d) of the proposed
NI-U-Net in the pre-training process. (i) The curves are relatively smoothed, indicating
the pre-training process is very stable. These curves are relatively smooth, indicating
the division ratio (of training, validation, and testing sets) and the batch size setting are
effective. A proper batch size can avoid the generation gap and provide an efficient
gradient for backpropagation [69]. (ii) There is no sign of overfitting. The training and
validation losses keep decreasing; meanwhile, the training and validation accuracy both
keep increasing. (iii) There is no sign of underfitting either. The training and validation
accuracies achieve a high value of over 98%. Thus, the Skyfinder dataset used in this
research has sufficient diversity. The proposed sky and ground segmentation network has
good data fitting capability.

The curves in Figure 8 appear similar learning trends, which indicate a possible risk of
data contamination. This research eliminates this concern using Figure A5, which is the cor-
responding curves from a re-implemented U-Net. Notably, the training/validation/testing
sets for Figures 8 and A5 are the same. The curves in Figure A5 do not appear similar learn-
ing trends, which indicate the data contamination does not occur. Furthermore, Figure 8
appears the crosses between the training and validation curves, which is another evidence.
Besides, the re-implementation for the U-Net has referenced the codes in [70,71], which
both have high stars in GitHub.

Table 1 provides the loss, accuracy, IoU, and Dice score of the training, validation, and
testing sets of the pre-training process. This research also provides the results from U-Net
experiments in Table 1. The proposed NI-U-Net is a highly modified network based on the
general U-Net. It is straightforward to compare the results of the proposed NI-U-Net to the
original U-Net.
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Figure 8. The loss (binary cross-entropy), accuracy, IoU, and Dice score records of the pre-training process in train-
ing and validation set (the Skyfinder dataset). (a–d) refer to the loss (binary cross-entropy), accuracy, IoU, and Dice
score, respectively.

Table 1. The loss, accuracy, RMSE, and IoU results of the pre-trained sky and ground
segmentation network.

Networks
Item Loss Accuracy IoU Dice Score

Unit NA % % %

U-Net
Training set 0.0268 98.844 97.625 98.798

Validation set 0.0455 98.281 96.113 98.018
Testing set 0.0453 98.285 96.142 98.033

NI-U-Net
Training set 0.0372 99.411 98.664 99.327

Validation set 0.0433 99.212 98.169 99.076
Testing set 0.0427 99.232 98.224 99.104

The symbol “NA” and “%” refers to non-applicable and percentage, respectively. The “U-Net” refers to the related
research [57]. The “NI-U-Net” refers to the pre-trained results from this research.

Table 2 shows the results of the pre-training process on the Skyfinder dataset. This
research quantitatively compares to the state-of-the-art by adopting seven metrics. The
pre-trained sky and ground network achieved the best results on the open benchmark,
the Skyfinder dataset [34]. The “NI-U-Net” row (in Table 2) refers to the results from
the proposed network in the pre-training process. Notably, Hoiem, Tighe, Lu, Mihail,
Song, Place, and Nice are not tested at the same images as the “U-Net” and “NI-U-Net”
(because their code is not provided). This research lists their results as additional evidence.
However, the “U-Net” refers to the experimental results from the same training, validation,
and testing sets as the “NI-U-Net”. Table 2 depicts the proposed NI-U-Net achieves the
best results among all seven metrics. Notably, the U-Net appears a higher value in RMSE
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compared to “Nice (2020)” and NI-U-Net. The prediction values in the binary classification
task cannot directly influence the classification. Regarding the accuracy, any prediction
value over “0.5” is decided as the one-hot classification of value “1”.

Table 2. The pre-trained sky and ground segmentation network results evaluated in the open benchmark (the
Skyfinder dataset).

Metrics Accuracy Precision Recall Dice Score MCR RMSE IoU Retained
Amount

Unit % % % % % NA NA Images

Hoiem (2005) NA NA NA NA 22.83 NA NA 18,000
Tighe (2010) NA NA NA NA 19.51 NA NA 18,000

Lu (2014) NA NA NA NA 25.08 NA NA 18,000

Mihail (2016) NA NA NA NA 12.96 NA NA NA
Song (2018) NA NA NA NA 96.30 NA NA 18,000
Place (2019) NA NA NA NA 58.90 NA 0.8300 60,000
Nice (2020) NA 94.6 96.5 95.2 NA 0.063 NA 38,000

U-Net 98.285 98.464 98.094 98.033 0.0172 0.131 0.9614 70,000

NI-U-Net 99.232 99.211 99.221 99.104 0.0077 0.0427 0.9822 70,000

The bold contexts refer to the best value in the corresponding metric. “Hoiem”, “Tighe”, and “Lu” refer to the baseline results provided
in [26], respectively. Mihail, Song, Place, and Nice refer to the recent advanced results in [26,31,34,35], respectively. The “U-Net” refers to
the results from the re-implemented U-Net. The “NI-U-Net” refers to the pre-trained results from this research. The symbol “NA” refers to
either not applicable or not available.

Figure 9 shows the qualitative performance of the pre-trained network in some typical
scenes of the Skyfinder dataset. This research displays the same scenes as in the related
research [5,26,31,34,35] to qualitatively highlight the improvements in this research.
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Figure 9. The result of the pre-trained network in normal visual conditions of the Skyfinder dataset. “RGB”, “GT.”,
and “Pred.” refer to the input source images, the ground-truth annotations, and the predictions of the proposed NI-U-
Net, respectively. “peak”, “lake”, “city”, “buildings”, “mountain”, and “street” refer to some example scenes in the
Skyfinder dataset.

The last column in Table 2 depicts the retained amount of the images in the Skyfinder
dataset. This research retains the most Skyfinder dataset compared to all the benchmarks,
which means the pre-training data is more challenged than the benchmarks (10% to 50%
more). Many of them are very difficult in terms of visual conditions because of illumination,
weather, or noises (see Section 2.1.1 and Figure 3).
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However, the pre-trained network showed excellent performance in the difficult
scenes. Figure 10 depicts some example results from difficult scenes. (i) A widespread
challenge in vision-based applications is the backlight. The pre-trained network recovered
the invisibility of the backlight at a relatively high level. (ii) The “cloud and contrast”
column indicates a high contrast situation from a part of the sky. The pre-trained network
can identify the correct ground pixels. (iii) The “dark and noise”, “illumination”, “night”
columns indicate the scenes with low illumination and high noises. The sky and ground
pixels were detected precisely, which show the robustness for noises and illumination.
(iv) The “fog” column shows a blur around sky and ground skyline. It is very challenged
even for human vision, while the pre-trained network accurately detected the sky and
ground pixels.
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Figure 10. The sky and ground segmentation results of the pre-trained network in many difficult scenes. “RGB”, “GT.”,
and “Pred.” refer to the input source images, the ground-truth annotations, and the predictions of the proposed NI-U-Net,
respectively. “backlight”, “cloud and contrast”, “dark and noise”, “illumination”, “fog”, and “night” refer to some example
difficult scenes in the Skyfinder dataset.

3.2. Intermedia Results of Using Pre-Trained Network in the Katwijk Dataset

Figure 11 illustrates the intermedia results of straightforwardly using a pre-trained
network in the Katwijk dataset without transfer training process. Figure 11a shows three
random scenes from the Katwijk dataset, and Sections 3.2 and 3.3 use them as an example
to compare the performance between the pre-trained network and transfer-trained NI-
U-Net. Figure 11b refers to the conservative annotations of the corresponding scene
in Figure 11a. Figure 11c illustrates the results of using the pre-trained network in the
Katwijk dataset. The pre-trained network has achieved the Prior Knowledge of sky and
ground segmentation according to the following points. The intermedia results support the
discussion in Section 2.1.1, which is the pre-training process shares a similar fundamental
logic as in the navigation vision of the planetary rovers.

(1) The pre-trained network has generally found the sky and ground area (the black and
white predictions approximately gathered at corresponding image region).

(2) The pre-trained network also roughly identified the skyline between sky and ground
(a shallow trace at the top of the image region).

However, the results of the pre-trained network do not accomplish the expected results
for the navigation vision of the planetary rovers. There are still significant wrong predic-
tions in both sky and ground areas, which verifies the assumption of Lenvi (in Section 2.4)
from the Feature Space and Marginal Probability Distribution between the Skyfinder
dataset and the Katwijk dataset.
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Figure 11. The visualizations of pre-trained and transfer-trained networks for three random scenes from the Katwijk dataset.
(a) refers to the RGB input images from the Katwijk dataset. (b) refers to the corresponding conservative annotations from
Section 2.3. (c) refers to the prediction from the pre-trained network in the Katwijk dataset. The red frames highlight the
approximate skylines, and the white and black pixels have found the rough sky and ground regions. (d) refers to the results
of the transfer-trained network. It is noteworthy that each column only correlates to a single scene.

3.3. Final Results in the Katwijk Beach Planetary Rover Dataset

The annotation methods in most annotation software can be divided into three cate-
gories, the bounding-box, object tags, and pixel-annotation [72]. Although the bounding-
box notation can satisfy the mathematical logic in Section 2.3, it discards the unique
distributions of the sky and ground pixels. The unique distributions of the sky or ground
pixels are normally clustered or connected image regions. The tag notation is obviously not
suitable for this research because all scenes have sky and ground tags. The pixel-annotation
method consumes too much time and human resources [46]. The proposed conservative
annotation method combines the ideas of bounding-box and pixel-annotation. From the
perspective of efficiency, the conservative dataset can be annotated quickly and efficiently.
The average annotation time is about one to two minutes per image in the Katwijk dataset.



Sensors 2021, 21, 6996 19 of 29

Figures 12 and A4 display the results of the conservative annotation method and the
following data augmentations. The conservatively annotated image is about 3% of the
random selected frames from the navigation video stream of the planetary rovers.
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Figure 12. The conservative labels for the navigation visions of the planetary rover. The red, green, and black regions refer
to the ground, sky, and un-annotated pixels, respectively. The left figures come from the Katwijk dataset [47].

The transfer training process achieved excellent results with very limited manual
annotations, which indicates that the proposed framework based on the weak supervision
and transfer learning has outstanding practicality and robustness for the navigation visions
of planetary rovers. Figure 11d displays the predictions from the transfer-trained network
with the corresponding scenes in Figure 11a. Table 3 introduces the experimental results of
the transfer-trained network with the conservative loss (losscon) and conservative accuracies
(acccon). This research is dedicated to providing assistance for the semantic landmarks
detection of the planetary rovers. The sky and ground segmentation network can provide
efficient semantic tags for all landmarks appearing in the navigation visions. Figure A6
utilizes red and green frames to highlight some example landmarks. The sky and ground
segmentation can help to eliminate some wrong landmarks. Furthermore, the blue frame
highlights the skyline between sky and ground, which can provide rich landmarks such as
shadows, rocks, stones, traces, clouds, hills, mountains, etc.

Table 3. The experimental results of the transfer learned NI-U-Net.

Conservative Loss (losscon) Conservative Accuracy (acccon) Conservative Accuracy (acccon)
of Sky Pixels

Conservative Accuracy (acccon)
of Ground Pixels

1.5606375 × 10−7 ~100.0% ~100.0% ~100.0%

The losscon and acccon refer to Equations (21) and (22), respectively. “~100%” refers to the value very close to 100%.

Figure 13 depicts the training records of the proposed NI-U-Net in the transfer training
process. The accuracy curve converges at about 30th epochs, which is earlier than the loss
curve (until 200th epoch). The different converge speed supports the discussion about the
continuous and discontinuous variable loss and accuracy in Section 3.1. Moreover, the
overall transfer training process does not occur the over-fitting because the accuracy and
loss curves stay flat. Furthermore, the accuracy keeps at a high level, so the underfitting
does not occur. Besides, there are some pikes in both loss and accuracy curves. The
training strategy in this research is the batch-based random gradient descent, and it is
common to occur some unstable “vibrations.” However, the importance is that the curve
keeps in a proper general trend. The loss curve keeps decreasing, and the accuracy
curve keeps increasing. The conservative accuracy can only be used as an indicator to
measure the training ability of conservatively annotated labels in the transfer training
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process. The “difficult” pixels (closed to the skylines) cannot be used for calculating the
traditional accuracy.
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training and validation set (augmentation data). (a,b) refer to the epoch-wised acccon in the transfer-training process.
(c,d) correspond to the epoch-wised losscon in the transfer-training process. (b,d) are the enlarge figures between epoch 0
and 200 from (a,c).

This research utilizes the full-manually annotated images from the Katwijk dataset
to evaluate the network of transfer learning. There are different 30 images (the Katwijk
dataset) that have been annotated as evaluation scenes. Notably, the ratio of evaluation and
transfer training images is 1:5. This research then conducts the same augmentations (the
same as in Section 2.4) to the evaluation images to 660 images. Thus, these (fully annotated)
660 images become the evaluation set for the transfer learned NI-U-Net. Table 4 indicates
that the evaluation cross-entropy, accuracy, IoU, and Dice score are 0.0916, 99.269%, 99.256%,
and 99.626%, which stays at a high level. The evaluation loss (in Table 3) and evaluation loss
(in Table 4) are two different values (1.0714 and 0.0916), which verifies that the specific value
of the loss does not directly relate to the network performance (discussed in Section 3.1).

Table 4. The results of the (fully annotated) evaluation images for the transfer learning.

Evaluation Loss Evaluation Accuracy Evaluation IoU Evaluation Dice Score

0.0916 99.269% 99.256% 99.626%

The all above discussions have verified the feasibility of using the proposed weak
supervision and transfer learning framework to handle the sky and ground segmenta-
tion problem in the planetary rover’s navigation vison. This is also a verification of the
assumption in Section 2.3.
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This research attached a demo video that integrates the sky and ground segmentation
network (from the transfer learning) into the navigation visions of the Katwijk planetary
rover dataset to further illustrate the training results. This research applies the inference
time and framerate as indicators for the real-time analysis. In the GPU-support of RTX1080,
the proposed NI-U-Net achieves about 0.026 s per frame for the average inference time and
38 frames per second (fps) for the framerate. Figure A8a depicts all inference times of the
30 evaluation scenes. (The evaluation scenes in this paper refer to the 30 images used in
Table 4). The framerate and inference time are far sufficient for the real-time requirements
of navigation video. Furthermore, the video speed of the attached demo video is eight fps.
The processing speed of the network proposed in this research is about five times higher
than the fps in the demo video. Furthermore, this research uses OTSU image segmentation
as a comparison. The timing curves are depicted in Figure A8b, and the ROC, POR, and
AUC curves are illustrated in Figure A9. Although OTSU has faster processing speed than
NI-U-Net, the performance is not actually acceptable (see Figure A10).

This research also utilizes re to visualize the possibility of the transfer-trained NI-U-
Net in some example images from the NASA album [56]. Figure A7 displays the sky and
land segmentations corresponding to the view in Figure A1. It is noteworthy that Figure A7
does not mean the transfer trained NI-U-Net can be directly used for [56], but it has some
robustness for some scenes. Different planetary environments correlate to significantly
variant environment distributions, it is impossible to expect one model can take care of all
planetary missions. Besides, the aim of this research is to propose a visible framework for
the sky and ground segmentation in the navigation vision system with the planetary rovers.
According to the results in Section 3.3 and the visualization in Figure A7, the proposed
framework has the ability to handle similar missions as a framework.

4. Conclusions and Future Works

This research proposes a sky and ground segmentation (sky and ground segmentation)
framework based on weak supervision and transfer learning for the navigation visions of
the planetary rover, which can improve the accuracy and efficiency of semantic landmarks
detection in the practical scenario. This research designed a new convolution-only sky and
ground segmentation architecture, which overcomes the blurry prediction, information
loss, and vanishing gradient that occurs in existing solutions. The pre-training achieves
the best results on the open benchmark (the Skyfinder dataset) among all seven metrics
compared to state-of-the-art. This research further proposes a conservative labeling method,
which successfully transfers the pre-trained state-of-the-art segmentation network to the
planetary rover vision. This research appears to be the first successful attempt at sky and
ground segmentation for the navigation visions of the planetary rover.

This research is an E2E high-performance solution in practical scenarios and can meet
real-time requirements compared with related work. The accuracy, precision, recall, Dice
score, MCR, RMSE, and IoU are 99.232%, 99.211%, 99.221%, 99.104%, 0.0077, 0.0427, and
98.224%, respectively. This research also shows promising results in some Mars rover
images (see Figures A1 and A7). However, the proposed NI-U-Net has not been tested in
the onboard devices. To transfer the proposed framework to the onboard device requires
a few more steps. (1) The support deep learning library (normal TensorFlow) needs to
transfer to the lite version (like TensorFlow-Lite). (2) The loss function and evaluation
metrics need further customizations. (3) To run in onboard devices, the proposed NI-U-Net
requires more optimization for the onboard system, hardware, and software. This can be a
great future work since this is not the focus of this research.

This research can be widely used in semantic segmentation, target detection, and
rover autonomy tasks of planetary exploration vision. The proposed conservative labeling
method (of the weak supervision) can help transform many advanced achievements with
laboratory conditions into practical applications. Furthermore, even though the weak
supervision process is a binary classification task, the proposed weak supervision method
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based on the conservative labeling method can be widely applied to multi-classification
application scenarios.
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Appendix A

Algorithm A1 Conservative loss and accuracy in once gradient descent

Input: Predicetion : ypred
Conservatively annotated label : labelcon
Treshold for sky− annotation : λs
Treshold for ground− annotation : λg

Output: Conservative binary cross− entropy : losscon
Conservative binary accyracy : acccon

1 Initialization:
2 Constant: Np, Ns, Ng = 0;
3 Array: masks, maskg, labels, labelg = 0;
4 for pixel in labelcon do
5
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Appendix A 

Algorithm A1 Conservative loss and accuracy in once gradient descent 

Input: Predicetion: 𝑦𝑝𝑟𝑒𝑑 

  Conservatively annotated label: 𝑙𝑎𝑏𝑒𝑙𝑐𝑜𝑛 

  Treshold for sky-annotation: 𝜆𝑠 

  Treshold for ground-annotation: 𝜆𝑔 

Output: Conservative binary cross-entropy: 𝑙𝑜𝑠𝑠𝑐𝑜𝑛 

  Conservative binary accyracy: 𝑎𝑐𝑐𝑐𝑜𝑛 

1 Initialization: 

2  Constant: 𝑁𝑝, 𝑁𝑠, 𝑁𝑔 = 0; 

3  Array: 𝑚𝑎𝑠𝑘𝑠, 𝑚𝑎𝑠𝑘𝑔, 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑙𝑎𝑏𝑒𝑙𝑔 = 0; 

4 for 𝑝𝑖𝑥𝑒𝑙 in 𝑙𝑎𝑏𝑒𝑙𝑐𝑜𝑛 do  

5 𝑁𝑝 = 𝑁𝑝 + 1  

6 if 𝑝𝑖𝑥𝑒𝑙 ≥  𝜆𝑠 then  

7 𝑚𝑎𝑠𝑘𝑠[𝑝𝑖𝑥𝑒𝑙] = 1  

8 𝑁𝑠 = 𝑁𝑠 + 1  

9 if 𝜆𝑔  ≤ 𝑝𝑖𝑥𝑒𝑙 ≤  𝜆𝑠 then  

10 𝑚𝑎𝑠𝑘𝑔[𝑝𝑖𝑥𝑒𝑙] = 1  

11 𝑁𝑔 = 𝑁𝑔 + 1  

12 end  

13 end  

14 end  

15 𝜂𝑠 = 𝑁𝑠/𝑁𝑝; 

16 𝜂𝑔 = 𝑁𝑔/𝑁𝑝; 

17 𝑙𝑎𝑏𝑒𝑙𝑠 = 𝑚𝑎𝑠𝑘𝑠; 

18 𝑙𝑎𝑏𝑒𝑙𝑔 = 𝑚𝑎𝑠𝑘𝑔; 

19 𝑦𝑝𝑟𝑒𝑑_𝑠 = 𝑦𝑝𝑟𝑒𝑑 ∗ 𝑚𝑎𝑠𝑘𝑔; 

20 𝑦𝑝𝑟𝑒𝑑_𝑔 = (1 −  𝑦𝑝𝑟𝑒𝑑) ∗ 𝑚𝑎𝑠𝑘𝑔; 

21 𝑙𝑜𝑠𝑠𝑐𝑜𝑛_𝑠  ←  𝑦𝑝𝑟𝑒𝑑_𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠; 

6
7
8
9
10
11
12
13
14
15 ηs = Ns/Np;
16 ηg = Ng/Np;
17 labels = masks;
18 labelg = maskg;
19 ypred_s = ypred ∗maskg;
20 ypred_g = (1− ypred) ∗maskg;
21 losscon_s ← ypred_s, labels ;
22 losscon_g ← ypred_g, labelg ;
23 losscon ← losscon_s + losscon_g ;
24 accs ← ypred_s, labels ;
25 acccon_s = (accs − ηs) / (1− ηs);
26 accg ← ypred_g, labelg ;
27 acccon_g =

(
accg − ηg

)
/ (1− ηg);

28 acccon =
(
acccon_s − acccon_g

)
/ 2;

https://doi.org/10.1109/WACV.2016.7477637
https://doi.org/10.1177/0278364917737153
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Figure A1. The practical views from the Perseverance, Opportunity, and Spirit Mars rover of the NASA. (a) refers to the 

view of left Mastcam-Z Camera captured by the Perseverance [56]. (b) refers to the view of right Mastcam-Z camera cap-

tured by the Perseverance [56]. (c) refers to the view of rear hazard avoidance camera captured by the Perseverance [56]. 

(d) refers to the north edge of the “Home Plate” plateau captured by the Spirit [73]. (e) refers to the rim of “Erebus Crater” 

captured by the Opportunity [73]. (f) refers to the Meridiani Planum region captured by the navigation camera of the 

Opportunity [73]. 

 

Figure A2. The examples of the deleted images from the Skyfinder dataset. The images have been resized to same height 

and width for better displaying. The deleted images are mainly extremely upset visual condition, which is meaningless as 

a vision data. For example, the damaged image, purely dark (or white), extremely bad visibility (huge occlusion, backlight, 

noises, fog, cloud, rain, and etc.). 

 

Figure A3. The example image from the other two planetary datasets. (a) and (b) refer to the image form [50,55], respec-

tively. “1”, “2”, “3”, “4”, “5”, and “6” refer to irrelevant targets of vehicle, road, buildings, lamp, planet, and stagnant 

water. 

Figure A1. The practical views from the Perseverance, Opportunity, and Spirit Mars rover of the NASA. (a) refers to the view
of left Mastcam-Z Camera captured by the Perseverance [56]. (b) refers to the view of right Mastcam-Z camera captured by
the Perseverance [56]. (c) refers to the view of rear hazard avoidance camera captured by the Perseverance [56]. (d) refers to
the north edge of the “Home Plate” plateau captured by the Spirit [73]. (e) refers to the rim of “Erebus Crater” captured by
the Opportunity [73]. (f) refers to the Meridiani Planum region captured by the navigation camera of the Opportunity [73].
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Figure A2. The examples of the deleted images from the Skyfinder dataset. The images have been resized to same height
and width for better displaying. The deleted images are mainly extremely upset visual condition, which is meaningless as a
vision data. For example, the damaged image, purely dark (or white), extremely bad visibility (huge occlusion, backlight,
noises, fog, cloud, rain, and etc.).

Sensors 2021, 21, 6996 23 of 29 
 

 

22 𝑙𝑜𝑠𝑠𝑐𝑜𝑛_𝑔  ←  𝑦𝑝𝑟𝑒𝑑_𝑔, 𝑙𝑎𝑏𝑒𝑙𝑔; 

23 𝑙𝑜𝑠𝑠𝑐𝑜𝑛  ←  𝑙𝑜𝑠𝑠𝑐𝑜𝑛_𝑠  +  𝑙𝑜𝑠𝑠𝑐𝑜𝑛_𝑔; 

24 𝑎𝑐𝑐𝑠  ←  𝑦𝑝𝑟𝑒𝑑_𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠; 

25 𝑎𝑐𝑐𝑐𝑜𝑛_𝑠 = (𝑎𝑐𝑐𝑠  −   𝜂𝑠) / (1 −  𝜂𝑠); 

26 𝑎𝑐𝑐𝑔 ← 𝑦𝑝𝑟𝑒𝑑_𝑔, 𝑙𝑎𝑏𝑒𝑙𝑔; 

27 𝑎𝑐𝑐𝑐𝑜𝑛_𝑔 = (𝑎𝑐𝑐𝑔  −   𝜂𝑔) / (1 −  𝜂𝑔); 

28 𝑎𝑐𝑐𝑐𝑜𝑛 = (𝑎𝑐𝑐𝑐𝑜𝑛_𝑠  −   𝑎𝑐𝑐𝑐𝑜𝑛_𝑔) / 2; 

 

Figure A1. The practical views from the Perseverance, Opportunity, and Spirit Mars rover of the NASA. (a) refers to the 

view of left Mastcam-Z Camera captured by the Perseverance [56]. (b) refers to the view of right Mastcam-Z camera cap-

tured by the Perseverance [56]. (c) refers to the view of rear hazard avoidance camera captured by the Perseverance [56]. 

(d) refers to the north edge of the “Home Plate” plateau captured by the Spirit [73]. (e) refers to the rim of “Erebus Crater” 

captured by the Opportunity [73]. (f) refers to the Meridiani Planum region captured by the navigation camera of the 

Opportunity [73]. 

 

Figure A2. The examples of the deleted images from the Skyfinder dataset. The images have been resized to same height 

and width for better displaying. The deleted images are mainly extremely upset visual condition, which is meaningless as 

a vision data. For example, the damaged image, purely dark (or white), extremely bad visibility (huge occlusion, backlight, 

noises, fog, cloud, rain, and etc.). 

 

Figure A3. The example image from the other two planetary datasets. (a) and (b) refer to the image form [50,55], respec-

tively. “1”, “2”, “3”, “4”, “5”, and “6” refer to irrelevant targets of vehicle, road, buildings, lamp, planet, and stagnant 

water. 

Figure A3. The example image from the other two planetary datasets. (a) and (b) refer to the image
form [50,55], respectively. “1”, “2”, “3”, “4”, “5”, and “6” refer to irrelevant targets of vehicle, road,
buildings, lamp, planet, and stagnant water.
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Figure A4. The augmentation schemes. RGB refers to the image data with red, green, and blue channels, and label refers 

to the corresponding augmented label-images. The original RGB refers to the original image, and the original label refers 

to the corresponding annotation of the original RGB image. The annotation process parallelly for both original RGB and 

label. For example, the “Left-right flip” conducts horizontal flip to both original RGB and label. The “Up-down flip” con-

ducts vertical flip to both original RGB and label. Other parameters include brightness, contrast, and the order of color 

channels. The “crop” refers to crop a part of the image and resize it to the original size. 

 

Figure A5. The loss (binary cross-entropy), accuracy, IoU, and Dice score records of the re-implemented U-Net in the pre-

training process in training and validation set (the Skyfinder dataset). (a–d) refer to the loss (binary cross-entropy), accu-

racy, IoU, and Dice score, respectively. 

Figure A4. The augmentation schemes. RGB refers to the image data with red, green, and blue channels, and label refers to
the corresponding augmented label-images. The original RGB refers to the original image, and the original label refers to
the corresponding annotation of the original RGB image. The annotation process parallelly for both original RGB and label.
For example, the “Left-right flip” conducts horizontal flip to both original RGB and label. The “Up-down flip” conducts
vertical flip to both original RGB and label. Other parameters include brightness, contrast, and the order of color channels.
The “crop” refers to crop a part of the image and resize it to the original size.
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Figure A5. The loss (binary cross-entropy), accuracy, IoU, and Dice score records of the re-implemented U-Net in the
pre-training process in training and validation set (the Skyfinder dataset). (a–d) refer to the loss (binary cross-entropy),
accuracy, IoU, and Dice score, respectively.
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of left Mastcam-Z Camera captured by the Perseverance, (b) refers to the view of right Mastcam-Z camera captured by 

the Perseverance, (c) refers to the view of rear hazard avoidance camera captured by the Perseverance, (d) refers to the 

north edge of the “Home Plate” plateau captured by the Spirit, (e) refers to the rim of “Erebus Crater” captured by the 

Opportunity, (f) refers to the Meridiani Planum region captured by the navigation camera of the Opportunity. 

Table A1. The real-time and computing power properties of the related studies. 

Studies Real-Time Property Computing Power Property 

McGee2005 320~720 ms PC104 stack with a 700 MHz Pentium III processor 

Liu2017 NA A 2.2 GHz Inter Pentium Dual Processor and 4 GB RAM 

Mattos2018 NA NA 

Song2018 NA NA 

Ye2019 NA NA 

Dev2017 1.89 s/image 
A 64-bit Ubuntu 14.04 LTS workstation, Intel i5 CPU at 2.67 

GHz 

Beuren2020 NA NA 

Tighe2013 30 s/image 
A single PC with dual Xeon 2.33 GHz quad core processors 

and 24 GB RAM 

Mihail2016 NA NA 

Tsai2016 

12 s for scene parsing and generating the FCN semantic responses, 

and 4 s to refine the segmentation results; 0.5 s to retrieve a sky image, 

and 4 s to match a region with the C++ implementation 

A Titan X GPU and 12 GB memory 

Liu2016 NA NA 

Vargas2019 0.036 s 
a 64 bit, Core(TM) i7-3770K Intel(R) PC with CPU speed of 

3.50 GHz 

Dev2019 NA NA 

Fu2019 322.2 ms (resolution is 280 × 320) 
a computer with Inter corei7-990X 5 GHz CPU and 4 GB 

memory 

Place2019 NA a single Titan X GPU 

Nice2020 an Nvidia GeForce GTX 1080 GPU 12 h for training 

Hozyn2020 NA NA 

The column “studies” uses exact names as in Figure 1. The columns “Real-time property” and “Computing power prop-

erty” refer to the time consumptions and required computing power. It is noteworthy that this table only summarizes the 

real-time and computing power properties of the related studies with a systematic review format. The numerical values 

do not work for the numerical comparison because the “studies” have different conditions (like data formats, resolutions, 

scopes, applications, sensors, etc.). 

Figure A6. The example landmarks in the navigation visions of the planetary rover (the Katwijk planetary rover dataset).
The green frames, red frames, and blue arrows refer to landmarks in sky, ground, and horizon, respectively. For example,
shadows, rocks, stones, traces, clouds, hills, mountains, and etc.
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A single PC with dual Xeon 2.33 GHz quad core processors 

and 24 GB RAM 

Mihail2016 NA NA 

Tsai2016 

12 s for scene parsing and generating the FCN semantic responses, 
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and 4 s to match a region with the C++ implementation 

A Titan X GPU and 12 GB memory 

Liu2016 NA NA 
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a 64 bit, Core(TM) i7-3770K Intel(R) PC with CPU speed of 

3.50 GHz 

Dev2019 NA NA 

Fu2019 322.2 ms (resolution is 280 × 320) 
a computer with Inter corei7-990X 5 GHz CPU and 4 GB 
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Nice2020 an Nvidia GeForce GTX 1080 GPU 12 h for training 

Hozyn2020 NA NA 
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Figure A7. The predictions of the transfer trained network corresponding to the views in Figure A1, (a) refers to the view
of left Mastcam-Z Camera captured by the Perseverance, (b) refers to the view of right Mastcam-Z camera captured by
the Perseverance, (c) refers to the view of rear hazard avoidance camera captured by the Perseverance, (d) refers to the
north edge of the “Home Plate” plateau captured by the Spirit, (e) refers to the rim of “Erebus Crater” captured by the
Opportunity, (f) refers to the Meridiani Planum region captured by the navigation camera of the Opportunity.

Table A1. The real-time and computing power properties of the related studies.

Studies Real-Time Property Computing Power Property

McGee2005 320~720 ms PC104 stack with a 700 MHz Pentium III processor
Liu2017 NA A 2.2 GHz Inter Pentium Dual Processor and 4 GB RAM

Mattos2018 NA NA
Song2018 NA NA

Ye2019 NA NA
Dev2017 1.89 s/image A 64-bit Ubuntu 14.04 LTS workstation, Intel i5 CPU at 2.67 GHz

Beuren2020 NA NA

Tighe2013 30 s/image A single PC with dual Xeon 2.33 GHz quad core processors and
24 GB RAM

Mihail2016 NA NA

Tsai2016

12 s for scene parsing and generating the FCN
semantic responses, and 4 s to refine the

segmentation results; 0.5 s to retrieve a sky image,
and 4 s to match a region with the C++

implementation

A Titan X GPU and 12 GB memory

Liu2016 NA NA

Vargas2019 0.036 s a 64 bit, Core(TM) i7-3770K Intel(R) PC with CPU speed of 3.50
GHz

Dev2019 NA NA

Fu2019 322.2 ms (resolution is 280 × 320) a computer with Inter corei7-990X 5 GHz CPU and 4 GB
memory

Place2019 NA a single Titan X GPU
Nice2020 an Nvidia GeForce GTX 1080 GPU 12 h for training

Hozyn2020 NA NA

The column “studies” uses exact names as in Figure 1. The columns “Real-time property” and “Computing power property” refer to the
time consumptions and required computing power. It is noteworthy that this table only summarizes the real-time and computing power
properties of the related studies with a systematic review format. The numerical values do not work for the numerical comparison because
the “studies” have different conditions (like data formats, resolutions, scopes, applications, sensors, etc.).
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Sensors 2021, 21, 6996 26 of 29 
 

 

 

Figure A8. The timing curves of the proposed NI-U-Net and the classical method (OTSU segmentation) using the 30 eval-

uation scenes. (a) refers to the inference timing curves of the proposed NI-U-Net, and (b) refers to the operation timing 

curves of the OTSU method. The mean for (a) is 0.02549 s per frame (the red dash line in (a)), while (b) is 0.00041 s per 

frame (the red dash line in (b)). The OTSU algorithm is implemented using the “cv2.THRESH_OTSU” of OpenCV library. 

 

Figure A9. The ROC, POR, and AUC curves of proposed NI-U-Net using the 30 evaluation scenes. (a–c) refer to ROC, 

POR, and AUC curves, respectively. The OTSU algorithm is implemented using the “cv2.THRESH_OTSU” of OpenCV 

library. The proposed NI-U-Net show better performance than the OTSU algorithm in both (a,b). The proposed NI-U-Net 

show better performance in both (a,b). The AUC is calculated using the AUC metric in the TensorFlow library (with 200 

thresholds). The red dash line in (c) refers to the average AUC value of the NI-U-Net, 94.7%. 

 

Figure A10. The visualization of the segmentation results of the proposed NI-U-Net and classical method OTSU method. 

Figure A8 shows the OTSU has better speed in segmentation time, while its segmentation performance is not as good as 

the proposed NI-U-Net. 

References 

1. Shen, Y.; Lin, C.; Chi, W.; Wang, C.; Hsieh, Y.; Wei, Y.; Chen, Y. Resveratrol Impedes the Stemness, Epithelial-Mesenchymal 

Transition, and Metabolic Reprogramming of Cancer Stem Cells in Nasopharyngeal Carcinoma through p53 Activation. Evid.-

Based Complement. Altern. Med. 2013, 2013, 590393. https://doi.org/10.1155/2013/590393. 

2. Tsai, Y.-H.; Shen, X.; Lin, Z.; Sunkavalli, K.; Yang, M.-H. Sky is not the limit. ACM Trans. Graph. 2016, 35, 1–11. 

https://doi.org/10.1145/2897824.2925942. 
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Sensors 2021, 21, 6996 26 of 29 
 

 

 

Figure A8. The timing curves of the proposed NI-U-Net and the classical method (OTSU segmentation) using the 30 eval-

uation scenes. (a) refers to the inference timing curves of the proposed NI-U-Net, and (b) refers to the operation timing 

curves of the OTSU method. The mean for (a) is 0.02549 s per frame (the red dash line in (a)), while (b) is 0.00041 s per 

frame (the red dash line in (b)). The OTSU algorithm is implemented using the “cv2.THRESH_OTSU” of OpenCV library. 

 

Figure A9. The ROC, POR, and AUC curves of proposed NI-U-Net using the 30 evaluation scenes. (a–c) refer to ROC, 

POR, and AUC curves, respectively. The OTSU algorithm is implemented using the “cv2.THRESH_OTSU” of OpenCV 

library. The proposed NI-U-Net show better performance than the OTSU algorithm in both (a,b). The proposed NI-U-Net 

show better performance in both (a,b). The AUC is calculated using the AUC metric in the TensorFlow library (with 200 

thresholds). The red dash line in (c) refers to the average AUC value of the NI-U-Net, 94.7%. 

 

Figure A10. The visualization of the segmentation results of the proposed NI-U-Net and classical method OTSU method. 

Figure A8 shows the OTSU has better speed in segmentation time, while its segmentation performance is not as good as 

the proposed NI-U-Net. 

References 

1. Shen, Y.; Lin, C.; Chi, W.; Wang, C.; Hsieh, Y.; Wei, Y.; Chen, Y. Resveratrol Impedes the Stemness, Epithelial-Mesenchymal 

Transition, and Metabolic Reprogramming of Cancer Stem Cells in Nasopharyngeal Carcinoma through p53 Activation. Evid.-

Based Complement. Altern. Med. 2013, 2013, 590393. https://doi.org/10.1155/2013/590393. 

2. Tsai, Y.-H.; Shen, X.; Lin, Z.; Sunkavalli, K.; Yang, M.-H. Sky is not the limit. ACM Trans. Graph. 2016, 35, 1–11. 

https://doi.org/10.1145/2897824.2925942. 

Figure A10. The visualization of the segmentation results of the proposed NI-U-Net and classical method OTSU method.
Figure A8 shows the OTSU has better speed in segmentation time, while its segmentation performance is not as good as the
proposed NI-U-Net.
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